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Various progress properties have been proposed for concurrent objects, such as wait-freedom, lock-freedom,

starvation-freedom and deadlock-freedom. However, none of them applies to concurrent objects with partial

methods, i.e., methods that are supposed not to return under certain circumstances. A typical example is the

lock_acquire method, which must not return when the lock has already been acquired.

In this paper we propose two new progress properties, partial starvation-freedom (PSF) and partial deadlock-

freedom (PDF), for concurrent objects with partial methods. We also design four patterns to write abstract

specifications for PSF or PDF objects under strongly or weakly fair scheduling, so that these objects contextually

refine the abstract specifications. Our Abstraction Theorem shows the equivalence between PSF (or PDF) and

the progress-aware contextual refinement. Finally, we generalize the program logic LiLi to have a new logic to

verify the PSF (or PDF) property and linearizability of concurrent objects.
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1 INTRODUCTION
A concurrent object consists of shared data and a set of methods which provide an interface for

client threads to access the shared data. Linearizability [Herlihy and Wing 1990] has been used as

a standard definition of the correctness of concurrent object implementations. It describes safety

and functionality, but has no requirement about termination of object methods. Various progress

properties, such as wait-freedom, lock-freedom, starvation-freedom and deadlock-freedom, have

been proposed to specify termination of object methods. In their textbook Herlihy and Shavit [2008]

give a systematic introduction of these properties.

Recent work [Filipović et al. 2009] has shown the equivalence between linearizability and a

contextual refinement. The result has been further extended [Gotsman and Yang 2011; Liang and

Feng 2016; Liang et al. 2013] to show that, when progress properties are taken into account, one

may have the corresponding progress-aware contextual refinement to reestablish the equivalence.

The equivalence results allow us to build abstractions for linearizable objects so that safety and

progress of the client code can be reasoned about at a more abstract level.

However, none of these progress-related results applies to concurrent objects with partial meth-

ods! A method is partial if it is supposed not to return under certain circumstances. A typical

example is the lock_acquire method, which must not return when the lock has already been

acquired. Concurrent objects with partial methods simply do not satisfy any of the aforementioned
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progress properties, and people do not know how to give progress-aware abstract specifications for

them either. The existing studies on progress properties and progress-aware contextual refinements

have been limited to concurrent objects with total specifications.

As an awkward consequence, we cannot treat lock implementations as objects when we study

progress of concurrent objects. Instead, we have to treat lock_acquire and lock_release as

internal functions of other lock-based objects. Also, without a proper progress-aware abstraction

for locks, we have to redo the verification of lock_acquire and lock_release when they are

used in different contexts [Liang and Feng 2016], which makes the verification process complex and

painful. Note that locks are not the only objects with partial methods. Concurrent sets, stacks and

queues may also have methods that intend to block. For instance, it may be sensible for a thread

attempting to pop from an empty stack to block, waiting until another thread pushes an item. The

reasoning about these objects suffers from the same problems too when progress is concerned.

We face the following key challenges to address these problems.

• We need definitions of new progress properties for these objects, and the definitions need to

describe the situations in which permanent blocking is allowed. It is important to note that,

although deadlock-freedom and starvation-freedom have been used as progress properties

for “blocking” algorithms [Herlihy and Shavit 2008], they allow permanent blocking only

when the scheduling is unfair. They can specify concurrent objects implemented using locks,

but they do not apply to lock objects themselves. For objects like locks, blocking may also be

caused by inappropriate method invocations by the client. For instance, if a thread of the

client fails to call lock_release after acquiring the lock, the calls to lock_acquire by other

threads will be always blocked. Similarly, for a stack object with a partial pop method, if no

client threads call push, the calls to pop will be permanently blocked at an empty stack. The

question is, how to distinguish the blocking behaviors caused by “bad” clients with those

caused by bad object implementations, and blame the objects only for the blocking in the

latter case.

• The abstractions for objects with partial methods should be able to distinguish the objects

with different progress guarantees under different scheduling conditions. A natural abstrac-

tion for partial methods is the blocking primitive await(B){C}. It is blocked if B does not

hold, and executes C atomically if B holds (in this case, we say the code await(B){C} is
enabled). A specification in the form of await(B){C} can characterize both the atomicity of

the functionality and the fact that the method is partial. However, it is not sufficient to serve

as a progress-aware abstraction for the following two reasons.

− Different implementations of the same await block may exhibit different progress prop-

erties, requiring different abstractions. For instance, the ticket lock algorithm [Mellor-

Crummey and Scott 1991] has stronger progress guarantees than the test-and-set lock

algorithm [Herlihy and Shavit 2008]. Therefore when progress is concerned it is impossible

to use the same partial specification (e.g., await(l=0){l := cid}, where cid is the ID of

the current thread) as an abstraction for the lock_acquire methods in both algorithms

(even though it may work for both if we consider linearizability only).

− Even the same implementation may require different abstractions for different scheduling.

The blocking primitive await(B){C} behaves differently under strongly fair and weakly

fair scheduling. The former ensures the execution of the primitive as long as it is enabled a

sufficient number of times, but the latter requires the primitive to be always enabled to

ensure its execution. On the other hand, the distinction between strong and weak fairness

is meaningful only if there are blocking primitives. A low-level program consisting of

non-blocking primitive instructions only (like most machine instructions) behaves the same
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under both scheduling. Such a program cannot have the same abstraction with blocking

primitives under different scheduling.

As a result, if we considerm kinds of progress properties (e.g., to distinguish ticket locks

and test-and-set locks) and the 2 choices of strongly fair and weakly fair scheduling, we may

need as many as 2 ×m kinds of abstractions for the same functionality. Can we find general

patterns for these abstractions?

In this paper, we specify and verify progress of concurrent objects with partial methods. We

define progress properties and abstraction patterns under strongly and weakly fair scheduling. Then

we prove that given a linearizable object implementation Π, the contextual refinement between Π
and its abstraction Π′ under a certain kind of fair scheduling is equivalent to the progress property

of Π. We also provide a program logic to verify the contextual refinement between Π and Π′, which
ensures linearizability and the progress property of Π.
Our work is based on earlier work on abstraction for concurrent objects and concurrency

verification, but makes the following new contributions:

• We propose progress properties, partial starvation-freedom (PSF) and partial deadlock-freedom

(PDF), for concurrent objects with partial methods. They identify the execution scenarios

in which the partial methods are blocked due to inappropriate invocation sequences made

by “bad” clients, and allow the object methods to be blocked permanently in these special

scenarios. Ticket locks and test-and-set locks satisfy PSF and PDF respectively. Traditional

starvation-freedom and deadlock-freedom for objects with total methods can be viewed as

specializations of PSF and PDF respectively, if we view total methods as special cases of

partial ones that are always enabled to return.

• We design four general patterns for abstractions for concurrent objects with PSF and PDF

progress properties under strongly and weakly fair scheduling, respectively. We start with

the basic blocking primitive await(B){C} and define syntactic wrappers that transform it

into non-atomic object specifications which can be refined by the object implementations

in the progress-aware contextual refinement. We give distinguished wrappers for different

combinations of fairness and progress properties.

• We prove the equivalence between PSF (or PDF) and the progress-aware contextual refine-

ment, where the abstraction is generated by the wrapper, under strong or weak fairness. The

equivalence results (called the abstraction theorem) allow us to verify safety and liveness

properties of client programs at a high abstraction level, by replacing concrete object imple-

mentations with the specifications. Using the natural transitivity of the contextual refinement,

it is also possible to verify linearizability and PSF (or PDF) of nested concurrent objects.

• We design a program logic to verify objects with PSF or PDF progress properties. Our logic

is a generalization of the LiLi logic for starvation-free and deadlock-free objects [Liang and

Feng 2016]. It also provides inference rules for the await(B){C} statement under strong and

weak fairness, so that await commands can also be used in object implementations. The

soundness of our logic ensures the progress-aware contextual refinement, and linearizability

and PSF (or PDF) under different fairness. We have applied the program logic to verify

ticket locks [Mellor-Crummey and Scott 1991], test-and-set locks [Herlihy and Shavit 2008],

bounded partial queues with two locks [Herlihy and Shavit 2008] and Treiber stacks [Treiber

1986] with possibly blocking pop methods.

In the rest of this paper, we first give an informal overview of the background and our key

ideas in Sec. 2. Then we introduce the object language in Sec. 3, and linearizability and the basic

contextual refinement in Sec. 4. We propose our new progress properties in Sec. 5, and give the

progress-aware contextual refinement and the abstraction theorem in Sec. 6. We present the logic
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L_initialize(){ l := 0; }

L_acq(){
1 local b := false;
2 while(!b){ b := cas(&l, 0, cid); }
}

L_rel(){
3 l := 0;
}

(a) test-and-set lock implementation

inc(){ L_acq(); x:=x+1; L_rel(); }

(b) counter with a test-and-set lock

tkL_initialize(){ owner := 0; next := 0; }

tkL_acq(){
1 local i, o;
2 i := getAndInc(&next);
3 o := owner; while(i!=o){ o := owner; }
}

tkL_rel(){
4 owner := owner + 1;
}

(c) ticket lock implementation

inc_tkL(){ tkL_acq(); x:=x+1; tkL_rel(); }

(d) counter with a ticket lock

INC(){x:=x+1;}

(e) atomic spec. INC

Fig. 1. Counters with locks.

in Sec. 7 and show the examples we have verified in Sec. 8. Finally, we discuss related work and

conclude in Sec. 9.

2 BACKGROUND AND OVERVIEW OF KEY IDEAS
Below we first give an overview of linearizability, starvation-freedom, deadlock-freedom and

contextual refinement. Then we analyze the problems in defining progress of concurrent objects

with partial methods, and explain our solutions informally.

2.1 Background
A concurrent object usually satisfies linearizability, a standard safety criterion, and certain progress

property, describing when and how method calls of the object are guaranteed to terminate.

Linearizability. A concurrent object is linearizable, if each method call appears to take effect

instantaneously at some moment between its invocation and return [Herlihy and Wing 1990].

Intuitively, linearizability requires the implementation of each method to have the same effect as

an atomic specification.

Consider the two implementations of the counter object in Fig. 1(b) and (d). We assume that every

primitive command is executed atomically. A counter provides a method inc for incrementing the

shared data x. Both implementations use locks to synchronize the increments. Intuitively they have

the same effect as the atomic specification INC() in Fig. 1(e), so they are linearizable.

The locks themselves could also be viewed as standalone objects. For instance, the test-and-set

lock object in Fig. 1(a) provides the methods L_acq and L_rel for a thread to acquire and release

the lock l. Here cid represents the current thread’s ID, which is a positive number. The counter’s

implementation code in Fig. 1(b) can be viewed as a client of this lock object. The lock object

is linearizable, because L_acq and L_rel both update l atomically (if they indeed return). They
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produce the same effects as the atomic operations L_ACQ and L_REL (defined below), respectively:

L_ACQ(){ l := cid; } L_REL(){ l := 0; } (2.1)

However, linearizability does not characterize progress properties of the object implementations.

For instance, the following counter object is still linearizable, even if its method never terminates.

inc'(){ L_acq(); x:=x+1; L_rel(); while(true) skip; }

Progress properties. Various progress properties have been proposed for concurrent objects, such

as wait-freedom and lock-freedom for non-blocking implementations, and starvation-freedom and

deadlock-freedom for lock-based implementations. These properties describe conditions under

which a method call is guaranteed to successfully finish in an execution. The two implementations

of the counter in Fig. 1(b) and (d) satisfy deadlock-freedom and starvation-freedom respectively.

We use the definitions given by Herlihy and Shavit [2011]. Both deadlock-freedom and starvation-

freedom assume fair scheduling, i.e., every thread gets eventually executed. For the counters in

Fig. 1(b) and (d), fairness ensures that every thread holding the lock will eventually release the lock.

Deadlock-freedom requires “minimal progress” in fair executions, i.e., there always exists some

method call which can finish under fair scheduling, while starvation-freedom requires “maximal

progress” in fair executions, i.e., every method call should eventually finish under fair scheduling.

The counter in Fig. 1(b) is deadlock-free, because the test-and-set lock (see Fig. 1(a)) guarantees

that eventually some thread will succeed in getting the lock via the cas instruction at line 2, and
hence the method call of inc in that thread will eventually finish. It is not starvation-free, because

there might be a thread that continuously fails to acquire the lock. For the following client program

(2.2), the cas instruction executed by the left thread could always fail if the right thread infinitely

often acquires the lock.

inc(); print(1); || while(true) inc(); (2.2)

The counter in Fig. 1(d) implemented with a ticket lock is starvation-free. Figure 1(c) shows the

details of the ticket lock implementation. It uses two shared variables owner and next, which are

equal initially. The threads attempting to acquire the lock form a waiting queue. In tkL_acq, a
thread first atomically increments next and reads its old value to a local variable i (line 2). It waits
until the lock’s owner equals its ticket number i (line 3), then it acquires the lock. In tkL_rel,
the thread releases the lock by incrementing owner (line 4). Then the next waiting thread (the

thread with ticket number i+1, if there is one) can acquire the lock. We can see that the ticket

lock implementation ensures the first-come-first-served property, and hence every thread calling

inc_tkL can eventually acquire the lock and finish its method call.

Deadlock-freedom and starvation-freedom are progress properties for the so-called “blocking

implementations” [Herlihy and Shavit 2008], such as the counters in Fig. 1(b) and (d), where a

thread holding a lock will block other threads requesting the lock. However, they do not apply to

lock objects, e.g., the ones in Fig. 1(a) and (c). We will explain the problems in detail in Sec. 2.2.

Contextual refinement and the abstraction theorem. It is difficult to use linearizability and progress

properties directly in modular verification of client programs of an object, because their definitions

fail to describe how the client behaviors are affected. To verify clients, we would like to abstract

away the details of the object implementation. This requires a notion of object correctness, telling

us that the client behaviors will not change when we replace the object methods’ implementations

with the corresponding abstract operations (as specifications).

Contextual refinement gives the desired notion of correctness. Informally, an object implemen-

tation Π is a contextual refinement of a (more abstract) implementation Π′, if every observable
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behavior of any client program using Π can also be observed when the client uses Π′ instead. Then,
when verifying a client of Π, we can soundly replace Π with its abstraction Π′.

There has been much work (e.g., [Filipović et al. 2009; Gotsman and Yang 2012; Liang et al. 2013])

studying abstraction theorems, which relate linearizability and progress properties with contextual

refinements. It has been proved that linearizability of Π is equivalent to a contextual refinement

between Π and its atomic specification Γ, where the observable behaviors are finite traces of I/O
events. When taking progress properties into account, the corresponding contextual refinement

should be sensitive to termination or divergence (non-termination). For instance, deadlock-freedom

or starvation-freedom of linearizable objects is shown equivalent to a contextual refinement which

observes (possibly infinite) full traces of I/O events in fair executions. Then, a client which diverges

with Π in a fair execution must also have a diverging execution when using the abstraction Π′.
Deadlock-free and starvation-free objects could be distinguished by different abstractions. The

abstraction for starvation-free objects is the atomic specification Γ, while for deadlock-free ones
the abstraction has to be non-atomic [Liang and Feng 2016].

The counter implementation inc_tkL() in Fig. 1(d) is a progress-aware contextual refinement

of the atomic counter INC in Fig. 1(e), but inc() in Fig. 1(b) is not. To see the difference, consider

the client program (2.2). Under fair scheduling, the client calling inc() may generate an empty I/O

event trace because it may not print out 1. However, the empty trace cannot be generated when

replacing inc() with inc_tkL() or INC(), because the resulting program must print out 1.

2.2 Problems and Our Solutions
The existing progress properties and the corresponding contextual refinement are proposed for

concurrent objects with total methods only, i.e., methods that should always return when executed

sequentially. They do not apply to objects with partial methods, such as the lock objects in Fig. 1(a)

and (c), which intend to block at certain situations. We have outlined the key challenges in rea-

soning about progress properties of objects with partial methods in Sec. 1. We give more detailed

explanations here.

2.2.1 Atomic Specifications Need to Be Partial. The specifications defined in (2.1) can characterize

the atomic behaviors of lock objects, but they fail to specify that L_ACQ should be partial in the

sense that it should be blocked when the lock is unavailable.

To address the problem, we introduce the atomic partial specification Γ, where each method

specification is in the form of await(B){C}. For the lock objects, we can define the atomic partial

specification Γ as follows.

L_ACQ'(){ await (l = 0) { l := cid }; } L_REL(){ l := 0; } (2.3)

The await block naturally specifies the atomicity of method functionality, just like the traditional

atomic specification ⟨C⟩ (which can be viewed as syntactic sugar for await(true){C}), therefore Γ
may serve as a specification for linearizable objects. It also shows the fact that the object method

is partial, with explicit specification of the enabling condition B. Below we use the atomic partial

specification as the starting point to characterize the progress of objects.

2.2.2 Deadlock-Freedom and Starvation-FreedomDo Not Apply. We need new progress properties

for objects with partial methods. Consider the following client program (2.4) using the test-and-set

lock in Fig. 1(a). One of the method calls never finishes.

L_acq(); || L_acq(); (2.4)

It shows that the test-and-set lock object does not satisfy the traditional deadlock-freedom or

starvation-freedom property we just presented. Neither does the ticket lock object in Fig. 1(c).
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Table 1. Client (2.5) with different locks. “Yes” means it must print out 1, “No” otherwise.

spec. (2.3) ticket locks (Fig. 1(c)) test-and-set locks (Fig. 1(a))

Strong Fairness Yes Yes No

Weak Fairness No Yes No

The problem is that L_acq intends to block when the lock is not available. The non-termination

in the above example (2.4) is just the intention of a correct lock implementation; otherwise the lock

cannot guarantee mutual exclusion.

Our solution. We define two new progress properties for objects with partial methods, which we

call partial starvation-freedom (PSF) and partial deadlock-freedom (PDF). PSF requires that in each

fair execution trace by any client with the objectΠ, either eachmethod invocation eventually returns

(as required in starvation-freedom), or each pending method invocation must be continuously

disabled. The latter case intuitively says that this non-termination is caused by the “bad” client, e.g.,

by inappropriate invocations of the methods. Similarly, PDF requires that in each fair execution

trace by any client with the object Π, either there always exists a method invocation that eventually

returns (as in deadlock-freedom), or each pending method invocation must be continuously disabled.

But how do we formally say that a method is disabled? When we informally say this, we actually

refer to the enabling condition B in await(B){C} in the object’s atomic partial specification Γ.
However, we may not be able to infer such a condition from the concrete implementation Π.
To address this problem, our definitions of PSFΓ (Π) and PDFΓ (Π) are parameterized with the

specification Γ (the actual definitions take more parameters, as shown in Sec. 5).

We can prove the lock objects in Fig. 1(a) and (c) satisfy PDF and PSF respectively. We can

also show that starvation-freedom and deadlock-freedom are special cases of our PSF and PDF

respectively, by instantiating the parameter Γ with specifications in the form of await(true){C}.

2.2.3 Atomic Partial Specifications Are Insufficient for Progress-Aware Abstractions. Although the

atomic partial specification Γ describes the atomic functionality and the enabling condition of each

method, it is insufficient to serve as a progress-aware abstraction for the following reasons.

First, the progress of the await command itself is affected by the fairness of scheduling, such as

strong fairness and weak fairness.

• Strong fairness: Every thread which is infinitely often enabled will execute infinitely often.

Then, await(B){C} is not executed only if B is continuously false after some point in the

execution trace.

• Weak fairness: Every thread which is eventually always enabled will execute infinitely often.

Then, await(B){C} may not be executed when B is infinitely often false. This fairness notion

is weaker than strong fairness.

As a result, the choice of fair scheduling will affect the behaviors of a program or a specification

with await commands. To see this, we consider the following client program (2.5).

[ _ ]acq; [ _ ]rel; print(1); || while(true){ [ _ ]acq; [ _ ]rel; } (2.5)

where [ _ ]acq and [ _ ]rel represent holes to be filled with method calls of lock acquire and release,

respectively. Table 1 shows the behaviors of the client with different locks. If the client calls the

abstract specifications in (2.3), it must execute print(1) under strongly fair scheduling, but may

not do so under weakly fair scheduling. This is because the call of L_ACQ' could be infinitely

often enabled and infinitely often disabled in an execution, making its termination sensitive to the

fairness of scheduling.

, Vol. 1, No. 1, Article . Publication date: January 2018.



:8 Hongjin Liang and Xinyu Feng

Table 2. Wrappers for atomic specifications.

PSF PDF
Strong Fairness wrsfairPSF (await(B){C}) wrsfairPDF (await(B){C})

Weak Fairness wrwfairPSF (await(B){C}) wrwfairPDF (await(B){C})

Also note that the two fairness notions coincide when the program does not contain blocking

operations. Therefore, regardless of strongly or weakly fair scheduling, the client (2.5) using ticket

locks always executes print(1), but it may not do so if using test-and-set locks instead (see Table 1).

As a result, for the same object implementation, we may need different abstractions under different

scheduling. As shown in Table 1, the specification (2.3) cannot serve as the specification of the

test-and-set locks under both strong fairness and weak fairness.

Second, even under the same scheduling, different implementations demonstrate different progress,

therefore need different abstractions. As shown in Table 1, the different lock implementations have

different behaviors, even under the same scheduling.

For the above two reasons, we need different abstractions for different combinations of fairness

and progress. For PSF and PDF under strong and weak fairness respectively, we may need four

different abstractions. Can we systematically generate all of them?

Our solution. We define code wrappers over the basic blocking primitive await(B){C} to generate
the abstractions. The code wrappers are syntactic transformations that transform await(B){C} into
possibly non-atomic object specifications which can be refined by the object implementations in

the progress-aware contextual refinement. As shown in Table 2, the four wrappers correspond to

all combinations of fairness and progress. The definitions are shown in Sec. 6. Here we only give

some high-level intuitions using the lock objects as examples.

First, we observe that the lock specification (2.3) can already serve as an abstraction for ticket locks

under strong fairness, or for test-and-set locks under weak fairness. In general, the wrapper wrsfairPSF
can be an identity function, i.e., the atomic partial specifications are already proper abstractions

for PSF objects (not only for locks) under strong fairness. But wrwfairPDF is subtle. The atomic partial

specifications are insufficient as abstractions for general PDF objects under weak fairness, which

we will explain in detail in Sec. 6.

Second, as we have seen from Table 1, the lock specification (2.3) does not work for PSF locks

under weak fairness nor for PDF locks under strong fairness. Then the role of the wrapper wrwfairPSF
(or wrsfairPDF) is to generate the same PSF (or PDF) behaviors even though the fairness of scheduling is

weaker (or stronger).

To guarantee PSF, the idea is to create some kind of “fairness” on termination, i.e., every method

call can get the chance to terminate. Given weakly fair scheduling, this requires the enabling

condition of the abstraction to continuously remain true. As a result, a possible way to define

wrwfairPSF (L_ACQ’) is to keep a queue of threads requesting the lock, and a thread can acquire the lock

only when it is at the head of the queue.

