
POMP: Protocol Oblivious SDN Programming with
Automatic Multi-Table Pipelining

Chunhui He
School of Computer Science and Technology

University of Science and Technology of China
hchunhui@mail.ustc.edu.cn

Xinyu Feng
State Key Laboratory for Novel Software Technology

Nanjing University
xyfeng@nju.edu.cn

Abstract—SDN programming has been challenging because
programmers have to not only implement the control logic, but
also handle low-level details such as the generation of flow tables
and the communication between the controller and switches. New
generation of SDN with protocol oblivious forwarding and multi-
table pipelining introduces even more low-level details to consider.

We propose POMP, the first SDN programming environment
supporting both protocol oblivious forwarding and automatic
multi-table pipelining. POMP applies the static taint analysis
technique to automatically infer compact and efficient multi-table
pipelines from a data-plane agnostic network policy written by
the programmer. The runtime system tracks the execution of the
network policy, and automatically generates table entries. POMP
also introduces a novel notion of dependent labels in the taint
analysis, which, combined with the runtime information of the
network policy, can further reduce the number of table entries.
Like P4, POMP supports protocol-oblivious programming by
providing a network protocol specification language. Parsers of
packets can be automatically generated based on the protocol
specification. POMP supports two main emerging SDN platforms,
POF and P4, therefore network policies written in POMP are
portable over any switches supporting POF or P4.

I. INTRODUCTION

Software-Defined Networking (SDN) is a network archi-
tecture that decouples control and forwarding. Distributed
switches are managed by a logically-centralized controller,
which can be implemented by software through SDN pro-
gramming.

OpenFlow is the first SDN standard, but it only supports a
predefined fixed set of networking protocols, and allows only a
fixed single flow table. New generation of SDN platforms [1],
[2], [3], [4] offer two new flexible features at the data-plane,
i.e. multi-table pipelining and protocol-oblivious forwarding.
The former allows multiple flow tables on switches to form a
forwarding pipeline, which can be customized by users. The
latter supports customized packets for new protocols.

SDN programming has been challenging because the pro-
grammer has to not only implement the network policy (i.e.
the control logic), but also handle low-level data-plane details.
Specifically, one faces the following challenges:

1) to manually translate high-level network policies to
flow table entries. It is error-prone, and makes network
policies hard to write and read [5].

Corresponding author: Xinyu Feng. This work is supported in part by grants
from National Natural Science Foundation of China (NSFC) under Grant Nos.
61379039 and 61632005.

2) to design flow table layout and forwarding pipelines for
new generation SDN to achieve compact flow tables
and efficient forwarding. As we explain in Sec. III,
different forwarding pipelines may generate flow tables
with significantly different sizes.

3) to implement parsers for packets with new header fields
to fit in the underlying protocol oblivious forwarding
mechanism. For instance, one needs to generate the
(offset, length) tuples required by POF [2] to
locate packet fields.

There have been many languages proposed to simplify
SDN programming, but none of them address all the prob-
lems above. Languages such as NetKAT [6], NetCore [7]
and Maple [5] try to address the first problem, but they
are designed for Openflow and do not support multi-table
pipelining and protocol-oblivious forwarding. P4 [1] provides
a header specification language for protocol independence.
Programmers can write a specification of the header format,
from which P4 generate parsers automatically. But P4 is
more of a low-level switch configuration language, and is not
suitable for high-level controller programming.

We propose POMP, a high-level programming environ-
ment to simplify SDN programming. Following the idea of
Maple [5], POMP provides a set of APIs and a runtime system.
Programmers can use the APIs to describe the network policy
by writing an algorithmic sequential program with a high-level
centralized view of the network environment. This high-level
network policy is data-plane agnostic. It is the runtime system
that tracks the execution of the network policy and generates
flow table entries automatically. POMP also makes significant
extensions to the above ideas in Maple to support automatic
multi-table pipelining and protocol oblivious programming.1

As far as we know, POMP is the first high-level programming
environment that solves all the aforementioned problems. Our
work on POMP makes the following new contributions:

• We apply the static taint analysis technique [8] to anal-
yse the network policy’s dependence over the fields of
packets. Based on the fine-grained dependence relation
we automatically generate compact and efficient multi-
table pipelines. The analysis and the pipeline generation

1The name POMP highlights the two key features of our work, i.e. protocol-
oblivious programming and multi-table pipelining.

Fig. 1. Structure of POMP

is done statically before the deployment of the controller,
therefore it does not introduce any runtime overhead.

• We extend the taint analysis with a novel notion of
dependent labels, which further refines the dependence
relation and allows it to be conditional upon the if
statement branches taken at runtime. Combining the
dependent labels with the runtime execution traces of the
network policy, the runtime system can further reduce the
number of flow table entries. Our experiments show that,
for learning switches, POMP generates flow tables with
up to 47x fewer table entries and being 137x faster than
the traditional single flow table (as generated in Maple).

• Inspired by P4, POMP incorporates a packet header spec-
ification language, with which programmers can specify
the format of packet headers. Based on the specification
we can automatically generate parsers for packets. This
makes POMP a protocol oblivious programming environ-
ment. Our runtime system can support two main emerging
SDN platforms: POF and P4. It makes network policies
written in our language portable over any SDN chipsets
and software switches that support POF or P4.

