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1 INTRODUCTION

A concurrent object consists of shared data and a set of methods which provide an interface for
client threads to access the shared data. Linearizability [Herlihy and Wing 1990] has been used as
a standard definition of the correctness of concurrent object implementations. It describes safety
and functionality, but has no requirement about termination of object methods. Various progress
properties, such as wait-freedom, lock-freedom, starvation-freedom and deadlock-freedom, have
been proposed to specify termination of object methods. In their textbook Herlihy and Shavit [2008]
give a systematic introduction of these properties.

Recent work [Filipovi¢ et al. 2009] has shown the equivalence between linearizability and a
contextual refinement. The result has been further extended [Gotsman and Yang 2011; Liang and
Feng 2016; Liang et al. 2013] to show that, when progress properties are taken into account, one
may have the corresponding progress-aware contextual refinement to reestablish the equivalence.
The equivalence results allow us to build abstractions for linearizable objects so that safety and
progress of the client code can be reasoned about at a more abstract level.

However, none of these progress-related results applies to concurrent objects with partial meth-
ods! A method is partial if it is supposed not to return under certain circumstances. A typical
example is the lock_acquire method, which must not return when the lock has already been
acquired. Concurrent objects with partial methods simply do not satisfy any of the aforementioned
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progress properties, and people do not know how to give progress-aware abstract specifications for
them either. The existing studies on progress properties and progress-aware contextual refinements
have been limited to concurrent objects with total specifications.

As an awkward consequence, we cannot treat lock implementations as objects when we study
progress of concurrent objects. Instead, we have to treat lock_acquire and lock_release as
internal functions of other lock-based objects. Also, without a proper progress-aware abstraction
for locks, we have to redo the verification of lock_acquire and lock_release when they are
used in different contexts [Liang and Feng 2016], which makes the verification process complex and
painful. Note that locks are not the only objects with partial methods. Concurrent sets, stacks and
queues may also have methods that intend to block. For instance, it may be sensible for a thread
attempting to pop from an empty stack to block, waiting until another thread pushes an item. The
reasoning about these objects suffers from the same problems too when progress is concerned.

We face the following key challenges to address these problems.

e We need definitions of new progress properties for these objects, and the definitions need to
describe the situations in which permanent blocking is allowed. It is important to note that,
although deadlock-freedom and starvation-freedom have been used as progress properties
for “blocking” algorithms [Herlihy and Shavit 2008], they allow permanent blocking only
when the scheduling is unfair. They can specify concurrent objects implemented using locks,
but they do not apply to lock objects themselves. For objects like locks, blocking may also be
caused by inappropriate method invocations by the client. For instance, if a thread of the
client fails to call lock_release after acquiring the lock, the calls to lock_acquire by other
threads will be always blocked. Similarly, for a stack object with a partial pop method, if no
client threads call push, the calls to pop will be permanently blocked at an empty stack. The
question is, how to distinguish the blocking behaviors caused by “bad” clients with those
caused by bad object implementations, and blame the objects only for the blocking in the
latter case.
The abstractions for objects with partial methods should be able to distinguish the objects
with different progress guarantees under different scheduling conditions. A natural abstrac-
tion for partial methods is the blocking primitive await(B){C}. It is blocked if B does not
hold, and executes C atomically if B holds (in this case, we say the code await(B){C} is
enabled). A specification in the form of await(B){C} can characterize both the atomicity of
the functionality and the fact that the method is partial. However, it is not sufficient to serve
as a progress-aware abstraction for the following two reasons.

— Different implementations of the same await block may exhibit different progress prop-
erties, requiring different abstractions. For instance, the ticket lock algorithm [Mellor-
Crummey and Scott 1991] has stronger progress guarantees than the test-and-set lock
algorithm [Herlihy and Shavit 2008]. Therefore when progress is concerned it is impossible
to use the same partial specification (e.g., await(1=0){1 := cid}, where cid is the ID of
the current thread) as an abstraction for the lock_acquire methods in both algorithms
(even though it may work for both if we consider linearizability only).

— Even the same implementation may require different abstractions for different scheduling.
The blocking primitive await(B){C} behaves differently under strongly fair and weakly
fair scheduling. The former ensures the execution of the primitive as long as it is enabled a
sufficient number of times, but the latter requires the primitive to be always enabled to
ensure its execution. On the other hand, the distinction between strong and weak fairness
is meaningful only if there are blocking primitives. A low-level program consisting of
non-blocking primitive instructions only (like most machine instructions) behaves the same
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under both scheduling. Such a program cannot have the same abstraction with blocking
primitives under different scheduling.
As a result, if we consider m kinds of progress properties (e.g., to distinguish ticket locks
and test-and-set locks) and the 2 choices of strongly fair and weakly fair scheduling, we may
need as many as 2 X m kinds of abstractions for the same functionality. Can we find general
patterns for these abstractions?

In this paper, we specify and verify progress of concurrent objects with partial methods. We
define progress properties and abstraction patterns under strongly and weakly fair scheduling. Then
we prove that given a linearizable object implementation II, the contextual refinement between II
and its abstraction I’ under a certain kind of fair scheduling is equivalent to the progress property
of II. We also provide a program logic to verify the contextual refinement between II and II’, which
ensures linearizability and the progress property of II.

Our work is based on earlier work on abstraction for concurrent objects and concurrency
verification, but makes the following new contributions:

e We propose progress properties, partial starvation-freedom (PSF) and partial deadlock-freedom
(PDF), for concurrent objects with partial methods. They identify the execution scenarios
in which the partial methods are blocked due to inappropriate invocation sequences made
by “bad” clients, and allow the object methods to be blocked permanently in these special
scenarios. Ticket locks and test-and-set locks satisfy PSF and PDF respectively. Traditional
starvation-freedom and deadlock-freedom for objects with total methods can be viewed as
specializations of PSF and PDF respectively, if we view total methods as special cases of
partial ones that are always enabled to return.

e We design four general patterns for abstractions for concurrent objects with PSF and PDF
progress properties under strongly and weakly fair scheduling, respectively. We start with
the basic blocking primitive await(B){C} and define syntactic wrappers that transform it
into non-atomic object specifications which can be refined by the object implementations
in the progress-aware contextual refinement. We give distinguished wrappers for different
combinations of fairness and progress properties.

e We prove the equivalence between PSF (or PDF) and the progress-aware contextual refine-
ment, where the abstraction is generated by the wrapper, under strong or weak fairness. The
equivalence results (called the abstraction theorem) allow us to verify safety and liveness
properties of client programs at a high abstraction level, by replacing concrete object imple-
mentations with the specifications. Using the natural transitivity of the contextual refinement,
it is also possible to verify linearizability and PSF (or PDF) of nested concurrent objects.

e We design a program logic to verify objects with PSF or PDF progress properties. Our logic
is a generalization of the LiLi logic for starvation-free and deadlock-free objects [Liang and
Feng 2016]. It also provides inference rules for the await(B){C} statement under strong and
weak fairness, so that await commands can also be used in object implementations. The
soundness of our logic ensures the progress-aware contextual refinement, and linearizability
and PSF (or PDF) under different fairness. We have applied the program logic to verify
ticket locks [Mellor-Crummey and Scott 1991], test-and-set locks [Herlihy and Shavit 2008],
bounded partial queues with two locks [Herlihy and Shavit 2008] and Treiber stacks [Treiber
1986] with possibly blocking pop methods.

In the rest of this paper, we first give an informal overview of the background and our key
ideas in Sec. 2. Then we introduce the object language in Sec. 3, and linearizability and the basic
contextual refinement in Sec. 4. We propose our new progress properties in Sec. 5, and give the
progress-aware contextual refinement and the abstraction theorem in Sec. 6. We present the logic
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L_initialize(){ 1 :=0; } tkL_initialize(){ owner := @; next := 0; }
L_acq(){ tkL_acq(){
1 local b := false; 1 local i, o;
2 while(!b){ b := cas(&l, 0, cid); } 2 i := getAndInc(&next);
} 3 o0 := owner; while(i!=0){ o := owner; }
}
L_rel(){
3 1:=0; tkL_rel(O{
} 4 owner := owner + 1;
}
(a) test-and-set lock implementation
(c) ticket lock implementation
inc(){ L_acq(); x:=x+1; L_rel(Q); } inc_tkL(){ tkL_acq(); x:=x+1; tkL_rel(); }
(b) counter with a test-and-set lock (d) counter with a ticket lock

INCO{x:=x+1;}

(e) atomic spec. INC

Fig. 1. Counters with locks.

in Sec. 7 and show the examples we have verified in Sec. 8. Finally, we discuss related work and
conclude in Sec. 9.

2 BACKGROUND AND OVERVIEW OF KEY IDEAS

Below we first give an overview of linearizability, starvation-freedom, deadlock-freedom and
contextual refinement. Then we analyze the problems in defining progress of concurrent objects
with partial methods, and explain our solutions informally.

2.1 Background

A concurrent object usually satisfies linearizability, a standard safety criterion, and certain progress
property, describing when and how method calls of the object are guaranteed to terminate.

Linearizability. A concurrent object is linearizable, if each method call appears to take effect
instantaneously at some moment between its invocation and return [Herlihy and Wing 1990].
Intuitively, linearizability requires the implementation of each method to have the same effect as
an atomic specification.

Consider the two implementations of the counter object in Fig. 1(b) and (d). We assume that every
primitive command is executed atomically. A counter provides a method inc for incrementing the
shared data x. Both implementations use locks to synchronize the increments. Intuitively they have
the same effect as the atomic specification INC() in Fig. 1(e), so they are linearizable.

The locks themselves could also be viewed as standalone objects. For instance, the test-and-set
lock object in Fig. 1(a) provides the methods L_acq and L_rel for a thread to acquire and release
the lock 1. Here cid represents the current thread’s ID, which is a positive number. The counter’s
implementation code in Fig. 1(b) can be viewed as a client of this lock object. The lock object
is linearizable, because L_acq and L_rel both update 1 atomically (if they indeed return). They
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produce the same effects as the atomic operations L_ACQ and L_REL (defined below), respectively:
L_.ACQO{ 1 := cid; % LRELO{ 1 :=9; } (2.1)

However, linearizability does not characterize progress properties of the object implementations.
For instance, the following counter object is still linearizable, even if its method never terminates.

inc' O{ L_acq(); x:=x+1; L_rel(); while(true) skip; }

Progress properties. Various progress properties have been proposed for concurrent objects, such
as wait-freedom and lock-freedom for non-blocking implementations, and starvation-freedom and
deadlock-freedom for lock-based implementations. These properties describe conditions under
which a method call is guaranteed to successfully finish in an execution. The two implementations
of the counter in Fig. 1(b) and (d) satisfy deadlock-freedom and starvation-freedom respectively.

We use the definitions given by Herlihy and Shavit [2011]. Both deadlock-freedom and starvation-
freedom assume fair scheduling, i.e., every thread gets eventually executed. For the counters in
Fig. 1(b) and (d), fairness ensures that every thread holding the lock will eventually release the lock.

Deadlock-freedom requires “minimal progress” in fair executions, i.e., there always exists some
method call which can finish under fair scheduling, while starvation-freedom requires “maximal
progress” in fair executions, i.e., every method call should eventually finish under fair scheduling.

The counter in Fig. 1(b) is deadlock-free, because the test-and-set lock (see Fig. 1(a)) guarantees
that eventually some thread will succeed in getting the lock via the cas instruction at line 2, and
hence the method call of inc in that thread will eventually finish. It is not starvation-free, because
there might be a thread that continuously fails to acquire the lock. For the following client program
(2.2), the cas instruction executed by the left thread could always fail if the right thread infinitely
often acquires the lock.

inc(); print(1); || while(true) inc(Q); (2.2)

The counter in Fig. 1(d) implemented with a ticket lock is starvation-free. Figure 1(c) shows the
details of the ticket lock implementation. It uses two shared variables owner and next, which are
equal initially. The threads attempting to acquire the lock form a waiting queue. In tkL_acq, a
thread first atomically increments next and reads its old value to a local variable i (line 2). It waits
until the lock’s owner equals its ticket number i (line 3), then it acquires the lock. In tkL_rel,
the thread releases the lock by incrementing owner (line 4). Then the next waiting thread (the
thread with ticket number i+1, if there is one) can acquire the lock. We can see that the ticket
lock implementation ensures the first-come-first-served property, and hence every thread calling
inc_tkL can eventually acquire the lock and finish its method call.

Deadlock-freedom and starvation-freedom are progress properties for the so-called “blocking
implementations” [Herlihy and Shavit 2008], such as the counters in Fig. 1(b) and (d), where a
thread holding a lock will block other threads requesting the lock. However, they do not apply to
lock objects, e.g., the ones in Fig. 1(a) and (c). We will explain the problems in detail in Sec. 2.2.

Contextual refinement and the abstraction theorem. It is difficult to use linearizability and progress
properties directly in modular verification of client programs of an object, because their definitions
fail to describe how the client behaviors are affected. To verify clients, we would like to abstract
away the details of the object implementation. This requires a notion of object correctness, telling
us that the client behaviors will not change when we replace the object methods’ implementations
with the corresponding abstract operations (as specifications).

Contextual refinement gives the desired notion of correctness. Informally, an object implemen-
tation II is a contextual refinement of a (more abstract) implementation IT’, if every observable
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behavior of any client program using IT can also be observed when the client uses I1” instead. Then,
when verifying a client of I, we can soundly replace II with its abstraction IT".

There has been much work (e.g., [Filipovi¢ et al. 2009; Gotsman and Yang 2012; Liang et al. 2013])
studying abstraction theorems, which relate linearizability and progress properties with contextual
refinements. It has been proved that linearizability of II is equivalent to a contextual refinement
between Il and its atomic specification I', where the observable behaviors are finite traces of I/O
events. When taking progress properties into account, the corresponding contextual refinement
should be sensitive to termination or divergence (non-termination). For instance, deadlock-freedom
or starvation-freedom of linearizable objects is shown equivalent to a contextual refinement which
observes (possibly infinite) full traces of I/O events in fair executions. Then, a client which diverges
with I in a fair execution must also have a diverging execution when using the abstraction IT".
Deadlock-free and starvation-free objects could be distinguished by different abstractions. The
abstraction for starvation-free objects is the atomic specification I', while for deadlock-free ones
the abstraction has to be non-atomic [Liang and Feng 2016].

The counter implementation inc_tkL () in Fig. 1(d) is a progress-aware contextual refinement
of the atomic counter INC in Fig. 1(e), but inc() in Fig. 1(b) is not. To see the difference, consider
the client program (2.2). Under fair scheduling, the client calling inc() may generate an empty I/O
event trace because it may not print out 1. However, the empty trace cannot be generated when
replacing inc() with inc_tkL() or INC(), because the resulting program must print out 1.

2.2 Problems and Our Solutions

The existing progress properties and the corresponding contextual refinement are proposed for
concurrent objects with total methods only, i.e., methods that should always return when executed
sequentially. They do not apply to objects with partial methods, such as the lock objects in Fig. 1(a)
and (c), which intend to block at certain situations. We have outlined the key challenges in rea-
soning about progress properties of objects with partial methods in Sec. 1. We give more detailed
explanations here.

2.2.1 Atomic Specifications Need to Be Partial. The specifications defined in (2.1) can characterize
the atomic behaviors of lock objects, but they fail to specify that L_ACQ should be partial in the
sense that it should be blocked when the lock is unavailable.

To address the problem, we introduce the atomic partial specification I', where each method
specification is in the form of await(B){C}. For the lock objects, we can define the atomic partial
specification I as follows.

L_LACQ' O{ await (1 = 0) { 1 :=cid }; } LLRELO{ 1 := 0; }  (23)

The await block naturally specifies the atomicity of method functionality, just like the traditional
atomic specification (C) (which can be viewed as syntactic sugar for await(true){C}), therefore I
may serve as a specification for linearizable objects. It also shows the fact that the object method
is partial, with explicit specification of the enabling condition B. Below we use the atomic partial
specification as the starting point to characterize the progress of objects.

2.2.2 Deadlock-Freedom and Starvation-Freedom Do Not Apply. We need new progress properties
for objects with partial methods. Consider the following client program (2.4) using the test-and-set
lock in Fig. 1(a). One of the method calls never finishes.

L_acqg(); |l L_acq(); (2.4)

It shows that the test-and-set lock object does not satisfy the traditional deadlock-freedom or
starvation-freedom property we just presented. Neither does the ticket lock object in Fig. 1(c).
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Table 1. Client (2.5) with different locks. “Yes” means it must print out 1, “No” otherwise.

spec. (2.3) | ticket locks (Fig. 1(c)) | test-and-set locks (Fig. 1(a))
Strong Fairness Yes Yes No

Weak Fairness No Yes No

The problem is that L_acq intends to block when the lock is not available. The non-termination
in the above example (2.4) is just the intention of a correct lock implementation; otherwise the lock
cannot guarantee mutual exclusion.

Our solution. We define two new progress properties for objects with partial methods, which we
call partial starvation-freedom (PSF) and partial deadlock-freedom (PDF). PSF requires that in each
fair execution trace by any client with the object I, either each method invocation eventually returns
(as required in starvation-freedom), or each pending method invocation must be continuously
disabled. The latter case intuitively says that this non-termination is caused by the “bad” client, e.g.,
by inappropriate invocations of the methods. Similarly, PDF requires that in each fair execution
trace by any client with the object I, either there always exists a method invocation that eventually
returns (as in deadlock-freedom), or each pending method invocation must be continuously disabled.

But how do we formally say that a method is disabled? When we informally say this, we actually
refer to the enabling condition B in await(B){C} in the object’s atomic partial specification I'.
However, we may not be able to infer such a condition from the concrete implementation II.
To address this problem, our definitions of PSFp(IT) and PDFp(IT) are parameterized with the
specification I (the actual definitions take more parameters, as shown in Sec. 5).

We can prove the lock objects in Fig. 1(a) and (c) satisfy PDF and PSF respectively. We can
also show that starvation-freedom and deadlock-freedom are special cases of our PSF and PDF
respectively, by instantiating the parameter I with specifications in the form of await(true){C}.

2.2.3  Atomic Partial Specifications Are Insufficient for Progress-Aware Abstractions. Although the
atomic partial specification I" describes the atomic functionality and the enabling condition of each
method, it is insufficient to serve as a progress-aware abstraction for the following reasons.

First, the progress of the await command itself is affected by the fairness of scheduling, such as
strong fairness and weak fairness.

e Strong fairness: Every thread which is infinitely often enabled will execute infinitely often.
Then, await(B){C} is not executed only if B is continuously false after some point in the
execution trace.

e Weak fairness: Every thread which is eventually always enabled will execute infinitely often.
Then, await(B){C} may not be executed when B is infinitely often false. This fairness notion
is weaker than strong fairness.

As a result, the choice of fair scheduling will affect the behaviors of a program or a specification
with await commands. To see this, we consider the following client program (2.5).

[_Jacos [_lrer; print(1); [ while(true){ [_Jaco; [_lre; 2} (2.5)

where [ _]aco and [ _ Jrg, represent holes to be filled with method calls of lock acquire and release,
respectively. Table 1 shows the behaviors of the client with different locks. If the client calls the
abstract specifications in (2.3), it must execute print (1) under strongly fair scheduling, but may
not do so under weakly fair scheduling. This is because the call of L_ACQ' could be infinitely
often enabled and infinitely often disabled in an execution, making its termination sensitive to the
fairness of scheduling.
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Table 2. Wrappers for atomic specifications.

PSF PDF

Strong Fairness wrffsiFr(await(B){C}) wrf,fSiFr(await(B){C})

Weak Fairness wr‘g’sflar”(await(B){C}) wr‘g‘,’[gagr(await(B){C})

Also note that the two fairness notions coincide when the program does not contain blocking
operations. Therefore, regardless of strongly or weakly fair scheduling, the client (2.5) using ticket
locks always executes print (1), but it may not do so if using test-and-set locks instead (see Table 1).

As aresult, for the same object implementation, we may need different abstractions under different
scheduling. As shown in Table 1, the specification (2.3) cannot serve as the specification of the
test-and-set locks under both strong fairness and weak fairness.

Second, even under the same scheduling, different implementations demonstrate different progress,
therefore need different abstractions. As shown in Table 1, the different lock implementations have
different behaviors, even under the same scheduling.

For the above two reasons, we need different abstractions for different combinations of fairness
and progress. For PSF and PDF under strong and weak fairness respectively, we may need four
different abstractions. Can we systematically generate all of them?

Our solution. We define code wrappers over the basic blocking primitive await(B){C} to generate
the abstractions. The code wrappers are syntactic transformations that transform await(B){C} into
possibly non-atomic object specifications which can be refined by the object implementations in
the progress-aware contextual refinement. As shown in Table 2, the four wrappers correspond to
all combinations of fairness and progress. The definitions are shown in Sec. 6. Here we only give
some high-level intuitions using the lock objects as examples.

First, we observe that the lock specification (2.3) can already serve as an abstraction for ticket locks
under strong fairness, or for test-and-set locks under weak fairness. In general, the wrapper wrffg‘;r
can be an identity function, i.e., the atomic partial specifications are already proper abstractions
for PSF objects (not only for locks) under strong fairness. But wr‘IQ’ISaF" is subtle. The atomic partial
specifications are insufficient as abstractions for general PDF objects under weak fairness, which
we will explain in detail in Sec. 6.

Second, as we have seen from Table 1, the lock specification (2.3) does not work for PSF locks
under weak fairness nor for PDF locks under strong fairness. Then the role of the wrapper wr‘,Q’Sf;;‘:ir
(or wr;fSiF’) is to generate the same PSF (or PDF) behaviors even though the fairness of scheduling is
weaker (or stronger).

To guarantee PSF, the idea is to create some kind of “fairness” on termination, i.e., every method
call can get the chance to terminate. Given weakly fair scheduling, this requires the enabling
condition of the abstraction to continuously remain true. As a result, a possible way to define
wr‘lg’sf;”(L_ACQ ’) is to keep a queue of threads requesting the lock, and a thread can acquire the lock
only when it is at the head of the queue.

To support PDF under strongly fair scheduling, we have to allow non-termination even if the
enabling condition is infinitely often true. For the client (2.5), the call of L_ACQ' in the specifica-
tion (2.3) under strongly fair scheduling always terminates. Then wrffgiFr needs to incorporate with
some kind of delaying mechanisms, so that the termination of L_ACQ' of the left thread could be
delayed every time when the right thread succeeds in acquiring the lock.
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(MName) f.,g... (Pvar) x,y,z...
(Expr) E = x| n| E+E | ... (BExp) B == true | false | E=E | =B | ...
(Stmt) C == x:=E | x:=[E] | [E]:=E | print(E) | x := cons(E,...,E) | dispose(E)
| skip | x:= f(E) | returnE | C;C | if (B) Celse C | while (B){C}
| await(B){C}
(ODECI) ILT = {fl ~> (Tlsxlscl) ----- fn ~> (?nsxnscn)}
(Prog) W = letIlinCi|l...[ICn (Thrd) € == C | end

Fig. 2. Syntax of the programming language.

2.2.4 Other Results. We also have the following new results in addition to the new progress
properties and code wrappers.

Abstraction theorem. We prove the abstraction theorem, saying that our new progress properties
PSF and PDF (together with linearizability) are equivalent to contextual refinements where the
abstractions are generated by the corresponding wrappers. On the one hand, the theorem justifies
the abstractions generated by our wrappers, showing that they are refined by linearizable and PSF
(or PDF) object implementations. On the other hand, it also justifies our formulation of PSF and
PDF by showing that they imply progress-aware contextual refinements.

The abstraction theorem also allows us to verify safety and progress properties of whole programs
(consisting of clients and objects) in a modular way — after proving linearizability and PSF (or PDF)
of an object IT with respect to its atomic partial specification I', we can replace IT with the abstraction
generated by applying the corresponding wrapper over I', and then reason about properties of the
whole program at the high abstraction level.

Program logic. Finally we design a program logic as the proof method for verifying PSF and PDF
objects. It ensures linearizability and PSF (or PDF) of an object II with respect to its atomic partial
specification I'. The logic is a generalization of our previous program logic LiLi for starvation-free
and deadlock-free objects [Liang and Feng 2016], plus new inference rules for the await statement
under strong and weak fairness. We will explain the details in Sec. 7.

3 THE LANGUAGE

Figure 2 shows the syntax of the language. A program W consists of an object declaration IT and n
parallel threads C as clients sharing the object. To simplify the language, we assume there is only
one object in each program. Each IT maps method names f; to annotated method implementations
(?;,x;,C;), where x; and C; are the formal parameter and the method body respectively, and the
assertion P; is an annotated precondition over the object state to ensure the safe execution of the
method. It is defined in Fig. 3 and is used in the operational semantics explained below. A thread C
is either a command C, or an end flag marking termination of the thread. The commands include
the standard ones used in separation logic, where x := [E] and [E] := E’ read and write the heap
at the location E respectively, and x := cons(E,. . .,E) and dispose(E) allocate and free memory
cells respectively. In addition, we have method call (x := f(E)) and return (return E) commands.
The print(E) command generates externally observable events, which are used to define trace
refinements in Sec. 4. The await(B){C} command is the only blocking primitive in the language. It
blocks the current thread if B does not hold, otherwise C is executed atomically together with the
testing of B.
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:10 Hongjin Liang and Xinyu Feng

(ThrdID) t € Nat (Store)  s,S € PVar— Val
(Heap) h,h € Nat— Val (Data) o,> == (s,h)
(CallStk) k,k == o | (s;,x,C) (ThrdPool) K, K == {t1~ Kki,...,th ~ kn}
(PState) S.S u=  (0¢,00,K) (LState) ¢,6 == (0¢,00,K)
(ExecCtxt) E = [] | EC
(Prey P € P(Data) (AbsFun) 1) € Data — Data
(Event) e == (t,f,n) | (t,ret,n) | (t,obj) | (t,obj,abort) | (t,out,n)
| (telt) | (t,clt,abort) | (t,term) | (spawn,n)
(BIdSet) AN € P (ThrdID) (PEvent) 1 == (e,Ac,Np)
(ETrace) & == € | ex&E (co-inductive) (PTrace) T == € | 1=T (co-inductive)
en(@) & { B 1f3E,C'.C=E[awa1t(B){C 1
true otherwise
(00,¥) E B iff [Bl((s,.5)5(x.5;)) = true Ax # o oc = B iff [B]s,.s = true
btids(let Tin Cy Il | Ca, (0,00, K)) = ({t | K (¥) = 0 A =(oc = en(CO)),

| K(t) =
{t1 K (1) # o A =((00,K (1)) F en(Co))))

Fig. 3. States and event traces.

We make the following assumptions to simplify the technical setting. There are no regular function
calls in either clients or objects. Therefore x := f(E) can only be executed in client code to call
object methods, and return E always returns from object methods to clients. Each object method
takes only one argument and each method body ends with a return command. Object methods
never execute the print(E) command and therefore do not generate external events. The command
C in await(B){C} cannot contain await, print, and method calls and returns. It cannot contain
loops either so that it always terminates.

Operational semantics. The operational semantics rules shown in Fig. 4 consist of three parts,
including state transitions made by the whole program, by individual threads, and by clients or
object methods, respectively. We define program states S in Fig. 3, where we use two sets of
notations to represent states at the concrete and the abstract levels respectively when we study
refinement. To ensure that the client code does not touch the object data, in S we separate the
data accessed by clients (o) and by object methods (c,). S also contains a thread pool K mapping
thread IDs t to the corresponding method call stacks k. Recall that the only function call allowed
in the language is the method invocation made by a client and there are no nested function calls,
therefore each « is either empty (o, which means the thread is executing the client code), or contains
only one stack frame (s;,x,C), where s; is the local store for the local variables of the method, x
is the (client) variable recording the return value, and C is the continuation (the remaining client
code to be executed after the return of the method).

Figure 4(a) shows that the execution of the program W follows the non-deterministic interleaving
semantics, which is defined based on thread transitions defined in Fig. 4(b). Each transition over
program configurations is labelled with a program event 4, a triple in the form of (e, A;,A,). The
event e is generated by thread transitions. As defined in Fig. 3, (t, f,n) records the invocation of
the method f with the argument #n in the thread t, and (t,ret, n) is for a method return with the
return value n. (t,obj) and (t, clt) record a regular object step and a regular client step respectively,
while (t,obj,abort) and (t, clt,abort) are for aborting of the thread in the object and client code
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(Ci. (0,00, K (1)) —>LH (C (00,00.K"))) K’ =K{i~ k')
btids(let ITin C; |] . . NEn, (00,05, K")) = (Ac, Do)

. A A A (E, Do) . A ~ ~
(letTin Cy|l...C; ... [ICn.(0¢,00,K)) —— (letin Cy||...C} .. .||Cn,(0/,05,K"))

Ci = skip K (i) =o CA‘Z =end e = (i,term)
btids(let ILin C1 ||...Ci .. .[|Cn, (0c,00,%K)) = (Ac,Ao)

. . . Ao . . .
(letTin C1|]...Ci...lICn,(0¢,00,K)) u (letIIin G4 ] ... le ... ICh,\(0c,00,K))

(€1 (¢, 00, K (i))) — ;.1 abort

N o A 0,0
At TLin Cill. .. Ci . 11 Cons (00,00, %)) 12, abort

(a) program transitions

I(f) = (2,y,C) oo€? [Els,=n xedom(sc) «={y~ n},x,E[skip])

(BLx 1= F(B) 1 ((5e:h)s00:0)) —2 1 (C.(Seshe):0osk)

f&dom(Il) or o, ¢II(f).? or [E]s. undefined or x ¢ dom(sc)

,clt,ab
(ELx = £(E) 1. (Se-he).00,0)) 2220, abort

K = (s7,x,C) [E]ls, =n sk =sc{x ~ n}

(t,ret,n)

(E[return E ], ((s¢, h¢), 00, K)) ;q’n (C,((s}she)s00,0))
Kk = (s1,x,C) [E]s, undefined

(t,obj,abort)
(E[return E ], ((s¢,h¢), 00,x)) ———,  abort

[E]s. =n

(E[print(E) ], ((sc, hc), 00,0)) m 11 (E[skip ], ((sc, he), 00,0))

(C.(s0 W sp,ho)) —> 1 (C, (s Wsp.ho))  dom(s)) = dom(sl’) (C,o¢) —>¢ (C’,0))

c
obj) (t,clt)
(C, (¢, (So0sho), (s1,%,C1))) —)tH (C',(Uc,(Sé,hf)),(sl',x,cl))) (C,(0¢,00,0)) ;t,n (C',(6¢500,0))

(C,(so Wsj,hy)) —>+ abort (C,0.) —>+ abort

(t,obj,abort) (t,clt,abort)
5 0¢,(S0,M0),(S],X,L1 —_— abor »(0¢,00,0)) ——— abor
(C. (¢, (S0, ho), (s1,%,C1))) . iy abort (€.( ) . 1 abort

(b) thread transitions

[B]s = true (C,(s,h)) —> (skip, (s",h")) [B]s = true (C,(s,h)) —> abort
(E[ await(B){C} 1, (s,h)) —»t (E[ skip ], (s",h")) (E[ await(B){C} ], (s,h)) —» abort

(c) local thread transitions

Fig. 4. Selected operational semantics rules.

respectively. The output event (t,out,n) is generated by the print(E) command. (t, term) records
the termination of the thread t. We also introduce a special event (spawn, n), which is inserted at
the beginning of each event trace to record the creation of n threads at the beginning of the whole
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program execution. Its use is shown in Sec. 5. An event trace & is a (possibly infinite) sequence of
events, and a program trace T is a (possibly infinite) sequence of labels :.

The sets A, and A, in the label record the IDs of threads that are blocked in the client code and
object methods respectively. They are generated by the function btids defined in Fig. 3. Recall that
a thread t is executing the client code if its call stack is empty, i.e., K (t) = o. We also define en(C)
as the enabling condition for C, which ensures that C can execute at least one step unless it has
terminated. Here the execution context E defines the position of the command to be executed next.

The second rule in Fig. 4(a) shows that end is used as a flag marking the termination of a thread.
A termination event (t,term) is generated correspondingly.

The first two rules in Fig. 4(b) show that method calls can only be executed in the client code
(i.e., when the stack x is empty), and it is the clients’ responsibility to ensure that the precondition
P (defined in Fig. 3) of the method holds over the object data. If 2 does not hold, the method
invocation step aborts. Similarly, as shown in the subsequent rules, the return command can only
be executed in the object method, and the print command can only be in the client code. Other
commands can be executed either in the client or in the object, and the transitions are made over
o and o, respectively. In Fig. 4(c) we show the operational semantics for await(B){C}. Note that
there is no transition rule when B is false, which means that the thread is blocked. Transition rules
of other commands are standard and omitted here.

More discussions about partial methods. There are actually two reasons that make a method
partial. The first is due to non-termination when the method is called under certain conditions. The
second is due to abnormal termination, i.e., the method aborts or terminates with incorrect states
or return values. Since the goal of this work is to study progress, the paper focuses on the first kind
of partial methods. In our language, we specify the two kinds of partial methods differently. For
the first kind, we use the enabling condition B in await(B){C} to specify when the method should
not be blocked. For the second kind, we use the annotated precondition 2 to specify the condition
needed for the method to execute safely and to generate correct results. For instance, although
the lock’s release method L_REL in specification (2.3) always terminates, it needs an annotated
precondition 1=cid to prevent client threads not owning the lock from releasing it.

4 LINEARIZABILITY AND BASIC CONTEXTUAL REFINEMENT

In this section we formally define linearizability [Herlihy and Wing 1990] of an object IT with
respect to its abstract specification I'. As explained in Sec. 2.2, I is an atomic partial specification for
I1. It has the same syntax with II (see Fig. 2), but each method body in I is always an await block
await(B){C} (followed by a return E command). We also assume that the methods in I are safe,
i.e., they never abort.

History events, externally observable events, and traces. We call (t, f,n), (t,ret,n) and (t, obj, abort)
history events, and (t, out, n), (t,obj,abort) and (t, clt,abort) externally observable events. In Fig. 5
we define 7 [W,S] as the prefix closed set of finite traces T generated during the execution of
(W,S). H[W,S] contains the set of histories projected from traces in 7 [W,S]. Here get_hist(T)
returns a subsequence & consisting of the history events projected from the corresponding labels in
T. Similarly O[W,S] contains the set of externally observable event traces projected from traces in
T [W,S8], where get_obsv(T) is a subsequence & consisting of externally observable events only.

As defined below, an event trace & is linearizable with respect to &', i.e., & <lin g if they have
the same sub-trace when projected over individual threads (projection represented as &|;), and & is
a permutation of & but preserves the order of non-overlapping method calls in &’. Here we use
is_inv(e) (or is_ret(es)) to represent that e is in the form of (t, f,n) (or (t,ret,n)).
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def

TIW.S] & (T | WS (W,S) * (W, S') v (W,S) " abort)

H[W,S] & (& | AT. & =get_hist(T) AT € T[W,S]}

O[w.8] & (& | AT. & =get_obsv(T) AT € T[W,S] }

match(er,e2) = s inv(er) Ais_ret(ez) A (tid(er) = tid(ez))

is_inv(e) match(eq,ez) seq(&E) Vt. seq(Elr)
seq(e) seq(e :: €) seq(e; = ez :: &) well_formed(&)
well_formed(&) &’ € extensions(E) is_ret(e) well_formed(&E’++[e])
& € extensions(&) &’++[e] € extensions(&)
def Loy def | extruncate(E) if is_ret(e) or i. match(e, &(i))
truncate(e) = € truncate(e: &) = { truncate(&) otherwise

completions(8&) &ef {truncate(&’) | &’ € extensions(E)}

def
@ = {t1 ~ o,...,tn ~ o}

> (2,8) iff In,Cy,...,Chyoc. (E€cH[(etT in Cell...ICp),(0c,2,0)]) A seq(E)
Fig. 5. Auxiliary definitions for linearizability.

Definition 4.1 (Linearizable Histories). & <" &’ iff both the following hold.

(1) Vt. |y = &'}

(2) There exists a bijection 7 : {1,...,|E|} — {1,...,|&’|} such that Vi. (i) = &'(x(i)) and
Vi,j. i <jANis_ret(E(Q)) Ais_inv(E(f)) = x(i) < n(j).

Definition 4.2 says II is linearizable with respect to T and the state abstraction function ¢ (see
Fig. 3) if, for any trace & generated by IT with the initial object data o, the corresponding complete
trace &, is always linearizable with some sequential trace &’ generated by I' with initial object data
¥ such that ¢(o) = 2. Some of the key notations are defined in Fig. 5. We use © to represent the
initial thread pool where each thread has an empty call stack. completions(&) appends matching
return events for some pending invocations in &, and discards the other pending invocations, so
that in the resulting trace every invocation has a matching return. We use ++ for list concatenation,
and [ey,...,e,] for a list consisting of a sequence of elements. We use tid(e) for the thread ID in e.

Definition 4.2 (Linearizability of Objects). The object implementation IT is linearizable with respect

to T, written as IT ﬁlqi,“ T, iff
¥n,Cy,...,Cny00,0,2,E8. E € H[(letWin Cy ||. .. [|Cy), (0, 0,0)] A (9(0) =2)
= 38,8’ (& € completions(E)) A (T > (2,8")) A (&, <" &)

Abstraction of linearizable objects. Filipovic¢ et al. [Filipovi¢ et al. 2009] has shown that linearizabil-
ity is equivalent to a contextual refinement. As defined below, II contextually refines I' under the
state abstraction function ¢ if, for any clients C; ...C, as the execution context, and for any initial
object data related by ¢, executing IT generates no more externally event traces than executing I'.
Theorem 4.4 shows the equivalence between linearizability and the contextual refinement.

Definition 4.3 (Basic Contextual Refinement). 11 l;f;“ I iff

vn7C19' . scn’O_C7O—’Z' (90(0-> = Z) =
O[(letIin Ci |I...11Cn).(0c,0.@)] € Of(et T in Cy||.. . [|Cy), (00, 2,0)] -
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14 Hongjin Liang and Xinyu Feng

THEOREM 4.4 (BAsic EQUIVALENCE FOR LINEARIZABILITY). II 52)" ' = 1I ;g“ I.

5 PROGRESS PROPERTIES

In this section we define the new progress properties, partial starvation-freedom (PSF) and partial
deadlock-freedom (PDF), for objects with partial methods.

We first define the trace set 7;,[W,S] in Fig. 6. It contains the (possibly infinite) whole execution
traces T generated by (W,S) but with a special label ((spawn, |[W|),A,A,) inserted at the begin-
ning. Here we use |W| to represent the number of threads in W. The event (spawn, [W|) is used to
define fairness, as explained below. A, and A, records the threads blocked in clients and object
methods respectively (see the definition of btids in Fig. 3). At the beginning of an execution, A,
must be an empty set since no threads are in method calls. The whole execution trace T may be
generated under three cases, i.e., the execution of (W,S) diverges, aborts or gets stuck (terminates

T
or is blocked). We write (W,S) — ¢ - for an infinite execution. In this case, the length of T must
be infinite, written as |T| = w.

Strong and weak fairness. As defined in Fig. 6, a trace T is strongly fair, represented as sfair(T), if
each thread either terminates, or is executed infinitely many times if it is infinitely often enabled
(i-o-enabled). We know a thread is enabled if it is not in the blocked sets A, and A,. T(j) represents
the j-th element in the trace T. Similarly, wfair(T) says that T is a weakly fair trace. It requires
that each thread either terminates, or is executed infinitely many times if it is always enabled after
certain step on the trace (e-a-enabled).

Thread progress and program progress. We use prog-t(T) in Fig. 6 to say that every method call
eventually terminates. It ensures that each individual thread calling a method eventually returns.
prog-p(T) says that there is always at least one method call that terminates. It ensures that the
whole program is making progress. Here pend_inv(T) represents the set of method invocation
events that do not have matching returns. T(1..i) represents the prefix of T with length i.

Partial starvation-freedom (PSF) and partial deadlock-freedom (PDF). We want to define PSF as
a generalization of starvation-freedom. We say an object II is partially starvation-free if, under
fair scheduling (with strong or weak fairness), each method call eventually returns (as required
in starvation-freedom), unless it is eventually always disabled (i.e., it is not supposed to return in
this particular execution context). In the latter case the non-termination is caused by inappropriate
invocations of the methods in the client code and the object implementation should not be blamed.

Although the idea is intuitive, it is challenging to formalize it. This is because when we say a
method is disabled we are thinking at an abstract level, where the abstract disabling condition
cannot be syntactically inferred based on the low-level object implementation II. For instance, the
lock implementations in Fig. 1 use non-blocking commands only, so they are always enabled to
execute one more step at this level, although we intend to say at a more abstract level that the
L_acq() operation is disabled when the lock is unavailable.

To address this problem, we refer to the abstract object specification I when defining the progress
of a concrete object IT. Recall that method specifications in I are in the form of await(B){C}, so we
know that the method is disabled when B does not hold.

We formalize the idea as Def. 5.1. Under the scheduling fairness y (where y € {sfair, wfair},
as defined in Fig. 6), we say the object IT is PSF with respect to an abstract specification I' and a
state abstraction function ¢, i.e., PSF;F(H), if any y-fair trace T generated by ((letIIin Cy || .. .||
Cn), (0¢,0,®)) either aborts, or satisfies prog-t, or we could blame the client for the blocking of
each pending invocation.
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To[W.S] € {((spawn, [W]),Ac,Ao) =T | btids(W,S) = (Ac,Ao) A
(W, S) 5@ ) v (W, S) = * abort) v AW, S". (W.S) o™ (W', 8")) A =(Fr. (W, S') s )}

letITin Cy || ... || Cal & tnum(((spawn,n),Ac,Ap) =:T) &
evt() € e ifi=(e,Ac,Ap) bset(t) = AcUA, ifi= (e,Ac,Ap)

i-o-enabled(t,T) iff Vi.3j > i.t ¢ bset(T(j)) “infinitely often”

e-a-enabled(t,T) iff Ji.Vj > i.t ¢ bset(T(j)) “eventually always”

sfair(T) iff |T|=w = Vt € [1..tnum(T)]. evt(last(T|t)) = (t,term) V (i-o-enabled(t,T) = [(T|)| = w)
wfair(T) iff |T|=w = Vt € [1..tnum(T)]. evt(last(T|t)) = (t,term) V (e-a-enabled(t,T) = [(T|t)| = w)

pend_inv(T) «f {e | Ji. e = evt(T(i)) Ais_inv(e) A =3j > i. match(e,evt(T(j))) }
abt(T) iff 3i.is_abt(evt(T(i)))

prog-t(T) iff pend_inv(T) =0

prog-p(T) iff Vi,e. e € pend_inv(T(1..i))) = Jj > i.is_ret(evt(T(j)))

e-a-disabled(t,T) iff 3i.Vj > i1 =T(j).t € bset(s) “eventually always”

well-blocked(T, (W,,Sq)) iff 3T,. Tq € T [Wa,Sa] A (get_hist(T) = get_hist(T,))
A (Ve. e € pend_inv(T,) = e-a-disabled(tid(e),T,))

0y [W,(0¢,00)] &t (& | AT.T € T,[W, (0¢,00,@)] A x(T) A get_obsv(T) = E} x € {sfair,wfair}

Fig. 6. Fairness and progress.

In the last case, we must be able to find a trace T, generated by the execution of the abstract object
I' (with the abstract object state X related to o by ¢) such that it has the same method invocation
and return history with T, and every pending invocation in this abstract trace T, is eventually
always disabled. See the definition of well-blocked in Fig. 6 for the formal details.

Definition 5.1 (Partially Starvation-Free Objects). PSFgr(H) iff

vn,Cy,...,Cp,00,0,5,T.T € T,[(let I in Cy || ... || Cp), (0c,0,@)] A (p(0) = ) A x(T)
= abt(T) Vv prog-t(T) V well-blocked(T, ((let T in Cy || .. .. || Cp), (0¢,2,®))) .

We also define PDF in Def. 5.2. It is similar to PSF, but requires prog-p instead of prog-t.
. . . X .
Definition 5.2 (Partially Deadlock-Free Objects). PDF(p’F(H) iff

vn,Cy,...,Cn,00,0,5,T.T € T,[(let I in Cy || ... || Cp), (0c,0,@)] A (p(0) = ) A x(T)
= abt(T) Vv prog-p(T) V well-blocked(T,((let T in Cy || ... [| Cpn), (0, 2,®))) .

The above definitions consider the three factors that may affect the termination of a method
call: the scheduling fairness y, the object implementation IT which determines whether its traces
satisfy prog-t or prog-p, and the execution context Cy || .. .|| C,, which may make inappropriate
method invocations so that well-blocked holds. Consider the lock objects in Fig. 1(a) and (c) and
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the following client program (5.1). The initial value of the shared variable x is 0.

[_]ACQ; print(0); [_lre; [_]ACQ; print(2);
x:=T1; while(x=1){ (5.1)
[_]ACQ; print(1); [_lre; [_Jres [_]ACQ; print(3); }

The client can produce a trace satisfying prog-t when it uses the ticket lock. It first executes the left
thread until termination and then executes the right thread. Then every method call terminates,
printing out 0, 1, 2 and an infinite number of 3. Thus prog-t holds. When the test-and-set lock is
used instead, the same client can produce a trace satisfying prog-p but not prog-t. In the execution,
the second call to L_acq in the left thread never finishes. It prints out 0, 2 and an infinite number
of 3, but not 1. Such an execution is not possible when the client uses the ticket lock, under fair
scheduling. This shows how different object implementations affect termination of method calls.
Note that neither of the two execution traces satisfies well-blocked, because every method call in
the traces either terminates or is enabled infinitely often.

On the other hand, the client (5.1) can produce a well-blocked trace no matter it uses the ticket
lock or the test-and-set lock. It executes the right thread first until termination and then executes
the left thread. Then the first call to lock acquire of the left thread is always blocked, and only 2 is
printed during the execution. The non-termination of the method call is caused by the particular
execution context, in which the method call is not supposed to return, regardless of the object
implementations. This is why the same well-blocked condition is used in both definitions of PSF
and PDF for both strongly and weakly fair executions of the object implementation.

PSF (or PDF) and starvation-freedom (or deadlock-freedom) coincide if we require each await
block in I is in the special form of await(true){C} — Since the methods in I are always enabled,
well-blocked(T, ((let T in C ||.. .|| Cy),S,)) now requires that there is no pending invocation in T.
This is stronger than both prog-t(T) and prog-p(T). Therefore we can remove the disjunction branch
about well-blocked in Defs. 5.1 and 5.2, resulting in definitions equivalent to starvation-freedom
and deadlock-freedom respectively.

6 PROGRESS-AWARE ABSTRACTION OF OBJECTS

In this section we study the abstraction of linearizable and PSF (or PDF) objects. Similar to Theo-
rem 4.4, we want theorems showing that linearizability along with PSF (or PDF) of an object IT is
equivalent to a contextual refinement between IT and some abstract object IT’, where II” can be
syntactically derived from the atomic specification T'.

We first define the progress-aware contextual refinement for objects under different fairness
x of scheduling (y € {sfair,wfair}). As Def. 6.1 shows, II contextually refines I’ under the y-fair
scheduling if, in any execution context, IT generates no more externally observable event traces
than IT". The set of event traces O, [(let ITin Cy || .. .|| C,), (0c,0)] is defined in Fig. 6, where each
event trace & is extracted from the y-fair trace T in 7,[(letILin Cy || ... || Cy),(0¢,0,©)]. The
refinement is progress-aware because we use the whole execution trace T here, from which we can
tell whether the corresponding execution terminates or not.

Definition 6.1 (Progress-Aware Contextual Refinement).
NCy I iff Yn,Cy,...,Ch00,0.%. ¢(0) =3 =
Oy [(etIlin Cy|l...1ICp),(0c,0)] € Oy[(letII" in Cy||... .|| Cp), (¢, 2)]

Wrappers for atomic specifications. As explained in Sec. 2, one of the major contributions of this
paper is to define wrappers for atomic partial specifications I', which transform the method specifi-
cation await(B){C} in T into a (possibly non-atomic) abstract specification for each combination
of progress (PSF or PDF) and fairness (sfair or wfair), as shown in Table 2.
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def

(?,x, wr¥

Prog( )(f) brog (aWait(B){C}); return E)
1fF(f) (P, x, await(B){C}; return E)

def

wriar (await(B){C})

wrpfa”(awalt(B){C )

await(B){C}

a
Ile;

listid:= listid++[(cid,‘B’)];
await(B A cid = enhd(listid)){C; listid := listid\cid;}

a
&

while (done){};
await(B A —done){C;done := true;}; done := false;
while (done){};

ffS’Fr (await(B){C})

def

wr¥fair (await(B){C}) await(B A —done){C;done := true; }; done := false;

WIppF
await(—done){}
whair df | o'W{listid~ €} ifp(o) =0’ wysfair
Wrpst' (#)(0) = { undefined if o ¢ dom(¢p) Wrpsr (q)) -

def o’ ¥ {done ~ false} if p(o) =
Wippr(0)(0) { undefined if o ¢ dom(p)

Fig. 7. Definition of wrappers.

Before introducing the definition of the wrappers in Fig. 7, we first show our abstraction theorem
(Theorem 6.2) for linearizable and PSF (or PDF) objects. It establishes the equivalence between the
progress-aware contextual refinement and linearizability with PSF (or PDF).

THEOREM 6.2 (ABSTRACTION THEOREM). Let Prog € {PSF,PDF} and y € {sfair,wfair}, then

I < p A ProgX () = I ;i‘ wrffmg(l") .

where ¢ = wer (¢), and the wrappers for ' and ¢ are defined in Fig. 7. We also assume that the

variableslistid anddone introduced in the wrapper code are fresh, i.e., 1istid,done ¢ FV({IL T, ¢}).

To prove the theorem, we define compositional operational semantics that can generate separate
traces for objects and clients, and build simulations using the object semantics. Detailed proofs are
given in Appendix A.

Next we introduce the definition of the wrappers in detail. The wrapper wrls:,fsa"Fr is simply an identity
function. It maps the atomic specification await(B){C} to itself. This is because under strongly fair
scheduling await(B){C} will eventually be executed unless it is eventually always disabled. This is
exactly what we need for PSF of linearizable objects, which requires that the invocation of each
method eventually returns, unless the corresponding high-level atomic operation await(B){C} is
eventually always disabled (as specified by well-blocked in Fig. 6).

Wrapper for PSF under weakly fair scheduling. Under weakly fair scheduling, however, we cannot
guarantee that await(B){C} is eventually executed even if B holds infinitely often. Therefore it
alone cannot satisfy PSF. That’s why we define wr‘g’sf;ir(await(B){C }), which guarantees that the
atomic operation is eventually executed if B holds infinitely often. We introduce a blocking queue
listid in the object state, which is a sequence of (t,‘B’) pairs, showing that the thread t requests
to execute an atomic operation with the enabling condition B. Note that the enabling condition B is

recorded syntactically in 1istid, represented as ‘B’. The operator enhd(listid) returns the first
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thread on the list whose enabling condition is true. It evaluates the syntactic enabling conditions
‘B’ recorded in 1istid on the fly. Note that different pairs in 1istid may have different enabling
conditions B. In the code generated by wr‘lg’sff:ir(await(B){C }), we first append the current thread
ID and the enabling condition ‘B’ at the end of the list. In the subsequent command the thread
waits until both B holds and cid = enhd(listid)'. Then it atomically executes C and deletes the
current thread in the queue.

This wrapper guarantees that C is eventually executed when B becomes infinitely often true
because we know B A cid = enhd(listid) will be eventually always true, and then the weakly
fair scheduling guarantees the execution of C. This is because, whenever B becomes true, either
cid = enhd(1listid) holds or there is a pair (t’, B’) such that B’ At’ = enhd(1istid) holds. In the
first case, other threads trying to execute the object methods must be blocked at the await command.
Therefore B cannot be changed to false by other threads. Therefore B A cid = enhd(listid) is
always true until the current thread executes the atomic block. In the second case t” must be able
to finish its method, following the same argument above. Therefore there will be one less thread
waiting in front of the current thread cid. Since B becomes true infinitely often, we eventually
reach the first case.

As a result, the wrapper does not terminate in a weakly fair execution only if B is eventually
always false. In that case the execution trace is well-blocked (see Fig. 6), still satisfying PSF.

One may argue that the abstraction generated by the wrapper is not very useful because it may not
be much simpler than the object implementation. For instance, if we consider the acquire method
of locks, the abstraction is almost the same as queue locks or ticket locks. But we want to emphasize
that our wrapper is a general one that works for any object method implementation with an
atomic specification in the form of await(B){C}. Therefore we know the method’s progress-aware
abstraction can always be in this form, no matter how complex its implementation is.

Wrapper for PDF under weakly fair scheduling. For the right column in Table 2, we first introduce
the wrapper at the bottom right corner. The definition of PDF says a method can be non-terminating
if (1) it is eventually always disabled, as specified by well-blocked (see Fig. 6); or (2) there are always
other method calls terminating, as specified by prog-p. Note that the second condition allows the
method to be non-terminating even if it is eventually always enabled under weakly fair scheduling.
As an example, the Treiber stack with a partial pop in Fig. 8 demonstrates one such scenario. The
pop method is blocked when the stack is empty. It is linearizable with respect to the following
specification

await(S # nil){tmp := head(S);S := tail(S);}; return tmp; (6.1)
where S is the abstraction of the stack and tmp is a thread-local temporary variable.

In the following execution context (6.2),

pop(); | while(true){ push(@); } (6.2)

the call of the concrete method pop may never terminate because its cas command may always fail,
although the enabling condition at the abstract level (S # nil) is eventually always true. However,
if we replace the method implementation with the specification (6.1), pop must terminate under
weakly fair scheduling. This shows that the concrete implementation cannot contextually refine
this simple specification (6.1).

Our first attempt to address this problem is to introduce a new object variable done (initialized
to false), and let the wrapper wr‘ﬁ’éagr transform await(B){C} into:

await(B A —done){C; done := true}; done := false; (6.3)
! Actually the conjunct B in the await condition in the wrapper could be omitted, because B must be true when cid =

enhd(listid) holds.
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pop(O{
9 1local x, b, t, v;
10 b := false;

initialize(){ Top := null; }

push(v){ ,
1 local x, b, t; 1T while (1b) {
2 b := false; 12t = Top;
’ ’ 13 if (t != null) {
3 x := cons(v, null); B
4 while (Ib) { 14 v := t.data;
c ¢ = %o ) 15 X 1= t.next;
= oms 16 b := cas(&Top, t, X);
6 x.next := t; 17 }
7 b := cas(&Top, t, x);
18 }
8 3
} 19 return v;
3
initialize'(){ 1initialize(); done := false;}
push' (v){ push(v); DLY_NOOP} pop' (v){ tmp := pop(); DLY_NOOP; return tmp}

DLY_NOOP &f await(—done){done := true}; done := false;

push' (1);
ush' (2);
re :=pop'(); P ,_( i .
print(ro); r1 :=pop' O;
! print(ri1);

while(true}{ push' (@) };

Fig. 8. Treiber stacks with partial pops.

Therefore the resulting await command may not be executed even if B is always true, because
done can be set to true infinitely often when other threads finish the atomic block. Also note done
is reset to false at the end of each await command, therefore the condition ~done cannot always
disable the await command, which may cause deadlock. As a result, there is always some thread
that can finish the wrapper (i.e., prog-p holds) unless the B-s of all the pending invocations are
eventually always false (i.e., well-blocked holds), thus PDF holds.