To support PDF under strongly fair scheduling, we have to allow non-termination even if the

enabling condition is infinitely often true. For the client (2.5), the call of L_ACQ' in the specifica-

tion (2.3) under strongly fair scheduling always terminates. Then wrsfairPDF needs to incorporate with

some kind of delaying mechanisms, so that the termination of L_ACQ' of the left thread could be

delayed every time when the right thread succeeds in acquiring the lock.
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(MName) f ,д . . . (PVar) x ,y,z . . .

(Expr) E ::= x | n | E + E | . . . (BExp) B ::= true | false | E = E | ¬B | . . .

(Stmt) C ::= x := E | x := [E] | [E] := E | print(E) | x := cons(E, . . . ,E) | dispose(E)
| skip | x := f (E) | return E | C;C | if (B) C else C | while (B){C}
| await(B){C}

(ODecl) Π,Γ ::= { f1 ❀ (P1,x1,C1), . . . , fn ❀ (Pn ,xn ,Cn )}

(Prog) W ::= let Π in Ĉ1 ∥ . . . ∥ Ĉn (Thrd) Ĉ ::= C | end

Fig. 2. Syntax of the programming language.

2.2.4 Other Results. We also have the following new results in addition to the new progress

properties and code wrappers.

Abstraction theorem. We prove the abstraction theorem, saying that our new progress properties

PSF and PDF (together with linearizability) are equivalent to contextual refinements where the

abstractions are generated by the corresponding wrappers. On the one hand, the theorem justifies

the abstractions generated by our wrappers, showing that they are refined by linearizable and PSF

(or PDF) object implementations. On the other hand, it also justifies our formulation of PSF and

PDF by showing that they imply progress-aware contextual refinements.

The abstraction theorem also allows us to verify safety and progress properties of whole programs

(consisting of clients and objects) in a modular way — after proving linearizability and PSF (or PDF)

of an objectΠwith respect to its atomic partial specification Γ, we can replaceΠwith the abstraction

generated by applying the corresponding wrapper over Γ, and then reason about properties of the

whole program at the high abstraction level.

Program logic. Finally we design a program logic as the proof method for verifying PSF and PDF

objects. It ensures linearizability and PSF (or PDF) of an object Π with respect to its atomic partial

specification Γ. The logic is a generalization of our previous program logic LiLi for starvation-free

and deadlock-free objects [Liang and Feng 2016], plus new inference rules for the await statement

under strong and weak fairness. We will explain the details in Sec. 7.

3 THE LANGUAGE
Figure 2 shows the syntax of the language. A programW consists of an object declaration Π and n
parallel threads Ĉ as clients sharing the object. To simplify the language, we assume there is only

one object in each program. Each Π maps method names fi to annotated method implementations

(Pi ,xi ,Ci ), where xi and Ci are the formal parameter and the method body respectively, and the

assertion Pi is an annotated precondition over the object state to ensure the safe execution of the

method. It is defined in Fig. 3 and is used in the operational semantics explained below. A thread Ĉ
is either a command C , or an end flag marking termination of the thread. The commands include

the standard ones used in separation logic, where x := [E] and [E] := E ′ read and write the heap

at the location E respectively, and x := cons(E, . . . ,E) and dispose(E) allocate and free memory

cells respectively. In addition, we have method call (x := f (E)) and return (return E) commands.

The print(E) command generates externally observable events, which are used to define trace

refinements in Sec. 4. The await(B){C} command is the only blocking primitive in the language. It

blocks the current thread if B does not hold, otherwise C is executed atomically together with the

testing of B.
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(ThrdID) t ∈ Nat (Store) s,s ∈ PVar⇀ Val

(Heap) h,h ∈ Nat⇀ Val (Data) σ ,Σ ::= (s,h)
(CallStk) κ,k ::= ◦ | (sl ,x ,C ) (ThrdPool) K ,K ::= {t1 ❀ κ1, . . . , tn ❀ κn }
(PState) S,S ::= (σc ,σo ,K ) (LState) ς ,δ ::= (σc ,σo ,κ)

(ExecCtxt) E ::= [ ] | E;C
(Pre) P ∈ P (Data) (AbsFun) φ ∈ Data⇀ Data

(Event) e ::= (t, f ,n) | (t,ret,n) | (t,obj) | (t,obj,abort) | (t,out,n)
| (t,clt) | (t,clt,abort) | (t,term) | (spawn,n)

(BIdSet) ∆ ∈ P (ThrdID) (PEvent) ι ::= (e,∆c ,∆o )
(ETrace) E ::= ϵ | e ::E (co-inductive) (PTrace) T ::= ϵ | ι ::T (co-inductive)

en(Ĉ )
def

=

{
B if ∃E,C ′. Ĉ = E[await(B){C ′}]
true otherwise

(σo ,κ) |= B iff JBK((σo .s )⊎(κ .sl )) = true ∧ κ , ◦ σc |= B iff JBKσc .s = true

btids(let Π in Ĉ1 ∥ . . . ∥ Ĉn , (σc ,σo ,K ))
def

= ({t | K (t) = ◦ ∧ ¬(σc |= en(Ĉt))},

{t | K (t) , ◦ ∧ ¬((σo ,K (t)) |= en(Ĉt))})

Fig. 3. States and event traces.

We make the following assumptions to simplify the technical setting. There are no regular function

calls in either clients or objects. Therefore x := f (E) can only be executed in client code to call

object methods, and return E always returns from object methods to clients. Each object method

takes only one argument and each method body ends with a return command. Object methods

never execute the print(E) command and therefore do not generate external events. The command

C in await(B){C} cannot contain await, print, and method calls and returns. It cannot contain

loops either so that it always terminates.

Operational semantics. The operational semantics rules shown in Fig. 4 consist of three parts,

including state transitions made by the whole program, by individual threads, and by clients or

object methods, respectively. We define program states S in Fig. 3, where we use two sets of

notations to represent states at the concrete and the abstract levels respectively when we study

refinement. To ensure that the client code does not touch the object data, in S we separate the

data accessed by clients (σc ) and by object methods (σo ). S also contains a thread pool K mapping

thread IDs t to the corresponding method call stacks κ. Recall that the only function call allowed

in the language is the method invocation made by a client and there are no nested function calls,

therefore each κ is either empty (◦, which means the thread is executing the client code), or contains

only one stack frame (sl ,x ,C ), where sl is the local store for the local variables of the method, x
is the (client) variable recording the return value, and C is the continuation (the remaining client

code to be executed after the return of the method).

Figure 4(a) shows that the execution of the programW follows the non-deterministic interleaving

semantics, which is defined based on thread transitions defined in Fig. 4(b). Each transition over

program configurations is labelled with a program event ι, a triple in the form of (e,∆c ,∆o ). The
event e is generated by thread transitions. As defined in Fig. 3, (t, f ,n) records the invocation of

the method f with the argument n in the thread t, and (t,ret,n) is for a method return with the

return value n. (t,obj) and (t,clt) record a regular object step and a regular client step respectively,

while (t,obj,abort) and (t,clt,abort) are for aborting of the thread in the object and client code
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(Ĉi , (σc ,σo ,K (i )))
e
−→ i,Π (Ĉ ′i , (σ

′
c ,σ
′
o ,κ
′))) K ′ = K {i ❀ κ ′}

btids(let Π in Ĉ1 ∥ . . . Ĉ
′
i . . . ∥ Ĉn , (σ

′
c ,σ
′
o ,K

′)) = (∆c ,∆o )

(let Π in Ĉ1 ∥ . . . Ĉi . . . ∥ Ĉn , (σc ,σo ,K )) p
(e,∆c ,∆o )
−−−−−−−−→ (let Π in Ĉ1 ∥ . . . Ĉ

′
i . . . ∥ Ĉn , (σ

′
c ,σ
′
o ,K

′))

Ĉi = skip K (i ) = ◦ Ĉ ′i = end e = (i,term)

btids(let Π in Ĉ1 ∥ . . . Ĉi . . . ∥ Ĉn , (σc ,σo ,K )) = (∆c ,∆o )

(let Π in Ĉ1 ∥ . . . Ĉi . . . ∥ Ĉn , (σc ,σo ,K )) p
(e,∆c ,∆o )
−−−−−−−−→ (let Π in Ĉ1 ∥ . . . Ĉ

′
i . . . ∥ Ĉn , (σc ,σo ,K ))

(Ĉi , (σc ,σo ,K (i )))
e
−→ i,Π abort

(let Π in Ĉ1 ∥ . . . Ĉi . . . ∥ Ĉn , (σc ,σo ,K )) p
(e,∅,∅)
−−−−−−→ abort

(a) program transitions

Π( f ) = (P ,y,C ) σo ∈ P JEKsc = n x ∈ dom(sc ) κ = ({y ❀ n},x ,E[ skip ])

(E[x := f (E) ], ((sc ,hc ),σo ,◦))
(t,f ,n)
−−−−−−→ t,Π (C, ((sc ,hc ),σo ,κ))

f < dom(Π) or σo < Π( f ).P or JEKsc undefined or x < dom(sc )

(E[x := f (E) ], ((sc ,hc ),σo ,◦))
(t,clt,abort)
−−−−−−−−−−→ t,Π abort

κ = (sl ,x ,C ) JEKsl = n s ′c = sc {x ❀ n}

(E[ return E ], ((sc ,hc ),σo ,κ))
(t,ret,n)
−−−−−−−→ t,Π (C, ((s ′c ,hc ),σo ,◦))

κ = (sl ,x ,C ) JEKsl undefined

(E[ return E ], ((sc ,hc ),σo ,κ))
(t,obj,abort)
−−−−−−−−−−−→ t,Π abort

JEKsc = n

(E[print(E) ], ((sc ,hc ),σo ,◦))
(t,out,n)
−−−−−−−→ t,Π (E[ skip ], ((sc ,hc ),σo ,◦))

(C, (so ⊎ sl ,ho )) −_ t (C
′, (s ′o ⊎ s

′
l ,h
′
o )) dom(sl ) = dom(s ′l )

(C, (σc , (so ,ho ), (sl ,x ,C1)))
(t,obj)
−−−−−→ t,Π (C ′, (σc , (s

′
o ,h
′
o ), (s

′
l ,x ,C1)))

(C,σc ) −_ t (C
′,σ ′c )

(C, (σc ,σo ,◦))
(t,clt)
−−−−−→ t,Π (C ′, (σ ′c ,σo ,◦))

(C, (so ⊎ sl ,ho )) −_ t abort

(C, (σc , (so ,ho ), (sl ,x ,C1)))
(t,obj,abort)
−−−−−−−−−−−→ t,Π abort

(C,σc ) −_ t abort

(C, (σc ,σo ,◦))
(t,clt,abort)
−−−−−−−−−−→ t,Π abort

(b) thread transitions

JBKs = true (C, (s,h)) −_∗
t (skip, (s

′,h′))

(E[ await(B){C} ], (s,h))−_t (E[ skip ], (s ′,h′))

JBKs = true (C, (s,h)) −_∗
t abort

(E[ await(B){C} ], (s,h))−_t abort

(c) local thread transitions

Fig. 4. Selected operational semantics rules.

respectively. The output event (t,out,n) is generated by the print(E) command. (t,term) records
the termination of the thread t. We also introduce a special event (spawn,n), which is inserted at

the beginning of each event trace to record the creation of n threads at the beginning of the whole
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program execution. Its use is shown in Sec. 5. An event trace E is a (possibly infinite) sequence of

events, and a program trace T is a (possibly infinite) sequence of labels ι.
The sets ∆c and ∆o in the label record the IDs of threads that are blocked in the client code and

object methods respectively. They are generated by the function btids defined in Fig. 3. Recall that

a thread t is executing the client code if its call stack is empty, i.e., K (t) = ◦. We also define en(Ĉ )
as the enabling condition for Ĉ , which ensures that Ĉ can execute at least one step unless it has

terminated. Here the execution context E defines the position of the command to be executed next.

The second rule in Fig. 4(a) shows that end is used as a flag marking the termination of a thread.

A termination event (t,term) is generated correspondingly.

The first two rules in Fig. 4(b) show that method calls can only be executed in the client code

(i.e., when the stack κ is empty), and it is the clients’ responsibility to ensure that the precondition

P (defined in Fig. 3) of the method holds over the object data. If P does not hold, the method

invocation step aborts. Similarly, as shown in the subsequent rules, the return command can only

be executed in the object method, and the print command can only be in the client code. Other

commands can be executed either in the client or in the object, and the transitions are made over

σc and σo respectively. In Fig. 4(c) we show the operational semantics for await(B){C}. Note that
there is no transition rule when B is false, which means that the thread is blocked. Transition rules

of other commands are standard and omitted here.

More discussions about partial methods. There are actually two reasons that make a method

partial. The first is due to non-termination when the method is called under certain conditions. The

second is due to abnormal termination, i.e., the method aborts or terminates with incorrect states

or return values. Since the goal of this work is to study progress, the paper focuses on the first kind

of partial methods. In our language, we specify the two kinds of partial methods differently. For

the first kind, we use the enabling condition B in await(B){C} to specify when the method should

not be blocked. For the second kind, we use the annotated precondition P to specify the condition

needed for the method to execute safely and to generate correct results. For instance, although

the lock’s release method L_REL in specification (2.3) always terminates, it needs an annotated

precondition l=cid to prevent client threads not owning the lock from releasing it.

4 LINEARIZABILITY AND BASIC CONTEXTUAL REFINEMENT
In this section we formally define linearizability [Herlihy and Wing 1990] of an object Π with

respect to its abstract specification Γ. As explained in Sec. 2.2, Γ is an atomic partial specification for

Π. It has the same syntax with Π (see Fig. 2), but each method body in Γ is always an await block

await(B){C} (followed by a return E command). We also assume that the methods in Γ are safe,

i.e., they never abort.

History events, externally observable events, and traces. We call (t, f ,n), (t,ret,n) and (t,obj,abort)
history events, and (t,out,n), (t,obj,abort) and (t,clt,abort) externally observable events. In Fig. 5

we define T JW ,SK as the prefix closed set of finite traces T generated during the execution of

(W ,S).H JW ,SK contains the set of histories projected from traces in T JW ,SK. Here get_hist(T )
returns a subsequence E consisting of the history events projected from the corresponding labels in

T . Similarly OJW ,SK contains the set of externally observable event traces projected from traces in

T JW ,SK, where get_obsv(T ) is a subsequence E consisting of externally observable events only.

As defined below, an event trace E is linearizable with respect to E ′, i.e., E ≼lin E ′, if they have

the same sub-trace when projected over individual threads (projection represented as E|t), and E is

a permutation of E ′ but preserves the order of non-overlapping method calls in E ′. Here we use

is_inv(e ) (or is_ret(e2)) to represent that e is in the form of (t, f ,n) (or (t,ret,n)).
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T JW ,SK def

= {T | ∃W ′,S′. (W ,S)
T
7−→∗ (W ′,S′) ∨ (W ,S)

T
7−→∗ abort}

H JW ,SK def

= {E | ∃T . E = get_hist(T ) ∧T ∈ T JW ,SK }

OJW ,SK def

= {E | ∃T . E = get_obsv(T ) ∧T ∈ T JW ,SK }

match(e1,e2)
def

= is_inv(e1) ∧ is_ret(e2) ∧ (tid(e1) = tid(e2))

seq(ϵ )
is_inv(e )
seq(e :: ϵ )

match(e1,e2) seq(E)
seq(e1 :: e2 :: E)

∀t. seq(E|t)
well_formed(E)

well_formed(E)
E ∈ extensions(E)

E ′ ∈ extensions(E) is_ret(e ) well_formed(E ′++[e])
E ′++[e] ∈ extensions(E)

truncate(ϵ )
def

= ϵ truncate(e ::E)
def

=

{
e :: truncate(E) if is_ret(e ) or ∃i . match(e,E (i ))
truncate(E) otherwise

completions(E)
def

= {truncate(E ′) | E ′ ∈ extensions(E)}

}
def

= {t1 ❀ ◦, . . . , tn ❀ ◦}

Γ ◃ (Σ,E) iff ∃n,C1, . . . ,Cn ,σc .
(
E ∈H J(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K

)
∧ seq(E)

Fig. 5. Auxiliary definitions for linearizability.

Definition 4.1 (Linearizable Histories). E ≼lin E ′ iff both the following hold.

(1) ∀t. E|t = E ′ |t.
(2) There exists a bijection π : {1, . . . , |E |} → {1, . . . , |E ′ |} such that ∀i . E (i ) = E ′(π (i )) and

∀i, j . i < j ∧ is_ret(E (i )) ∧ is_inv(E (j )) =⇒ π (i ) < π (j ) .

Definition 4.2 says Π is linearizable with respect to Γ and the state abstraction function φ (see

Fig. 3) if, for any trace E generated by Π with the initial object data σ , the corresponding complete

trace Ec is always linearizable with some sequential trace E ′ generated by Γ with initial object data

Σ such that φ (σ ) = Σ. Some of the key notations are defined in Fig. 5. We use } to represent the

initial thread pool where each thread has an empty call stack. completions(E) appends matching

return events for some pending invocations in E, and discards the other pending invocations, so

that in the resulting trace every invocation has a matching return. We use ++ for list concatenation,

and [e1, . . . ,en] for a list consisting of a sequence of elements. We use tid(e ) for the thread ID in e .

Definition 4.2 (Linearizability of Objects). The object implementationΠ is linearizable with respect

to Γ, written as Π ≼linφ Γ, iff

∀n,C1, . . . ,Cn ,σc ,σ ,Σ,E . E ∈ H J(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K ∧ (φ (σ ) = Σ)
=⇒ ∃Ec ,E

′. (Ec ∈ completions(E)) ∧ (Γ ◃ (Σ,E ′)) ∧ (Ec ≼
lin E ′)

Abstraction of linearizable objects. Filipović et al. [Filipović et al. 2009] has shown that linearizabil-

ity is equivalent to a contextual refinement. As defined below, Π contextually refines Γ under the

state abstraction function φ if, for any clients C1 . . .Cn as the execution context, and for any initial

object data related by φ, executing Π generates no more externally event traces than executing Γ.
Theorem 4.4 shows the equivalence between linearizability and the contextual refinement.

Definition 4.3 (Basic Contextual Refinement). Π ⊑finφ Γ iff

∀n,C1, . . . ,Cn ,σc ,σ ,Σ. (φ (σ ) = Σ) =⇒
OJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K ⊆ OJ(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K .
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Theorem 4.4 (Basic Eqivalence for Linearizability). Π ≼linφ Γ ⇐⇒ Π ⊑finφ Γ.

5 PROGRESS PROPERTIES
In this section we define the new progress properties, partial starvation-freedom (PSF) and partial

deadlock-freedom (PDF), for objects with partial methods.

We first define the trace set TωJW ,SK in Fig. 6. It contains the (possibly infinite) whole execution

traces T generated by (W ,S) but with a special label ((spawn, |W |),∆c ,∆o ) inserted at the begin-

ning. Here we use |W | to represent the number of threads inW . The event (spawn, |W |) is used to

define fairness, as explained below. ∆c and ∆o records the threads blocked in clients and object

methods respectively (see the definition of btids in Fig. 3). At the beginning of an execution, ∆o
must be an empty set since no threads are in method calls. The whole execution trace T may be

generated under three cases, i.e., the execution of (W ,S) diverges, aborts or gets stuck (terminates

or is blocked). We write (W ,S)
T
7−→ω · for an infinite execution. In this case, the length of T must

be infinite, written as |T | = ω.

Strong and weak fairness. As defined in Fig. 6, a traceT is strongly fair, represented as sfair(T ), if
each thread either terminates, or is executed infinitely many times if it is infinitely often enabled

(i-o-enabled). We know a thread is enabled if it is not in the blocked sets ∆c and ∆o .T (j ) represents
the j-th element in the trace T . Similarly, wfair(T ) says that T is a weakly fair trace. It requires

that each thread either terminates, or is executed infinitely many times if it is always enabled after

certain step on the trace (e-a-enabled).

Thread progress and program progress. We use prog-t(T ) in Fig. 6 to say that every method call

eventually terminates. It ensures that each individual thread calling a method eventually returns.

prog-p(T ) says that there is always at least one method call that terminates. It ensures that the

whole program is making progress. Here pend_inv(T ) represents the set of method invocation

events that do not have matching returns. T (1..i ) represents the prefix of T with length i .

Partial starvation-freedom (PSF) and partial deadlock-freedom (PDF). We want to define PSF as

a generalization of starvation-freedom. We say an object Π is partially starvation-free if, under

fair scheduling (with strong or weak fairness), each method call eventually returns (as required

in starvation-freedom), unless it is eventually always disabled (i.e., it is not supposed to return in

this particular execution context). In the latter case the non-termination is caused by inappropriate

invocations of the methods in the client code and the object implementation should not be blamed.

Although the idea is intuitive, it is challenging to formalize it. This is because when we say a

method is disabled we are thinking at an abstract level, where the abstract disabling condition

cannot be syntactically inferred based on the low-level object implementation Π. For instance, the
lock implementations in Fig. 1 use non-blocking commands only, so they are always enabled to

execute one more step at this level, although we intend to say at a more abstract level that the

L_acq() operation is disabled when the lock is unavailable.

To address this problem, we refer to the abstract object specification Γ when defining the progress
of a concrete object Π. Recall that method specifications in Γ are in the form of await(B){C}, so we
know that the method is disabled when B does not hold.