In the remaining part of the paper, we give a system
overview and introduce a running example in Sec. II. We
present the taint analysis and the pipeline generation in
Sec. III, and propose the dependent labels and the runtime
generation of table entries in Sec. IV. We then introduce the
packet parsing for protocol oblivious programming in Sec. V.
We show evaluation results in Sec. VI. Finally we discuss
related work in Sec. VII and conclude in Sec. VIII.

II. OVERVIEW

In this section we first give an overview of the system
structure of POMP. Then we introduce learning switches as
a running example used in the following sections.

A. System structure

Figure 1 shows the system structure. Following Maple,
POMP allows programmers to implement the network policy
as an algorithmic sequential program with a centralized view
of the network environment. The network policy is imple-
mented as a function f(pkt, env). It is a C program with
API calls of the POMP library.

From programmers’ point of view, f(pkt, env) is in-
voked upon the arrival of every packet pkt in each data-
plane switch. f also takes a centralized view of the network
environment env. It calculates the routing path and returns
the port number to forward the packet. The return value can
also be 0 or negative, which means to drop the packet or
to broadcast it, respectively. f may also call POMP APIs to
modify the global environment or to modify fields of packets.

What really happens is that the controller (the runtime
system) invokes f(pkt, env) when it receives a PacketIn
message, and passes the packet to f. The runtime then
monitors the execution of f and generates an execution trace,
which records the sequence of API calls made by f to read
or update packet header fields or the environment data. Based
on the dependence between actions and values of packet fields
reflected in the trace, the runtime automatically generates flow
table entries and install them on switches.

So far the ideas all come from Maple, but Maple does not
support multi-table pipelining and protocol-oblivious forward-
ing. As we demonstrate in Sec. III, the dependence derived
by Maple from the execution trace is way too imprecise and
leads to flow tables with O(n2) forwarding rules for learning
switches with n hosts, even though O(n) rules are sufficient.

POMP introduces a static taint analysis phase to analyse the
code of f, from which it infers the fine-grained dependence
between actions and packet fields. Based on the fine-grained
dependence, it automatically generates a multi-table pipeline.
The runtime takes the multi-table pipeline into account and
generates table entries accordingly.

To support protocol-oblivious programming, we follow the
ideas in P4 and ask programmers to provide a header format
specification written in a specification language. Then the
parser generator automatically generates parsers for packets.
POMP supports both POF and P4. For POF, the runtime
queries the parser to map the string field names to the
(offset, length) tuples. For P4, the generated parser
and forwarding pipeline are fed into the P4 compiler to
configure the switch. We also introduce a switch abstraction
layer, which accepts P4 or POF messages separately and then
converts them into a uniform format for the runtime system.

B. Learning Switches: a running example

We use learning switches to demonstrate how the system
works. It is also used as a running example to illustrate the key
ideas in the following sections. As shown in Fig. 1, our system
takes as inputs a protocol specification and a network policy
f, which are shown in Figs. 2 and 3 respectively. (Ignore the
comments in Fig. 3, which shows the result of taint analysis
and is explained in Sec. III).

The protocol specification describes the eth and ipv4
protocols. Each is defined by a header block. For each
header block, there are the fields section that describes
the fields of the protocol, and the next section that describes
the inner protocols. For example, the eth protocol has three
fields: 48 bits dst, 48 bits src and 16 bits type. Depending
on the values of type, the protocol follows the eth is ipv4

header eth {
fields {

dst : 48;
src : 48;
type : 16;

}
next select (type) {

case 0x0800: ipv4;
case 0x86dd: ipv6;
...

}
}

header ipv4 {
fields {
...
ttl : 8;
...

}

...
}

start eth;

Fig. 2. Header specification

or ipv6. The start clause at the end indicates the name of
the outmost protocol.

The network policy f is written in C with POMP primitives.
As shown in Fig. 3, the f for learning switches first reads
the ingress port, the source address, the destination address
and the type of the packet. It learns the source host, and
remembers the ingress port in mac2port (line 6). Then it
looks up mac2port to find the port for destination (line 7)
and set the return value to the port number (line 9). If the
result is 0, it means the port is unknown, so we set the return
value to negative (line 11) to broadcast the packet.

For IPv4 packets, we also decrease the ttl (line 17) if it
is greater than 0. Otherwise we drop the packet by setting the
return value to 0.
Data-plane agnostic and protocol-oblivious network policy.
Note that f does not describe forwarding pipelines and for-
warding rules, which are automatically generated. Also it uses
strings as field names to access packet header fields (e.g.,
read_packet(pkt, "eth.dst")). Parsing is done au-
tomatically to map field names to their offsets in packets.

III. PIPELINE GENERATION

Following the idea of Maple by recording the execution
traces of f, we can derive the actions and their dependence
over packet header fields, and generate a single flow table.
Fig. 4 shows the flow table for learning switches.

The match fields of the flow table come from
read_inport() and read_packet() in the network
policy f. There are two possible actions of the flow table.
The first is to modify the ttl field, and then to forward the
packet. The second is to drop the packet.