However, this is not the end of the story. If the code (6.3) fails to terminate, C must not be executed
and no effects (over the object data) are generated. However, it is possible for PDF methods to
finish C and make the effects visible to other threads but fail to terminate. As an example we define
the push’ and pop’ methods in Fig. 8 as a new implementation of the Treiber stack. They call
the push and pop methods respectively and then execute the code snippet DLY_NOOP before they
return. DLY_NOOP simply waits until done becomes false and then atomically sets it to true, and
finally resets it to false. The only purpose of DLY_NOOP is to allow the methods to be delayed by
other threads or to delay others.

Then we consider the client code shown at the bottom of Fig. 8. Under weakly fair scheduling it
is possible that the call of pop’ () by the left thread never terminates but the thread on the right
prints out 1. That is, although the pop’ () on the left does not terminate, it does generate effects
over the stack and the effects happen before the pop’ () on the right. Such an external event trace
cannot be generated if we replace the concrete push’ () and pop’ () methods with the abstract
method code generated using the wrapper (6.3) defined above. Thus the contextual refinement
between the concrete code and the wrapped specification does not hold.
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Our solution is to append an await command at the end of (6.3), so that the resulting code
wr‘rﬁ’éagr(await(B){C }) (see Fig. 7) may finish C but still be blocked at the end.

Wrapper for PDF under strongly fair scheduling. Much of the effort to define wr‘g‘,’[f)aF”(await(B){C N
is to allow the resulting code to be non-terminating even if B is eventually always true. We need to
do the same to define wr?,fgil_f(await(B){C }), but it is more challenging with strongly fair scheduling
because await(—done){} cannot be blocked under strongly fair scheduling if done is infinitely often
true. Therefore we use while-loops in wrffSiF’(await(B){C}) to allow the method to be delayed

when done is infinitely often true’. Note that while (done){} terminates when done is false.

Wrappers for the state abstraction function. Since the program transformations by the wrappers
introduce new object variables such as 1istid and done, we need to change the state abstraction
function ¢ accordingly, which is defined as wrgmg((p) in Fig. 7 (y € ({sfair,wfair} and Prog €
{PSF,PDF}).

More discussions. There could be different ways to define the wrappers to validate the Abstraction
Theorem 6.2. We do not intend to claim that our definitions are the simplest ones (and it is unclear
how to formally compare the complexity of different wrappers), but we would like to point out
that, although some of the wrappers look complex, the complexity is partly due to the effort to
have general wrappers that work for any atomic specifications in the form of await(B){C}. It is
possible to have simpler wrappers for specific objects. For instance, the lock specification I in (2.3)
defined in Sec. 2.2 can already serve as an abstraction for the test-and-set lock object IT1,s (which
is a PDF lock) under weakly fair scheduling, i.e., IIas E‘gfa" I holds.

7 PROGRAM LOGIC

We extend the program logic LiLi [Liang and Feng 2016] to verify progress properties of concurrent

objects with partial methods. LiLi is a rely-guarantee style program logic to verify linearizability

and starvation-freedom/deadlock-freedom of concurrent objects. It establishes progress-aware

contextual refinements between concrete object implementations and abstract (total) specifications.
The key ideas of LiLi to verify progress are the following:

e A thread can be blocked, relying on the actions of other threads (i.e., its environment) to
make progress. To ensure it eventually progresses, we must guarantee that the environment
actions that the thread waits for eventually occur.

e To avoid circularity in rely-guarantee reasoning, each thread specifies a set of definite actions
D, which are state transitions specified in the form of P ~+» Q. The thread guarantees that,
whenever a definite action P ~» Q is “enabled” (i.e., the assertion P holds), the transition
must occur so that Q eventually holds, regardless of the environment behaviors.

e A blocked thread must wait for a set of definite actions of other threads, and the size of the
set must be decreasing (so that the thread is eventually unblocked).

o A thread may delay the progress of others, i.e., to make other threads to execute more steps
than they need when executed in isolation. To ensure deadlock-freedom, LiLi disallows a
thread to be delayed infinitely often without whole system progress. This is achieved by
using tokens as resources and each delaying action must consume a token.

These ideas to reason about blocking and delay are general enough for verifying objects with partial
methods, but we have to first generalize LiLi in the following two aspects:

2 Actually the conjunct ~done in the await condition in the wrapper could be removed, because the loop while (done){}
before the await block can already produce the non-terminating behaviors when other threads finish the method infinitely
often (i.e., done is infinitely often true). Here we keep the conjunct ~done to make the wrapper more intuitive.
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(RelAssn) P,Q,J:= B | emp | EBE | EBE | |p] | PxQ | PAQ | PVQ | ...
(FullAssn) p,q == P | arem(C) | O(E) | #(Ex,.--.E1) | pxq | pAgq | ...

(RelAct) R.G == Pw=Q | [P] | LGlo | D | GAG | GVG | ...

(DAct) D :=P~Q | ¥x.D | DAD
S = (0,2) u == (ng,...,n1) w € Nat

Enabled(P ~ Q) & P (D) € D A (Enabled(D) x true)

def
Enabled(Vx. D) = 3Jx. Enabled(D) D’ < D iff (Enabled(D’) = Enabled(D))

Enabled(D1 A D3) &' Enabled(D;) V Enabled(D,) AD = D)

Fig. 9. Assertions and models.

e LiLi does not have await commands. There while-loops are the only commands that affect
progress. Now we have to reason about await in object code, which may affect progress as
well. It is interesting to see that await can be reasoned about similarly as while-loops.

o We also have await(B){C} as partial specifications. Since we want termination-preserving
refinement, we do not have to guarantee progress of the concrete object methods when the
partial specification is disabled.

As an extension of LiLi, our logic borrows LiLi’s key ideas and most of the logic rules. Due to
the space limit, the full details of the logic are given in Appendix B. Below we only show the major
extensions.

7.1 Assertions

The assertions, shown in Fig. 9, are the same as those in LiLi. P and Q are assertions over relational
states S, which are pairs of concrete and abstract object states (see Fig. 9). We use relational
assertions because our logic establishes refinement between the concrete object implementation
and the abstract specification. As in separation logic, we use E — E and E = E to specify memory
cells at the concrete and abstract level respectively. emp specifies empty states, and the separating
conjunction P = Q specifies two disjoint parts of S, which satisfy P and Q respectively.

The full assertions p and ¢ specify triples in the form of (S, (u,w),C). In addition to the relational
state S, the assertions also describe the numbers (u,w) of available tokens, and the high-level
(abstract) method code C that remains to be refined by the low-level (concrete) code. The assertion
arem(C) specifies such high-level code in the triple.

Tokens and multi-level delaying actions. As explained above, LiLi uses tokens as resources to
prevent infinitely many execution steps and infinitely many delaying actions. It requires that each
round of a while-loop consumes a ¢-token, and each delaying action consumes a ¢-token. LiLi also
stratify delaying actions into multiple levels. The delay caused by high-level actions may lead to
executions of more low-level ones (and non-delaying actions), but not vice versa. Therefore we use
w to represent the number of ¢-tokens, and use the vector u for the numbers of the k-level ¢-tokens,
as defined in Fig. 9. They are described by the assertions ¢(E) and #(Ex.,. . .,E) respectively.

Rely/guarantee conditions and definite actions. The rely/guarantee conditions R and G specify
stratified transitions between relational states, i.e., they are assertions over (&,&’,k), where k is
the level of stratified delaying actions. P »<; Q specifies a level-k delaying transition from P to Q.
The subscript k can be omitted when k = 0. [P] specifies identity transitions with the initial states
satisfying P. | G], can be satisfied only by level-0 transitions in G. Definite actions D is a special
form of rely/guarantee condition. P ~» Q specifies a transition where the final state satisfies Q if
the initial state satisfies P.
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As in LiLi, all assertions are implicitly parameterized with a thread ID t.

7.2 Logic Rules

Figure 10 shows the key logic rules. As the top rule of the logic, the oBj rule says that, to verify
IT satisfies its specification I with the object invariant P, one needs to specify the rely/guarantee
conditions R and G, and the definite actions D, and then prove that each individual object method
implementation refines its specification. Here I must be an atomic partial specification.

For each method, we take the object invariant P and the annotated preconditions ? and ?’ (in II
and I') as preconditions. We also assign #-tokens in the precondition (#(Ex,. . .,E1)) to constrain the
number of delaying actions executed in the method. arem(C’) says that the high-level code which
remains to be refined at this point is C’. At the end we need to re-establish the object invariant P,
and show that there is no more high-level code that needs to be refined (i.e., arem(skip)), which
means the method body indeed refines the specification C’.

The object invariant P should also ensure that the annotated pre-conditions 2 and P’ are either
both true or both false. That is, whenever P holds, it is either safe to call the methods at both the
concrete and abstract levels, or unsafe to do so at both levels. The other side conditions in the rule
are the same as those in LiLi and irrelevant to our extensions, so we omit the explanations here.

The wHL rule. The rule for while-loops is almost the same as the wHL rule in LiLi, with the
changes highlighted in gray boxes. We verify the loop body with a precondition p’, which needs to
be derived from the loop invariant p and the loop condition B. In two cases we must ensure that
there are no infinite loops:

e the definite action D is enabled (see Fig. 9 for the definition of Enabled(?)). Then the loop
must terminate to guarantee that the definite action 9 definitely occurs.

e the current thread is not blocked. Here we need to find a condition Q that ensures the current
thread can make progress without waiting for actions of other threads.

The second premise of the rule says, in either of the two cases above we must consume a ¢-token
for each round of the loop, as p” has one less token than p A B.

On the other hand, if the current thread is blocked (Q does not hold) and it is not in the middle
of a definite action, the loop can run an indefinite number of rounds to wait for the environment
actions. It does not have to consume tokens. However, we must ensure the thread cannot be blocked
forever, i.e., Q cannot be always false. This is achieved by the definite-progress condition introduced
in LiLi. We show a generalized definition in Def. 7.1, with the changes highlighted in gray boxes.

Definition 7.1 (Definite Progress). S |= (R,G: Z)L (Q,By)) iff the following hold for any t:
(1) either G |= Qy, lor © |= =By, or there exists t’ such that t’ # t and S |= Enabled(Dy);
(2) forany t’ # t and &', if (S,&7,0) |= Ry A ({Dy) V((=Bp) < Bp)) , then f(S) < fi(S);
(3) for any &, if (5,8,0) |= Ry V Gy, then f;(&') < £i(S).

Here f is a function that maps the relational states S to some metrics over which there is a
well-founded order <.

The definite progress condition (R,G: Z)L (Q,Bp)) tries to ensure Q is eventually always true,
unless By, is eventually always false. It requires the following conditions to hold:

(1) Either Q holds, which means that the low-level code is no longer blocked; or the high-level
specification await(By){C’} is disabled, so that the low-level code does not have to progress
to refine the high-level code; or one of the definite actions in D that the current thread t
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forall f € dom(I): I(f) = (2,x,C)  I(f) = (2,y,C') P = (PAP)V (=P AP
D,RGH{PA(PAP)A(x=y)Aarem(C’) A #(Eg,...,E1)} C{P A arem(skip)}
Vit t#t' = Gy = Ry wffAct(R, D) P = —Enabled(D)

D,R,G+{PJI:T (oBy)
pAB=p’  pABA(Enabled(D)VQ) = p'+(0Aemp)  D.R.G+ {p'}Clp}
pAB= ] Aarem(await(B"){C’}) Sta(,RVG) J= (RG: oL, (0.B"))
D'<D wifAct(R, D)
D,R,G + {p}while (B){C}{p A —B} (WHL)
p A Enabled(D) = B D,1d,G + {p A Bi{C){q} Sta({p.q}.R)
D'<KD wffAct(R, D’) p= 3B’,C’. arem(await(B'){C’}) A (R: Z)’OL (B.B))
D,R,G Fyfair {pYawait(B){C}{q} (AWAIT-W)
pAEnabled(D) =B DId.GripABKOIg)  Stalip.ghR)
D'KD WffACt(R,@’) p= 33’,C’.arem(await(B’){C’}) A (R: @,.L (B,B,))
(AWAIT-5)

D,R,G Fepair {plawait(B){C}{q}

Fig. 10. The key extensions of inference rules.

waits for is enabled in some thread t’. Here D can be viewed as a set of n definite actions in
the form of D; A ... A D, parameterized with thread IDs.

(2) There is a well-founded metric f that becomes strictly smaller whenever (a) an environment
thread t’ executes a definite action in D, or (b) an environment action has turned the high-
level command from disabled to enabled. Case (a) requires that the number of definite actions
waited by the current thread must be strictly decreasing. Therefore eventually there are no
enabled definite actions. By condition (1) we know eventually either Q or =By, is true. Case (b)
further requires that the high-level command cannot be infinitely often disabled and then
enabled during the loop. Therefore either By, is eventually always true or it is eventually
always false. In the former case we know Q must be eventually always true by the above
condition (1). In the latter the loop does not have to terminate because the execution is
well-blocked (see Fig. 6).

(3) The value of f over program states cannot be increased by any level-0 actions (i.e., non-
delaying actions).

Note that the last two conditions do not prevent delaying actions (level-k actions where k > 0) from
increasing the value of f, but such an increase can only occur a finite number of times because each
delaying action consumes a ¢-token. The effects of delaying actions are shown in the ATom rule,
which is the same as in LiLi. Since the way delaying action is handled is orthogonal to our extension
for partial methods, we omit the rule here.

To ensure the definite progress condition always holds, we need to find an invariant J which is
preserved by any program step (by the current thread or by the environment), and require that J
implies definite progress, given the currently remaining high-level command await(B’){C’}. Note
that to simplify the presentation we treat arem(skip) as arem(await(true){skip}) so that it can
be reasoned about in the same way.
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The wHL rule also allows us to use D’, a subset of D, to prove definite progress, which is useful
to simplify the proofs. See the definition of D’ < D in Fig. 9. D’ also needs to satisfy wffAct(R, D).
This premise is taken from LiLi and we do not explain it here.

Since we have highlighted the changes over the wHL rule in LiLi, we can see that the wHL rule in
LiLi is a specialization of ours when the high-level code is always in the form of await(true){C’}.

Rules for await commands. Our logic introduces two new rules, AWAIT-w and AWAIT-S, to verify
await commands in the object implementation under weakly fair and strongly fair scheduling. We
use the subscripts of the judgment to distinguish the scheduling.

Naturally the AWAIT-w rule combines the ATom rule in LiLi and the wHL rule. If await(B){C} is
enabled, we can simply treat C as an atomic block (C) and apply the atom rule of LiLi to verify it.
In this case we do not need to consider the interference and take Id as the rely condition (where Id
is a shorthand notation for [true], which specifies arbitrary identity transitions).

Similar to the wWHL rule, if the definite action D is enabled, then await(B){C} must be enabled
at this point (see the first premise of the AwAIT-w rule). This is because we require that, when
enabled, the definite action 9 must be fulfilled regardless of environment behaviors. Therefore the
current thread cannot be blocked.

Finally, we require that, even if the command is blocked, it must be eventually enabled unless
the corresponding high-level specification is blocked too. So if we view the enabling condition B
the same as the condition Q we use in the wHL rule, we require the same definite progress condition,
except that things are simpler here because await(B){C} finishes in one step once enabled, unlike
loops which take multiple steps to finish even if Q holds. Therefore we do not need the invariant J
used in the wHL rule, and we do not need to consider actions in G in the definite progress condition.

We can use a simpler condition (R: D’OL (B,B’)) defined below, which simply instantiates G with
Id and Q with Bin (R,G: Z)’L (Q,B’)) (see Def. 7.1).

Definition 7.2 (Definite Progress for Await).

« Gk (R: Db (B.B) iff & = (R1d: DL (B,.By)).

o G | (R: Dols By, By)) iff the following hold for any t:

(1) either G |= By, or © |= =By, or there exists t’ such that t” # t and © |= Enabled(Dy );
(2) forany t’ # tand &', if (S,8’,0) |= Rt A ({Dy) V ((—Bp) =< By)), then fi(S') < £i(S);
(3) for any &/, if (5,87,0) = Ry A((=B;) = (=By)) , then f(S') < f{(S).

The await-s rule for strongly fair scheduling looks almost the same as the aAwarT-w rule, with a

slightly different definite progress condition (R: Z)’OL (B, B’)), which is also shown in Def. 7.2 with
the difference highlighted in the gray box. The key difference here is that the low-level enabling
condition B (represented as B; in Def. 7.2) does not have to be stable once it becomes true. Under
strongly fair scheduling we know the await block will be executed as long as it is enabled infinitely
often. Therefore in condition (3) we only need to ensure that f does not increase if the enabling
condition B; remains false, but we allow f to increase whenever we see B; holds.

The wHL rule, AWAIT-w rule and AWAIT-s rule are the only new command rules we introduce
to reason about partial methods and blocking primitives. All the other command rules are taken
directly from LiLi, which are omitted here.
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7.3 Soundness of the Logic

The two AwAIT rules actually give us two program logics, for strongly fair and weakly fair scheduling
respectively. To distinguish them, we use D,R,G +, {P}II : T to represent the verification using
the logic for y-scheduling (y € {sfair, wfair}), where the corresponding AWAIT rule is used.
Theorem 7.3 shows that our logic is sound in that it guarantees linearizability and partial
deadlock freedom (PDF) of concurrent objects. It also ensures partial starvation freedom (PSF) if
the rely/guarantee conditions specify only level-0 actions, as required by R = |R]o and G = |G .
That is, none of the object actions of a thread could delay the progress of other threads. With the
specialized R and G, we can derive the progress of each single thread, which gives us PSF.

THEOREM 7.3 (SOUNDNESS). If D,R,G+, {P}II:T' and ¢ = P, then
(1) both 11 ﬁLiﬂn T and PDngF(H) hold; and
(2) ifR = |R]p and G = |Gy, then PSF?Z,F(H) holds.

where y € {sfair,wfair}, and ¢=P o Vo,2. (p(0)=2) = (0,2) |=P.

Proofs of the theorem are in Appendix B. We first prove the logic establishes the progress-aware
contextual refinements, and then apply the Abstraction Theorem 6.2 to ensure linearizability and
the progress properties. The proof structure is similar to the one for LiLi.

8 EXAMPLES

We have applied the program logic to verify ticket locks [Mellor-Crummey and Scott 1991], test-and-
set locks [Herlihy and Shavit 2008], bounded partial queues with two locks [Herlihy and Shavit 2008]
(where the locks are implemented using the specification (2.3)) and Treiber stacks [Treiber 1986]
with partial pop methods. Perhaps interestingly, we also use our logic to prove that, for the atomic
partial specification I for locks, the wrapping of T (as the object implementation) respects I itself as
the atomic specification under the designated fairness conditions, i.e., (Z),R,G + {P}wrgrog(l“) : T)
holds for certain D, R, G and P, and for different combinations of fairness y and progress Prog.
This result validates our wrappers and program logic. It shows Progﬁyr(wr,)fmg(l“)) holds, i.e., each
wrapper itself satisfies the corresponding progress property. Below we show the proofs for test-
and-set locks, ticket locks, and simple locks implemented using await which guarantee PSF under
weak fairness. The proofs of other examples are given in Appendix C.

8.1 Test-and-Set Locks

In Fig. 11, we verify PDF of the test-and-set locks using our logic with the atomic partial specifica-
tions L_ACQ' and L_REL defined in (2.3). To distinguish the variables at the two levels, below we
use capital letters (e.g., L) in the specifications and small letters (e.g., 1) in the implementations.

As we explained in Sec. 3, the method L_rel and the specification L_REL have annotated pre-
conditions (1 = cid) and (L = cid), respectively. That is, it is not allowed to call L_rel (or L_REL)
when the thread does not hold the lock. The annotated precondition for L_acq and L_ACQ' is true.
In Fig. 11, we define the assertion lock as the object invariant P used in the oBj rule. Then the
method L_acq is verified with the precondition lock, and L_rel is verified with the precondition
lock A (1 = cid) which is reduced to lockedBy.;4, as shown in Fig. 11.

To verify L_acq, we make the following key observations. When the cas at line 3 succeeds,
L_ACQ' must be enabled and can be executed correspondingly. And at the time when the cas fails,
L_ACQ' must be disabled. The progress of L_acq relies on that the environment thread holding
the lock could eventually release the lock, i.e., turning the current thread’s L_ACQ' from disabled
to enabled. But such an action is not “definite”, since the client thread may never call the L_rel
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def def L_acqa(){
lock = 3s.locks locks = (1=L=5) {Iock AGA arem(L_ACQ’)}
unlocked & lockg 1 local b := false;
def ((=b) Alock A ¢ A O A arem(L_ACQ"))

locked = dt. lockedB
ocke def ocKed®Nt V (b A lockedBy ;4 A arem(skip))
lockedBy, = lock¢ A (t # 0) 2 while (!b) {

def def \
Rt = Vyzt Gy Gt = Acgq; V Relt {((/ijr;lt,(;cr]:(?f //;(?Q)’) (locked A 4 A 0))}
Acqy <" unlocked =1 lockedBy, 3 b := cas(&f, 0, cid);
Rel; def lockedBy; »<o unlocked 4 3 .

def {IockedByCid A arem(sklp)}
D = false ~ true }
T & lock L_rel(){

{IockedBycid A arem(L_REL)}
5 1 :=0;
{Iock A arem(skip)}

Q & unlocked
1 if S |= locked

f(e):{o ifS = Q )

Fig. 11. Proofs for the test-and-set lock.

method. The definite action D for this object can be defined as false ~» true, saying that there is
no definite action that a thread needs to complete.

The action Acg, (corresponding to the successful cas at line 3) is a delaying action (defined with
level 1). When thread t succeeds in cas, termination of other threads’ L_acq can be delayed, as
allowed by PDF. The thread t has to pay a 4-token, given in the precondition of L _acq.

The definite progress condition (R,G: DL (Q, L=0)) now says that thread t is either at a state
that it itself can progress (i.e., Q holds), or blocked at the abstract level (i.e., L=0 does not hold).
The metric f,(S) decreases when an environment thread releases L, but can be reset (which means
thread t is delayed) if an environment thread successfully acquires the lock.

By the Soundness Theorem 7.3, we know the test-and-set lock object satisfies the PDF property,
and contextually refines the abstraction generated by the corresponding PDF wrappers in Fig. 7,
under strongly and weakly fair scheduling.

8.2 Ticket Locks

In Fig. 12, we prove the ticket lock object satisfies PSF. We introduce some write-only auxiliary
variables to help the verification. First, we introduce an array ticket to help specify the queue of the
threads requesting the lock. Each array cell ticket[i] records the ID of the unique thread getting
the ticket number i (see line 2). Second, we introduce a lock bit 1 to make the lock acquirement
and lock release explicit (see lines 4 and 5).

We then define the object invariant lock(s, tl,ny,n;). It says that the lock bits 1 and L are equal,
n; and n, are the values of owner and next respectively, and t] is the list of the threads recorded in
ticket[n;], ticket[n; + 1], ..., ticket[ny — 1] (as specified by tickets(tl,n,ny)).

The guarantee condition G; describes the possible atomic actions of thread t. Reg, adds t at the
end of t] of the threads requesting the lock and also increments next. It corresponds to line 2 in the
code at the top of Fig. 12. Acq, sets the lock bits to t, explicitly indicating the lock acquirement (see
line 4). It is also a definite action (see the definition of 9) since thread t must acquire the lock if its
loop at line 3 terminates. Rel; increments owner to dequeue the thread t which currently holds the
lock, and resets the lock bits (see line 5). All actions are at level 0. There are no delaying actions.
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tkL_acq(O{ tkL_rel(O{

1 local i, o; 5 <owner := owner+l; 1 := @>;
2 <i := getAndInc(&next); ticket[i] := cid >; 3}

3 o := owner; while (i '=0) { o := owner; }

4 1 := cid;

3

lock(s, tl,n1,n2) =
(1=L=sA(s=head(t]) Vs =0))=* ((owner = ny) * (next = nz) A (n1 < ny)) * tickets(tl,ny,nz)
de

Gt &f Req; V Acq; V Rely Dy ! Vitl,ny,ngy. lock(0,t::tl,ny,n2) ~ lock(t,t::tl,ny,ny)

Reg; &ef s, tl,ny,nz. lock(s, tl,ny,nz) = lock(s, ti++[t],ny,n2 + 1)
Acq; dof Atl,n1,ny. lock(0,t::tl,n1,nz) = lock(t,t::tl,ny,ny)
Rel; &ef Atl,ny,ny. lock(t,t:: tl ny,ng) < lock(0,tl,ny + 1,nz)

T f ds,nq,np, ty, tly. tlockedy, 1 4, (s, n1,1,n2) A (0 < ng)
def . . . = _ ) 2k+1 ifS|E(i—-owner =k)=x(1=0)
Q¢ = dny, tly. lock(0,t:tlp,1,n2) A (0 < 1) f(©) = { ok if G E (i — owner = k) * (1 # 0)

Fig. 12. Proofs for the ticket lock (with auxiliary code in gray).

By applying the wHL rule of our logic, we need to prove the definite progress condition J =

(R,1d: Z)L (Q, L=0)) for the loop at line 3. Here J, Q and f are defined at the bottom of Fig. 12.
In the definition of J;, we use tlockedy;, t 4, (s, n1,1,n2) to say that t is requesting the lock and its
ticket number is i. Here tl; is the list of the threads which are waiting ahead of t, and tl, is for the
threads behind t. Q; specifies the case when tl; is empty. In this case the lock bits must be 0 and
tlocked is reduced to lock, as shown at the bottom of Fig. 12.

The metric f;(S) is determined by the number of threads ahead of t in the waiting queue and
the status of the lock bits. It decreases when an environment thread t’ does the definite action Dy,
setting the lock bits to t’. It also decreases when t’ releases the lock and increments owner, turning

(L # 0) to (L = 0). Thus we can prove J = (R,Id: DL (0, L=0)).

By the Soundness Theorem 7.3, we know the ticket lock object satisfies the PSF property, and
contextually refines the abstraction generated by the corresponding PSF wrappers, under both
strongly and weakly fair scheduling. The detailed formal proofs are given in Appendix C.1.

8.3 Simple PSF Locks with Await Blocks

Figure 13 shows the proofs of a simple lock object implemented with an await statement which
guarantees PSF under weak fairness. The acquire method is simply wr‘lg’sf";"(await(k@){l :=cid}).
The release method resets the lock bit 1 directly. It has the annotated precondition (1 = cid). We
still verify the object in our logic with the specifications L_ACQ' and L_REL defined in (2.3).

We first define the object invariant P used in the oBj rule. It is defined based on lock, which
requires 1 to have the same value as the abstract lock L. The queue listid records the threads
currently waiting for the lock. Here diff(tb) says that the threads in tb are all different. Then
the object invariant P; further requires that the current thread t is not recorded in listid. It is
preserved before and after t calls a method.

The object has three kinds of possible actions (see the definition of G). Req, appends the thread t
at the end of 1istid to request the lock (line 1). Acg, acquires the lock if the lock is available and
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Pe © 3s,th. locks(th) A (t ¢ th)  where th == € | (t,1=0"):: b
def

locks(th) & (1 =L = 5) + (Listid = tb) A diff(th)

unlocked(th) < lockq (tb) lockReq, & Ts, tb. locks (tb) A (t € th)
locked; (th) < locke(th) A (t £ 0) A (t ¢ th)  locked; = Ttb. locked; (tb)
Gt &f Reg; V Acq; V Rel; Dy Vb unlocked((t, ‘1=0") :: tb) ~» locked;(tb)

Req, < s, tb. (locks(th) A (t & th)) < locks (th++[(t,1=0")])
Acq, € 3. unlocked((t, ‘1=0’) :: tb) < lockedy(tb) Rel; 3, lockedi(tb) < unlocked(tb)

©) df [ 2k+1 if3s,th,th’. (S |= locks (tb++[(t,'1=0")] ++tb') A's # 0) A [tb] = k
FE) =Y 2k ifAthth. (S = unlocked(th++ [(t,'1=0")] ++ b)) A |th| = k
acquire(){ release(){
{Pcid A arem(L_ACQ’)} {Iockedcid A arem(L_REL)}
1 listid := listid ++ [(cid, '1=0')]; 5 1 :=0;
{IockReqcid A arem(L_ACQ’)} {Pcid A arem(skip)}
2 await (1 = 0 /\ cid = enhd(listid)) { )

{th. unlocked((cid, 1=0") :: th) A arem(L_ACQ’)}
3 1 :=cid; listid := listid \ cid;
{3th. locked.a(th) A arem(skip) }
4 3
{Iockedcid A arem(skip)}
}

Fig. 13. Proofs for the simple PSF lock under weak fairness.

t is at the head of 1istid (lines 2-4). Rel; releases the lock (line 5). Here Acq, is also the definite
action of thread t (see the definition of D). None of the actions are delaying actions.
To verify the await statement at lines 2-4, we apply the AwarT-w rule in Fig. 10, and prove:

lockReq = (R: Do (1 =0 Acid = enhd(listid), L = 0)) . 8.1)

The metric f is defined at the top of Fig. 13. We can see that f;(S) decreases when an environment
thread t’ performs a definite action, since Dy will remove t’ that is waiting ahead of the thread t.
Also f;(©) decreases when t’ releases the lock, turning (L # 0) to (L = 0). Thus (8.1) holds.

By the Soundness Theorem 7.3, we know this simple lock satisfies PSF under weak fairness.

9 RELATED WORK AND CONCLUSION

There has been much work on the relationships between linearizability, progress properties and
contextual refinement (e.g., [Filipovi¢ et al. 2009; Gotsman and Yang 2011, 2012; Liang et al. 2013]),
and on verifying progress properties or progress-aware refinement (e.g., [Bostrom and Miiller 2015;
da Rocha Pinto et al. 2016; Gotsman et al. 2009; Hoffmann et al. 2013; Jacobs et al. 2015; Tassarotti
et al. 2017]). But none of them studies objects with partial methods as we do. On the other hand, our
ideas might be general enough to be integrated with these verification methods to support blocking
primitives and partial methods. For instance, Tassarotti et al. [2017] propose a higher-order logic
based on Iris [Jung et al. 2015] for fair refinements. Our wrappers and reasoning method may be
applied there to support higher-order refinement reasoning with blocking primitives. The logic
by Bostrom and Miiller [2015] ensures that no thread will be blocked forever. It supports special
built-in blocking primitives for locking, message passing and thread join. Their obligation-based
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reasoning strategies may be applied to await blocks too, to verify that the client threads of await
will not be permanently blocked.

In our previous work we propose the program logic LiLi [Liang and Feng 2016] to verify starvation-
free and deadlock-free objects. This work is inspired by several ideas from LiLi:

o The soundness of LiLi ensures a progress-aware contextual refinement, which gives starvation-
freedom or deadlock-freedom, if fed with different abstractions generated by specific code
wrappers. Here we take a similar approach, and define new wrappers to generate abstractions
for PSF and PDF objects.

e LilLi sorts progress properties in two dimensions called blocking and delay, and distinguish
starvation-freedom and deadlock-freedom by whether delay is permitted. Here the difference
between our PSF and PDF also lies in the delay dimension.

o The program logic proposed in this paper is a generalization of LiLi. Both logics use tokens
to support delay, and use similar definite progress conditions to support blocking.

However, there are two main problems with LiLi, which are addressed in this paper:

e LiLi does not provide abstractions for objects with partial methods. When using LiLi to verify
lock-based algorithms (such as the counters shown in Fig. 1(b) and (d) in this paper), one
has to inline the implementations of locks, losing the modularity of verification. Here we
define progress-aware abstractions for objects with partial methods, allowing us to verify
their clients in a modular way.

e The inference rules of LiLi do not apply to objects with partial methods, such as the objects
in Sec. 8 in this paper. We have explained the reasons and our solutions in Sec. 7.

Schellhorn et al. [2016] propose a proof method for verifying starvation-freedom. Their approach
is based on a special predicate which describes the waiting-for relations among the threads. However,
their work has similar problems as LiLi, and cannot apply to the examples considered in this paper.

Gu et al. [2016] verify progress of the ticket lock implementation as part of their verified kernel.
Their specification of the lock relies on the behaviors of clients. It requires that the client owning a
lock must eventually release it. Then they prove that the acquire method always terminates with
the cooperative clients. It is unclear how the approach can be applied for general objects with
partial methods.

Conclusions and more discussions. We have studied the progress of objects with partial methods
in three aspects. First, we define new progress properties, partial starvation-freedom (PSF) and
partial deadlock-freedom (PDF). Second, we design wrappers to generate abstractions for PSF and
PDF objects under strongly or weakly fair scheduling. Third, we develop a program logic to verify
PSF and PDF.

Although our program logic verifies both linearizability and progress properties, it is focused
more on the latter. Existing work [Khyzha et al. 2017; Liang and Feng 2013; Turon et al. 2013] has
shown that linearizability itself can be challenging to verify, and special mechanisms are needed for
very fine-grained objects with non-fixed linearization points (LPs). Our logic cannot verify these
objects, but our conjecture is that the mechanisms handling non-fixed LPs (as in [Liang and Feng
2013]) are orthogonal to our progress reasoning, and they can be integrated into our logic if needed.

The logic follows LiLi’s ideas of definite actions and stratified tokens to reason about progress.
They can be viewed as special strategies implementing the general principle for termination
reasoning, that is to find a well-founded metric that keeps decreasing during the program execution.
These ideas and rules give a concrete guide to users on how to construct the metric and the proofs.
Although we have tried to make them as general as possible, and they have been shown applicable
to many non-trivial algorithms (see [Liang and Feng 2016] and Appendix C), they may not be
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complete and it would be unsurprising if there are examples that they cannot handle. As future
work, we would like to verify more examples to explore the scope of the applicability.

The specifications of linearizable objects must be atomic, but sometimes we may want to give
non-atomic specifications to object methods. We can apply our wrappers to every occurrence of the
await blocks in the non-atomic specifications to establish progress-aware refinements. We suspect
that our logic can still be used to verify such refinements (as in [Liang et al. 2014]). Another potential
limitation may be due to the use of the pure Boolean expression B in await(B){C}, which may limit
the expressiveness of the specifications. However, our technical development does not rely on this
setting. Everything may still hold if we replace B with the more expressive state assertions.

Other interesting future work includes automating the verification process. One of the key
problems is to infer the definite actions and prove the definite progress conditions. There have
been efforts to synthesize the ranking functions for loop termination (see [Cook et al. 2011] for an
overview), which may provide insights for automating the definite progress proofs. In addition
we might be able to follow the ideas in automated rely-guarantee reasoning (e.g., [Calcagno et al.
2007]) to automate the verification in our rely-guarantee logic.
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A PROOFS OF ABSTRACTION THEOREM

In this section, we prove Theorem 6.2. We first define compositional operational semantics that can
generate separate traces for objects and clients. Then, the definitions of contextual refinement, PSF,
PDF and fairness conditions can all be reduced to equivalent ones based on object traces only. We
also build simulations based on the object-local semantics.

A.1 Auxiliary Semantics
Before showing the compositional semantics, we first define the type of local traces T.
(LEvent) T == (e,A)

(LTrace) T e | =T (co-inductive)

For any “global” trace T, we use get_clt(T) to get a client-local trace, which contains only client
events (i.e., (t,out,n), (t,clt), (t,term) and (t, clt,abort)) and history events (i.e., (t, f,n), (t,ret,n)
and (t,obj,abort)), with the accompanied A, for each event. Similarly get_obj(T) gives an object-
local trace, which contains only object events (i.e., (t,obj) and (t,obj,abort)) and history events,
with the accompanied A, for each event.

Client-local semantics. We define the client-local language as follows.

(CLStmt) D
(CLProg) C

C | incall(x) | incall(x);C | fstuck
DJl...ID
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(Di,o¢) o~ (D},al)  Ac = btids-c(D11l...D]...| Dp,al)

(e;Ac)
(D1l...D; ... 1Dy 0c) &— (D1l...Dj...|| Dn,o;)

D; = skip D =end e = (i,term) A¢ = btids-c(D1||...D;...||Dn,0c)

(e.Ae)
(Dill...Dj ... Dn,oc) #——=> (D1l...D}... | Dp,0c)

(Dj,o¢) oe—>,- abort

(e,0)
(D11l...D;j...||Dy,0.) &=—> abort
(a) program transitions

[E]ls. =n  x € dom(sc) [E]s, undefined or x ¢ dom(s¢)

(t.f>n) . (t,clt,abort)
(E[x := f(E) ], (sc,he)) o— (E[incall(x) ], (sc,hc))  (E[x := f(E)],(sc, hc)) o————  abort

(t,obj) (t,obj)

(E[incall(x) ],0.) o—— (E[ incall(x) ], o¢) (E[incall(x) ],0.) o—— (fstuck,o,)
n € Val st = s¢{x ~ n}
(t,obj,abort) (t,ret,n)
(E[incall(x) ],0.) o—— abort (E[incall(x) ], (s¢.hc)) o—— (E[ skip . (s;. hc))
[E]s, = n (Cooe) —>1 (C's0Y)
A (t,out,n) . (t,clt) ,
(E[ print(E) ], (s¢, hc)) o——, (E[ skip ], (sc, hc)) (C,oc) o——, (C',07)

(b) thread transitions

btids-c(D1 Il .. [ Dnsoe) £ {t | =(c = en(Dy)))

Fig. 14. Client-local operational semantics rules.

A client-local thread D extends C with two new constructs incall and fstuck. The client-local
operational semantics rules are shown in Fig. 14. When the client thread calls an object method,
it goes to incall. incall nondeterministically returns, or loops, or leads to an object abort or
fstuck. fstuck indicates that the method call blocks. It does not have next steps in the client-local
semantics.

Then we define the client-local trace set 7,¢[C, o.] as follows.

T [Cooc] £ (((spawn,|C1),btids-c(C, o¢)) = get_clt(T) |
((C,0¢) o0 IV ((C,0¢) e abort)
vaC, . ((C,oc) Oi* (C".00) A (<L (C'07) ot )
Dyl 1l Dal < n
Also, we write C |t to get the code of the thread t:

def

(Dl ... ”Dn)lt = Dy
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(- (00, K (1)) o 111 (O], (05,k") K’ =KAi~>k"} Ao = btids-0(O11l...0} ... 1| On (05, K"))

(’A") ’ ’ ’
O1ll... 05 .. N0, (60, K)) &= (O11I... 0} ... 1| Op, (05, K"))

(04, (00, K (i))) o~ ; 11 abort

(e,0)
(O11l...0;...110p,(00,K)) #— [ abort

(a) program transitions

(t,clt) (t,clt)
(inelt, (0o, 0)) o= 1 (inelt, (00,°)) (inelt, (o,0)) o= ; (estuck, (0o.°))

Inf) =(?,y,C) oo€®? neVal «x={y~n}__)
(t,clt,abort) (t.f,n)

(inclt, (0o, 0)) o——— [y abort (inclt, (05,0)) o——, 1 (C, (00,K))
K= (sp_,_) [E]ls; =n K= (s5,_,_) [E]s, undefined
(t,ret,n) (t,obj,abort)
(E[return E], (00, %)) o—— 1 (inclt, (0, 0)) (E[ return E], (05, %)) o———,  abort

(C.(so Wspho)) —>1 (C'.(s5 Wsp,hg))  dom(sy) = dom(s))

(t’Obj) ’ /AN ’
(C. ((S0-ho). (51, ) o= 1 (C". (5. h). (57— 1))

(b) thread transitions
btids-0(O1 Il | Ons (60, K)) € {1 K (1) # o A ~((00,K (1)) = en(O0)}
Fig. 15. Object-local operational semantics rules.
Object-local semantics. We define the object-local language as follows:

(OStmt) O C | inclt | cstuck
(OProg) C == O]...]l0

An object-local thread O extends C with two new constructs inclt and cstuck. We do not need the
end flag since in object-local semantics we do not care about the termination of client threads.

The object-local operational semantics rules are shown in Fig. 15. A thread always starts ex-
ecutions from inclt. Then inclt nondeterministically calls an arbitrary method (with arbitrary
arguments), or loops, or leads to a client abort or cstuck. cstuck indicates that the thread blocks
inside the client code. It does not have next steps in the object-local semantics.

Then the object-local trace set 7,°[I1, 0,] is defined as follows. To execute the object II, we spawn
an arbitrary number of object-local threads. Each thread starts its executions from inclt.

T2, 00] «f {((spawn, n),0) ::get_gbj(f) | n € Nat
AAC,01,...,0n. (C=O1ll...0n) A (Yi. O; = inclt)
~ T ~ T
A (((C,(00,0)) o> ) V ((C7S50’©)) e—; abort)

VIC 04K (C.(00.0)) 60 (T (05K M) A (<TE (T, (04K ")) o>11 )
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Compositionality of the semantics. The following “Decomposition” and “Composition” Theorems
describe the compositionality of the semantics. The Decomposition Theorem A.1 says that every
trace T generated from the whole program using the semantics in Fig. 4 can be decomposed to
a client-local trace T, and an object-local trace T,. The Composition Theorem A.2 says that a
client-local trace and an object-local trace, if they are coherent, can be composed to a full trace.

The coherence between T, and T, requires that the histories projected from them are the same.
Besides, when both i and To are finite, we also require ﬁn_coherent(i,fo) holds. We define
fin_coherent as follows.

fin_coherent(i,fo) iff

V. (ITe] # w) A (ITo| # @) A —abt(T,) A —abt(T,) At € [1..tnum(T.)]

= (term-c(Tcl) V t € bset(last(T))) A (term-o(T,l) V t € bset(last(T,)))
term-c(T) iff (evt(last(T})) = (t,term)) V is_inv(evt(last(T)))

term-o(T ) iff is ret(evt(last(T))) VITI=0

THEOREM A.1 (DECOMPOSITION). IfT € T, [let I in Cy ||.. .|| Cp, (0c,00,®)], then there exist T.
and T, such that
%CHCI ”:-”Cn,o—cﬂ; T, EA
T, = get_clt(T), T, = get_obj(T).

THEOREM A.2 (COMPOSITION). Ifi € T.IC1 I - .. Il Cusoc], T, € 7.2, 0,], get_hist(i) =
get_hist(T,), fin_coherent(T,T,) and n = tnum(T,), then there exists T such that
TolletILin Ci|. .. || Cn.(0¢,00,0)], Te = get_clt(T), T, = get_obj(T).

Client-local and object-local fairness. We also define fairness conditions for client-local and
object-local traces.

sfair-o(T ) iff abt(T) VvVt € [1. tnum(T)] term—o(fIt) V(te bset(last(A))) V e-a-dis(t, T) V(] (fIt)I =w)
wfair-o(T ) iff abt(T ) VvVt e [1.,tnum(T)] term- o(Tlt) V (t € bset(last(T ))) V i-o-dis(t, T) \Y (I(Tlt)l =w)
sfair—c(T) iff abt(T) VvVt e [1..tnum(f)]. term—c(Tlt) V(te bset(last(T))) \Y e—a—dls(t,T) \Y% (I(Tlt)l =w)
wrair-c(T) iff abt(T) v ¥t € [1..tnum(T)]. term-c(Tly) V (t € bset(last(T))) V i-o-dis(t, T) V (I(Tl)| = @)
e—a—dis(t,f) iff Ji.Vj>ite bset(f([’))
i-o-dis(t,T) iff ¥i. 3j > i. t € bset(T(j))

Notice the difference between the definitions of e-a-dis above and e-a-disabled in Fig. 6. If T is finite,

e-a-disabled(t,T) may hold while e-a-dis(t,T) must not. Thus, we could rewrite the definition of
well-blocked using e-a-dis as follows:
well-blocked(T, (W,,S,)) <
AT,. T, € T5[Wa, Sa] A (get_hist(T) = get_hist(T,))
ATyl =w = (Ye. e € pend_inv(T,) = e-a-dis(tid(e),T,)))
The fairness conditions for the full traces T can also be rewritten in disjunctive forms, as the

above fairness definitions for client-local and object-local traces. This is shown in the following
Lemmas A.3 and A 4.

LemMa A.3. SupposeT € T,[letIin Cy ||.. .|| Cy,(0c,00,®)]. Then, sfair(T) is equivalent to
abt(T) Vv ¥t € [1..tnum(T)]. (evt(last(T};)) = (t,term)) V (|(T|t)| = w) V (t € bset(last(T))) V e-a-dis(t,T).

LEmMaA A4, SupposeT € T,[letILin Cy || .. .|| Cp,(0¢,00,®)]. Then, wfair(T) is equivalent to
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abt(T) Vv Vt € [1..tnum(T)]. (evt(last(T|t)) = (t,term)) V (|(T|t)| = w) V (t € bset(last(T))) V i-o-dis(t, T).

Lemmas A.5, A.6, A.7 and Lemmas A.8, A.9, A.10 show the compositionality of fairness conditions.
Finally, Lemma A.11 shows that e-a-dis for an object-local trace implies e-a-dis of the corresponding
full trace.

LemMmA AS5. If T € Ty[letTin Cy || ... || Cu,(0c,00,9)], sfair(T) and i = get_clt(T), then
sfair-c(T;).

LemMA A6. IfT € T,[letILin Cy || ... || Cu.(0c,00,0)], sfair(T) and T, = get_obj(T), then
sfair-o(T,).

Lemma A7. If T € T,[letITIinCy || ... || Cu,(0¢,00,0)], T. = get_clt(T), T, = get_obj(T),
sfair-c(T;) and sfair-o(T,), then sfair(T).

LemMa A8. IfT € T,[letIlin Cy || ... || Cy,(0¢,00,©)], wfair(T) and T, = get_clt(T), then
wfair-c(T).

LemMA A9. IfT € T,[letITin Cy || ... || Cp, (0c,00,®)], Wfair(T) and T, = get_obj(T), then
wfair-o(T,).

LemMA A10. IfT € T,[letIlin Cy || ... || Cu.(0¢,00,0)], Te = get_clt(T), T, = get_obj(T),

wfair-c(i) and wfair-o(fo), then wfair(T).
LemMMA A11. IfT € T,[letITinCy || ... || Cpn.(6¢.06,0)], T = get_obj(T), |To| = w and
e-a-dis(t,T,), then e-a-dis(t,T).

A.2 Proofs of Theorem 6.2-1 (PSF under strong fairness)
By Theorem 4.4, the goal is reduced to the following:
I Cf" T APSFYAN(I) & Ty T,
We first define the object version of partial starvation-freedom.
Definition A.12. PSF-ogI(H), iff
¥n,0,5,T. T € T.[I, 0] A (p(c) = =) A y-o(T)
= abt(T) V prog-t(T) V well-blocked-o(T, (T, X)) .
Here well-blocked-o is defined as follows:
well-blocked-o(T, (T, 2)) iff
AT,. Ty € T.2[T.2] A (get_hist(T) = get_hist(T,)) A (tnum(T) = tnum(T,))
A (Tl =0 = (Ye. e € pend_inv(T,) = e-a-dis(tid(e),Ty)))
A(Tal # 0 = (Ye. e € pend_inv(T,) = tid(e) € bset(last(Ty))))

We only need to prove the following lemmas.

LEmmAa A13. ICI T = 11 Ef}," r.
Lemma A.14. TICJ*" T = PSF-O%3'(II).
LEMMA A.15. PSF—Of;’r(H) = PSF;’F(H).

Lemma A.16. TT CJ" T' A PSF-OS3I(I) = M5 T
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Proof of Lemma A.13. For any n, Cy, ..., Cp, 0., 0 and ¥ such that ¢(o) = X, for any &, if

EeO[(letTin C|l...[ICy),(0c,0,0)],
we know there exists T; such that & = get_obsv(T;) and
T € T[(AetTin C|l.. .|| Cp), (0c,0,0)].
We can construct T} and T, such that
T/ =T=T , x(T) and T" € 7,[(letITin Cy||...[ICp),(0c,0,0)].
Since I1 Eg I', we know there exists T,” such that
T, € To[(etTin Ci||.. . |ICp), (0, 2,0)] , x(T,”) and

get_obsv(T,’) = get_obsv(T]") = &::get_obsv(T).
Thus there exists T, such that
T, e T [(letTinCi|l...[ICph),(0c,2,@)] and get_obsv(Ty) = &E.
Thus & € O[(let T in Cy || .. . || Cp), (0¢, 2,®)] and we are done. O

Proof of Lemma A.14. For any n, ¢, 3 and fo such that fo € 7.0, a], sfair-o(i,) and ¢(c) = 3,
suppose
-abt(T,) and -prog-t(T,) and -well-blocked-o(T,,(T,%)).
Thus we know

(ITo| # @) => Yt € [1..tnum(T,)]. term-o(T,l) V t € bset(last(Ty)) .
Since T, € 7,°[I1, 5], we know there exist n and T, such that
T. € 7. IMGCp1,,0mcc(n) ] get_hist(i) = get_hist(i,), n = tnum(T,),
—abt(T;), sfair-c(T.), fin_coherent(T.,T,).
Here
MGTp1, < while (rand() > 0){
xt := rand(); y; := rand(m); print(0,y;,xt);
z¢ == fy, (xt); print(1,z);
Lrint(z);

MGCp1,, = ||te[1..n] MGTp1,
omMGC(n) = (Xt~ Ly~ Lz~ _[1<t<n}
By Composition Theorem A.2, we know there exists T such that
T € 7,[let Il in MGCp1,,, (omcc(n),0,9)], i = get_clt(T), i, = get_obj(T).
Since sfair—o(i)) and sfair—c(i), by Lemma A.7, we know
sfair(T).
Since ¢(0) = ¥ and IT I;f‘pfair I', we know:
Ostair[(let IT in MGCp1,), (omGc(n)»0)] € Ostair[(let T in MGCp1,), (omcc(n), 2)] -
Thus there exists T’ such that
T" € T,[(let T in MGCp1,,), (omcc(n)»2.©)], sfair(T’) and get_obsv(T’) = get_obsv(T).

Also, by the definition of MGCp1,, and the operational semantics, we can construct T, and an
execution such that

T, € 7,[(let T in MGCp1,), (O’Mcc(n),z,©)]],
sfair(T,), get_obsv(T,) = get_obsv(T’), get_hist(T) = get_hist(T,).

By Decomposition Theorem A.1, we know there exists T, such that
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T, € T.°[T,2], T. =get_obj(T,), n=tnum(T,).
Since sfair(T,), by Lemma A.6, we know
sfair-o(fa).
Since T, = get_obj(T,), i, = get_obj(T) and get_hist(T) = get_hist(T,), we know
get_hist(fo) = get_hist(fa).
Since n = tnum(fo) and n = tnum(i,), we know
tnum(i,) = tnum(fa).
e Suppose Ifal # w.Forany e € Eend_inv(fa) and ty = tid(e), by the operational semantics
and the code of T, since sfair-o(T,), we know
to € bset(last(T,)).
Thus we kilow welI—bIocked—o(i,, T ,2)) }}Plds, which contradicts our assumption.
e Suppose |T,;| = w. For any e eApend_inv(Ta) and ty = ’ﬂd(e), by the operational semantics
and the code of T', we know [(T,lt,)| # w. Since sfair-o(T,), we know
e-a-dis(to,fa) .
Thus we know well—blocked—o(i,, (T, %)) holds, which contradicts our assumption.

Thus we are done. m]

Proof of Lemma A.15. The “=” direction. For any n, Cy, ..., Cy, 0., 0, X and T, suppose T €

To[(letIin Cy .. .| Cp), (6¢,0,0)], ¢(c) = = and y(T). If abt(T), then we are done. Otherwise,
—abt(T) holds. By Decomposition Theorem A.1, we know there exist T. and T, such that
T. e T [Cull- - N Cn. o], T, € 7.°[1L 0],

get_hist(f) get_ hlst( 0)s T. = get_clt(T), T, = get_obj(T), n= tnum(fo).
Since y(T), by Lemmas A.5 and A.6 (or Lemmas A.8 and A.9), we know
)(-c(i) and )(-o(fo).
Since —abt(T) holds, we know —abt(T,) and —abt(T,) hold. Thus we know
(ITe| # @) => Vt € [1..tnum(T,)]. term-c(Tel) V t € bset(last(Te)) .
Since PSF-OX r(H) we know prog—t(f )V well—blocked—o(fo, (T,2)).

® prog- t(T,) holds. 5. By the following Lemma A.17, we know prog- t(T).

e well-blocked- o(TO,(I‘ 3)) holds. Thus there exists T, such that T, € TO[[F 3], get_ hist(T,) =
get_hlst(Ta),tnum(TO) = tnum(Ta), ITol = w0 = (Ve.e € pend_mv(Ta) = e-a-dis(tid(e),T,))
and |T,| # « = (Ye. e € pend_inv(T,) = tid(e) € bset(last(T,))). Thus we know

(ITal # @) = VYt € [1..tnum(Ty)]. term-o(Tglt) V t € bset(last(T,)) .
Thus fin_coherent(i,fa) holds. Since get_hist(i) = get_hist(fo) and n = tnum(i,), we

know

get_hist(i) = get_hist(fa) and n= tnum(fa).
Since T, € TEIC - - - I Cnyoc], by Composition Theorem A.2, we know there exists T’ such
that

To[letTin Ci|| .. .|| Cp, (0, 2,0)], T, = get_clt(T”), T, = get_obj(T”).
Since ﬁ, = get_obj(T), we know
get_hist(T) = get_hist(T").
Suppose |T’| = w. For any e such that e € pend_inv(T’), we know e € pend_inv(fa).
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e Suppose Ifal = w. Thus e-a-dis(tid(e),i,)) holds. Then, by Lemma A.11, we know

e-a-dis(tid(e),T’)) holds.
e Suppose |Ta| # @. Thus we know

tid(e) € bset(last(T,)).
Since |T’| = w and ﬁ, = get_obj(T’), we know there exists i such that
Ta = get_obj(T’(1..i)), tid(e) € bset(T’(i)).
By the operational semantics, we know
Yj > i. tid(e) € bset(T’(j)).
Thus e-a-dis(tid(e),T’)).

Thus well-blocked(T,(let T in C( || .. .|| Cy, (0¢,2,®))) holds.
Thus we have proved the “=” direction.
The “<" direction. By unfolding the definitions. o

LEmMMA A.17. Forany T and T, ifi, = get_obj(T) and prog-t(fo), then prog-t(T).
Proor. By unfolding the definitions. O

Proof of Lemma A.16. The key is to show the following (A.1).
For any n, Cy, ..., Cp, o, 0, 2, T and T, such that ¢(c) = 3,

if T € T,[letIin Cy || . . . || Cp, (0, 0,©)], ~abt(T) and sfair(T), then there exists T,
such that T, € T,[letTin Cy || ... || Cpy, (0, 2,0)], get_obsv(T) = get_obsv(T,) and
sfair(T,).
(A1)
Since T € T,[letTin C, || .. .|| Cy,(0c,0,®)] and —abt(T), by Decomposition Theorem A.1, we

know there exist T, and T, such that
~ T e TS[Cill. - N Cusoe], To € T0[M,a], ~
get_hist(T;) = get_hist(T,), T, =get_clt(T), T, =get_obj(T), n=tnum(T,).
Since sfair(T), by Lemmas A.5 and A.6, we know
sfair—c(i) and sfair—o(i,).
Thus we know
(ITel # @) => Vt € [1..tnum(T,)]. term-c(Tel) V t € bset(last(Te)) .
Since PSF-OZSY(H), we know prog-t(fo) \Y well-blocked-o(fo, (T, %)) holds.
. prog—t(fo) holds. Since IT Ef/i,“ I', we know
H[I,o] € H[T,Z].
By Lemma A.18, we know there exists fa such that
T, € T°[T.2], get_hist(T,) = get_hist(T,), tnum(T,) = tnum(T,).
Thus get_hist(i) = get_hist(fa), n= tnum(fa) and ﬁabt(fa). Also, by Lemma A.19, we
know
prog—t(i,).
Thus
(|fa| +w) = VYte [1..tnum(fa)]. term—o(falt) .