We formalize the idea as Def. 5.1. Under the scheduling fairness χ (where χ ∈ {sfair,wfair},
as defined in Fig. 6), we say the object Π is PSF with respect to an abstract specification Γ and a

state abstraction function φ, i.e., PSFχφ,Γ (Π), if any χ -fair trace T generated by ((let Π in C1 ∥ . . . ∥

Cn ), (σc ,σ ,})) either aborts, or satisfies prog-t, or we could blame the client for the blocking of

each pending invocation.
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Tω JW ,SK def

= {((spawn, |W |),∆c ,∆o ) ::T | btids(W ,S) = (∆c ,∆o ) ∧

(((W ,S)
T
7−→ω · ) ∨ ((W ,S)

T
7−→∗ abort) ∨ ∃W ′,S′. ((W ,S)

T
7−→∗ (W ′,S′)) ∧ ¬(∃ι. (W ′,S′)

ι
7−→ _)) }

|let Π in C1 ∥ . . . ∥ Cn |
def

= n tnum(((spawn,n),∆c ,∆o ) ::T )
def

= n

evt(ι)
def

= e if ι = (e,∆c ,∆o ) bset(ι)
def

= ∆c ∪ ∆o if ι = (e,∆c ,∆o )

i-o-enabled(t,T ) iff ∀i . ∃j ≥ i . t < bset(T (j )) “infinitely often”

e-a-enabled(t,T ) iff ∃i . ∀j ≥ i . t < bset(T (j )) “eventually always”

sfair(T ) iff |T |=ω =⇒ ∀t ∈ [1..tnum(T )]. evt(last(T |t)) = (t,term) ∨ (i-o-enabled(t,T ) ⇒ |(T |t) | = ω)

wfair(T ) iff |T |=ω =⇒ ∀t ∈ [1..tnum(T )]. evt(last(T |t)) = (t,term) ∨ (e-a-enabled(t,T ) ⇒ |(T |t) | = ω)

pend_inv(T )
def

= {e | ∃i . e = evt(T (i )) ∧ is_inv(e ) ∧ ¬∃j > i .match(e,evt(T (j ))) }

abt(T ) iff ∃i . is_abt(evt(T (i )))

prog-t(T ) iff pend_inv(T ) = ∅

prog-p(T ) iff ∀i,e . e ∈ pend_inv(T (1..i )) =⇒ ∃j > i . is_ret(evt(T (j )))

e-a-disabled(t,T ) iff ∃i . ∀j ≥ i,ι = T (j ). t ∈ bset(ι) “eventually always”

well-blocked(T , (Wa ,Sa )) iff ∃Ta . Ta ∈ Tω JWa ,SaK ∧ (get_hist(T ) = get_hist(Ta ))
∧ (∀e . e ∈ pend_inv(Ta ) =⇒ e-a-disabled(tid(e ),Ta ))

Oχ JW , (σc ,σo )K
def

= {E | ∃T . T ∈ Tω JW , (σc ,σo ,})K ∧ χ (T ) ∧ get_obsv(T ) = E} χ ∈ {sfair,wfair}

Fig. 6. Fairness and progress.

In the last case, we must be able to find a traceTa generated by the execution of the abstract object
Γ (with the abstract object state Σ related to σ by φ) such that it has the same method invocation

and return history with T , and every pending invocation in this abstract trace Ta is eventually

always disabled. See the definition of well-blocked in Fig. 6 for the formal details.

Definition 5.1 (Partially Starvation-Free Objects). PSFχφ,Γ (Π) iff

∀n,C1, . . . ,Cn ,σc ,σ ,Σ,T . T ∈ TωJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K ∧ (φ (σ ) = Σ) ∧ χ (T )
=⇒ abt(T ) ∨ prog-t(T ) ∨ well-blocked(T , ((let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,}))) .

We also define PDF in Def. 5.2. It is similar to PSF, but requires prog-p instead of prog-t.

Definition 5.2 (Partially Deadlock-Free Objects). PDFχφ,Γ (Π) iff

∀n,C1, . . . ,Cn ,σc ,σ ,Σ,T . T ∈ TωJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K ∧ (φ (σ ) = Σ) ∧ χ (T )
=⇒ abt(T ) ∨ prog-p(T ) ∨ well-blocked(T , ((let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,}))) .

The above definitions consider the three factors that may affect the termination of a method

call: the scheduling fairness χ , the object implementation Π which determines whether its traces

satisfy prog-t or prog-p, and the execution context C1 ∥ . . . ∥Cn which may make inappropriate

method invocations so that well-blocked holds. Consider the lock objects in Fig. 1(a) and (c) and

, Vol. 1, No. 1, Article . Publication date: January 2018.



:16 Hongjin Liang and Xinyu Feng

the following client program (5.1). The initial value of the shared variable x is 0.

[ _ ]acq; print(0); [ _ ]rel;
x:=1;
[ _ ]acq; print(1); [ _ ]rel;

[ _ ]acq; print(2);
while(x=1){

[ _ ]rel; [ _ ]acq; print(3); }
(5.1)

The client can produce a trace satisfying prog-t when it uses the ticket lock. It first executes the left

thread until termination and then executes the right thread. Then every method call terminates,

printing out 0, 1, 2 and an infinite number of 3. Thus prog-t holds. When the test-and-set lock is

used instead, the same client can produce a trace satisfying prog-p but not prog-t. In the execution,

the second call to L_acq in the left thread never finishes. It prints out 0, 2 and an infinite number

of 3, but not 1. Such an execution is not possible when the client uses the ticket lock, under fair

scheduling. This shows how different object implementations affect termination of method calls.

Note that neither of the two execution traces satisfies well-blocked, because every method call in

the traces either terminates or is enabled infinitely often.

On the other hand, the client (5.1) can produce a well-blocked trace no matter it uses the ticket

lock or the test-and-set lock. It executes the right thread first until termination and then executes

the left thread. Then the first call to lock acquire of the left thread is always blocked, and only 2 is

printed during the execution. The non-termination of the method call is caused by the particular

execution context, in which the method call is not supposed to return, regardless of the object

implementations. This is why the same well-blocked condition is used in both definitions of PSF

and PDF for both strongly and weakly fair executions of the object implementation.

PSF (or PDF) and starvation-freedom (or deadlock-freedom) coincide if we require each await
block in Γ is in the special form of await(true){C} — Since the methods in Γ are always enabled,

well-blocked(T , ((let Γ in C1 ∥ . . . ∥Cn ),Sa )) now requires that there is no pending invocation inT .
This is stronger than both prog-t(T ) and prog-p(T ). Therefore we can remove the disjunction branch

about well-blocked in Defs. 5.1 and 5.2, resulting in definitions equivalent to starvation-freedom

and deadlock-freedom respectively.

6 PROGRESS-AWARE ABSTRACTION OF OBJECTS
In this section we study the abstraction of linearizable and PSF (or PDF) objects. Similar to Theo-

rem 4.4, we want theorems showing that linearizability along with PSF (or PDF) of an object Π is

equivalent to a contextual refinement between Π and some abstract object Π′, where Π′ can be

syntactically derived from the atomic specification Γ.
We first define the progress-aware contextual refinement for objects under different fairness

χ of scheduling (χ ∈ {sfair,wfair}). As Def. 6.1 shows, Π contextually refines Π′ under the χ -fair
scheduling if, in any execution context, Π generates no more externally observable event traces

than Π′. The set of event traces Oχ J(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ )K is defined in Fig. 6, where each

event trace E is extracted from the χ -fair trace T in TωJ(let Π in C1 ∥ . . . ∥ Cn ), (σc ,σ ,})K. The
refinement is progress-aware because we use the whole execution trace T here, from which we can

tell whether the corresponding execution terminates or not.

Definition 6.1 (Progress-Aware Contextual Refinement).

Π ⊑
χ
φ Π′ iff ∀n,C1, . . . ,Cn ,σc ,σ ,Σ. φ (σ ) = Σ =⇒

Oχ J(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ )K ⊆ Oχ J(let Π′ in C1 ∥ . . . ∥Cn ), (σc ,Σ)K

Wrappers for atomic specifications. As explained in Sec. 2, one of the major contributions of this

paper is to define wrappers for atomic partial specifications Γ, which transform the method specifi-

cation await(B){C} in Γ into a (possibly non-atomic) abstract specification for each combination

of progress (PSF or PDF) and fairness (sfair or wfair), as shown in Table 2.
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wrχProg (Γ) ( f )
def

= (P ,x , wrχProg (await(B){C}); return E)

if Γ( f ) = (P ,x , await(B){C}; return E)

wrsfairPSF (await(B){C}) def

= await(B){C}

wrwfairPSF (await(B){C}) def

= listid := listid++[(cid, ‘B’)];
await(B ∧ cid = enhd(listid)){C; listid := listid\cid; }

wrsfairPDF (await(B){C}) def

= while (done){};
await(B ∧ ¬done){C; done := true; }; done := false;
while (done){};

wrwfairPDF (await(B){C}) def

= await(B ∧ ¬done){C; done := true; }; done := false;
await(¬done){}

wrwfairPSF (φ) (σ )
def

=

{
σ ′ ⊎ {listid ❀ ϵ } if φ (σ ) = σ ′

undefined if σ < dom(φ)
wrsfairPSF (φ)

def

= φ

wrχPDF (φ) (σ )
def

=

{
σ ′ ⊎ {done ❀ false} if φ (σ ) = σ ′

undefined if σ < dom(φ)

Fig. 7. Definition of wrappers.

Before introducing the definition of the wrappers in Fig. 7, we first show our abstraction theorem

(Theorem 6.2) for linearizable and PSF (or PDF) objects. It establishes the equivalence between the

progress-aware contextual refinement and linearizability with PSF (or PDF).

Theorem 6.2 (Abstraction Theorem). Let Prog ∈ {PSF,PDF} and χ ∈ {sfair,wfair}, then

Π ≼linφ Γ ∧ Progχφ,Γ (Π) ⇐⇒ Π ⊑
χ
φ̂ wrχProg (Γ) ,

where φ̂ = wrχProg (φ), and the wrappers for Γ and φ are defined in Fig. 7. We also assume that the

variables listid and done introduced in the wrapper code are fresh, i.e., listid,done < FV({Π,Γ,φ}).

To prove the theorem, we define compositional operational semantics that can generate separate

traces for objects and clients, and build simulations using the object semantics. Detailed proofs are

given in Appendix A.

Nextwe introduce the definition of thewrappers in detail. ThewrapperwrsfairPSF is simply an identity

function. It maps the atomic specification await(B){C} to itself. This is because under strongly fair

scheduling await(B){C} will eventually be executed unless it is eventually always disabled. This is

exactly what we need for PSF of linearizable objects, which requires that the invocation of each

method eventually returns, unless the corresponding high-level atomic operation await(B){C} is
eventually always disabled (as specified by well-blocked in Fig. 6).

Wrapper for PSF under weakly fair scheduling. Under weakly fair scheduling, however, we cannot

guarantee that await(B){C} is eventually executed even if B holds infinitely often. Therefore it

alone cannot satisfy PSF. That’s why we define wrwfairPSF (await(B){C}), which guarantees that the

atomic operation is eventually executed if B holds infinitely often. We introduce a blocking queue

listid in the object state, which is a sequence of (t, ‘B’) pairs, showing that the thread t requests
to execute an atomic operation with the enabling condition B. Note that the enabling condition B is

recorded syntactically in listid, represented as ‘B’. The operator enhd(listid) returns the first
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thread on the list whose enabling condition is true. It evaluates the syntactic enabling conditions

‘B’ recorded in listid on the fly. Note that different pairs in listid may have different enabling

conditions B. In the code generated by wrwfairPSF (await(B){C}), we first append the current thread

ID and the enabling condition ‘B’ at the end of the list. In the subsequent command the thread

waits until both B holds and cid = enhd(listid)1. Then it atomically executes C and deletes the

current thread in the queue.

This wrapper guarantees that C is eventually executed when B becomes infinitely often true

because we know B ∧ cid = enhd(listid) will be eventually always true, and then the weakly

fair scheduling guarantees the execution of C . This is because, whenever B becomes true, either

cid = enhd(listid) holds or there is a pair (t′,B′) such that B′∧ t′ = enhd(listid) holds. In the

first case, other threads trying to execute the object methods must be blocked at the await command.

Therefore B cannot be changed to false by other threads. Therefore B ∧ cid = enhd(listid) is
always true until the current thread executes the atomic block. In the second case t′ must be able

to finish its method, following the same argument above. Therefore there will be one less thread

waiting in front of the current thread cid. Since B becomes true infinitely often, we eventually

reach the first case.

As a result, the wrapper does not terminate in a weakly fair execution only if B is eventually

always false. In that case the execution trace is well-blocked (see Fig. 6), still satisfying PSF.

Onemay argue that the abstraction generated by the wrapper is not very useful because it may not

be much simpler than the object implementation. For instance, if we consider the acquire method

of locks, the abstraction is almost the same as queue locks or ticket locks. But we want to emphasize

that our wrapper is a general one that works for any object method implementation with an

atomic specification in the form of await(B){C}. Therefore we know the method’s progress-aware

abstraction can always be in this form, no matter how complex its implementation is.

Wrapper for PDF under weakly fair scheduling. For the right column in Table 2, we first introduce

the wrapper at the bottom right corner. The definition of PDF says a method can be non-terminating

if (1) it is eventually always disabled, as specified bywell-blocked (see Fig. 6); or (2) there are always

other method calls terminating, as specified by prog-p. Note that the second condition allows the

method to be non-terminating even if it is eventually always enabled under weakly fair scheduling.

As an example, the Treiber stack with a partial pop in Fig. 8 demonstrates one such scenario. The

pop method is blocked when the stack is empty. It is linearizable with respect to the following

specification

await(S , nil){tmp := head(S); S := tail(S); }; return tmp; (6.1)

where S is the abstraction of the stack and tmp is a thread-local temporary variable.

In the following execution context (6.2),

pop(); || while(true){ push(0); } (6.2)

the call of the concrete method pop may never terminate because its cas command may always fail,

although the enabling condition at the abstract level (S , nil) is eventually always true. However,

if we replace the method implementation with the specification (6.1), pop must terminate under

weakly fair scheduling. This shows that the concrete implementation cannot contextually refine

this simple specification (6.1).

Our first attempt to address this problem is to introduce a new object variable done (initialized
to false), and let the wrapper wrwfairPDF transform await(B){C} into:

await(B ∧ ¬done){C; done := true}; done := false; (6.3)

1
Actually the conjunct B in the await condition in the wrapper could be omitted, because B must be true when cid =

enhd(listid) holds.
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initialize(){ Top := null; }

push(v){
1 local x, b, t;
2 b := false;
3 x := cons(v, null);
4 while (!b) {
5 t := Top;
6 x.next := t;
7 b := cas(&Top, t, x);
8 }
}

pop(){
9 local x, b, t, v;
10 b := false;
11 while (!b) {
12 t := Top;
13 if (t != null) {
14 v := t.data;
15 x := t.next;
16 b := cas(&Top, t, x);
17 }
18 }
19 return v;
}

initialize'(){ initialize(); done := false;}

push'(v){ push(v); DLY_NOOP} pop'(v){ tmp := pop(); DLY_NOOP; return tmp}

DLY_NOOP
def

= await(¬done){done := true}; done := false;

r0 := pop'();
print(r0);

push'(1);
push'(2);
r1 := pop'();
print(r1);
while(true}{ push'(0) };

Fig. 8. Treiber stacks with partial pops.

Therefore the resulting await command may not be executed even if B is always true, because

done can be set to true infinitely often when other threads finish the atomic block. Also note done
is reset to false at the end of each await command, therefore the condition ¬done cannot always

disable the await command, which may cause deadlock. As a result, there is always some thread

that can finish the wrapper (i.e., prog-p holds) unless the B-s of all the pending invocations are

eventually always false (i.e., well-blocked holds), thus PDF holds.

However, this is not the end of the story. If the code (6.3) fails to terminate,C must not be executed

and no effects (over the object data) are generated. However, it is possible for PDF methods to

finishC and make the effects visible to other threads but fail to terminate. As an example we define

the push’ and pop’ methods in Fig. 8 as a new implementation of the Treiber stack. They call

the push and pop methods respectively and then execute the code snippet DLY_NOOP before they
return. DLY_NOOP simply waits until done becomes false and then atomically sets it to true, and
finally resets it to false. The only purpose of DLY_NOOP is to allow the methods to be delayed by

other threads or to delay others.

Then we consider the client code shown at the bottom of Fig. 8. Under weakly fair scheduling it

is possible that the call of pop’() by the left thread never terminates but the thread on the right

prints out 1. That is, although the pop’() on the left does not terminate, it does generate effects

over the stack and the effects happen before the pop’() on the right. Such an external event trace

cannot be generated if we replace the concrete push’() and pop’() methods with the abstract

method code generated using the wrapper (6.3) defined above. Thus the contextual refinement

between the concrete code and the wrapped specification does not hold.
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Our solution is to append an await command at the end of (6.3), so that the resulting code

wrwfairPDF (await(B){C}) (see Fig. 7) may finish C but still be blocked at the end.

Wrapper for PDF under strongly fair scheduling. Much of the effort to define wrwfairPDF (await(B){C})
is to allow the resulting code to be non-terminating even if B is eventually always true. We need to

do the same to define wrsfairPDF (await(B){C}), but it is more challenging with strongly fair scheduling

because await(¬done){} cannot be blocked under strongly fair scheduling if done is infinitely often
true. Therefore we use while-loops in wrsfairPDF (await(B){C}) to allow the method to be delayed

when done is infinitely often true
2
. Note that while (done){} terminates when done is false.

Wrappers for the state abstraction function. Since the program transformations by the wrappers

introduce new object variables such as listid and done, we need to change the state abstraction

function φ accordingly, which is defined as wrχProg (φ) in Fig. 7 (χ ∈ {sfair,wfair} and Prog ∈
{PSF,PDF}).

More discussions. There could be different ways to define the wrappers to validate the Abstraction

Theorem 6.2. We do not intend to claim that our definitions are the simplest ones (and it is unclear

how to formally compare the complexity of different wrappers), but we would like to point out

that, although some of the wrappers look complex, the complexity is partly due to the effort to

have general wrappers that work for any atomic specifications in the form of await(B){C}. It is
possible to have simpler wrappers for specific objects. For instance, the lock specification Γ in (2.3)

defined in Sec. 2.2 can already serve as an abstraction for the test-and-set lock object Πtas (which

is a PDF lock) under weakly fair scheduling, i.e., Πtas ⊑
wfair
φ Γ holds.

7 PROGRAM LOGIC
We extend the program logic LiLi [Liang and Feng 2016] to verify progress properties of concurrent

objects with partial methods. LiLi is a rely-guarantee style program logic to verify linearizability

and starvation-freedom/deadlock-freedom of concurrent objects. It establishes progress-aware

contextual refinements between concrete object implementations and abstract (total) specifications.

The key ideas of LiLi to verify progress are the following:

• A thread can be blocked, relying on the actions of other threads (i.e., its environment) to

make progress. To ensure it eventually progresses, we must guarantee that the environment

actions that the thread waits for eventually occur.

• To avoid circularity in rely-guarantee reasoning, each thread specifies a set of definite actions

D, which are state transitions specified in the form of P ❀ Q . The thread guarantees that,

whenever a definite action P ❀ Q is “enabled” (i.e., the assertion P holds), the transition

must occur so that Q eventually holds, regardless of the environment behaviors.

• A blocked thread must wait for a set of definite actions of other threads, and the size of the

set must be decreasing (so that the thread is eventually unblocked).

• A thread may delay the progress of others, i.e., to make other threads to execute more steps

than they need when executed in isolation. To ensure deadlock-freedom, LiLi disallows a

thread to be delayed infinitely often without whole system progress. This is achieved by

using tokens as resources and each delaying action must consume a token.

These ideas to reason about blocking and delay are general enough for verifying objects with partial

methods, but we have to first generalize LiLi in the following two aspects:

2
Actually the conjunct ¬done in the await condition in the wrapper could be removed, because the loop while (done) { }
before the await block can already produce the non-terminating behaviors when other threads finish the method infinitely

often (i.e., done is infinitely often true). Here we keep the conjunct ¬done to make the wrapper more intuitive.
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(RelAssn) P ,Q , J ::= B | emp | E 7→ E | E Z⇒ E | TpU | P ∗Q | P ∧Q | P ∨Q | . . .
(FullAssn) p,q ::= P | arem(C ) | ♦(E) | �(Ek , . . . ,E1) | p ∗ q | p ∧ q | . . .
(RelAct) R,G ::= P nk Q | [P] | ⌊G⌋0 | D | G ∧G | G ∨G | . . .
(DAct) D ::= P ❀ Q | ∀x .D | D ∧ D

S :: = (σ ,Σ) u ::= (nk , . . . ,n1) w ∈ Nat

Enabled(P ❀ Q )
def

= P

Enabled(∀x .D)
def

= ∃x . Enabled(D)

Enabled(D1 ∧ D2)
def

= Enabled(D1) ∨ Enabled(D2)

⟨D⟩
def

= D ∧ (Enabled(D) n true)

D ′ 6 D iff (Enabled(D ′) ⇒ Enabled(D))
∧ (D ⇒ D ′)

Fig. 9. Assertions and models.

• LiLi does not have await commands. There while-loops are the only commands that affect

progress. Now we have to reason about await in object code, which may affect progress as

well. It is interesting to see that await can be reasoned about similarly as while-loops.
• We also have await(B){C} as partial specifications. Since we want termination-preserving

refinement, we do not have to guarantee progress of the concrete object methods when the

partial specification is disabled.

As an extension of LiLi, our logic borrows LiLi’s key ideas and most of the logic rules. Due to

the space limit, the full details of the logic are given in Appendix B. Below we only show the major

extensions.

7.1 Assertions
The assertions, shown in Fig. 9, are the same as those in LiLi. P and Q are assertions over relational

states S, which are pairs of concrete and abstract object states (see Fig. 9). We use relational

assertions because our logic establishes refinement between the concrete object implementation

and the abstract specification. As in separation logic, we use E 7→ E and E Z⇒ E to specify memory

cells at the concrete and abstract level respectively. emp specifies empty states, and the separating

conjunction P ∗Q specifies two disjoint parts ofS, which satisfy P and Q respectively.

The full assertions p and q specify triples in the form of (S, (u,w ),C ). In addition to the relational

state S, the assertions also describe the numbers (u,w ) of available tokens, and the high-level

(abstract) method code C that remains to be refined by the low-level (concrete) code. The assertion

arem(C ) specifies such high-level code in the triple.

Tokens and multi-level delaying actions. As explained above, LiLi uses tokens as resources to

prevent infinitely many execution steps and infinitely many delaying actions. It requires that each

round of awhile-loop consumes a ♦-token, and each delaying action consumes a �-token. LiLi also
stratify delaying actions into multiple levels. The delay caused by high-level actions may lead to

executions of more low-level ones (and non-delaying actions), but not vice versa. Therefore we use

w to represent the number of ♦-tokens, and use the vectoru for the numbers of the k-level �-tokens,
as defined in Fig. 9. They are described by the assertions ♦(E) and �(Ek , . . . ,E1) respectively.
Rely/guarantee conditions and definite actions. The rely/guarantee conditions R and G specify

stratified transitions between relational states, i.e., they are assertions over (S,S′,k ), where k is

the level of stratified delaying actions. P nk Q specifies a level-k delaying transition from P to Q .
The subscript k can be omitted when k = 0. [P] specifies identity transitions with the initial states

satisfying P . ⌊G⌋0 can be satisfied only by level-0 transitions in G. Definite actions D is a special

form of rely/guarantee condition. P ❀ Q specifies a transition where the final state satisfies Q if

the initial state satisfies P .
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As in LiLi, all assertions are implicitly parameterized with a thread ID t.

7.2 Logic Rules
Figure 10 shows the key logic rules. As the top rule of the logic, the obj rule says that, to verify

Π satisfies its specification Γ with the object invariant P , one needs to specify the rely/guarantee

conditions R andG, and the definite actions D, and then prove that each individual object method

implementation refines its specification. Here Γ must be an atomic partial specification.