However, such a flow table may cause unnecessarily large
number of table entries. To see the problem, suppose there
are n hosts in the network. When a host hi sends a packet
to hj , the controller has to install a flow entry that matches
“inport” (represented as “in p” in the table), “src” and “dst”.
This results in O(n2) entries of the flow table.

One may have noticed that, since the switch forwards
packets only based on the destination address, there is no
need to enumerate all combinations of “src” and “dst”. An
apparent optimization might be omitting the match fields “src”
and “inport” by filling in “*” in the table. But this is incorrect
because we do need to match the exact values of “src” and
“inport” — we rely on a mismatch to detect a new (“src”,

“inport”) combination, which leads to a packet-in message
sending to the controller, so that the controller can update
the environment mac2port (line 6 in Fig. 3).

But still we do not need to exhaustively enumerate all the
combination of “src” and “dst” (leading to O(n2) forwarding
rules). Learning the topology needs to match “inport” and
“src” but not “dst”, and the forwarding needs to match “dst”
(and “ttl” for IPv4 packets) but not “src”. Each of the two
functionalities requires O(n) rules respectively. Therefore we
could greatly reduce the number of forwarding rules (i.e.
flow table entries) if we can have multiple flow tables, each
corresponds to one independent functionality only.

To achieve this, we not only need the support of multi-table
forwarding pipelines on switches (which is available in the
emerging SDN platforms), but also need to have more fine-
grained dependence relation between the functionality and the
packet header fields. Since Maple only tracks the execution
trace of f, it lets an action (e.g. the return of the value r
at line 23) depend on all earlier actions that read packets or
environments (e.g. the read of “src” at line 4). This is overly
conservative and leads to imprecise dependence relation.

As one of the major contributions of the work, we use
static taint analysis [8] to infer more fine-grained dependence
relation. The analysis takes the function f as input and tracks
the information flow from packets and environments to the
actions that perform the functionalities (e.g. mod_env() at
line 6), without actually running f. The result can be used to
design multi-table forwarding pipelines.

A. Taint analysis

Taint analysis computes the information flow from sources
to sinks. In our settings, the sources are the ingress port,
packets’ header fields, and environments. The sinks are the
operations that output information, including the return of
routing decisions, and the update of packets and environments.
Since all accesses of packets and environments must be made
through POMP APIs, they can be easily recognized in the
code. In Table I, we list the APIs that obtain information
from the sources. We also assign labels to identify each
source. Note that for test_equal(pkt, fld, v) (which
tests the equality between fld and v), we label the source
with test(fld) instead of fld. The latter means we need
the exact value of the field fld, while the former means
we only care about certain property of fld. They indicate
different number of entries in the flow table. Distinguish-
ing them allows us to generate more compact forwarding
pipelines, which we explain below. The sinks are the API calls
of mod_packet(pkt, fld, v) and mod_env(env,
var, key, v), and also the command return r.

The process of the taint analysis propagates labels from
sources to sinks. Our algorithm is mostly standard [8] except
the extension with dependent labels. Here we only introduce
the rough idea of taint analysis based on the learning switches
example. Dependent labels are introduced later in Sec. IV.

1 f(pkt, env) {
2 inport = read_inport(pkt); // inport <- {inport}
3 dst = read_packet(pkt, "eth.dst"); // dst <- {dst}
4 src = read_packet(pkt, "eth.src"); // src <- {src}
5

6 mod_env(env, "mac2port", src, inport); // mod_env@6 <- {src, inport}
7 port = read_env(env, "mac2port", dst); // port <- {dst, env(mac2port)}
8 if (port != 0) { // branch@8 <- {dst, env(mac2port)}
9 r = port; // r <- {dst, env(mac2port)}

10 } else {
11 r = -inport; // r <- {dst, env(mac2port), inport}
12 }
13 // r <- {dst, env(mac2port), inport}
14 if(test_equal(pkt, "eth.type", 0x800)) { // branch@14 <- {test(type)}
15 ttl = read_packet(pkt, "eth.ipv4.ttl"); // ttl <- {test(type), ttl}
16 if (!test_equal(pkt, "eth.ipv4.ttl", 1)) { // branch@16 <- {test(ttl)}
17 mod_packet(pkt, "eth.ipv4.ttl", ttl - 1); // mod_packet@17 <- {test(type), ttl}
18 } else {
19 r = 0; // r <- {test(type), test(ttl)}
20 }
21 }
22 // r <- {dst, env(mac2port), inport, test(type), test(ttl)}
23 return r; // return@23 <- {dst, env(mac2port), inport, test(type), test(ttl)}
24 }

Fig. 3. Taint analysis for learning switches in POMP

priority in p src dst type ttl action
1 2 h2 h1 0x800 64 MOD_FLD(ttl,63);

OUT[1]
1 1 h1 h2 0x800 64 MOD_FLD(ttl,63);

OUT[2]
1 1 h1 h3 0x800 1 DROP
...

Fig. 4. Flow table layout of learning switches

TABLE I
SOURCES AND SINKS

Source Label
read_inport(pkt) inport
read_packet(pkt, fld) fld
test_equal(pkt, fld, v) test(fld)
read_env(env, var, key) env(var)

(a) Sources and Labels
Sink
mod_packet(pkt, fld, v)
mod_env(env, var, key, v)
return r

(b) Sinks

Comments in Fig. 3 demonstrates how we trace the infor-
mation flow. Every variable is assigned to a set of labels,
recording the information flowing into the variable.