Thus ﬁn_coherent(ﬁ, Ta) holds. By Composition Theorem A.2, we know there exists T, such
that

T, € To[letTin Cy||. .. ||Cp(0c,2.0)], T = get_clt(Ty), T, = get_obj(Ty).
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Thus
get_obsv(T) = get_obsv(T,).
By Lemma A.20, we know
sfair—o(i:a).
Then, by Lemma A.7, we know
sfair(Ty,).
° well-blocked-o(fo, (T, X)) holds. Thus there exists T, such that
T, € 7.2[r,3], get_hist(T) = get_hist(fa), tnum(T) = tnEm(Ta),
AITaI =w = (Ve.ee€ pend_inx(Ta) = e-a-dis(tid(e),TQ),
|T,| # v = (Ye. e € pend_inv(T,) = tid(e) € bset(last(Ty))).
Thus we know
(ITal # @) = VYt € [1..tnum(Ty,)]. term-o(Tglt) V t € bset(last(T,)) .
Thus ﬁn_coherent(fc,fa) holds. Also, get_hist(i) = get_hist(fa), n = tnum(fa) and
—abt(T,). By Composition Theorem A.2, we know there exists T, such that
T, € To[letTin Cy ... || Cy, (0c, 2,@)], T. = get_clt(T,), T, = get_obj(Ty).
Thus
get_obsv(T) = get_obsv(T,).
By Lemma A.21, we know
sfair—o(fa).
Then, by Lemma A.7, we know
sfair(T,).

Thus we are done. O
_ Lemma A18. IfH[ILo] € H[T,X], i, € 7,0[1L, 0] and prog-t(/T;,\), then there exists T, such that
T. € T.°[T, %], get_hist(T,) = get_hist(T,) and tnum(T,) = tnum(T,).

Proor. By constructing simulations. O
LEMMA A.19. Ifgetfhist(ﬁ) = getfhist(f’z) and prog—t(i), then prog—t(i:z).

Proor. By unfolding the definitions. O
LEMMA A.20. Ifprog-t(T) and T € 7,°[11,c], then sfair-o(T).

Proor. For any t € [1..tnum(7A")], we know either I(Tlt)| = w or I(TIt)I + . If |(7A"|t)| = w, we
are done. Otherwise, since T € 7,°[IL, 2], we know

I(Tle)| = 0 v is_ret(evt(last(T|))) V is_inv(evt(last(T|;))) V evt(last(T|)) = (t,obj).

If I(Tlt)| =0V is_ret(evt(last(ﬂt))) holds, then we are done. Otherwise, we know there exists e
such that e € pend_inv(T|;). Thus e € pend_inv(T) holds, which contradicts the premise prog-t(T).
Thus we are done. o

LEMMA A.21. Iflﬂ =w = (Ve.ee€ pend_inv(f) = e—a—dis(tid(e),f) \Y% (I(Tlﬁd(e))l = w)),
IT| #+ @ = (Ye. e € pend_inv(T) = tid(e) € bset(last(T))) and T € 7,°[I1,3],
then sfair-o(T).
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Proor. Suppose —|abt(T) Forany t € [1. tnum(T)] we know either |(T|t)| =wor I(Tlt)l * . If
(Tlt)l = w, we are done. Otherwise, since T € 7. °[11L, 2], we know

I(Tl)] = 0V is_ret(evt(last(T}))) V is_inv(evt(last(T|))) V evt(last(T|;)) = (t,obj).

If I(TIt)| =0V is_ret(evt(last(ﬂt))) holds, then we are done. Otherwise, we know there exists e
such that e € pend_inv(T|;). Thus e-a-dis(t,T) or t € bset(last(T)) holds. Thus we are done. O

A.3 Proofs of Theorem 6.2-2 (PSF under weak fairness)
By Theorem 4.4, the goal is reduced to the following:

fi fai fai fai
TN T A PSFURI(T) = TTCUT i),

By Lemmas A.13 and A.15, we only need to prove the following lemmas.

LEMMA A.22. wrpfa”(l") E“’fﬁ"( ” T. Here id is the identity function, and wrg; is a state mapping
TpsF

that removes the variable 1istid from the state:Vo. (wrPSF(ld))(cr W {listid ~ €}) = 0.

LEMMA A.23. Hqﬁ;(@ wrslin(r) = PSF-O%far(1I).
Lemma A.24. ITCJ" T APSF-OYRM(I) = Ty - wipld (1)

Proof of Lemma A.22. For any n, Cy, ..., Cp, 0. and X, for any &, if
& € Oupaic[(let wriia"(T) in Cy || ... || Cn), (0c, = @ {listid ~ €},0)],
we know there exists T; such that

T, € T, [(let wr¥a™ (L) in Cy ||.. . || Cp), (0,2 W {listid ~ €},0)] ,
wfair(T,) and get_obsv(T;) =&

By Decomposition Theorem A.1, we know there exist T. and T, such that

T. € TLEIC - - I Crsoc], T, € TO[[wr‘F",’Sfﬁ” I),2w{listid ~ €}],
get_hist(i) = get_hist(fg), T, = get_clt(T), T, = get_obj(T;), n= tnum(/T\g).

By Lemmas A.8 and A.9, we know
wfair—c(i) and wfair—o(ﬂ) .
Thus we know
(IT| # w) A (=abt(T3)) = Vt € [1..tnum(Te)]. term-c(T¢¢) V t € bset(last(T,)) .
Then we prove there exists T; such that
Ty € T.2[T,2], get_hist(Ty) = get_hist(Ts), wfair-o(T3).

The proof is done by constructing a simulation between the object-local executions of wr‘g’sfaF”(F )
and I'. We need the simulation < to satisfy the following (A.2).
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For any Cy, 31, i, C, =, K and 73, if (Cy, (51,%1)) < (C,(2,%)), then

) if (C1, (51, %)) I abort, then

wrpg"(T)
there exists T such that (5, =, %)) “’T_’; abort and get_clt(i;) = get_clt(f);
(2) if (C1, (31, %)) o> (C}-(1,%")), then

wr(r) R
there exist T, C’, 3 and K’ such that (C, (%,%K)) +o % (C', (3, K")),
get_clt(iy) = get_clt(T) and (C/, (2!, K")) < (C', (X, K"));

(3) if =(F0. (C1, (51,K)) o= wian(ry s then ~(TL (C, (2,%)) e—r s
(4) if (3% (C,(2,K)) e—r ), then
there exists 5{ %1, K/ and T; such that (C1, (31,%1)) @T—l> ¥ (5{, (21,%/)) and

R wrgt" (1)
~( . (€1 (51 K))) ¢ ety -
(A.2)
The simulation relation < is constructed as follows.
(Cr.(E1.KD) s (C.(Z.K)) i (C1 —g C) A (2 = Sy \(Listid)) A (K = K)
Here C; — C requires the following hold:
Vi (K (1) = 0) = (Cile = Cly).
Ve (K (1) # 0) = (Cil = Cl) v 3B,C. (Cily = wryid" (await(B)(C})) A (Cle = await(B){C})) v
(C1lt = await(B A cid = enhd(listid)){C;listid := listid\cid;}) A (C|; = await(B){C}).
To prove (A.2), we make a case-split on the derivation of 73.

o If 71 is an abort event, then we could generate the same abort event at the next step of
(C,(Z,K)).

o If ] 7 is a client event, then we could generate the same client event at the next step of
(C,(Z,K)).

e If7; is an invocation event, then we could generate the same invocation event at the next
step of (C, (2,%)).

e If ; is an object event and the step is executing listid := listid++(cid,B), then we
execute zero step of (5, =, %)).

e If7; is an object event and the step is executing await(B A cid = enhd(listid)){C;listid :=
listid\cid;}, then we could generate the same object event at the next step of (5, Z,%))
and that step is executing await(B){C}.

o If 7y is a return event, then we could generate the same return event at the next step of
(C,(Z,K)).

Also, from the construction of the simulation, we know the cases (3) and (4) of (A.2) hold. Thus, we
have proved (A.2). Then, we can find T; such that Ty € 7.°[T, %] and get_hist(Ty) = get_hist(Ts)
hold.

Below we prove wfair-o(f}). Since wfair-o(YA'z), we know either abt(f'g), or for any t,

term—o(YA'zlt), or te bset(last(f’z)), or i—o—dis(t,YA'g), or I(T"zlt)l = w.
If abt(i:z), we know abt(ﬁ). Otherwise, for any t,

o If teLm-o(Tz|t) holds, we know tgrm-o(fgh).
o If |(T:]t)| = w holds, we know |(T3|t)| = w.
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o Ifte bset(last(Tg)) holds, we know t € bset(last(Tg))

o If |(T2|t)| # o and i-o-dis(t, Tz) we want to prove i-o-dis(t, T3) Since |T2| = w, we know
|T3| = w. Suppose i-o-dis(t, Tg) does not hold. Then e-a-enabled(t,T3) holds. We make a
case-split on the last event of T2|t.

. is_inv(evt(last(i:z lt))). Then, by the operational semantics and the code of wr‘lg’sf%"(l“), we
know e-a-enabled(t,fz) holds, which contradicts our assumption.
° is_ret(evt(last(fz lt)))- Then, by the operational semantics, we know the code of thread t
remains to be executed is inclt. Thus e-a-enabled(t, E) which contradicts our assumption.
° evt(last(@lt)) = (t,obj). Since i'O'diS(t,Tg), by the operational semantics, we know in
T‘g, the execution of thread t is blocked at an await statement. That is, if we suppose the
configurations deriving the trace T, are (Co, (00, %Ks)), (C1, (01,%K1)), (Cz, (02,%3)), . . ., then
there exist i, B, C and E such that
Vj > i. Cjl = E[ await(B A cid = enhd(listid)){C;1istid := listid\cid;}],
and Vj. 3k > j. =((o}, K (1)) |= (B A cid = enhd(listid))).
Since e-a-enabled(t,T3) and listid ¢ FV(T), by the construction and the operational
semantics, we know there exists i’ > i such that
Vj =i (0;,K;(t) E B
By the operational semantics and and the code of wr;gfg”(r), we know there exist [ and
i’ > i’ such that
Vj>i”. Al'. oj(listid) = [++ (t,B) ++ 1.
If | is not empty, consider each (t',B’) in [ in order. If 3j > i”. (0;,K;(t")) |= B, then
Jj = i"”. (05, K;(t")) = (B’ A cid = enhd(listid)). By the operational semantics, we
know dj > i"”. Yk > j. (o, Kk (t')) |= (B’ A cid = enhd(listid)). Since wfair—o(f"g), we
know t’ will eventually be executed and Ik > i”. Al’. oy (listid) = (I\t") ++ (t,B) ++ 1’
which contradicts the above result. Thus
Y(t',B") e .Vj>i". =((0;,K;(t")) = B).
As a result, we know
Vi >i". (05, %K;(t)) = (B A cid = enhd(listid)),
which contradicts the assumption.
Thus i-o-dis(t, T5).
Thus wfair-o(T3). Thus we know
(IT3] # @) A (mabt(T3)) = VYt € [1..tnum(T3)]. term-o(T3¢) V t € bset(last(T3)) .
Thus ﬁn_coherent(i,ﬁ). Then, by Composition Theorem A.2, we know there exists T3 such that
Ty € To[(let Tin Gy |I... 11Cn), (00, 2,0)], Te = get_clt(T3), Ts = get_obj(Ts).
By Lemma A.10, we know
wfair(T3).
Thus & € Oypair[(let Tin Cy || ... 1| Cy), (0c,2,©)] and we are done. O
Proof of Lemma A.23. Similar to the proof of Lemma A.14. For any n, o, X and fa such that
T, € 7.°[I, o], wfair-o(T,) and ¢(c) = %, suppose
ﬂabt(fo) and ﬂprog—t(fo) and ﬂwell—blocked—o(fo, r,2)).
Thus we know
(ITo| # ) => Yt € [1..tnum(T,)]. term-o(T,l) V t € bset(last(Ty)) .
Since T, € 7,°[I1, ], we know there exist n and T, such that
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T. € 7. IMGCp1,,,0mcc(n) ] get_hist(ﬁ) = get_hist(fo), n= tnum(fo),
—-abt(T.), wfair-c(T;), fin_coherent(T,,T,).
By Composition Theorem A.2, we know there exists T such that
T € T,[let T in MGCp1,,, (omcc(n)»0,@)],  Te = get_clt(T), T, = get_obj(T).
Since wfair—o(fo) and wfair—c(i), by Lemma A.10, we know
wfair(T).

Since ¢(o) = X and IT Exfff;(@ wr‘F",’Sfé"(F), we know:

Oufair[(let IT in MGCp1,,), (omcc(n)-0)] €
Oufair[(let wri@i"(T') in MGCp1,,), (omcc(ny. 2 W {listid ~ €})] .
Thus there exists T” such that
T’ € T, [(let wry"(T') in MGCp1,,), (omcc(n). 2 W {listid ~ €},0)],
wfair(T’) and get_obsv(T’) = get_obsv(T).
Also, by the definition of MGCp1,, and the operational semantics, we can construct T; and an
execution such that
Ty € To[(let wrpda"(T') in MGCp1,). (omce(n). 2 © {listid ~ €},0)],
wfair(T;), get_obsv(Ty) = &, get_hist(T) = get_hist(Ty).
By Decomposition Theorem A.1, we know there exists T such that
ﬁ € %"[[wr‘,ﬁ’sfli”(l“),Z W {listid ~ €}], ﬁ = get_obj(Ty), n= tnum(’fl).
Since wfair(T;), by Lemma A.9, we know
wfair—o(i:l).
Since T, = get_obj(T1), T, = get_obj(T) and get_hist(T) = get_hist(T}), we know
get_hist(T,) = get_hist(Ty).
Since n = tnum(i,) andn = tnum(ﬁ), we know
tnum(fo) = tnum(ﬁ).
Similar to the proof of Lemma A.22, we know there exists Ta such that
T, € 7217, %], get_hist(fa) = get_hist(ﬁ), tnum(fa) = tnum(YA'l).

e Suppose Iﬁl # w. By the conitruction of Ta,’\we know Iﬁl # w. For any e € peni_inv(fa)
andt = tid(e),/s\ince get_hist(T,) = get_hist(T}), we know e € pend_inv(Ty) and |(T1];)| # w.
Since wfair-o(T}), we know

t € bset(last(T})).

By the construction of T,, weknow't € bset(last(fa)). Thus we know wel l-blocked-o(i,, (T,2))
holds, which contradicts our assumption.

e Suppose Iﬁl = w. By the construction of Ta, we know |7A'1| = w.Foranye € pend_inv(fa)
and t = tid(e), by the operational semantics and the code of ', we know I(fa l1)| # w. Since
get_hist(fa) = get_hist(ﬁ), we know e € pend_inv(ﬁ) and I(T"l lt)| # w. Since wfair—o(ﬁ),
we know i—o—dis(t,ﬁ) holds. Thus

Vio. 3_]0 >ip.te bidset(ﬁ(jo)) .
Since well-blocked-o(fo, (T, %)) does not hold, we know e-a-dis(t,i,) does not hold. Thus
i—o—enabled(t,fa) holds. Thus

Vip. Jj; > iy t ¢ bidset(T,(jy)) .
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Suppose the configurations deriving the trace ﬁ are (50, (00,%0)), (51, (01,%1)), (52, (02,%2)),. ..
then there exist i, B, C and E such that
Yj > i C~‘j|t = E[ await(B A cid = enhd(listid)){C;listid := listid\cid;}],
and Vj. 3k > j. = ((ok, Kk (t)) |= (B A cid = enhd(listid))).
By the construction of Ta, we know
Vil. 3]1 > il. (ijl,(](jl(t)) |= B.
By the operational semantics and and the code of wr‘F’,VSfaF"(F), we know there exist [ and i”’ > i’
such that
Vj>i”. 3Al'. oj(listid) = [++(t,B) ++1'.
If [ is not empty, consider each (t',B’) in [ in order. If 3j > i”. (0;,K;(t")) = B’, then

dj >i”. (05, K;(t")) E (B’ A cid = enhd(listid)). By the operational semantics, we know
dj > i”. Yk = j. (ok,Ki(t')) = (B’ A cid = enhd(listid)). Since wfair-o(f'l), we know
t” will eventually be executed and Ik > i”. Al’. oy (listid) = (I\t') ++ (t,B) ++ 1’ which
contradicts the above result. Thus

Y(t',B") e .Vj>1i". =((0;,K;(t)) = B).
Since Yiy. 3j1 > iy. (0},, K]}, (1)) |= B, we know there exists j” > i”” such that (oj», K~ (t)) |= B.
As a result, we know
Vi > j". (07,K;(t)) |= (B Acid = enhd(listid)),
which contradicts the assumption.

Thus we are done. O

Proof of Lemma A.24. The key is to show the following (A.3).

For any n, Cy, ..., Cy, 0¢, 0, 2, T and T, such that ¢(o) = X,
if T € T,[letTin Cy || ... || Cp,(0c,0,0)], —abt(T) and wfair(T), then there exists

T, such that T, € T,[let wria™(T)in Cy || ... || Cu, (0,2 W {listid ~ €},0)],

get_obsv(T) = get_obsv(T,) and wfair(T,).
(A.3)

Since T € T,[letTin C, || .. .|| Cy,(0c,0,®)] and —abt(T), by Decomposition Theorem A.1, we
know there exist T, and T, such that

R T e Te[Cil. N Cnoc],  To € 72,0, _
get_hist(T;) = get_hist(T,), T, =get_clt(T), T, =get_obj(T), n=tnum(T,).
Since wfair(T), by Lemmas A.8 and A.9, we know
wfair-c(i) and wfair-o(fo).
Thus we know
(ITe| # w) => Vt € [1..tnum(Te)]. term-c(T¢l¢) V t € bset(last(T,)) .
Since PSF-O‘(:)”fIi‘"(H), we know prog-t(fo) Y% weIl-bIocked-o(To, (T,2)) holds.
. prog-t(’T\o) holds. Since IT Ef;” I', we know
H[IL,o] € H[T,Z].
By Lemma A.18, we know there exists Ta such that
T, e TO°[T.2], get_hist(T,) = get_hist(T,), tnum(T,) = tnum(T,).

By Lemma A.25, we know there exists Tl such that
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T, € T.0[wrin(T), s w {listid ~ €}], get_hist(T,) = get_hist(T}),
tnum(T,) = thum(Ty).

Thus get_hist(i) = get_hist(ﬁ), n= tnum(fl) and ﬂabt(ﬁ). Also, by Lemma A.19, we
know

prog—t(ﬁ).
Thus
(|f1| +w) = Vte [1..tnum(fl)]. term—o(ﬁ lt) -

Thus ﬁn_coherent(i, T"l) holds. By Composition Theorem A.2, we know there exists T; such

that
T € T, [let w2 (D) in Cy ... | Cu (00, £ ¥ {Listid ~ €),0)],
T. = get_clt(Ty), T, = get_obj(Ty).
Thus

get_obsv(T) = get_obsv(Ty).
By Lemma A.20, we know
sfair-o(ﬁ).
Thus we know wfair—o(ﬁ). Then, by Lemma A.10, we know
wfair(Ty).
. welI—bIocked—o(To, (T',2)) holds. Thus there exists fa such that
T, GZ‘)O[[F,Z}], get_hist(T) = get_hist(fa), tnum(T) = tn/t\Jm(i’F\a),
A|T“| =w = (Ve.ec€ pend_inx(Ta) = e—a—dis(tid(e),TLQ),
Tl # o = (Ye. e € pend_inv(T,) = tid(e) € bset(last(Ty))).
By Lemma A.26, we know there exists T, such that
T, € TO[[wr‘Fﬁ’Sf?" ), W {listid ~ €}], get_ hist(T,) = get_hist(T}),
tnum(T ) = tnum(Tl)
ITil =0 = (Ye. e € pend_ mv(Tl) = e-a-dis(tid(e), Tl))
Ty #0 = (Ve. e € pend_lnv(Tl) = tid(e) € bset(last(Tl))).

Thus get_hist(i) = get_hist(ﬁ), n= tnum(i) and ﬂabt(ﬁ). Also we know
(IT1| # @) = VYt € [1..tnum(Ty)]. term-o(T1ly) V t € bset(last(T})) .

Thus fin_coherent(i, ﬁ) holds. By Composition Theorem A.2, we know there exists T; such

that
Ty € Tp[let wriia™ (L) in Cy ||.. . || Cp. (0,2 W {listid ~ €},0)],
T, = get_clt(Ty), T = get_obj(Ty).
Thus

get_obsv(T) = get_obsv(T}).

By Lemma A.21, we know

sfair—o(ﬁ).
Thus we know wfair—o(ﬁ). Then, by Lemma A.10, we know
wfair(Ty).
Thus we are done. O
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Lemma A.25. IfT, € 7.°[T, 3] and prog-t(T,), then there exists Ty such that T, € 7.0 [wrptan(r), sw
{listid ~ €}], get_hist(fa) = get_hist(ﬁ) andtnum(i,) = tnum(ﬁ).

ProOF. Similar to the proof of Lemma A.26. O

LEmMMA A.26. Iff € 7.°[T.2] and|T, | =w = (Ye.e € pend_ mv(T ) = e-a- dls(tld( ). Ta))
and |T,) #+ 0 = (Ve. e € pend_ mv(T ) = tid(e) € bset(last(T ))), then there exists T; such
that
T, € T“[[wrpfa”(l“) Sw{listid~ €}], get_hist(T,) = get_hist(Ty), tnum(T,) = tnum(Ty),

T =0 = (Ve. e € pend_inv(ﬁ) = e-a—dis(tid(e),ﬁ)),
ITil # © = (Ye. e € pend_inv(T;) = tid(e) € bset(last(T}))).

ProoF. Since Ta € 7.°[T,2], we know there exist n, T and C, such that Ta = ((spawn,n),0) ::

get_obj (T) and

~ T ~ T
(Co,(2,0)) o>+ or (Co,(2,0)) e— [ abort or

A5, K . (Cov(5.0)) 1 (€ (/. KN) A (T (& (57.K7)) 1 ).

Below we only consider the case when Ifl = w. Proof for the case when Ifl # o is similar. Let

Sp = {(t,1) | Je. e € pend_inv(T) At = tid(e) A (¥j > i. t € bidset(T(j))) A (t ¢ bidset(T(i — 1)))}.

We construct the trace T; such that ((spawn, n),0) :: get_obj(ﬁ) satisfies the desired properties.

The idea is to construct a simulation between the executions. Informally, our construction of YA"I
considers every prefix T(1..i) of T and builds traces T} and their derivations for T;. The resulting
series are such that for i < j, the derivation of Tli is a prefix of that of T/, which also implies that the

trace Tll is a prefix of flj Because of this, we could get a simulation relation between the executions,

and the limit derivation and the limit trace are the desired T; and the corresponding derivation.

The following claim lies at the core of our construction:
Consider a prefix T(l..i) of f, the trace f{ and 51, 5, 31, 2, K’ such that
~ f(ll) ® (N ’
(Co,(2,0)) ——1 (C, (2, X)),

i

T;
(Co,(Z W {listid ~ €},0)) »— Wfa”(r) (Cl,(Z’ K’)),
= Zl\{llstld}, hst25et(2 (listid)) = {t | Sp(t) < i},
'c'vzrl,?(, Cr.  get_hist(T(1..i)) = get_hist(T}).

Here C —3 K G requires the following hold:

Yt. (K'(t) = o) = (C1l = Ch),

Vt. (K'(t) # o) At ¢ list2set(S (Listid)) = (Cly = C1k) V
3B,C. (Cly = await(B){C}) A (Cily = wrifa" (await(B){C}))

Yt (K'(t) # o) At € list2set(Z](listid)) =

(Cily = await(B A cid = enhd(listid)){C;listid := listid\cid;}) A (Cl; = await(B){C

If (5, =, %K) <b(l—> (C’ (2”7,9%"")), then there exist 5{, %} and an extension Tf“

of 7/:11 with the correspondlng derivation such that
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_ fi+1
(Co, (S W {listid ~ €},,0)) o—*

wfalr(r) (C” (2119(](”))»
3 =3 \{listid}, listzset(z;’(llstld)) ={t]|Sp(t) <i+1},
c’ —srKr Cl,  get_hist(T(1..i + 1)) = get_hist(T/*1).

T
Also, if (C, (', K")) qﬂ) r abort, then there exists an extension T’Jr1 of T’ such

T1+1
that (CO,(Z W {listid ~ €},,0)) > *

get_h ist(Tli“).

To prove the claim, we make a case-split on the derivation of T(i +1).

() abort and get_hist(T(l..i +1)) =

o If f(i + 1) is an abort event, then we could generate the same abort event at the next step of
(C1, (51, K7)).

o If T(i + 1) is an invocation event of thread t, then we could generate the same invocation
event at the next step of (C1, (21, K)). If Sp(t) < i+ 1, then we also execute its first step of
the method body wr‘g’gﬁ”(await(B){C }

o If T(l +1) is an object event and the step is executing await(B){C} of thread t, then we know t ¢
list2set(X](1istid)). Then we execute wrpfa”(awalt(B) {C} (two steps) from (51, Z7,K").
Since the object state has been changed, we also compute the blocked threads, and for any
new thread t’ such that S, (t") < i+ 1, we also execute its first step of the method body.

e If T(i + 1) is a return event, then we could generate the same return event at the next step of
(C1.(B.K)).

By the construction, we are done. O

A.4 Proofs of Theorem 6.2-4 (PDF under weak fairness)

By Theorem 4.4, the goal is reduced to the following:
fi f f: f:
ILCf" T A PDFYRI(I) = ITEYAr - wrifan(r).

=wrppr(¢)

We first define the obJect version of partial deadlock-freedom.
Definition A.27. PDF-O* o (I, iff
Vn,0,5,T. T € T.°[1I, O']] A (p(o) =2) A X- o(T)
= abt(T ) V prog- p(T) V well-blocked- o( ,(T,2)) .
We only need to prove the following lemmas.

Lemma A.28. 11 :x{g;w wrygn(r) = mcinT.

LEmma A.29. I1 E\\:/lfng(¢) ‘F’;’[f)aF'r(I‘) — PDF- waalr( )

Lemma A30. PDF-OF (I) < PDF? .(IT).

Lemma A31. ITCJ" T APDF-OYR(IT) = MOyl wipfin(T).
Proof of Lemma A.28. For any n, Cy, ..., Cp, 0¢, 0 and ¥ such that ¢(o) = Z, for any &, if
EeO[(etTin C||...[ICp),(0c,0,0)],
we know there exists Ty such that & = get_obsv(T;) and
Ty € T [(letTin Cy|]...[ICp),(0c,0,0)] .

We can construct T; and T, such that
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T =T, =T] , wfair(T]") and T, € 7,[(letIlin C||.. .| Cy), (0c,0,0)].
Since II E&/’ﬁs; @) wr‘lg’[gaF”(I“), we know there exists T,” such that
T, € To[(let wr‘g’gagr(l“) inC|l...l1Cy),(0c, = W {done ~ false},®)] , wfair(T,’) and

get_obsv(T,’) = get_obsv(T]") = &::get_obsv(T}).
Thus there exists T, such that

T, € T [(let wr‘li’lgagr(l") inCi|l...lICp), (0,2 & {done ~ false},®)] and get_obsv(T;) = &.
Then we construct T3 such that
T e T [(etTin Cy|l...[ICn),(0c,%,0)], get_clt(Tz) = get_clt(T3).

Our construction considers every prefix Ty(1..i) of T; and builds traces T, and their derivations for
T3i. The resulting series are such that for i < j, the derivation of T3i is a prefix of that of T!, which

also implies that the trace T} is a prefix of T3j . Then T3| Tl is the desired Ts. The following claim lies
at the core of our construction:
Consider a prefix T,(1..i) of T, the trace T3i and Wy, W, o, 37, ', K’ such that

. T(1..1
(let wryRI"(T) in Cy || .. | Cn. (0¢. % & {done ~ false},®)) P8 (02,3, K)),
T.i
(etTin Cil...[1Cn, (06, 5.0)) =" (W, (00,5, K")),

3" =3{\{done}, Wi —qo W, get_clt(T2(1..i)) = get_CIt(TBi).
Here W) — g W requires the following hold:

Yt (K'(t) = o) = (Wit = W),

V. (K'(t) # o) = (Wil = W) v
IB,C,E. (W1t = (wr‘s’[f)aFi’(await(B){C});return E)) A (W|; = (await(B){C}; return E)) V
JE. (W1t = (done := false; await(—done){}; return E)) A (W|; = return E) vV
JE. (W1t = (await(—done){}; return E)) A (W[t = return E).

Ty(i+1
If (W1, (00,27,K7)) |ﬂ> (W/, (0, Z],%K"")), then there exist W', 2"" and an exten-

sion T;*! of T} with the corresponding derivation such that

Ti+1
(etTin Cy|l...1|Cn.(0¢.2.0)) ——* (W', (02", K"")),
2 = 3/\{done}, W[ —qcr W, get_clt(Tp(1..i + 1)) = get_clt(Ti*").

Ty(i+1 ) )
Also, if (W1, (07,21, K7)) #ﬂ abort, then there exists an extension T3’Jrl of T;
i+1
such that (letT'in Cy || ... || Cp,(0¢,2,©)) —— * abort and get_clt(Tr(1..i + 1)) =
get_clt(T;*1).
To prove the claim, we make a case-split on the derivation of T, (i + 1).

o If T,(i + 1) is a client event, then we could generate the same client event at the next step of
W, (al,Z',K")).

e If T5(i + 1) is an invocation event, then we could generate the same invocation event at the
next step of (W, (¢/,2",K")).

e If T (i + 1) is an object event and the step is executing await(B A ~done)){C; done := true; },
then we execute one step of (W, (¢/,%’,K)) and that step is executing await(B){C}.

e If T,(i + 1) is an object event and the step is executing done := false, then we execute zero
step of (W, (0/,3",K")) (that is, T;™! = T}).

e If T,(i + 1) is an object event and the step is executing await(—~done){}, then we execute zero

step of (W, (0/,%',K")) (that is, T;*! = Ty)).
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o If T,(i + 1) is a return event, then we could generate the same return event at the next step of
(W, (0,2, K)).
Thus & € O[(letTin Cy || ... [|Cy), (0¢,2,©)] and we are done. O

R Proof of Lemma A.Z‘).ASimilar to the proof of Lemma A.14. For any n, o, ¥ and T, such that
T, € 7.°[11, 0], wfair-o(T,) and ¢(c) = =, suppose
ﬂabt(fo) and —-prog—p(fo) and ﬁwell—blocked—o(fo, T,%)).
Since T, € 7,°[I1,], we know there exist n and T, such that
T. € TLIMGCp1,,, omcem) ] get_hist(i) = get_hist(i,), n = tnum(T,),
-abt(T;), wfair-c(T;), fin_coherent(T.,T,).
By Composition Theorem A.2, we know there exists T such that
To[let ITin MGCp1,,, (omcc(n)»0,0)], T. = get_clt(T), T, = get_obj(T).
Since wfair—o(i,) and wfair—c(fc), by Lemma A.10, we know
wfair(T).

Since ¢(0) = X and I Eail‘;‘[‘; @) wr‘g’lf)agr(l“), we know:

Outair[(let IT in MGCp1,), (omcc(n),0)] €
Ousair[(let wr‘g’éaF”(F) in MGCp1,), (omcc(n), = W {done ~» false})] .
Thus there exists T” such that
T’ € T, [(let wr¥(T') in MGCp1,,), (omcc(n), = @ {done ~ false},®)],
wfair(T’) and get_obsv(T’) = get_obsv(T).
Also, by the definition of MGCp1,, and the operational semantics, we can construct T; and an
execution such that

Ti € T,[(let wr‘g’é"“F"(l“) in MGCp1,), (omcc(n). 2 W {done ~» false},®)],
wfair(T;), get_obsv(Ty) = &, get_hist(T) = get_hist(Ty).

By Decomposition Theorem A.1, we know there exists T such that
T1 € TO[[wr‘Fﬁ’éaF" I),Z W {done ~ false}], T"l = get_obj(Ty), n= tnum(YA'l).
Since wfair(T;), by Lemma A.9, we know
wfair—o(ﬁ).
Since Ty = get_obj(T1), ﬁ, = get_obj(T) and get_hist(T) = get_hist(T;), we know
get_hist(fo) = get_hist(i).

Since n = tnum(i,) and n = tnum(ﬁ), we know

tnum(fo) = tnum(ﬁ).
Since ﬁprog—p(’T\o) and get_hist(fo) = get_hist(ﬁ), we know

Jde.e€ pend_inv(i) A ((IﬁI #w)VAi.Vj> i ﬁis_ret(evt(ﬁ(j)))).
Since wfair-o(ﬁ), we know
vt € [1..tnum(T})]. term-o(Ty|¢) V (t € bset(last(T1))) V i-o-dis(t, T,) V (I(Ty )] = o) .

Thus, by the operational semantics, we know

|T1| =0 = (Ve e € pend_ |nv(T1) = e-a- dls(tld(e) Tl)) A (Ji. Vj = i. —is ret(evt(Tl(_l))))
Ty # 0 = (Ve. e € pend_ mv(Tl) = tid(e) € bset(last(Tl)))

By Lemma A.32, we know there exists Ta such that
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T, € 7'°[[F 3], get_ hist(T,) = get_ hist(fl), tnum(T,) = tnum(Ty),
ITal =0 = (Ve. e € pend_ lnv(T ) = e-a-dis(tid(e),Ty)),
|T | #w = (Ye.e € pend_ mv(T ) = tid(e) € bset(last(T,))).

Thus well-blocked—o(To, (T, %)) holds, which contradicts our assumption. Thus we are done. O

LemMa A32. IfT; € To[[wr‘F",’IgaF” (I'),Z W {done ~ false}] and
T =0 = (Ve. e € pend_mv(Tl) = e-a-dis(tid(e), ﬁ)) INEIR \7’] > i, —is ret(evt(Tl(]))))
and |Ty| £ 0 = (Ve. e € pend_inv(ﬁ) = tid(e) € bset(last(Tl))) then there exists T, such
that
T, € 7.°[T, 2], get_hist(fa) = get_hist(ﬁ), tnum(T,) = thum(Ty),
ITal =0 = (Ve. e € pend_inv(fa) = e-a-dis(tid(e),fa)),
Tl # @ = (Ye. e € pend_inv(T,) = tid(e) € bset(last(T,))).

PRrOOF. Since Ty € 7.0 [[wr‘;,vlf)agr(l“),z @ {done ~ false}], we know there exist n, T and C, such
that T; = ((spawn, n),0) ::get_obj(f) and

(Co, (= & {done ~» false},®)) e—T—> or (Co,(Z,0)) 9——> abort or

wfalr(r) wfalr(r)

_ _ 7 _
383K (Cor(5:0)) 057 gty Chr I A~ (54, 5) o i) -

wriair(T)
Below we only consider the case when |T| = w. Proof for the case when Ifl # w is similar. We
construct the trace T, such that ((spawn, n),0):: get_, Ob_]( ) satisfies the desired properties. The
idea is to construct a simulation between the executions. Informally, our construction is similar to
the one in the proof of Lemma A.28.

Then, suppose Ifal = w. By the construction of fa, we know Iﬁl = w.Foranye € pend_inv(fa)
and t = tid(e), by the operational semantics and the code of T', we know I(Talt)l # . Since
get_hist(fa) = get_hist(ﬁ), we know e € pend_inv(ﬁ) and I(ﬁ [)| # . Thus e-a-dis(t,ﬁ)) holds.
Suppose the configurations deriving the trace T, are (Co, (00, %0)), (C1, (01, K1), (Ca, (02,5)),s - - -,
then one of the following holds:

e There exist i, B, C and E such that
Vj > i. Cjl = E[ await(B A ~done){C; done := true; } ],
and Vj > i. ~((07,%K;(t)) = (B A ~done)).
Since 3i’. Vj’ > i’. —ds_ret(evt(YA'l (j"))), we know there exists iy > i such that
Vi1 > ir. = ((oy,, K, () = B).
Thus e—a—disabled(t,fa).
o There exist i and E such that
Vj > i. Cjl; = E[ await(~done){} ],
and Vj > i. (0j,%(t)) = done.
But this is impossible, since Ye. e € pend_inv(ﬁ) = e—a-dis(tid(e),ﬁ).
Thus we are done. O
Proof of Lemma A.30. Similar to the proof of Lemma A.15. In the proof, we need to apply the
following Lemma A.33.
LemMa A.33. Forany T and T, lff = get_obj(T) and prog-p(fo), then prog-p(T).
Proor. By unfolding the definitions. O
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Proof of Lemma A.31. The key is to show the following (A.4).
For any n, Cy, ..., Cp, 0, 0, 2, T and T, such that ¢(c) = 3,

ifT € T,[letIlin Cy || ... || Cp,(0¢,0,®)], —mabt(T) and wfair(T), then there exists
T, such that T, € 7,][let wr‘,Q’ISaF"(I“) inCy || ... |l Cp,(0c,2 W {done ~ false},®)],
get_obsv(T) = get_obsv(T,) and wfair(Ty).
(A.4)
Since T € T,[letI1in C || ... || Cpn,(0¢,0,0)] and —abt(T), by Decomposition Theorem A.1, we
know there exist i and To such that
T e 7e[C. . M Cuoc], T € 700l

get_hist(T,) = get_hist(T,), T.=get_clt(T), T, =get_obj(T), n = tnum(T,).
Since wfair(T), by Lemmas A.8 and A.9, we know
wfair-c(i) and wfair-o(fo).
Thus we know
(IT,| # w) => Vt € [1..tnum(Te)]. term-c(T¢|¢) V t € bset(last(T,)) .
Since PDF-O¥f2"(IT), we know prog-p(T,) V well-blocked-o(T,, (T', %)) holds.
. prog-p(fo) holds. Since IT Ef;" I, we know
H[IL, o] € H[T,Z].
By Lemma A .34, we know there exists Ta such that
T, € 70,3, get_hist(fa) = get_hist(’ﬁ,), tnum(fa) = tnum(fo).
By Lemma A.35, we know there exists YA'l such that
T, e T.° [wrifai(T), > v {done ~ false}],
get_hist(T,) = get_hist(T1), tnum(T,) = tnum(Ty), wfair-o(Ty).
Thus get_hist(i) = get_hist(ﬁ), n= tnum(ﬁ) and ﬂabt(ﬁ). Thus
(IT1| # @) = V¥t € [1..tnum(T})]. term-o(Tilt) V (t € bset(last(T1))).

Thus fin_coherent(i, i) holds. By Composition Theorem A.2, we know there exists T; such

that
Ty € To[let wripii'(T) in Cy 1| .. 1| Gy, (0c, 2 ¥ {done ~- false}, ®)],
i = get_clt(Ty), T, = get_obj(Ty).
Thus

get_obsv(T) = get_obsv(Ty).
Then, by Lemma A.10, we know
wfair(Ty).
e well-blocked-o(T,, (T, X)) holds. Thus there exists T, such that
T, EZZJO[[F,E}], get_hist(f) = get_hist(fa), tnum(f) = tnﬂm(fa),
A|Ta| =w = (Ve.ee€ pend_inx(Ta) = e—a—dis(tid(e),Ta)),
Tl # 0 = (Ye. e € pend_inv(T,) = tid(e) € bset(last(Ty))).
By Lemma A .36, we know there exists Tl such that
T, € 7;)0[[wr‘}§’éaFir(F),Z @ {done ~~ false}], get_hist(fa) = get_hist(ﬁ),
R tnum(fa) = trLum(ﬁ), N
|Ti| = w = (Ye. e € pend_inv(T}) = e-a-dis(tid(e),T)),
ITi| # 0 = (Ye. e € pend_inv(T;) = tid(e) € bset(last(T}))).
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Thus get_hist(i) = get_hist(ﬁ), n= tnum(ﬁ) and ﬂabt(ﬁ). Also we know
(IT1] # @) = Yt € [1..tnum(T1)]. term-o(Til) V t € bset(last(T})) .

Thus fin_coherent(ﬁ, ﬁ) holds. By Composition Theorem A.2, we know there exists T; such

that
Ty € To[let wrpla (1) in Cy |l .. || Cp, (0¢, 5 ¥ {done ~- false},®)],
T, = get_clt(Ty), T, = get_obj(Ty).
Thus

get_obsv(T) = get_obsv(Ty).

By Lemma A.21, we know

sfair—o(ﬁ).
Thus we know wfair—o(ﬁ). Then, by Lemma A.10, we know
wfair(Ty).
Thus we are done. o

Lemma A34. IfH [, 0] € H[T,3], T, € T,°[1, 0] and prog-p(T,), then there exists T, such that
T, € 7,.°[T.Z], get_hist(T,) = get_hist(T,) and tnum(T,) = tnum(T,).

Proor. By constructing simulations. O

LemMA A.35. IfT, € T.°[T.%] and prog-p(T,), then there exists Ty such thatT, € 7.0 [wriair(r), B
{done ~ false}], get_hist(i,) = get_hist(ﬁ), tnum(fa) = tnum(ﬁ) and wfair-o(YA'l).

Proor. Similar to the proof of Lemma A.36, we can construct the trace fl such that ﬁ €
N [[wr‘g’gaF”(I‘) > @ {done ~» false}]] get_hist(T,) = get_hist(T;) and tnum(T,) = tnum(T}). Since
prog-p(T,), we know prog- p(Tl)

Suppose IT1| # . Since prog- p(Tl) we know pend_ inv(T;) = 0. Thus

(ITil # w) => Vt € [1..tnum(Th)]. term-o(Ti ;).

Suppose |T1| = w. For anyt € [1. tnum(Tl)], we know either |(ﬁ|t)| =wor I(ﬁ lt)] # w. Suppose

|(T1 lt)| # w. Then, since T, € N [[wrg,ga;r(r) > ¥ {done ~ false}], we know

[(Til)] = 0V is_ret(evt(last(Ti]))) V is_inv(evt(last(T;|;))) V evt(last(Ti|)) = (t,obj).

If I(ﬂ ) =0V is_ret(evt(last(ﬁlt))) holds, then wfair-o(fl) holds. Otherwise, we know there
exists e such that e € pend_inv(T|;). Since prog-p(T;), we know

Vi, Aj.j > i Ads_ret(evt(Ty(j))).
By the construction of Tl we know i—o—dis(t,ﬁ) holds. Thus we are done. m]

LEMMA A.36. Iff € 7.°[T.2] and|T, | =w = (Ye.e € pend_ mv(T ) = e-a- dls(tld( ). Ta))

and |T,| #+ 0 = (Ve. e € pend_ mv(T ) = tid(e) € bset(last(T ))), then there exists Ti such
that

T, € %"[[wr‘,ﬁ’éﬁé'(l"),i‘. @ {done ~ false}], get_hist(fa) = get_hist(ﬁ), tnum(fa) = tnum(ﬁ),
Ty = = (Ye.e € pend_inv(T;) = e-a-dis(tid(e),T})),
|Ti| # @ = (Ye. e € pend_inv(T;) = tid(e) € bset(last(T}))).
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PrOOF. Since T, € 7.2[T,2], we know there exist n, T and C, such that T, = ((spawn,n),0) :
get_obj(T) and

~ T ~ T
(Co,(2,0)) o>+ or (Co,(2,0)) e— [ abort or

A5, K . (Cor (5.0)) 1 (€, (/. KN) A (T (& (57,K7)) r ).

Below we only consider the case when ITI = w. Proof for the case when Ifl # o is similar. We
construct the trace T; such that ((spawn, n),0) :: get_obj(ﬁ) satisfies the desired properties. The
idea is to construct a simulation between the executions. Informally, our construction of T; considers
every prefix T(1..i) of T and builds traces ii and their derivations for i’ The resulting series are
such that for i < j, the derivation of i‘ is a prefix of that of T/ , which also implies that the trace i’
is a prefix of YA'IJ Because of this, we could get a simulation relation between the executions, and
the limit derivation and the limit trace are the desired T; and the corresponding derivation. The
following claim lies at the core of our construction:
Consider a prefix T(l..i) of T the trace i’ and 51, 5 %1, %', K’ such that
— Ta..i) . ~
(G0, (2.0)) o= (C. (2, K ")),
(Co, (2 @ {done ~~ false},®)) o wiar e (1 (Z1K),
wrppr (1)

%1 =2" ¢ {done ~ false},

C—g Cr.  get_hist(T(1..)) = get_hist(T}).
Here C —g C requires the following hold:
Yt (K (t) = 0) = (Cik = Ch).

Ve, (K'(t) # 2) = (Cle = Cile) v _ 4
AB,C,E. (C|; = (await(B){C};return E)) A (C1|t = (wr‘r’;’lgaF”(await(B){C});return E)) v
3E. (C; = return E) A (C1}y = (await(~done){}; return E)).

~ T(i+1 ~ ~ ~.
If (C,2",K")) Qﬂ’r (C’,(3”,%"")), then there exist C;, =}’ and an extension T;*!
of i‘ with the corresponding derivation such that

i+1

(Co» (2 {done ~- false},,0)) =" .. (C],(Z,K")),

wrpge (D)
27 = 2" ¥ {done ~ false},
C" —gen €], get_hist(T(1..i + 1)) = get_hist(Ti*1).
= T(i+1) . o~ o~
Also, if (C,(2",K")) — ¢ abort, then there exists an extension T;*! of T} such
Ti+l

that (50,(2 @ {done ~» false},,®)) — :/rwfa”(r)
get_hist(f‘f“).

PDF
To prove the claim, we make a case-split on the derivation of T(i +1).

abort and get_hist(f(l..i +1)) =

o If T(i + 1) is an abort event, then we could generate the same abort event at the next step of
(Cla (2/»7<,))'
o If T(i + 1) is a client event, then we could generate the same client event at the next step of

(1, (3}, K)).
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o IfT(i + 1) is an invocation event of thread t, then we could generate the same invocation
event at the next step of (Cy, (21, K”)).

o If T(i + 1) is an object event and the step is executing await(B){C} of thread t, then we
execute the first two steps (i.e., the first await and the reset of done) of wr¥" (await(B){C})

€ PDF
from (Cy, (21, K”)).
o If T(l + 1) is a return event, then we execute the last step (i.e., await(—done){}) of

‘,Q’IgaF”(awalt(B) }) and the return command from (Cl, (Z7,%")). We could generate the
same return event.

By the construction, we are done. O

A.5 Proofs of Theorem 6.2-3 (PDF under strong fairness)
By Theorem 4.4, the goal is reduced to the following:
i T APDFI(IN) &= M wrigi(D).
By Lemma A.30, we only need to prove the following lemmas.

Lemma A37. T2 wiggi(I) = TIC" T

Lemma A38. T2 wrigi(I) == PDF-O%3(ID) .

fi f: it fai
Lemma A39. TICH" T A PDF-O(I) — IS wrfi(r).

Proof of Lemma A.37. For any n, Cy, ..., Cp, 0, 0 and ¥ such that ¢(o) = Z, for any &, if
EeO[(letTinC|l...lICp),(0c,0,0)],
we know there exists Ty such that & = get_obsv(T) and
Ty € T[(AetITin C|l.. .| Cp), (0c,0,0)].
We can construct T, and T;” such that
T/ =Ty =T] , sfair(T}’) and T," € 7,[(letITin Cy||...|ICy), (0c,0,0)].

Since IT i wrifai(T), we know there exists T, such that
“wrppr(¢) — PDF 2

T, € 7o [(let wrf,fSiFr(I“) inCi|l...lICy), (0,2 W {done ~ false},®)] , sfair(T,’) and
get_obsv(T,’) = get_obsv(T}’) = &::get_obsv(T).

Thus there exists T, such that

T, € 7 [(let weifa(T) in Gy ||.... .|| Cy), (0c, = & {done ~» false},®)] and get_obsv(Ty) =
Then we construct T3 such that
T eT[(etTin Co|l...[ICy),(0c,%,0)], get_clt(Tz) = get_clt(T3).

Our construction considers every prefix T5(1..i) of T and builds traces T3i and their derivations for
T;. The resulting series are such that for i < j, the derivation of T} is a prefix of that of T}, which

also implies that the trace T} is a prefix of TZ{ . Then T3I 2l is the desired Ts. The following claim lies
at the core of our construction:

Consider a prefix T;(1..i) of T, the trace Tai and Wi, W, o/, £, %', K’ such that

. T(1..i
(let wri,fS'Fr(F) inC1||...||Cn,(0c,2 @ {done ~» false},®)) OM)* (W1, (00, 21,K7),
Ti
(letTin Cyl...1|Cn,(0c,2,0)) +o* (W, (042", K”)),

=X{\{done}, Wi —qc W, get_clt(Tz(1..))) = getfclt(TS").
Here W) — g W requires the following hold:
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V. (K (t) = o) = (Wit = W),
Yt (K (t) # 0) = (Wil = W) V
3B,C,E. (W]t = (wr?,fgi;(await(B) });return E)) A (W|; = (await(B){C}; return E)) V
AB,C,E. (W1t = (await(B A —~done){C;...};...;return E)) A (W|; = (await(B){C}; return E)) V
JE. (W1|t = (done := false; while (done){};return E)) A (W|; = return E) vV
AE. (W1 ]t = (while (done){};return E)) A (W|; = return E).

Ty(i+1
If (Wi, (0,2, K")) —— D —— (W/,(c//,2],K")), then there exist W', X" and an exten-

sion T, *! of T} with the corresponding derivation such that
i+1
(letTin Cy|l...||Cn.(0.2,0)) ——* (W', (0, =" K"")),
3 =34\{done}, W] —qor W, get_clt(Ty(1..i + 1)) = get_clt(T/*1).
To(i+1
Also, if (W, (0/,2],K")) |£> abort, then there exists an extension T’Jrl of T’
.
such that (letTin C; || ... || Cn, (0¢,%,®)) —> * abort and get_clt(T(1..i + 1)) =
get_clt(T) ™).
To prove the claim, we make a case-split on the derivation of T, (i + 1).
o If T;(i + 1) is a client event, then we could generate the same client event at the next step of
(W. (oL, ZK)).
o If T,(i + 1) is an invocation event, then we could generate the same invocation event at the
next step of (W, (¢/,2",K")).
o If T (i + 1) is an object event and the step is executing while (done){}, then we execute zero
step of (W, (0(,3',K")) (that is, ;™! = T}).
e If T,(i + 1) is an object event and the step is executing await(B A —done)){C; done := true; },
then we execute one step of (W, (¢/,%’,%”)) and that step is executing await(B){C}
o If T,(i + 1) is an object event and the step is executing done := false, then we execute zero
step of (W, (0/,%',K")) (that is, T;*! = T3)).
o If T5(i + 1) is a return event, then we could generate the same return event at the next step of
(W, (02,5",5K")).
Thus & € O[(let T in Cy || .. .|| Cp), (0¢, 2,®)] and we are done. O

Proof of Lemma A.38. Similar to the proof of Lemma A.14. For any n, o, £ and T, such that

T, € 7.°[11, 0], sfair-o(T,) and ¢(c) = %, suppose

—|abt(TD) and ﬂprog—p(fo) and ﬂwell—blocked—o(fo, T,2)).
Since T, € 7.°[I1, 6], we know there exist n and T, such that

T, € 7. IMGCp1,,0mccn) ] get_hist(i) = get_hist(i,), n= tnum(i,),
—-abt(T,), sfair-c(T.), fin_coherent(T.,T,).

By Composition Theorem A.2, we know there exists T such that

To[let II in MGCp1n,(chGc(n) 0,0)], T = get_clt(T), ﬁ, = get_obj(T).
Since sfair- o(T ) and sfair- c( ¢), by Lemma A.7, we know

sfair(T).

Since ¢(o) = X and IT j?;rmw) wr;fgig(l"), we know:

Ostair[(let TT 1n'MGCp1n), (omcemy»0)] <
Ostair[ (et wrﬁfS'Fr(F) in MGCp1,), (omcc(n), = W {done ~» false})] .
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Thus there exists T’ such that

T’ € T, [(let wrifar(T') in MGCp1,,), (omcc(n), = ¥ {done ~» false},®)] ,
sfair(T’) and get_obsv(T’) = get_obsv(T).

Also, by the definition of MGCp1,, and the operational semantics, we can construct T; and an
execution such that

Ti € 7, [(let wrls:,fsiF'(F) in MGCp1,), (omcc(n).Z W {done ~» false},®)],
sfair(T1), get_obsv(Ty) =&, get_hist(T) = get_hist(Ty).

By Decomposition Theorem A.1, we know there exists Tl such that
Ti € ﬂoﬂwr;fgi;(l“),?, W {done ~» false}], T, = get_obj(Ty), n= tnum(Ty).
Since sfair(T;), by Lemma A.6, we know
sfair—o(i).
Since T, = get_obj(Ty), T, = get_obj(T) and get_hist(T) = get_hist(T}), we know
get_hist(fa) = get_hist(ﬁ).
Since n = tnum(i,) andn = tnum(i), we know
tnum(fo) = tnum(ﬁ).
Since —-prog—p(fo) and get_hist(i,) = get_hist(i), we know
Je. e € pend_inv(Ty) A ((ITy] # w) v 3i. ¥j > i. —is_ret(evt(T1(j)))) .
Since sfair-o(ﬁ), we know
Vt € [1..tnum(Ty)]. term-o(T1}) V (t € bset(last(T}))) V e-a-dis(t, T1) V (|(Til0)| = o) .

Thus, by the operational semantics, we know

ITil =0 = (Ye.e € pend_inv(Ty) = e-a-dis(tid(e),Tr) V (I(Tilia(e))| = @)

A (Ji. Vj > i. —is_ret(evt(T1(j)))) ,

ITil # 0 = (Ye. e € pend_inv(T;) = tid(e) € bset(last(T1))) .

By Lemma A.40, we know there exists i, such that
T, € 7.21T,2], get_hist(ﬁ) = get_hist(i), tnum(fa) = tnum(i),

Ifa| =w = (Ve.ee pend_inv(fa) = e—a—dis(tid(e),fa)),
[Tl # 0 = (Ye. e € pend_inv(T,) = tid(e) € bset(last(Ty))).

Thus well—blocked—o(fa, (T',X)) holds, which contradicts our assumption. Thus we are done. O

LEMMA A.40. Ifﬂ € %"[[wrféi;(l"),z W {done ~» false}] and Iﬁl = 0w = (Me.e €
pend_inv(Ty) = e-a-dis(tid(e),T1) V (|(Tikid(e))| = @) A (Fi. ¥j > i. —is_ret(evt(T;(j))))
and |Ty| £ 0 = (Ve. e € pend_inv(i) = tid(e) € bset(last(ﬁ))), then there exists T, such
that
T, € 7.2[T,%], get_hist(T,) = get_hist(T}), tnum(T,) = tnum(T}),
|i,| =w = (Ve.ec€ pend_inv(fa) = e-a-dis(tid(e),ﬁ,)),
Tal # 0 = (Ve. e € pend_inv(fa) = tid(e) € bset(last(fa))).