For each method, we take the object invariant P and the annotated preconditions P and P ′ (in Π
and Γ) as preconditions. We also assign �-tokens in the precondition (�(Ek , . . . ,E1)) to constrain the

number of delaying actions executed in the method. arem(C ′) says that the high-level code which
remains to be refined at this point is C ′. At the end we need to re-establish the object invariant P ,
and show that there is no more high-level code that needs to be refined (i.e., arem(skip)), which
means the method body indeed refines the specification C ′.

The object invariant P should also ensure that the annotated pre-conditions P and P ′ are either
both true or both false. That is, whenever P holds, it is either safe to call the methods at both the

concrete and abstract levels, or unsafe to do so at both levels. The other side conditions in the rule

are the same as those in LiLi and irrelevant to our extensions, so we omit the explanations here.

The whl rule. The rule for while-loops is almost the same as the whl rule in LiLi, with the

changes highlighted in gray boxes. We verify the loop body with a precondition p ′, which needs to

be derived from the loop invariant p and the loop condition B. In two cases we must ensure that

there are no infinite loops:

• the definite action D is enabled (see Fig. 9 for the definition of Enabled(D)). Then the loop

must terminate to guarantee that the definite action D definitely occurs.

• the current thread is not blocked. Here we need to find a conditionQ that ensures the current

thread can make progress without waiting for actions of other threads.

The second premise of the rule says, in either of the two cases above we must consume a ♦-token
for each round of the loop, as p ′ has one less token than p ∧ B.

On the other hand, if the current thread is blocked (Q does not hold) and it is not in the middle

of a definite action, the loop can run an indefinite number of rounds to wait for the environment

actions. It does not have to consume tokens. However, we must ensure the thread cannot be blocked

forever, i.e.,Q cannot be always false. This is achieved by the definite-progress condition introduced

in LiLi. We show a generalized definition in Def. 7.1, with the changes highlighted in gray boxes.

Definition 7.1 (Definite Progress). S |= (R,G : D
f
−→ (Q ,Bh )) iff the following hold for any t:

(1) eitherS |= Qt, orS |= ¬Bh , or there exists t′ such that t′ , t andS |= Enabled(Dt′ );

(2) for any t′ , t andS′, if (S,S′,0) |= Rt ∧ (⟨Dt′⟩ ∨((¬Bh ) n Bh )) , then ft (S
′) < ft (S);

(3) for anyS′, if (S,S′,0) |= Rt ∨Gt, then ft (S
′) ≤ ft (S).

Here f is a function that maps the relational states S to some metrics over which there is a

well-founded order <.

The definite progress condition (R,G : D
f
−→ (Q ,Bh )) tries to ensure Q is eventually always true,

unless Bh is eventually always false. It requires the following conditions to hold:

(1) Either Q holds, which means that the low-level code is no longer blocked; or the high-level

specification await(Bh ){C ′} is disabled, so that the low-level code does not have to progress

to refine the high-level code; or one of the definite actions in D that the current thread t
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for all f ∈ dom(Π) : Π( f ) = (P ,x ,C ) Γ( f ) = (P ′,y,C ′) P ⇒ (P ∧ P ′) ∨ (¬P ∧ ¬P ′)
D,R,G ⊢ {P ∧ (P ∧ P ′) ∧ (x = y) ∧ arem(C ′) ∧ �(Ek , . . . ,E1)}C {P ∧ arem(skip)}

∀t, t′. t , t′ =⇒ Gt ⇒ Rt′ wffAct(R,D) P ⇒ ¬Enabled(D)

D,R,G ⊢ {P }Π : Γ
(obj)

p∧B ⇒ p′ p∧B∧ (Enabled(D)∨Q ) ⇒ p′∗ (♦∧emp) D,R,G ⊢ {p′}C{p}

p ∧ B ⇒ J ∧ arem(await(B′){C ′}) Sta(J ,R ∨G ) J ⇒ (R,G : D ′
f
−−→ (Q ,B′))

D ′ 6 D wffAct(R,D ′)

D,R,G ⊢ {p}while (B){C}{p ∧ ¬B}
(whl)

p ∧ Enabled(D) ⇒ B D, Id,G ⊢ {p ∧ B}⟨C⟩{q} Sta({p,q},R)

D ′ 6 D wffAct(R,D ′) p ⇒ ∃B′,C ′. arem(await(B′){C ′}) ∧ (R : D ′◦
f
−→ (B,B′))

D,R,G ⊢wfair {p}await(B){C}{q}
(await-w)

p ∧ Enabled(D) ⇒ B D, Id,G ⊢ {p ∧ B}⟨C⟩{q} Sta({p,q},R)

D ′ 6 D wffAct(R,D ′) p ⇒ ∃B′,C ′. arem(await(B′){C ′}) ∧ (R : D ′•
f
−→ (B,B′))

D,R,G ⊢sfair {p}await(B){C}{q}
(await-s)

Fig. 10. The key extensions of inference rules.

waits for is enabled in some thread t′. Here D can be viewed as a set of n definite actions in

the form of D1 ∧ . . . ∧ Dn parameterized with thread IDs.

(2) There is a well-founded metric f that becomes strictly smaller whenever (a) an environment

thread t′ executes a definite action in D, or (b) an environment action has turned the high-

level command from disabled to enabled. Case (a) requires that the number of definite actions

waited by the current thread must be strictly decreasing. Therefore eventually there are no

enabled definite actions. By condition (1) we know eventually eitherQ or ¬Bh is true. Case (b)

further requires that the high-level command cannot be infinitely often disabled and then

enabled during the loop. Therefore either Bh is eventually always true or it is eventually

always false. In the former case we know Q must be eventually always true by the above

condition (1). In the latter the loop does not have to terminate because the execution is

well-blocked (see Fig. 6).

(3) The value of f over program states cannot be increased by any level-0 actions (i.e., non-

delaying actions).

Note that the last two conditions do not prevent delaying actions (level-k actions where k > 0) from

increasing the value of f , but such an increase can only occur a finite number of times because each

delaying action consumes a �-token. The effects of delaying actions are shown in the atom rule,

which is the same as in LiLi. Since the way delaying action is handled is orthogonal to our extension

for partial methods, we omit the rule here.

To ensure the definite progress condition always holds, we need to find an invariant J which is

preserved by any program step (by the current thread or by the environment), and require that J
implies definite progress, given the currently remaining high-level command await(B′){C ′}. Note
that to simplify the presentation we treat arem(skip) as arem(await(true){skip}) so that it can

be reasoned about in the same way.
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The whl rule also allows us to use D ′, a subset of D, to prove definite progress, which is useful

to simplify the proofs. See the definition ofD ′ 6 D in Fig. 9.D ′ also needs to satisfywffAct(R,D ′).
This premise is taken from LiLi and we do not explain it here.

Since we have highlighted the changes over thewhl rule in LiLi, we can see that thewhl rule in

LiLi is a specialization of ours when the high-level code is always in the form of await(true){C ′}.

Rules for await commands. Our logic introduces two new rules, await-w and await-s, to verify

await commands in the object implementation under weakly fair and strongly fair scheduling. We

use the subscripts of the judgment to distinguish the scheduling.

Naturally the await-w rule combines the atom rule in LiLi and the whl rule. If await(B){C} is
enabled, we can simply treat C as an atomic block ⟨C⟩ and apply the atom rule of LiLi to verify it.

In this case we do not need to consider the interference and take Id as the rely condition (where Id
is a shorthand notation for [true], which specifies arbitrary identity transitions).

Similar to the whl rule, if the definite action D is enabled, then await(B){C} must be enabled

at this point (see the first premise of the await-w rule). This is because we require that, when

enabled, the definite action D must be fulfilled regardless of environment behaviors. Therefore the

current thread cannot be blocked.

Finally, we require that, even if the command is blocked, it must be eventually enabled unless

the corresponding high-level specification is blocked too. So if we view the enabling condition B
the same as the conditionQ we use in thewhl rule, we require the same definite progress condition,

except that things are simpler here because await(B){C} finishes in one step once enabled, unlike

loops which take multiple steps to finish even if Q holds. Therefore we do not need the invariant J
used in thewhl rule, and we do not need to consider actions inG in the definite progress condition.

We can use a simpler condition (R : D ′◦
f
−→ (B,B′)) defined below, which simply instantiatesG with

Id and Q with B in (R,G : D ′
f
−→ (Q ,B′)) (see Def. 7.1).

Definition 7.2 (Definite Progress for Await).

• S |= (R : D◦
f
−→ (Bl ,Bh )) iffS |= (R, Id : D

f
−→ (Bl ,Bh )).

• S |= (R : D•
f
−→ (Bl ,Bh )) iff the following hold for any t:

(1) eitherS |= Bl , orS |= ¬Bh , or there exists t′ such that t′ , t andS |= Enabled(Dt′ );
(2) for any t′ , t andS′, if (S,S′,0) |= Rt ∧ (⟨Dt′⟩ ∨ ((¬Bh ) n Bh )), then ft (S

′) < ft (S);

(3) for anyS′, if (S,S′,0) |= Rt ∧((¬Bl ) n (¬Bl )) , then ft (S
′) ≤ ft (S).

The await-s rule for strongly fair scheduling looks almost the same as the await-w rule, with a

slightly different definite progress condition (R : D ′•
f
−→ (B,B′)), which is also shown in Def. 7.2 with

the difference highlighted in the gray box. The key difference here is that the low-level enabling

condition B (represented as Bl in Def. 7.2) does not have to be stable once it becomes true. Under

strongly fair scheduling we know the await block will be executed as long as it is enabled infinitely
often. Therefore in condition (3) we only need to ensure that f does not increase if the enabling

condition Bl remains false, but we allow f to increase whenever we see Bl holds.
The whl rule, await-w rule and await-s rule are the only new command rules we introduce

to reason about partial methods and blocking primitives. All the other command rules are taken

directly from LiLi, which are omitted here.
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7.3 Soundness of the Logic
The two await rules actually give us two program logics, for strongly fair andweakly fair scheduling

respectively. To distinguish them, we use D,R,G ⊢χ {P }Π : Γ to represent the verification using

the logic for χ -scheduling (χ ∈ {sfair,wfair}), where the corresponding await rule is used.

Theorem 7.3 shows that our logic is sound in that it guarantees linearizability and partial

deadlock freedom (PDF) of concurrent objects. It also ensures partial starvation freedom (PSF) if

the rely/guarantee conditions specify only level-0 actions, as required by R ⇒ ⌊R⌋0 and G ⇒ ⌊G⌋0.
That is, none of the object actions of a thread could delay the progress of other threads. With the

specialized R and G, we can derive the progress of each single thread, which gives us PSF.

Theorem 7.3 (Soundness). If D,R,G ⊢χ {P }Π : Γ and φ ⇒ P , then

(1) both Π ≼linφ Γ and PDFχφ,Γ (Π) hold; and

(2) if R ⇒ ⌊R⌋0 and G ⇒ ⌊G⌋0, then PSFχφ,Γ (Π) holds.

where χ ∈ {sfair,wfair}, and φ⇒P
def

= ∀σ ,Σ. (φ (σ )=Σ) =⇒ (σ ,Σ) |=P .

Proofs of the theorem are in Appendix B. We first prove the logic establishes the progress-aware

contextual refinements, and then apply the Abstraction Theorem 6.2 to ensure linearizability and

the progress properties. The proof structure is similar to the one for LiLi.

8 EXAMPLES
We have applied the program logic to verify ticket locks [Mellor-Crummey and Scott 1991], test-and-

set locks [Herlihy and Shavit 2008], bounded partial queues with two locks [Herlihy and Shavit 2008]

(where the locks are implemented using the specification (2.3)) and Treiber stacks [Treiber 1986]

with partial pop methods. Perhaps interestingly, we also use our logic to prove that, for the atomic

partial specification Γ for locks, the wrapping of Γ (as the object implementation) respects Γ itself as

the atomic specification under the designated fairness conditions, i.e.,

(
D,R,G ⊢ {P }wrχProg (Γ) : Γ

)
holds for certain D, R, G and P , and for different combinations of fairness χ and progress Prog.
This result validates our wrappers and program logic. It shows Progχφ,Γ (wr

χ
Prog (Γ)) holds, i.e., each

wrapper itself satisfies the corresponding progress property. Below we show the proofs for test-

and-set locks, ticket locks, and simple locks implemented using await which guarantee PSF under

weak fairness. The proofs of other examples are given in Appendix C.

8.1 Test-and-Set Locks
In Fig. 11, we verify PDF of the test-and-set locks using our logic with the atomic partial specifica-

tions L_ACQ' and L_REL defined in (2.3). To distinguish the variables at the two levels, below we

use capital letters (e.g., L) in the specifications and small letters (e.g., l) in the implementations.

As we explained in Sec. 3, the method L_rel and the specification L_REL have annotated pre-

conditions (l = cid) and (L = cid), respectively. That is, it is not allowed to call L_rel (or L_REL)
when the thread does not hold the lock. The annotated precondition for L_acq and L_ACQ' is true.
In Fig. 11, we define the assertion lock as the object invariant P used in the obj rule. Then the

method L_acq is verified with the precondition lock, and L_rel is verified with the precondition

lock ∧ (l = cid) which is reduced to lockedBycid, as shown in Fig. 11.

To verify L_acq, we make the following key observations. When the cas at line 3 succeeds,

L_ACQ' must be enabled and can be executed correspondingly. And at the time when the cas fails,
L_ACQ' must be disabled. The progress of L_acq relies on that the environment thread holding

the lock could eventually release the lock, i.e., turning the current thread’s L_ACQ' from disabled

to enabled. But such an action is not “definite”, since the client thread may never call the L_rel

, Vol. 1, No. 1, Article . Publication date: January 2018.



:26 Hongjin Liang and Xinyu Feng

lock
def

= ∃s . locks locks
def

= (l = L = s )

unlocked
def

= lock0

locked
def

= ∃t. lockedByt
lockedByt

def

= lockt ∧ (t , 0)

Rt
def

=
∨

t′,tGt′ Gt
def

= Acqt ∨ Relt

Acqt
def

= unlocked n1 lockedByt
Relt

def

= lockedByt n0 unlocked

D
def

= false ❀ true

J
def

= lock

Q
def

= unlocked

f (S) =

{
1 ifS |= locked
0 ifS |= Q

L_acq(){{
lock ∧ � ∧ arem(L_ACQ’)

}

1 local b := false;{
((¬b) ∧ lock ∧ � ∧ ♦ ∧ arem(L_ACQ’))

∨ (b ∧ lockedBycid ∧ arem(skip))

}
2 while (!b) {{

((unlocked ∧ �) ∨ (locked ∧ � ∧ ♦))
∧ arem(L_ACQ’)

}
3 b := cas(&l, 0, cid);
4 }{

lockedBycid ∧ arem(skip)
}

}
L_rel(){{

lockedBycid ∧ arem(L_REL)
}

5 l := 0;{
lock ∧ arem(skip)

}

}

Fig. 11. Proofs for the test-and-set lock.

method. The definite action D for this object can be defined as false ❀ true, saying that there is
no definite action that a thread needs to complete.

The action Acqt (corresponding to the successful cas at line 3) is a delaying action (defined with

level 1). When thread t succeeds in cas, termination of other threads’ L_acq can be delayed, as

allowed by PDF. The thread t has to pay a �-token, given in the precondition of L_acq.

The definite progress condition (R,G : D
f
−→ (Q , L=0)) now says that thread t is either at a state

that it itself can progress (i.e., Q holds), or blocked at the abstract level (i.e., L=0 does not hold).

The metric ft (S) decreases when an environment thread releases L, but can be reset (which means

thread t is delayed) if an environment thread successfully acquires the lock.

By the Soundness Theorem 7.3, we know the test-and-set lock object satisfies the PDF property,

and contextually refines the abstraction generated by the corresponding PDF wrappers in Fig. 7,

under strongly and weakly fair scheduling.

8.2 Ticket Locks
In Fig. 12, we prove the ticket lock object satisfies PSF. We introduce some write-only auxiliary

variables to help the verification. First, we introduce an array ticket to help specify the queue of the
threads requesting the lock. Each array cell ticket[i] records the ID of the unique thread getting

the ticket number i (see line 2). Second, we introduce a lock bit l to make the lock acquirement

and lock release explicit (see lines 4 and 5).
We then define the object invariant lock(s, tl,n1,n2). It says that the lock bits l and L are equal,

n1 and n2 are the values of owner and next respectively, and tl is the list of the threads recorded in

ticket[n1], ticket[n1 + 1], . . . , ticket[n2 − 1] (as specified by tickets(tl,n1,n2)).
The guarantee condition Gt describes the possible atomic actions of thread t. Reqt adds t at the

end of tl of the threads requesting the lock and also increments next. It corresponds to line 2 in the

code at the top of Fig. 12. Acqt sets the lock bits to t, explicitly indicating the lock acquirement (see

line 4). It is also a definite action (see the definition ofDt) since thread t must acquire the lock if its

loop at line 3 terminates. Relt increments owner to dequeue the thread t which currently holds the

lock, and resets the lock bits (see line 5). All actions are at level 0. There are no delaying actions.
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tkL_acq(){
1 local i, o;

2 <i := getAndInc(&next); ticket[i] := cid >;
3 o := owner; while (i != o) { o := owner; }

4 l := cid;
}

tkL_rel(){

5 <owner := owner+1; l := 0 >;
}

lock(s, tl,n1,n2)
def

=

(l = L = s ∧ (s = head(tl) ∨ s = 0)) ∗ ((owner = n1) ∗ (next = n2) ∧ (n1 ≤ n2)) ∗ tickets(tl,n1,n2)

Gt
def

= Reqt ∨ Acqt ∨ Relt Dt
def

= ∀tl,n1,n2. lock(0, t :: tl,n1,n2) ❀ lock(t, t :: tl,n1,n2)

Reqt
def

= ∃s, tl,n1,n2. lock(s, tl,n1,n2) n lock(s, tl++[t],n1,n2 + 1)

Acqt
def

= ∃tl,n1,n2. lock(0, t :: tl,n1,n2) n lock(t, t :: tl,n1,n2)

Relt
def

= ∃tl,n1,n2. lock(t, t :: tl,n1,n2) n lock(0, tl,n1 + 1,n2)

Jt
def

= ∃s,n1,n2, tl1, tl2. tlockedtl1,t,tl2 (s,n1,i,n2) ∧ (o ≤ n1)

Qt
def

= ∃n2, tl2. lock(0, t :: tl2,i,n2) ∧ (o ≤ i) f (S) =

{
2k + 1 ifS |= (i − owner = k ) ∗ (l = 0)
2k ifS |= (i − owner = k ) ∗ (l , 0)

Fig. 12. Proofs for the ticket lock (with auxiliary code in gray).

By applying the whl rule of our logic, we need to prove the definite progress condition J ⇒

(R, Id : D
f
−→ (Q , L=0)) for the loop at line 3. Here J , Q and f are defined at the bottom of Fig. 12.

In the definition of Jt, we use tlockedtl1,t,tl2 (s,n1,i,n2) to say that t is requesting the lock and its

ticket number is i. Here tl1 is the list of the threads which are waiting ahead of t, and tl2 is for the

threads behind t. Qt specifies the case when tl1 is empty. In this case the lock bits must be 0 and

tlocked is reduced to lock, as shown at the bottom of Fig. 12.

The metric ft (S) is determined by the number of threads ahead of t in the waiting queue and

the status of the lock bits. It decreases when an environment thread t′ does the definite action Dt′ ,

setting the lock bits to t′. It also decreases when t′ releases the lock and increments owner, turning

(L , 0) to (L = 0). Thus we can prove J ⇒ (R, Id : D
f
−→ (Q , L=0)).

By the Soundness Theorem 7.3, we know the ticket lock object satisfies the PSF property, and

contextually refines the abstraction generated by the corresponding PSF wrappers, under both

strongly and weakly fair scheduling. The detailed formal proofs are given in Appendix C.1.

8.3 Simple PSF Locks with Await Blocks
Figure 13 shows the proofs of a simple lock object implemented with an await statement which

guarantees PSF under weak fairness. The acquire method is simply wrwfairPSF (await(l=0){l:=cid}).
The release method resets the lock bit l directly. It has the annotated precondition (l = cid). We

still verify the object in our logic with the specifications L_ACQ' and L_REL defined in (2.3).

We first define the object invariant P used in the obj rule. It is defined based on lock, which
requires l to have the same value as the abstract lock L. The queue listid records the threads

currently waiting for the lock. Here diff(tb) says that the threads in tb are all different. Then

the object invariant Pt further requires that the current thread t is not recorded in listid. It is
preserved before and after t calls a method.

The object has three kinds of possible actions (see the definition ofG). Reqt appends the thread t
at the end of listid to request the lock (line 1). Acqt acquires the lock if the lock is available and
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Pt
def

= ∃s, tb. locks (tb) ∧ (t < tb) where tb ::= ϵ | (t, ‘l=0’) :: tb

locks (tb)
def

= (l = L = s ) ∗ (listid = tb) ∧ diff(tb)

unlocked(tb)
def

= lock0 (tb) lockReqt
def

= ∃s, tb. locks (tb) ∧ (t ∈ tb)

lockedt (tb)
def

= lockt (tb) ∧ (t , 0) ∧ (t < tb) lockedt
def

= ∃tb. lockedt (tb)

Gt
def

= Reqt ∨ Acqt ∨ Relt Dt
def

= ∀tb. unlocked((t, ‘l=0’) :: tb) ❀ lockedt (tb)

Reqt
def

= ∃s, tb. (locks (tb) ∧ (t < tb)) n locks (tb ++ [(t, ‘l=0’)])

Acqt
def

= ∃tb. unlocked((t, ‘l=0’) :: tb) n lockedt (tb) Relt
def

= ∃tb. lockedt (tb) n unlocked(tb)

ft (S)
def

=

{
2k + 1 if ∃s, tb, tb′. (S |= locks (tb ++ [(t, ‘l=0’)] ++ tb′) ∧ s , 0) ∧ |tb| = k
2k if ∃tb, tb′. (S |= unlocked(tb ++ [(t, ‘l=0’)] ++ tb′)) ∧ |tb| = k

acquire(){{
Pcid ∧ arem(L_ACQ’)

}

1 listid := listid ++ [(cid, 'l=0')];{
lockReqcid ∧ arem(L_ACQ’)

}

2 await (l = 0 /\ cid = enhd(listid)) {{
∃tb. unlocked((cid, ‘l=0’) :: tb) ∧ arem(L_ACQ’)

}

3 l := cid; listid := listid \ cid;{
∃tb. lockedcid (tb) ∧ arem(skip)

}

4 }{
lockedcid ∧ arem(skip)

}

}

release(){{
lockedcid ∧ arem(L_REL)

}

5 l := 0;{
Pcid ∧ arem(skip)

}

}

Fig. 13. Proofs for the simple PSF lock under weak fairness.

t is at the head of listid (lines 2-4). Relt releases the lock (line 5). Here Acqt is also the definite

action of thread t (see the definition of D). None of the actions are delaying actions.