For assignment statements, the label set of the variable on
the left hand side is the union of the label sets of the variables
on the right and the set of sources accessed. For example,
the variable dst is assigned the label set {dst} at line 7
(packet field prefix omitted in the label set to avoid clutter),
and port at line 4 is assigned {env(mac2port), dst},
which is obtained by {env(mac2port)} ∪ label(dst).

The label set of a sink is the union of the label set of its
arguments. The mod_env() at line 6 is a sink. Its label set
is the union of the label sets of src and inport.

For if statements, we analyse both branches and then

merge the results. As an example, the label set for r at line 13
is the union of the sets at lines 9 and 11 respectively. When
analysing each branch, we also need to consider the label set
of the boolean branch condition of the if statements, because
of the implicit information flow caused by control dependence.
Therefore the label set of variable r is the union of the label
sets of both inport and port.

B. Xgraphs and Pipeline Generation
Although the taint analysis generates dependence for each

sink (at lines 6, 17 and 23), we also need to maintain the
control flow to decide the order of these actions in the
forwarding pipeline. We let the taint analysis generate Xgraph,
an intermediate representation of both the control flow and
the dependence (i.e. label sets). The Xgraph for our example
is shown in Fig. 5. There are two types of nodes. The
square node represents an action corresponding to a sink.
It records the name and the line number of the action (e.g.
mod_env@6 in the first node), and the corresponding label
set (e.g. {src,inport} in the first node). Each diamond
node represents a branch. It records the label set of the branch
expression and the line number of the branch. The edges in
the Xgraph represent the control flow.

Given the Xgraph, we can do a “node to node” translation
to generate the multi-stage forwarding pipeline. Fig. 6 shows
the pipeline generated from Fig. 5. For each square node in
the Xgraph, we generate a flow table for the functionality. The
match fields of the flow table are the packet header fields and
the ingress port in the dependence set of the corresponding
Xgraph node. The action is translated from the corresponding
controller action in the Xgraph node, but not necessarily
the same. For example, we translate the controller action
mod_env() in Fig. 5 into a [GOTO] action, which does
nothing and jumps to the next flow table on the pipeline. As
we explained before, the only effect of this table is to generate

/* learning topology */
depends: {src, inport}
action: mod_env@6

branch(test(type))@14

branch(test(ttl))@16

/* forwarding packets */
depends: {dst, env(mac2port), inport, test(type), test(ttl)}

action: return@23

/* decreasing TTL */
depends: {test(type), ttl}
action: mod_packet@17

Fig. 5. The Xgraph for the example

tid: 0

fields: {src, inport}

actions: {[GOTO]}

tid: 1

fields: {type}

actions: {[GOTO]}

tid: 2

fields: {ttl}

actions: {[GOTO]}

tid: 4

fields: {dst, inport, type, ttl}

actions: {[OUTPUT], [DROP]}

tid: 3

fields: {type, ttl}

actions: {[MOD_FIELD(ttl); GOTO]}

Fig. 6. Multi-stage pipeline

mismatches (and the corresponding PacketIn messages) for
fresh (“src”, “inport”) pairs and to let the controller to receive
the packet and execute the mod_env() action. The controller
action mod_packet() is translated to the flow table ac-
tion [MOD_FLD; GOTO], which modifies the corresponding
packet field and then jumps to the next table. The return
action in the Xgraph is translated into a corresponding OUT
or DROP flow table action.

We also generate a flow table for each diamond node. The
match fields are the fields that the branch depends on. The
action of the table is [GOTO]. The flow table can jump to
different flow tables based on the values of the match fields.

Because we generate a separate flow table for each inde-
pendent functionality, and our taint-analysis generates more
fine-grained dependence relation than Maple, we can avoid
enumerating values of unnecessary combination of match
fields. For learning switches, we can avoid the O(n2) table
entries in Fig. 4. The total number of possible entries of the
pipeline in Fig. 6 is O(n).

C. Optimizations

The generated pipeline can be further optimized. From
Fig. 6 we can see the match fields in different flow tables have
overlaps, which may cause these fields to be matched multiple
times. If we can merge some of these tables into one, we can
reduce the redundancy. Another advantage for the merge is to
reduce the length of the pipeline, so that the execution time is
reduced accordingly. However, we have to be careful with the
merge to avoid unnecessary combination of different match
fields, as shown in Fig. 4.

We do the optimization by first trying to merge the Xgraph
nodes. We consider two situations. In the first situation, we
merge adjacent square nodes n1 and n2 if the dependence set
of one is a subset of the other, i.e. n1.depends v n2.depends
or n2.depends v n1.depends, where

L1 v L2
def
= ∀l1 ∈ L1. ∃l2 ∈ L2. l1 v l2

l1 v l2
def
= l1 = l2 ∨ (∃fld.l1 = test(fld) ∧ l2 = fld) .

As we explain before, since the label test(fld) refers to
certain properties of the value of the field only, while fld
relies on the exact value, the former contains less information
than the latter and thus we let test(fld) v fld. The
new node after the merge simply contains the union of the
dependence set and the union of the actions in n1 and n2.