Proor. Since T‘l S [[wr;fSiFr(I"),Z @ {done ~ false}], we know there exist n, T and 50 such
that Ty = ((spawn, n),0) ::getiobj(f) and
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~ T ~ T
(Co, (2 @ {done ~ false},©)) = .. - or (Cp,(Z,0)) &—=* .  abort or
wrpge (D) wrppr (1)

38,3, K. (o, (2.0)) o0°

121 fa
wippe (1)

(G LKD) A = (€L (ELK) o ) -

Below we only consider the case when |T| = w. Proof for the case when ITI # w is similar. We
construct the trace T, such that ((spawn, n),0):: get_obj(fa) satisfies the desired properties. The
idea is to construct a simulation between the executions. Informally, our construction is similar to
the one in the proof of Lemma A.37.

Then, suppose Ifal = w. By the construction of Ta, we know IYA'll = w.Foranye € pend_inv(fa)
and t = tid(e), by the operational semantics and the code of T', we know I(falt)l # w. Since
get_hist(fa) = get_hist(ﬁ), we know e € pend_inv(YA'l). Thus e—a—dis(t,i)) or I(i lt)] = w holds.

° I(Tl lt)] = @ holds. Suppose the configurations deriving the trace ﬁ are
(Co, (00, Kp)), (C1, (61, K1)), (Ca, (62,%:3)), . . ., then there exist i, B, C and E such that
Vj > i. Cjl; = E[ while (done){} ].
However, since Ye. e € pend_inv(i) = e—a—dis(tid(e),ﬁ) \Y% (|(ﬁ|tid(e))| = w) and
A"V >0 ﬂis_ret(evt(ﬁU’))), we know there exists i; > i such that
Vi1 = iy. (07, K], (1)) = ~done.
Thus it is impossible to have Vj > i. (~?j|t = E[ while (done){} ].
) e—a—dis(t,YA'l)) holds. Suppose the configurations deriving the trace YA'l are
(Co, (60, %Ks)), (C1, (61,%K1)), (Ca, (62,%z)), . . ., then there exist i, B, C and E such that
Vj>i. @It = E[ await(B A —done){C; done := true; } ],
and Vj > i. ~((0;,K;(t)) = (B A ~done)).
Since 3i’. V)’ > i’. —-isiret(evt(ﬁ (j’))), we know there exists i; > i such that
Yji = i1 =((05,, K, (1) = B).
Thus e-a-dis(t,i,).

Thus we are done. ]

Proof of Lemma A.39. The key is to show the following (A.5).
For any n, Cy, ..., Cp, 0c, 0, 2, T and T, such that ¢(c) = Z,
if T € T,[letWin Cy || ... || Cu,(0¢,0,®)], —abt(T) and sfair(T), then there exists
T, such that T, € T, [let wi(T) in C; || ... || Cp. (0,2 @ {done ~ false}, )],
get_obsv(T) = get_obsv(T,) and sfair(T,).
(A.5)

Since T € 7;[[let£l in CL" ...I1Cn,(0c,0,0)] and —abt(T), by Decomposition Theorem A.1, we
know there exist T, and T, such that
~ T. e 7e[C. . M Cuoc], T € T[], ~
get_hist(T;) = get_hist(T,), T, =get_clt(T), T, =get_obj(T), n=tnum(T,).
Since sfair(T), by Lemmas A.5 and A.6, we know
sfair-c(i) and sfair-o(ff\o).
Thus we know
(1Tl # @) => Vt € [1..tnum(T.)]. term-c(Tel) V t € bset(last(T.)) .

Since PDF—ng"lir(H), we know prog—p(i,) % well—blocked—o(i,, (T',2)) holds.
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. prog-p(i,) holds. Since IT Ef{;" I, we know
H[, 0] € H[T,Z].
By Lemma A.34, we know there exists fa such that
T, € T7.20L, 2], get_hist(fa) = get_hist(fo), tnum(T,) = tnum(T,).
By Lemma A .41, we know there exists T’l such that
T, € 7.2[wrif(T),= w {done ~ false}],
get_hist(T,) = get_hist(Ty), tnum(T,) = tnum(Ty), sfair-o(Ty).
Thus get_hist(i) = get_hist(ﬁ), n= tnum(ﬁ) and ﬂabt(ﬁ). Thus
(IT1| # @) = Vt € [1.tnum(Th)]. term-o(Ti |¢) V (t € bset(last(T}))).
Thus fin_coherent(i, ﬁ) holds. By Composition Theorem A.2, we know there exists T; such
that
Ty € To[let wriiat(T) in Cy || .. || Cp. (0¢, 3 W {done ~ false},®)],
T, = get_clt(Ty), T; = get_obj(Ty).
Thus
get_obsv(T) = get_obsv(Ty).
Then, by Lemma A.7, we know
sfair(Ty).
e well-blocked-o(T,, (T, X)) holds. Thus there exists T, such that
T, eZ;"[[F,Z}], get_hist(f) = get_hist(fa), tnum(T) = tnilm(fa),
A|Ta| =w = (Ve.ee€ pend_inx(Ta) = e—a—dis(tid(e),TQ),
|T,| # o = (Ye. e € pend_inv(T,) = tid(e) € bset(last(Ty))).
By Lemma A .42, we know there exists YA'l such that
T, € T.2[wrifi(I),= v {done ~ false}], get_hist(T,) = get_hist(Ty),
R tnunl(Ta) = tnum(Ty), R R
ITi| =w = (Ye. e € pend_inv(Ty) = e-a-dis(tid(e),T1) V (|(Tilidee))| = @),
ITi| # o = (Ye. e € pend_inv(Ty) = tid(e) € bset(last(T))).
Thus get_hist(i) = get_hist(’fl), n= tnum(ﬁ) and ﬂabt(ﬁ). Also we know
(IT1| # @) = Yt € [1..tnum(Ty)]. term-o(Til) V t € bset(last(T})) .
Thus fin_coherent(i, ﬁ) holds. By Composition Theorem A.2, we know there exists T; such
that
Ty € To[let wria (L) in Cy || ... . || Cp, (0, = W {done ~ false},®)],
T, = get_clt(Ty), T; = get_obj(Ty).
Thus
get_obsv(T) = get_obsv(Ty).
By Lemma A.21, we know
sfair-o(ﬁ).
Then, by Lemma A.7, we know
sfair(Ty).
Thus we are done. o
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Lemma A4l IfT, € 7;"[[{‘,2]] and prog-E(T ), then there exists Ty such that T; € 7"’[[wrf,fg'Fr I),>w
{done ~ false}], get_hist(T,) = get_hist(Ty), tnum(Ta) = tnum(Tl) and sfalr—o(Tl).

Proor. Similar to the proof of Lemma A.42, we can construct the trace T’l such that T"l €

%Oﬂwr;fgi;(r),z W {done ~ false}], get_hist(fa) = get_hist(i) and tnum(T,) = tnum(T). Since
prog-p(T,), we know prog-p(T}).

Suppose |T;| # w. Since prog—p(ﬁ), we know pend_inv(fl) = (. Thus
(ITil # w) => Vt € [1..tnum(T1)]. term-o(Ty ;).

Suppose |T"1| =w.Foranyte [1..tnum(i)], we know either |(i|t)| = w or I(ﬁIt)I # w. Suppose

I(ﬁ lt)| # w. Then, since T, € N [[wr;fgiFr(F),Z @ {done ~» false}], we know

[(Til)] = 0V is_ret(evt(last(Ti]))) V is_inv(evt(last(T;|;))) V evt(last(Til)) = (t,obj).

If I(Tl ) =0Vis ret(evt(last(T1 lt))) holds, then sfair- o(Tl) holds. Otherwise, we know there exists
e such that e € pend_ mv(Tl lt). By the construction of Tl, we know |(T1|t)| = o holds, which
contradicts the assumption. Thus we are done. O

LEMMA A .42. IfTa € 7.°[T.3] and|T, | =w = (Ye.e € pend_ mv(T ) = e-a- dls(tld( ), T, 7))
and |T | # w = (Ye.e € pend_ mv(T ) = tid(e) € bset(last(T ))), then there exists T; such
that
T, € 7;0[[wr;fgig(r),z w{listid~ €}], get_hist(T,) = get_hist(T}), tnum(T,) = tnum(T}),

ITil =0 = (Ye. e € pend_inv(Ty) = e-a-dis(tid(e),T1) V (I(T: kid(e))| = @),
ITi| # w0 = (Ye. e € pend_inv(T;) = tid(e) € bset(last(Ty))).

ProoF. Since T, € 7.°[T, %], we know there exist n, T and Cy such that T, = ((spawn, n),0) :
get_obj(T) and

— T ~ T
(Co,(2,0)) o=+ or (Co,(Z,@)) &—] abort or

~ ~ T ., = ~ T
"2, K. ((Co, (2,0)) o= 1 (C7, (2", K"))) A ~(TE (C', (', K")) e—71 ).
Below we only consider the case when Ifl = w. Proof for the case when Ifl # o is similar. Let
Sp = {(i,t) | Je. e € pend_inv(T) A t = tid(e) A (e = evt(T(i)))}.

We construct the trace T; such that ((spawn, n),0) :: get_obj(’fl) satisfies the desired properties.
The idea is to construct a simulation between the executions. Informally, our construction of Tl
considers every prefix T(1..i) of T and builds traces YA'I’ and their derivations for YA'li. The resulting
series are such that for i < j, the derivation of i‘ is a prefix of that of T/ , which also implies that the
trace f'li is a prefix of YA'IJ Because of this, we could get a simulation relation between the executions,
and the limit derivation and the limit trace are the desired T; and the corresponding derivation.
The following claim lies at the core of our construction:

Consider a prefix T(l..i) of f the trace i’ and 51, 5 %1, %', K’ such that
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~ f(ll) * (5 ’
(Co, (2,0)) =57 (C. (2. K"),
~ T! ~
(Co. (2 W {done ~ false},0)) e—* . (C1,(Z],K")),
wrppr (1)
%1 = 3" {done ~ false},
5v7(/ Ci, getfhist(f(l..i)) = getfhist(fl’.).
Here C — C; requires the following hold:
Vt. (K'(t) = 0) = (Cik = Ch),
Ve, (K'(t) # ©) = (Cle = Cile) v ~
AB,C,E. (C|; = (await(B){C};return E)) A (C1|t = (wr?,fgi;(await(B){C});return E)) v
3E. (Cl; = return E) A (C1; = (while (done){}; return E)).

~ T(i+1 ~ ~ ~.
If (C, (%, K")) @ﬁ—)ﬁr (C’,(3”,%"")), then there exist C;, =} and an extension T} *!
of i‘ with the corresponding derivation such that
Tit+l

(Co, (2 ¥ {done ~ false},,0)) =" . (C],(Z{,K")),
wrphe (D)
Z;’ = X" ¢ {done ~» false},
C' —gen Cl,  get_hist(T(1..i + 1)) = get_hist(T/*1).
= T(i+1) ) o~ ~.
Also, if (C,(Z',K")) 0—1——> r abort, then there exists an extension Tl’+1 of T} such
Ti+l

that (Co, (X W {done ~» false},,®)) o— * abort and get_hist(f(l..i +1)) =

N wrifain(r)
get_hist(T/*!).

To prove the claim, we make a case-split on the derivation of T(i+1).

If f(i + 1) is an abort event, then we could generate the same abort event at the next step of
(1, (25, K7)).

If T(i + 1) is a client event, then we could generate the same client event at the next step of
(51, LK) V) > i is_cIt(T(j)) holds, then for each thread t’ € S,, we infinitely often
execute the while loop (whose boolean condition must be continuously evaluated to true) of

wrffgiFr (await(B){C}) of the thread t’.

If f(i + 1) is an invocation event of thread t, then we could generate the same invocation
event at the next step of (Cy, (21, K”)).

If T(i + 1) is an object event and the step is executing await(B){C} of thread t, then we
first execute the while-loop (whose boolean condition must be evaluated to false) and the

await steps of wrffgiFr(await(B){C}) from (51, (27,%")). Then, for each thread t’ such that

di’ <i. (i',t) € S, we execute one iteration of the while loop (whose boolean condition

must be evaluated to true) of wrffgiFr (await(B){C}) of the thread t’. Finally we execute the

step of resetting done of wr;fSiFr(await(B){C}) of thread t.

If f(z + 1) is a return event, then we execute the second while-loop (whose boolean condition
must be evaluated to false) of wrf,fgig(await(B){C }) and the following return command of

thread t. We could generate the same return event at the next step of (C1, (31, K")).

By the construction, we are done. O
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(RelAssn) P,Q,J== B | own(x) | emp | EmE | E=E | |pll | PxQ | PAQ | PVQ | ...
)

(FullAssn) p,q,] == P | arem(C) | O(E) | ®(Eg,....E1) | lplo | 'lpla | pxq | pAgq | ...
(RelAct) R,G == Pwx; Q | [P] | IGlo | D | GG | GAG | GVG | ...
(DAct) D :==P~Q | Vx.D | DAD

Fig. 16. Syntax of assertions. (We highlight the constructs which are new here if compared with Fig. 9.)

B FULL LOGIC AND SOUNDNESS PROOFS
B.1 LRG-style program logic

We have explained the basic ideas and key inference rules of our program logic in Sec. 7. In this
section we give the full version, which extends the advanced Rely-Guarantee-based logic LRG [Feng
2009] to support dynamic allocation and ownership transfer. The top level judgment is now in the
form of D,R,G,I + {P}II : T'. Here the fence I is used to determine the boundary of the shared
memory following LRG [Feng 2009]. Just like P, I is also a relational assertion specifying the
consistency relation between the concrete data representation and the abstract value.

B.1.1  Assertions. The full set of the syntax of the assertions is given in Fig. 16. We highlight the
constructs which are not shown in Fig. 9. Following LRG [Feng 2009], we treat program variables as
resources [Parkinson et al. 2006] and use own(x) for the ownership of the program variable x. We
use [p], to ignore the descriptions in p about the number of ¢-tokens. | p], will be useful when we
want to hide the ¢-tokens that are introduced for the proofs of while-loops. Similarly, |p], ignores
the descriptions in p about arem(C). It will be used in the inference rule for return commands.

Fig. 17 shows the semantics of assertions. Fig. 18 defines the transition levels and the ordering
over token numbers. Fig. 19 shows the definitions of wffAct(R, D), stability and “view shifts” (which
execute the abstract code). These definitions are the same as in LiLi [Liang and Feng 2016]. The
syntactic sugars Id, Emp and True represent arbitrary identity transitions, empty transitions and
arbitrary transitions respectively.

Fence. Since we logically split states into local and shared parts as in LRG [Feng 2009], we need
a precise invariant I to uniquely determine the boundary between local and shared resources.
We define the fence I > G in Fig. 17(c), which says that the transition G must be made within the
boundary specified by I. Here Precise(I) follows its usual meaning as in separation logic but is now
interpreted over relational states. The need of fence I > {R, G} is inherited from LRG. It is orthogonal
to the problems studied in this paper, and readers who are unfamiliar with LRG can safely ignore it.

B.1.2  Inference rules. Figure 20 presents the complete set of inference rules. We have explained
the oBj, WHL, AWAIT-w and AWAIT-s rules in Sec. 7. The slight modifications here are only to
distinguish shared and local state assertions. For instance, R and G should describe transitions over
shared states only, and be fenced by I.

The awarT-w and AWAIT-s rules have the premise D, [I],G,I + {p A BKC){q}, which can be
derived using the atom rule. The aTom rule allows us to logically execute the abstract code
simultaneously with every concrete step. We use + [p]C[q’] to represent the total correctness of
C in sequential separation logic. The corresponding rules are standard and elided here. We use
q’' =k q (defined in Fig. 19) for the zero or multiple-step executions from the abstract code specified
by ¢’ to the code specified by g. It also requires the number of #-tokens at level k to be decreased if
k > 1. That is, the current thread should lose ¢-tokens when it performs a level-k action that may
delay other threads. The aTom rule allows us to execute zero-or-more steps of the abstract code
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((s,h),(s,h)) B iff [B]sws = true

((s,h),(s,h)) E own(x) iff dom(sws) = {x}

((s,h),(s,h)) = emp iff dom(h) = dom(h) =0

((5,h),(5,0)) |= Fy 5 By iff h = {[Ex]sos ~ [Falsus)

((5:), (1) = By By iff h = ([Ex]sos ~ [E2]sos)

SEP+Q iff 351,8,. (S =G, WS) A (G1 EP) A (S E Q)

(0,2 w(6",3) ¥ (cwe 3w where (s,)W(s’,h") & (sws’ hwh’)

(a) Semantics of relational state assertions P and Q.

(S, (u,w),C) =P iff @=P
(3, (u,w),C) = arem(C’) iff C=C’
(S, (u,w),C) = O(E) iff In. ([Eles=nA(m<w)
(@, w,w),C) = 6(Ege- - Br) i ([Bile s [Er]s.s) < u
(&, (ww),C) E Lplo i Fw’. (@, (W), 0) = p
(S, (u,w),C) F Lpla iff 3C7. (S, (u,w),C") Ep
S = [pll iff Ju,w,C. (S, (u,w),C) I=p
cucr ¥ {C’ if C = skip (S, (,w),0) ¥ (S, W/, w'),C) &
C ifC’ = skip (W&, (u+u’,w+w’),CeC’)

(b) Semantics of full assertions p and q.

(S.€) EPxpQ iff (SEP)AE Q)

(©.€) E[P] iff (E"=CS)A(SEP)

(E,€) EG1+Gy iff 3E1,8,,8[,6).E =G WG AC =C]WE)

A ((E1,8)) E G A ((82,3)) [ G2)
Emp « emp < emp True & true = true Id < [true]
I>G iff ([I] = G) A (G = (Ix1I)) A Precise(I)
(c) Semantics of relational rely/guarantee assertions R and G.
ES.)EP~Q iff (SFP) = (E'FQ)

(5, EVx.D iff Vn. (S{x~ n},&{x~n}) =D
G,&)EDIAD; iff ((8,8) FED)A(SE)EDy)

Enabled(P~ Q) = P
Enabled(Vx. D) % 3x. Enabled(D)
Enabled(D1 A D3) & Enabled(D;) V Enabled(D,)
Dy ¥ D A (Enabled(D) x true)
(D] £ Enabled(D) ~> Enabled(D)

D’ < D iff (Enabled(D’) = Enabled(D)) A (D = D)
(d) Semantics of definite actions D.

Fig. 17. Semantics of assertions.

with the execution of C, as long as the overall transition (including the abstract steps, the concrete

, Vol. 1, No. 1, Article . Publication date: January 2018.



Progress of Concurrent Objects with Partial Methods (Extended Version) :63

=’ dff
L((&,&),Pr Q) = maxL otherwise
def { 0 if (8,8") |= [P]

{ k if (3,8") £ Py Q

~ pe
L((@&.e).[P) - maxL otherwise
def { 0 if (5,8) D

maxL otherwise

L((&,¢'),D)
LG, RAR) & max(L((S,8),R), L((S,E),R"))

< min(£L((3,8),R), L((&,&"),R"))
def { 0 if L((S,8"),R) =0

L((S,8"),RVR)

L((&,&'),[Rlo) = maxL otherwise

L((3,8),61 % G2) = minlk | 381,82,8,8}. (S =S, W Sy) A (S = &] W &)

Ak = max(L((31,3]),G1), L((S2,S;),G2))}

(S,8") E [Rlo iff £L((3,8'),R) =0
(S,8".k) ER iff £((3,3'),R) =k and k < maxL
R= R iff V3,8 k. ((3,8,k) ER) = Ik’ < k. (3,8, k') R’

u == (ng,...,n1) (1 <k <maxl)

(M- 507) <k (... om1) iff (Vi> k. (n] = ny)) A (n;c < ng)

(- ->n)) =k (Ams, . ..,n1) iff (Viz k. (n] = n;))

u<u iff k.u<pu’ u<u iffu<w' vu=u

(u,w) < W', W) iff w<gu)Vk=0Au=u" Aw=w)

(u,w) = W, w) iff urp ' Ak=0=w=w’)

Fig. 18. Levels of state transitions and tokens.

wifAct(R, D) iff Vt. |[RiJo = [Di] A (Yt £ t.[Dy] V Dy)

p = q iff Vt,0,%,u,w,C,2F.
(((0,2), (u,w),C) = p) A (ELZF) = Fu',w’,C", %"
(C.ZwWZF) —% (C",2'WZF)) A (((0,2), (', w"),C’) = q)
A W, w') <k (u,w)

p =G> q iff Vt,0,%,u,w,C,2F.
(((0,2), (u,w),C) Ep) A (ZLEF) = Fk,u/,w',C’, 3.
((C.2w3f) —7 (C".2"W2FE)) A (((0,%),(0,2),k) |= G * True)
A(((0,2), (", w),C") IE q) A (W', w") <g (u,w)

Sta(p,R) iff V&,&",u,w,C,k.
(S, (u,w),C) Ep) A ((S,8,k) ER) = T/, w’.
(@, W w),0) Ep) A (W W) =k (u,w))

Fig. 19. Key auxiliary definitions for inference rules.

steps and the level k) satisfies the relational guarantee G. We can lift C’s total correctness to the
concurrent setting as long as the environment consists of identity transitions only.
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forall f € dom(ll) :  I(f) = (®,x,C) L'(f) =(?’,y,C") P= (PAP)V (=P A=P)
D,R,G+{(P A P)*own(x,y) A (x =y) Aarem(C’) A #(E,...,E1)} C{P * own(x,y) A arem(skip)}
Vit t#t' = Gy = Ry wifAct(R, D) P = —Enabled(D) PV Enabled(D) = 1

D,RGI+{PJII:T

(o))

pAB=p’ pABA(Enabled(D)VQ) * true = p’*(0 Aemp) D,R,G,I+ {p’}C{p}
p=(B=B)=I JvOo=1I Sta(J,RV G) D'<D wffAct(R,D’)
p A B= ] xtrue A arem(await(B’){C’}) J= (R,G: D'L (Q,B"))
D.R,G,I+ {pjwhile (B){C}{p A —B)

(WHL)

p A Enabled(D) = true = B D,[I],G,I+ {p A BKC){q} Sta({p,q},R = Id)
D'<D wffAct(R, D) p = 3AB’,C’. arem(await(B’){C'}) A (R: D’o£> (B,B"))
D,R,G,I Fysair {plawait(B){C}{q}

(AWAIT-W)

p A Enabled(D) = true = B D,[I1,G,I+ {p A BKC){q} Sta({p,q},R = Id)
D'<D wffAct(R, D) p = 3AB’,C’. arem(await(B’){C’}) A (R: Z)’OL (B,B"))
D,R,G,I ksair {prawait(B){C}{q)

(AWAIT-S)

FpICle]  1G pva=Istue @ Srq (Il lal) = G True
D,[I],G,I+ {pKC)iq}

(aTom)

F [pIClq] Sta(r,R = 1d) I>{G,R} r = I *true
D,RGI+{p*rjClg=r}

(PrRIM)

p=>(E=E)=*I Sta(p,R * Id) I>{R,G}

RET
D,R,G, I+ {|lpla A arem(return E)}return E{|p], A arem(skip)} (RET)

D,R,G,I+ {p)C1{r} p=B=B)*xI  D,RG,IF{pAB}Ci{q)
D,R,G, I+ {r}Cz{q} D,R,G,I+ {pA=B}C2{q}

(sEQ) - (1F)
D,R,G,I+ {p}C1;Caiq} D,R,G,I + {p}if (B) C; else C2{q}

D,R,G, I+ {p}Ciq} D,R,G,I+ {p}Ciq}
(HIDE-0) (FRM)
D,R,G.I+ {[plo}C{lglo} D,R,G,I+ {pxriClg=r}

p’=G>p R'=R ng' G=G
D.RGI+{p)Clg)  Enabled(D) =1  wffAct(R, D) D.R.G.I+ {p)Clq)
p'VvVq =1 *true I’ {G’,R} Sta({p’,q’},R = Id) x & fu(D,R,G,I)

——— (csQ) ()
D,R,G.I' + {p'}Clq’} D,R,G,I+ {Ix. p}C{Ix. q}

D,R,G, I+ {p1}Ciq1} D,R,G,I+ {p1}C{q1}
D,R,G,I+ {p2}C{q2} D,R,G,I+ {p2}C{g2}

(cony) (p1sy)
D,R,G, I+ {p1 Ap2}C{q1 A q2} D,R,G,I+ {p1Vp2}Clq1V g2}

Fig. 20. LRG-style inference rules.
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<y TAPSEI(I) I <" TAPSFYRT(I) I <g" T APDFYY(I)  TI <y’ T A PDFyR(ID)

a0 ¢ K @ ¢ @

I E.:/.ﬁfair Wrsr.)féatfi:r(r) o ngair wr\F};/Sf?:ir(r) I E?Pfair WrSF‘,fSif_f(F) I E\(%/fair Wr\sllgagr(r)
N SO N
VC. |y {P}(letIT1in C) < (letT in C) VC. Hy {P}(letIlin C) 3 (let wr*(T') in C,T)
@1 o
D,R,G |:)( {(PII<T D,R,G |=')( {P}II < (T,wr*(T))
(R= [Rlo) A (G = LORT~2_ o=
D,R,G |:)( {PHI:T

@

D,R,G,I+y {PJIT:T

Fig. 21. Structures of logic soundness proofs.

G G G
The (csQ) rule uses p” = p and ¢ = ¢q’. The definition of p = ¢ is similar to p = g, as defined
in Fig. 19. In addition to executing the abstract code and decreasing the corresponding ¢-tokens,

G
p = q also requires the overall transition to satisfy G.

B.2 Overview of the structures of soundness proofs

In the following sections, we prove Theorem 7.3 about the logic soundness. We first give an overview
of the proof structures. Notice that the two await rules actually give us two program logics, for
strongly fair and weakly fair scheduling respectively. So we need two definitions of the semantics,
D,R,G [Fwfair {PHI: T and D,R,G |=spair {PII : T, for the two judgments for object verification.
On the other hand, our logics need to ensure four contextual refinements, each of which gives
us one combination of PSF/PDF and strong/weak fairness (by Abstraction Theorem). Thus the
soundness proofs go through four paths towards the final goals.

We show the proof structures in Fig. 21. Each proof path follows LiLi. The key in each path
is a termination-preserving simulation, which extends the simulation in LiLi to support partial
methods of objects, and await commands at both concrete and abstract levels. The logic ensures
that the concrete implementation IT is simulated by the abstraction generated by the wrapper. Then
we prove the simulation ensures the contextual refinement E. In the diagram, we use “=" for
implications and “<=" for equivalences.

The top at Fig. 21 shows our final goals: verifying linearizability IT <" T, and the PSF/PDF
properties Progf’f’r(H). By the Abstraction Theorem, we reduce the goals (see 10), A1), 12 and 13) in
Fig. 21) to verifying contextual refinements C. Next we propose four simulations IT < II” as a proof
technique for the contextual refinement C.

At the bottom of Fig. 21, we define semantics for our logic judgment D,R,G +, (P}II : T
(x € {sfair,wfair}). Note that the logic uses the atomic I' as specification. The judgment semantics
D,R,G [z, {P}I: T is also based on simulations, but it is much closer to the logic rules, which can
simplify the task of proving the validity of each rule in Fig. 20. It can be directly (see @ and ®)
translated to IT 5 IT’, where I1’ is either T (for PSF objects) or wr*(I") (for PDF objects). The special
wrapper wr* is defined similarly as wr¥far

PDF*
All the formal definitions and detailed proofs are given in the following subsections.

e Section B.3 defines the judgments’ semantics: D,R,G =, {P}II : T"and D,R,G,I =, {p}C{q}.
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e Section B.4 shows the proofs of @D of Fig. 21, i.e., the logic rules are sound with respect to the
judgment semantics.

o Section B.5 defines the local simulations < and shows the proofs of @ and ® of Fig. 21, i.e.,
the judgment semantics implies the simulations.

o Section B.6 and Section B.7 show the proofs of @ and ® of Fig. 21. Section B.6 lifts the local
simulations < to thread simulations, and Section B.7 defines the whole-program simulations
and proves the parallel compositionality.

e Section B.8 and Section B.9 show the proofs of ®, @, ® and @ of Fig. 21, i.e., the simulations
imply the contextual refinements.

B.3 Judgment semantics

The judgment semantics D,R,G |=, {P}I: T (here y € {sfair,wfair}) is based on a simulation
between IT and I', parameterized with well-founded metrics: M, &, M and u. The metric M is to
ensure that the current thread t must fulfill its definite action 9 in a finite number of steps. If
thread t is blocked, the metric £ specifies the set of the environment threads that t is waiting for.
It shrinks when an environment thread t’ finishes definite action Dy. The metric M corresponds
to the number of white tokens ¢, which is to ensure that thread t progresses on its own when &
becomes empty. The last metric u corresponds to the tuple of black tokens. It bounds the number
of actions made by thread t which could delay the progress of its environment threads.

Definition B.1. D,R,G |=, {P}II : T iff, for any f € dom(Il), for any o and X, for any t, if
I(f) = (2,x,C), T(f) = (?",y,C) and (0,2) |= (Pt A B) * own(x) * own(y) A (x = y), there exist
four well-founded metrics u, M, M and aw, a boolean flag wb and two sets &,&, € &?(ThrdID) such
that wb = false and

D,R,G E} (C,0)<(C,Z) o (u,M,M, wb,aw) ¢ ¢, (P *own(x) * own(y)).

Here D,R,G |=tX (C,0)=(C,%) o (u,M, M, wb,aw) |¢ ¢, Q is co-inductively defined as follows.
Whenever D,R,G |=tX (C,0)=(C,Z) o (u,M, M, wh,aw) |¢ ¢, Q holds, then the following hold:

(1Xa) Suppose o = (s,h). Then £ U ¢, C s(TIDS) and t ¢ £ and t ¢ &,.
(b) For any t’ € £ U &,, we have (0,2) |= Enabled(Dy) = true.
(c) If wb = false, then & = (. If wb = true, then ¢ # 0 vV X |= —en(C).
(d) If o |= —en(C) and X |= en(C), then &, # 0.
(e) If (0,2) = Enabled(Dy) * true, then o |= en(C).
(2) If C = E[ return E ], then there exists E such that
(a) C = (return E), and
(b) (0,%) £ O and [E]s.s = [E]s.s, and
(¢) ((0,2),(0,2),0) |= Gt * True, and
(d) wb = false.
(3) For any oF, (C,0 W op) —/> abort.
(4) For any C’, ¢”, oF and 2, if (C,0 W oF) —» (C’,0”") and X L3, then there exist ', C’, ¥,
k,w' , M/, M’, wb', aw’, &’ and &, such that
(a) 0"’ = 0’ Wop, and
(b) (C,EWEp) —{(C',3" W XF), and
(c) D,R,G |=tX (C, o)< (C,2) o (W ,M,M ,wb',aw) Ugre, Q. and
d) ((0,2),(c’,2),k) |= Gt * True, and
(e) either u’ <; u and k > 0,
oru’ =uandk =0and M’ < M,
oru’=uandk =0and M’ = M and wb’ = wb = true and £ C ¢’; and
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() if ((0,%),(c”,2")) |= {([D]) * True and k = 0, then M’ < M.
(5) For any k, ¢’ and 3, if ((0,2),(c’,%’),k) [E Ry * Id, then there exist u’, M’, M’, wb’, aw’, &,
£aq, &' and & such that

(a) D,R,G |=f( (C,o")=(C,2) o (u' . M',M',wb',aw’) Ug ¢ Q,and

(b) u’ ~ u, and

(© fa={t'| (' € &) A (((0,%),(07,)) = (Dr) Id)} and
k=0=M <MV M =MA wb’ = wb) and
k=0Awb=trueA ({4 #0V 2 | —en(C) A% = en(C))) = M’ < M and
k=0AM' =MA wb’ = wb =true = &\&; C &', and

(d) if k = 0 and (0,2) |= Enabled(Dy) * true, then M’ < M; and

(€) faa = {t" | (' € £a) A (((0,%),(07,%")) | (Dy) + 1d)} and
k =0 Ais_await(C) = &,\&q € & and
k=0Ais_await(C) A ({zg 20V (2 |= —en(C) A 2’ | en(C))) = aw’ < awand
(x = sfair) Ak =0 Ais_await(C) A (o = =en(C)) A (¢’ E —en(C)) = aw’ < awand
(y = wfair) Ak =0 Ais_await(C) = aw’ < aw.

Definition B.2. D,R,G |, {p}Clq} iff, forany o, %, u, w and C, for any t, if ((c, %), (u,w),C) |= p,
then there exist aw and &, such that
D,R,G |:tX (C,0)=(C,%) o (u,((0,0),Cl), (0,]Cl), aw, w, height(C), height(C)) Ug.z, q.
Here D,R,G |=t)( (C,0) 2 (C,%) © (u,ws, ws,aw,w, wk,H) U¢ ¢, qis co-inductively defined as
follows.
Whenever D,R,G |=f( (C,0) 2(C,2%) ¢ (u,ws, ws, aw, w, wk, H) Ug ¢, q holds, then the following
hold:
(1Xa) Suppose o = (s,h). Then £ U ¢, C s(TIDS) and t ¢ & and t ¢ &,.
(b) For any t’ € £ U &,, we have (0,%) |= Enabled(Dy) * true.
(c) If (0,2) |= Enabled(Dy) * true, then o |= en(C).
(d) If o |= —en(C) and X |= en(C), then &, # 0.
(e) If wk=H,then & =0.If wk < H,then & #0 Vv X |= —en(C).
() Iws| < H and (1 < wk < |ws| — 1) V (wk = H).
(2) If C = skip, then for any ¢ such that ¥ 1 X, there exist C’ and %’ such that
(@) (C,XwXp) —; (C', X' W XF), and
(b) ((0’2’)’(14""))’@/) |: qt> and
(c) ws = ((0,0),0) and ws = (0,0) and wk = H and & = 0, and
d) ((0,2),(0,2),0) |= Gt * True.
(3) If C = E[ return E ], then there exists E such that
(a) C = (return E), and
(b) ((0,%), (u,w),skip) [= g; and [E]+.s = [E]s.s, and
(¢) ((0,2),(0,2),0) = Gt * True, and
(d) wk=H.
(4) For any o, (C,0 W op) —/> abort.
(5) For any C’, 6", oF and 3, if (C,0 W op) — (C’,0"’), then there exist ', C’, 3’, k, u’, ws’,
ws', aw’, w', wk/, &’ and &), such that
(@) 0” =0’ Wop, and
(b) (C,2wZEp) — (C', 2" wXp), and
(c) D,R,G |=tX (C',a")=(C",Z) o (u',ws", ws',aw', w’, wk',H) U¢ ¢ g, and
d) ((0,%),(c7,2),k) |= G * True, and
(e) either u’ <x uand k > 0,
oru’ =uand k = 0and w’ = w and ws’ <;Vfws,
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oru’ =uand k = 0and w’ = w and ws’ zy{k ws and wk’ < wk,
oru’ =uand k =0and w = w and ws’ z(%‘WSandwk' =wk<H and &£ C &;and
) if ((0,2),(c”,2")) |= {[Dt]) * True and k = 0, then ws" <q; ws.
(6) For any k, ¢’ and 3’ if ((5,%),(6’,2'),k) |= Ry = Id, then there exist u’, Ws’, ws’, aw’, w’, wk/,
&4, Eqa, & and & such that
(a) D,R,G |=tX (C,a")=(C,2) o (u',ws", ws',aw', W', wk',H) U¢ ¢ g, and
(b) u’ =y u, and
k=0=w =w, and
© Ea = {t' | (¢ € &) A (((0.3),(0",3) [ (Dy) * 1d)} and
k=0= ws <}¥wsVws'~} wsand
k=0AwWk<HA(E;#0V (2 |=—-en(C) AX = en(C))) = ws’ <)ﬂ‘ ws and
k=0A(E\ég #0 VI |= —en(C)) = wk’ < wk, and
k=0Awk' = wk= &\&; C &, and
(d) if k = 0 and (0,2) |= Enabled(Dy) * true, then ws’ <¢ ws; and
(€) &aa = {t' | (' € &a) A (((0,2),(0".2")) |5 (Dy) * 1d)} and
k =0Ais_await(C) = &,\&q C &) and
k=0Ais_await(C) A ({40 20V (2 = —en(C) A X’ = en(C))) = aw’ < awand
(y = sfair) Ak =0 Ais_await(C) A (o = —en(C)) A (¢’ | —en(C)) = aw’ < awand
(y = wfair) Ak =0 Ais_await(C) = aw’ < aw.

Below we also define the semantics for the sequential judgment used in the aTom rule. Note that

C only accesses the concrete memory o, therefore we require the other components in the full state
(i.e., u, w, C and %) should remain unchanged during the execution of C.

Definition B.3 (SL judgment semantics, total correctness). |= [p]Cl[q] iff, for all o, 2, u, w and C,
for any t, if ((0,%), (u,w),C) |= p, the following are true:

(1) for any ¢’, if (C,0) — (skip,c’), then ((¢/,%), (u,w),C) |= qi;

(2) (C,0) —/»7 abort;

®3) (C,o) -+~

Lemma B4. If+ [p]Clq], then |= [p]Clq].

Definition B.5 (Locality).

Locality(C) iff, for any o7 and o3, let 0 = 01 W 0, then the following hold:

(1) (Safety monotonicity) If (C,01) —/+{ abort, then (C,0) —/+{ abort.

(2) (Termination monotonicity) If (C, 1) —{ abort and (C,o1) —/»{° -, then (C,0) -+ -.

(3) (Frame property) For any n and ¢’, if (C,01) —/+{ abort and (C,0) — ' (C’,0’), then there

exists o, such that 0’ = o] W oy and (C,01) —{ (C',07).

B.3.1 Instantiating Metrics and Well-Founded Orders. The judgment semantics in Definition B.2
can be viewed as an instantiation of the simulation in Definition B.1. The key is to instantiate the
metrics M and M and the boolean flag wb in D,R,G I:tX (C,0)=(C.Z) o (u,M,M, wh,aw) J¢ ¢, Q.

The flag wb is instantiated as the testing wk # 9. That is, wb = false if wk = H; and wb = true
if wk# H.

The metric M is instantiated as follows.
(Metric) M

(WfStack) ws,ws
(StkHeight) H € Nat

(ws,H)

(wn,n) | (wn,n):ws
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For each single thread, its metric ws is usually a list of (wn,n) pairs, where wn is the while-specific
metric (which is left to be instantiated later) and n is a natural number specifying the “code size” as
in Liang et al’s work [Liang et al. 2014]. We let the threaded metric ws be a list (a stack actually) to
allow different while-specific metrics for nested loops. That is, when entering a loop, we can push
a (wn,n) pair to the ws stack; and when exiting the loop, we pop the pair out of ws.

The threaded metric ws follows the dictionary order. However, the usual dictionary order over
lists is not well-founded (consider B > AB > AAB > AAAB > ... in a dictionary). To address this
issue, we introduce a bound of the list length (stack height), H, and define the well-founded order
<g¢ by requiring the length of the lists should be not larger than . Intuitively, the stack height H
represents the maximal depth of nested loops, so it can be determined for any given program. The
well-founded orders M’ < M and ws’ <¢; ws are defined as follows.

ws” <qq ws H =H
(ws',H’) < (ws,H)

ws' <gr ws iff  (ws’ < ws) A (Jws'| < H) A (Jws| < H)

ws' <gr ws iff  (ws’ <g ws) V (ws’ = ws)

(wn’,n’) < (wn,n) (wn’,n") < (wn,n)
(wn’,n") < (wn,n) (wn',n’) 2 ws] < (wn,n)::ws;
(wn’,n") = (wn,n) ws; < ws

(wn',n") :ws] < (wn,n)::ws

(wn’,n’) < (wn,n) (wn’,n") < (wn,n)
(wn',n’)::ws; < (wn,n) (wn/,n") < (wn,n)::ws;

Here |ws]| is the length of ws, which is defined as follows:

1
1+ |ws|

|(wn,n)|
[(wn,n):ws|

The well-founded order over the (wn, n) pairs is a usual dictionary order below, where the order
over wn is instantiated later depending on the type of wn.
(wn',n’) < (wn,n) iff (wn' <wn)V(wn’=wnAn' <n)
(wn',n’) = (wn,n) iff (wn’=wn)A(n’ =n)
(wn’,n’) < (wn,n) iff (wn’,n’) < (wn,n) Vv (wn’,n’) = (wn,n)
LEMMA B.6 (WELL-FOUNDEDNESS). The relations M’ < M and ws’ <¢; ws defined above are both
well-founded relations.

The metric M is instantiated as follows.

(Metric’) M == (ws, wk,H)
ws’ <‘7”{kw5 H =H ws’zgfws wk <wk H =H
(ws’, wk’,H") < (ws, wk, H) (ws’, wk’,H") < (ws, wk, H)
ws’ z‘;}‘ ws wk = wk H' =H

(ws’, wk’,H') = (ws, wk,H)

ws' <uEws iff  (ws” <™ ws) A (Iws'| < H) A (Iws| < H)
ws’ ~yfws iff  (ws' & ws) A (lws'| < H) A (Iws| < H)
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Here ws’ <** ws is defined as follows.

(wn’,n’) < (wn,n)

wk > 1

(wn',n’) <™k (wn,n)

(wn’,n") < (wn,n) wk > 1

(wn',n’):: ws] <" (wn,n):: ws;

(wn',n’) =

(wn,n)

Hongjin Liang and Xinyu Feng

wn’' < wn
(wn',n’) <° (wn,n)

wn’ < wn
(wn',n’) ws|, < (wn,n):wsy

wk

ws; <™ ws

(wr',n") 2 ws), <K (i, n) sy

(wn’,n’) < (wn,n) wk > 1

(wn',n’):: ws] <" (wn,n)

wn' < wn
(wn',n’) = ws) < (wn,n)

And ws’ ~** ws is defined as follows.

(wn/,n’) = (wn,n)

wk > 1

(wn’,n’) ="k (wn,n)

(wn’,n’) = (wn,n) wk > 1

(wn',n’) <" (wn,n):ws

wn’' < wn
(wn',n’) <° (wn,n)::ws;

(wn’,n’) = (wn,n) ws; ~k s, wn' = wn
(wr',n") o ws), YR (wnn) s wsy (wn',n’):ws] 20 (wn,n):ws;
wn' = wn
(wn',n’):ws] = ~ Wk (wn,n)

Height H. As we said, the stack height H represents the maximal depth of nested loops. For
any given program C, we can determine the stack height using a function height defined below.

height(skip) = 1
height(return E I
height(c R

“

height(C1;C

)
)
)
height(await(B){C})
)
height(if (B) C; else Cy)

}

height(while (B){C

max{height(C1), height(Cz)}
max{height(C1), height(Cz)}
height(C) + 1

Initial code size. In Definition B.2, the judgment semantics initially takes the static code size |C]
defined below as the second dimension of ws and ws.
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[skip| = 0
|[return E| ©y
ol <1
lawait(B){C}] & 1
ICi;Cal & |Gl +ICal + 1
lif (B) C1 else Co| = max{|Cy],ICal) +1
lwhile (B){C}] £ 1

Example of ws. Below we use a simple example to show how we assign a proper ws to each state
during an execution. In the code below, we assign different labels to different layers of a nested
while loop. The initial code is while(i > @) i--;. The loop is labeled with 1 and its body code is
labeled with 2. After the loop is unfolded, we use the syntax while to be distinguished from the
original while which has not been unfolded.

In the ws below, the first dimension specifies the number of iterations left to unfold, and the
second dimension specifies the “code size” at each layer.

C o ws
1 whilel(i > @) i--% i=2 0,1)
2 — i--2; whilel(i > @) i--%; i=2 (0,0)::(1,2)
3 — skip?; whilel(i > @) i--2; i=1 (0,0)::(1,1)
4 — whilel(i > @) i--% i=1 (0,0)::(1,0)
5 — i--2; whilel(i > @) i--%; i=1 (0,0)::(0,2)
6 — skip?; while!(i > @) i--%; i=0  (0,0):(0,1)
7 — whilel(i > @) i--% i=0 (0,0)::(0,0)
8 — skip!; i=0 (0,0)

Initially, wsis (0,1): the first dimension is 0 because we have not started to unfold the loop, and
the second dimension is 1 because the code size of the whole loop is 1. After one step of the loop,
ws becomes (0,0) :: (1,2). Since we have unfolded the loop, the ws stack contains two pairs now. In
the second pair, the first dimension is 1 because the loop needs only one more iteration to finish
(i-e., we only need to unfold it one more time). Its second dimension is 2 because the size of the
loop body code is 2. After the next step, this dimension decreases. At the step of line 5, we unfold
the loop again. So the first dimension of the second pair decreases to 0, saying that we do not need
to unfold the loop anymore. Finally, at the step of line 8, the loop finishes, thus we pop out the
second pair of the ws stack.

B.4 Soundness of the inference rules

In this section, we prove Lemma B.7 by induction over the derivation.
LemMa B.7 (D 1N F16. 21). If D,R,G,I+y {PHI: T, then D,R,G |=, (P}II:T.

Proor. By induction over derivation. By Lemma B.8, we only need to prove the following:

If for all f € dom(II) such that II(f) = (?,x,C) and T'(f) = (?’,y,C), we have
D,R,G =y {(P AP)*own(x) = own(y) A (x = y) A arem(C) A #(Eg,...,E)} C{P*
own(x) = own(y) A arem(skip)},
then D,R,G |=, {P}II: T.

(B.1)
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By co-induction. We instantiate the metrics M and M and the boolean flag wb following the way
described in Sec. B.3.1.

The difficult case is to prove the environment step 5(c). From D,R,G |=tX (C,0) = (C,Z) 0
(u, Ws, ws, aw, w, wk, H) Ue.¢, g, 6(c), we know

k=0=ws" <}fwsVWws' ~}wsand
k=0AwWk<HA(E;#0V (2 |=-en(C) AX £ en(C))) = ws’ <};“{k ws and
k=0A(E\ég 20V |= —en(C)) = wk’ < wk, and
k=0AwWK =wk= &\&; C &,
Thus we know: if k = 0, then
ws’ <¥FwWs Vv
(W' ~2EWS A wk=HAE=OAE=0A (WK < wkV wk' = wkAECE))V
(Ws" ~2F WS A &g =0 A (S [ en(C) V' [ =en(C)) A
(Wk' < wkVv wk = wkAECE VWK >wkAE\E; =0AT |Een(C)))
For the very last case, we have:
ws’ z};’{k WSAE =0A (2 =en(C) VI E—-en(C)) Awk' > wkAE\Eg =0 AT |=en(C)
= wk' > wkAE=0AZ|=en(C)
= wk’ > wk A wk = H = false

As a result, we know
k=0=M <MV M =MA wb’ = wb)
k=0Awb=true A ({3 #0V 2 = —-en(C) AY |=en(C))) = M <M
k=0AM =MA wb' = wb=true = &\&; C &

Thus we are done. ]

LEmma B.8. If
(1) D,R.G,I'+y {piCigl;
(2) Enabled(D) = I;
(3) for any t and t’ such thatt # t’, we have Gy = Ry;
then D,R,G |=, {p}Clq}.
In the following subsections, we prove Lemma B.8 by induction over the derivation.
B.4.1 The wHL Rule.
LEmMA B.9 (wHL-SoUND). If
(1) pAB = p’;p ABA (Enabled(D) v Q) * true = p’ * (¢ A emp);

(2) D.R.G =y {p'}C{p};
3)p=B=B)*I;]=ILSta(J,RVG); Q= I;p A B= ] =true A arem(await(B’){C’});

@ ] = RG: D5 (0,8): D < D; wiAHR,D'):

(5) I>{R,G}; Sta(p,R = Id); Enabled(D) = I;

(6) for anyt andt’ such thatt # t’, we have G = Ry;
then D,R,G |=, {p}while (B){C}{p A —~B}.

Proor. Let H = height(while (B){C}) = height(C) + 1. We know |while (B){C}| = 1. Let
ws = ((0,0),1) , ws=(0,1) , aw=0, wk=H , =0, & =0.
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Below we prove: for any t, for any o, %, u, w and C,
lf ((O', 2)7 (u9 W)’C) |= Pt, then

D,R,G |=f( (while (B){C},0) < (C,X) ¢ (u,ws, ws,aw,w, wk,H) Uz ¢, p A —B.
By co-induction. Suppose o = (s, h). Since p = (B = B) * I, we know
(0,2) £ I *true, and either [B]s = true or [B], = false .

We only need to prove the following (1)(2)(3)(4)(5)(6).
(1Ya) £ UE, Cs(TIDS) and t ¢ £ and t ¢ &,.
(b) For any t’ € £ U &,, we have (0,2) |= Enabled(Dy) = true.
(¢) If (0,%) |= Enabled(Dy) * true, then o |= en(while (B){C}).
(d) If o |= —en(while (B){C}) and ¥ |= en(C), then &, # 0.
(e) f wk=H,then =0.If wk < H,then & #0V X |= —en(C).
(f) |ws| < H and (1 < wk < |ws| — 1) V (wk = H).
Proof: Trivial.
(2) If while (B){C} = skip, then ....
Proof: It is vacantly true.
(3) If while (B){C} = E[ return E ], then ....
Proof: Tt is vacantly true.
(4) For any oF, (while (B){C},o W oF) —/> abort.
Proof': 1t holds because [B]s is not undefined.
(5) If (while (B){C},0 W op) —(C’,0"’), then there exist o/, C’, ¥/, k, u’, ws’, ws’, aw’, w’,
wk’, & and &/, such that
(a) 0" =0’ Wop, and
(b) (C,EWEp) —{(C',3" WXF), and
(c) D,R,G |=tX (C",a")2(C",Z) o (u',ws", ws',aw’', w’, wk',H) Ug & p A —B, and
d) ((0,2),(0’,%"),k) |= G; * True, and
(e) either u’ <; u and k > 0,
oru’ =uand k = 0and w’ = w and ws’ <‘7”{’<ws,
oru’ =uand k = 0and w’ = w and ws’ zﬁ‘ ws and wk’ < wk,
oru’ =uand k = 0 and w’ = w and ws’ z;}“WSandwk' =wk<H and & C &; and
) if ((0,2), (0, 2")) |= {[Dt]) * True and k = 0, then ws" <q; ws.
Proof: We have two cases depending on whether [B]; is true or false.
() If[B]s = true, we know ¢”” = o Wor and (while (B){C},cWor) —» (C; while (B){C},c¥
O'F).
Also we know ((c,%),(u,w),C) = pt A B.From p A B = p’ and D,R,G |, {p’}C{p}, let
ws; = ((0,0),|C|) and ws; = (0,|C|) and wk; = height(C), we get: there exist aw’ and &
such that
D,R,G |=tX (C,0) 2 (C,Z) o (u,Wsy, wsy, aw’, w, wky, height(C)) Ug.e, p .
Also since p A B = ] = true A arem(await(B"){C’}), we know
(0,%) |= J *true, C = arem(await(B’){C’}) .
Let
ws” = (0,0)::(w,|C| + 1),
we know ws’ <¢; ws. Let
ws’” = ((0,0),0) :: ((ks,w),|C| + 1) .
We know ws’ <,ﬂ‘ ws. Let
ks = fi(0,%) and & = {t"” | (t” #t) A ((0,Z) | Enabled(D),) = true)} .
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Since ] = (R,G: Z)'L (Q,B’)), we have two cases:
o £ #0 V3= —en(C).
By Lemma B.10, let
wk'=1and & = ¢ .
we know
D,R,G |=f( (C; while (B){C},0) < (C,X%) o (u,ws’, ws’, aw', w, wk’,H ) Ugre, pA—B.
e 5 =0AX =en(C).
By Lemma B.10, let
wk' = wk;+1and &' =0.
we know
D,R,G |=tX (C; while (B){C},0) < (C,X) o (u,Ws’, ws’, aw’, w, wk’,H) Ugre, pA—B.
() If [B] s = false, we know (while (B){C},c ¥ oF) —» (skip,o & oF).
By (ski1p) rule, let
ws’ = ((0,0),0) and ws’" = (0,0) ,
we know
D,R,G |=tX (skip,0) < (C,2) ¢ (u,ws’, ws’, aw,w, wk,H) lpo p A —=B.
Also we know ws’ <¥k ws and ws’ <¢ ws.
Since (0,2) |= I * true, we know
(0,2),(0,%),0) |= [I] * True .
Since I » G, we know
((0,2),(0,2),0) |= Gy * True .
(6) If ((0,%),(c7,2),k) |= Ry * 1d, then there exist u’, ws’, ws’, aw’, w’, wk', &4, €44, ' and £,
such that
(a) D,R,G |=tX (while (B){C},c”) < (C,3') o (u’,ws’, ws’, aw’,w’, wk’,H ) Ugr e, p A B, and
(b) u’ =~y u, and
k=0=w =w, and
(© &a={t' | (t' € &) A (((0,2),(0",2)) E(Dy) = 1d)} and
k=0= ws <}¥wsVvws'~} wsand
k=0Awk<HA(E #0V (S E-en(C) A3 [=en(C))) = ws' <} wsand
k=0A(E\ég #0VZ |= —en(C)) = wk’ < wk, and
k=0Awk = wk= &\&; C &, and
(d) if k = 0 and (0,2) |= Enabled(Dy) * true, then ws’ <4y ws.
Proof: Since Sta(p, R * Id), we know there exist u” and w’ such that
(", 2), (', w),C) |=py and v’ = u and k=0 = w' =w.
By the co-induction hypothesis, we get
D,R,G sz( (while (B){C},0") <(C,X2’) ¢ (u’,ws, ws,aw,w’, wk,H) Uz ¢, p A —-B.
We know &; = 0.
Thus we are done. O

We define:

df | ((n1,n2),n3) ifws = ((n1,n2),n3)
head(ws) = { ((n1,m2)ms)  EWS = (n1,n2),m3) 5 WS’

. def [ ((ny +ky,ng +k2),n3 +k3) if ws = ((n1,nz),n3)
mchead(WS,((kl,kz),kS)) - { ((”1 + kl,l’lz + kz),n3 + k3)ZZWSI if ws = ((nl,nz),n3)::WS'

Lemma B.10. If
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(1) pAB=p’;p ABA (Enabled(D) V Q) * true = p’ * (¢ A emp);
B)p=>B=B)+I;]=1I1Sta(J,RVG); Q=L pAB= ] =true A arem(await(B'){C'});

@ ] = RG: D5 (0,8): D < D; wiACHR, D'):
(5) I>{R,G}; Sta(p,R * Id); Enabled(D) = I;
(6) for anyt andt’ such thatt # t’, we have Gy = Ry;
(7) D,R,G |=tX (C1,0) = (C,%) o (u,wsy, wsy, aw,wy, wki, H) Ug ¢, p;
(8) (0,2) |= J * true; height(C) = H; C = await(B’){C’}; fi(0,2) = ks; wg < w;
(9) & ={t"| (t' #t) A ((0,2) |= Enabled(D))) = true)};
(10) ws = (0,0)::inchead(wsy, (w1,1));
(11) ws = ((0,0),0) ::inchead(wsy, ((ks,w1),1));
(12) one of the following holds:
e 50V |=—en(C):wk=1A¢E=¢§;
e 5 =0A3 Een(C): wk=wk; +1AE=E;

then D,R,G |=tX (Cy; while (B){C},0) < (C,X) o (u,ws, ws,aw,w, wk,H + 1) ¢ ¢, p A —B.

Proor. By co-induction. We only need to prove the following (1)(2)(3)(4)(5).