To verify the await statement at lines 2-4, we apply the await-w rule in Fig. 10, and prove:

lockReq ⇒ (R : D◦
f
−→ (l = 0 ∧ cid = enhd(listid), L = 0)) . (8.1)

The metric f is defined at the top of Fig. 13. We can see that ft (S) decreases when an environment

thread t′ performs a definite action, since Dt′ will remove t′ that is waiting ahead of the thread t.
Also ft (S) decreases when t′ releases the lock, turning (L , 0) to (L = 0). Thus (8.1) holds.

By the Soundness Theorem 7.3, we know this simple lock satisfies PSF under weak fairness.

9 RELATEDWORK AND CONCLUSION
There has been much work on the relationships between linearizability, progress properties and

contextual refinement (e.g., [Filipović et al. 2009; Gotsman and Yang 2011, 2012; Liang et al. 2013]),

and on verifying progress properties or progress-aware refinement (e.g., [Boström and Müller 2015;

da Rocha Pinto et al. 2016; Gotsman et al. 2009; Hoffmann et al. 2013; Jacobs et al. 2015; Tassarotti

et al. 2017]). But none of them studies objects with partial methods as we do. On the other hand, our

ideas might be general enough to be integrated with these verification methods to support blocking

primitives and partial methods. For instance, Tassarotti et al. [2017] propose a higher-order logic

based on Iris [Jung et al. 2015] for fair refinements. Our wrappers and reasoning method may be

applied there to support higher-order refinement reasoning with blocking primitives. The logic

by Boström and Müller [2015] ensures that no thread will be blocked forever. It supports special

built-in blocking primitives for locking, message passing and thread join. Their obligation-based
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reasoning strategies may be applied to await blocks too, to verify that the client threads of await
will not be permanently blocked.

In our previousworkwe propose the program logic LiLi [Liang and Feng 2016] to verify starvation-

free and deadlock-free objects. This work is inspired by several ideas from LiLi:

• The soundness of LiLi ensures a progress-aware contextual refinement, which gives starvation-

freedom or deadlock-freedom, if fed with different abstractions generated by specific code

wrappers. Here we take a similar approach, and define new wrappers to generate abstractions

for PSF and PDF objects.

• LiLi sorts progress properties in two dimensions called blocking and delay, and distinguish

starvation-freedom and deadlock-freedom by whether delay is permitted. Here the difference

between our PSF and PDF also lies in the delay dimension.

• The program logic proposed in this paper is a generalization of LiLi. Both logics use tokens

to support delay, and use similar definite progress conditions to support blocking.

However, there are two main problems with LiLi, which are addressed in this paper:

• LiLi does not provide abstractions for objects with partial methods. When using LiLi to verify

lock-based algorithms (such as the counters shown in Fig. 1(b) and (d) in this paper), one

has to inline the implementations of locks, losing the modularity of verification. Here we

define progress-aware abstractions for objects with partial methods, allowing us to verify

their clients in a modular way.

• The inference rules of LiLi do not apply to objects with partial methods, such as the objects

in Sec. 8 in this paper. We have explained the reasons and our solutions in Sec. 7.

Schellhorn et al. [2016] propose a proof method for verifying starvation-freedom. Their approach

is based on a special predicate which describes the waiting-for relations among the threads. However,

their work has similar problems as LiLi, and cannot apply to the examples considered in this paper.

Gu et al. [2016] verify progress of the ticket lock implementation as part of their verified kernel.

Their specification of the lock relies on the behaviors of clients. It requires that the client owning a

lock must eventually release it. Then they prove that the acquire method always terminates with

the cooperative clients. It is unclear how the approach can be applied for general objects with

partial methods.

Conclusions and more discussions. We have studied the progress of objects with partial methods

in three aspects. First, we define new progress properties, partial starvation-freedom (PSF) and

partial deadlock-freedom (PDF). Second, we design wrappers to generate abstractions for PSF and

PDF objects under strongly or weakly fair scheduling. Third, we develop a program logic to verify

PSF and PDF.

Although our program logic verifies both linearizability and progress properties, it is focused

more on the latter. Existing work [Khyzha et al. 2017; Liang and Feng 2013; Turon et al. 2013] has

shown that linearizability itself can be challenging to verify, and special mechanisms are needed for

very fine-grained objects with non-fixed linearization points (LPs). Our logic cannot verify these

objects, but our conjecture is that the mechanisms handling non-fixed LPs (as in [Liang and Feng

2013]) are orthogonal to our progress reasoning, and they can be integrated into our logic if needed.

The logic follows LiLi’s ideas of definite actions and stratified tokens to reason about progress.

They can be viewed as special strategies implementing the general principle for termination

reasoning, that is to find a well-founded metric that keeps decreasing during the program execution.

These ideas and rules give a concrete guide to users on how to construct the metric and the proofs.

Although we have tried to make them as general as possible, and they have been shown applicable

to many non-trivial algorithms (see [Liang and Feng 2016] and Appendix C), they may not be
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complete and it would be unsurprising if there are examples that they cannot handle. As future

work, we would like to verify more examples to explore the scope of the applicability.

The specifications of linearizable objects must be atomic, but sometimes we may want to give

non-atomic specifications to object methods. We can apply our wrappers to every occurrence of the

await blocks in the non-atomic specifications to establish progress-aware refinements. We suspect

that our logic can still be used to verify such refinements (as in [Liang et al. 2014]). Another potential

limitation may be due to the use of the pure Boolean expression B in await(B){C}, which may limit

the expressiveness of the specifications. However, our technical development does not rely on this

setting. Everything may still hold if we replace B with the more expressive state assertions.

Other interesting future work includes automating the verification process. One of the key

problems is to infer the definite actions and prove the definite progress conditions. There have

been efforts to synthesize the ranking functions for loop termination (see [Cook et al. 2011] for an

overview), which may provide insights for automating the definite progress proofs. In addition

we might be able to follow the ideas in automated rely-guarantee reasoning (e.g., [Calcagno et al.

2007]) to automate the verification in our rely-guarantee logic.
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A PROOFS OF ABSTRACTION THEOREM
In this section, we prove Theorem 6.2. We first define compositional operational semantics that can

generate separate traces for objects and clients. Then, the definitions of contextual refinement, PSF,
PDF and fairness conditions can all be reduced to equivalent ones based on object traces only. We

also build simulations based on the object-local semantics.

A.1 Auxiliary Semantics
Before showing the compositional semantics, we first define the type of local traces T̂ .

(LEvent) ι̂ ::= (e,∆)

(LTrace) T̂ ::= ϵ | ι̂ ::T̂ (co-inductive)

For any “global” trace T , we use get_clt(T ) to get a client-local trace, which contains only client

events (i.e., (t,out,n), (t,clt), (t,term) and (t,clt,abort)) and history events (i.e., (t, f ,n), (t,ret,n)
and (t,obj,abort)), with the accompanied ∆c for each event. Similarly get_obj(T ) gives an object-

local trace, which contains only object events (i.e., (t,obj) and (t,obj,abort)) and history events,

with the accompanied ∆o for each event.

Client-local semantics. We define the client-local language as follows.

(CLStmt) D ::= Ĉ | incall(x ) | incall(x );C | fstuck

(CLProg) Ĉ ::= D ∥ . . . ∥D
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(Di ,σc )
e
◦−→ i (D

′
i ,σ
′
c ) ∆c = btids-c(D1 ∥ . . .D

′
i . . . ∥Dn ,σ

′
c )

(D1 ∥ . . .Di . . . ∥Dn ,σc ) ◦p
(e,∆c )
−−−−−→ (D1 ∥ . . .D

′
i . . . ∥Dn ,σ

′
c )

Di = skip D ′i = end e = (i,term) ∆c = btids-c(D1 ∥ . . .Di . . . ∥Dn ,σc )

(D1 ∥ . . .Di . . . ∥Dn ,σc ) ◦p
(e,∆c )
−−−−−→ (D1 ∥ . . .D

′
i . . . ∥Dn ,σc )

(Di ,σc )
e
◦−→ i abort

(D1 ∥ . . .Di . . . ∥Dn ,σc ) ◦p
(e,∅)
−−−−→ abort

(a) program transitions

JEKsc = n x ∈ dom(sc )

(E[x := f (E) ], (sc ,hc )) ◦
(t,f ,n)
−−−−−−→ t (E[ incall(x ) ], (sc ,hc ))

JEKsc undefined or x < dom(sc )

(E[x := f (E) ], (sc ,hc )) ◦
(t,clt,abort)
−−−−−−−−−−→ t abort

(E[ incall(x ) ],σc ) ◦
(t,obj)
−−−−−→ t (E[ incall(x ) ],σc ) (E[ incall(x ) ],σc ) ◦

(t,obj)
−−−−−→ t (fstuck,σc )

(E[ incall(x ) ],σc ) ◦
(t,obj,abort)
−−−−−−−−−−−→ t abort

n ∈ Val s ′c = sc {x ❀ n}

(E[ incall(x ) ], (sc ,hc )) ◦
(t,ret,n)
−−−−−−−→ t (E[ skip ], (s

′
c ,hc ))

JEKsc = n

(E[print(E) ], (sc ,hc )) ◦
(t,out,n)
−−−−−−−→ t (E[ skip ], (sc ,hc ))

(C,σc ) −_ t (C
′,σ ′c )

(C,σc ) ◦
(t,clt)
−−−−−→ t (C

′,σ ′c )

(b) thread transitions

btids-c(D1 ∥ . . . ∥Dn ,σc )
def

= {t | ¬(σc |= en(Dt))}

Fig. 14. Client-local operational semantics rules.

A client-local thread D extends Ĉ with two new constructs incall and fstuck. The client-local
operational semantics rules are shown in Fig. 14. When the client thread calls an object method,

it goes to incall. incall nondeterministically returns, or loops, or leads to an object abort or
fstuck. fstuck indicates that the method call blocks. It does not have next steps in the client-local

semantics.

Then we define the client-local trace set T c
ω JĈ,σcK as follows.

T c
ω JĈ,σc K

def

= {((spawn, |Ĉ |),btids-c(Ĉ,σc )) ::get_clt(T̂ ) |

((Ĉ,σc )
T̂
◦7−→ω · ) ∨ ((Ĉ,σc )

T̂
◦7−→∗ abort)

∨∃Ĉ ′,σ ′c . ((Ĉ,σc )
T̂
◦7−→∗ (Ĉ ′,σ ′c )) ∧ (¬∃̂ι. (Ĉ ′,σ ′c )

ι̂
◦7−→ _)}

|D1 ∥ . . . ∥ Dn |
def

= n

Also, we write Ĉ |t to get the code of the thread t:

(D1 ∥ . . . ∥Dn ) |t
def

= Dt
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(Oi , (σo ,K (i )))
e
�−→ i,Π (O ′i , (σ

′
o ,κ
′)) K ′ = K {i ❀ κ ′} ∆o = btids-o(O1 ∥ . . .O

′
i . . . ∥On , (σ

′
o ,K

′))

(O1 ∥ . . .Oi . . . ∥On , (σo ,K )) �p
(e,∆o )
−−−−−→Π (O1 ∥ . . .O

′
i . . . ∥On , (σ

′
o ,K

′))

(Oi , (σo ,K (i )))
e
�−→ i,Π abort

(O1 ∥ . . .Oi . . . ∥On , (σo ,K )) �p
(e,∅)
−−−−→Π abort

(a) program transitions

(inclt, (σo ,◦)) �
(t,clt)
−−−−−→ t,Π (inclt, (σo ,◦)) (inclt, (σo ,◦)) �

(t,clt)
−−−−−→ t,Π (cstuck, (σo ,◦))

(inclt, (σo ,◦)) �
(t,clt,abort)
−−−−−−−−−−→ t,Π abort

Π( f ) = (P ,y,C ) σo ∈ P n ∈ Val κ = ({y ❀ n},_,_)

(inclt, (σo ,◦)) �
(t,f ,n)
−−−−−−→ t,Π (C, (σo ,κ))

κ = (sl ,_,_) JEKsl = n

(E[ return E ], (σo ,κ)) �
(t,ret,n)
−−−−−−−→ t,Π (inclt, (σo ,◦))

κ = (sl ,_,_) JEKsl undefined

(E[ return E ], (σo ,κ)) �
(t,obj,abort)
−−−−−−−−−−−→ t,Π abort

(C, (so ⊎ sl ,ho )) −_ t (C
′, (s ′o ⊎ s

′
l ,h
′
o )) dom(sl ) = dom(s ′l )

(C, ((so ,ho ), (sl ,_,_))) �
(t,obj)
−−−−−→ t,Π (C ′, ((s ′o ,h

′
o ), (s

′
l ,_,_)))

(b) thread transitions

btids-o(O1 ∥ . . . ∥On , (σo ,K ))
def

= {t | K (t) , ◦ ∧ ¬((σo ,K (t)) |= en(Ot))}

Fig. 15. Object-local operational semantics rules.

Object-local semantics. We define the object-local language as follows:

(OStmt) O ::= C | inclt | cstuck

(OProg) C̃ ::= O ∥ . . . ∥O

An object-local threadO extendsC with two new constructs inclt and cstuck. We do not need the

end flag since in object-local semantics we do not care about the termination of client threads.

The object-local operational semantics rules are shown in Fig. 15. A thread always starts ex-

ecutions from inclt. Then inclt nondeterministically calls an arbitrary method (with arbitrary

arguments), or loops, or leads to a client abort or cstuck. cstuck indicates that the thread blocks

inside the client code. It does not have next steps in the object-local semantics.

Then the object-local trace set T o
ω JΠ,σoK is defined as follows. To execute the object Π, we spawn

an arbitrary number of object-local threads. Each thread starts its executions from inclt.

T o
ω JΠ,σoK

def

= {((spawn,n),∅) ::get_obj(T̂ ) | n ∈ Nat
∧ ∃C̃,O1, . . . ,On . (C̃ = O1 ∥ . . . ∥On ) ∧ (∀i . Oi = inclt)

∧ (((C̃, (σo ,}))
T̂
�7−→ω

Π · ) ∨ ((C̃, (σo ,}))
T̂
�7−→∗Π abort)

∨∃C̃ ′,σ ′o ,K
′. ((C̃, (σo ,}))

T̂
�7−→∗Π (C̃ ′, (σ ′o ,K

′))) ∧ (¬∃̂ι. (C̃ ′, (σ ′o ,K
′))

ι̂
�7−→Π _))}
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Compositionality of the semantics. The following “Decomposition” and “Composition” Theorems

describe the compositionality of the semantics. The Decomposition Theorem A.1 says that every

trace T generated from the whole program using the semantics in Fig. 4 can be decomposed to

a client-local trace T̂c and an object-local trace T̂o . The Composition Theorem A.2 says that a

client-local trace and an object-local trace, if they are coherent, can be composed to a full trace.

The coherence between T̂c and T̂o requires that the histories projected from them are the same.

Besides, when both T̂c and T̂o are finite, we also require fin_coherent(T̂c ,T̂o ) holds. We define

fin_coherent as follows.
fin_coherent(T̂c ,T̂o ) iff
∀t. ( |T̂c | , ω) ∧ ( |T̂o | , ω) ∧ ¬abt(T̂c ) ∧ ¬abt(T̂o ) ∧ t ∈ [1..tnum(T̂c )]

=⇒ (term-c(T̂c |t) ∨ t ∈ bset(last(T̂c ))) ∧ (term-o(T̂o |t) ∨ t ∈ bset(last(T̂o )))

term-c(T̂ ) iff (evt(last(T̂ |t)) = (t,term)) ∨ is_inv(evt(last(T̂ )))

term-o(T̂ ) iff is_ret(evt(last(T̂ ))) ∨ |T̂ | = 0

Theorem A.1 (Decomposition). If T ∈ TωJlet Π in C1 ∥ . . . ∥Cn , (σc ,σo ,})K, then there exist T̂c
and T̂o such that

T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, T̂o ∈ T
o

ω JΠ,σoK, n = tnum(T̂o ),

T̂c = get_clt(T ), T̂o = get_obj(T ).

Theorem A.2 (Composition). If T̂c ∈ T
c

ω JC1 ∥ . . . ∥ Cn ,σcK, T̂o ∈ T o

ω JΠ,σoK, get_hist(T̂c ) =
get_hist(T̂o ), fin_coherent(T̂c ,T̂o ) and n = tnum(T̂o ), then there exists T such that

T ∈ TωJlet Π in C1 ∥ . . . ∥Cn , (σc ,σo ,})K, T̂c = get_clt(T ), T̂o = get_obj(T ).

Client-local and object-local fairness. We also define fairness conditions for client-local and

object-local traces.

sfair-o(T̂ ) iff abt(T̂ ) ∨ ∀t ∈ [1..tnum(T̂ )]. term-o(T̂ |t) ∨ (t ∈ bset(last(T̂ ))) ∨ e-a-dis(t,T̂ ) ∨ ( |(T̂ |t) | = ω)

wfair-o(T̂ ) iff abt(T̂ ) ∨ ∀t ∈ [1..tnum(T̂ )]. term-o(T̂ |t) ∨ (t ∈ bset(last(T̂ ))) ∨ i-o-dis(t,T̂ ) ∨ ( |(T̂ |t) | = ω)

sfair-c(T̂ ) iff abt(T̂ ) ∨ ∀t ∈ [1..tnum(T̂ )]. term-c(T̂ |t) ∨ (t ∈ bset(last(T̂ ))) ∨ e-a-dis(t,T̂ ) ∨ ( |(T̂ |t) | = ω)

wfair-c(T̂ ) iff abt(T̂ ) ∨ ∀t ∈ [1..tnum(T̂ )]. term-c(T̂ |t) ∨ (t ∈ bset(last(T̂ ))) ∨ i-o-dis(t,T̂ ) ∨ ( |(T̂ |t) | = ω)

e-a-dis(t,T̂ ) iff ∃i . ∀j ≥ i . t ∈ bset(T̂ (j ))

i-o-dis(t,T̂ ) iff ∀i . ∃j ≥ i . t ∈ bset(T̂ (j ))

Notice the difference between the definitions of e-a-dis above and e-a-disabled in Fig. 6. IfT is finite,

e-a-disabled(t,T ) may hold while e-a-dis(t,T ) must not. Thus, we could rewrite the definition of

well-blocked using e-a-dis as follows:
well-blocked(T , (Wa ,Sa )) ⇐⇒

∃Ta . Ta ∈ TωJWa ,SaK ∧ (get_hist(T ) = get_hist(Ta ))
∧ ( |Ta | = ω =⇒ (∀e . e ∈ pend_inv(Ta ) =⇒ e-a-dis(tid(e ),Ta )))

The fairness conditions for the full traces T can also be rewritten in disjunctive forms, as the

above fairness definitions for client-local and object-local traces. This is shown in the following

Lemmas A.3 and A.4.

Lemma A.3. Suppose T ∈ TωJlet Π in C1 ∥ . . . ∥Cn , (σc ,σo ,})K. Then, sfair(T ) is equivalent to
abt(T ) ∨ ∀t ∈ [1..tnum(T )]. (evt(last(T |t)) = (t,term)) ∨ ( |(T |t) | = ω) ∨ (t ∈ bset(last(T ))) ∨ e-a-dis(t,T ).

Lemma A.4. Suppose T ∈ TωJlet Π in C1 ∥ . . . ∥Cn , (σc ,σo ,})K. Then, wfair(T ) is equivalent to
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abt(T ) ∨ ∀t ∈ [1..tnum(T )]. (evt(last(T |t)) = (t,term)) ∨ ( |(T |t) | = ω) ∨ (t ∈ bset(last(T ))) ∨ i-o-dis(t,T ).

Lemmas A.5, A.6, A.7 and Lemmas A.8, A.9, A.10 show the compositionality of fairness conditions.

Finally, Lemma A.11 shows that e-a-dis for an object-local trace implies e-a-dis of the corresponding
full trace.

Lemma A.5. If T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σo ,})K, sfair(T ) and T̂c = get_clt(T ), then
sfair-c(T̂c ).

Lemma A.6. If T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σo ,})K, sfair(T ) and T̂o = get_obj(T ), then
sfair-o(T̂o ).

Lemma A.7. If T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σo ,})K, T̂c = get_clt(T ), T̂o = get_obj(T ),
sfair-c(T̂c ) and sfair-o(T̂o ), then sfair(T ).

Lemma A.8. If T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σo ,})K, wfair(T ) and T̂c = get_clt(T ), then
wfair-c(T̂o ).

Lemma A.9. If T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σo ,})K, wfair(T ) and T̂o = get_obj(T ), then
wfair-o(T̂c ).

Lemma A.10. If T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σo ,})K, T̂c = get_clt(T ), T̂o = get_obj(T ),
wfair-c(T̂c ) and wfair-o(T̂o ), then wfair(T ).

Lemma A.11. If T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σo ,})K, T̂o = get_obj(T ), |T̂o | = ω and

e-a-dis(t,T̂o ), then e-a-dis(t,T ).

A.2 Proofs of Theorem 6.2-1 (PSF under strong fairness)
By Theorem 4.4, the goal is reduced to the following:

Π ⊑finφ Γ ∧ PSFsfairφ,Γ (Π) ⇐⇒ Π ⊑sfairφ Γ .

We first define the object version of partial starvation-freedom.

Definition A.12. PSF-Oχ
φ,Γ (Π), iff

∀n,σ ,Σ,T . T̂ ∈ T o
ω JΠ,σK ∧ (φ (σ ) = Σ) ∧ χ -o(T̂ )

=⇒ abt(T̂ ) ∨ prog-t(T̂ ) ∨ well-blocked-o(T̂ , (Γ,Σ)) .

Here well-blocked-o is defined as follows:

well-blocked-o(T̂ , (Γ,Σ)) iff

∃T̂a . T̂a ∈ T
o
ω JΓ,ΣK ∧ (get_hist(T̂ ) = get_hist(T̂a )) ∧ (tnum(T̂ ) = tnum(T̂a ))

∧ ( |T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a )))
∧ ( |T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))))

We only need to prove the following lemmas.

Lemma A.13. Π ⊑
χ
φ Γ =⇒ Π ⊑finφ Γ .

Lemma A.14. Π ⊑sfairφ Γ =⇒ PSF-Osfair
φ,Γ (Π) .

Lemma A.15. PSF-Oχ
φ,Γ (Π) ⇐⇒ PSFχφ,Γ (Π) .

Lemma A.16. Π ⊑finφ Γ ∧ PSF-Osfair
φ,Γ (Π) =⇒ Π ⊑sfairφ Γ .
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Proof of Lemma A.13. For any n, C1, . . . , Cn , σc , σ and Σ such that φ (σ ) = Σ, for any E, if

E ∈ OJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K,
we know there exists T1 such that E = get_obsv(T1) and

T1 ∈ T J(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K .
We can construct T ′

1
and T ′′

1
such that

T ′′
1
= T1 ::T

′
1
, χ (T ′′

1
) and T ′′

1
∈ TωJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K.