In the second situation, we merge the diamond node b and
the square nodes n1 and n2 in its branches, if each branch
has at most one square node (there could be an empty branch
with no nodes, as shown in Fig. 5), and the dependence sets of
these two branches overlap. More formally, we do the merge
if n1.depends v n2.depends or n2.depends v n1.depends,
(if there is an empty branch, we can view it as a dummy node
with empty dependence set). Then we merge the three nodes
(b, n1 and n2) into n, where n.depends = n1.depends ∪
n2.depends ∪ b.depends. The action set of n is also a union
of those of n1 and n2. For example, in Fig. 5 the action of
decreasing TTL at line 17 can share a flow table with the
sibling empty branch, so that we can merge the square node
with its parent diamond node.

We repeat the above processes until there are no more
nodes that can be merged. For the Xgraph in Fig. 5, we
eventually merge the two diamond nodes and the square node
for decreasing TTL. The new Xgraph has three square nodes
only. The merge does not increase the number of table entries,
because it does not introduce new combination of fields.

Then we translate the merged Xgraph into a forwarding
pipeline. For the Xgraph in Fig. 5, after merging we get an
optimized pipeline of flow tables shown in Fig. 7. In addition
to the table layout, we also show some table entries to help
understanding how this pipeline works (the generation of table
entries is explained in the next section). Table 0 depends
only on “inport” and “src”, and the action is to jump to
Table 1 directly. Table 1 depends on the exact values of “ttl”,
decrements it (if the value is greater than 1) and jumps to Table
2, which then either drops the packet or send it out depending
on whether “ttl” is 1 or not.

Flow Table 0:
priority in p src action

1 1 h1 GOTO(1)
1 2 h2 GOTO(1)
...

Flow Table 1:
priority type ttl action

1 0x800 64 MOD_FLD(ttl,63); GOTO(2)
...
1 0x800 1 GOTO(2)

Flow Table 2:
priority in p dst type ttl action

5 1 h2 0x800 1 DROP
3 2 h1 0x800 * OUT[1]
3 2 h3 0x800 * OUT[1,3,4...]
...

Fig. 7. Optimized flow table layout of learning switches

However, Flow Table 2 may still contain more table entries
than needed. When “ttl” is 1, the packet is always dropped,
and the action is independent of “inport” and “dst”. So ideally
in the first row of the table, the first two columns should be “*”
instead of the exact values. Unfortunately we cannot achieve
this effect because the label set generated by the taint analysis
for the return value r is not precise enough — at the end
of the if statement we always merge the label sets of the
two branches, leading to a conservative upper bound of the
set of labels that may affect the value of r. Our idea to solve
this problem is to introduce dependent labels to generate more
precise dependence relation, which allows us to fill “*” into
the table to further reduce the size of tables. We explain the
details in the next section.

IV. TABLE ENTRY GENERATION AND DEPENDENT LABELS

Following the idea of Maple, our system automatically
populates flow table entries by discovering reusable network
policy executions. When f is invoked, the runtime system
tracks its execution, and records the trace consisting of events
accessing packets and the environment data. In the leftmost
column of Table II, we show a trace generated when f for
learning switches is invoked with an IPv4 packet from h1 to
h2, and the field of “ttl” is 1 (so the packet is dropped).

Maple derives the dependence between actions (such as
dropping the packet) and the values of packet fields, from
which the corresponding flow table entries are generated
for the switches. (Maple actually also maintains historical
execution traces, and merges all the traces into a trace tree. We
follow the same mechanism, but omit the details of trace trees
here to simplify the presentation.) This simple approach works
for a monolithic flow table with large amount of unnecessary
table entries, but it cannot be applied directly in our setting
with multi-table pipelines. Since the linear-timed execution
trace contains all the events produced by f, how do we fit
it into multiple flow tables?

To solve this problem, we need to derive sub-traces from
the global trace and assign a sub-trace to each flow table, from
which we generate the corresponding table entries. During
this process, we also take advantage of the runtime values to

TABLE II
EXAMPLE OF AN EXECUTION TRACE

trace sub-trace 2 instrumentation
read inport(pkt) == 1;

√
*

read packet(pkt, “dst”) == h2;
√

*
read packet(pkt, “src”) == h1;

mod env(env, “mac2port”, h1, 1);
read env(env, “mac2port”, h2) == 0;

√
*

branch(8, false);
test equal(pkt, “type”, 0x800) == true

√

branch(14, true);
branch(16, false);

test equal(pkt, “ttl”, 1) == true
√

return 0;
√

further refine the conservative dependence relation generated
by the static taint analysis, as we pointed out at the end
of Sec. III. This is achieved by extending the taint analysis
algorithm with the more refined dependent labels. Below we
explain in detail the dependent labels and the use of it together
with runtime information to generate compact table entries.

A. Splitting the trace

With multi-table pipelines, we need to derive sub-traces
from a full execution trace for individual flow tables. Given
the Xgraph and the corresponding pipeline generated by the
taint analysis, we can simply extract the events that correspond
to those in the dependence set and the set of actions in each
Xgraph node. For instance, from the last square node in Fig. 5
(which corresponds to the layout of Flow Table 2 in Fig. 7),
we can easily find all the relevant events in the trace shown
in Table II. We mark these events with

√
(ignore the “*” for

now), which form the sub-trace for Flow Table 2. With this
sub-trace we can generate the first row in the Flow Table 2.