(1Ya) Suppose o = (s,h). Then é U ¢, C s(TIDS) andt ¢ £ and t ¢ &,.
(b) For any t’ € £ U &,, we have (0,2) |= Enabled(Dy) = true.
(c) If (0,2) |= Enabled(Dy) * true, then o |= en(Cy; while (B){C}).
(d) If o |= —en(Cy; while (B){C}) and X |= en(C), then &, # 0.
() fwk=H+1,thené =0.f wk < H + 1, then & #0 Vv X |= —en(C).
() lws] < H +1and (1 < wk < |ws|—1) V (wk=H +1).
Proof: From

D,R,G |=tX (C1,0) = (C,%) o (u,wsy, wsy, aw,wi, wki, H) Vg e, P s

we know for any t’ € & U&,, we have (0,X) |= Enabled(Dy) = true. Since D’ < D, we know
for any t’ € &, we have (0,%) |= Enabled(Dy) * true. Thus we are done.
(2) If (Cy; while (B){C}) = skip, then ...
Proof: 1t is vacantly true.
(3) For any oF, (Cy; while (B){C},0 W or) —/+ abort.
Proof : From

D,R,G |=tX (C1,0) = (C,%) o (u,wsy, wsy, aw,wi, wki, H) Vg e, P s

we know (C1,0 W op) —/+ abort. By the operational semantics, we are done.
(4) If (Cy; while (B){C},0 W oF) —> (C’,0”"), then there exist o/, C”, 3/, k, u’, ws’, ws’, aw’, w’,

wk’, & and &/ such that

(@) 0" =0’ Wop, and

(b) (C,ZWEp) —{(C",X WXF),and

(c) D,R,G |=f( (C",6") 2 (C", %) o (u', WS, ws',aw',w’, wk’,H) e e p A —B, and

d) ((0,2),(07,%"),k) |= Gt * True, and

(e) either u’ <; uand k > 0,

oru’ =uand k = 0and w = w and ws’ <l;f+l

WS,
oru’=uandk =0and w = w and ws’ z(ﬂcﬁ ws and wk” < wk,
oru’ =uandk = 0and w = w and ws’ zf;;‘ﬂ ws and wk’ = wk < H + 1and & C £’;and
) if ((0,2),(0”,2")) |= {[Dt]) * True and k = 0, then ws" <q7,1 ws.

Proof: We have two cases depending on whether C; is skip or not.
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(I) If (Cy; while (B){C},0 W oF) —  (C{; while (B){C},c"), then (Cy,0 W oF) —( (C{,0").
From D,R,G I:f( (C1,0) = (C,Z) o (u,wsy, wsy, aw,wy, wky, H) U¢,. ¢, p, we know there
exist o/, C”, 2/, k, u’, WS, ws, aw’, wy, wki, ¢/ and & such that

(A) ¢” =0’ Wop, and

B) (C,ZWXf) — (C", X' WXF), and

©) D,R,G |=tX (C,0")=(C",Z") o (u’,Ws], ws|,aw’, w;, wk{, H) Ug e, p.and

(D) ((O.’Z)’(O-”Zl)’k) |= Gt * True, and

(E) either u” <x u and k > 0,
oru’ =uandk = 0and w; = w; and ws; <f;f1 WSq,

oru’ =uandk = 0and w; = w; and ws; z;f‘
oru’ =uandk = 0and w] = w; and ws] zf;fl ws; and wk] = wky < H and & C &];and

(F) if ((0,%),(c",2")) £ ([Dt]) * True and k = 0, then ws] <q¢; ws;.

Since ((0,X),(07,2"),k) |= Gy * True, (0,%) |= J = true, ] = I, I> G and Sta(J,G V R), we
know

ws; and wk] < wkq,

(¢’,2) |= J # true .

Suppose k; = fi(¢c’,%’). Since ] = (R,G: D’L (Q,B’)), we can prove
k=0 = kl <ks.
Let
&=t (" #t) A ((0",Z') [F Enabled(D)) * true)} .
Since for any t’ such that t’” # t we have Gy = Ry, and since wffAct(R,D’), D’ < D and
Enabled(D) = I, we can prove:
k=0 = §0 - §6 .
Let
ws” = (0,0) ::inchead(ws], (w;,1)) , Ws” = ((0,0),0) ::inchead(ws], ((k;, w;),1)) .
If w = wy, let w’ = w; otherwise let w’ = w]. Thus we know w; < w’.
Also we know: if k = 0, then w’ = w, and if ws] <¢ ws; then ws" <q,q ws.
If& #0V3 [=—-en(C”),let wk’ = 1and & = £/; otherwise let wk’" = wk{ +1and &’ = /.
Since C = await(B’){C’}, we know C” = await(B’){C’} or C” = skip. Then, by the
co-induction hypothesis or by Lemma B.11, we know
D.R,G ] (C[:while (B){C}.0") 2 (C".3") o (u' . ws', ws',aw,w', wk',H +1) Ug: ¢ p A—=B.
One of the following holds:
o If & #0V X = —en(C), then wk=1and & = &,.
If k = 0, we know Ws; <:;{k1 WSy or Ws] zxkl

r _wk r wk
WS <’H+1 WS or WS i WS.

WS;. Since wk; > 1, we know

Ifk =0,
e Suppose & # 0. Since & C £, we know & # 0. Thus wk’ = 1 and &’ = &/.
e Suppose X |= =en(C). Since (C,2 W Xp) — 7 (C”,2" W XF), we know %’ |= —en(C").
Thus wk’ = 1and &' = &;.
o If ) =0 A X [z en(C), then wk = wky; + 1 and & = &.

If k = 0, we know Ws] <:;f‘ WS; or Ws] z:}”{kl ws;. Thus we know

ws' <Yf . Ws or Wws'aRF . Ws.
Since ¥ |= en(C), C = await(B’'){C’} and (C,2 W Xp) — ; (C",¥" W XF), we know
> Een(C”).Ifk =0,
e Suppose &) # 0. Thus wk’ = 1 and &’ = £/. Thus wk’ < wk.
e Suppose & = 0. Thus wk’ = wk{ + 1and &’ = /.
o If wk] < wky, then wk’ < wk.
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o If wki = wk; < H and & C &/, then wk' = wk<H +1and &£ C &',
(II) If C; = skip and (Cy; while (B){C},0 W oF) —» (while (B){C},o W oF),
from D,R,G |=tX (C1,0) = (C,%) o (u,wsy, wsy, aw,wy, wki,H) ¢ ¢, p, we know there
exist C"” and X’ such that
A) (C,XwXf) —; (C", %" WXF), and
®) ((0,%"), (u,w1),C”) E pr, and
(C) ws; = ((0,0),0) and ws; = (0,0) and wk; = H and ¢ = 0, and
(D) ((0,2),(0,2"),0) = Gy * True.
Since (0,2) |= J = true, ] = I, I> G and Sta(J,G V R), we know
(0,%) |E J = true..

Suppose k; = fi(c,%’). Since ] = (R,G: D’L Q), we can prove
k=0=kl <ks.
Let
&E=1t"| (" #t) A ((0,Z') £ Enabled(Dy)) * true)} .
Since for any t’ such that t’” # t we have Gy = Ry, and since wffAct(R,D’), D’ < D and
Enabled(D) = I, we can prove:
k=0—= g’/() - §6 .
Let
ws” = (0,0) ::inchead (wsy, (wy,0)) = (0,0):: (wy,0) .
Thus ws” <¢,1 ws. Let
ws’ = ((0,0),0) ::inchead (wsy, ((k},w1),0)) = ((0,0),0) :: ((kZ, w1),0) .

Ifé&; #0V 3 |=—en(C”),let wk’ = 1 and &’ = &]; otherwise let wk' = H + 1and & =0
Then we know in either case {’ = £.
One of the following holds:
o If & # 0V X = —en(C), then wk = 1 and & = &,

If k = 0, we know

ws' <¥F WS or  ws ~pFws.

Ifk =0,

e Suppose & # 0. Since & C &/, we know & # 0. Thus wk’ = 1 and &' = &/.

e Suppose X |= —en(C). Since (C,2 W Xf) —{ (C”,X" W XF), we know ¥’ |= —en(C").

Thus wk’ = 1and &’ = &;.

o If& =0 A X |=en(C), then wk = wk; + 1and & = &.

Since wk; > 1, we know

WS’ <uF WS

Below we prove:

D,R,G |:t)f (while (B){C},0) <(C",3’) o (u,ws’, ws’, aw,w, wk’,H + 1) Yz, pA-B. (B.2)

Proof: By co-induction. Suppose o = (s,h). Since p = (B = B) * I, we know
(0,%') |= 1 *true, and either [B]s = true or [B]s = false .
We only need to prove the following (1)(2)(3)(4)(5).
(IYa) &' U &, Cs(TIDS) and t ¢ & and t € &,.

(b) For any t’ € £’ U &,, we have (0,X’) |= Enabled(Dy) * true.

(c) If (0,%’) |= Enabled(Dy) * true, then o |= en(while (B){C}).

(d) If o |= —en(while (B){C}) and 3’ |= en(C"), then &, # 0.

(e) f wk'=H +1,then &’ =0.1f wk’" < H + 1,then &’ # 0 v ¥’ |= =en(C").
(f) lws’| <H +1and (1 < wk’ <|ws’|—1)V (wk' =H +1).

Proof: Immediate from D’ < D.
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(2) If while (B){C} = skip, then ...
Proof: It is vacantly true.
(3) For any o, (while (B){C},0 W oF) —/»> abort.
Proof: It holds because [B]; is not undefined.
(49) If (while (B){C},0 W op) —» (C’,c"”), then there exist ¢’, C""’, 2", k, u’, Ws”, ws”’, aw’,
w’, wk”, £’ and &/ such that
(a) 0" = 0’ Wop, and

(b) (C", 2 WXf) —; (C",2" ¥ XF), and
(c) D,R,G |=tX (C',a")=(C",Z")o(u',ws", ws”,aw', W', wk” ,H + 1) J¢» ¢ p A =B, and
d) ((0,2),(c’,2"),k) |= G * True, and
(e) either u’ <x uand k > 0,
orw’ =uand k = 0and w’ = wand ws” <*¥ ws’,

H+1
oru’ =uand k = 0and w’ = w and ws”’ z};_’{":rl ws’ and wk”’ < wk’,
oru’ =uand k = 0and w = w and ws” z‘;ﬁl ws’ and wk'” = wk’ < H + 1 and
& c &’ and

) if ((6,2),(c",2")) = ([D4]) * True and k = 0, then ws”" <g;,1 ws'.

Proof: We have two cases depending on whether [B]; is true or false.

e If [B]s = true, we know (while (B){C},o W op) —» (C; while (B){C},o ¥ oF). Also
we know ((0,X’), (u,w1),C”) |= pt AB. Since p A B = J xtrue A arem(await(B"){C’}),
we know

(0,2") | J #true and C” = await(B"){C’}.
o If&; #0V X |= —en(C”), then wk’ = 1 and &’ = £/. We have two cases below:
e If (6,2’) |= Enabled(Dy) * true, we know
((0,2"), (u,w1),C"”) |= pt A B A Enabled(Dy) * true .
Since p A B A Enabled(Dy) * true = p’ * (¢ A emp), we know there exists w] such
that w] < w; and
((0,2%), (u,w)),C”) = py -

From D,R,G |5, {p’}C{p} and height(C) = H, let ws] = (0,|C|) and ws] =
((0,0),]C]) and wk] = H, we get: there exists aw’ and &, such that

D,R,G |=tX (C,0)=(C",3) o (u,Ws], wsy,aw’, wi, wki,H) Ug.g, p .
Let

ws” = (0,0)::(wy,|C| + 1) and ws” = ((0,0),0):: ((k;,w]),|C| +1).
Then, by the co-induction hypothesis, we know

D.R.G X (C;while (B){C},0) <
(€”,%") o (u,ws”, ws”, aw’,w, wk’, H + 1) Ugre pA—B .

wk

He1 ws’. Since (0,%’) |= I * true, we can

Also we have ws”" <¢7,; ws’ and ws” <
prove
((0,%2),(0,%),0) |= Gt * True .
o Otherwise, from p A B = p’, we know
((G’Z/)’(u9wl)’cn) |: ptl .

From D,R,G |5, {p'}C{p} and height(C) = H, let ws] = (0,|C|) and ws] =
((0,0),]C]) and wk] = H, we get: there exists aw’ and &, such that

D,R,G |=tX (C,0)=(C",%) o (u,ws], wsy,aw’, wy, wki, H) Ug.z, p
Let

ws” = (0,0) :: (w1, |C| + 1) and ws” = ((0,0),0):: ((ki, w1),|Cl + 1) .
Then, by the co-induction hypothesis, we know
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D,R,G E} (C;while (B){C},0) <
(C",Z) o (u,ws"”, ws”,aw', w,wk',H + 1) Jg7 ¢r pA—B .
Also we know ws” ~*¥ ws’ and wk’ < H + 1. Since (5,3’) |= I * true, we can

T H+1
prove:
((O.’ 2/)7 (G’ZI)’O) |= Gt * True .

o If{, =0AY |=en(C”), then wk'" = H + 1and &’ = 0. Also from ] = (R,G: D’L)
(0,B’)), we know (0,X’) |= Q * true. Thus we know
((0,2"), (uy,w1),C"”) |= pt A B A Qy * true .
Since p A B A Q * true = p’ x (0 A emp), we know there exists w] such that w] < w;
and
((0,2"), (u,w}),C") = py -

From D,R,G =, {p’}C{p} and height(C) = H, let ws] = (0,|C|) and ws] =
((0,0),|Cl) and wk; = H, we get: there exists aw’ and &), such that

D,R,G sz( (C,0)2(C",2') o (u,ws], wsj, aw’, wy, wk, H) o p.
Let

ws” = (0,0):: (w,|C| + 1) and ws” = ((0,0),0):: ((k;,w;),|C| +1).
Then, by the co-induction hypothesis, we know
D,R,G |=tX (C;while (B){C},o) < (C",%’) o (u,ws”, ws”,aw',w,wk/,H + 1) J¢ ¢,

pA-B.
wk'

ol ws’. Since (0,X’) |= I * true, we can

Also we have ws” <47,1 ws’ and Ws” <
prove:
(0,%2),(0,%'),0) |= Gt * True .
e If [B]s = false, we know (while (B){C},0 W o) —»+ (skip, o & oF). By (sk1p) rule, let
ws” = ((0,0),0) and ws” = (0,0) and wk” =H +1 and & =0,
we know
D,R,G sz( (skip,0) < (C",%’) o (u,ws”, ws”,aw,w, wk'",H + 1) Ygr ¢, p A -B.
Also we have ws”’ <4y,1 ws’ and ws”’ <%’(+1 ws’. Since (0,%’) |= I * true, we can prove
((6,2),(0,%"),0) |= Gy = True .
(5) If ((0,%'),(0’,2"),k) |= R * Id, then there exist u’, ws”, ws”, aw’, w’, wk”’, &;, "’ and
& such that
(a) D,R,G |=tX (while (B){C},0’) < (C",Z") o (u',Ws”, ws”,aw',w', wk" ,H + 1) U~ ¢,
p A -B,and
(b) u’ ~k u, and
k=0=w =w,and
(©) fa = {t" [ (t" € &) A(((0,27),(07,2")) [F {Dy) * Id)} and
k=0=ws" <}¥ ws'vws”~¥¥ ws and

k=0Awk <H+1A(E %0V (E E -en(C”) AZ" | en(C”))) = ws” <I¥  ws’

and

k=0A(E\E 20V |=-en(C”)) = wk”" < wk’, and

k=0AwWK"=wkl = &'\é; € &, and

(d) if k = 0 and (0,%") |= Enabled(Dy) * true, then ws” <741 ws'.
Proof: Since Sta(p, R  |d), we know there exist u” and w; such that
(6", 2"), (", w]),C") = p; and v’ = u and k=0 = w] = w; .
Also we know
(¢’,2") |= J * true .

Suppose kg’ = fi(¢’,Z"). Since ] = (R,G: Z)'L (Q,B’)), we can prove
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k=0= k!’ <k!..
Let
o =t (" #£t) A((6,2”) = Enabled(Dy,) = true)} and

Ea={t' | (Y €&) A (((0,2),(0".2)) [E(Dy) = 1d)}.

Since Enabled(D) = I, D’ < D and wffAct(R, D’), we can prove:
k=0= I\G .

If w] = wy, let w' = w; otherwise let w’ = w{. Thus we know w] < w’. Also we know: if
k =0, then w = w. Let

ws”" = (0,0)::inchead(wsy, (w],0)) = (0,0)::(w;,0) and

ws”” = ((0,0),0)::inchead(wsy, ((k{’,w;),0)) = ((0,0),0):: ((ki’,w]),0) .
Thus if k = 0, then ws”” = ws’, and
ws” <@k ws’ or ws”~MF . ws'.
If¢) #0VE" |= —en(C”), let wk” = 1and &” = &; otherwise let wk” = H + 1 and
é‘_’// - 0.
By the co-induction hypothesis, we know
D,R,G |=tX (while (B){C},0") < (C",2") o (u,Wws"”, ws”,aw,w’, wk' ,H + 1) |~ ¢,
pA-B.
Suppose k = 0. If wk’ < H + 1, then wk’ = 1. If &; # 0, then there exists t’ such that
t’ € ¢ and ((0,%'),(c’,2")) |= (Dy) = Id. Since D’ < D, we can prove
((0.5).(c".5")) (D)) +1d..

Since ] = (R,G: D’L (Q,B’)), weknow forany t’ # t,¢” and X", if ((¢,2’), (¢/,2"),0) |=
(D! A Ry) = 1d, then fi(c’,%”") < k;. Thus we can prove:

K<kl
Also if ¥’ | —en(C”) A X" [ en(C”), from ] = (R,G: Z)’L (Q,B")), we can still
prove:

k! <kl.

Thus ws” <f;f;1 ws’ holds.
Ifk=0A(E\E 0V |=-en(C"”)), we know wk” = 1. Thus wk” < wk'.
Ifk =0A wk" = wk’, we know &'\&; C &”.
Thus we have proved (B.2).
(5) If ((0,%),(c”7,2),k) |= Ry * 1d, then there exist u’, ws’, ws', aw’, w’, wk', &4, €44, ' and &,
such that
(a) D,R,G [ (Ci;while (B){C},0") < (C,2)o (', Ws", ws',aw’, w’, wk',H + 1) U e p A B,
and
(b) u’ ~ u, and
k=0=w =w,and
(©) &a={t' | (t' € &) A (((0,%),(0",2)) E (Dy) * 1d)} and
k=0=ws <} wsVvws ~y wsand
k=0AWk<H+1A(E;#0V (Z = —en(C) AT |=en(C))) = ws’ <¥f+1 ws and
k=0A(E\és 0V 3 |= —en(C)) = wk’ < wk, and
k=0Awk = wk= &\&; C &, and
(d) if k = 0 and (0,2) |= Enabled(Dy) * true, then ws” <4y, ws; and
(€) €aa = {t' | (' € &) A (((0,2),(0",Z")) F (Dy) *1d)} and
k = 0 A is_await(Cy; while (B){C}) = &,\&qq € &) and
k = 0Ais_await(Cy; while (BY{CH A (éqzg # OV (2 |E —en(C)AY = en(C))) = aw’ < aw
and
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(y = sfair) A k = 0 A is_await(Cy; while (B){C}) A (o |= —en(Cy; while (B){C})) A (¢’ =
—en(Cy; while (B){C})) = aw’ < awand
(x = wfair) A k = 0 A is_await(Cy; while (B){C}) = aw’ < aw.
Proof : From D,R,G |=tX (C1,0) 2 (C,2) o (u, WSy, wsy, aw, wy, wky, H) U¢, ¢, p, we know there
exist u’, WS, ws, aw’, wy, wk}, §{;, a4, €] and £ such that
(A) D,R,G |=f( (Cr,0") 2(C,37) o (u’,Ws], ws;, aw’, w], wki, H) Ug,e, p.and
(B) v’ =~ u, and
k=0= w] = wy, and
©) &=t 1 ({t' € &) A(((0,%),(07,2)) | (Dy) *1d)} and
k=0=>ws < ws; Vws| ~2" ws; and
k=0Awk <HAE #0V(SE-en(C) AT | en(C))) = ws] <’ ws; and
k=0A &\, #0VE | -en(C) = wk] < wky, and
k=0Awki =wk; = &\, C &, and
(D) if k = 0 and (0,%) |= Enabled(Dy) * true, then ws] <4 ws;; and
(E) &aa ={t"| (t' € &) A (((0,2),(0",3)) |E (Dy) *1d)} and
k =0 Ais_await(C;) = &;\&uq C &, and
k=0Ais_await(C;) A (égq 0V (2 |= —en(C) A Y = en(C))) = aw’ < awand
(y = sfair) Ak =0 Ais_await(Cy) A (o |= —en(Cy)) A (6’ |= —en(C;)) = aw’ < awand
(x = wfair) Ak =0 Ais_await(C;) = aw’ < aw.
Since (0,2) |= J * true and Sta(J,G V R), we know
(¢’,2") |= J * true..

Suppose k; = fi(¢’,%’). Since ] = (R,G: Z)’L (Q,B")), we can prove
k=0=k{ <ks.

Let
&E=1t" 1" #t)A((0",2") = Enabled(Dy,)  true)},
Lo ={t" | (" € &) A (((0,2),(c",2)) |E (Dy) * 1d)} and
J =1t e &) A(((0,2),(07.2) [ (Dr) = 1d)}.
Let

ws’ = (0,0) ::inchead(ws{, (w1,1)) , ws’" = ((0,0),0) ::inchead(ws{, ((k;,w;),1)) .
If w] = wy, let w’ = w; otherwise let w’ = w]. Thus we know w; < w’.
Also we know: if k = 0, then w’ = w, and if ws] <4 ws, then ws’ <g74; ws.
If& #0V 2 | —en(C),let wk' = 1 and &’ = £; otherwise let wk’ = wk{ + 1 and &’ = ¢].
Then, by the co-induction hypothesis, we know
D,R,G I:tX (C/; while (B){C},0’) < (C, %) o (u',ws’, ws’, aw’,w’, wk’,H + 1) Ugre, pA—B.
One of the following holds:
o If& #0V X |= —en(C), then wk=1and & = &,.
Thus &; = (;’. Since Enabled(D) = I, D’ < D and wffAct(R, D’), we can prove:
k=0 = &\E/ C¢.
ws; or ws| ~3H
ws' <uF Ws  or ws xYE ws.
Suppose k = 0. If &; # 0, then there exists t’ such that t’ € & and ((0,2),(¢’,2"))
(Dy) * Id. Since D’ < D, we can prove
((0,2),(0".2") EAD/) = 1d .

Since ] = (R,G: D’L (0,B")), we know

Wkl

H WS;. Since wk; > 1, we know

If k = 0, we know ws] <

, Vol. 1, No. 1, Article . Publication date: January 2018.



:82 Hongjin Liang and Xinyu Feng

k< ks .

Also if 3 |= —en(C) A Y’ |= en(C), from J = (R,G: Z)’L (Q,B’)), we can still prove:
ki <ks.

Thus ws’ <‘7‘“f+1 ws holds.

Ifk=0A(E\ég # 0V Y |= -en(C)), we know wk’ = 1. Thus wk’ < wk.

If k =0 A wk' = wk, we know £\&; C &'.
o If§y =0 AX = en(C), then wk = wk; + 1and & = &.

Thus &g = &). If k = 0, we know Ws] <f;f1 WS; or Ws] zy{kl ws;. Thus we know

ws' <uF WS or ws xYFws.

fk=0Awk<H+1A(Eg#0V (2 = —en(C) AY |= en(C))), we know k = 0 A wk; <
HAE;#0V (2 F —en(C) AY |=en(C))). Thus ws] <f]”{k1 ws;. Thus ws’ <;“f+1 WS.
Ifk=0A(E\és #0V 3T |= —en(C)), we know wk; < wk;. Thus wk' < wk.
If k=0 A wk' = wk, we know wk’ = wk| + 1, wk| = wky and &’ = &]. Thus £\&; C &',

Thus we are done. m]

Lemma B.11. If

(1) pAB=p’;p ABA (Enabled(D) Vv Q) * true = p’ = (¢ A emp);
(2) D.R.G =y {p'}Cip};
3)p=>B=B)«I;]=1I1Sta(J,RVG); Q=L pAB= ] =true A arem(await(B’){C’});

@ ] = (R.G: D15 (0.B): D’ < D; wffAct(R.D");
(5) I>{R,G}; Sta(p,R = Id); Enabled(D) = I;
(6) for any t andt’ such thatt # t’, we have G = Ry;
(7) D,R,G I:tX (C1,0) = (skip,X) o (u, WSy, wsy, aw, wy, wky, H) e, ¢, p;
8) (0,%) |= J = true; height(C) = H; await(B"){C’} # await(true){skip}; fi(c,2) = ks;
w; < w;
(9) & ={t" | (t' #t) A ((0,2) |= Enabled(D,)) = true)};
(10) ws = (0,0) ::inchead(wsy, (w1, 1));
(11) ws = ((0,0),0) ::inchead(wsy, ((ks,w1),1));
(12) one of the following holds:
o H#0:wk=1NE=&;
o g(]:@.'WkZ Wk1+1/\§=§1,’
then D,R,G |=tX (C1; while (B){C},0) < (skip,X) ¢ (u,ws, ws,aw,w, wk,H + 1) J¢ ¢, p A -B.

Proor. By co-induction. We only need to prove the following (1)(2)(3)(4)(5).
(1Xa) Suppose o = (s,h). Then £ U ¢, C s(TIDS) and t ¢ & and t ¢ &,.
(b) For any t’ € £ U &,, we have (0,2) |= Enabled(Dy) = true.
(c) If (0,2) |= Enabled(Dy) * true, then ¢ |= en(Cy; while (B){C}).
(d) If o |= =en(Cy; while (B){C}) and X = en(skip), then &, # 0.
() fwk=H +1,then ¢ =0.1f wk < H + 1,then & # 0 vV I |= —en(skip).
() lws] < H +1and (1 < wk < |ws|—1) V (wk=H +1).
Proof: From
D,R,G E} (C1,0) = (skip, =) o (u,Ws1, ws1, aw, w1, wki, H) Ug, ¢, P,
we know for any t’ € & U¢,, we have (0,X) |= Enabled(Dy) * true. Since D’ < D, we know
for any t’ € &, we have (0,3) |= Enabled(Dy) * true. Thus we are done.
(2) If (Cy; while (B){C}) = skip, then ...
Proof: It is vacantly true.
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(3) For any oF, (Cy; while (B){C},o W oF) —/+ abort.
Proof: From
D,R,G = (C1,0) = (skip, =) o (u,WS;, wsi, aw, wy, wky, H) Je,e, s

we know (Cy,0 W or) —/> abort. By the operational semantics, we are done.
(4) If (Cy; while (B){C},0 W oF) — (C’,0"’), then there exist ¢/, k, u’, Ws’, ws’, aw’, w’, wk', &’
and ¢ such that
(@) 0" =0’ Wop, and
(b) D,R,G |=tX (C',0") = (skip,X) o (u',ws’, ws',aw’, w’, wk',H) Ug & p A =B, and
(©) ((6,2),(c",2),k) |= Gy = True, and
(d) either u’ <x uand k > 0,

oru’ =uand k = 0and w’ = w and ws’ <‘7v{k+1 W5,

oru’ =uand k = 0and w’ = w and ws’ zy{kﬂ ws and wk’ < wk,
oru’ =uand k =0and w = w and ws’ z(ﬂ:l ws and wk’ = wk < H + 1and &€ C ¢’;and
(e) if ((0,2),(0”,%)) |= {([Dt]) * True and k = 0, then ws" <g7,1 ws.
Proof: We have two cases depending on whether C; is skip or not.

(I) If (Cy; while (B){C},0 W o) —  (C{; while (B){C},c"), then (Cy,0 W oF) — ( (C{,0").
From D,R,G |=tX (C1,0) < (skip,Z) o (u,wsy, wsy, aw, wy, wky, H) U, ¢, p, we know there
exist o/, k, u’, WS, ws], aw’, w], wki, &/ and & such that

(A) ¢” = 0’ W oF, and

(B) D,R,G |=tX (Cf,0") < (skip,2) ¢ (u’,WSi,wsi,au/,wi,wk{,?() Ué@é"; p, and
©) ((0,%),(c',%),k) |= Gt * True, and

(D) either v’ <x uand k > 0,

oru’ =uand k = 0 and w] = w; and ws] <V

H
oru’ =uand k = 0and w; = w; and ws; z;“fl ws; and wk] < wki,

WSy,

oru’ = uandk = 0and w] = wy and ws] z;ffl ws; and wki = wky < H and & C &];and
(E) if ((0,2),(c",%)) E {[Di]) * True and k = 0, then ws] <g ws;.
Since ((0,2),(0’,2),k) = G; = True, (0,2) |= J = true, ] = I, I> G and Sta(J,G V R), we
know
(67,2) |E J = true..

Suppose k; = fi(c’,%). Since ] = (R,G: D’—f—> (Q,B’)), we can prove

k=0 = kl <ks.
Let

&E=1t"| (" #t) A ((¢",2) | Enabled(Dy)) * true)} .

Since for any t’ such that t” # t we have Gy = Ry, and since wffAct(R,D’), D’ < D and
Enabled(D) = I, we can prove:

k=0= & C 56 .
Let

ws’ = (0,0) ::inchead(ws], (w],1)) , Ws’ = ((0,0),0) ::inchead(ws], ((k;, w),1)) .
If wi = wy, let w’ = w; otherwise let w’ = w]. Thus we know wj < w'.
Also we know: if k = 0, then w’ = w, and if ws] <g ws; then ws" <q,1 ws.
If & # 0,let wk’ = 1and ¢’ = £;; otherwise let wk’ = wk| + 1 and &’ = &/.
Then, by the co-induction hypothesis, we know
D.R.G =] (C}:while (B){C}.0") < (skip.%) o (u’,ws', ws’,aw’,w’, wk',H +1) Ug & p A=B.

One of the following holds:
o If & # 0, then wk=1and ¢ = &.

If k = 0, we know ws] <¥& s, or ws]

o ~" ws, . Since wk; > 1, we know

R >
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ws' <¥F Ws  or ws xF ws.
Since & C &;, we know & # 0. Thus wk’ = 1 and &' = &/.
o If & = 0, then wk = wk; + 1 and & = &;.
If k = 0, we know Ws] <;"{k1 WS; or WS} z%kl ws;. Thus we know
ws' <uF WS or  ws ~YFws.
Ifk=o0,
e Suppose &, # 0. Thus wk’ = 1 and ¢’ = ;. Thus wk’ < wk.
e Suppose & = 0. Thus wk’ = wk{ + 1and &’ = /.
o If wk] < wk;, then wk’ < wk.
o If wki = wk; < H and & C &/, then wk' = wk < H +1and £ C &',
(I1) If C; = skip and (Cy; while (B){C},0 W oF) —»¢ (while (B){C},o W oF),
from D,R,G |=f( (C1,0) = (skip,X) o (u, WSy, ws1, aw, wi, wky, H) ¢, &, p, we know
A) ((0,%), (u,wy),skip) = pi, and
(B) ws; = ((0,0),0) and ws; = (0,0) and wk; = H and & = 0, and
©) (0,%),(0,%),0) |= Gt * True.
Let
ws” = (0,0) ::inchead (wsg, (wy,0)) = (0,0):: (wy,0) .
Thus ws’ <¢7,1 ws. Let
ws’ = ((0,0),0) ::inchead (wsy, ((ks,w;),0)) = ((0,0),0) :: ((ks, w1),0) .
If & # 0, let wk’ = 1 and &’ = &); otherwise let wk’ = H + 1 and £’ = 0. Then we know in
either case &’ = &.
One of the following holds:
o If &y # 0, then wk=1and & = &. Also wk’ = 1and &’ = &,.
If k = 0, we know
ws’ ~¥E WS,
o If £, = 0, then wk = wk; + land € = & = 0. Also wk’' = H + 1and &' = 0.
Since wk; > 1, we know
ws’ <k ws.

H+1
Below we prove:

D,R,G E} (while (B){C},0) < (skip,Z) o (u,ws’, ws’, aw, w, wk',H + 1) Uee,pA-B. (B3)

Proof': By co-induction. Suppose o = (s, h). Since p = (B = B) * I, we know
(0,%) E I =true, and either [B];s = true or [B]s = false .
If [B]s = true, since ((c,%), (u,w;),skip) |= prand pAB = JxtrueAarem(await(B’){C’}),
we know ((0,%), (u,w;),skip) |= arem(await(B’){C’}), which is impossible. Thus
[B]s = false.
We only need to prove the following (1)(2)(3)(4)(5).
(IYa) & U &, Cs(TIDS) and t ¢ & and t ¢ &,.
(b) For any t’ € £’ U &,, we have (0,X) |= Enabled(Dy) * true.
(c) If (0,2) |= Enabled(Dy) * true, then o |= en(while (B){C}).
(d) If o |= —en(while (B){C}) and ¥ |= en(skip), then &, # 0.
(e) f wk'=H +1,then &’ = 0.1f wk’ < H + 1, then ¢’ # O vV ¥’ |= =en(skip).
(f) lws’| <H +1and (1 < wk’ < |ws’'| —1) vV (wk' =H +1).
Proof: Immediate from D’ < D.
(2) If while (B){C} = skip, then ...
Proof: 1t is vacantly true.
(3) For any oF, (while (B){C},0 & oF) —/ abort.
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Proof: It holds because [B]; is not undefined.
(4) If (while (B){C},0 W o) — (C’,0”"), then there exist o”, k, u’, ws”, ws”, aw’, w’, wk”/,
& and & such that
(a) 0” = ¢’ W op, and
(b) D,R,G |:tX (C’,0") = (skip, %) o (u’,ws"”, ws”,aw' ,w', wk” ,H + 1) J¢» ¢z p A =B, and
(©) ((0,2),(0',%),k) E Gt * True, and
(d) either u’” < uand k > 0,
oru’ =uand k =0 and w = w and ws”’ <;V{k/+l ws’,
%’il ws’ and wk”’ < wk/,
oru’ =uand k = 0and w = w and ws” z‘q”{k:rl ws’ and wk”/ = wk’ < H + 1 and
& c &’ and
(e) if ((0,%),(0’,%)) E {[D4]) * True and k = 0, then ws”" <qr, 1 ws'.
Proof: Since [B]s = false, we know (while (B){C},o W o) — (skip, o ¥ oF). By (sKip)

oru' =uand k =0and w = wand ws”’ =~

rule, let
ws” = ((0,0),0) and ws” = (0,0) and wk” =H +1 and &” =0,
we know
D,R,G |=f( (skip,0) < (skip,2) o (u,ws”, ws”, aw,w, wk” ,H + 1) Jgr ¢, p A —B.

Also we have ws” <¢7,1 ws’ and ws”’ <l;(’(+1 ws’. Since (0,2) |= I * true, we can prove

((0.’2)9(0.’2)’0) |: Gt * True .
(5) If ((0,2),(0”,2'),k) |= Ry = Id, then there exist u’, Ws”, ws”, aw’, w’', wk”’, &4, "’ and &,

such that
(a) D,R,G |={ (while (B){C},a”") < (skip,Z’) o (u’,Ws", ws”,aw’, w’, wk' ,H + 1) Ugr ¢
p A -B,and

(b) u’ =k u, and
k=0=w =w,and
(©) fa = {t" [ (t" € &) A(((0,%),(0",2)) [F {Dy) * Id)} and
k=0=ws" <} ws'vws”~s¥ ws and
k=0AwWK <H+1AE#0=ws" <}k ws and
k=0AE\E +0 = wk'”" < wk',and
k=0AwWK'"=wkl = &'\&; C &, and
(d) if k = 0 and (0,2) |= Enabled(Dy) * true, then ws” <¢;,; ws'.
Proof: Since ((c,%), (u,w1),skip) |= p and Sta(p,R * Id), we know there exist u” and w;
such that
((6",Z'),(u',wy),skip) = p; and u' = u and k=0 = w; = w; .
Also we know
(07,2) | J * true.

Suppose k; = fi(c’,2’). Since ] = (R,G: D’L (Q,B’)), we can prove
k=0=k, <ks.
Let
o =t " #1) A((0’,%) = Enabled(Dy,) * true)} and

Ea={t" | (' € &) A (((0,%),(0",2)) E(Dy) *1d)}.

Since Enabled(D) = I, D’ < D and wffAct(R,D’), we can prove:
k=0 = PG <&

If w] = wy, let w’ = w; otherwise let w’ = w]. Thus we know w] < w’. Also we know: if
k =0, then w’ = w. Let
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ws”" = (0,0)::inchead(wsy, (w],0)) = (0,0)::(w],0) and
ws” = ((0,0),0) ::inchead(wsy, ((k;,w;),0)) = ((0,0),0):: ((k;,w;),0) .
Thus if kK = 0, then ws”’ = ws’, and
ws” <¥K ws’ or ws” ~yK ws'.
If & # 0,let wk” = 1and £ = &/; otherwise let wk” = H + 1 and £ = 0.
By the co-induction hypothesis, we know
D,R,G |=§( (while (B){C},0") < (skip,X’) o (u,ws”, ws”,aw,w’, wk'",H + 1) Ue ¢,
pA -B.
Suppose k = 0. If wk’ < H + 1, then wk’ = 1. If &; # 0, then there exists t’ such that
t' € & and ((0,2),(0',2")) = (Dy) * Id. Since D’ < D, we can prove
((0,%),(¢".2")) E(D{) *1d .

Since ] = (R,G: Z)'—f—> (Q,B’)), weknow forany t’ # t,¢"and ¥',if ((¢,2), (¢’,2),0) |=
(D{) A Ry) *1d, then fi(c’,%) < ks. Thus we can prove:
ki <ks.
Thus ws”’ <l}"ﬁl ws’ holds.
Ifk=0A &\ # 0, we know wk'” = 1. Thus wk” < wk'.
Ifk=0Awk'" = wk', we know &'\¢y C &”.
Thus we have proved (B.3).
(5) If ((0,%),(07,%"),k) |= R * Id, then there exist u’, Ws’, ws’, aw', w’, wk', &4, E,q, &' and &,

such that
(a) D,R,G sz( (Cy; while (B){C},0”) < (skip,>’) o (u’,ws’, ws’,aw’,w’, wk',H + 1) Jere
p A B, and

(b) u’ =~k u, and
k=0=w =w,and
(©) &a={t' | (t' € &) A (((0,%),(0",2)) E (Dy) * 1d)} and

_ r _wk r wk
k=0=—Wws <Fip WSV WS~z ws and

k=0Awk<H+1AE #0=>ws' <}F wsand
k=0A&E\¢ #0 = wk' < wk, and
k=0Awk' = wk= £\&; C &, and
(d) if k = 0 and (0,2) |= Enabled(Dy) * true, then ws’ <g/,; ws; and
(€) faa =1{t' | (t' € &a) A (((0,2),(0",2")) F (Dy) + 1d)} and
k = 0 A is_await(Cy; while (B){C}) = &,\é4q C €, and
k = 0 A is_await(Cy; while (B){C}) A é4q # 0 = aw’ < awand
(y = sfair) A k = 0 A is_await(Cy; while (B){C}) A (o |= —en(Cy; while (B){C})) A (¢’ =
—en(Cy; while (B){C})) = aw’ < awand
(x = wfair) A k =0 A is_await(Cy; while (B){C}) = aw’ < aw.
Proof: From D,R,G |=tX (C1,0) < (skip,X) ¢ (u, WSy, ws1, aw, wy, wky, H) Ug,¢, p» we know
there exist u’, WS}, ws;, aw’, wy, wki, &, Eaa, &) and & such that
(A) D,R,G |:§( (C1,0") = (skip,X’) o (u’,WS{,ws{,aw’,w{,wk{,?—() Ué’,f; p, and
(B) u’ ~¢ u, and
k=0= w] = wy,and
©) &=t 1 ({t" € &) A(((0,2),(07,2)) |E(Dy) = 1d)} and
k=0= ws] <‘7”{k1 WS V WS] zf;fl ws; and
k=0Awk < HAE,#0=>ws] <}
k=0A&\E, #0 = wki < wky, and
k=0Awki =wk; = &\, C &, and

ws; and
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(D) if k = 0 and (0,%) |= Enabled(Dy) * true, then ws] <4 ws;; and
(E) &aa = {t" | (t' € &) A (((0,2),(0",2)) |E (Dy) *1d)} and
k =0 Ais_await(C;) = &;\&uq C &, and
k=0Anis_await(C;) A &g # 0 = aw’ < awand
(y = sfair) Ak =0 Ais_await(Cy) A (o |= —en(Cy)) A (6’ |= —en(C;)) = aw’ < awand
(y = wfair) Ak =0 Ais_await(C;) = aw’ < aw.
Since (0,2) |= J * true and Sta(J,G V R), we know

(0’,2") |= J = true.

Suppose k; = fi(¢’,%’). Since ] = (R,G: Z)’L (Q,B")), we can prove
k=0=kl <ks.

Let
&E=1t" | (t" #1t) A((c",2") |z Enabled(D),) * true)},
Ea= V] (V' € &) A (((0,%),(c",3) E (Dy) + 1)) and
&y =1 (t" € &) A((0,%),(a",2")) F (Dr) * 1d)}.
Let

ws’ = (0,0) ::inchead(ws], (wy,1)) , Ws” = ((0,0),0) ::inchead(ws], ((k;, wy),1)) .

If w; = wy, let w’ = w; otherwise let w’ = w{. Thus we know wj < w’.
Also we know: if k = 0, then w’ = w, and if ws] <g ws; then ws’" <gr,; ws.
If & # 0,let wk' = 1 and &’ = &; otherwise let wk’ = wk{ + 1 and &’ = £]. Then, by the
co-induction hypothesis, we know
D,R,G |:f( (C!; while (B){C},0”) < (C, %) o (u',ws’, ws’, aw’,w’, wk’,H + 1) Ug e pA-B.
One of the following holds:
o If & # 0, then wk=1and & = &.

Thus £; = . Since Enabled(D) = I, D’ < D and wffAct(R,D’), we can prove:

k=0 = fo\f’/ggé.
If k = 0, we know Ws] <¥k1 WS; or WS} z;"{kl
ws' <¥k ws or ws xyF ws.
Suppose k = 0. If &5 # 0, then there exists t’ such that t’ € & and ((0,2),(¢’,2"))
(Dy) * Id. Since D’ < D, we can prove
((6,3), (0", 3)) [ (D)) +1d.

Since ] = (R,G: D’L(Q,B')), we know
k! < ks .

WS;. Since wk; > 1, we know

Thus ws’ <'V}V{k+1 ws holds.
Ifk =0 A E\éy # 0, we know wk’” = 1. Thus wk’ < wk.
If k=0 A wk' = wk, we know £\&; C &'.
o If &) =0, then wk = wk; + 1 and & = &;.
Thus &g = &). If k = 0, we know ws] <;va‘ WS; or Ws] zf;fl ws;. Thus we know

r _wk r wk
S <'H+1 WS or WS a4 WS. .
WK1

Ifk=0Awk<H+1AE #0, weknow k =0A wky <H A& #0. Thus ws] <" Ws;.
Thus ws’ <}/f, | Ws.
Ifk = 0 A E\ég # 0, we know wk| < wk;. Thus wk’ < wk.

If k = 0A wk' = wk, we know wk” = wk| + 1, wki = wky and &’ = &]. Thus £\&; C &',

Thus we are done. ]
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B.4.2 The AWAIT-W rule.

LEMMA B.12 (AWAIT-W-SOUND). If

(1) D,[1],G Ewfair {p A BKC)Mgq};

(2) p A Enabled(D) = true = B; p = (B = B);

(3) Sta((p,q),R * 1d);

(4) D’ < D; wfAct(R,D’); p = IAB’,C’. arem(await(B’){C’}) A (R: D’OL (B,B"));
then D,R,G |=yhir {plawait(B){C}{q}.

Proor. Let H = height(await(B){C}) = 1. We know |await(B){C}| = 1. Let
ws = ((0,0),1) and ws=(0,1) and wk=H =1 and ¢ =0.
For any t, for any o, 2, u, w and C, if ((0,2), (u,w),C) |= pt, then let
aw = fi(0,Z) and & = {t' | (t' #t) A ((6,%) |= Enabled(D/)) = true)} .
Below we prove:

D,R,G |=;”fa" (await(B){C},0) < (C,X) ¢ (u,Ws, ws,aw,w, wk,H) Uz ¢, q -

By co-induction. Since p = IB’,C’. arem(await(B’){C’}) A (R: Z)’OL (B,B’)), we know there
exist B’ and C’ such that

C = await(B'){C'} and (0,5) E (R: Do (B,B)).

Suppose o = (s,h). We only need to prove the following (1)(2)(3)(4)(5)(6).
(1Ya) EUE, Cs(TIDS) and t ¢ £ and t ¢ &,.
(b) For any t’ € £ U &,, we have (0,2) |= Enabled(Dy) = true.
(c) If (0,2) |= Enabled(Dy) * true, then o |= en(await(B){C}).
(d) If o |= —en(await(B){C}) and X |= en(C), then &, # 0.
(e) f wk=H,then & =0.If wk < H,then & # 0V X |= —en(C).
() |ws| < H and (1 < wk < |ws| —1) V (wk = H).
Proof: (a), (e) and (f) are immediate.
(b) Immediate from D’ < D.
(c) Immediate from p A Enabled(D) * true = B.

(d) From (0,2) = (R: D’OL (B,B’)), we know: either o |= B, or X |= =B/, or At’ # t. (0,2) |
Enabled(D),) * true. Thus we are done.
(2) If await(B){C} = skip, then ....
Proof: It is vacantly true.
(3) If await(B){C} = E[ return E ], then ....
Proof: Tt is vacantly true.
(4) For any o, (await(B){C},c W or) —/+ abort.
Proof: By the operational semantics and D, [I],G |=whir {p A BKC)q}.
(5) For any C’, 6", oF and X, if (await(B){C},0 W op) — (C’,0"’), then there exist ¢’, C’, ¥,
k,u',ws’, ws', aw', w’, wk’, & and £, such that
(@) 0"’ = 0’ Wop, and
(b) (C,EWEp) —{(C',3" WXF), and
(c) D,R,G |=;”fa” (C',0")=(C, %) o (u',ws", ws',aw', w’, wk',H) U ¢ q,and
d) ((0,%),(c’,2),k) |= Gt = True, and
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(e) either u’ <; uand k > 0,
oru’ =uand k = 0and w’ = w and ws’ <);;“WS,
oru’=uand k =0and w = wand ws’ z;}‘ ws and wk’ < wk,
oru’ =uand k = 0and w’ = w and ws’ zl’lvaSand wk’ = wk < H and & C &’; and
() if ((0,2),(c”,2")) |= {[Dy]) * True and k = 0, then ws’ <¢; ws.
Proof: By the operational semantics, we know C” must be skip and
[B]s = true and (C,o W op) —; (skip,c”’) .
Thus
((C),0 W op) — (skip,0”) .
From D, [I],G Ewfair {p A BI{C){q}, we know there exist aw’’ and &/ such that
D,[I],G |=;”fa" ((C),0) = (C,%) o (u,ws, ws,aw”,w,wk,H) Uz ¢ q .
Thus there exist o/, C’, 3/, k, u’, WS’, ws’, aw’, w’, wk’, &’ and &/ such that
(A) ¢” =0’ WoF, and
B) (C,ZwXf) —; (C',X WXF), and
©) D,[1],G |=¥"fair (skip,o’) < (C",2") o (u’,ws’, ws’, aw',w’, wk’,H) U¢ ¢ q,and
(D) ((0,2),(c’,%"),k) |= G; * True, and
(E) either u’ <x uand k > 0,
oru’ =uand k = 0and w’ = w and ws’ <‘7”{’<ws,
oru’ =uand k = 0and w’ = w and ws’ zﬁ‘ ws and wk’ < wk,
oru’ =uand k = 0 and w’ = w and ws’ z;}“WSandwk' =wk<H and & C &;and
(F) if ((0,2),(0”,2")) |= {[D]) * True and k = 0, then ws" <q; ws.
From D,[I],G |=¥"fa" (skip,o’) < (C,2) o (u’',ws’, ws’, aw’,w’, wk', H) Vg e g, we know
there exist C"” and % such that
G) (C", X2 WZf) —; (C", 2" WXF), and
H) ((¢",2"),@',w’),C”) |= g+, and
(D) ws’ = ((0,0),0) and ws’ = (0,0) and wk’ = H and &’ = 0, and
0D (6’,2),(c7,2"),0) |= Gt * True.
Since Sta(q, R = 1d), by (sk1p) rule, we can prove
D,R,G |=;”fa” (skip,o”) < (C",Z") o (u',ws", ws’, aw',w’', wk',H) Uz & q.
Also we know
(CXwXf) —; (C", %" wXF) and ws’ <g ws and
((0,%),(0’,2"),k) |= Gy * True (suppose G is transitive-closed)
(6) If ((0,%),(c’,2'),k) = R = 1d, then there exist u’, Ws’, ws’, aw’, w’, wk’, &4, €44, £’ and &
such that
(a) D,R,G |=;”fa" (await(B){C},0’) < (C,X’) o (u',Ws’, ws’, aw’,w’, wk’,H) Ug e g, and
(b) u’ =~ u, and
k=0=w =w,and
() éa=1{t' | (t' € &) A(((0,%),(c",2)) E (Dy) *1d)} and
k=0=ws"<}fwsVvws ~¥wsand
k=0Awk<HA(E #0V (3 E-en(C) A3 en(C))) = ws’ <)f ws and
k=0A(E\ég 20V |= —en(C)) = wk’ < wk, and
k=0Awk = wk= &\&; C &, and
(d) if k = 0 and (0,2) |= Enabled(Dy) * true, then ws” <4; ws; and
(€) &aa ={t' | (' € &a) A (((0,2),(0", %)) F (D) +1d)} and
k =0 A is_await(await(B){C}) = &,\&q € &) and
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k = 0 A is_await(await(B){C}) A (£, # 0V (Z = =en(C) A2’ £ en(C))) = aw < aw

and

k = 0 A is_await(await(B){C}) = aw’ < aw.
Proof: Since Sta(p, R * Id), we know there exist u” and w’ such that

(a7, 2), (', w),C) |=py and v’ = u and k=0 = w =w.
Let
aw’ = fi(0’,%’) and & ={t' | (' #t) A ((0",%’) |= Enabled(Dy)) * true)} .
By the co-induction hypothesis, we know
D,R,G |=}”fa” (await(B){C},0") < (C,%") ¢ (u’,ws, ws,aw',w’', wk,H) Uz ¢ q .
Let
aa = {t' | (t" € &) A (((0,%),(0",2)) E (Dy) * 1d)}.
Since Enabled(D) = I, D’ < D and wffAct(R,D’), we can prove:
k=0= fa\laa € &; .
From (0,2) |= (R: Z),OL (B,B’)), we know
k=0= aw < aw.

Suppose k = 0. If £,; # 0, then there exists t’ such that t’ € &; and ((0,2),(¢’,2"))
(Dy) * 1d. Since D’ < D, we can prove

((0,%),(0",2)) EADy) = 1d .
Since (0,%) = (R: @'OL (B,B’)), we know

aw’ < aw.
Also if ¥ |= —en(C) A 2’ |= en(C), from (0,2) |= (R: Z)’OL (B,B’)), we can still prove:
aw’ < aw.
Thus we are done. o

B.4.3 The AWAIT-s rule.

LEMMA B.13 (AwAIT-s-SounD). If

(1) D,[1],G Estair {p A BKCMq};
(2) p A Enabled(D) = true = B; p = (B = B);

(3) Sta({p.q}, R+ 1d);
(4) D’ < D; wfAct(R,D’); p = IAB’,C’. arem(await(B"){C’}) A (R: D’oL(B,B’));
then D,R,G |=spir {plawait(B){C}{q}.
ProoF. Let H = height(await(B){C}) = 1. We know |await(B){C}| = 1. Let
ws = ((0,0),1) and ws=(0,1) and wk=H =1 and ¢ =0.
For any t, for any o, %, u, w and C, if ((0,2), (u,w),C) |= pt, then let
aw = fi(0,Z) and & = {t' | (t' #t) A ((0,2) |= Enabled(D/)) = true)} .
Below we prove:
D,R,G |=ffa" (await(B){C},0) < (C,X) ¢ (u,Ws, ws,aw,w, wk,H) Uz ¢, q
f

By co-induction. Since p = JAB’,C’. arem(await(B"){C’}) A (R: D’e— (B,B’)), we know there
exist B’ and C’ such that
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C = await(B')(C'} and (0,5) = (R: D'e’s (B,B)).

Suppose o = (s,h). We only need to prove the following (1)(2)(3)(4)(5)(6).

(1Xa) EUE, Cs(TIDS) and t ¢ &£ and t ¢ &,.
(b) For any t’ € £ U &,, we have (0,%) |= Enabled(Dy) * true.
(c) If (0,2) |= Enabled(Dy) * true, then o |= en(await(B){C}).
(d) If o |= —en(await(B){C}) and X |= en(C), then &, # 0.
(e) If wk=H,then & =0.If wk < H,then & # 0 V X |= —en(C).
() lws|] < H and (1 < wk < |ws| —1) V (wk = H).
Proof: (a), (e) and (f) are immediate.
(b) Immediate from D’ < D.
(c) Immediate from p A Enabled(D) * true = B.