Since Π ⊑
χ
φ Γ, we know there exists T ′′

2
such that

T ′′
2
∈ TωJ(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K , χ (T ′′

2
) and

get_obsv(T ′′
2
) = get_obsv(T ′′

1
) = E ::get_obsv(T ′

1
) .

Thus there exists T2 such that

T2 ∈ T J(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K and get_obsv(T2) = E.
Thus E ∈ OJ(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K and we are done. �

Proof of Lemma A.14. For any n, σ , Σ and T̂o such that T̂o ∈ T
o

ω JΠ,σK, sfair-o(T̂o ) and φ (σ ) = Σ,
suppose

¬abt(T̂o ) and ¬prog-t(T̂o ) and ¬well-blocked-o(T̂o , (Γ,Σ)) .
Thus we know

( |T̂o | , ω) =⇒ ∀t ∈ [1..tnum(T̂o )]. term-o(T̂o |t) ∨ t ∈ bset(last(T̂o )) .

Since T̂o ∈ T
o

ω JΠ,σK, we know there exist n and T̂c such that

T̂c ∈ T
c

ω JMGCp1n ,σMGC(n)K, get_hist(T̂c ) = get_hist(T̂o ), n = tnum(T̂o ),

¬abt(T̂c ), sfair-c(T̂c ), fin_coherent(T̂c ,T̂o ) .
Here

MGTp1t
def

= while ( rand() > 0 ){
xt := rand(); yt := rand(m); print(0,yt,xt);
zt := fyt (xt); print(1,zt);
}

print(2);

MGCp1n
def

=
f
t∈[1..n]MGTp1t

σMGC(n)
def

= {xt ❀ _,yt ❀ _,zt ❀ _ | 1 ≤ t ≤ n}

By Composition Theorem A.2, we know there exists T such that

T ∈ TωJlet Π inMGCp1n , (σMGC(n) ,σ ,})K, T̂c = get_clt(T ), T̂o = get_obj(T ).

Since sfair-o(T̂o ) and sfair-c(T̂c ), by Lemma A.7, we know

sfair(T ).
Since φ (σ ) = Σ and Π ⊑sfairφ Γ, we know:

OsfairJ(let Π in MGCp1n ), (σMGC(n) ,σ )K ⊆ OsfairJ(let Γ in MGCp1n ), (σMGC(n) ,Σ)K .
Thus there exists T ′ such that

T ′ ∈ TωJ(let Γ in MGCp1n ), (σMGC(n) ,Σ,})K , sfair(T ′) and get_obsv(T ′) = get_obsv(T ) .
Also, by the definition of MGCp1n and the operational semantics, we can construct Ta and an

execution such that

Ta ∈ TωJ(let Γ inMGCp1n ), (σMGC(n) ,Σ,})K,
sfair(Ta ), get_obsv(Ta ) = get_obsv(T ′), get_hist(T ) = get_hist(Ta ).

By Decomposition Theorem A.1, we know there exists T̂a such that
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T̂a ∈ T
o

ω JΓ,ΣK, T̂a = get_obj(Ta ), n = tnum(T̂a ).

Since sfair(Ta ), by Lemma A.6, we know

sfair-o(T̂a ).

Since T̂a = get_obj(Ta ), T̂o = get_obj(T ) and get_hist(T ) = get_hist(Ta ), we know

get_hist(T̂o ) = get_hist(T̂a ) .

Since n = tnum(T̂o ) and n = tnum(T̂a ), we know

tnum(T̂o ) = tnum(T̂a ) .

• Suppose |T̂a | , ω. For any e ∈ pend_inv(T̂a ) and t0 = tid(e ), by the operational semantics

and the code of Γ, since sfair-o(T̂a ), we know

t0 ∈ bset(last(T̂a )) .

Thus we know well-blocked-o(T̂o , (Γ,Σ)) holds, which contradicts our assumption.

• Suppose |T̂a | = ω. For any e ∈ pend_inv(T̂a ) and t0 = tid(e ), by the operational semantics

and the code of Γ, we know |(T̂a |t0 ) | , ω. Since sfair-o(T̂a ), we know

e-a-dis(t0,T̂a ) .

Thus we know well-blocked-o(T̂o , (Γ,Σ)) holds, which contradicts our assumption.

Thus we are done. �

Proof of Lemma A.15. The “=⇒” direction. For any n, C1, . . . , Cn , σc , σ , Σ and T , suppose T ∈
TωJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K, φ (σ ) = Σ and χ (T ). If abt(T ), then we are done. Otherwise,

¬abt(T ) holds. By Decomposition Theorem A.1, we know there exist T̂c and T̂o such that

T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, T̂o ∈ T
o

ω JΠ,σK,
get_hist(T̂c ) = get_hist(T̂o ), T̂c = get_clt(T ), T̂o = get_obj(T ), n = tnum(T̂o ).

Since χ (T ), by Lemmas A.5 and A.6 (or Lemmas A.8 and A.9), we know

χ -c(T̂c ) and χ -o(T̂o ).

Since ¬abt(T ) holds, we know ¬abt(T̂o ) and ¬abt(T̂c ) hold. Thus we know
( |T̂c | , ω) =⇒ ∀t ∈ [1..tnum(T̂c )]. term-c(T̂c |t) ∨ t ∈ bset(last(T̂c )) .

Since PSF-Oχ
φ,Γ (Π), we know prog-t(T̂o ) ∨ well-blocked-o(T̂o , (Γ,Σ)).

• prog-t(T̂o ) holds. By the following Lemma A.17, we know prog-t(T ).
• well-blocked-o(T̂o , (Γ,Σ)) holds. Thus there exists T̂a such that T̂a ∈ T

o
ω JΓ,ΣK, get_hist(T̂o ) =

get_hist(T̂a ), tnum(T̂o ) = tnum(T̂a ), |T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a ))
and |T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))). Thus we know

( |T̂a | , ω) =⇒ ∀t ∈ [1..tnum(T̂a )]. term-o(T̂a |t) ∨ t ∈ bset(last(T̂a )) .

Thus fin_coherent(T̂c ,T̂a ) holds. Since get_hist(T̂c ) = get_hist(T̂o ) and n = tnum(T̂o ), we
know

get_hist(T̂c ) = get_hist(T̂a ) and n = tnum(T̂a ).

Since T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, by Composition Theorem A.2, we know there exists T ′ such
that

T ′ ∈ TωJlet Γ in C1 ∥ . . . ∥Cn , (σc ,Σ,})K, T̂c = get_clt(T ′), T̂a = get_obj(T ′).

Since T̂o = get_obj(T ), we know
get_hist(T ) = get_hist(T ′).

Suppose |T ′ | = ω. For any e such that e ∈ pend_inv(T ′), we know e ∈ pend_inv(T̂a ).
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• Suppose |T̂a | = ω. Thus e-a-dis(tid(e ),T̂a )) holds. Then, by Lemma A.11, we know

e-a-dis(tid(e ),T ′)) holds.
• Suppose |T̂a | , ω. Thus we know

tid(e ) ∈ bset(last(T̂a )).
Since |T ′ | = ω and T̂a = get_obj(T ′), we know there exists i such that

T̂a = get_obj(T ′(1..i )), tid(e ) ∈ bset(T ′(i )).
By the operational semantics, we know

∀j ≥ i . tid(e ) ∈ bset(T ′(j )).
Thus e-a-dis(tid(e ),T ′)).

Thus well-blocked(T , (let Γ in C1 ∥ . . . ∥Cn , (σc ,Σ,}))) holds.

Thus we have proved the “=⇒” direction.

The “⇐=” direction. By unfolding the definitions. �

Lemma A.17. For any T and T̂o , if T̂o = get_obj(T ) and prog-t(T̂o ), then prog-t(T ).

Proof. By unfolding the definitions. �

Proof of Lemma A.16. The key is to show the following (A.1).

For any n, C1, . . . , Cn , σc , σ , Σ, T and Ta such that φ (σ ) = Σ,
if T ∈ TωJlet Π in C1 ∥ . . . ∥Cn , (σc ,σ ,})K, ¬abt(T ) and sfair(T ), then there exists Ta
such that Ta ∈ TωJlet Γ in C1 ∥ . . . ∥Cn , (σc ,Σ,})K, get_obsv(T ) = get_obsv(Ta ) and
sfair(Ta ).

(A.1)

Since T ∈ TωJlet Π in C1 ∥ . . . ∥Cn , (σc ,σ ,})K and ¬abt(T ), by Decomposition Theorem A.1, we

know there exist T̂c and T̂o such that

T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, T̂o ∈ T
o

ω JΠ,σK,
get_hist(T̂c ) = get_hist(T̂o ), T̂c = get_clt(T ), T̂o = get_obj(T ), n = tnum(T̂o ).

Since sfair(T ), by Lemmas A.5 and A.6, we know

sfair-c(T̂c ) and sfair-o(T̂o ).

Thus we know

( |T̂c | , ω) =⇒ ∀t ∈ [1..tnum(T̂c )]. term-c(T̂c |t) ∨ t ∈ bset(last(T̂c )) .

Since PSF-Osfair
φ,Γ (Π), we know prog-t(T̂o ) ∨ well-blocked-o(T̂o , (Γ,Σ)) holds.

• prog-t(T̂o ) holds. Since Π ⊑finφ Γ, we know

H JΠ,σK ⊆ H JΓ,ΣK.
By Lemma A.18, we know there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂o ), tnum(T̂a ) = tnum(T̂o ).

Thus get_hist(T̂c ) = get_hist(T̂a ), n = tnum(T̂a ) and ¬abt(T̂a ). Also, by Lemma A.19, we

know

prog-t(T̂a ).

Thus

( |T̂a | , ω) =⇒ ∀t ∈ [1..tnum(T̂a )]. term-o(T̂a |t) .

Thus fin_coherent(T̂c ,T̂a ) holds. By Composition Theorem A.2, we know there existsTa such
that

Ta ∈ TωJlet Γ in C1 ∥ . . . ∥Cn , (σc ,Σ,})K, T̂c = get_clt(Ta ), T̂a = get_obj(Ta ).
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Thus

get_obsv(T ) = get_obsv(Ta ).

By Lemma A.20, we know

sfair-o(T̂a ).

Then, by Lemma A.7, we know

sfair(Ta ).

• well-blocked-o(T̂o , (Γ,Σ)) holds. Thus there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂ ) = get_hist(T̂a ), tnum(T̂ ) = tnum(T̂a ),

|T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a )),
|T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))).

Thus we know

( |T̂a | , ω) =⇒ ∀t ∈ [1..tnum(T̂a )]. term-o(T̂a |t) ∨ t ∈ bset(last(T̂a )) .

Thus fin_coherent(T̂c ,T̂a ) holds. Also, get_hist(T̂c ) = get_hist(T̂a ), n = tnum(T̂a ) and

¬abt(T̂a ). By Composition Theorem A.2, we know there exists Ta such that

Ta ∈ TωJlet Γ in C1 ∥ . . . ∥Cn , (σc ,Σ,})K, T̂c = get_clt(Ta ), T̂a = get_obj(Ta ).

Thus

get_obsv(T ) = get_obsv(Ta ).

By Lemma A.21, we know

sfair-o(T̂a ).

Then, by Lemma A.7, we know

sfair(Ta ).

Thus we are done. �

Lemma A.18. IfH JΠ,σK ⊆ H JΓ,ΣK, T̂o ∈ T o

ω JΠ,σK and prog-t(T̂o ), then there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂o ) and tnum(T̂a ) = tnum(T̂o ).

Proof. By constructing simulations. �

Lemma A.19. If get_hist(T̂1) = get_hist(T̂2) and prog-t(T̂1), then prog-t(T̂2).

Proof. By unfolding the definitions. �

Lemma A.20. If prog-t(T̂ ) and T̂ ∈ T o

ω JΠ,σK, then sfair-o(T̂ ).

Proof. For any t ∈ [1..tnum(T̂ )], we know either |(T̂ |t) | = ω or |(T̂ |t) | , ω. If |(T̂ |t) | = ω, we

are done. Otherwise, since T̂ ∈ T o
ω JΠ,ΣK, we know

|(T̂ |t) | = 0 ∨ is_ret(evt(last(T̂ |t))) ∨ is_inv(evt(last(T̂ |t))) ∨ evt(last(T̂ |t)) = (t,obj).

If |(T̂ |t) | = 0 ∨ is_ret(evt(last(T̂ |t))) holds, then we are done. Otherwise, we know there exists e

such that e ∈ pend_inv(T̂ |t). Thus e ∈ pend_inv(T̂ ) holds, which contradicts the premise prog-t(T̂ ).
Thus we are done. �

Lemma A.21. If |T̂ | = ω =⇒ (∀e . e ∈ pend_inv(T̂ ) =⇒ e-a-dis(tid(e ),T̂ ) ∨ ( |(T̂ |tid(e ) ) | = ω)),

|T̂ | , ω =⇒ (∀e . e ∈ pend_inv(T̂ ) =⇒ tid(e ) ∈ bset(last(T̂ ))) and T̂ ∈ T o

ω JΠ,ΣK,
then sfair-o(T̂ ).
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Proof. Suppose ¬abt(T̂ ). For any t ∈ [1..tnum(T̂ )], we know either |(T̂ |t) | = ω or |(T̂ |t) | , ω. If

|(T̂ |t) | = ω, we are done. Otherwise, since T̂ ∈ T o
ω JΠ,ΣK, we know

|(T̂ |t) | = 0 ∨ is_ret(evt(last(T̂ |t))) ∨ is_inv(evt(last(T̂ |t))) ∨ evt(last(T̂ |t)) = (t,obj).

If |(T̂ |t) | = 0 ∨ is_ret(evt(last(T̂ |t))) holds, then we are done. Otherwise, we know there exists e

such that e ∈ pend_inv(T̂ |t). Thus e-a-dis(t,T̂ ) or t ∈ bset(last(T̂ )) holds. Thus we are done. �

A.3 Proofs of Theorem 6.2-2 (PSF under weak fairness)
By Theorem 4.4, the goal is reduced to the following:

Π ⊑finφ Γ ∧ PSFwfairφ,Γ (Π) ⇐⇒ Π ⊑wfairwrPSF (φ )
wrwfairPSF (Γ) .

By Lemmas A.13 and A.15, we only need to prove the following lemmas.

Lemma A.22. wrwfairPSF (Γ) ⊑wfair
wr−1PSF (id)

Γ . Here id is the identity function, and wr−1PSF is a state mapping

that removes the variable listid from the state: ∀σ . (wr−1PSF (id)) (σ ⊎ {listid ❀ ϵ }) = σ .

Lemma A.23. Π ⊑wfairwrPSF (φ )
wrwfairPSF (Γ) =⇒ PSF-Owfair

φ,Γ (Π) .

Lemma A.24. Π ⊑finφ Γ ∧ PSF-Owfair
φ,Γ (Π) =⇒ Π ⊑wfairwrPSF (φ )

wrwfairPSF (Γ) .

Proof of Lemma A.22. For any n, C1, . . . , Cn , σc and Σ, for any E, if

E ∈ OwfairJ(let wrwfairPSF (Γ) in C1 ∥ . . . ∥Cn ), (σc ,Σ ⊎ {listid ❀ ϵ },})K,

we know there exists T2 such that

T2 ∈ TωJ(let wrwfairPSF (Γ) in C1 ∥ . . . ∥Cn ), (σc ,Σ ⊎ {listid ❀ ϵ },})K ,
wfair(T2) and get_obsv(T2) = E .

By Decomposition Theorem A.1, we know there exist T̂c and T̂2 such that

T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, T̂2 ∈ T
o

ω JwrwfairPSF (Γ),Σ ⊎ {listid ❀ ϵ }K,
get_hist(T̂c ) = get_hist(T̂2), T̂c = get_clt(T2), T̂2 = get_obj(T2), n = tnum(T̂2).

By Lemmas A.8 and A.9, we know

wfair-c(T̂c ) and wfair-o(T̂2) .

Thus we know

( |T̂c | , ω) ∧ (¬abt(T̂3)) =⇒ ∀t ∈ [1..tnum(T̂c )]. term-c(T̂c |t) ∨ t ∈ bset(last(T̂c )) .

Then we prove there exists T̂3 such that

T̂3 ∈ T
o

ω JΓ,ΣK, get_hist(T̂2) = get_hist(T̂3), wfair-o(T̂3).

The proof is done by constructing a simulation between the object-local executions of wrwfairPSF (Γ)
and Γ. We need the simulation . to satisfy the following (A.2).
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For any C̃1, Σ1, K1, C̃ , Σ, K and ι̂1, if (C̃1, (Σ1,K1)) . (C̃, (Σ,K )), then

(1) if (C̃1, (Σ1,K )) �p
ι̂1
−→

wrwfairPSF (Γ)
abort, then

there exists T̂ such that (C̃, (Σ,K )) �p
T̂
−→ ∗Γ abort and get_clt (̂ι1) = get_clt(T̂ );

(2) if (C̃1, (Σ1,K )) �p
ι̂1
−→

wrwfairPSF (Γ)
(C̃ ′

1
, (Σ′

1
,K ′)), then

there exist T̂ , C̃ ′, Σ′ and K ′ such that (C̃, (Σ,K )) �p
T̂
−→ ∗Γ (C̃

′, (Σ′,K ′)),

get_clt (̂ι1) = get_clt(T̂ ) and (C̃ ′
1
, (Σ′

1
,K ′)) . (C̃ ′, (Σ′,K ′));

(3) if ¬(∃̂ι1. (C̃1, (Σ1,K ))
ι̂1
�7−→wrwfairPSF (Γ) _), then ¬(∃̂ι. (C̃, (Σ,K ))

ι̂
�7−→ Γ _);

(4) if ¬(∃̂ι. (C̃, (Σ,K ))
ι̂
�7−→ Γ _), then

there exists C̃ ′
1
, Σ′

1
, K ′

1
and T̂1 such that (C̃1, (Σ1,K1)) �p

T̂1
−−→ ∗

wrwfairPSF (Γ)
(C̃ ′

1
, (Σ′

1
,K ′

1
)) and

¬(∃̂ι1. (C̃
′
1
, (Σ′

1
,K ′

1
))

ι̂1
�7−→wrwfairPSF (Γ) _).

(A.2)

The simulation relation . is constructed as follows.

(C̃1, (Σ1,K1)) . (C̃, (Σ,K )) iff (C̃1 ⌣K C̃ ) ∧ (Σ = Σ1\{listid}) ∧ (K1 = K )

Here C̃1 ⌣K C̃ requires the following hold:

∀t. (K (t) = ◦) =⇒ (C̃1 |t = C̃ |t),

∀t. (K (t) , ◦) =⇒ (C̃1 |t = C̃ |t) ∨ ∃B,C . (C̃1 |t = wrwfairPSF (await(B){C})) ∧ (C̃ |t = await(B){C}) ∨
(C̃1 |t = await(B ∧ cid = enhd(listid)){C; listid := listid\cid; }) ∧ (C̃ |t = await(B){C}).

To prove (A.2), we make a case-split on the derivation of ι̂1.

• If ι̂1 is an abort event, then we could generate the same abort event at the next step of

(C̃, (Σ,K )).
• If ι̂1 is a client event, then we could generate the same client event at the next step of

(C̃, (Σ,K )).
• If ι̂1 is an invocation event, then we could generate the same invocation event at the next

step of (C̃, (Σ,K )).
• If ι̂1 is an object event and the step is executing listid := listid ++ (cid,B), then we

execute zero step of (C̃, (Σ,K )).
• If ι̂1 is an object event and the step is executing await(B ∧ cid = enhd(listid)){C ; listid :=

listid\cid; }, then we could generate the same object event at the next step of (C̃, (Σ,K ))
and that step is executing await(B){C}.
• If ι̂1 is a return event, then we could generate the same return event at the next step of

(C̃, (Σ,K )).

Also, from the construction of the simulation, we know the cases (3) and (4) of (A.2) hold. Thus, we

have proved (A.2). Then, we can find T̂3 such that T̂3 ∈ T
o

ω JΓ,ΣK and get_hist(T̂2) = get_hist(T̂3)
hold.

Below we prove wfair-o(T̂3). Since wfair-o(T̂2), we know either abt(T̂2), or for any t,

term-o(T̂2 |t), or t ∈ bset(last(T̂2)), or i-o-dis(t,T̂2), or |(T̂2 |t) | = ω.

If abt(T̂2), we know abt(T̂3). Otherwise, for any t,

• If term-o(T̂2 |t) holds, we know term-o(T̂3 |t).
• If |(T̂2 |t) | = ω holds, we know |(T̂3 |t) | = ω.
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• If t ∈ bset(last(T̂2)) holds, we know t ∈ bset(last(T̂3)).
• If |(T̂2 |t) | , ω and i-o-dis(t,T̂2), we want to prove i-o-dis(t,T̂3). Since |T̂2 | = ω, we know

|T̂3 | = ω. Suppose i-o-dis(t,T̂3) does not hold. Then e-a-enabled(t,T3) holds. We make a

case-split on the last event of T̂2 |t:

• is_inv(evt(last(T̂2 |t))). Then, by the operational semantics and the code of wrwfairPSF (Γ), we

know e-a-enabled(t,T̂2) holds, which contradicts our assumption.

• is_ret(evt(last(T̂2 |t))). Then, by the operational semantics, we know the code of thread t
remains to be executed is inclt. Thus e-a-enabled(t,T̂2), which contradicts our assumption.

• evt(last(T̂2 |t)) = (t,obj). Since i-o-dis(t,T̂2), by the operational semantics, we know in

T̂2, the execution of thread t is blocked at an await statement. That is, if we suppose the

configurations deriving the trace T̂2 are (C̃0, (σ0,K0)), (C̃1, (σ1,K1)), (C̃2, (σ2,K2)), . . ., then
there exist i , B, C and E such that

∀j ≥ i . C̃j |t = E[ await(B ∧ cid = enhd(listid)){C; listid := listid\cid; } ],
and ∀j . ∃k ≥ j . ¬((σk ,Kk (t)) |= (B ∧ cid = enhd(listid))).

Since e-a-enabled(t,T3) and listid < FV(Γ), by the construction and the operational

semantics, we know there exists i ′ ≥ i such that

∀j ≥ i ′. (σj ,Kj (t)) |= B.