However, when “ttl” is 1, we drop the packet regardless of
the values of “inport” and “dst”, and the result of read_env.
Therefore the three events marked with “

√
*” in Table II

should be removed from the sub-trace, so that we can fill “*”
in the corresponding matching fields (“inport” and “dst”) of
the flow table entry. As we explained at the end of Sec. III, the
conservative label set for the return value r should be blamed
for the inclusion of the three events in the sub-trace. Knowing
the runtime value of “ttl”, we should be able to infer that the
action in this case only depends on the testing of “type” and
“ttl”. But how do we take advantage of the runtime value to
generate the more precise dependence relation?

B. Dependent labels

To solve the problem above, we extend the labeling system
in the taint analysis with dependent labels. Labels and label
sets are defined below:
(Labels) l ::= fld | test(fld) | . . . | L@N ?L1 :L2

(LabSets) L ::= {l1, . . . , ln}
What’s new here is the dependent label in the form of
L@N ?L1 :L2. It is used to label variables at the end of the
statement if(B) C1 else C2, starting at line number N in the
code. L is the label set for B, and L1 and L2 are the label sets
assigned to the variables in the two branches respectively. As

{test(type)}@14

{test(ttl)}@16

 Y

{dst, env(mac2port)}@8

 N

{dst, env(mac2port)}@8

 Y

{}

 N

{dst, env(mac2port)}

 Y

{inport}

 N

{dst, env(mac2port)}

 Y

{inport}

 N

Fig. 8. Dependent label of r

we explain in Sec. III-A, the standard taint analysis algorithm
merges the sets L1 and L2 of the two branches when we reach
the end of the if statement. We generate the dependent label
instead, which is a more refined view, saying the label set
depends on the value of the branch condition B containing
information in L. If B holds the label set is L1, otherwise L2.

As an example, the if statement at line 8 in Fig. 3
assigns different values to r. We define the label set of r
as Lr1 = {lr1}, where lr1 is a dependent label defined as
Lport@8

?Lport : {inport}, and Lport is the label set
for port at line 8, i.e. Lport = {dst, env(mac2port)}.
Similarly, the if statement at line 16 leaves r untouched in
one branch, and assigns 0 to it in the other. So the label set of
r is either the same as before (i.e. Lr1), or empty set (if it is
reset to 0, which contains no source information). We define
the label set as Lr2 = {lr2}, where the dependent label lr2
is defined as {test(ttl)}@16 ?Lr1 :{}. We can also give an
intuitive graphic view of dependent labels. Fig. 8 shows the
dependent label assigned to r at the end of the if statement
at line 14 (which is also the final label for r).

In the learning switches example, the extension of taint
analysis with dependent labels affects only the labeling of
r, whose value depends on the if statement branches taken
at runtime. Although it gives us a more refined view of
information flow, the dependent label does not affect our
algorithm to generate pipelines shown in Sec. III because
statically we do not know which branch will be taken and
have to maintain a conservative view as before. The generated
pipeline is the same as we have shown before.

However, we can know which branch is taken at runtime,
then we can derive more refined label sets from the dependent
label. This means we can find more precise sub-traces for
different flow tables. However, to take advantage of dependent
labels, we need to instrument the code and the traces to
remember which if statement branch is taken at runtime.

C. Code and trace instrumentation

We instrument the if statement in the code of the network
policy f to generate events showing which branch is taken at
runtime. For the example execution trace shown in Table II,
we have three more events after the instrumentation, shown in
the right column.

With this instrumented trace and the dependent labels, we
can derive more compact sub-traces. In the learning switches

Fig. 9. A parse graph

example, the label set for the return command is the same
with the set for the variable r, as shown in Fig. 8. From the
instrumented trace we know the branches taken for the if
statements at lines 14 and 16, therefore we know the relevant
labels are only those shown on the grey path in Fig. 8. This
allows us to remove the events labeled with “*” in the middle
column of Table II. With this more compact sub-trace, in Flow
Table 2 of Fig. 7 we can fill “*” into the first two fields of
the first row, which results in not only compact flow tables,
but also much less mismatches and PacketIn messages.

V. PACKET PARSING

POMP supports protocol oblivious programming. It uses
dotted paths of packet header fields to access pack-
ets. For instance, the API call of read_packet(pkt,
"eth.ipv4.ttl") in Fig. 3 accesses the “ttl” field of
the ipv4 packet. In the dotted string path, “eth” and “ipv4”
represent protocol names and the last substring “ttl” is the field
name. The string path can be arbitrary for any user customized
protocols. It is not limited to a predefined set of protocols.

To achieve this, the programmers provide protocol speci-
fications, from which a parse graph is generated. The parse
graph serves both as a P4 parser, which can be compiled and
deployed on P4 switches, or as an input to the runtime systems
to parsing packets at the control plane.

A. Protocol specification

As shown in the learning switches example in Fig. 2, a
protocol specification consists of a set of header definitions
and a starting protocol declaration. A header definition has
the following parts.