(d) From (0,2) |= (R: Z)’OL (B,B’)), we know: either o |= B, or X |= =B/, or At # t. (6,2) |
Enabled(D),) * true. Thus we are done.
(2) If await(B){C} = skip, then ....
Proof: 1t is vacantly true.
(3) If await(B){C} = E[ return E ], then ....
Proof: It is vacantly true.
(4) For any of, (await(B){C},o W oF) —/> abort.
Proof: By the operational semantics and D, [I],G |=ssir {p A BKC){q).
(5) For any C’, ¢”, oF and X, if (await(B){C},0 W op) —> (C’,0"’), then there exist ¢’, C’, ¥,
k, v, ws’, ws’, aw', w’, wk’, & and &, such that
(@) 0" =0’ Wop,and
(b) (C,EWEp) —{(C',3" wXF), and
(c) D,R,G |=ffalir (C', ") 2 (C, %) o (u' , W8, ws’, aw', w’, wk’, H) Ug e g, and
d) ((0,2),(07,%"),k) |= Gt * True, and
(e) either u’ <; u and k > 0,

oru’ =uand k = 0and w’ = wand ws’ <**

wEws,
oru’ =uand k = 0and w’ = w and ws’ zﬂ“ ws and wk’ < wk,
oru’ =uandk = 0and w = w and ws’ z}’]‘_’fWSandwk' =wk<H and & C &;and
) if ((0,2), (0, 2")) |= {[D]) * True and k = 0, then ws" <¢; ws.
Proof: By the operational semantics, we know C’ must be skip and
[B]s = true and (C,o0 Wop) —>; (skip,0”).
Thus
(C),0 W op) —{ (skip,c”’) .
From D, [I],G =shair {p A BXC){q}, we know there exist aw” and & such that
D,[I],G |=ffair (C),0) =2 (C,Z) o (u,ws, ws,aw”, w, wk,H) U¢ ¢ q .
Thus there exist o/, C’, 3/, k, u’, WS’, ws’, aw’, w’, wk’, £’ and &/ such that
(A) 0" =0’ Wop, and
B) (C,ZwXf) —; (C',X wXF),and
©) D,[I],G |=ffair (skip,o’) < (C', %) o (u’,ws’, ws', aw’, w’, wk’, H) Ug g g, and
(D) ((0,2),(c’,%"),k) |= Gy * True, and
(E) either u’ <x uand k > 0,

oru’ =uand k = 0and w’ = wand ws’ <**

wrws,
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oru’ =uand k = 0and w’ = w and ws’ zy{k ws and wk’ < wk,
oru’ =uand k =0and w = w and ws’ z(%‘WSandwk' =wk<H and &£ C &;and
(F) if ((0,2),(0",2")) |= {[D]) * True and k = 0, then ws" <q; ws.
From D,[I],G |=ffa" (skip,o’) < (C',3') o (u’,ws’, ws’, aw', w’, wk', H) Uere, g, we know
there exist C”” and X" such that
G) (C. X WZp) —; (C",2" WXF), and
H) ((¢",2"), @', w’),C") |= g, and
(D) ws’ = ((0,0),0) and ws’ = (0,0) and wk’ = H and &’ = 0, and
M (a7,%2"),(c",2"),0) [ Gy * True.
Since Sta(q, R = 1d), by (sk1p) rule, we can prove
D,R,G |=ffair (skip,o”) < (C",Z") o (u’,ws", ws’, aw',w’', wk',H) U ¢ q.
Also we know
(CZwXp) — 7 (C",2” wXF) and ws’ <¢/ ws and
((0,%),(0’,2"),k) |= Gt * True (suppose G is transitive-closed)
(6) If ((0,%),(c7,2"),k) £ R = 1d, then there exist u’, Ws’, ws', aw’, w’, wk', &g, E44, €’ and &),
such that
(a) D,R,G |=ffa” (await(B){C},0”) < (C,X') o (u’,ws’, ws’,aw’,w’, wk’,H) Ug e, g, and
(b) v’ =y u, and
k=0=w =w,and
() &a ={t' | (t' € &) A(((0,%),(0",%")) F (Dy) * 1d)} and
k=0= ws <}fwsVws'~} wsand
k=0AWk<HA(E;#0V (2 = —en(C) AT |=en(C))) = ws’ <,”l‘_’;‘ ws and
k=0A(E\ég #0 V3 |= —en(C)) = wk’ < wk, and
k=0Awk = wk= &\&; C &, and
(d) if k = 0 and (0,2) |= Enabled(Dy) * true, then ws’ <¢ ws; and
(€) &aa = {t' | (' € &a) A (((0,2),(0",2")) |5 (Dy) * 1d)} and
k =0 A is_await(await(B){C}) = &,\&,q C &, and
k = 0 Ais_await(await(B){C}) A (£, # 0V (Z = —=en(C) A2’ £ en(C))) = aw’ < aw
and
k = 0 A is_await(await(B){C}) A (o |= =en(C)) A (¢’ |= —en(C)) = aw’ < aw.
Proof: Since Sta(p, R * Id), we know there exist u” and w’ such that
(6", 2), (', w),C) |=py and v’ = u and k=0 = w =w.
Let
aw’ = fi(0’,%’) and & ={t' | (' #t) A ((0",2’) |= Enabled(Dy)) * true)} .
By the co-induction hypothesis, we know
D,R,G szfa” (await(B){C},0") < (C,%2’) ¢ (u’,ws, ws,aw',w’', wk,H) ¢ & q .
Let

Caa =t | (' € &) A (((0,2),(07,2")) [E (Dy) = Id)}.
Since Enabled(D) = I, D’ < D and wffAct(R,D’), we can prove:
k=0= §a\§adg§;'

From (o,%) |= (R: D'e’s (B,B')), we know

k=0A (o |==en(C)) A (¢’ = =en(C)) = aw’ < aw.
Suppose k = 0. If £,; # 0, then there exists t’ such that t’ € &, and ((0,2),(¢’,2"))
(Dy) * Id. Since D’ < D, we can prove
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wr*(T)(f) o (2, x, wr*(await(B){C}); return E)

if T'(f) = (P, x, await(B){C}; return E)

wr*(await(B){C}) &

local ul := nondet(), u2 := nondet();
while (ul >=0 ) {
while ( !B || done ) { 3};

ul--;
done := true;
done := false;

3
await(B A —done){C; done := true; };
done := false;
while (u2 >=0 ) {
while ( done ) { };

uz2--;
done := true;
done := false;

}

wr'(0)(0) £ w9 (o)
Fig. 22. The special SFAIR-PDF wrapper wr*.
((0,%),(",2") EADy) * 1d.

Since (0,2) |= (R: Z)’OL (B,B’)), we know

aw’ < aw.
Also if 3 |= =en(C) A X’ |= en(C), from (0,3) [ (R: Z)’oL (B,B’)), we can still prove:
aw’ < aw.
Thus we are done. O

B.5 Local simulations with respect to abstractions

In this subsection, we define the simulations D,R,G |, {P}II 5 I and D,R,G H, {P}II 3
(T,wr*(T')), and prove @ and Q) in Fig. 21. We define the special wrapper wr* in Fig. 22. We also
give some useful auxiliary definitions in Fig. 24, which describe the executions of the wrapper.

Definition B.14 (Simulations with respect to abstractions). D,R,G |=, {P}II 3 T iff there exist
D, R and G such that D,R,G |z, {P}II:T,R = |R]p and G = |Go.

D,R,G H, {PJII 5 ([,wr*(I)) iff, for any f € dom(II), for any o, C and 3, for any t, if
I(f) = (2,x,C), L(f) = (?",y, (await(B){Cy}; return E)), C = (wr*(await(B){Cy}); return E)
and (0,2) |= (Py A B) = (done = false) * own(x) = own(y) A (x = y), there exist three well-founded
metrics M, M and aw, a boolean flag wb and two sets &, &, € & (ThrdID) such that wb = false and

D,R,G |=1f( (C,0) 3 (B,C,%) o (M, M, wb,aw) ¢ ¢, (P *own(x) * own(y)).

Here D,R,G |=1tX (C,0) 3 (B,C,%) o (M, M, wb,aw) |¢,¢, Q is co-inductively defined as follows.
Whenever D,R,G |:|tX (C,0) 3 (B,C,Z) o (M, M, wb,aw) |¢ ¢, O holds, then the following hold:

(1Xa) Suppose o = (s,h). Then £ U ¢, C s(TIDS) and t ¢ £ and t ¢ &,.
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wro(await(B){C}) & ) def

wri(return E
while (ul >=0 ) {

while ( !B || done ) { }; while (u2 >=0 ) {

while ( done ) { };

ul--; u2--:
done := true; done"‘ true;
done := false; done : falsé-
} . ’
await(B A ~done){C; done := true; }; ’
return E;
done := false;
wr! (await(B){C}) & &«
0 = wr] (return E) =
. | .
\L',V:]Ee (!B || done ) { }; while ( done ) { 3;
) U2__;
done := true;
done := false; done 17 rues
: ) done := False;

while (ul >=0 ) {

while ( !B || done ) { }; while (u2 >=0 ) {

while ( done ) { };

ul--;
uz2--;
done := true;
done := true;
done := false;
} done := false;
. 3
await(B A —done){C; done := true; };
( ) } return E;

done := false;

Fig. 23. Useful notations for the special wrapper wr*.
wrsteps?((C,Z), (C’,2) iff
C=C'rz=%

wrsteps!*1((C,3),(C’,3")) iff
aC”,3”. (C,5) — (C",Z") A wrsteps{* ((C",X"),(C’, X))
AZ” =3{done ~ ,ul~s ,u2~ }

exec0t((C,2),(C, %)) iff
aAC”, %" ,n1,ns. wrstepsth((C,Z),(C",Z”)) A %''(done) = true
A wrstepstr’2+1((C”,Z"), (c,x2)

execl¢((C,X),(C’,3)) iff
EIC”,ZN,(C/N,Z,I,,CNN,2””,”1,”2,”3. WrStepS?1+1((C,2)a(C//szﬂ)) A Z”(done) = true
A wrstepstnz+l ((c”,z2"),(@",=")
A (C/// 2///) — sy (C//// Z////)
A wrstepst"3+l (€. =", (C’,2)

is_while0(C,B) iff IE,Cp. C = (wrj(await(B){Co}); wry(return E))
is_while1(C) iff JE. C = wr](return E)
is_return(C) iff JE,E. C = E[return E ]

Fig. 24. Executions of the special wrapper wr*.
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(b) For any t’ € £ U &,, we have (0,2) |= Enabled(Dy) = true.
(c) If wb = false, then & = . If wb = true, then{ # 0 vV X |= -B.
(d) If o |= —en(C) and X |= B, then &, # 0.
(e) If (0,2) |= Enabled(Dy) * true, then o |= en(C).
(f) %(done) = false.
(g) If 3 |= =B, then is_while0(C,B). If —is_return(C), then is_while0(C,B) Vv is_while1(C).
(2) If C = E[ return E ], then there exists E such that
(a) C = (return E), and
(b) (0,2) |= Ot and [E]s.s = [E]s.s, and
(¢) ((0,2),(0,2),0) |= Gt * True, and
(d) wb = false.
(3) For any oF, (C,0 W op) —/+ abort.
(4) For any C’, ¢”, o and 3, if (C,0 W oF) —» (C’,0”’) and X L3, then there exist ¢’, C’, 3,
k, M/, M’, wb', aw', &', £/, n and B’ such that
(@) 0" =0’ Wop, and
(b) (C.2wXEp) — ] (C',2 wXp); and
if k > 0, then exec0¢((C,2 W Xp), (C',2" W XF)) V execli((C,2 W Xf), (C',2" W XF)); and
if is_while1(C’), then B’ = true, otherwise B’ = B; and
(c) D,R,G I:@( (C',0") 5 B',C',2) o (M',M’, wb’,aw’) Ugr e Q,and
d) ((0,2),(07,%"),k) |= Gt = [done = false] * True, and
(e) either n > 0,
or M’ < M,
or M’ = M and wb’ = wb = true and ¢ C ¢’; and
f) if ((0,2),(0’,%")) |= {[D]) * True and k = 0, then M’ < M.
(5) For any k, ¢’ and 3, if ((0,2), (6”,%"),k) |= R * [done = false] * Id, then there exist M’, M’,
wb', aw', &4, €44, €’ and &, such that
(@) D,R,G |=1tX (C,0") 5 (B,C,X) o (M',M’, wb’,aw’) ¢ ¢ Q, and
(b) if k > 0 and —is_return(C), then for any X”" and X such that X" = Z{done ~» true} and
2rLX¥ we have (C,2" W 3f) — [ (C,2" W Zp);
(© &a={t'| (' € &) A (((0,%),(07,3)) = (Dr)  Id)} and
k=0=M <MV (M’ =MA wb’' = wb) and
k=0Awb=trueA ({4 #0V(EZE-BAZX |FB)) = M’ <M and
k=0AM =MA wb' = wb=true = &\&; C ¢, and
(d) if k = 0 and (0,2) |= Enabled(Dy) * true, then M’ < M; and
(€) faa = {t" | (' € £a) A (((0,%),(0",%")) |E (Dy) * 1d)} and
k =0 Ais_await(C) = &,\&q € &) and
k=0Ais_await(C) A ((gq 20V (E F -BA Y EB)) = aw’ < awand
(y = sfair) Ak =0 Ais_await(C) A (o = —en(C)) A (¢’ | —en(C)) = aw’ < awand
(x = wfair) A k =0 A is_await(C) = aw’ < aw.

B.5.1 Transforming to simulations with respect to abstractions. The key point of IT < I’ is that
we remove the metric u and use the non-atomic abstract code I’ to describe the effects of delay.
Below we prove @ and 3 in Fig. 21.

o By Definition B.14, the proofs of @) are trivial.
e Lemma B.15 shows 3.

LemmA B.15 (@ 1N F1G. 21). If D,R,G |5, {P}1:T, then D,R,G H, {P}II < (I',wr*(I)).
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Proor. For any f € dom(Il), for any o, C and 2, for any t, if II(f) = (?,x,C), I'(f) =
(?’,y, (await(B){Cy}; return E)), C = (wr*(await(B){Co}); return E) and (0,%) = (Pt A B) *
(done = false) = own(x) * own(y) A (x = y), we know there exists 2 such that ¥ = ¥; v {done ~»
false} and

(0,21) E (Pt A B) = own(x) = own(y) A (x = y)

Let C; = (await(B){Co}; return E). From D,R,G |=, {P}II : T, we know there exist four well-
founded metrics u, M, M and aw, a boolean flag wb and two sets £,&, € ?(ThrdID) such that
wb = false and

D,R,G |=tX (C,0)2(Cy,Z1) o (u,M, M, wh,aw) U¢ ¢, (P *own(x) * own(y)).
We want to prove:
D,R,G |=|tX (C,0) 3 (B,C,Z) o (M, M, wb,aw) ¢ ¢, (P * own(x) * own(y)).

Fig. 23 gives some useful notations for the special wrapper. We only need to prove the following:
(1) ¥D,R,G |=tX (C,0) 2 ((await(B){Cy}; return E),%;) o (u, M, M, wb,aw) J¢ ¢, Q
and X = X; W {done ~ false,ul ~ u,u2 ~ up}and 0 < u < uyand 0 < u < uy,
then D,R,G B! (C,0) 3 (B, (wry(await(B){Cy}); wri (return E)), %) o (M, M, wb, aw) |¢ ¢,
0.
(2) f D,R,G |=f( (C,0) 2 ((return E), %) ¢ (u,M, M, wb,aw) ¢ ¢, Q and —is_return(C)
and X = X; W {done ~ false,ul ~» u;,u2 ~ uy} and 0 < u < uy,
then D,R,G |=|tX (C,0) 3 (true,wri(return E),%) o (M, M, wb,aw) J¢,¢, O.
(3) I D,R,G |=f( (C,0) 2 ((return E), %) ¢ (u,M, M, wb,aw) ¢ ¢, Q and is_return(C)
and ¥ = 3; W {done ~ false,ul ~» uy,u2 ~ uy},
then D,R,G |=|tX (C,0) 3 (true, (return E),>) o (M, M, wb,aw) |¢ ¢, Q.

By co-induction. O

B.6 Lifting to Simulations for Client Threads
Since we have two kinds of object-local simulations in Fig. 21, we also need two kinds of simulations
for client threads. Below Definition B.16 gives the client simulation with PSF objects (under
either strong or weak fairness, corresponding to D,R,G |=, {P}II 3 I). Definition B.17 gives
the client simulation with PDF objects (under either strong or weak fairness, corresponding to
D,R,G Hy {P}JI 3 (T,wr*(I))).

In the definitions, we use is_clt(e) to say that e is a client event in the form of (t,out,n), (t,clt)
and (t,term). Similarly we use is_obj(e) to say that e is an event inside method calls in the form of
(t,obj). We also define:

getB(IL f) < en(C)  ifTI(f) = (2,x.0)

inObj(C,x) iff (x # o) A —is_return(C)
Similar to the definitions of exec0:((C,X),(C’,X")) and exec1:((C,X),(C’,X’)) in Fig. 24, we can
also define exec0((C,d),(C’,6’)) and exec1¢((C,9),(C’,8")) for the executions of the thread.

Definition B.16 (Simulation for Thread with PSF objects). D,R,G |=, {P}(I1,C) x (I',C) iff, for
any o, o and %, for any t, if (0,2) |= P, there exist three well-founded metrics M, M and aw, a
boolean flag wb and two sets &,&, € & (ThrdID) such that wb = false and

DaR’G |:tX (H3C3 (O—C3O.’O)) 5 (P’C3 (Z,O)) < (M9M’ Wb’ aW) ’U’§,§a P'
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Here D,R,G |=f( (IL,C, (0¢,0,k)) 3 (T,C,(Z,k)) o (M, M, wb, aw) Uge, Q is co-inductively
defined as follows.
Whenever D,R,G |=tX (IL,C, (0¢,0,x)) 3 (I,C,(2,K)) o (M, M, wb,aw) ¢ ¢, Q holds, then the
following hold:
(1Xa) Suppose o = (s,h). Then £ U ¢, C s(TIDS) and t ¢ & and t ¢ &,.
(b) For any t’ € £ U &,, we have (0,%) |= Enabled(Dy) * true.
(c) If wb = false, then & = (. If wb = true, then ¢ # 0 Vv (3,K) = —en(C).
(d) If (0,k) |= =en(C) and (Z,k) |= en(C) and k # o, then &, # 0.
(e) If (0,2) |= Enabled(Dy) * true and k # o, then (o,x) |= en(C).
(f) If =inObj(C, k), then wb = false.
(gl k=0c=C=C,and k = 0o & K=o, and C = skip & C = skip.
(2) If =inObj(C, k), then (0,2) |= Q.
(3) For any of and X, if (C, (0,0 W oF,k)) in,n abort and X 1>, then
e = (t,clt,abort) and (C, (0., W ZF,K)) i)t,l“ abort.
(4) For any C’, ¢/, ¢”, ¥, or and Zp, if (C,(0¢,0 W oF,k)) BN w11 (C,(0},0"”,k’)) and ZL3F,
then there exist n, ¢/, &, C', ', K’, M/, M’, wb’, aw’, ¢’ and &/, such that
(@) 0" =0’ Wop, and
() (C.(0e:ZWSE,K) ~5 (T, (02,3 & 3p,k')),and n = 0V n = 1, and
(c) is_clt(e) Vv is_inv(e) V is’_ret(e) = & =e:u¢, and
is_obj(e) = (¥i,e’ = &(i). is_obj(e’)), and
(d) D,R,G sz (I0,C’,(cl,0’,k")) 5 (T,C, (3',K)) o M',M’', wb’, aw’) Jere Q, and
) ((0,2),(c’,%2),0) = G * True, and
(f) if inObj(C, k), then n > 0, or M’ < M, or M’ = M and wb’ = wb = true and ¢ C ¢’; and
(g) if ((0,2),(0",2Z")) |= {[D]) * True, then M’ < M.
(5) For any ¢’ and ¥, if ((5,3), (¢7,%),0) | R; * Id, then there exist M/, M’, wb’, aw’, &4, £,4,
& and & such that
(a) D,R,G |=f( (I1,C, (0l,07,x)) 3 (T,C,(2",K)) o (M',M’, wb’,aw’) Ugr e Q,and
(b) &a={t"[ (' € &) A (((0,%),(0”,%")) |= (Dy) Id)} and
inObj(C,x) = M’ < MV (M’ = M A wb" = wb) and
wb =true A (&5 # 0V ((Z,K) = —en(C) A (27,K) = en(C))) = M’ < M and
M’ =M A wb' = wb = true = &£\&; € &, and
(¢) if (0,2) |= Enabled(Dy) * true, then M” < M; and
(d) fag ={t" | (t" € £a) A (((0,3),(0”,2")) = (Dy) + Id)} and
inObj(C,x) Ais_await(C) = £,\&q € &) and
inObj(C,x) Ais_await(C) A (éqq # OV ((2,K) |= =en(C) A (27,K) = en(C))) = aw’ < aw
and
(y = sfair) A inObj(C,x) A is_await(C) A ((o,k) = —en(C)) A ((¢’,x) = —en(C)) =
aw < awand
(x = wfair) A inObj(C,x) A is_await(C) = aw’ < aw.

Definition B.17 (Simulation for Thread with PDF objects). D,R,G H, {P}(II,C) < (IT',T,C) iff,
for any o, o and X, for any t, if (¢,X) |= P, there exist three well-founded metrics M, M and aw, a
boolean flag wb, a boolean expression B and two sets &,&, € &?(ThrdID) such that wb = false and
B = true and

Z)v-RsG |:|tX (H,C, (UC,O—sO)) 5 (H/9F9B5C’ (Z? O)) < (M’M’ Wb’ aW) ’U'§,§a P‘
Here D,R,G |=|tX (I1,C, (oc, 0,x)) 3 (IT',T,B,C, (Z,Kk)) o (M, M, wb,aw) |¢ ¢, Q is co-inductively
defined as follows.
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Whenever D,R,G |5 (I,C, (0., 0,x)) 3 (I',T,B,C,(2,k)) o (M, M, wb, aw) U¢ g, Q holds, then
the following hold:

(1Xa) Suppose o = (s,h). Then £ U ¢, C s(TIDS) and t ¢ £ and t ¢ &,.
(b) For any t’ € £ U &,, we have (0,2) |= Enabled(Dy) = true.
(c) If wb = false, then & = 0. If wb = true, then & # 0 Vv (2,k) |= —B.
(d) If (0,k) |= —en(C) and (2,K) |= B and k # o, then &, # 0.
(e) If (0,2) = Enabled(Dy) * true and k # o, then (o,k) |= en(C).
(f) If =inObj(C, k), then wb = false.
(g k=0o=C=C,andk = 0 & k =0, and C = skip & C = skip.
(h) X(done) = false.
(i) If (3,K) |= =B and k # o, then is_while0(C,B).
If inObj(C, k), then is_while0(C,B) V is_while1(C).
(2) If =inObj(C, k), then (0,2) |= Q.
(3) For any of and X, if (C, (0,0 W oF,k)) in,n abort and X 1>, then
e = (t,clt,abort) and (C, (o.,> W ZF,K)) Lt,nf abort.
(4) For any C’, ¢/, ¢”, ¥/, oF and Zp, if (C,(0¢,0 W 0F,k)) BN w11 (C’, (0},0"”,k’)) and ZL3F,
then there exist n, ¢/, &, C', 3', K’, k, M’, M’, wb’, aw’, €', £/ and B’ such that
(a) 0" =0’ Wop, and
() (C. (06,3 WSE,K) ~> (T, (04,3 W35, K')); and
if k > 0 and inObj(C, k), then
exec0:((C, (o, 2 WX F,K)), (C, (00,2 WEF,K))) Vexec1((C, (0., 2 W EFE,K)), (C', (c),2' W
>r,K))); and
ife = (t, f,_), then B’ = getB(T, f), else if inObj(C,k) A is_while1(C’), then B’ = true,
else B’ = B; and
(c) is_clt(e) Vis_inv(e) V is_ret(e) = & = e::¢, and
is_obj(e) = (Vi,e’ = &(i). is_obj(e’)), and
(d) D,R,G |=15( (0,C’,(ol,0’,x")) s OU,T,B/,C",(Z',k)) o M',M’, wb’, aw’) Ugr e O, and
) ((0,2),(c’,%"),k) |= Gy * [done = false] * True, and
(f) if inObj(C, k), thenn > 0, or M’ < M, or M’ = M and wb’ = wb = true and ¢ C ¢’; and
(g) if ((0,2),(0”,2")) |= {[Dt]) * True and k = 0, then M’ < M.
(5) For any k, 0’ and ¥, if ((0,2),(¢”,%"),k) |= Ry * [done = false] * Id, then there exist M’, M’,
wh', aw', &4, €44, £’ and £, such that
(a) D,R,G I:@( (ILC,(c/,0",x)) 5 (II',T,B,C,(2",k)) o M',M’, wb',aw’) ¢ ¢ Q, and
(b) if k > 0 and inObj(C, x), then for any ¢/’, " and Xr such that 2" = Z{done ~» true} and
>pLlY we have (C,(¢/,2" & ZF,K)) _)ZH’ (C,(c/,2" wZp,Kk));
© Ea = {t' | (¢ € &) A (((0.3),(0",3) [ (Dy) * 1d)} and
k=0AinObj(C,xk) =M’ <MV (M’ =M A wb’ = wb) and
k=0Awb=trueA ({4 20V (k) E-BA(Z,K) EB)) = M’ < M and
k=0AM =MA wb' = wb=true = é\{; C ¢/, and
(d) if (0,2) |= Enabled(Dy) * true and k = 0, then M’ < M; and
(©) £aa = [V | (' € £0) A (((0,3), (", %)) = (Dy) * 1d)} and
k =0 AinObj(C, k) A is_await(C) = £,\E,q C &, and
k = 0AInObj(C,k) Ais_await(C) A (Ezq # OV ((Z,K) E =B A (2/,K) E B)) = aw’ < aw
and
(x = sfair) Ak = 0AInObj(C, k) Ais_await(C)A((o,k) |= =en(C))A((c',k) |= —en(C)) =
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aw’ < awand
(x = wfair) A k =0 A inObj(C,k) A is_await(C) = aw’ < aw.

LeEmMMA B.18 (LIFTING). Suppose dom(II) = dom(I') = dom(I1") and P = —Enabled(D). Then
both the following hold:
(1) If D,R,G |z {P}I ST, then
for any C, we have D,R,G =, {P}(IL,C) 5 (I',C).
(2) If D,R,G H, {P}JI 3 (T,wr*(T)), then
for any C, we have D,R,G =, {P}(IL,C) 5 (wr*(),T,C).

Proor. By structural induction over C and by co-induction. O

B.7 Whole-Program Simulations and Parallel Compositionality

Similar to Definitions B.16 and B.17 that give the client simulations with PSF and PDF objects
respectively, we also need two definitions (see Definition B.19 and B.20) for whole programs with
PSF and PDF objects respectively.

We use inObjThrds(W,S) to get the set of threads who are executing the object methods. We
also use bset(W,S) to get the set of threads who are blocked. For # € ThrdID — BExp, we use
ffset(#,S) to get the set of threads whose boolean condition in 4 is false at the state S. They are

defined as follows.
def A

(letITin Gy ||. .. ANl = G

' {t 13 (W =€) A (C # skip) A (C # end)}
. df | O if&=¢€

tidset(&) = { {tid(e)} U tidset(&') if & = e &’

inObjThrds(W,S) & {t | 3C,00,0,K. (S = (0c,0,%K)) A (W = C) A inObj(C, K (t))}

bset(W,S) & A UA,  ifbtids(W,S) = (Ac,A)
ffset(#,S) £ (t | oe,0,.K. (S = (0e,0,K)) A (K (1) #0) A (0, K (1)) |= ~B(t)}

Definition B.19 (Simulation for whole programs with PSF objects). |=, {P}W < W iff, for any o,
o and 3, if (0,%) |= P, there exist .#,a € ThrdID — Metric, f € ThrdID — Bool and {,{, €
ThrdID — & (ThrdID) such that
Fy (W.(0c,0,0)) 3 (W,(0c,2,0)) o (A,{, .. la)
Here =, (W,S) 35 (W,S) ¢ (A,{,B,a,{,) is co-inductively defined as follows.
Whenever |=, (W,S) 5 (W,S) o (A#,{,B,a,{s) holds, then the following hold:
(1Ya) dom(A) = dom({) = dom(f) = dom(a) = dom({,) = inObjThrds(W,S) = inObjThrds(W,S).
(b) For any t € inObjThrds(W,S), we have {(t) U ,(t) C (inObjThrds(W,S)\{t}).
(c) For any t € inObjThrds(W,S), if f(t) = false, then {(t) = 0; and if f(t) = true, then
{(t) # 0Vt € bset(W,S).
(d) For any t € inObjThrds(W,S), if t € bset(W,S) and t ¢ bset(W,S), then {,(t) # 0
(e) For any t € inObjThrds(W,S), for any t’ € {(t) U {,(t), we have t’ ¢ bset(W,S).
(2) f W = (letIlin end]|.. .|| end), then AII". W = (let IT" in end||.. .. || end).
(3) If (W, S) —> abort, then
there exists t such that 1 = ((t, clt,abort),0,0) and (W,S) + abort.
@) If (W, S) — (W’,S), then
there existt, T, W', S*, . #Z', (", p’, &', {}, n, e, A, and A, such that all the following hold:

activeThrds(W) =
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(@) (W,S) Ly (W’,S’),andn=0Vn=1,
(b) 1= (e,Ac,A); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A.,_) ::€;
is_obj(e) = (Yi,t’ = T(i). is_obj(t"));
© oy (W,S8") S (W,S) o (M, '’ L2
(d) if t € inObjThrds(W,S), then
either t € tidset(T),
or A'(t) < (1),
or A’ (t) = #(t) and f’(t) = B(t) = true and {(t) C ’(t) C (inObjThrds(W,S)\{t});
(e) for any t’ € inObjThrds(W,S)\{t}, we have:
either A’ (t") < A (t'),
or A'(t') = #(t’') and p’(t') = B(t’) = false,
or.A'(t") = A (t")and f'(t') = B(t’) = trueand {(t") C {’(t") C (inObjThrds(W,S)\({t’})
andt ¢ {(t');
(f) for any t” € inObjThrds(W,S)\{t} and is_await(W|y), we have:
if ((y = sfair) A (t’ € bset(W,S8)) A (t' € bset(W’,8"))) V (x = wfair), then
either o’ (t’) < a(t’),
or a’(t') = a(t’) and {,(t") € {J(t") € (inObjThrds(W,S)\{t’'}) and t ¢ {,(t") and
(Lat") #0) V (La(t') =0 At ¢ bset(W,S)) V ({(t") =0 A t' € bset(W’,S)).

Definition B.20 (Simulation for whole programs with PDF objects). =, {P}W < (W,I) iff, for
any o, o and 3, if (0,%) |= P, there exist & € ThrdID — BExp, .#,a € ThrdlD — Metric,
B € ThrdID — Bool, and {,{, € ThrdID — Z?(ThrdID) such that # = 0 and

Hy (W.(0c,0,0)) 3 (W.I,%,(0c,2,0)) o (AL, p,a.{a).

Here H, (W,S) 5 (W,I',%,S) o (A ,{,B,,{,) is co-inductively defined as follows.
Whenever =, (W,S) 35 (W,I',%4,S) o (#,{,B,a,{a) holds, then the following hold:

(1Xa) dom(A) = dom({) = dom(f) = dom(a) = dom({,) = dom(#) = inObjThrds(W,S) =

inObjThrds(W,S).
(b) For any t € inObjThrds(W,S), we have {(t) U {,(t) € (inObjThrds(W,S)\{t}).
(c) For any t € inObjThrds(W,S), if f(t) = false, then {(t) = 0; and if (t) = true, then
(t) # 0Vt e ffset(4,S).
(d) For any t € inObjThrds(W,S), if t € bset(W,S) and {,(t) = 0, then t € ffset(%,S).
(e) For any t € inObjThrds(W,S), for any t’ € {(t) U {,(t), we have t’ ¢ bset(W,S).
(f) For any t € ffset(4,S), we have is_while0(W|, A(t)).
For any t € inObjThrds(W,S), we have is_while0(W|;, Z(t)) V is_while 1(W];).
(2) f W = (letIlin end]|.. .|| end), then AII'. W = (let IT” in end||.. .. || end).
(3) If (W,S) > abort, then
there exists t such that 1 = ((t, clt,abort),0,0) and (W, S) > abort.
@) If (W,S) — (W',S"), then
there existt, T, W', S", . Z", (", p’, &', [}, BB’ e, A; and A, such that all the following hold:
(a) (W,8) " (W',8);
(b) 1= (e,Ac,Ap); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A.,_) ::€;
is_obj(e) = (Yi,t’ = T(i). is_obj(t"));
ife = (t,f,_), then &' = B{t ~ getB(I, f)}, else if is_obj(e) A is_while1(W’];), then
B’ = B{t ~ true}, else B’ = B;
(© Hy W.S) 5 (W.ILA"S) o (M P a,(3);
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(d) if t € inObjThrds(W,S), then
either t € tidset(T),
or A'(t) < A (1),
or A'(t) = A (t) and f’(t) = B(t) = true and {(t) C {’(t) C (inObjThrds(W,S)\{t});
(e) for any t’ € inObjThrds(W,S)\{t}, we have:
either t’ € tidset(T),
or A'(t") < (),
or A'(t') = A (t') and p'(t') = p(t’) = false,
or.A'(t") = .#(t")and f’'(t') = f(t’) = trueand {(t") C {’(t") C (inObjThrds(W,S)\({t’})
andt ¢ {(t');
(f) for any t” € inObjThrds(W,S)\{t} and is_await(W|y), we have:
if ((y = sfair) A (t" € bset(W,S)) A (t’ € bset(W’,S"))) V (x = wfair), then
either t” € tidset(T),
ora’(t’) < a(t’),
or a’(t') = a(t’) and {,(t") € {J(t") € (inObjThrds(W,S)\{t'}) and t ¢ {,(t") and
(La(t) £0) V(L") =0 AL ¢ ffset(B,S)) V (L") =0 At € ffset(H’,S")).
LEMMA B.21 (PARALLEL COMPOSITIONALITY FOR SIMULATIONS WITH PSF OBJECTS).
If there exist R, G and D such that the following hold:
(1) for anyt € [1..n], we have D,R,G |=, {P}(IL,Cy) 3 (T,Cy);
2) Vt,t'. t #t' = G; = Ry, wffAct(R,D), P = —Enabled(D), PV Enabled(D) = I, I>{R,G},
then =y {Aterr..n Pl(let ITin Ci ] ... [ICp) 5 (let Tin Cy |]. .. || Cp).

Proor. For any o, 0 and %, if (0, Z) = (Ate[1..n] Pt), from the premises, we know: there exist
My, ..., Mp, My, ..., My, awy, ..., awy, Why, ..., Why, &, ..., &y, EF, ..., &7 such that why = ... =
wb,, = false and for any t € [1..n]:

D,R,G |:tX (H,Ct,(O'C,O',O)) < (F,Ct,(Z,O)) < (Mt,Mt,wbt,awt) U"fb{fta P.
We want to show that there exist .Z, a, 5, { and {, such that
=y (letIlin Ci|]...1|Cpn),(0c,0,@)) 3 (HetTin Cy ... |ICy), (0, %,0)) ¢ (A, B, ,a).

We generalize the result and prove the following (B.4):
If (0,%) |= I and the following holds for any t € [1..n]:

C’t # end =
D.R.G ! (ILC, (0c,0 W oy,k)) 3 (T.Ce (38 3, ky)) o (M, My, why, aw) g0 P

étzendz@tzend/\ictzo/\ktzq

then
Fx (AetTin Gyl 1Ca). (0c.0 @ (11 00),%)) 3 (et T in Cy |l |
Cn), (e, 2 W (Wi 20),K)) o (A, {, B, . ).
Here for any t € [1..n], K (t) = k¢ and K(t) = Ky, and the functions .#, {, f, @ and {,
are defined as follows. )
o dom( ) = dom({) = dom(f) = dom(a) = dom({,) = inObjThrds((let IT in C; ||
A1) (0,0 W (W 01). K)).

e For any t € dom(.#'), we have

o M (t) = (M, {t' ~ My |t € &)});

o J(t) =&
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o B(t) = why;
o a(t) = (aw, {t' ~ My | t" € &F});
d ga(t) = §ta.

The order (M’, M’) < (M, M) is defined as a dictionary order:
(M M) < (MM) iff (M <M) v (M =M)AM <M)
M < Mt Jt. (MU (t) < M(t)) A (Yt € dom(M)\{t}. M'(t") < M(t'))
M < M iff Yt € dom(M). M'(t) < M(t)
Clearly .’ (t) < . (t) is a well-founded order.
(B.4)
By co-induction. Let W o (let IT in Gl C‘n), w & (let T in ¢ ...l @n), S (e, 0@
(Wi or),K) and S o (00,2 W (l4); 2t),K). Suppose o = (s,h). Then s(TIDS) = [1..n].
(1Xa) dom(A') = dom({) = dom(f) = dom(a) = dom({,) = inObjThrds(W,S) = inObjThrds(W,S).
(b) For any t € inObjThrds(W,S), we have {(t) U {,(t) C (inObjThrds(W,S)\{t}).
(c) For any t € inObjThrds(W,S), if f(t) = false, then {(t) = 0; and if f(t) = true, then
L(t) # 0Vt e bset(W,S).
(d) For any t € inObjThrds(W,S), if t € bset(W,S) and t ¢ bset(W,S), then {,(t) # 0.
(e) For any t € inObjThrds(W,S), for any t’ € {(t) U {,(t), we have t’ ¢ bset(W,S).
Proof: For any t € [1..n], from the premise, we know: k; = o & Kk; = o. Thus we have
inObjThrds(W,S) = inObjThrds(W,S).
Also, from the premise, we know: forany t’ € {(t)U{,(t), we havet’ # tand (cWoy,XW3y) |=
Enabled(Dy) * true. Then we only need to prove inObj(Cy,ky). Suppose =inObj(Cy, k),
then we have (o W ov,X W Xy) |= Py. Since P = —Enabled(D), we get a contradiction. Thus
inObj(Cy,xv) holds. Also, from the premise, we know: (o ¥ oy, X W Z¢) = en(Cy). Thus
t’ ¢ bset(W,S) holds.
(2) fW = (letIlin end]|.. .|| end), then AII". W = (let II” in end||. . .|| end).
Proof: Since C‘t =end = Ct = end, we are done.
(3) If (W, S) —> abort, then
there exists t such that 1 = ((t, clt,abort),0,0) and (W,S) > abort.
Proof: By the operational semantics we know: there exist t € [1..n] and e such that 1 = (e,0,0)
and

(Cta (O'Cao. V (H’Jt O.t)sKt)) _e)t,H abort.
By D,R,G |=tX (H,ét,(Uc,G W Ut,Kt)) s (r,@t,(z ¢ Ztskt)) < (Mt,Mt,Wbt,aWt) Usﬁ,gf P, we
know e = (t,clt,abort) and

(Ce. (06,2 (18 1), ki) —> o1 abort.

Thus (W,S) s abort.
@) If (W, S) — (W', S’), then
there existt, T, W', S", .#", (', p’, @', {}, n, e, A, and A, such that all the following hold:

(@) (W,S) —=" (W’,S"),andn =0V n = 1;

(b) 1 = (e,Ac,Ap); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A¢,_) €
is_obj(e) = (Vi,t’ = T(i). is_obj("));

© Ey W,8) 2 (W,S) o ("0 pa’,{3);

(d) if t € inObjThrds(W,S), then
either t € tidset(T),
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or A'(t) < (1),
or A’ (t) = #(t) and f’(t) = B(t) = true and {(t) C ’(t) C (inObjThrds(W,S)\{t});
(e) for any t’ € inObjThrds(W,S)\{t}, we have:
either A’ (t") < A (t'),
or A'(t") = #(t") and p’(t') = B(t') = false,
or.A'(t") = A (t')and f'(t') = B(t’) = trueand {(t") C {’(t") C (inObjThrds(W,S)\({t’})
andt ¢ {(t');
(f) for any t’ € inObjThrds(W,S)\{t} and is_await(W|y), we have:
if ((y = sfair) A (t’ € bset(W,S8)) A (t' € bset(W’,8"))) V (y = wfair), then
either o’ (t’) < a(t’),
or a’(t') = a(t’) and {,(t") € {J(t") € (inObjThrds(W,S)\{t’'}) and t ¢ {,(t") and
(Lat") #0) V (La(t') =0 At ¢ bset(W,S)) V ({(t") =0 At € bset(W’,S)).
Proof: By the operational semantics, we know one of the two cases holds:
e there exist t, é{ W', S8’ e, A, and A, such that
C‘t = skip, K (t) = o, C’t’ =end, 1 = (e,A.,A,), e = (t,term),
W =(letllinC|l...C...I1Cy), S’ =S, btids(W,S) = (A, Ap) -
By D,R.G E (ILC, (00,0 Wor, k) 3 (T,Cp, (EW e, ky)) o (M, My, whe, awy) U, g P, we
know @t = skip and k; = o. Let @t' = end, btids(W,S) = (AL,Al), /' = (e,AL,A]) and

W’ = (letT in Cull.. @{ | C,,) Then (W, S) — (W’,S). From the premise, we know
Vt’'. (ky = 0o = (:‘t/ = @t/) A (ky = 0 &< Ky = o), thus
Al = A..
Also we know
((0-»2)’(0-’2)50) |= Gt'
For any t” # t, since Gy = Ry, we have ((0,2),(0,X),0) = Ry. Thus
(cWop,2 W), (o Lﬂp’y,Z W 3),0) = Ry = Id.

By D,R,G |=t)€ (ILCy, (0c, 0Way,ky)) < (T,Cv, CWZy,ky))o(My, My, wby, awy) Ugt,,gt‘f P,

and by the co-induction hypothesis, we can finish the case.
e there exist t, C{, W', ol, 0", x{,K", S e Ac and A, such that

(C1r (0,0 W (W, 01), K1) — 1 (CL (02,07, Kk0))), K =Kt~ k), 8’ = (l,6”,K"),
W =(letllinC|l...C ... ICy), 1= (e,Ac,Ap), t = tid(e), btids(W’,S’) = (Ac,Ao).

By D,R,G |=f( (H,ét, (0¢,0 Wo,kt)) S (F,@t, W3, ky)) o My, My, why, aw) Ugfmff P, we

know
(A) Forany t’ € & U &7, we have t’ # tand (0 W 0,2 W %) |= Enabled(Dy) * true.

And there exist n, ¢””’, &, @{, =7 kg, M, MY, why, aw;, & and tal such that
(B) 0" = 0" & (W o), and
(©) (Cy, (06,2 W (W Z4), ki) it"r (CL (04,2 W (Wygt Zv),K])),and n =0V n =1, and
(D) is_clt(e) Vv is_inv(e) Vis_ret(e) = & = e::¢€, and

is_obj(e) = (Vi,e’ = &(i). is_obj(e’)), and
(E) D,R,G |=tX (H,C",(ac’,a”’,Kt’)) < (F,@{,(Z”’,kt’)) o (MY, M{, wb{, aw;) .U.gt/’gtal P, and
(F) (0 Woy,2W3),(c",2"),0) |= Gt * True, and
(G) if inObj(C‘t,Kt), then n > 0, or My < M, or M = M; and wb{ = wh; = true and & C &/;
and

H) if (0 W o1, Z W Xy), (6", 2"")) |= {[D4]) * True, then M; < M;.

Since (c,%) |= I and I > {R,G}, we know there exist ¢’, ¢/, 2’ and 3{ such that

o =c"Wwg/, T =3wx (¢.2)EI and ((0,%),(¢’,Z'),0) = G.
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For any t’ # t, since Gy = Ry, we have ((0,%),(¢”,2),0) |= Ry. Thus
(cWoy,2W3y), (0’ Lﬂ?'t/,Z’ W 3¢),0) = Ry = Id.
By D,R,G |— (IL, Cv, (0¢, o Woy,kv)) < (T,Cr, CWSp, ke ))o(My, My, why , awy) uﬁ“‘fﬂ P
we know
(I) For any t” € & U &, we have t” # t" and (0 W oy, 2 W 2y) |= Enabled(Dy) * true.
And there exist M{,, Mt’,, why,, aw, t,, §t,, §t, , §t, and & al g ch that
) D,R,G |— (IL,Cy, (0!,0" Woy,ky)) < T,Cy, WXy, Ky))o (M, M, wb;,,aw,,) U’f(“ a
P, and
K) £ ={t" | (t” € &) A (0 Wor,ZW3y), (0" Woy,5 WEy)) | (Dy) * 1d)} and
inObj(Cy,ky) = M/, < My V (M, = My A wby, = why) and
why = truen(£9 # OV((ZWEy,ky) [ —en(Cr)A(Z'WEr,Ky) [ en(Cy))) = M, < My
and
M/, = My A wh, = why = true = {t/\ft‘,i c &, and
(L) if (0 W oy,X W Xy) = Enabled(Dy) * true, then M, < My; and
M) £99 = (| (1" € EVAN(((cWoy,2W3y), (0" W at,,Z’ W3)) E (D) = 1d)} and
inObj(Cy, k) A is_await(Cy) = £9\E34 C £ and
inObj(Cv,ky) A is_await(Cy) A (£29 2 0V (2 W Zy,ky) E —en(Cy) A (5 W 3y, ke)
en(@t/))) = aw, < awy and
(x = sfair) AinObj(Cy,ky) Ais_await(Cy) A (o Woy,ky) |= —en(Cy)) A (6" Yoy, k) =
—en(Cy)) = aw;, < awy and
(x = wfair) A inObj(ét/,Kt/) A is_await(C}) = aw,, < awy.
Let W = (let TinCy || ...Cl... | Cy) and & = (62,3 W %] W (Hys Zv ), K{t ~ K{}).
From (C), we know there exists T such that
(W,S)) Hon (W’,S) .
From (D), we know
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A.,_)::€,
is_obj(e) = (Vi,t’ = T(i). is_obj(t") A t = tid(")) .
Define the functions .Z”, {’, f’, @’ and {/, as follows.
o dom(A") = dom({’) = dom(p’) = dom(a’) = dom({}) = inObjThrds(W’,S’).
e Foranyt e dom(///’) we have
o« M) = QELI ~ M) |V € &)
W=
o f'(t) = why
o @'(t) = (aw, ('~ M | ¥ € E1));
o (1) = £
Then by the co-induction hypothesis, we know
Ex W,S) 2 (W,S) o ("0 pa’,{5).
For the thread t, from (G), we know: if t € inObjThrds(W,S), then one of the following
holds:
e n> 0. Thust € tidset(T).
o M < M. Thus #'(t) < . (t).
o M| = M and wb{ = wb; = true and & C /.
Thus g'(t) = B(t) = true and {(t) € {’(t). Also we know & C (inObjThrds(W,S)\{t}).
Then we only need to show the following (B.5):

{t'~ M, [t €&} < {t/~ My |t €&} (B.5)
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From (A), since Vt'. Enabled(Dy) = I and Precise(I), we know: for any t’ € &,
t'#t and (0,X) |= Enabled(Dy) .
Thus (0 W oy, W 3y) |= Enabled(Dy) * true. From (M), we have M/, < My. Thus (B.5)
holds.
For any t’ € inObjThrds(W,S)\({t}, from (K), we know one of the following holds:
o M, < My. Thus .Z’(t") < . (t').
e M/, = My and wb;, = wby = false.
Thus f’(t") = p(t’) = false. Then from the premise, we know
& =&, =0
Thus the following (B.6) holds:

{t"~ M, [t e&l} = {t" ~ My |t € &) (B.6)
Thus .Z’(t') = .# (t’) holds.

e M/, = My and wb;, = wby = true.
Thus p’(t") = (") = true. From (K), we know
Sztgfl =0A((ZY3p.kv) Fen(Cr) Vv (2 W3y, ky) E —en(Cy)).
Also, since §v\§{? C &/, we know

& C &
One of the following holds:
o t¢ & . Thust ¢ {(t') and {(t") € {'(t") € (inObjThrds(W,S)\{t'}). We only need to
show the following (B.7):

{t" ~ M, [t €&} < {t"~ My |t €&} (B.7)

From (I), we know: for any t” € &,
t” #t' and (0,X) = Enabled(Dy) .
Thus (0 W o, X W X)) |= Enabled(Dy~) * true. From (L), we have M/, < M;». Thus
(B.7) holds.
o t € & . Since wffAct(R, D), we know
((0-’2)7(0-/’2’)) |= <[Z)t]) .

From (H), we know

M| < M;.
We only need to show the following (B.8):
{t"~ M, |t €&} < {t7~ My |t € &) (B.3)

For any t” € &/\{t}, from (I), we know:
t” #t' and (0,2) |= Enabled(Dy) .
Thus (0 W o, 2 W X)) |= Enabled(Dy~) * true. From (L), we have M/, < M;». Thus
(B.8) holds. Thus .Z’(t") < . (t’) holds.
For any t” € inObjThrds(W,S)\({t} and is_await(W|y), we have:
if ((y = sfair) A (t" € bset(W,S)) A (t’ € bset(W’,8"))) V (y = wfair), then from (M), we
know aw;, < awy. Thus one of the following holds:
e aw,, < awy. Thus a’(t") < a(t’).
e aw,, = awy. From (M), we know
t‘,‘d =0A((ZW3Iy,ky) Een(Cy) VvV (2 W3y, ky) |E —en(Cy)).
Also since £4\E89 C {31, we know
EF c &l
One of the following holds:
o t¢ &l Thust ¢ {,(t') and {,(t") € ¢;(t') S (inObjThrds(W,S)\{t’}). Also we know
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(La(t) #0) vV (La(t") =0 At ¢ bset(W,S)) V ({(t") =0 At € bset(W’,S)).

We only need to show the following (B.9):

{t" ~ M, |t € E2") < {t" ~ My |t € &) (B.9)
From (I), we know: for any t” € §t’f,

t"” #t" and (0,2) = Enabled(Dy) .
Thus (o0 W oy, W 3v) |= Enabled(Dy) * true. From (L), we have M/, < M. Thus
(B.9) holds.
ete §t‘f. Since wffAct(R, D), we know

((0,%),(c", %)) = A[Dx]) -
From (H), we know
Mt/ < M;.

We only need to show the following (B.10):

{7~ M, |t € &8} < {t" ~ My |t € &3} (B.10)
For any t” € £7\({t}, from (I), we know:

t” #t' and (0,X) = Enabled(Dy) .

Thus (o0 W 07,2 W 3r) |= Enabled(Dy) * true. From (L), we have M/, < M. Thus
(B.10) holds. Thus a’(t’) < a(t’) holds.

Thus we are done. ]

LEMMA B.22 (PARALLEL COMPOSITIONALITY FOR SIMULATIONS WITH PDF OBJECTS).
If there exist R, G and D such that the following hold:

(1) for anyt € [1..n], we have D,R,G =, {P}(IL,C;) 5 (II',T,Cy);

2) Vt,t'. t #t' = Gy = Ry, wffAct(R,D), P = —Enabled(D), PV Enabled(D) = I, I>{R,G},
then By {Atefr..n Pel(let ITin Ci|].. .|| Cp) < (let I in Cy | .. .|| C,,,T).

Proor. For any o, o and %, if (0,%) = (A\tef1..n] Pt), from the premises, we know: there exist

My, ..., My, My, ..., My, awy, ..., awp, Why, ..., Wby, By, ..., By, &, ..., &, &F, ..., & such that
wby; = ... = wh, = false and for any t € [1..n]:

D’R7G |:'t)( (H’Cb(O-C’G,O)) s (H/’F’Bt’ct’(z’o)) < (Mt’MbWbt’ aWt) 'U':ft,fta P.
We want to show that there exist &, ., a, §, { and {, such that
Hy (letITin Ci|]...[ICp),(0¢,0,0)) 3 (et T in Cy ||...|C,,).T, B, (0c,2,0)) o (A, L, B, ,{a).

We generalize the result and prove the following (B.11):
If (¢,%) |= I and the following holds for any t € [1..n]:

C’t # end =
D,R,G B gn,ét,(ac,a W oy, k) < (1,1, By, Ce, (30 3, Ky)) o (M, My, why, aw) g0 P,
Ci=end = Ci=end Ax; =0 AK; = o,
then
Hy (et Tin G l....1Ca). (0c,0 @ (W 1), K)) 3 (et Tin Gyl
Cpn), I, A8, (0,2 W (5 2¢),K)) o (A,{, B,,y).
Here for any t € [1..n], K (t) = k; and K(t) = K;, and the functions &, .#, {, f, @ and
{q are defined as follows.
o dom(A) = dom( M) = dom({) = dom(f) = dom(a) = dom({,) = inObjThrds((let II in Gl
e ”én)’(o—mo' W (Wi 01), K)).
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e For any t € dom(.#'), we have
e B(t) = By
o M (t) = (M, {t' ~ My |t € &)});
o J(t) =&s
o B(t) = why;
o a(t) = (aw, {t' ~ My | t' € &});
o fa(t) =&
The order (M’, M") < (M, M) is defined as a dictionary order:
M M)Y<(MM) iff M <M) v M=MAWM <M)
M < M T 3t (M (1) < M(1)) A (Yt € dom(M)\{t}. M'(t") < M(t'))
M < M iff YVt € dom(M). M’(t) < M(t)

Clearly .#’(t) < . (t) is a well-founded order. (
B.11)

def

def
= (O-Cvo- W

By co-induction. Let W «f (let IT in il C‘,,), W = (letT in Sl @,,), S
def

(Wi o), K) and S = (0¢,2 W (I4); 2t),K). Suppose o = (s, h). Then s(TIDS) = [1..n].
(1Ya) dom(B) = dom( M) = dom({) = dom(B) = dom(a) = dom({,) = inObjThrds(W,S) =
inObjThrds(W,S).
(b) For any t € inObjThrds(W,S), we have {(t) U {,(t) C (inObjThrds(W,S)\{t}).
(c) For any t € inObjThrds(W,S), if f(t) = false, then {(t) = 0; and if f(t) = true, then
{(t) # 0Vt e ffset(4,S).
(d) For any t € inObjThrds(W,S), if t € bset(W,S) and t ¢ ffset(4,S), then {,(t) # 0.
(e) For any t € inObjThrds(W,S), for any t’ € {(t) U {,(t), we have t’ ¢ bset(W,S).
(f) For any t € ffset(4,S), we have is_while0(W|, A(t)).
For any t € inObjThrds(W,S), we have is_while0(W|;, Z(t)) V is_while 1(W];).
Proof: For any t € [1..n], from the premise, we know: k; = o & Kk; = o. Thus we have
inObjThrds(W,S) = inObjThrds(W,S).
Also, from the premise, we know: forany t’ € {(t)U{,(t), wehavet’ # tand (cWoy,ZW3y) |=
Enabled(Dy) * true. Then we only need to prove inObj(Cy,ky). Suppose =inObj(Cy, k),
then we have (o W oy,% W 3y) |= Pp. Since P = —Enabled(D), we get a contradiction. Thus
inObj(Cy,xy) holds. Also, from the premise, we know: (o W oy, % W 3y) |= en(Cy). Thus
t’ ¢ bset(W,S) holds.
(2) f W = (letIl in end]|.. .|| end), then AII". W = (let IT" in end||.. . .|| end).
Proof: Since C; = end = @t = end, we are done.
(3) If (W, S) —> abort, then
there exists t such that : = ((t,clt,abort),0,0) and (W,S) > abort.
Proof : By the operational semantics we know: there exist t € [1..n] and e such that 1 = (e,0,0)
and

(éta(ac,g U (Lth O't),Kt)) L)t’n abort.

By D,R,G |:1t)( (H,ét,(o'c,o'wo't,Kt)) < (H',T,Bt,@t,(ZL‘dZt,kt))O(Mt,Mt,wbt,awt) Ué,ff P,
we know e = (t,clt,abort) and

(@t,(oc,z W (I 2¢), Ke)) ;t,H’ abort.