By the operational semantics and and the code of wrwfairPSF (Γ), we know there exist l and
i ′′ ≥ i ′ such that

∀j ≥ i ′′. ∃l ′. σj (listid) = l ++ (t,B) ++ l ′.
If l is not empty, consider each (t′,B′) in l in order. If ∃j ≥ i ′′. (σj ,Kj (t′)) |= B′, then
∃j ≥ i ′′. (σj ,Kj (t′)) |= (B′ ∧ cid = enhd(listid)). By the operational semantics, we

know ∃j ≥ i ′′. ∀k ≥ j . (σk ,Kk (t′)) |= (B′ ∧ cid = enhd(listid)). Since wfair-o(T̂2), we
know t′ will eventually be executed and ∃k ≥ i ′′. ∃l ′. σk (listid) = (l\t′) ++ (t,B) ++ l ′

which contradicts the above result. Thus

∀(t′,B′) ∈ l . ∀j ≥ i ′′. ¬((σj ,Kj (t′)) |= B′).
As a result, we know

∀j ≥ i ′′. (σj ,Kj (t)) |= (B ∧ cid = enhd(listid)),
which contradicts the assumption.

Thus i-o-dis(t,T̂3).

Thus wfair-o(T̂3). Thus we know
( |T̂3 | , ω) ∧ (¬abt(T̂3)) =⇒ ∀t ∈ [1..tnum(T̂3)]. term-o(T̂3 |t) ∨ t ∈ bset(last(T̂3)) .

Thus fin_coherent(T̂c ,T̂3). Then, by Composition Theorem A.2, we know there exists T3 such that

T3 ∈ TωJ(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K, T̂c = get_clt(T3), T̂3 = get_obj(T3).

By Lemma A.10, we know

wfair(T3).

Thus E ∈ OwfairJ(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K and we are done. �

Proof of Lemma A.23. Similar to the proof of Lemma A.14. For any n, σ , Σ and T̂o such that

T̂o ∈ T
o

ω JΠ,σK, wfair-o(T̂o ) and φ (σ ) = Σ, suppose

¬abt(T̂o ) and ¬prog-t(T̂o ) and ¬well-blocked-o(T̂o , (Γ,Σ)) .

Thus we know

( |T̂o | , ω) =⇒ ∀t ∈ [1..tnum(T̂o )]. term-o(T̂o |t) ∨ t ∈ bset(last(T̂o )) .

Since T̂o ∈ T
o

ω JΠ,σK, we know there exist n and T̂c such that
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T̂c ∈ T
c

ω JMGCp1n ,σMGC(n)K, get_hist(T̂c ) = get_hist(T̂o ), n = tnum(T̂o ),

¬abt(T̂c ), wfair-c(T̂c ), fin_coherent(T̂c ,T̂o ) .

By Composition Theorem A.2, we know there exists T such that

T ∈ TωJlet Π in MGCp1n , (σMGC(n) ,σ ,})K, T̂c = get_clt(T ), T̂o = get_obj(T ).

Since wfair-o(T̂o ) and wfair-c(T̂c ), by Lemma A.10, we know

wfair(T ).

Since φ (σ ) = Σ and Π ⊑wfairwrPSF (φ )
wrwfairPSF (Γ), we know:

OwfairJ(let Π in MGCp1n ), (σMGC(n) ,σ )K ⊆
OwfairJ(let wrwfairPSF (Γ) in MGCp1n ), (σMGC(n) ,Σ ⊎ {listid ❀ ϵ })K .

Thus there exists T ′ such that

T ′ ∈ TωJ(let wrwfairPSF (Γ) in MGCp1n ), (σMGC(n) ,Σ ⊎ {listid ❀ ϵ },})K ,
wfair(T ′) and get_obsv(T ′) = get_obsv(T ) .

Also, by the definition of MGCp1n and the operational semantics, we can construct T1 and an

execution such that

T1 ∈ TωJ(let wrwfairPSF (Γ) inMGCp1n ), (σMGC(n) ,Σ ⊎ {listid ❀ ϵ },})K,
wfair(T1), get_obsv(T1) = E, get_hist(T ) = get_hist(T1).

By Decomposition Theorem A.1, we know there exists T̂1 such that

T̂1 ∈ T
o

ω JwrwfairPSF (Γ),Σ ⊎ {listid ❀ ϵ }K, T̂1 = get_obj(T1), n = tnum(T̂1).

Since wfair(T1), by Lemma A.9, we know

wfair-o(T̂1).

Since T̂1 = get_obj(T1), T̂o = get_obj(T ) and get_hist(T ) = get_hist(T1), we know

get_hist(T̂o ) = get_hist(T̂1) .

Since n = tnum(T̂o ) and n = tnum(T̂1), we know

tnum(T̂o ) = tnum(T̂1) .

Similar to the proof of Lemma A.22, we know there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1) .

• Suppose |T̂a | , ω. By the construction of T̂a , we know |T̂1 | , ω. For any e ∈ pend_inv(T̂a )
and t = tid(e ), since get_hist(T̂a ) = get_hist(T̂1), we know e ∈ pend_inv(T̂1) and |(T̂1 |t) | , ω.

Since wfair-o(T̂1), we know

t ∈ bset(last(T̂1)) .

By the construction of T̂a , we know t ∈ bset(last(T̂a )). Thuswe knowwell-blocked-o(T̂o , (Γ,Σ))
holds, which contradicts our assumption.

• Suppose |T̂a | = ω. By the construction of T̂a , we know |T̂1 | = ω. For any e ∈ pend_inv(T̂a )
and t = tid(e ), by the operational semantics and the code of Γ, we know |(T̂a |t) | , ω. Since

get_hist(T̂a ) = get_hist(T̂1), we know e ∈ pend_inv(T̂1) and |(T̂1 |t) | , ω. Since wfair-o(T̂1),
we know i-o-dis(t,T̂1) holds. Thus

∀i0. ∃j0 ≥ i0. t ∈ bidset(T̂1 (j0)) .

Since well-blocked-o(T̂o , (Γ,Σ)) does not hold, we know e-a-dis(t,T̂a ) does not hold. Thus
i-o-enabled(t,T̂a ) holds. Thus

∀i1. ∃j1 ≥ i1. t < bidset(T̂a (j1)) .
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Suppose the configurations deriving the trace T̂1 are (C̃0, (σ0,K0)), (C̃1, (σ1,K1)), (C̃2, (σ2,K2)), . . .,
then there exist i , B, C and E such that

∀j ≥ i . C̃j |t = E[ await(B ∧ cid = enhd(listid)){C; listid := listid\cid; } ],
and ∀j . ∃k ≥ j . ¬((σk ,Kk (t)) |= (B ∧ cid = enhd(listid))).

By the construction of T̂a , we know

∀i1. ∃j1 ≥ i1. (σj1 ,Kj1 (t)) |= B .

By the operational semantics and and the code ofwrwfairPSF (Γ), we know there exist l and i ′′ ≥ i ′

such that

∀j ≥ i ′′. ∃l ′. σj (listid) = l ++ (t,B) ++ l ′.

If l is not empty, consider each (t′,B′) in l in order. If ∃j ≥ i ′′. (σj ,Kj (t′)) |= B′, then
∃j ≥ i ′′. (σj ,Kj (t′)) |= (B′ ∧ cid = enhd(listid)). By the operational semantics, we know

∃j ≥ i ′′. ∀k ≥ j . (σk ,Kk (t′)) |= (B′ ∧ cid = enhd(listid)). Since wfair-o(T̂1), we know
t′ will eventually be executed and ∃k ≥ i ′′. ∃l ′. σk (listid) = (l\t′) ++ (t,B) ++ l ′ which
contradicts the above result. Thus

∀(t′,B′) ∈ l . ∀j ≥ i ′′. ¬((σj ,Kj (t′)) |= B′).

Since∀i1. ∃j1 ≥ i1. (σj1 ,Kj1 (t)) |= B, we know there exists j ′′ ≥ i ′′ such that (σj′′ ,Kj′′ (t)) |= B.
As a result, we know

∀j ≥ j ′′. (σj ,Kj (t)) |= (B ∧ cid = enhd(listid)),
which contradicts the assumption.

Thus we are done. �

Proof of Lemma A.24. The key is to show the following (A.3).

For any n, C1, . . . , Cn , σc , σ , Σ, T and Ta such that φ (σ ) = Σ,
if T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σ ,})K, ¬abt(T ) and wfair(T ), then there exists

Ta such that Ta ∈ TωJlet wrwfairPSF (Γ) in C1 ∥ . . . ∥ Cn , (σc ,Σ ⊎ {listid ❀ ϵ },})K,
get_obsv(T ) = get_obsv(Ta ) and wfair(Ta ).

(A.3)

Since T ∈ TωJlet Π in C1 ∥ . . . ∥Cn , (σc ,σ ,})K and ¬abt(T ), by Decomposition Theorem A.1, we

know there exist T̂c and T̂o such that

T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, T̂o ∈ T
o

ω JΠ,σK,
get_hist(T̂c ) = get_hist(T̂o ), T̂c = get_clt(T ), T̂o = get_obj(T ), n = tnum(T̂o ).

Since wfair(T ), by Lemmas A.8 and A.9, we know

wfair-c(T̂c ) and wfair-o(T̂o ).

Thus we know

( |T̂c | , ω) =⇒ ∀t ∈ [1..tnum(T̂c )]. term-c(T̂c |t) ∨ t ∈ bset(last(T̂c )) .

Since PSF-Owfair
φ,Γ (Π), we know prog-t(T̂o ) ∨ well-blocked-o(T̂o , (Γ,Σ)) holds.

• prog-t(T̂o ) holds. Since Π ⊑finφ Γ, we know

H JΠ,σK ⊆ H JΓ,ΣK.

By Lemma A.18, we know there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂o ), tnum(T̂a ) = tnum(T̂o ).

By Lemma A.25, we know there exists T̂1 such that
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T̂1 ∈ T
o

ω JwrwfairPSF (Γ),Σ ⊎ {listid ❀ ϵ }K, get_hist(T̂a ) = get_hist(T̂1),
tnum(T̂a ) = tnum(T̂1).

Thus get_hist(T̂c ) = get_hist(T̂1), n = tnum(T̂1) and ¬abt(T̂1). Also, by Lemma A.19, we

know

prog-t(T̂1).

Thus

( |T̂1 | , ω) =⇒ ∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t) .

Thus fin_coherent(T̂c ,T̂1) holds. By Composition Theorem A.2, we know there existsT1 such
that

T1 ∈ TωJlet wrwfairPSF (Γ) in C1 ∥ . . . ∥Cn , (σc ,Σ ⊎ {listid ❀ ϵ },})K,
T̂c = get_clt(T1), T̂1 = get_obj(T1).

Thus

get_obsv(T ) = get_obsv(T1).

By Lemma A.20, we know

sfair-o(T̂1).

Thus we know wfair-o(T̂1). Then, by Lemma A.10, we know

wfair(T1).

• well-blocked-o(T̂o , (Γ,Σ)) holds. Thus there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂ ) = get_hist(T̂a ), tnum(T̂ ) = tnum(T̂a ),

|T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a )),
|T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))).

By Lemma A.26, we know there exists T̂1 such that

T̂1 ∈ T
o

ω JwrwfairPSF (Γ),Σ ⊎ {listid ❀ ϵ }K, get_hist(T̂a ) = get_hist(T̂1),
tnum(T̂a ) = tnum(T̂1),

|T̂1 | = ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1)),
|T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))).

Thus get_hist(T̂c ) = get_hist(T̂1), n = tnum(T̂1) and ¬abt(T̂1). Also we know

( |T̂1 | , ω) =⇒ ∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t) ∨ t ∈ bset(last(T̂1)) .

Thus fin_coherent(T̂c ,T̂1) holds. By Composition Theorem A.2, we know there existsT1 such
that

T1 ∈ TωJlet wrwfairPSF (Γ) in C1 ∥ . . . ∥Cn , (σc ,Σ ⊎ {listid ❀ ϵ },})K,
T̂c = get_clt(T1), T̂1 = get_obj(T1).

Thus

get_obsv(T ) = get_obsv(T1).

By Lemma A.21, we know

sfair-o(T̂1).

Thus we know wfair-o(T̂1). Then, by Lemma A.10, we know

wfair(T1).

Thus we are done. �
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LemmaA.25. If T̂a ∈ T
o

ω JΓ,ΣK and prog-t(T̂a ), then there exists T̂1 such that T̂1 ∈ T o

ω JwrwfairPSF (Γ),Σ⊎

{listid ❀ ϵ }K, get_hist(T̂a ) = get_hist(T̂1) and tnum(T̂a ) = tnum(T̂1).

Proof. Similar to the proof of Lemma A.26. �

LemmaA.26. If T̂a ∈ T
o

ω JΓ,ΣK and |T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a ))
and |T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))), then there exists T̂1 such
that

T̂1 ∈ T
o

ω JwrwfairPSF (Γ),Σ ⊎ {listid ❀ ϵ }K, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1),

|T̂1 | = ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1)),
|T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))).

Proof. Since T̂a ∈ T
o

ω JΓ,ΣK, we know there exist n, T̂ and C̃0 such that T̂a = ((spawn,n),∅) ::
get_obj(T̂ ) and

(C̃0, (Σ,}))
T̂
�7−→ω

Γ · or (C̃0, (Σ,}))
T̂
�7−→∗Γ abort or

∃C̃ ′,Σ′,K ′. ((C̃0, (Σ,}))
T̂
�7−→∗Γ (C̃

′, (Σ′,K ′))) ∧ ¬(∃̂ι. (C̃ ′, (Σ′,K ′))
ι̂
�7−→ Γ _).

Below we only consider the case when |T̂ | = ω. Proof for the case when |T̂ | , ω is similar. Let

Sp = {(t,i ) | ∃e . e ∈ pend_inv(T̂ ) ∧ t = tid(e ) ∧ (∀j ≥ i . t ∈ bidset(T̂ (j ))) ∧ (t < bidset(T̂ (i − 1)))}.

We construct the trace T̂1 such that ((spawn,n),∅) :: get_obj(T̂1) satisfies the desired properties.

The idea is to construct a simulation between the executions. Informally, our construction of T̂1
considers every prefix T̂ (1..i ) of T̂ and builds traces T̂ i

1
and their derivations for T̂ i

1
. The resulting

series are such that for i < j , the derivation of T̂ i
1
is a prefix of that of T̂ j

1
, which also implies that the

trace T̂ i
1
is a prefix of T̂ j

1
. Because of this, we could get a simulation relation between the executions,

and the limit derivation and the limit trace are the desired T̂1 and the corresponding derivation.

The following claim lies at the core of our construction:

Consider a prefix T̂ (1..i ) of T̂ , the trace T̂ i
1
and C̃1, C̃ , Σ

′
1
, Σ′, K ′ such that

(C̃0, (Σ,})) �p
T̂ (1..i )
−−−−−−→∗Γ (C̃, (Σ

′,K ′)),

(C̃0, (Σ ⊎ {listid ❀ ϵ },})) �p
T̂ i
1

−−→∗
wrwfairPSF (Γ)

(C̃1, (Σ
′
1
,K ′)),

Σ′ = Σ′
1
\{listid}, list2set(Σ′

1
(listid)) = {t | Sp (t) ≤ i},

C̃ ⌣Σ′
1
,K ′ C̃1, get_hist(T̂ (1..i )) = get_hist(T̂ i

1
).

Here C̃ ⌣Σ′
1
,K ′ C̃1 requires the following hold:

∀t. (K ′(t) = ◦) =⇒ (C̃1 |t = C̃ |t),

∀t. (K ′(t) , ◦) ∧ t < list2set(Σ′
1
(listid)) =⇒ (C̃ |t = C̃1 |t) ∨

∃B,C . (C̃ |t = await(B){C}) ∧ (C̃1 |t = wrwfairPSF (await(B){C}))

∀t. (K ′(t) , ◦) ∧ t ∈ list2set(Σ′
1
(listid)) =⇒

(C̃1 |t = await(B ∧ cid = enhd(listid)){C; listid := listid\cid; }) ∧ (C̃ |t = await(B){C}).

If (C̃, (Σ′,K ′)) �p
T̂ (i+1)
−−−−−→ Γ (C̃

′, (Σ′′,K ′′)), then there exist C̃ ′
1
, Σ′′

1
and an extension T̂ i+1

1

of T̂ i
1
with the corresponding derivation such that
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(C̃0, (Σ ⊎ {listid ❀ ϵ }, ,})) �p
T̂ i+1
1

−−−−→∗
wrwfairPSF (Γ)

(C̃ ′
1
, (Σ′′

1
,K ′′)),

Σ′′ = Σ′′
1
\{listid}, list2set(Σ′′

1
(listid)) = {t | Sp (t) ≤ i + 1},

C̃ ′ ⌣Σ′′
1
,K ′′ C̃

′
1
, get_hist(T̂ (1..i + 1)) = get_hist(T̂ i+1

1
).

Also, if (C̃, (Σ′,K ′)) �p
T̂ (i+1)
−−−−−→ Γ abort, then there exists an extension T̂ i+1

1
of T̂ i

1
such

that (C̃0, (Σ ⊎ {listid ❀ ϵ }, ,})) �p
T̂ i+1
1

−−−→ ∗

wrwfairPSF (Γ)
abort and get_hist(T̂ (1..i + 1)) =

get_hist(T̂ i+1
1

).

To prove the claim, we make a case-split on the derivation of T̂ (i + 1).

• If T̂ (i + 1) is an abort event, then we could generate the same abort event at the next step of

(C̃1, (Σ
′
1
,K ′)).

• If T̂ (i + 1) is an invocation event of thread t, then we could generate the same invocation

event at the next step of (C̃1, (Σ
′
1
,K ′)). If Sp (t) ≤ i + 1, then we also execute its first step of

the method body wrwfairPSF (await(B){C}.
• If T̂ (i+1) is an object event and the step is executing await(B){C} of thread t, thenwe know t <
list2set(Σ′

1
(listid)). Then we execute wrwfairPSF (await(B){C} (two steps) from (C̃1, (Σ

′
1
,K ′)).

Since the object state has been changed, we also compute the blocked threads, and for any

new thread t′ such that Sp (t′) ≤ i + 1, we also execute its first step of the method body.

• If T̂ (i + 1) is a return event, then we could generate the same return event at the next step of

(C̃1, (Σ
′
1
,K ′)).

By the construction, we are done. �

A.4 Proofs of Theorem 6.2-4 (PDF under weak fairness)
By Theorem 4.4, the goal is reduced to the following:

Π ⊑finφ Γ ∧ PDFwfairφ,Γ (Π) ⇐⇒ Π ⊑wfairwrPDF (φ )
wrwfairPDF (Γ) .

We first define the object version of partial deadlock-freedom.

Definition A.27. PDF-Oχ
φ,Γ (Π), iff

∀n,σ ,Σ,T . T̂ ∈ T o
ω JΠ,σK ∧ (φ (σ ) = Σ) ∧ χ -o(T̂ )

=⇒ abt(T̂ ) ∨ prog-p(T̂ ) ∨ well-blocked-o(T̂ , (Γ,Σ)) .

We only need to prove the following lemmas.

Lemma A.28. Π ⊑wfairwrPDF (φ )
wrwfairPDF (Γ) =⇒ Π ⊑finφ Γ .

Lemma A.29. Π ⊑wfairwrPDF (φ )
wrwfairPDF (Γ) =⇒ PDF-Owfair

φ,Γ (Π) .

Lemma A.30. PDF-Oχ
φ,Γ (Π) ⇐⇒ PDFχφ,Γ (Π) .

Lemma A.31. Π ⊑finφ Γ ∧ PDF-Owfair
φ,Γ (Π) =⇒ Π ⊑wfairwrPDF (φ )

wrwfairPDF (Γ) .

Proof of Lemma A.28. For any n, C1, . . . , Cn , σc , σ and Σ such that φ (σ ) = Σ, for any E, if

E ∈ OJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K,
we know there exists T1 such that E = get_obsv(T1) and

T1 ∈ T J(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K .
We can construct T ′

1
and T ′′

1
such that
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T ′′
1
= T1 ::T

′
1
, wfair(T ′′

1
) and T ′′

1
∈ TωJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K.

Since Π ⊑wfairwrPDF (φ )
wrwfairPDF (Γ), we know there exists T ′′

2
such that

T ′′
2
∈ TωJ(let wrwfairPDF (Γ) in C1 ∥ . . . ∥Cn ), (σc ,Σ ⊎ {done ❀ false},})K , wfair(T ′′

2
) and

get_obsv(T ′′
2
) = get_obsv(T ′′

1
) = E ::get_obsv(T ′

1
) .

Thus there exists T2 such that

T2 ∈ T J(let wrwfairPDF (Γ) in C1 ∥ . . . ∥Cn ), (σc ,Σ ⊎ {done ❀ false},})K and get_obsv(T2) = E.
Then we construct T3 such that

T3 ∈ T J(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K, get_clt(T2) = get_clt(T3).
Our construction considers every prefix T2 (1..i ) of T2 and builds traces T i

3
and their derivations for

T i
3
. The resulting series are such that for i < j, the derivation of T i

3
is a prefix of that of T j

3
, which

also implies that the trace T i
3
is a prefix of T j

3
. Then T |T2 |

3
is the desired T3. The following claim lies

at the core of our construction:

Consider a prefix T2 (1..i ) of T2, the trace T
i
3
andW1,W , σ ′c , Σ

′
1
, Σ′, K ′ such that

(let wrwfairPDF (Γ) in C1 ∥ . . . ∥Cn , (σc ,Σ ⊎ {done ❀ false},})) p
T2 (1..i )
−−−−−−→∗ (W1, (σ

′
c ,Σ
′
1
,K ′)),

(let Γ in C1 ∥ . . . ∥Cn , (σc ,Σ,})) p
T i
3

−−→∗ (W , (σ ′c ,Σ
′,K ′)),

Σ′ = Σ′
1
\{done}, W1 ⌣K ′ W , get_clt(T2 (1..i )) = get_clt(T i

3
).

HereW1 ⌣K ′ W requires the following hold:

∀t. (K ′(t) = ◦) =⇒ (W1 |t =W |t),

∀t. (K ′(t) , ◦) =⇒ (W1 |t =W |t) ∨

∃B,C,E. (W1 |t = (wrwfairPDF (await(B){C}); return E)) ∧ (W |t = (await(B){C}; return E)) ∨

∃E. (W1 |t = (done := false; await(¬done){}; return E)) ∧ (W |t = return E) ∨
∃E. (W1 |t = (await(¬done){}; return E)) ∧ (W |t = return E).

If (W1, (σ
′
c ,Σ
′
1
,K ′)) p

T2 (i+1)
−−−−−→ (W ′

1
, (σ ′′c ,Σ

′′
1
,K ′′)), then there existW ′

, Σ′′ and an exten-

sion T i+1
3

of T i
3
with the corresponding derivation such that

(let Γ in C1 ∥ . . . ∥Cn , (σc ,Σ,})) p
T i+1
3

−−−−→∗ (W ′, (σ ′′c ,Σ
′′,K ′′)),

Σ′′ = Σ′′
1
\{done}, W ′

1
⌣K ′′ W

′, get_clt(T2 (1..i + 1)) = get_clt(T i+1
3

).