• header name: name of the protocol, e.g. eth and ipv4.
• fields: the layout of the header, consisting of a sequence

of field names and the corresponding lengths in bits.
• next headers: the name of the next header, which could

be conditional upon the value of certain field. For in-
stance, if the type of eth is 0x800, the next header is
ipv4; if it is 0x86dd, the next header is ipv6.

The starting protocol declaration shows which protocol is
the outmost one, i.e. the one that needs to be parsed first. It
is eth in our example.

B. Parsing graphs and packet parsing

From the protocol specification one can easily derive a
parse graph as in P4. As shown in Fig. 9, the parse graph
is a directed graph, where nodes represent protocols declared
in the specification, and edges represent the ordering of
protocols. The edges are generated from the next block of
the specification, and the labels represents the corresponding
values of the field that one uses to determine the next protocol.
The start node is specified by the start clause.

Both the runtime system of POMP in the control plane and
the data plane may use the parse graph for packet parsing.

1) Parsing in the control plane: The POMP runtime takes
the parse graph and a raw packet as input, and outputs a map
from field names to (offset, length) tuples, which can
be used to extract values of fields from the raw packet. As
explained before, we use dotted notations (e.g. “eth.ipv4.ttl”)
for field names to avoid name clash. The parsing starts with
the start node and traverses the parse graph. During the process
it also maintains a current pointer pointing to the raw packet,
which is used to extract the value of certain field (e.g. type)
to decide the next node to transit to.

The parsing process is invoked on receiving a PacketIn
message. In the network policy f(pkt, env), when packet
fields are accessed using string names, we lookup the map
generated by the parser to find the corresponding (offset,
length) tuples, using which we can locate the field and do
the read/write of the field.

Since the switch of POF uses (offset, length) tuples
in the flow table to access packet fields, the runtime system
also needs to translate field names into (offset, length)
when installing flow table entries for POF switches.

2) Parsing in the data plane: POF and P4 uses different
strategies to achieve protocol independence. In POF, no parser
is required in the data plane. We use (offset, length)
generated by the control plane parser to specify packet fields.

On the other hand, our parsing graph also serves as a P4
parser, which can be fed into the P4 compiler to generate a
data plane parser. All incoming packets must be parsed at the
data plane before being sent to the pipeline.

VI. EVALUATION

We compare the effects of different techniques we use,
and demonstrate that POMP generates high-quality forwarding
pipelines. The evaluation setting is the following:

• Hardware: Intel Core I7 4712MQ 2.3GHz, 8G RAM.
• Network Emulator: Mininet [9].
• Switch: P4 bmv2 [10] / Open vSwitch [11] 2.6.2.
• Topology: Single 10 port switch with n hosts.
To show the effects of different techniques, POMP provides

three tunable options:
• “multi” / “single”: Enabling or disabling the generation

of multi-table pipelines. The “single” option turns off the
taint analysis and generates a single monolithic flow table.

• “opt” / “nonopt”: Enabling or disabling the pipeline
optimization shown in Sec. III-C.

• “dep” / “nondep”: Enabling or disabling the use of
dependent labels explained in Sec. IV-B.

We run the learning switches example using different op-
tions and different n (i.e. the number of hosts). We record the
number of flow tables. Then we use the “pingall” test provided
by Mininet to send packets among hosts. We record the total
number of flow table entries and number of packet-in events
generated during the test, and the execution time.

A. The quality of pipelines

We use the number of flow tables and total number of table
entries to evaluate the quality of pipelines. The result is shown
in Table III, from which we can see:

• The total number of entries grows quadratically in single-
table, while it grows linearly in multi-table pipelines.

• POMP under the multi-opt-dep setting uses up to 47x
fewer number of entries than single-table.

• Turning on “opt” reduces the number of tables from 5 to
3, while the number of entries is about the same. This
is because the reduced flow tables (with tid 1 and 2 in
Fig. 6) contain only 3 entries in total.

• Dependent labels (turning on “dep”) save 66% - 80%
entries, comparing the last two rows of Table III.

B. Performance

We use the execution time and the number of PacketIn
events to evaluate the performance. The result is shown in
Tables IV and V. We also compare our learning switches
with the built-in learning functionality of Open vSwitch, a
production quality soft switch. Its profile is shown as “ovsk”.

From Tables IV and V we can see:
• Multi-table pipeline causes significantly less PacketIn

messages than single table, and is up to 134x faster.
• Multi-table pipeline is 20% - 40% slower than “ovsk”.

This is unsurprising because “ovsk” is a pure data plane
application, and there is no controller-switch communi-
cation (i.e. no PacketIn messages).

• Dependent labels help reducing the number of PacketIn
events, thus improve the performance.

Note that turning on “opt” alone is not helpful to reduce the
number of PacketIn messages. Since the pingall time is spent
mostly by PacketIn messages, “opt” introduces no obvious
decrease of pingall time either.

VII. RELATED WORK

In Sec. I we have pointed out the limitations of many
representative languages, including NetKAT [6], NetCore [7],
Maple [5] and P4 [1]. Here we compare our work with some
more SDN programming languages.