Thus (W,S) — abort.
@) If (W,S) — (W',S’), then
there existt, T, W', S", 4", (', p’, o', {,, &', e, A, and A, such that all the following hold:
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(2) (W,5) =0 (W',5);
(b) 1= (e,Ac,A); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A.,_) ::€;
is_obj(e) = (Yi,t’ = T(i). is_obj(t"));
ife = (t,f,_), then &' = Zft ~ getB(L, )}, else if is_obj(e) A is_while1(W’|;), then
B’ = Bt ~ true}, else B’ = B;
© By W.S8) =z (W.I,L%A"S) o (M".{", B a’, {3);
(d) if t € inObjThrds(W,S), then
either t € tidset(T),
or A'(t) < A (1),
or A'(t) = A (t) and f’(t) = B(t) = true and {(t) C {’(t) C (inObjThrds(W,S)\{t});
(e) for any t’ € inObjThrds(W,S)\{t}, we have:
either t’ € tidset(T),
or A'(t') < . (t),
or A'(t') = A (t') and p'(t') = p(t’) = false,
or.A'(t') = . (t")and f’'(t') = f(t’) = trueand {(t") C {’(t") C (inObjThrds(W,S)\({t’})
andt ¢ {(t');
(f) for any t’ € inObjThrds(W,S)\{t} and is_await(W|y), we have:
if ((y = sfair) A (t" € bset(W,S)) A (t’ € bset(W’,S"))) V (y = wfair), then
either t’ € tidset(T),
ora’(t’) < a(t’),
or a’(t') = a(t’) and {,(t") € {J(t") € (inObjThrds(W,S)\{t'}) and t ¢ {,(t") and
(Lat") #0) V (La(t') =0 At ¢ ffset(AB,S)) V (L)) =0 At € ffset(H',S)).
Proof: By the operational semantics, we know one of the two cases holds:
e there exist t, é{, W’, 8’ e, A; and A, such that
ét = skip, K (t) = o, C{ =end, 1 = (e,A,A,), e = (t,term),
=(@letlinC|l...C/ ... 1ICy), S8’ =8, btids(W,S) = (Ac,A,) .
By D,R.G B (ILCy, (0,0 Wop k) 3 (1,1, By, C, (SWZ, ky)) o (Me, My, why, aw) U e
P, we know C; = skip and k; = o. Let C] = end, btids(W,S) = (AL, A}), /' = (e,AL,AL)

and W’ = (letTin Gy || .. @{ ... 11C,). Then (W,S) N (W’,S). From the premise, we
know Yt'. (ky = 0 = Cp = @t,) A (ky = o & Ky = o), thus
AL = A,
Also we know
((O’,Z), (O" Z)’ 0) |= Gt~
For any t’ # t, since Gy = Ry, we have ((0,%),(0,2),0) |= Ry. Thus
(e Wop,2W3y), (0 Woy,XW3y),0) = Ry = 1d.
By D,R,G |=1t)f (H,étf,(Gc,ULﬂUtf,Kt/)) < (H’,F,Btf,@t»,(szt»,kt/))o(Mt/,Mtr,wbt/,awtf) lléﬁu,fﬁ
P, and by the co-induction hypothesis, we can finish the case.
e there exist t, é’ W', ol, 0", Kt’, K’,S’, e, A and A, such that

(Ct,(O'C,O' W (Ut O—t) Kt)) _>tH (Ct,(O' ’0'” K ))) {t > Kt ( Il,7<,)>

=(letIlin G ||.. MG, 1= (e,Ac,Ay), t = tld(e), btlds(W’,S ) = (A, Ap).

By D,R,G (H,Ct,(oc,GUot,Kt)) < (1,1, By, Cp, (B9 2 Ke)) © (M, My, whe, awy) U, o
P, we know

(A) Forany t’ € & U &P, we have t’ # tand (0 W 0,2 W X) |= Enabled(Dy) * true.
And there exist n, ¢””, &, @; =" ki, k, B, M, M{, why, aw;, & and 5“1 such that
(B) ¢” = 0" W (W ov), and
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(©) (C1 (0628 (W 20 k) 1 (C1 (045" ¥ (Wyst o). K)): and
if k > 0 and inObj(Cy, k¢), then
exec0:((Cy, (02,2 W (W 24), Ke), (Cf, (05,27 ¥ (Wes Zr), K))) or execti((Cy, (0c, 2 @
(W Ze), k), (CF, (08, 2" W (Hyse 2), K())); and
ife = (t,f,_), then B{ = getB(T', f), else ifinObj(ét,Kt) A is_while1(@t'), then B| = true,
else B{ = By; and
(D) is_clt(e) Vis_inv(e) V is_ret(e) = & = e::¢, and
is_obj(e) = (¥i,e’ = &(i). is_obj(e’)), and )
(E) D.R,G |5 (IL.C, (0,0 ,k])) 3 (I',T,B],C/,(Z"",Kk})) o (M[, M/, wh{, aw,) Uz o P,
and
(F) ((c Woy, X W34),(c",2"),k) = Gt = [done = false] * True, and
(G) if inObj(ét,Kt), then n > 0, or My < M, or M = M; and wb{ = wh; = true and & C &/;
and
H) if (0 Wor,ZW3%), (", 2")) = {[D]) * True and k = 0, then M{ < M;.
Since (0,%) |= I and I > {R,G}, we know there exist ¢’, ¢/, 2’ and ¥{ such that
" =c"Wg/, " =3W3{ (¢.,2) I and ((c,%),(c".2),k) E G
For any t’ # t, since Gy = Ry, we have ((0,2),(¢’,2"),k) |= Ry. Thus
((O' (V] O't',z (V] Zt/),(o’ (V] O't',z/ (V] Zt/),k) |: Rt/ % Id.
By D,R,G K (IL,Cv, (0c,0¥0v,kv)) 3 (1,1, By, Co, (B3, Ke))o(My, My, why, awy) g, g0
P, we know
(I) For any t” € & U &, we have t” # t" and (0 W oy, W 2¢) |= Enabled(Dy) * true.
And there exist Bt',, M;,, Mt’,, wbt',, aw{,, ft‘/i, §t‘fd, §t’, and §t‘fl such that B/, = By and
) D,R,G |=|t)f (I1,Cv, (o), 0" Wov, k) < (H’,F,Bt/,@t/,(E’MZt/,kt»))o(Mt’,,Mt’,,wb{,,awt’,) 115;” ai
P, and
(K) if k > 0 and inObj(Cy, kv ), then for any o/, %" and Xp such that " = X{done ~» true}
and 35 L3 we have (Cy,(0)".2" W Sy W Sp.ky)) — 1, (Cr. (07,3 W Zp WEp.Kp));
L) ,f/i ={t" | (t" € &) A(((cWoy,2WEy), (0" Woy,2 W Ep)) = (D) x1d)} and
k =0 A inObj(Cy,ky) = M, < My V (M}, = My A wb], = why) and
k=0Awby = true/\(§t‘f #0V(EWIy,Ky) F By AR'WIr,Ky) | Br)) = M|, < My
and
k=0AM, =My A wh, = wby = true = §t/\§t‘fl C &/, and
(M) if (0 W oy, 2 ¥ Zy) = Enabled(Dy) * true and k = 0, then M, < My; and
(N) &89 = (t” | (t” € ED A (0 Wor, 2 W Bp), (6" © 0,3 W3y)) = (Dy) * Id)} and
k =0 A inObj(Cy,kv) A is_await(Cy) = E4\ES? C €91 and
k = 0 AinObj(Cy,ky) Ais_await(Cy) A (£94 £ OV (ZWZv,Ky) [ —By A (Z' W3y, ky) |
By)) = aw;, < awy and
k =0 A (y = sfair) A inObj(Cy,ky) Ais_await(Cy) A ((o W oy, ky) = —en(Cy)) A (07 W
ov.ky) = —en(Cy)) = aw;, < awy and
k =0 A (y = wfair) A inObj(Cy,ky) A is_await(Cy) = aw;, < awy.
Let W = (let T in Cy || ... C/... I Cy) and S’ = (0,3 W3/ W (Ipsy Zo), K{t ~ K{}).
From (C) and (K), we know there exists T such that
(W,S)) —* (W', 8'), Vt' € inObjThrds(W,S)\{t}. k > 0 = t’ € tidset(T) .
From (D) and (K), we know
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A.,_)::€,
is_obj(e) = (Yi,t’ = T(i). is_obj(")) .
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Define the functions &', 4", {’, p’, @’ and {, as follows.
o dom(#') = dom(A") = dom({") = dom(f’) = dom(a’) = dom({) = inObjThrds(W’,S’).
e For any t € dom(.#"), we have

o B'(t) =B
o M'(t) = (M, {t' ~ M, |t € &});
o I'(t) =&

o f/(t) = wh;
o a'(t) = (aw], {t' ~ Mt', |t/ e §t“1});
o Ji(t) = &
Then by the co-induction hypothesis, we know
Hy W'.S8) s (W.I,%",S") o (M".{" p' 0’ (7).
For the thread t, from (G), we know: if t € inObjThrds(W,S), then one of the following
holds:
e n > 0. Thust € tidset(T).
o M < M. Thus #'(t) < . (t).
o M} = M; and wb{ = wb; = true and & C &/
Thus f(t) = B(t) = true and {(t) € {’(t). Also we know & C (inObjThrds(W,S)\{t}).
Then we only need to show the following (B.12):

('~ M, |t €&} < {t'~ M |t €&} (B.12)

From (A), since Vt’. Enabled(Dy) = I and Precise(I), we know: for any t’ € &,
t"#t and (0,X) |= Enabled(Dy) .

Thus (0 W oy, 2 W 3y) |= Enabled(Dy) * true. From (M), we have M, < My. Thus (B.12)

holds.
For any t’ € inObjThrds(W,S)\{t}, from (K) and (L), we know one of the following holds:
e k> 0. Thent’ € tidset(T).
o M, < My. Thus .Z’(t") < . (t').
e Mj, = My and wh;, = wby = false.

Thus f’(t") = p(t") = false. Then from the premise, we know

b=& =0.
Thus the following (B.13) holds:

{t" ~ M, |[t" €&} = {t7"~ My |t € &} (B.13)
Thus .#’(t') = . (t’) holds.

e M/, = My and wb;, = wby = true.
Thus p’(t") = B(t’) = true. From (L), we know
sﬂ‘? =0A(EWZy,ky) EBy V(2 W3y, ky) F -By).
Also, since & \é4 C &/, we know
& C &
One of the following holds:
o t¢ & . Thust ¢ {(t') and {(t") C {’(t") C (inObjThrds(W,S)\{t’}). We only need to
show the following (B.14):

{t" ~ M, [t €&} < {t"~ My |t €&} (B.14)

From (I), we know: for any t” € &,

t” #t" and (0,2) |= Enabled(Dy) .
Thus (o W 01,2 ¥ X¢v) |= Enabled(Dy) * true. From (M), we have M/, < M. Thus
(B.14) holds.
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o t € & . Since wffAct(R, D), we know
((0’2)’(0-,?2’)) |= <[@t]) .
From (H), we know
M < M.
We only need to show the following (B.15):

[t~ M, |t €&} < ("~ My |t € &) (B.15)

For any t” € &/\{t}, from (I), we know:
t” #t' and (0,2) |= Enabled(Dy) .

Thus (0 W op7,X W Xv) = Enabled(Dy~) * true. From (M), we have M;,

(B.15) holds. Thus .Z’(t") < . (") holds.
For any t’ € inObjThrds(W,S)\({t} and is_await(W|y), we have:
if ((y = sfair) A (t’ € bset(W,S)) A (t’ € bset(W’,S"))) V (x = wfair), then from (K) and
(N), we know one of the following holds:
e k> 0. Thent’ € tidset(T).
e aw,, < awy. Thus a’(t") < a(t’).
e aw,, = awy. From (M), we know

ad = QA (Y Zp,Ke) E By V (3 WSy, ky) = -By).

Also since §t‘,‘\§‘?d C &4, we know

< My . Thus

£8 C &M
One of the following holds:
o t¢ &l Thust ¢ {,(t') and {,(t") € ¢,(t') S (inObjThrds(W,S)\{t’}). Also we know
(Lat) £0) V (La(t') =0 At ¢ ffset(AB,S)) V ({(t') =0 At € ffset(H',S)).
We only need to show the following (B.16):

{7~ M), [t € &8} < {7~ My |t € £} (B.16)

From (I), we know: for any t” € ft‘,‘,
t” #t" and (0,2) = Enabled(Dy) .
Thus (o ¥ 017, % W Xv) |= Enabled(Dy) * true. From (M), we have M{, < M. Thus
(B.16) holds.
ete §t‘f. Since wffAct(R, D), we know
((0,%),(c¢",2) = A[Dx]) -
From (H), we know
M < M.
We only need to show the following (B.17):

{t" ~ M, [t €&} < {t"~ My |t € &8} (B.17)

For any t” € &\t from (I), we know:
t” #t' and (0,X) |= Enabled(Dy) .

Thus (0 W oy, % W Xv) |= Enabled(Dy») + true. From (M), we have M{, < M. Thus
(B.17) holds. Thus a’(t’) < a(t’) holds.
Thus we are done. O

B.8 Towards Simulations with Fixed Low-Level Traces

As in the proof of LiLi, we extend each event e in a trace to include the information that can
uniquely determine a step (for instance, to include the value written to x for the non-deterministic
instruction x := rand()). We overload the notations e, 1, & and T.
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w,S) »L+ w’,8’) get_obsv(T) =€ T I=a O;&T;"(W’,S’,e)
activeThrds(W) — A C tidset(T) A C bset(W,S) Vi,i = T(i). A C bset(r)

T=T g O979(W, S, )

sfair

(W,S) =t (W, 8")  get_obsv(T) = ex& T |=p O (W’,S",&")

sfair

activeThrds(W) — A C tidset(T) A C bset(W,S) Vi, i = T(i). A C bset(s)
T=T Ep O2°2(W,S,e:E:87)

sfair

(a) y = sfair

(W,S) ot (W',8)  getobsv(T) =€ T |=p OO (W', S, €)

wfair

activeThrds(W) — A = tidset(T) VYt € A. Ji. t € bset(T(i))
T:T' =5 OC°-°(W,S,¢)

wfair

w,S) Lot w’,8") get_obsv(T) =e=& T’ |=p O-2(W',S7,8%)

wfair

activeThrds(W) — A = tidset(T) VYt € A. Ji. t € bset(T(i))
T=T Ep O9°2(W,S,e:E:87)

wfair

(b) x = wfair

Fig. 25. Co-inductive definitions for generating observable event traces of infinite and y-fair executions.

We define Oy [W, S] for the set of observable traces generated from infinite and y-fair executions
in 7,[W,S].

T2W.S] & {(spawn,[W[).Ac.Ao) =T | btids(W.S) = (Ac.Ao) A (W.S) @)}

def

0¢[w.,S] = {(&T) | TeT,°[W,S] A x(T) Aget_obsv(T) = &} x € {sfair, wfair}
Then O, [W,S] is equivalent to the union of Oy [W,S] and the set of observable traces generated
from finite executions (note that all finite traces are y-fair). Actually here we pair each observable
trace & in O, [W,S] with the execution trace T generating &.
T [W,S] = {((spawn, (W), Ac,A0) T | btids(W,S) = (Ac, o) A
(W, S) 5 * abort) v AW, S”. (W,S) Fo* (W, 8")) A =G (W, 8) v )}
Oy [W,S] = O9[W,SJU{(&.T) | T €T, "[W,S] A get_obsv(T) = &}
We observe that for each trace T in O;‘() [W,S8], from some point on, it can be cut into pieces where
each piece (called a round) contains at least one step of every thread (unless the thread is not needed
to execute in a y-fair execution). In Fig. 25 we give the definition of T |=p O)C(O‘“’(W,S,S), which

says that T can be cut into such kind of pieces. This is useful to help derive the whole-program
simulations with fixed low-level traces (see Definitions B.23 and B.24).

Definition B.23 (Simulation with fixed low-level traces (for whole programs with PSF objects)).
T = (W,S8)<(W,S) o M is co-inductively defined as follows. Here M € ThrdID — Metric.
Whenever T |= (W,S) < (W,S) ¢ M holds, then the following hold:

(1) dom(M) = inObjThrds(W,S) = inObjThrds(W,S).
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) If (W,S) — (W,8")and T = 1::T’, then
there exist t, e, A¢, Ao, T”, n, W, S” and M’ such that all the following hold:

(a) (W,S) iy (W’,S’),andn=0Vn=1,
(b) 1= (e,A¢,Ap); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T” = (e,A¢,_) :€;
is_obj(e) = (Yi,t’ = T”(i). is_obj(1"));
© T EW,S8)<(W,S") oM
(d) for any t’ € inObjThrds(W,S), we have:
either t’ € tidset(T"’),
or M’(t") < M(t),
or M’(t') = M(t’) and t’ € bset(W,S) and t’ € bset(W’,S’).

Definition B.24 (Simulation with fixed low-level traces (for whole programs with PDF objects)).
TRHW,S)<(W,T,4,S) ¢ M is co-inductively defined as follows. Here M € ThrdID — Metric.
Whenever T H (W,S) <(W,T,4,S) ¢ M holds, then the following hold:

(1) dom(M) = inObjThrds(W,S) = inObjThrds(W,S);

for any t € ffset(4,S), we have is_while0O(W|;, Z(t)).
©2) If (W,S) — (W’,8’) and T = 1:T/, then
there exist t, e, A, Ao, T”, ', W', S” and M’ such that all the following hold:

(a) (W.5) o (W, §);

(b) 1= (e,Ac,Ap); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T” = (e,A¢,_) ::€;
is_obj(e) = (Yi,t’ = T”(i). is_obj(1"));
ife = (t,f,_), then &' = B{t ~ getB(l, f)}, else if is_obj(e) A is_while1(W’];), then
B’ = Bt ~ true}, else B’ = %,
© T RBEW.,S)<(W,I,%.,S") o M
(d) for any t’ € inObjThrds(W,S), we have:
either t’ € tidset(T"),
or M/'(t') < M(t"),
or M'(t') = M(t’) and t’ € ffset(£,S) and t’ € ffset(#’,S’).

Below we prove in Lemmas B.25, B.29, B.32 and B.33 that the whole-program simulations
(Definitions B.19 and B.20) imply the simulations with fixed low-level traces (Definitions B.23
and B.23) if the low-level traces are strongly/weakly fair. We first define some useful predicates
and ordering in Fig. 26.

LEMMA B.25 (TOWARDS SIMULATIONS WITH FIXED LOW-LEVEL TRACES (FOR PSF OBJECTS UNDER
STRONG FAIRNESS)). If T [Fa OF.“(W,S,E) and Fsair (W,S) 5 (W,S) o (A,{,B,,0a), then

there exists M such that T = (W,S) <(W,S) o« M.
Proor. We prove the following (B.18) by inversion over T |=p OS> (W,S,&).

sfair

If T |=p O (W,S,E), then there exists Ty such that roundsub(T,activeThrds(W) —

sfair
ATy).
(B.18)

Also, by inversion over |=¢ir (W,S) < (W,S) o (A,{,B,a,{,), we know
dom(A) = dom({) = dom(p) = dom(a) = dom({,) = inObjThrds(W,S) = inObjThrds(W,S).
Choose Ty such that roundsub(T,activeThrds(W) — A, T, ). Next we choose M to be a function
such that the following hold:
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roundsub(T,&,Ty) iff (IT| #w) A (Tx =T) vV AT. (T =Tx=T') A (|Tx| # @) A (€ C tidset(Tx))

0 if£=0
. def | 1 ifT=enE£0
minPos(T.8) = 1 4 T = 15T A |T] % 0 A tid()) € &
1+ minPos(T”,&) ifT=1zT' A|T| #w Atid(t) EAE£D
0 ift¢A
L def | 1 fT=eAnteA
minDisa(T.t) = 3 T =0T Atebset(l) AteA
1+ minDisp(T’,t) if T=1=T' At ¢bset(t) At€eA
minPos(T,& — A) if&E-A+#0
minPosa (T, £) &f { min{minDisp(T,t') |t/ € €} ifQCECA
0 ifE=0
minPos(T,& — A) if&E-A#0
min{minDisp(T,t") |t' € §} fQCECA
minPosy 4(T,&,t) £ { -1 if£ =0 AB(t) =false At € A
minPos(T,{t}) ifE=0Ap(t) =false At ¢ A
0 if £ =0 A f(t) = true

Fig. 26. Definitions related to rounds.

(1) dom(M) = inObjThrds(W,S).
(2) For any t € dom(M), we have:
M(t) = (A (1), ({(1),dom(D)\{t}), minPos p(Ty,{(),1),
a(t), (fa(t), dom({a)\{t}), minPosa(Tx, {a(t))) -
We define the order M’(t) < M(t) as a dictionary order:

(M’,(&7,8p), k", Mg, (80, &4p) ko) < (M, (8,8p).k, Ma, (8a,8ap). ka) iff

(M < M)

V(M =M)A((&.85p) < (£.¢p))

V(M =M)A(&.85p) = (£.5p)) A (K" < k)

V(M =M)A&.85p) = (5.5p)) Ak =k =—-1) A (M, < Ma)

V(M =M)A((&.E) = (8.6p)) A (K =k =-1) AN(M =Ma) A((§5.€,p) < (€a,€aD))

V(M =M)A(&.85p) = (§.6p)) A (K" =k ==1) A (Mg, = M) A ((€5.8.p) = (§a,§ap)) A (kG < ka)

(&.¢p) < (&,¢p) iff

(28N (E CEp) A< Ep) A S ép)
(&.8p) = (&.ép) iff

(&= NE e A& S D) A(E S D)

Clearly that M’ (t) < M(t) is a well-founded order.
Next we prove: forany T, A, W, S, E, W, S, 4, , B, a, {5, M and Ty, if
(1) T Fa OF.2(W,S,8);
) Esfair (W,S) 3 (W,S) o (A,{,B,a.8a);
(3) roundsub(T,activeThrds(W) — A, Ty);
dom(M) = inObjThrds(W,S); and
for any t € dom(M), we have M(t) = (A (t), ({(t),dom({)\{t}), minPosp g(Ty,{ (t),1),
a(t), (Za(t), dom(Z\{t}), minPos(Te,a(t))),
then T = (W,8) <(W,S) e M.
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By co-induction. We need to prove: if (W,S) — (W’,8)and T = 1:: T/, then
there exist t, e, As, Ao, T”, n, W, S” and M’ such that all the following hold:

(@) (W,S) von (W’,§"),andn =0V n=1;

(b) 1t = (e,A¢, Ap); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A¢,_) :€;
is_obj(e) = (Vi,t' = T"(i). is_obj(1"));
© T (W.,8)<(W,S") o M;
(d) for any t’ € inObjThrds(W,S), we have:
either t’ € tidset(T"),
or M’(t") < M(t"),
or M’(t") = M(t’) and t’ € bset(W,S) and t’ € bset(W’,S’).
From F=gair (W, S) 5 (W,S) o (A,{,B,a,{,), we know there exist t, T, W', S", 4", ', p’, &',
{l, n, e, A and A, such that all the following hold:

(A) (W,S) iy (W’,S"),andn=0VvVn=1;

(B) 1= (e,Ac,Ap); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A¢,_) ::€;
is_obj(e) = (Yi,t’ = T” (i). is_obj(1));
(C) =sfair (W/’S,) 3 (W/’S,) © (%l’§,7ﬁ/7a,’§;);
(D) if t € inObjThrds(W,S), then
either t € tidset(T”),
or A'(t) < M (t),
or A'(t) = #(t) and f’(t) = f(t) = true and {(t) C ’(t) C (inObjThrds(W,S)\{t});
(E) for any t’ € inObjThrds(W,S)\{t}, we have:
either A" (t") < . (t'),
or A'(t") = A (t') and ' (t") = f(t’) = false,
or A'(t") = A (t') and p’(t") = B(t’) = true and {(t’) C {’(t") C (inObjThrds(W,S)\{t'})
andt ¢ {(t);
(F) for any t’ € inObjThrds(W,S)\{t} and is_await(W|y), we have:
if (t’ € bset(W,S)) A (t’ € bset(W’,S’)), then
either o’ (t’) < a(t’),
ora’(t') = a(t’) and {,(t") € £/ (t') € (inObjThrds(W,S)\{t’}) and t ¢ {,(t’) and
(La) £ 0) V (L) =0 At ¢ bset(W,S)) V ({(t') =0 At € bset(W’,S")).
Since T |=p O (W,S,E), by Lemmas B.26 and B.27, we know there exists &’ such that

& = (get_obsv() =&’ and T" o O (W', 5", &").
By (B.18), we know there exists T, such that roundsub(T’,activeThrds(W’) — A, Ty).
Choose M’ such that dom(M’) = inObjThrds(W’,8"); and
for any t € dom(M’), we have M'(t) = (A" (t), ({'(t),dom({")\(t}), minPosp g (T}, (t),1),
& (1), (4(0), dom(Z)\{t), minPosa(TL, 4(1)).

By the co-induction hypothesis, we know T’ |= (W’,8’) < (W’,S") o M.

(1) If t € inObjThrds(W,S), below we prove: either t € tidset(T”), or M'(t) < M(t), or
M'(t) = M(t) and t € bset(W,S) and t € bset(W’,S’). From (D), we know one of the
following holds:

e t € tidset(T”’). Thus we are done.
o ' (t) < A (t). Then M'(t) < M(t).
o M'(t) = A (t) and p’(t) = f(t) = true and {(t) C {’(t) C (inObjThrds(W,S)\{t}).

We know one of the following three cases holds:
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e {(t) CI'(1).
We prove M’(t) < M(t) as follows. From |=sir (W,S) 5 (W,S) o (A,{,B,a,{,) and
=sfair (W, 8") S (W, S) o (A", ", B, a’,{}), we know
dom({’) = inObjThrds(W’,8’), dom({) = inObjThrds(W,S),
£(t) € (dom( M\ {t), (1) € (dom(D)\[1)).
By the operational semantics, we know inObjThrds(W’,S’) C inObjThrds(W,S). Thus
we have
(O, dom(E\ (1)) < (¢ (V) dom(Q)\(t)).
Thus M’(t) < M(t).
e 0cy(t)=0"(1).
We prove M’ (t) < M(t) as follows. First we have ({’(t), dom({")\{t}) = ({(t), dom({)\{t}).
Also, since |=sfair (W,S) 3 (W,S) o (A, L, p,,{,), we know for any t’ € {(t), we have
t’ ¢ bset(W,S). Then, from T [Fp 0L “(W,S,E), we know
) NA=0.
Thus we know
minPosy g (T, (t),t) = minPos(T;,{(t)) and
minPosy g(Ty,{(t),t) = minPos(Ty,{(t)).
Since roundsub(T,activeThrds(W) —A, T ), we know there exists T, such that T = T, : T,.
Also Ty # €.Since T = 1::T’, we know there exists Ty suchthat Ty = 1:T,and T = T, :: T.
Also since roundsub(T,activeThrds(W)—A, T ), we know activeThrds(W)—A C tidset(Ty).
Thus {(t) C tidset(Ty). Since t = tid(:) and t ¢ {(t), we know
{(t) C tidset(Ty).
Thus
roundsub(T’,{(t),Ty).
Then by Lemma B.28, we know
minPos(Ty,{(t)) = minPos(Ty,{(t)) < minPos(Ty,{(t)).
Thus M'(t) < M(t).
° 0=0(t) =(b).
We have ({’(t), dom({")\{t}) = ({(t),dom({)\{t}). Since B’ (t) = B(t) = true, we know
t € bset(W,S) and t € bset(W’,S’).
Also we know
minPosy g (T, (t),t) = 0 and
minPosy g(Ty,{(t),t) = 0.
Thus M’ (t) = M(t).

(2) For any t’ € inObjThrds(W,S)\({t}, below we prove: either M’(t") < M(t’), or M’(t") =
M(t") and t’ € bset(W,S) and t’ € bset(W’,S’). From (E), we know one of the following
holds:

o ' (t') < A (t"). Then M'(t") < M(t').
o MN'(t')=.#(t")and B’ (t') = p(t’) = false.
Since f’(t") = p(t’) = false, we know {(t") = {’(t’) = 0. Thus
(), dom( )\ [¥']) = ({ (¥'), dom(D\[t'}).
One of the following two cases holds:
o t’ ¢ A. Thus we know
minPosy g (T, (t’),t") = minPos(Ty, {t'}) and
minPosy g (T, (t"),t") = minPos(Ty, {t'}).
Since roundsub(T, activeThrds(W) —A, Ty ), we know there exists T, such that T = Ty :: T,.
Also Ty # €.Since T = 1:T’, we know there exists T, such that T, = 1: Ty and T = T :: T;.
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Also since roundsub(T, activeThrds(W)—A, Ty ), we know activeThrds(W)—A C tidset(Ty).
Thus t’ € tidset(Ty). Since t = tid(¢) and t # t’, we know
t’ € tidset(Ty).
Thus
roundsub(T", {t"}, T,).
Then by Lemma B.28, we know
minPos(Ty, {t'}) = minPos(T}, {t'})) < minPos(Ty,{t'}).

Thus M’(t") < M(t').
e t’ € A. Thus we know
—1 and

minPosy g (T,,{"(t'),t') =
t')y = -1.

minPosy g (T, (t'),
Since T |=a Oscf‘;rw(W,S,S) and t’ € A, we know
t’ € bset(W,S) and t’ € bset(W’,S’).
From (F), we know one of the following holds:
e a'(t') < a(t’). Then M'(t") < M(t’).
o &'(t') = a(t’) and {,(t") € {J(t") € (inObjThrds(W,S)\{t’}) and t ¢ {,(t") and
(La(t) £0) V (LL(t") =0 At ¢ bset(W,S)) V (L(t") =0 At € bset(W’,S")).
We know one of the following three cases holds:
o Lt C ).
We prove M’(t") < M(t’) as follows. From |=¢air (W,S) 5 (W,S) o (A,{,B,,{4a)
and iy (W', S") s (W', S") o (A", ", 5,0, (), we know
dom({)) = inObjThrds(W’,S”), dom({,) = inObjThrds(W,S),
L) € (domE\ED), Lalt)) € (dom(Za\)).
By the operational semantics, we know inObjThrds(W’,S8’) C inObjThrds(W,S).
Thus we have
(&), dom\EY) < (Lalt)), dom(Z)\I'Y).
Thus M’(t") < M(t’).
o 0 Cla(t') = L4(t").

We prove M’ (t") < M(t") as follows. First (£, (t"), dom({)\{t'}) = (La(t’), dom(L)\{t'})

Also, since |=stair (W,S) 3 (W,S) o (A,,B,,{s), we know for any t” € {,(t"), we
have t” ¢ bset(W,S). Then, from T |=x O;&r“(W,S,S), we know
LE)NA=0.
Thus we know
minPosa (T, ¢, (t")) = minPos(Ty,{,(t")) and
minPosa (Ty, {4 (t")) = minPos(Ty, L (t")).
Since roundsub(T,activeThrds(W) — A, Ty ), we know there exists T, such that T =
Ty ::T,. Also Ty # €. Since T = 1::T’, we know there exists T, such that T, = 1:: T,
and T’ = Ty = T,.
Also since roundsub(T activeThrds(W) — A, Ty ), we know actlveThrds(W)
tidset(Ty). Thus {,(t") C tidset(Ty). Slncet = tid(1) and t ¢ {,(t"), we know
{a(t') C tidset(T,).
Thus
roundsub(T”,{,(t"), Ty).
Then by Lemma B.28, we know
minPos(Ty,,(t")) = minPos(Ty,{4(t")) < minPos(Ty,{,(t’)).
Thus M'(t") < M(t’).
o 0= {a(t') = 45(t).
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We have ({;(t), dom(;)\{t'}) = ({a(t’), dom(Za)\{t'}). From [=¢air (W,S) 5 (W,S)o
(A, B,a,q) and [=spair (W', S") 3 (W', S")o( A", ", ' a’, (), sincet” € bset(W,S)
and t’ € bset(W’,S’), we know
t’ € bset(W,S) and t’ € bset(W’,S’).
Also we know
minPosa (T}, ¢, (t")) = 0 and
minPosa (Ty, {4 (t")) = 0.
Thus M’(t") = M(t’).
o N'(t') = .# (") and p’(t’) = B(t’) = true and {(t’) C ’(t’) C (inObjThrds(W,S)\{t'})
andt ¢ {(t).
We know one of the following three cases holds:
o J(t') C J'(t)).
We prove M’ (t") < M(t’) as follows. From |=sir (W,S) 3 (W,S) o (A,{,B,,{,) and
=sfair W, 8") 5 (W, S") o (A", 0, B ,a’, ), we know
dom({’) = inObjThrds(W’,8’), dom({) = inObjThrds(W,S),
J'(t') € (dom(ZH\{t'}), C(t) € (dom()\{t'}).
By the operational semantics, we know inObjThrds(W’,S”) C inObjThrds(W,S). Thus
we have
(J7(t), dom({")\{t'}) < (LX), dom(O)\{t'}).
Thus M'(t") < M(t’).
e 0 cy(t)=(t).
We prove M’(t") < M(t’) as follows. First we have (¢’ (t"), dom({")\{t’}) = ({(t"), dom({)\{t'}).
Also, since [=sair (W,S) 5 (W,S) o (A,{,p,a,{,), we know for any t”” € {(t), we have
t"”” ¢ bset(W,S). Then, from T |=x OE&}“(W,S,S), we know
)YNA=0.
Thus we know
minPosy g (T, (t'),t") = minPos(T},{(t")) and
minPosp, g (T, (t'),t") = minPos(Ty,{(t")).
Since roundsub(T, activeThrds(W) —A, Ty ), we know there exists T, such that T = Ty :: T,.
Also Ty # €.Since T = 1::T’, we know there exists Ty suchthat Ty = 1:T,and T = T, : T.
Also since roundsub(T,activeThrds(W)—A, T ), we know activeThrds(W)—A C tidset(Ty).
Thus {(t") C tidset(Ty). Since t = tid(1) and t ¢ {(t’), we know
{(t") C tidset(Ty).
Thus
roundsub(T”,{(t"), T,).
Then by Lemma B.28, we know
minPos(T;,{(t")) = minPos(T,,{(t")) < minPos(Tx,{(t’)).
Thus M'(t") < M(t’).
e 0=((t") ="(t).
We have ({'(t"), dom({")\{t'}) = ({(t"),dom({)\{t’}). Since f’(t") = B(t’) = true, we
know
t’ € bset(W,S) and t’ € bset(W’,S’).
Also we know
minPosy g (T, (t'),t") = 0 and
minPosy g (Ty,{(t"),t") = 0.
Thus M'(t") = M(t').

Thus we are done. m|

, Vol. 1, No. 1, Article . Publication date: January 2018.



Progress of Concurrent Objects with Partial Methods (Extended Version) :119

Lemma B.26. If (1:T) [Fa O “(W,S,E,), then there exists &y such that E, = (get_obsv(1)) =
Ep.

Lemma B.27. If (1:T) Fa O™ (W, S,Eq), (W,S) — (Wy,Sx) and &, = (get_obsv(1)) :: Ep,
thenT [Fa O “(W,S,Ep).

Proor. By co-induction, and then by inversion three times over (1:T) [Fa O™ “(W,S,8,). O

LEmmA B.28. If|T| = w, £ # 0, roundsub(T, ¢, Ty) and roundsub(T,,T,), then minPos(Tx, ) =
minPos(Ty, &).

Proor. From the premises, we know |Ty| # w and |T,| # . Suppose |Tx| < |Ty|.

From roundsub(T, ¢, Ty), we know there exists Ty such that T = T :: T, and & C tidset(Ty).

From roundsub(T, ¢, T,), we know there exists Té such that T = T, ::Ty’.

Thus there exists T, such that Ty, = T, =T, and T, = T, ::Té. Since & # 0, we know tidset(Ty) # 0.
Thus there exist  and Ty such that Ty = 1::Ty. Thus T, = 1:: Ty :: T,. By induction over |Tp|. We are
done. O

LEMMA B.29 (TOWARDS SIMULATIONS WITH FIXED LOow-LEVEL TRACES (FOR PSF OBJECTS UNDER
WEAK FAIRNESS)). IfT |=p O%“(W,S,8) and |=wfair (W,S) 3 (W,S) o (A,{,B,a,,), then there

wfair

exists M such that T = (W,S) <(W,S) o M.

Proor. We prove the following (B.19) by inversion over T |=p O%_“(W,S,E).

wfair

If T |=p O % (W,S,E), then there exists Ty such that roundsub(T,activeThrds(W) —

wfair

A,Ty), activeThrds(W) — A = tidset(Ty) and (Yt € A. Ti. t € bset(Ty(i))). (B.19)
B.19

Also, by inversion over |=yfir (W,S) < (W,S) o (A#,{,p,a,{,), we know
dom(A') = dom({) = dom(f) = dom(at) = dom({,) = inObjThrds(W,S) = inObjThrds(W,S).

Choose Ty such that roundsub(T,activeThrds(W) — A, Ty ). Next we choose M to be a function
such that the following hold:

(1) dom(M) = inObjThrds(W,S).
(2) For any t € dom(M), we have:

M(t) = (A (1), ({(1),dom(D)\{t}), minPos p(Ty,{(t),1),
a(t), (La(t), dom({a)\{t}), minPosa(Tx, {a(t)),
(t € bset(W,S), minDisa (Tx, t))) .

We define the order M’(t) < M(t) as a dictionary order:
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(M’ (&, &0). k" Mg, (£4. &0 p) kg, (B7,K))) < (M, (&,&D), k. Ma, (£asEap) s Kas (b, ka)) iff
(M’ < M)
(M’ M) A ((&7,8)) < (€.6p))
£,&p)) A (K" < k)

( ) <(
V(M= M) A&, &) =(
V(M =M)A((&,¢0) = (§,Ep) A (K =k =-1) A (M < M,)
V(M= M) A((&,E) = (&Ep) A (K =k =-1) AN(M =Ma) A ((§3:8,p) < (§ar€ap))
v (M (k k() ) = (£,ép)) A (K" =k = =1) A (Mg = Ma) A ((£3:8 ) = (§a,8aD))
a <kg

= M) A ((&.5p
V(M= M) A((E.Ep) = (£.8p)) A (K =k = =1) A (Mg = Ma) A ((8-85p) = (€a>€ap))
A (k= ka =0) A (b',k) < (b.kg)

(M, (8", 8p). K" Mg, (8a-Eqp) - Kas (b7,k5)) = (M, (€,€p). k. Ma, (8as £ap) s Kas (b, Kka)) iff

(M =M) A((&".5p) = (§,€p)) A (K" =k # —1)

V(M =M) A8 = (6.8p)) A (K" =k = =1) A (Mg = Ma) A ((85.8p) = (£a-8aD))

Ak, =kq #0)
v (M" = M) A(E"8p) = (£,€p)) A (K" =k = —1) A (M = Ma) A ((82,€5p) = (§as€aD))
A (kg =ka =0) A (b',k)) = (b,ka)
(b',k}) < (b,kq) iff
(b’ b =false Ak’ <k)V (b’ =true A b = false)

(b',k})) = (bkq) iff
(b’ =b=true) vV (b’ =b="false Ak’ =k)

1 I I |

Clearly that M’ (t) < M(t) is a well-founded order.
Next we prove: forany T, A, W, S, E, W, S, 4, , B, a, {5, M and Ty, if

(1) T a O92(W.S.8);
() Eutar (Wo8) < (W,5) o (A,{,B,0,La);
(3) roundsub(T,activeThrds(W) — A, Ty); activeThrds(W) — A = tidset(Ty);
(Yt € A. Ji. t € bset(Tx(i)));
dom(M) = inObjThrds(W,S); and
for any t € dom(M), we have M(t) = (Z (t), ({(t), dom({)\{t}), minPosy g(Ty,(t),1),
@(t), (Za(t), dom(Z\(t}), minPosa (T, u(1)), (t € bset(W, S), minDis (Ts. 1))),

then T = (W,S8) <(W,S) o M.
By co-induction. We need to prove: if (W,S) — (W’,8")and T = 1::T’, then
there exist t, e, A¢, Ao, T, n, W', S” and M’ such that all the following hold:

()(WS) ”(W’S’) andn=0VvVn=1,
(b) 1t = (e,A¢, Ap); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A¢,_) ::€;
is_obj(e) = (Yi,t’ = T”(i). is_obj(1));
© TEW,S)<(W.,S")oM;
(d) for any t” € inObjThrds(W,S), we have:
either t’ € tidset(T"),
or M'(t") < M(t),
or M’(t') = M(t’) and t’ € bset(W,S) and t’ € bset(W’,S’).
From =y fair (W,S) 5 (W,S) o (A,,B,a,,), we know there exist t, T, W', S’, 4", ', p’, &',
{l, n,e, A; and A, such that all the following hold:

()(WS) ”(W’S’) andn=0VvVn=1;
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(B) 1 = (e,A¢,Ay); t = tid(e);
is_clt(e) Vis_inv(e) Vis_ret(e) = T = (e,A¢,_) ::€;
is_obj(e) = (Yi,t’ = T” (i). is_obj(1));
©) Ewfair (W', S) 3 (W, 8") o (A", 0", ' ", (5);
(D) if t € inObjThrds(W,S), then
either t € tidset(T”),
or A'(t) < A (t),
or A'(t) = . (t) and f’'(t) = f(t) = true and {(t) C ’(t) € (inObjThrds(W,S)\{t});
(E) for any t’ € inObjThrds(W,S)\{t}, we have:
either 4" (t") < . (t'),
or A'(t") = #(t') and p’'(t") = f(t’) = false,
or A'(t') = A (t') and f'(t') = f(t’) = true and {(t’) C ’(t’) C (inObjThrds(W,S)\{t’})
andt ¢ {(t);
(F) for any t’ € inObjThrds(W,S)\{t} and is_await(W|y), we have:
either o’ (t’) < a(t’),
ora’(t') = a(t’) and {,(t") € £, (t') € (inObjThrds(W,S)\{t’}) and t ¢ {,(t’) and
(La(t) £0) V (La(t") =0 At ¢ bset(W,S)) V (L (t") =0 At € bset(W’,S)).

Since T |Ep O “(W,S,E), by Lemmas B.26 and B.27, we know there exists &’ such that

& = (get_obsv() &' and T" o O 2(W".S".&").

By (B.19), we know there exists T, such that roundsub(T’,activeThrds(W’) — A, Ty),
activeThrds(W’) — A = tidset(T}) and (Vt € A. Ji. t € bset(T,(i))).

Choose M’ such that dom(M’) = inObjThrds(W’,S8"); and
for any t € dom(M’), we have M'(t) = (A (t), ({'(t),dom({")\(t}), minPosp g (T}, (t),1),
& (1), (£}(8). dom(Z)\ (1)), minPosa (T, ;(1)), (t € bset(W,5), minDisa (T t))).

By the co-induction hypothesis, we know T” |= (W',8’) < (W’,S") o M’.

(1) If t € inObjThrds(W,S), below we prove: either t € tidset(T”), or M'(t) < M(t), or
M'(t) = M(t) and t € bset(W,S) and t € bset(W’,S’). From (D), we know one of the
following holds:

e t € tidset(T”’). Thus we are done.
o ' (t) < A (t). Then M'(t) < M(t).
o M'(t) = A (t) and p’(t) = f(t) = true and {(t) C {’(t) C (inObjThrds(W,S)\{t}).
We know one of the following three cases holds:
.« (B C L),
We prove M'(t) < M(t) as follows. From |=yfir (W,S) 5 (W,S) o (A,{,p,a,{,) and
Fwhir (W, S8') 3 (W,8) o (A",{",p',a’,{;), we know
dom({’) = inObjThrds(W’,8’), dom({) = inObjThrds(W,S),
J'(t) € (dom({\{t}), ¢(t) < (dom(D)\{t}).
By the operational semantics, we know inObjThrds(W’,S’) C inObjThrds(W,S). Thus
we have
(& (), dom(Z\(1)) < (¢ (1), dom(D)\[t)).
Thus M'(t) < M(t).
e 0 cy(t)=0"(1).
We prove M’ (t) < M(t) as follows. First we have ({’(t), dom({")\{t}) = ({(t), dom({)\{t}).
Since roundsub(T, activeThrds(W) —A, Ty ), we know there exists T, such that T = Ty :: T,.
Also Ty # €.Since T = 1::T’, we know there exists Ty suchthat Ty = 1:T,and T' = T, : T;.
Since roundsub(T’, activeThrds(W’) — A, T,.), we know there exists T, such that T' = T =:
T

, Vol. 1, No. 1, Article . Publication date: January 2018.



122 Hongjin Liang and Xinyu Feng

We know one of the following holds:
o [(t)-A#0.
Thus we know
minPosy g (Ty,{’(t),t) = minPos(Ty,{(t) — A) and
minPosp g(Ty,{ (t),t) = minPos(Ty,{(t) — A).
Also since roundsub(T,activeThrds(W) — A,Ty), we know activeThrds(W) — A C
tidset(Ty). Thus {(t) — A C tidset(Ty). Since t = tid(:) and t ¢ {(t), we know
J(t) = A C tidset(T,).
Thus
roundsub(T”,{(t) — A, T).
Then by Lemma B.28, we know
minPos(T,{(t) — A) = minPos(T,,{(t) — A) < minPos(Ty,{(t) — A).
Thus M’(t) < M(t).
o [(t) CA.
Thus we know
minPosy g (T, (t),t) = min{minDiss(Ty,t") | t" € {(t)} and
minPosy g(Ty,{(t),t) = min{minDisa(Tx,t") |t € {(t)}.
Since [=yfair (W’S) 3 (W’S) © (‘%’g’ﬁ’a’gu) and Fwhair (W,’Sl) s (W,,S,) <
(A0, B a’,()), we know for any t' € ((t), we have t’ ¢ bset(W,S) and t’ ¢
bset(W’,S’). Since (W,S) — wW’,8’), we know
{(t) N bset(r) = 0.
Then, since Ty = 1::T,, we know
min{minDisa (Ty,t") | t’ € {(t)} = min{minDisa(Ty,t") |t € {(t)} + 1.
Also since (Yt € A. Ji. t’ € bset(Tx(i))), we know
(Yt € {(t). Ji. t’ € bset(Ty(i))).
Then, since (Vt’ € {(t). Ji. t’ € bset(T;(i))), by Lemma B.31, we know
min{minDis(T,,t") | t’ € {(t)} = min{minDisa(Ty,t") | t’ € {(t)}.
Thus M’(t) < M(t).
e 0 =0(t)="(b).
We have ({’(t), dom({")\{t}) = ({(t),dom({)\{t}). Since B’ (t) = B(t) = true, we know
t € bset(W,S) and t € bset(W’,S’).
Also we know
minPosy g (T, (t),t) = 0 and
minPosy g (T, (t),t) = 0.
Thus M’ (t) = M(t).

(2) For any t’ € inObjThrds(W,S)\({t}, below we prove: either M’(t") < M(t’), or M’(t") =
M(t’) and t’ € bset(W,S) and t’ € bset(W’,S’). From (E), we know one of the following
holds:

o N (t') < A (t"). Then M'(t") < M(t’).

o MN'(t')=.#(")and f'(t') = p(t’) = false.
Since f’(t") = p(t’) = false, we know {(t") = {’(t’) = 0. Thus

((t), dom( V(') = (¢ ('), dom(\ ().

Since roundsub(T,activeThrds(W) — A, Ty ), we know there exists T, such that T = T, : T.
Also Ty # €. Since T = 1::T’, we know there exists T, such that T, = ¢:Ty and T" = T :: T;.
Since roundsub(T’,activeThrds(W’) —A,T;.), we know there exists T, such that T" = T :: T,.
One of the following two cases holds:
e t’ ¢ A. Thus we know
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minPosy g (T, (t’),t") = minPos(Ty, {t'}) and
minPosy g (T, (t"),t') = minPos(Ty, {t'}).
Also since roundsub(T,activeThrds(W)—A, T ), we know activeThrds(W)—A C tidset(Ty).
Thus t” € tidset(Ty). Since t = tid(¢) and t # t’, we know
t’ € tidset(Ty).
Thus
roundsub(T", {t"}, T}).
Then by Lemma B.28, we know
minPos(Ty, {t’}) = minPos(Ty, {t'})) < minPos(Tx, {t'}).
Thus M'(t") < M(t').
e t’ € A. Thus we know
minPosy g (T, (t),t') = =1 and
minPosy g(Ty,{(t'),t") = 1.
Since activeThrds(W) — A = tidset(Ty) and (Vt’ € A. Ji. t’ € bset(Ty(i))) and t’ € A, we
know
is_await(W|y).
From (F), we know one of the following holds:
a'(t') < a(t’). Then M’(t) < M(t').
o &'(t') = a(t’) and {,(t") € {;(t") € (inObjThrds(W,S)\{t'}) and t ¢ {,(t") and
(La(t) £0) V (L(t') =0 At ¢ bset(W,S)) V ((t") =0 At € bset(W’,S”)).
We know one of the following three cases holds:
* Ja(t’) C Zg(t).
We prove M’ (t") < M(t’) as follows. From |=yfaiy (W,S) 5 (W,S) o (A,{,B,a,(,)
and [=yfir (W, S’) 5 (W,S") o (A", 5, a’, L)), we know
dom({}) = inObjThrds(W’,8"), dom({,) = inObjThrds(W,S),
L) € (dom\ED), Lalt)) € (dom(Za)\()).
By the operational semantics, we know inObjThrds(W’,S8’) C inObjThrds(W,S).
Thus we have
(L), dom(Z\ ') < (La(t'), dom(Z\ [t
Thus M’(t") < M(t’).
.« 0C L) = L),
We prove M’ (t") < M(t’) as follows. First ({7 (t"), dom({)\{t'}) = (La(t’), dom(La)\(t'}).
We know one of the following holds:
o ,(t)-A=%0.
Thus we know
minPosa (T}, {,(t")) = minPos(T},{,(t") — A) and
minPosa (T, {,(t")) = minPos(Tx,ga( ") = A).
Also since roundsub(T,activeThrds(W) — A, Ty), we know activeThrds(W) — A C
tidset(Ty). Thus {,(t") — A C tidset(Ty). Slncet =tid(1) and t ¢ {,(t’), we know
la(t’) = A C tidset(Ty).
Thus
roundsub(T",{,(t") — A, Ty).
Then by Lemma B.28, we know
minPos(Ty,{,4(t") — A) = minPos(Ty, {4(t") — A) < minPos(Ty,{,(t") — A).
Thus M’(t") < M(t’).
o L(t) C A
Thus we know
minPosa (T, ¢, (t")) = min{minDisa(T,,t"”") | t"" € {4(t")} and
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minPosa (T, {4 (t")) = min{minDisp(Tx,t"”) | t” € {,(t")}.
Since Fyfair (W’S) 3 (W’S) < (%’{7ﬁ’a’§a) and =wiair (Wl7S,) s (Wl’sl) ©
(A0, B a’ (), we know for any t” € {,(t"), we have t” ¢ bset(W,S) and
t"” ¢ bset(W’,S’). Since (W,S) —> W’,8’), we know
Za(t") Nbset(r) = 0.
Then, since Ty = 1::T,, we know
min{minDisa (T, t”) |t € {4(t")} = min{minDisa(Ty,t") [t € {,(t")} + 1.
Also since (Yt”” € A. Ji. t” € bset(Ty(i))), we know
(Vt” € {o(t'). Ji. t” € bset(T,(i))).
Then, since (Yt € {,(t"). Ji. t"” € bset(T,.(i))), by Lemma B.31, we know
min{minDisa (T;,t") |t € {(t")} = min{minDis (Ty,t”) |t € {4(t")}.
Thus M'(t") < M(t’).
o 0 ={a(t') = 55(t).
We have (£, (t"), dom({,)\{t'}) = ({a(t"), dom({,)\{t'}). Also we know
minPosa (T, (t")) = 0 and
minPosa (Ty,,(t")) = 0.
One of the following holds:
o t’ € bset(W,S) and t’ € bset(W’,S”). Thus M’(t") = M(t’).
o t’ ¢ bset(W,S) and t’ € bset(W’,S’). Thus M'(t") < M(t’).
o t’ ¢ bset(W,S) and t’ ¢ bset(W’,S’).
Since Ewtar (W,S) 5 (W,5) o (/,{,f,a{a) and Futar (W,S') 3 (W/,5') o
(A", B a’ L)), we know
t’ ¢ bset(W,S) and t’ ¢ bset(W’,S’).
Since (W,S) — (wW’,8’), we know
t’ ¢ bset(1).
Then, since Ty = 1::T,, we know
minDis (Ty,t") = minDisa (T,t") + 1.
Also since t’ € A and (Yt € A. Ji. t” € bset(Tx(i))), we know
Jdi. t’ € bset(Ty(i))).
Then, since Ji. t’ € bset(T;(i))), by Lemma B.30, we know
minDisa (T},t") = minDisa (Ty,t").
Thus M'(t") < M(t’).
o A'(t') = #(t") and f’(t’) = (') = true and {(t’) C {’(t’) C (inObjThrds(W,S)\{t'})
andt ¢ {(t).
We know one of the following three cases holds:
. ((¥) C L),
We prove M’(t") < M(t’) as follows. From |=yfir (W,S) 5 (W,S) o (A,{,f,2,{,) and
Fwhir (W, 8") 5 (W',S") o (A", p',a’,}), we know
dom({’) = inObjThrds(W’,8’), dom({) = inObjThrds(W,S),
g'(t") € (dom()\{t'}), (') < (dom(D)\{t'}).
By the operational semantics, we know inObjThrds(W’,S”) C inObjThrds(W,S). Thus
we have
('(t"), dom(E")\{t'}) < ({(t'), dom()\{t'}).
Thus M'(t") < M(t’).
° 0 c(t)=J"(t)).
We prove M’(t") < M(t’) as follows. First we have ({’(t"), dom({")\{t"}) = ({(t"), dom({)\{t'}).
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Since roundsub(T,activeThrds(W)—A, T ), we know there exists T, such that T = T, : T.
Also Ty # €.Since T = 1::T’, we know there exists Ty such that T, = 1: Ty and T" = Ty :: T.
Since roundsub(T’, activeThrds(W’) — A, T, ), we know there exists T, such that T' = Ty =:

T,
We know one of the following holds:
o [(t)-A#0.

Thus we know
minPosy g (T}, ¢’ (t'),t") = minPos(Ty,{(t') — A) and
minPosy g (T, (t"),t") = minPos(Ty,{(t") — A).
Also since roundsub(T,activeThrds(W) — A,Ty), we know activeThrds(W) — A C
tidset(Ty). Thus {(t") — A C tidset(Ty). Since t = tid(:) and t ¢ {(t"), we know
J(t') — A C tidset(Ty).
Thus
roundsub(T’,{(t") — A, T).
Then by Lemma B.28, we know
minPos(Ty,{(t") — A) = minPos(Ty,{(t") — A) < minPos(Ty,{(t") — A).
Thus M’(t") < M(t’).
.« L) C A
Thus we know
minPosy g (T, (t'),t") = min{minDiss(T;,t”) |t € {(t')} and
minPosy g (T, (t"),t") = min{minDisa (Ty,t”) |t € {(t)}.
Since =y fair (W’S) 3 (W’S) © (%’g’ﬁ’a’ga) and |[=wfair (W/9S/) N (W/»S’) <
(A0, B al L)), we know for any t” € ('), we have t” ¢ bset(W,S) and t” ¢
bset(W’,S’). Since (W,S) — (wW’,8’), we know
L(t") N bset(r) = 0.
Then, since Ty = 1::T,, we know
min{minDisp (T, t”) |t € {(t')} = min{minDisa(T,,t"”) | t"” € {(t')} + 1.
Also since (Yt € A. di. t” € bset(Tx(i))), we know
(Yt € J(t'). Ji. " € bset(Ty(i))).
Then, since (Vt” € {(t"). Ji. t”" € bset(Ty(i))), by Lemma B.31, we know
min{minDisa (T¢,t”) |t € {(t)} = min{minDisa(T,,t”) | t” € {(t)}.
Thus M'(t") < M(t’).
e 0 =0(t') ="(t)).
We have ({’(t’"), dom({")\{t'}) = ({(t"),dom({)\{t’}). Since p’(t") = B(t’) = true, we
know
t’ € bset(W,S) and t’ € bset(W’,S’).
Also we know
minPosy g (T, (t’),t") = 0 and
minPosy g (T, (t"),t") = 0.
Thus M'(t") = M(t').

Thus we are done. O

Lemma B.30. Ift € A, (i. t € bset(Ti(i))), (Fi. t € bset(Ty(i))), T = T =Ty and T = Ty = Ty,
then minDisa (Tx,t) = minDisa(Ty,t).