Magellan [12] also derives and populates multi-table
pipelines from algorithmic policies, but it takes very different
approaches from ours. It starts from extremely fine-grained
pipelines by treating every statement as a flow table. Then
it recognizes the so called compact operations and merges
their corresponding flow tables with others, so that the number
of flow tables is reduced without significantly increasing the

TABLE III
THE QUALITY OF PIPELINE

profile # tables # entries
n = 10 n = 20 n = 30 n = 40 n = 50 n = 100

single 1 121 441 961 1681 2601 10201
multi-nonopt-dep 5 43 63 83 103 123 223
multi-opt-nondep 3 120 232 350 460 570 1120
multi-opt-dep 3 40 60 80 100 120 220

TABLE IV
PERFORMANCE: PINGALL TIME

profile pingall time (s)
n=10 n=20 n=30 n=40 n=50 n=100

single 0.60 6.1 28 78 181 2831
ovsk 0.10 0.60 1.3 2.4 3.7 15
multi-nonopt-dep 0.20 0.78 1.8 3.1 4.9 20
multi-opt-nondep 0.54 2.1 4.5 7.8 12 47
multi-opt-dep 0.19 0.76 1.7 3.1 4.8 19

TABLE V
PERFORMANCE: NUMBER OF PACKETIN

profile # packet in
n=10 n=20 n=30 n=40 n=50 n=100

single 117 423 939 1643 2549 10099
multi-nonopt-dep 46 74 79 92 111 223
multi-opt-nondep 124 258 351 452 562 1134
multi-opt-dep 47 72 80 93 112 221

number of table entries. Also, unlike POMP that generates flow
table entries reactively at runtime, Magellan generates table
entries proactively by enumerating all possible executions of
the network policy before its deployment. Moreover, Magellan
provides no mechanisms for protocol oblivious programming.

Concurrent NetCore [13] extends NetCore [7] to support
multi-tables, but it requires the programmer to manually define
the layout of flow tables instead of generating it automatically
from high-level policies as we do in POMP.

Stateful NetKAT [14] and SNAP [15] extend NetKAT [6]
and NetCore [7] respectively to support persistent states
in emerging SDN data plane. They are for quite different
purposes (to take advantage of the switch-local computation
power) and do not handle multi-table pipelines.

P4 Runtime [16] provides a way for control plane to control
P4 switches. The programmer can use P4 Runtime APIs to
install flow table entries at runtime. In POMP, the programmer
doesn’t use P4 Runtime APIs. The switch abstraction layer
(see Fig. 1) accepts entries generated by the runtime of POMP,
then calls P4 Runtime APIs to install entries for P4 switches.

VIII. CONCLUSION

POMP is a general purpose SDN programming environment
supporting both protocol oblivious programming and auto-
matic multi-table pipelining. It extends the C language with
a set of APIs and a runtime system to allow programmers to
write algorithmic, data-plane agnostic network policy for SDN
programming. It then applies static taint analysis techniques to
automatically infers compact and efficient multi-table pipelines
from the high-level network policy. It also introduces a novel

notion of dependent labels to refine the label sets generated by
the taint analysis. The dependent labels are used at the runtime
for flow table entry generation to further reduce the number of
table entries. The evaluation results show that POMP generates
high-quality forwarding pipelines. POMP pipeline for learning
switches uses up to 47x fewer number of table entries, and is
up to 137x faster than single table.

Note that, although the learning switches example is used
throughout the paper to demonstrate the key ideas, POMP
is a general purpose language for SDN programming. In
addition to these APIs used in learning switches, there are
more provided, including those for environment management.
The set of POMP APIs is as expressive as those in Maple.

REFERENCES

[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[2] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proc. of HotSDN, 2013,
pp. 127–132.

[3] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” in Proc.
of SIGCOMM, 2013, pp. 99–110.

[4] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford, “Pisces: A programmable, protocol-independent software
switch,” in Proc. of SIGCOMM, 2016, pp. 525–538.

[5] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
Simplifying SDN programming using algorithmic policies,” in Proc. of
SIGCOMM, 2013, pp. 87–98.

[6] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” in Proc. of POPL, 2014, pp. 113–126.

[7] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” in Proc. of
POPL, 2012, pp. 217–230.

[8] S. Hunt and D. Sands, “On flow-sensitive security types,” in Prof. of
POPL, 2006, pp. 79–90.

[9] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proc. of Hotnets-IX,
2010, pp. 19:1–19:6.

[10] “P4 behavioral model,” https://github.com/p4lang/behavioral-model, ac-
cessed: 2017-07-31.

[11] “Open vSwitch,” http://openvswitch.org/, accessed: 2017-07-31.
[12] A. Voellmy, S. Chen, X. Wang, and Y. R. Yang, “Magellan: Generating

multi-table datapath from datapath oblivious algorithmic SDN policies,”
in Proc. of SIGCOMM, 2016, pp. 593–594.

[13] C. Schlesinger, M. Greenberg, and D. Walker, “Concurrent netcore:
From policies to pipelines,” in Proc. of ICFP, 2014, pp. 11–24.

[14] J. McClurg, H. Hojjat, N. Foster, and P. Černý, “Event-driven network
programming,” in Proc. of PLDI, 2016, pp. 369–385.

[15] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“Snap: Stateful network-wide abstractions for packet processing,” in
Proc. of SIGCOMM, 2016, pp. 29–43.

[16] “P4 runtime,” https://p4.org/p4-runtime/, accessed: 2017-12-27.