Proor. By induction over |Ty|. ]
LEMMA B31. If& C A, & # 0, (Vt € £ Ti. t € bset(T(i))), (Vt € & Fi. t € bset(Ty(i))),
T=T:T, andT =T, ::T!;, then min{minDisp(T,t) | t € £} = min{minDisa(Ty,t) | t € &}.
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Proor. By induction over the size of ¢ and by applying Lemma B.30. O

LEMMA B.32 (TOWARDS SIMULATIONS WITH FIXED LOow-LEVEL TRACES (FOR PDF OBJECTS UNDER
STRONG FAIRNESS)). If T |=p O2:°(W,S,E) and Hsair (W,S) 3 (W,T,8,S) o (M,{,B,a,s),

sfair

then there exists M such that T |H (W,S) < (W,TI,4,S) o M.
ProoF. Similar to the proof of Lemma B.25. O

LEMMA B.33 (TOWARDS SIMULATIONS WITH FIXED Low-LEVEL TRACES (FOR PDF OBJECTS UNDER
WEAK FAIRNESS)). IfT |=p O%“(W,S,8) and Fyfair (W,S) 3 (W, T,4,S) o (A ,{,p,a,l,), then

wfair

there exists M such that T |5 (W,S) <(W,I,4,S) o M.

Proor. Choose Ty such that roundsub(T,activeThrds(W) — A, Ty ). Then we choose M to be a
function such that the following hold:

(1) dom(M) = inObjThrds(W,S).
(2) For any t € dom(M), we have:

M(t) = (A (1), ({(t),dom({)\{t}), minPos p(Ty, (), 1),
a(t), ({a(t), dom(a)\{t}), minPosa(Tx, {a(t)),
(t € ffset(A,S),minDisp (Tx, t))) .

Similar to the proof of Lemma B.29, we are done. O

B.9 From Simulations to Progress-Aware Contextual Refinements

In this section, we finish the proof of the logic soundness Theorem 7.3.
Proor oF THEOREM 7.3. From D,R,G,I +, {P}II: T, by Lemma B.7, we know
D,R,G|Ey {PHI:T.
Also we know

dom(II) = dom(T), Vt,t'. t #t' = G = Ry,
wffAct(R,D), P = —Enabled(D), P V Enabled(D) = I, I> {R,G}.

By Lemma B.15, we know
D,R,G H,y {PHI 3 (T, wr*(T)).

Then, by Lemma B.18, we know
(1) Suppose R = |R]y and G = |GJo. Then for any C, we have D,R,G =, {P}(II,C) 5 (I',C).
(2) For any C, we have D,R,G H, {P}(II,C) 5 (wr*(T'),I’,C).
For (1), by Lemma B.21, we know:
for any n, Cy, ..., Cy, we have =y {Atef1..n) Pri(let TLin Gy ||.. .|| Cy) 3 (let Tin Cy |[.. .|| Cy).
For (2), by Lemma B.22, we know
forany n, Cy, ..., Cu, Hy {Ateqr..n) Pt(let ITin Ci|[. . . |[Cp) 3 (let wr*(T) in Cy |].. . || Cp,T).
We prove four contextual refinements:
(1) Suppose R = |R]p and G = |G]o. Then IT Ef;a” wrﬁfg‘g(l“).
Proor. For any n, Cy, ..., Cy, 0, 0 and 3, if (o) = X, we know (0,2) |= Atefi..n] Pt Let

W = (letllinCy || ... || Cn), W = (let wr;fgg(l") inC | ...lI Cn),S = (6.,0,0) and

S = (0¢,2,@). For any & and T, if (E,T) € O [W,S], we know one of the following holds:
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(a) T € 7.f"[W,S] and get_obsv(T) = &.
Since Fstair { Atep1..n] PJW 3 W, we know there exist .#, {, §, « and {, such that
= sfair (W,S) 3 (W’S) © (%’g’ﬂ’a’ga)-
By induction over | T|, we know there exists T’ such that T’ € 7./"[W, S] and get_obsv(T’) =
&.Thus (8,T’) € Osair[W, S].
(b) (&,T) € 0L, [W.S].
Let A = {t | e-a-disabled(t,T) A (|(T|;)| # ©)}. We know there must exist i such that
Vj > i.Vt € A. t € bset(T(j)). Thus there exist Wi, Sy, Ty, T1, & and &; such that
To=T(1..0), T=Ty=T1, &E=8E¢::E1, Ep = get_obsv(Ty), &1 = get_obsv(Ty),

(W,S) 5% (W1, 81), (Wi, S1) @ -, sfair-c(get_clt(Ty)).
Also we know
Tl |:A Oscg?rw(‘/vlvslval)'
Since Fsfair { Atepr..n] PHW 3 W, we know there exist .Z, {, f, « and {, such that
I=Sfair (W,S) 5 (W’S) < (%’ gaﬂa a,ga)-
Then we know there exist Wy, Sy, T, A, B, o and ¢ such that

T/
(W,S) =5* (W1,S,), & = get_obsv(T}),
|=sfair (M/l,Sl) 5 (WI’SI) < (‘%,ag”ﬁ,a 05/a§é)~
By Lemma B.25, we know there exists M such that
Ty E (W1,81) (W1, S1) o M.
By Lemma B.34, we know there exists Tl' such that
T, € 7,0°[W1,S1], sfair-o(get_obj(T})), get_clt(T) = get_clt(Ty).
Thus we know sfair(T}) and get_obsv(T}) = &;. Thus (&,T; =:T)) € 0% . [W,S].

sfair
Thus we are done. ]

(2) Suppose R = |R]p and G = |G]o. Then IT Exig_if%"((p) Wr\lg,sfarir(r)~
Proor. For any n, Cy, ..., Cp, 0¢, 0,2 and ¥/, if p(0) = £ and 3’ = X W {listid ~ €}, we
know (0,%) = Ateq1..n] Pr- Let W = (letIlin Cy || ... [| Cp), W = (let T'in Cy || ... [| Cp),
W’ = (let wr‘,ﬁ’sfﬁ"(l“) inCi|l...ICpn), S = (0¢,0,0), S = (0¢,%,0) and S’ = (0¢,2’,0). For
any & and T, if (&,T) € Oyfair[W,S], we know one of the following holds:
(a) T € 7.fi"[w,S] and get_obsv(T) = &.
Similar to the proof of (1)(a).
(b) (&,T) € 02 IW,S].
Let A = {t | i-o-disabled(t,T) A (|(Tl;)| # ©)}. We know there must exist i such that
Vj > i.Vt € A. tid(T(j)) # t. Thus there exist Wy, Si, Ty, T1, & and &; such that

To=T1..0), T=Tp=Ty, &E=8Ep:E1, E = get_obsv(Ty), E; = get_obsv(Ty),

W, S) 5% (W, S1), (W1,81) —5@ -, whair-c(get_clt(Ty)).
Also we know
Ti =a Oy (W1, 81,861).
Since Fwfair { Atef1..n] PIW 3 W, we know there exist .#, {, B, « and {, such that
Izwfair (W7S) s (WvS) < (%’gvltavéva)-
Then we know there exist Wy, Sy, T, .#", {’, p’, @’ and {, such that

T/
(W,8) =" (W1,5,), get_clt(Ty) = get_clt(Tp),
Ewfair (W1,81) 3 (W1,Sq) o (A2, 5,0, 03).
By Lemma B.29, we know there exists M such that
Ty F (W1,81) 2 (W1, 81) o M.
By Lemma B.34, we know there exists T, such that
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T, € 7,0°[W1,S4], sfair-o(get_obj(T))), get_clt(T) = get_clt(Ty).
Thus we know
T, =T € T,°[W,S], sfair-o(get_obj(Ty::T))), get_ cIt(T’ T/) = get_clt(T).
By Decomposmon Theorem A.1, we know there exist T, and T, such that
T, € TEIC - - N Chyoc], T, € 7.0I0,2], n= tnum(To),
Ac = get_ clt(T) ﬁ, = get_obj(T).
By Lemma B.36, we know there exists T, such that
u € TO[[wr‘Fﬁ’Sf?” I),Yw{listid~» e}ﬂ tnum(T,) = tnum(T,),
get_ hlSt(T) get_ hlst(T ), sfair- o(f)
Thus we know |T | # 0 = VYt € [1. tnum(T )]. term- o(T 1) V (te bset(last(T ))). Thus
ﬂn_coherent(Tc, Ta). By Composition Theorem A.2, we know there exists T”” such that
T" € T,[W’',S'], T, = get_clt(T”), T, = get_obj(T").
Thus we know wfair(T"’) and get_obsv(T”’) = &. Thus (E,T”) € 0% . [W’,S'].

wfair
Thus we are done. m]

(6) TS, wrls(n).
PDF
Proor. For any n, Cy, ..., Cy, 0¢, 0, X2 and X', if (o) = £ and X’ = Z & {done ~» false}, we
know (0,%) = Ateri..n) Pr- Let W = (let ITin Cy || .. . |[ Cr), W = (let wr*(T) in Cy || .. . ||
Cp), W = (let wrlifSiFr(I“) inC||...Cn), S = (0¢,0,0) and S = (0,,2’,®). For any & and
T,if (E,T) € Osair [W,S], we know one of the following holds:
(a) T € 7.f"[w,S] and get_obsv(T) =
Similar to the proof of (1)(a).
(b) (&,T) € 0L, [W.S].
Let A = {t | e-a-disabled(t,T) A (|(T|t)|] # ©)}. We know there must exist i such that
Vj > i.Vt € A. t € bset(T(j)). Thus there exist Wi, Sy, Ty, T1, & and &; such that
To=T(..0), T=Ty=Ty, &E=Ep:E1, E = get_obsv(Ty), E; = get_obsv(Ty),

(W, S) —5* (W, S1), (Wi, S1) —o@ -, sfair-c(get_clt(Ty)).
Also we know
Ti Fa Og, (W1, S81,61).
Since Hsfair { Atef1..n] PHW 3 (W,T), we know there exist %, .#, {, B, a and {, such that
|:|sfair (W’S) s (W,F,%,S) < (%’g’ﬂ’a’ga)-
Then we know there exist W1, Sy, T), %', 4", {’, p’, @’ and {, such that

(W,5) " (W1,51), E = get_obsv(T)),
Fistair (W1,81) 3 (W1, T,%",81) o (A", 0", B, 83).
By Lemma B.32, we know there exists M such that
T, B (W,8) < (W,T,%,S1) o M.
By Lemma B.35, we know there exists T, such that
T, € 7,0°[W1,S1], sfair-o(get_obj(T))), get_clt(T) = get_clt(Ty).
Thus we know
T, =T € T,°[W,S], sfair-o(get_obj(T;::T})), get_ cIt(T’ 1) = get_clt(T).
By Decomposition Theorem A.1, we know there exist T, and T, such that
T. € T.EC1 - . . ICn,oc], T, G‘T"[[wr (I),=, n—tnum(T)
T. = get_clt(T), T, = get_obj(T).
By Lemma B.37, we know there exists Ta such that
T, € 70 [wrifin(r),5],  tnum(T,) = tnum(T,),
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get_hist(fo) = get_hist(fa), sfair-o(ﬁ,).
Thus we know |T,| # @ = ¥t € [1..tnum(fa)]. term-o(falt) V(te bset(last(fa))). Thus
fin_coherent(i, Ta) By Composition Theorem A.2, we know there exists 7"’ such that
T” € T,[W'.S], T.=get_clt(T”), T, =get_obj(T").
Thus we know sfair(T’’) and get_obsv(T"’) = &;. Thus (E,T”) € 02 . [W’,S].

sfair
Thus we are done. O
(4) I waair Wr\lgllgal-ir )

Swriti ()

Similar to the proof of (3), but by applying Lemma B.38.

Thus we are done. m]

Lemma B34. If T = (W,S) < (W,S) o M and T € T,°[W,S], then there exists T’ such that
T’ € 7.°[W,S], sfair-o(get_obj(T")), get_clt(T’) = get_clt(T).

Lemma B.35. If T B (W,8) < (W,I,%,S)o M andT € T, [W,S], then there exists T’ such that
T’ € 7.°[W,S], sfair-o(get_obj(T")), get_clt(T’) = get_clt(T).

LeEMMA B.36. Suppose every method body inT is in the form of an await block. Ifﬁ, € 7.°[T,%],
sfair-o(T,) and —abt(T,), then there exists T, such that T, € 7;0[[wr‘}2’5f:"(1“),2 W {listid ~ €}],

tnum(ﬁ,) = tnum(fa), get_hist(fo) = get_hist(fa) and sfair—o(fa).
Proor. By constructing simulations. O

LEMMA B.37. Suppose every method body inT is in the form of an await block. Ifﬁ, € 7.2[wr*(T),3],
Z(done’} = false, sfair-o(To) aniﬂabt(To), theﬁ there exists TaAsuch that T, € %"[[wr?,fgi;(l“),Z]],
tnum(T,) = tnum(T,), get_hist(T,) = get_hist(T,) and sfair-o(T,).

Proor. By constructing simulations. O

LEmmA B.38. Suppose every method body inT is in the form of an await block. If’T\O €Ty [[wrffsiF’ T),2],

3(done) = false, sfair-o(T,) and —abt(T,), then there exists T, such that T, € %"[[wr‘f,’[f)"‘gr(l"),Z]],
tnum(’T\o) = tnum('.’fa), get_hist(fo) = get_hist(ﬁl) and wfair-o(fa).

Proor. By constructing simulations. O

C EXAMPLE PROOFS

In this section, we show the proofs of ticket locks, bounded partial queues with two locks [Herlihy
and Shavit 2008] and Treiber stacks [Treiber 1986] with blocking pop. We also prove that the various
wrappers defined in Sec. 6 (as object implementations) are contextual refinement of themselves (as
abstraction) under the designated fairness condition.

C.1 Ticket locks

Sec. 8.2 shows the key ideas of the proofs of ticket locks. Here we give the formal details.

Fig. 27 defines the invariant I, rely/guarantee conditions R and G, and definite actions G of ticket
locks. The definitions are the same as in Fig. 12 in Sec. 8.2, so we omit the explanations.

Fig. 28 shows the proof outlines of the methods tkL_acq and tkL_rel. The tkL_rel method
have the annotated precondition 1 = cid. For tkL_acq, we verify it using the precondition P’,
which is just the object invariant lock(s, tI,ny,nz). For tkL_rel, we verify it using the precondition
P, saying that a thread should have acquired the lock before calling the method. The key part in
the proofs is to verify the loop in the method tkL_acq using the wHL rule, which we have already
explained in Sec. 8.2.
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tl == e | tutl

list2set(€) )
def

list2set(t::tl) = {t} U list2set(tl)
def
I = ds,tl,ny,ny. lock(s, tl,ny,ny)

lock(s, thni,nz) = (1=L =sA (s = head(t]) Vs = 0))

* ((owner = nj) * (next = ny) A (n1 < ng)) * tickets(tl,ny,ny)
tickets(tl,ny,nz) def tickets_used(0,n1) = tickets_used(tl,ny,nz) = tickets_new(ns)
tickets_used(ni, ng) © 3 tickets_used(tl,ny,nz)

tickets_used(tl,ny,nz) &f (tl=€) A (n1 = nz) Aemp
v 3t . (¢t =t:tl) A (tickety, =t) * tickets_used(¢l’,ny + 1,n2)

tickets_new(nz) & (®i>n,ticket; = -1)

R ¥ Vizt Gy

Gt o (Req; Vv Acqy V Rely v Id) # Id A (I < I)

Reg, ' 3, tlny, . lock(s, tl,n1,n2) < lock(s, tl++[t],n1,ny + 1)
Acq; & Atl,nq1,ny. lock(0,t::tl,n1,nz) = lock(t,t::tl,ny,ny)

RellLockt def Atl,ny,ny. lock(t,t::tl, ny,ny) < lock(0,tl,ny + 1,nz)
Dx o Ytl,ny,ny. lock(0,t: thny,ny) ~ lock(t,t::tlny,ny)

Fig. 27. Auxiliary definitions for verifying ticket locks.
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def
P’ < 3s,tl,n1,ny. lock(s, tl,ny, na)

) def

P = Atl,ny,ny. lock(t,t:: tl,ny,ng)

def
t]OCkedtll’t’ tl, (S, ni,n, nz) =

(1=L=sA(s=head(tl;) Vs =0)) = ((owner = ny) * (next = ny) A (n1 < n < ny))
x tickets_used(0,n1) * tickets_used(tly,ny,n) = tickets_used(t :: tla, n,ny) = tickets_new(ny)

def
Po(ni,n,np) = 3Atly, tly,s. tlockedy, ¢ 41, (s,n1,n,n2)

Pr(n,nz) & 3t lock(0,t:: tl,ny,nz)

def
P3(ny,n,np) = A/, tly, tly,s. tlockedy.., t,41, (s, 11,71, 12)

J o dny,ng. Py(ni,n,nz) 0 o Enabled(D)
£(®) df [ 2k+1 ifS | (n—owner =k)x(1=0)
=T ek if S |= (n—owner = k) = (1 # 0)
tkL_acq():

1 local i, o;
{P' A arem(L_ACQ’)}
2 < i := getAndInc(&next); ticket; := cid; >
{Hnl,n,nz. Py(ny,n,nz) A (1 =n) A arem(L_ACQ’)}
{Elnl,nz. Py(ni,n,nz) A (i =n)A arem(L_ACQ’)}
3 0 := owner;
{Hnl,ng. Po(ni,n,nz) A(i=n)A(o<ng)A arem(L_ACQ’)}
{Hnl,nz. Py(ny,n,nz) A (i =n) A (o <ng) Aarem(L_ACQ’) A ¢(n— o)}
4 while (i !'= o) {
{Hnl,nz. (P1(n,n2) AO(n—(0+1)) V P3(ni,n,n2) A o(n— o))}
A(0<n; <n=1i)A(o#i)Aarem(L_ACQ’")

5 0 := owner;
{Hnl,ng‘ Py(ny,n,n2) A (1 =n)A (o <np)Aarem(L_ACQ’) A O(n — o)}
6 3
{Hnl,ng. Py(ny,nz) A arem(L_ACQ’)}
7 <1 := cid>;

{P" A arem(skip) }

tkL_rel():
{P” A arem(L_REL)}
8 < owner :=owner + 1; 1 :=0; >

{P' A arem(skip) }

Fig. 28. Proof outline of ticket locks.
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C.2 Bounded partial queues

initialize(){ Size := 0; Tail := Head := cons(@, null); Hlock := Tlock := 0;
e :=0; d:=0; 3}

eng(v){
1 local x;
X := cons(v, null);
await (Tlock = @) { Tlock := cid; }
await (Size < MAX) {3}
<Tail.next := x; ‘e := 1>;
Tail := x;
<Size := Size + 1; e := @ >;
Tlock := 0;

O N O U1 A~ W N

}

deq(){
9 1local h, x, v;
10 await (Hlock = @) { Hlock := cid; }
11 await (Size > @) {3}
12 h := Head;
13 x := h.next;
14 v := x.data;
15 <Head := x; 'd := 1>;
16 <Size := Size - 1; d := @ >;
17 Hlock := 0;
18 dispose(h);
19 return v;

3

Fig. 29. Bounded partial queues (with auxiliary code in gray).

In this section, we verify the bounded partial queue object [Herlihy and Shavit 2008]. At the
abstract side, the object data is a shared variable Q, whose value is a mathematical list representing
the queue. The number of items in the queue is limited. The ENQ method should be blocked if the
queue is full, and the DEQ method should be blocked if the queue is empty. We define the atomic
partial specifications as follows:

ENQ(V) { await(|Q| < MAX){ Q :=Q ++ [V] }; 3}

DEQ() { 1local V; await(|Q] > @){ V := head(Q); Q := tail(Q) }; return V; }
Here we use |Q| to get the length of the list. head(Q) returns the first item of the list, and tail(Q)
removes the first item and returns the remaining list.

Fig. 29 shows the concrete implementation code. The queue is implemented as a singly-linked list
with the Head and Tail pointers and a sentinel node pointed to by Head. The enq method inserts
a new node at the tail of the queue. The deq method replaces the sentinel node by its next node
and returns the value in the new sentinel. The Tail and Head pointers are protected by two locks
Tlock and Hlock respectively. The locks ensure that at any time at most one enq thread and one
deq thread can access the queue, but an enq thread and a deq thread do not need to wait for each
other.
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Note that the lock-acquire and lock-release code (i.e., lines 3, 8, 10 and 17) is implemented using
await instructions, as in the lock’s atomic partial specifications L_ACQ' and L_REL (defined in
(2.3)). They are abstractions for the ticket locks under strongly fair scheduling, and abstractions
for test-and-set locks under weakly fair scheduling (see Sec. 2). Below we will verify that the
queue object in Fig. 29 is PDF under weakly fair scheduling. Thus if we use the concrete lock
implementations (either ticket locks or test-and-set-locks) to replace the await code here (i.e.,
lines 3, 8, 10 and 17), the resulting queue object is still PDF under weakly fair scheduling.

The queue implementation also uses the shared variable Size to record the number of nodes
(except the sentinel) in the queue, and to block the methods at appropriate situations. Note that the
updates of Size and the queue’s linked list are not simultaneous. So, in order to help verification,
we introduce two auxiliary write-only variables e and d (highlighted in | gray in Fig. 29), to indicate
whether the item list has been updated but Size has not.

Below we will verify that the queue object in Fig. 29 is PDF under weakly fair scheduling. Since
strong fairness is stronger than weak fairness, we will also know that it is PDF under strongly fair
scheduling.

Fig. 30 defines the invariant fence I, the object invariant P (served as the pre- and post-conditions
of the object methods), the rely/guarantee conditions and the definite actions. We have lock-acquire
actions LockT and LockH, and lock-release actions UnlockT and UnlockH. The actions Enq and Deq
add and remove nodes respectively. Swing moves the tail pointer, and £ESz and DSz update Size.
Here all the actions are defined as level-1 actions, i.e., completing any action is a step towards
progress of the method.

The definite actions say that if the thread acquires the lock Tlock and Size < MAX, it will
eventually release the lock; if the thread acquires the lock Hlock and Size > 9, it will eventually
release the lock; and if the thread has set e (or d), it will eventually resets e (or d).

Fig. 31 and 32 show the proof outlines for enq and deq respectively. Below we only discuss the
verification of the await statements (lines 3 and 4) of enq. The await statements in deq are verified
in similar ways.

For line 3 in enq, we apply the AwAIT-w rule and discharge the premises (we use p to denote the
pre-condition for the await block):

e p A Enabled(D) = true = (Tlock = @) holds, because p A Enabled(D) = true is false.

e p= (R: Z)OL ((Tlock = @),(1Q] < MAX))) holds, if the metric f is a constant function.
In detail, if p; for thread t holds, and if (Tlock # ©) and (|Q| < MAX) hold, we know some
other thread t’ must acquire Tlock. Also either Size < MAX holds, or another thread t”
acquires Hlock and d = 1 holds. Thus At” # t. Enabled(9Dy) holds.
For line 4 in eng, we apply the AwWAIT-w rule and discharge the premises (we use p; to denote
the pre-condition for this await block):
o It is easy to see that p; A Enabled(D) * true = (Size < MAX) holds.
o p1 = (R: Z)OL ((Size < MAX), (|Q| < MAX))) holds, if the metric f is a constant function.
In detail, if p; for thread t holds, and if (|Q| < MAX) holdsbut (Size < MAX) does not hold, we

know some other thread t” must acquire Hlock and d = 1 holds. Thus 3t” # t. Enabled(Dy)
holds.

, Vol. 1, No. 1, Article . Publication date: January 2018.



:134 Hongjin Liang and Xinyu Feng

7 & 3h,z,s,s’,m,e,d. (Head = h) = (Tail = z) * queue,(m, h,z) * locks(Tlock) * locks (HLock) * szg ¢ (m,e,d)

sz, (m,e,d) g, (e=e)x(d=d)*(Size=m’) A0 <m’ <MAX
As=0=e=0A(s"=0=2d=0)A(e=0Ve=1)A(d=0Vd=1)A(m=m'+e—d)

queue, (m,h,z) &f Jvg,A. (Q=AA Al =m)
* (unlag(h,z,vg::A) V (lag(h,z,_,vq::A) A (e = 1)) V (cross(h,z,vg::A) A (e = 1)))

unlag(h,z,A) &f Jv,A’. (A=A’ :v) Als(h,A’,z) = N(z,0,null)

lag(h,z,x,A) o Ju, v, A’ (A=A =vu0’) Als(h, A, z) * N2(z,0,x,0’,null)
cross(h,z,A) € 3. (A=wv::€) AN(h,u,null) A (h # 2)

Is(x,A,y) &« (x=yAA=¢e)V(x#yAdz,u,A. A=v:A" AN(x,0,2) xIs(z,A",y))
N(p,o.y) & (p.data =) * (p.next = y) N2(p, vy, 0",2) & N(p,o,y) * N(y,0",z)

locks(l) & (1=s) locklrre s (1) < locks (1) A (s # t)

Pt f dh,z,s,s’,m,e,d. (Head = h) * (Tail = z) * queue,(m,h,z)

* locklrry s (Tlock) * locklrre ¢ (Hlock) * szs o (m, e, d)

def
Rt = Vyzt Gy

G & (Eng, v Swing, V ESz; V LockT; V UnlockT v Deq, V DSz; V' LockHy V' UnlockHy v 1d) + 1d A (I =< I)

-

Eng, o Ax,y,A,0,0’,s". [locke(Tlock) # (Tail = x) A |A| < MAX]
# (N(x,0,null) = (e = 0) = (Q = A) <1 N2(x,v,y,0’,null) * (e = 1) * (Q = A=0"))

Swing, & Ax,v. [locki(Tlock) * N(x,v,null)] * ((Tail = ) = (Tail = x))

f

ESz; Ih,z,v4,A,m’. [lock(Tlock) * (Head = h) % (Tail = z) = unlag(h,z,vg :: A)]

de:
*_((Size =m')x(e=1) =1 (Size=m’' +1) * (e =0))
LockTy & 3¢’ [lockirr, ¢ (Hlock)] % (locko(Tlock) x; lock(Tlock))
UnlockTy " [(e = 0)] * (locke(Tlock) = locko(Tlock))
Degq;, def Ax,y,z,v,v", A. [lockt(Hlock)]
# ((Head = x) * N2(x,v,y,v’,z) * (d = 0) * (Q = v':A) =; (Head = y) * N(y,v",z) * (d = 1) = (Q = A))
DSz % Am’. [locke(Hlock)] * ((Size = m’) * (d = 1) w; (Size = m’ — 1) % (d = 0))
LockH; & Fs. [locklrry s(Tlock)] * (locko(Hlock) i locks(Hlock))

UnlockHy % [(d = 0)] * (lock(Hlock) w7 lockg(HLock))

Dy € (PTi ~ qTy) A (pH; ~ qHy) A (pE¢ ~ qEy) A (pDy ~ qDy)

pTi &« lockt(Tlock) * (Size < MAX) * true A T qT «f locko(Tlock) * true A I
pH: & lock¢(Hlock)  (Size > 0) = true A T qHi «f lockg(Hlock) * true A T

pEt o lock¢(Tlock) = (e = 1) xtrue A I qEt & lock¢(Tlock) * (e = 0) = true A I
pDt & lock¢(Hlock)  (d = 1) * true A T qDt & lock¢(Hlock) * (d = 0) * true A T

Fig. 30. Auxiliary definitions for verifying bounded partial queues.
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Py

Py

Py

34, P1(4,0)
(Are) € Thz,04,5",d. (Head = h) = (Tail = z) * (Q = A)

* unlag(h,z,vg :: A) * lock (Tlock) * locklrre, ¢ (Hlock) * sz ¢ (|Al, e, d)

€ 34, P1(A4,0) A (JA] < MAX)

P3(x ) Hh z,04,A,s’,d. (Head = h) = (Tail = z) % (Q = A) *sz; ¢ (JAl, 1,d)
* (lag(h,z,x,vg3::A) V (cross(h,z,vq :: A) A (h = x))) * locki(TLock) * locklrre ¢ (HLock)

def

P, = JA Pi(A1)

eng(v) {
1 local x;
{P A arem(ENQ) A (v =V) A 0(5)}
x := cons(v, null);

{P* N(x,v,null) A arem(ENQ) A (v = V) A #(5) |
3 await (Tlock = @) { Tlock := cid; }

{P1 # N(x,v,null) A arem(ENQ) A (v = V) A 0(4)}
4 await (Size < MAX) {3}

{Pz % N(x,v,null) A arem(ENQ) A (v = V) A 0(4)}

5 <Tail.next :=x; e :=1>;
{Pg(x) A arem(skip) A 0(3)}
6 Tail := x;

{P4 A arem(skip) A ¢ 2)}

7 <Size := Size + 1; e := @ >;
{Pl A arem(skip) A #( 1)}

8 Tlock := 0;
{P A arem(skip)}

Fig. 31. Proof outline for eng.

1135
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s def
=
P{(h,m,d) &f Jz,s,e. (Head = h) * (Tail = z) * queue, (m,h,z) * locklrr s (Tlock) * locki(Hlock) * szs 1(m,e,d)

Pi(h) & Am. P{(h,m,0) A (m > 0)

P 3h,m. P{(h,m,0)

Pi(h,x) € Jz,A;s,m,e. (Head = h) * (Tail = z) * (Q = AA |Al = m > 0) * N(h, _,x)
* (unlag(x,z,A) V lag(x,z,_,A) A (e = 1)) * locklrr s(TLlock) * lockt(Hlock) * sz 1(m,e,0)

Py (h,x,v) e 3. (Head = h) * (Tail = h) * (Q = v::€) * N2(h,_,x,v,null)
* locklrre s (Tlock) * lockt (Hlock) * sz 1(1,1,0)

P5’(h,x,v) o Jy,z,0,0",A,s,e. (Head = h) % (Tail = z) = (Q = v A) * N2(h,_,x,0,y)
#* ((x =2z) A(y =null) A (A=¢€) Vunlag(y,z,A) V (x = 2) AN(y,v’,null) A(A=0":€) A (e =1)
V lag(y,z,_,A) A (e = 1)) * locklrry s(TLock) * lockt (Hlock) * szs 1 (|Al + 1,€,0)

P/(h) < 3m. P(h,m,1)

int deq() {
9 1local h, x, v;
{P/\ arem(DEQ) A 0(4)}
10 await (Hlock = @) { Hlock := cid; }
{Pl/ A arem(DEQ) A 0(3)}
11 await (Size > 0) {}
{Hh. P;(h) A arem(DEQ) A 0(3)}
12 h := Head;
{Pz'(h) A arem(DEQ) A 0(3)}
13 x := h.next;
{(Pj(h.x) v Pj(h,s,_)) A arem(DEQ) A #(3) }
14 v := x.data;
{(P;(h,x,v) V P}(h,x,v)) A arem(DEQ) A 0(3)}
15 <Head := x; d :=1>;
{PL(x) * N(h, _,x) A arem(skip) A (v =V) A #(2)}
16 <Size := Size - 1; d := 0 >;
{Pl’ x N(h,_,x) A arem(skip) A (v =V) A 0(1)}
17 Hlock := 0;
{P * N(h,_,x) A arem(skip) A (v = V)}
18 dispose(h);
{P/\ arem(skip) A (v = V)}
19 return v;

Fig. 32. Proof outline for deg.
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I € JA. stack(A) stack(4) £ 3x. stack(x, A)
staCk(X,A) déf (Stk — A) % (Top = x) * |5(x,A,nU].1) * garb

Is(x,A,y) &f (x=yAA=eAemp)V (x £y Adz,v,A’. A=v: A’ A node(x,v,z2) = Is(z,A’,y))

garb &« 3Sy. (GN = Sg) * (@xesy.node(x))

node(x,v,y) R (v,y) node(x) &f node(x,_,_)

R=G € (Pushv Pop Vv 1d) x1d A (IxI)
Push Ax,y,v,A. (Stk = A) * (Top = y) <1 (Stk =v::A) * (Top = x) * node(x,v,y)

Pop &f 3x,y,v,A,Sy. (Stk = v::A) * (Top = x) * node(x,v,y) * (GN = Sy)
<1 (Stk = A)  (Top = y) * node(x,v,y) * (GN = S5 U {x})

def
D = false ~ true

Fig. 33. Auxiliary definitions for verifying Treiber stacks with partial pops.

C.3 Treiber stacks with partial pops

We have given the code of Treiber stacks with partial pops at the top of Fig. 8. At the abstract side,
the object data is a shared variable Stk, whose value is a mathematical list representing the stack.
The PUSH method is total, and the POP method is blocked if the stack is empty. We define the atomic
partial specifications as follows:

PUSH(V) { Stk :=V :: Stk; 3}

POP() { local V; await(|Stk| > @){ V:=head(Stk); Stk:=tail(Stk) }; return V; }
Below we verify that the stack object in Fig. 8 satisfies PDF under weakly fair scheduling. Since
strong fairness is stronger than weak fairness, we will also know that it is PDF under strongly fair
scheduling.

We define the precise invariant I, the rely/guarantee conditions R and G, and the definite actions
D in Figure 33. The invariant I in Figure 33 maps the value sequence A of the concrete list pointed
to by Top (denoted by (Top = x) * Is(x,A,null)) to the abstract stack Stk. To ensure there is no
“ABA” problem [Herlihy and Shavit 2008], we follow Turon and Wand [Turon and Wand 2011] and
introduce a write-only auxiliary variable GN to remember the nodes which used to be on the stack
but no longer are. The precise invariant for shared states should include those garbage nodes (garb).
GN does not affect the behaviors of the implementation and is introduced for verification only.

The guarantee condition G includes the Push and Pop actions. At the concrete side, the steps at
line 8 for push and line 12 for pop in Figure 8 are the linearization points, i.e., they correspond to
executions of the abstract atomic PUSH and POP operations. Note that when popping a node, we
also add the node to GN. Both the Push and Pop actions are defined as level-1 actions. They may
delay the progress of other threads. The definite actions D could be defined as false ~ true.

We show the proof outline in Figure 34. Below we only explain the verification of the while-loops.

To verify the loop in the push method, we apply the wHL rule and prove:

= (R.G: D5 (04, true)).

Here we define Q; as true, and f; as a constant function.
To verify the loop in the pop method, we apply the wHL rule and prove:
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push(v){

1 local x, b, t;
UAammwmmAv:VAq

b := false;

x := cons(v, null);
“ﬂbAI*mﬁe&wh)Aamm@U&ﬂA(v=V)AOA0)v(bAIAamm@km»}
4 while (!b) {

{—|b A I node(x,v,_) A arem(PUSH) A (v =V) A 0}

5 t := Top;

X.next := t;
{Ha. =b A stack(a,_) * node(x,v,t) A(t =aV t#aAo)Aarem(PUSH) A (v=V) A 0}
b := cas(&Top, t, x);
{(b A I A arem(skip)) VvV (=b A Tx*node(x,v,_) Aarem(PUSH) A (v=V) A & A 0)}
8 3

w N

[e)]

~

{I A arem(skip)}
}
IntSet GN; //Auxiliary global variable for verification: popped garbage nodes
pop(){

9 1local x, b, t, v;
{I A arem(POP) A 0}
10 b := false;
{(—|b AT Aarem(POP) A#AO) V (bAIAarem(skip) A (v = V))}
11 while (!b) {
{HA. —b A stack(A) A (A=€ A OV A#Ee) Aarem(POP) A 0}
12 t := Top;
((t = null) A =b AT A arem(POP) A ¢ A 0)
{ V (da. node(t) = true A =b A stack(a, ) A (t =aV t #aAd)Aarem(POP) A 0)}
13 if (t != null) {
{Ela. node(t) * true A stack(a, ) A(t=aV t#aA)Aarem(POP) A 0}

14 v := t.data;
15 X := t.next;
{Ha. node(t,v,x) * true A stack(a,_) A(t=aV t#aA ) Aarem(POP) A 0}
16 <b := cas(&Top, t, x); if (b) { GN := GN U t; } >;
{(b/\l/\arem(skip)/\(v:V)) v (—|b/\I/\arem(POP)/\0/\<>)}
17 3
18 3}

{I A arem(skip) A (v = V)}
19 return v;

Fig. 34. Proof outline of Treiber stacks with partial pops.

I= (RG: DL (0, (15tk] > 0))).
Here we define f; as a constant function, and Q, as follows:
def

Q> = JA. stack(A) A (A # €).
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C.4 Our wrappers

Below we use locks as examples and show that the various wrappers defined in Sec. 6 (as object
implementations) are contextual refinement of themselves (as abstraction) under the certain fairness
condition.

The atomic partial specifications for locks are L_ACQ' and L_REL defined in (2.3).

initialize(){ 1 :=9; }

lock(){

1 await (1 = 0) {
2 1 := cid;
3}

3

unlock (){

4 1 :=0;

}

Fig. 35. Simple PSF locks under strong fairness.

C.4.1  Simple PSF locks under strong fairness. We first verify that the code shown in Fig. 35 (which
is the same as (2.3)) as the lock’s implementation is PSF under strong fairness. The lock method has
the annotated precondition true, and the unlock method has the annotated precondition (1=cid).

One may think that the proof for this example would be trivial, because the implementation code
and the atomic partial specification code are exactly the same, so they could always be executed
simultaneously. Our proof is indeed simple. In our proof, we indeed let the implementation and the
specification be executed simultaneously. But there is another key point in our proof: we also need
to prove that the implementation code ensures PSF (not only PDF) under strong fairness.

We first define the invariant fence I, the rely/guarantee conditions R and G, and the definite
actions D in Fig. 36. Note that since we are verifying PSF, all the actions should be defined as
level-0 actions. This is very different from the proof for test-and-set locks (see Sec. 8.1).

Fig. 37 gives the proof outline. When verifying the await statement at line 1, we use a similar
metric f (defined at the bottom of Fig. 37) as in the proof of test-and-set locks. The difference is,
for test-and-set locks, the lock-acquire actions from the environment threads are level-1 actions,
allowing the metric f to increase. But here, the lock-acquire actions are level-0 actions. The metric
f is still allowed to increase, because the definite progress condition for await under strong
fairness (see the second bullet of Definition 7.2) requires the metric to not increase only when the
environment transitions satisfy ((1 # 0) < (1 # 0)) (lock-acquire actions are not this case). As we
explained in Sec. 7, this is the key to make use of strong fairness.
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I % unlocked V locked

unlocked & (1 =L =0)

locked &' 3t. lockedBy;

lockedBy, & (1 =L =t) A (t € TIDS)

Gr & (Locky v Unlock; v 1d) + 1d A (I< 1)

Lock &f unlocked =o lockedBy,

Unlocky &ef lockedBy; ¢ unlocked

def
Dy = false ~ true

Fig. 36. Auxiliary definitions for verifying the simple PSF locks under strong fairness.

lock():
{I A arem(await(L = 0){L := cid})}
1 await (1 = 0) {
{unlocked A arem(await(L = 0){L := cid})}
2 1 := cid;
{IockedBycid A arem(skip)}
3}
{locked Bycig A arem(skip)}

unlock():
{lockedBycid A arem(L := 0)}
4 1 :=0;
{I A arem(skip)}

Here the await command at lines 1-3 is verified as follows. Let

df [ 1 if S = locked
fi®) = { 0 if S |= unlocked

We can prove: I = (R: Z)OL(I =0,L = 0)).

Fig. 37. Proof outline of the simple PSF locks under strong fairness.
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C.4.2 Simple locks implemented using the wrapper for PSF under weak fairness. The code in
Fig. 38 results from applying the wrapper wr‘lg’sf";” to the atomic partial specification (2.3) for locks.
Note that both L_ACQ' and L_REL are wrapped with the updates on 1istid. As we have discussed
in Sec. 6, we do not intend to claim that the methods in Fig. 38 give the simplest PSF lock under
weak fairness. In fact, we have verified that the example in Sec. 8.3 (which has a simpler lock-release

method) is also PSF under weak fairness.
initialize(){ 1 := 0; listid :=¢€; }

lock(){
1 listid := listid ++ [(cid, '1=0')];

2 await (1 = @ /\ cid = enhd(listid)) {
3 1 := cid;

4 listid := listid \ cid;

5 3%

}

unlock(){

6 listid := listid ++ [(cid, 'true')];
7 await (cid = enhd(listid)) {

8 1 :=09;

9 listid := listid \ cid;
10 3}

}

Fig. 38. Simple locks implemented using the wrapper for PSF under weak fairness.

Below we verify the lock implementation in Fig. 38 using our logic with respect to the atomic
partial specification (2.3). By the logic soundness theorem, we know the code in Fig. 38 is PSF under
weak fairness. By the Abstraction Theorem, we also know that the code is a contextual refinement
of itself under weak fairness.

Fig. 39 defines the invariant I, the rely/guarantee conditions R and G, and the definite actions
D. The definitions are very similar to the ones in Fig. 13 for the example in Sec. 8.3. One of the
differences is that the items in the list listid may be either (t,’1 = 0’) or (t, ‘true’), depending
on whether the thread t is calling the lock or unlock method. And since there could be at most
one thread calling the unlock method, there could be at most one (t, ‘true’) in listid. The unlock
method performs two actions ReqUnlock and Unlock. The actions AcqLock and Unlock are definite
(see the definition of D in Fig. 39). Note that since we are verifying PSF, all the actions are level-0
actions.

Fig. 40 gives the proof outline. The await statement in the lock method is verified in a similar
way as we explained in Sec. 8.3. The verification of the await statement in the unlock method
is trivial, because when inUnlock.iq holds, the await condition (cid = enhd(listid)) always
holds for the current thread.
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th == €| (t,'B’)::tb

list2set(e) =)

list2set((t, B)) = th) = {(t,B’)} U list2set(th)

t ¢ tb iff —3B. (t,'B’) € list2set(tb)
diff(tb) iff Vtb’',tb”,tb"" ,t1,t2,B1,By. (tb = tb’ ++ [(t1, By’)] ++ tb” ++ [(t, ' Bo")] ++ tb"") = (t1 # t2)

all_reqlock(tb) iff Vt,B. (t,'B’) € list2set(th) = (B = (1 =0))

one_requnlock, (¢b) iff Jtb’,tb". (tb = tb’ ++[(t, ‘true’)] ++ tb”)
A (Yt',B. (t','B’) € list2set(tb’ ++ tb"") = (B = (1 = 0)))

I % 3tb. lock(th) lock(th) " unlocked(tb) v notUnlocked(tb)

notUnlocked(th) & 3t. locked;(tb) V inUnlock (tb)

unlocked(tb) & (1=L=0)=*(listid = tb) A all_reqlock(tb) A diff(tb)

locked(th) & (1 =L =t) = (listid = tb) A all_reqlock(th) A diff(tb)

inUnlock (tb) &f (I =L =t)=(listid = tb) A one_requnlock,(tb) A diff(tb)

locked; & 3th. locked (tb) inUnlocke % 3tb. inUnlock (tb)

Pe X b, lock(th) A (t ¢ tb)

lockedBy, (th) ' locked;(tb) A (t & tb) lockedBy, & 3tb. lockedBy, (tb)

lockReq, (tb) < lock(th) A ((t.1 = 0°) € list2set(tb)) lockReq, &' Ttb. lockReq (tb)

G & (ReqLock; Vv Acqlock, V ReqUnlock, Vv Unlocki Vv 1d) * 1d A (I <T)
Reqlock, < Atb. ((Listid = th) A (t ¢ th)) = (Listid = th++[(t,'1 = 0")])
Acqlock, & Ath. unlocked((t,'1 = 0°)::tb) x lockedBy, (tb)

ReqUnlock, € 3. lockedBy, (tb) < inUnlock(tb++ [(t, ‘true’)])

Unlocke & Ath, tb' . inUnlocky (th++ [(t, ‘true’)] ++ tb’) x unlocked(th++ tb")

D € (. unlocked((t,1 = 0)::th) ~» lockedBy, (b))
A (Vtb, tb’. inUnlocky (tb++ [(t, ‘true’)] ++ tb’) ~» unlocked(tb++tb’))

Fig. 39. Auxiliary definitions for verifying the locks with the wrapper for PSF under weak fairness.
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lock():
{Pcid A arem(await(L = 0){L := Cid})}
1 listid := listid ++ [(cid, '1=0")7;
{IockReqcid A arem(await(L = 0){L := cid})}
2 await (1 = @ /\ cid = enhd(listid)) {
{th. unlocked((cid, ‘1 = 0’) ::tb) A arem(await(L = 0){L := cid})}
1 := cid;
4 listid := listid \ cid;
{3th. lockedBy; 4(tb) A arem(skip) }
5}
{Iocked Bycig A arem(skip)}

w

unlock():
{IockedBycid Aarem(L := 0)}
6 listid := listid ++ [(cid, '1=0')];
{inUnIockcid A arem(L := 0)}

7 await (cid = enhd(listid)) {
{inUnlockcid A arem(L := 0)}
8 1 :=09;

9 listid := listid \ cid;
{Pcid A arem(skip)}
10
{Pcid A arem(skip)}

Here the await command at lines 2-5 is verified as follows. Let

@) e 2k +1 if Ath, tb’. (S |= notUnlocked (th++ [(t,1 = 0°)] ++ tb')) A [th] = k
- 2 if th, tb’. (S |= unlocked(tb++ [(t,1 = 0°)] ++ tb")) A |th] =
t k £3b, b’ (S = unlocked(th ++ [( Y] ++ b)) A |th] = k

We can prove: lockReq = (R: Z)OL(I =0 Acid = enhd(listid),L = 0)).

Here the await command at lines 7-10 is verified as follows. Let f be a constant

function. We can prove: inUnlock = (R: Z)OL (cid = enhd(listid),true)).

Fig. 40. Proof outline of the locks implemented using the wrapper for PSF under weak fairness.
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C.4.3 Simple locks implemented using the wrapper for PDF under weak fairness. The code in
Fig. 41 results from applying the wrapper wr‘IQ’ISaF” to the atomic partial specification (2.3) for locks.
Both L_ACQ' and L_REL are wrapped with the updates on the shared variable done. Again, we do
not intend to claim that the code in Fig. 41 is the simplest PDF lock under weak fairness. In fact,

the atomic partial specification (2.3) itself is already PDF under weak fairness.

initialize(){ 1 := @; done := false; }

lock () {

1 await (1 = @ /\ !done) {
2 1 := cid;

3 done := true;

4 3}

5 done := false;

6 await (!done) {3};
}
unlock (){

7 await (!done) {

8 1 :=09;

9 done := true;
10 3

11 done := false;

12 await (!done) {3;
}

Fig. 41. Simple locks implemented using the wrapper for PDF under weak fairness.

Below we verify the lock implementation in Fig. 41 using our logic with respect to the atomic
partial specification (2.3). By the logic soundness theorem, we know the code in Fig. 41 is PDF under
weak fairness. By the Abstraction Theorem, we also know that the code is a contextual refinement
of itself under weak fairness.

Fig. 42 defines the invariant fence I, the object invariant P (see the oBj rule in Fig. 10), the
rely/guarantee conditions R and G, and the definite actions 9. The lock method performs two
actions Lock and LockDone, and the unlock method performs two actions Unlock and UnlockDone.
Here we play a trick and let the reset of done (i.e., line 10 in the unlock method in Fig. 41) correspond
to the lock-release step at the abstract side, as shown in the definitions of Unlock and UnlockDone.
Then we could know from the abstract lock L which thread needs to perform the reset of done.

The actions LockDone and UnlockDone are definite (see the definition of D in Fig. 42). We define
Lock and Unlock as level-1 actions, and define other actions as non-delaying actions. In fact, for
this example, Unlock could also be defined as non-delaying actions, and the proofs could be done
without any change. (The reason why we label Unlock with level 1 here is to make the definitions
usable in the proofs for the next example in Fig. 44. We will explain this in Sec. C.4.4.)

Fig. 43 gives the proof outline. The verification of the four await statements are given at the
bottom of the figure. For the second await statement in lock (line 6) and the first await statement
in unlock (lines 7-10), the proofs are trivial, because when locked.;q(false) holds, the await
condition —~done always holds.
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I locked; V toUnlockedt V unlocked

unlocked & (1 =L =0) * (done = false)

toUnlockedy &« (1 =0) = (L =t) = (done = true)

locked;(b) & (1 =L =t) * (done = b) lockedy & 3b. locked; (b)
envLocked; (b) TS lockedy (b) A (t" # t) envLocked; & 3., envLockedi(b)
envToUnlocked; & 3t’. toUnlockedy A (t” # t)

notOwny «f unlocked v envLocked; V envToUnlocked¢
P o lockedy(false) V notOwng

Gt &f (Locky vV LockDonet v Unlockt V UnlockDoney V Id) = Id A (I < I)
Lockt &' unlocked <1 lockedy(true)

LockDonet & lockedi(true) =¢ lockedt(false)

Unlocky &ef locked (false) =<1 toUnlocked

UnlockDone; &ef toUnlocked; =<y unlocked

Dy &f (lockedt (true) ~ locked;(false)) A (toUnlocked; ~» unlocked)

Fig. 42. Auxiliary definitions for verifying the locks with the wrapper for PDF under weak fairness.
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lock():
{Pcid A ¢ A arem(await(L = 0){L := cid})}
1 await (1 = @ /\ !done) {
{unlocked A ¢ A arem(await(L = 0){L := cid})}

2 1 := cid;
3 done := true;
{lockedcid(true) A arem(skip)}
4 3}
{Iockedcid(true) A arem(skip)}
5 done := false;

{lockedcid(false) A arem(skip)}
6 await (!done) {3};
{Iockedcid(false) A arem(skip)}

unlock():
{lockedcid(false) A & Aarem(L := 0)}
7 await (!done) {
{lockedcid(false) A & Aarem(L := 0)}

8 1 :=09;
9 done := true;
{toUnIockedcid A arem(L := 0)}
10 3%
{toUnlockedcid A arem(L := 0)}
11 done := false;

{notOwncid N arem(skip)}
12 await (!done) {3;
{notOwncid A arem(skip)}

Here the await command at lines 1-4 is verified as follows. Let
3 if S |= envLockedy(true)
~ def | 2 if S |= envLockedy(false)
fi@) = 1 if @ |= envToUnlocked
0

if S |= unlocked

We can prove: P = (R: Z)oL(l =0 A =done,L = 0)).

The await command at line 12 can be verified using the same metric f as

the above one for lines 1-4. We can prove: notOwn = (R: Doi (—done, true)).

The await commands at line 6 and at lines 7-10 are verified in the same way. Let f

be a constant function. We can prove: locked(false) = (R: Z)oL (—done, true)).

Fig. 43. Proof outline of the locks implemented using the wrapper for PDF under weak fairness.
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C.4.4 Simple locks implemented using the wrapper for PDF under strong fairness. The code in
Fig. 44 results from applying the wrapper wr?fB'Fr to the atomic partial specification (2.3) for locks.
Again, we do not intend to claim that Fig. 44 is the simplest PDF lock under strong fairness.

initialize(){ 1 := 0@; done := false; }

lock(){

1 local b;

b := done;

while (b) {
b := done;

3

await (1 = @ /\ !done) {
1 := cid;
done := true;

3

10 done := false;

11 b := done;

12 while (b) { b := done; }

W 00 N O U1l WN

}

unlock (){

13 local b;
14 b := done;

15 while (b) { b := done; }
16 await (!done) {

17 1 :=09;

18 done := true;
19 3%

20 done := false;
21 b := done;

22 while (b) {
23 b := done;
24}

}

Fig. 44. Simple locks implemented using the wrapper for PDF under strong fairness.

Below we verify the lock implementation in Fig. 44 using our logic with respect to the atomic
partial specification (2.3). By the logic soundness theorem, we know the code in Fig. 44 is PDF
under strong fairness. By the Abstraction Theorem, we also know that the code is a contextual
refinement of itself under strong fairness.

We give the proof outlines in Fig. 45 and Fig. 46. The proofs use the same invariant fence I, the
same object invariant P, the same rely/guarantee conditions R and G, and the same definite actions
D, as for verifying the previous example of Fig. 41. The definitions have been given in Fig. 42. As
we have mentioned, the action Unlock has to be labeled with level 1 for this example. The reason is
that the Unlock action updates the variable done, which may delay a thread that is executing the
loops of lines 3-5 and lines 22-24. In particular, in the proof of lines 22-24 in Fig. 46, the current
thread could increase ¢-tokens when its environment does Unlock (that is why the assertion before
line 23 is stable).
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lock():
1 local b;
{Pcid A ¢ A arem(await(L = 0){L := cid})}
2 b := done;
{Pcid A & A arem(await(L = 0){L := cid}) A(bA OV —|b)}
3 while (b) {
(unlocked V lockedciq(false) Vv (envLockedciq V envToUnlockedcig) A ¢)
{ A ¢ A arem(await(L = 0){L := cid}) }
4 b := done;
{Pcid A(bAOV=b)A & Aarem(await(L = 0){L := Cid})}
5 }
{Pcid A & A arem(await(L = 0){L := cid})}
6 await (1 = @ /\ !done) {
{unlocked A & A arem(await(L = 0){L := cid})}

7 1 := cid;
8 done := true;
{lockedcid(true) A arem(skip)}
9 }
{Iockedcid(true) A arem(skip)}
10 done := false;

{Iockedcid(false) A arem(skip)}
11 b := done;
{—|b A lockedciq(false) A arem(skip)}
12 while (b) { b := done; }
{Iockedcid(false) A arem(skip)}

Here the while loop at lines 3-5 is verified as follows. Let

if S |= envLocked; (true)
if S |= envLocked; (false)
if S |= envToUnlocked
if S |= unlocked

Ot &ef unlocked V locked (false) Jt = P f(S) =

o
)
o,
o
o)
N
S = DN W

We can prove: | = (R, 1d: Z)L (0, (L =0))).

The await command at lines 6-9 is verified using the same metric f as the above one for

the while loop at lines 3-5. We can prove: P = (R: Z)oL (1=0,L=0)).
Proof of the while loop at line 12 is trivial, since the loop condition b does not hold.

Fig. 45. Proof outline for the lock method of the PDF lock under strong fairness (using the same I, G, R and
D as Fig. 42).
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unlock():
13 local b;
{Iockedcid(false) A& Aarem(L = 0)}
14 b := done;
{Iockedcid(false) A ¢ Aarem(L :=0) A —|b}
15 while (b) { b := done; }
{Iockedcid(false) A ¢ Aarem(L := 0)}
16 await (!done) {
{Iockedcid(false) A & Aarem(L := 0)}

17 1:=09;

18 done := true;
{toUnlockedcid A arem(L := 0)}

19 3}

{toUnIockedcid Aarem(L := 0)}
20 done := false;
{notOwnCid A arem(skip)}
21 b := done;
notOwncig A arem(skip) A (b A OV —|b)}
22 while (b) {
{(unlocked V envLockedciq(false) vV (envLockedciq(true) vV envToUnlockedcig) A ¢) A arem(skip)}
23 b := done;
{notOwncid A(bAOV=b)A arem(skip)}
24}
{notOwnCid A arem(skip)}

Here the proof of the while loop at line 15 is trivial, since the loop condition b does not hold.

The await command at lines 16-19 is verified as follows. Let f be a constant function. We can prove:

locked(false) = (R: Z)OL (—done, true)).

The while loop at lines 22-24 is verified as follows. Let

if S |= envLocked(true)
if S |= envLocked; (false)
if © |= envToUnlocked;
if © |= unlocked

Ot = envLockedi(false) V unlocked Ji &ef notOwny f(S) &ef

S = DN W

We can prove: | = (R, 1d: Z)L (Q,true)).

Fig. 46. Proof outline for the unlock method of the PDF lock under strong fairness (using the same I, G, R
and D as Fig. 42).
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