Also, if (W1, (σ
′
c ,Σ
′
1
,K ′)) p

T2 (i+1)
−−−−−→ abort, then there exists an extension T i+1

3
of T i

3

such that (let Γ in C1 ∥ . . . ∥ Cn , (σc ,Σ,})) p
T i+1
3

−−−→ ∗ abort and get_clt(T2 (1..i + 1)) =
get_clt(T i+1

3
).

To prove the claim, we make a case-split on the derivation of T2 (i + 1).

• If T2 (i + 1) is a client event, then we could generate the same client event at the next step of

(W , (σ ′c ,Σ
′,K ′)).

• If T2 (i + 1) is an invocation event, then we could generate the same invocation event at the

next step of (W , (σ ′c ,Σ
′,K ′)).

• If T2 (i + 1) is an object event and the step is executing await(B ∧ ¬done)){C ; done := true; },
then we execute one step of (W , (σ ′c ,Σ

′,K ′)) and that step is executing await(B){C}.
• If T2 (i + 1) is an object event and the step is executing done := false, then we execute zero

step of (W , (σ ′c ,Σ
′,K ′)) (that is, T i+1

3
= T i

3
).

• IfT2 (i + 1) is an object event and the step is executing await(¬done){}, then we execute zero

step of (W , (σ ′c ,Σ
′,K ′)) (that is, T i+1

3
= T i

3
).
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• IfT2 (i + 1) is a return event, then we could generate the same return event at the next step of

(W , (σ ′c ,Σ
′,K ′)).

Thus E ∈ OJ(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K and we are done. �

Proof of Lemma A.29. Similar to the proof of Lemma A.14. For any n, σ , Σ and T̂o such that

T̂o ∈ T
o

ω JΠ,σK, wfair-o(T̂o ) and φ (σ ) = Σ, suppose

¬abt(T̂o ) and ¬prog-p(T̂o ) and ¬well-blocked-o(T̂o , (Γ,Σ)) .

Since T̂o ∈ T
o

ω JΠ,σK, we know there exist n and T̂c such that

T̂c ∈ T
c

ω JMGCp1n ,σMGC(n)K, get_hist(T̂c ) = get_hist(T̂o ), n = tnum(T̂o ),

¬abt(T̂c ), wfair-c(T̂c ), fin_coherent(T̂c ,T̂o ) .

By Composition Theorem A.2, we know there exists T such that

T ∈ TωJlet Π inMGCp1n , (σMGC(n) ,σ ,})K, T̂c = get_clt(T ), T̂o = get_obj(T ).

Since wfair-o(T̂o ) and wfair-c(T̂c ), by Lemma A.10, we know

wfair(T ).

Since φ (σ ) = Σ and Π ⊑wfairwrPDF (φ )
wrwfairPDF (Γ), we know:

OwfairJ(let Π in MGCp1n ), (σMGC(n) ,σ )K ⊆
OwfairJ(let wrwfairPDF (Γ) in MGCp1n ), (σMGC(n) ,Σ ⊎ {done ❀ false})K .

Thus there exists T ′ such that

T ′ ∈ TωJ(let wrwfairPDF (Γ) inMGCp1n ), (σMGC(n) ,Σ ⊎ {done ❀ false},})K ,
wfair(T ′) and get_obsv(T ′) = get_obsv(T ) .

Also, by the definition of MGCp1n and the operational semantics, we can construct T1 and an

execution such that

T1 ∈ TωJ(let wrwfairPDF (Γ) inMGCp1n ), (σMGC(n) ,Σ ⊎ {done ❀ false},})K,
wfair(T1), get_obsv(T1) = E, get_hist(T ) = get_hist(T1).

By Decomposition Theorem A.1, we know there exists T̂1 such that

T̂1 ∈ T
o

ω JwrwfairPDF (Γ),Σ ⊎ {done ❀ false}K, T̂1 = get_obj(T1), n = tnum(T̂1).

Since wfair(T1), by Lemma A.9, we know

wfair-o(T̂1).

Since T̂1 = get_obj(T1), T̂o = get_obj(T ) and get_hist(T ) = get_hist(T1), we know

get_hist(T̂o ) = get_hist(T̂1) .

Since n = tnum(T̂o ) and n = tnum(T̂1), we know

tnum(T̂o ) = tnum(T̂1) .

Since ¬prog-p(T̂o ) and get_hist(T̂o ) = get_hist(T̂1), we know

∃e . e ∈ pend_inv(T̂1) ∧ (( |T̂1 | , ω) ∨ ∃i . ∀j ≥ i . ¬is_ret(evt(T̂1 (j )))) .

Since wfair-o(T̂1), we know

∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t) ∨ (t ∈ bset(last(T̂1))) ∨ i-o-dis(t,T̂1) ∨ ( |(T̂1 |t) | = ω) .

Thus, by the operational semantics, we know

|T̂1 | = ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1)) ∧ (∃i . ∀j ≥ i . ¬is_ret(evt(T̂1 (j )))),
|T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))).

By Lemma A.32, we know there exists T̂a such that
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T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1),

|T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a )),
|T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))).

Thus well-blocked-o(T̂o , (Γ,Σ)) holds, which contradicts our assumption. Thus we are done. �

Lemma A.32. If T̂1 ∈ T
o

ω JwrwfairPDF (Γ),Σ ⊎ {done ❀ false}K and
|T̂1 | = ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1)) ∧ (∃i . ∀j ≥ i . ¬is_ret(evt(T̂1 (j ))))
and |T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))), then there exists T̂a such

that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1),

|T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a )),
|T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))).

Proof. Since T̂1 ∈ T
o

ω JwrwfairPDF (Γ),Σ ⊎ {done ❀ false}K, we know there exist n, T̂ and C̃0 such

that T̂1 = ((spawn,n),∅) ::get_obj(T̂ ) and

(C̃0, (Σ ⊎ {done ❀ false},}))
T̂
�7−→ω

wrwfairPDF (Γ)
· or (C̃0, (Σ,}))

T̂
�7−→∗

wrwfairPDF (Γ)
abort or

∃C̃ ′
1
,Σ′

1
,K ′

1
. ((C̃0, (Σ,}))

T̂
�7−→∗

wrwfairPDF (Γ)
(C̃ ′

1
, (Σ′

1
,K ′

1
))) ∧ ¬(∃̂ι. (C̃ ′

1
, (Σ′

1
,K ′

1
))

ι̂
�7−→wrwfairPDF (Γ) _).

Below we only consider the case when |T̂ | = ω. Proof for the case when |T̂ | , ω is similar. We

construct the trace T̂a such that ((spawn,n),∅) ::get_obj(T̂a ) satisfies the desired properties. The

idea is to construct a simulation between the executions. Informally, our construction is similar to

the one in the proof of Lemma A.28.

Then, suppose |T̂a | = ω. By the construction of T̂a , we know |T̂1 | = ω. For any e ∈ pend_inv(T̂a )
and t = tid(e ), by the operational semantics and the code of Γ, we know |(T̂a |t) | , ω. Since

get_hist(T̂a ) = get_hist(T̂1), we know e ∈ pend_inv(T̂1) and |(T̂1 |t) | , ω. Thus e-a-dis(t,T̂1)) holds.
Suppose the configurations deriving the trace T̂1 are (C̃0, (σ0,K0)), (C̃1, (σ1,K1)), (C̃2, (σ2,K2)), . . .,
then one of the following holds:

• There exist i , B, C and E such that

∀j ≥ i . C̃j |t = E[ await(B ∧ ¬done){C; done := true; } ],
and ∀j ≥ i . ¬((σj ,Kj (t)) |= (B ∧ ¬done)).

Since ∃i ′. ∀j ′ ≥ i ′. ¬is_ret(evt(T̂1 (j ′))), we know there exists i1 ≥ i such that

∀j1 ≥ i1. ¬((σj1 ,Kj1 (t)) |= B) .

Thus e-a-disabled(t,T̂a ).
• There exist i and E such that

∀j ≥ i . C̃j |t = E[ await(¬done){} ],
and ∀j ≥ i . (σj ,Kj (t)) |= done.

But this is impossible, since ∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1).
Thus we are done. �

Proof of Lemma A.30. Similar to the proof of Lemma A.15. In the proof, we need to apply the

following Lemma A.33.

Lemma A.33. For any T and T̂o , if T̂o = get_obj(T ) and prog-p(T̂o ), then prog-p(T ).

Proof. By unfolding the definitions. �
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Proof of Lemma A.31. The key is to show the following (A.4).

For any n, C1, . . . , Cn , σc , σ , Σ, T and Ta such that φ (σ ) = Σ,
if T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σ ,})K, ¬abt(T ) and wfair(T ), then there exists

Ta such that Ta ∈ TωJlet wrwfairPDF (Γ) in C1 ∥ . . . ∥ Cn , (σc ,Σ ⊎ {done ❀ false},})K,
get_obsv(T ) = get_obsv(Ta ) and wfair(Ta ).

(A.4)

Since T ∈ TωJlet Π in C1 ∥ . . . ∥Cn , (σc ,σ ,})K and ¬abt(T ), by Decomposition Theorem A.1, we

know there exist T̂c and T̂o such that

T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, T̂o ∈ T
o

ω JΠ,σK,
get_hist(T̂c ) = get_hist(T̂o ), T̂c = get_clt(T ), T̂o = get_obj(T ), n = tnum(T̂o ).

Since wfair(T ), by Lemmas A.8 and A.9, we know

wfair-c(T̂c ) and wfair-o(T̂o ).
Thus we know

( |T̂c | , ω) =⇒ ∀t ∈ [1..tnum(T̂c )]. term-c(T̂c |t) ∨ t ∈ bset(last(T̂c )) .

Since PDF-Owfair
φ,Γ (Π), we know prog-p(T̂o ) ∨ well-blocked-o(T̂o , (Γ,Σ)) holds.

• prog-p(T̂o ) holds. Since Π ⊑finφ Γ, we know

H JΠ,σK ⊆ H JΓ,ΣK.
By Lemma A.34, we know there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂o ), tnum(T̂a ) = tnum(T̂o ).

By Lemma A.35, we know there exists T̂1 such that

T̂1 ∈ T
o

ω JwrwfairPDF (Γ),Σ ⊎ {done ❀ false}K,
get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1), wfair-o(T̂1).

Thus get_hist(T̂c ) = get_hist(T̂1), n = tnum(T̂1) and ¬abt(T̂1). Thus
( |T̂1 | , ω) =⇒ ∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t) ∨ (t ∈ bset(last(T̂1))).

Thus fin_coherent(T̂c ,T̂1) holds. By Composition Theorem A.2, we know there existsT1 such
that

T1 ∈ TωJlet wrwfairPDF (Γ) in C1 ∥ . . . ∥Cn , (σc ,Σ ⊎ {done ❀ false},})K,
T̂c = get_clt(T1), T̂1 = get_obj(T1).

Thus

get_obsv(T ) = get_obsv(T1).
Then, by Lemma A.10, we know

wfair(T1).

• well-blocked-o(T̂o , (Γ,Σ)) holds. Thus there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂ ) = get_hist(T̂a ), tnum(T̂ ) = tnum(T̂a ),

|T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a )),
|T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))).

By Lemma A.36, we know there exists T̂1 such that

T̂1 ∈ T
o

ω JwrwfairPDF (Γ),Σ ⊎ {done ❀ false}K, get_hist(T̂a ) = get_hist(T̂1),
tnum(T̂a ) = tnum(T̂1),

|T̂1 | = ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1)),
|T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))).
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Thus get_hist(T̂c ) = get_hist(T̂1), n = tnum(T̂1) and ¬abt(T̂1). Also we know

( |T̂1 | , ω) =⇒ ∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t) ∨ t ∈ bset(last(T̂1)) .

Thus fin_coherent(T̂c ,T̂1) holds. By Composition Theorem A.2, we know there existsT1 such
that

T1 ∈ TωJlet wrwfairPDF (Γ) in C1 ∥ . . . ∥Cn , (σc ,Σ ⊎ {done ❀ false},})K,
T̂c = get_clt(T1), T̂1 = get_obj(T1).

Thus

get_obsv(T ) = get_obsv(T1).

By Lemma A.21, we know

sfair-o(T̂1).

Thus we know wfair-o(T̂1). Then, by Lemma A.10, we know

wfair(T1).

Thus we are done. �

Lemma A.34. IfH JΠ,σK ⊆ H JΓ,ΣK, T̂o ∈ T o

ω JΠ,σK and prog-p(T̂o ), then there exists T̂a such that
T̂a ∈ T

o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂o ) and tnum(T̂a ) = tnum(T̂o ).

Proof. By constructing simulations. �

LemmaA.35. If T̂a ∈ T
o

ω JΓ,ΣK and prog-p(T̂a ), then there exists T̂1 such that T̂1 ∈ T o

ω JwrwfairPDF (Γ),Σ⊎

{done ❀ false}K, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1) and wfair-o(T̂1).

Proof. Similar to the proof of Lemma A.36, we can construct the trace T̂1 such that T̂1 ∈

T o
ω JwrwfairPDF (Γ),Σ ⊎ {done ❀ false}K, get_hist(T̂a ) = get_hist(T̂1) and tnum(T̂a ) = tnum(T̂1). Since

prog-p(T̂a ), we know prog-p(T̂1).
Suppose |T̂1 | , ω. Since prog-p(T̂1), we know pend_inv(T̂1) = ∅. Thus

( |T̂1 | , ω) =⇒ ∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t).

Suppose |T̂1 | = ω. For any t ∈ [1..tnum(T̂1)], we know either |(T̂1 |t) | = ω or |(T̂1 |t) | , ω. Suppose

|(T̂1 |t) | , ω. Then, since T̂1 ∈ T
o

ω JwrwfairPDF (Γ),Σ ⊎ {done ❀ false}K, we know

|(T̂1 |t) | = 0 ∨ is_ret(evt(last(T̂1 |t))) ∨ is_inv(evt(last(T̂1 |t))) ∨ evt(last(T̂1 |t)) = (t,obj).

If |(T̂1 |t) | = 0 ∨ is_ret(evt(last(T̂1 |t))) holds, then wfair-o(T̂1) holds. Otherwise, we know there

exists e such that e ∈ pend_inv(T̂1 |t). Since prog-p(T̂1), we know

∀i . ∃j . j > i ∧ is_ret(evt(T̂1 (j ))).

By the construction of T̂1, we know i-o-dis(t,T̂1) holds. Thus we are done. �

LemmaA.36. If T̂a ∈ T
o

ω JΓ,ΣK and |T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a ))
and |T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))), then there exists T̂1 such
that

T̂1 ∈ T
o

ω JwrwfairPDF (Γ),Σ ⊎ {done ❀ false}K, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1),

|T̂1 | = ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1)),
|T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))).
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Proof. Since T̂a ∈ T
o

ω JΓ,ΣK, we know there exist n, T̂ and C̃0 such that T̂a = ((spawn,n),∅) ::
get_obj(T̂ ) and

(C̃0, (Σ,}))
T̂
�7−→ω

Γ · or (C̃0, (Σ,}))
T̂
�7−→∗Γ abort or

∃C̃ ′,Σ′,K ′. ((C̃0, (Σ,}))
T̂
�7−→∗Γ (C̃

′, (Σ′,K ′))) ∧ ¬(∃̂ι. (C̃ ′, (Σ′,K ′))
ι̂
�7−→ Γ _).

Below we only consider the case when |T̂ | = ω. Proof for the case when |T̂ | , ω is similar. We

construct the trace T̂1 such that ((spawn,n),∅) ::get_obj(T̂1) satisfies the desired properties. The

idea is to construct a simulation between the executions. Informally, our construction of T̂1 considers

every prefix T̂ (1..i ) of T̂ and builds traces T̂ i
1
and their derivations for T̂ i

1
. The resulting series are

such that for i < j , the derivation of T̂ i
1
is a prefix of that of T̂ j

1
, which also implies that the trace T̂ i

1

is a prefix of T̂ j
1
. Because of this, we could get a simulation relation between the executions, and

the limit derivation and the limit trace are the desired T̂1 and the corresponding derivation. The

following claim lies at the core of our construction:

Consider a prefix T̂ (1..i ) of T̂ , the trace T̂ i
1
and C̃1, C̃ , Σ

′
1
, Σ′, K ′ such that

(C̃0, (Σ,})) �p
T̂ (1..i )
−−−−−−→∗Γ (C̃, (Σ

′,K ′)),

(C̃0, (Σ ⊎ {done ❀ false},})) �p
T̂ i
1

−−→∗
wrwfairPDF (Γ)

(C̃1, (Σ
′
1
,K ′)),

Σ′
1
= Σ′ ⊎ {done ❀ false},

C̃ ⌣K ′ C̃1, get_hist(T̂ (1..i )) = get_hist(T̂ i
1
).

Here C̃ ⌣K ′ C̃1 requires the following hold:

∀t. (K ′(t) = ◦) =⇒ (C̃1 |t = C̃ |t),

∀t. (K ′(t) , ◦) =⇒ (C̃ |t = C̃1 |t) ∨

∃B,C,E. (C̃ |t = (await(B){C}; return E)) ∧ (C̃1 |t = (wrwfairPDF (await(B){C}); return E)) ∨

∃E. (C̃ |t = return E) ∧ (C̃1 |t = (await(¬done){}; return E)).

If (C̃, (Σ′,K ′)) �p
T̂ (i+1)
−−−−−→ Γ (C̃

′, (Σ′′,K ′′)), then there exist C̃ ′
1
, Σ′′

1
and an extension T̂ i+1

1

of T̂ i
1
with the corresponding derivation such that

(C̃0, (Σ ⊎ {done ❀ false}, ,})) �p
T̂ i+1
1

−−−−→∗
wrwfairPDF (Γ)

(C̃ ′
1
, (Σ′′

1
,K ′′)),

Σ′′
1
= Σ′′ ⊎ {done ❀ false},

C̃ ′ ⌣K ′′ C̃
′
1
, get_hist(T̂ (1..i + 1)) = get_hist(T̂ i+1

1
).

Also, if (C̃, (Σ′,K ′)) �p
T̂ (i+1)
−−−−−→ Γ abort, then there exists an extension T̂ i+1

1
of T̂ i

1
such

that (C̃0, (Σ ⊎ {done ❀ false}, ,})) �p
T̂ i+1
1

−−−→ ∗

wrwfairPDF (Γ)
abort and get_hist(T̂ (1..i + 1)) =

get_hist(T̂ i+1
1

).

To prove the claim, we make a case-split on the derivation of T̂ (i + 1).

• If T̂ (i + 1) is an abort event, then we could generate the same abort event at the next step of

(C̃1, (Σ
′
1
,K ′)).

• If T̂ (i + 1) is a client event, then we could generate the same client event at the next step of

(C̃1, (Σ
′
1
,K ′)).
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• If T̂ (i + 1) is an invocation event of thread t, then we could generate the same invocation

event at the next step of (C̃1, (Σ
′
1
,K ′)).

• If T̂ (i + 1) is an object event and the step is executing await(B){C} of thread t, then we

execute the first two steps (i.e., the first await and the reset of done) of wrwfairPDF (await(B){C})
from (C̃1, (Σ

′
1
,K ′)).

• If T̂ (i + 1) is a return event, then we execute the last step (i.e., await(¬done){}) of
wrwfairPDF (await(B){C}) and the return command from (C̃1, (Σ

′
1
,K ′)). We could generate the

same return event.

By the construction, we are done. �

A.5 Proofs of Theorem 6.2-3 (PDF under strong fairness)
By Theorem 4.4, the goal is reduced to the following:

Π ⊑finφ Γ ∧ PDFsfairφ,Γ (Π) ⇐⇒ Π ⊑sfairwrPDF (φ )
wrsfairPDF (Γ) .

By Lemma A.30, we only need to prove the following lemmas.

Lemma A.37. Π ⊑sfairwrPDF (φ )
wrsfairPDF (Γ) =⇒ Π ⊑finφ Γ .

Lemma A.38. Π ⊑sfairwrPDF (φ )
wrsfairPDF (Γ) =⇒ PDF-Osfair

φ,Γ (Π) .

Lemma A.39. Π ⊑finφ Γ ∧ PDF-Osfair
φ,Γ (Π) =⇒ Π ⊑sfairwrPDF (φ )

wrsfairPDF (Γ) .

Proof of Lemma A.37. For any n, C1, . . . , Cn , σc , σ and Σ such that φ (σ ) = Σ, for any E, if

E ∈ OJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K,
we know there exists T1 such that E = get_obsv(T1) and

T1 ∈ T J(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K .
We can construct T ′

1
and T ′′

1
such that

T ′′
1
= T1 ::T

′
1
, sfair(T ′′

1
) and T ′′

1
∈ TωJ(let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})K.

Since Π ⊑sfairwrPDF (φ )
wrsfairPDF (Γ), we know there exists T ′′

2
such that

T ′′
2
∈ TωJ(let wrsfairPDF (Γ) in C1 ∥ . . . ∥Cn ), (σc ,Σ ⊎ {done ❀ false},})K , sfair(T ′′

2
) and

get_obsv(T ′′
2
) = get_obsv(T ′′

1
) = E ::get_obsv(T ′

1
) .

Thus there exists T2 such that

T2 ∈ T J(let wrsfairPDF (Γ) in C1 ∥ . . . ∥Cn ), (σc ,Σ ⊎ {done ❀ false},})K and get_obsv(T2) = E.
Then we construct T3 such that

T3 ∈ T J(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K, get_clt(T2) = get_clt(T3).
Our construction considers every prefix T2 (1..i ) of T2 and builds traces T i

3
and their derivations for

T i
3
. The resulting series are such that for i < j, the derivation of T i

3
is a prefix of that of T j

3
, which

also implies that the trace T i
3
is a prefix of T j

3
. Then T |T2 |

3
is the desired T3. The following claim lies

at the core of our construction:

Consider a prefix T2 (1..i ) of T2, the trace T
i
3
andW1,W , σ ′c , Σ

′
1
, Σ′, K ′ such that

(let wrsfairPDF (Γ) in C1 ∥ . . . ∥Cn , (σc ,Σ ⊎ {done ❀ false},})) p
T2 (1..i )
−−−−−−→∗ (W1, (σ

′
c ,Σ
′
1
,K ′)),

(let Γ in C1 ∥ . . . ∥Cn , (σc ,Σ,})) p
T i
3

−−→∗ (W , (σ ′c ,Σ
′,K ′)),

Σ′ = Σ′
1
\{done}, W1 ⌣K ′ W , get_clt(T2 (1..i )) = get_clt(T i

3
).

HereW1 ⌣K ′ W requires the following hold:
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∀t. (K ′(t) = ◦) =⇒ (W1 |t =W |t),

∀t. (K ′(t) , ◦) =⇒ (W1 |t =W |t) ∨

∃B,C,E. (W1 |t = (wrsfairPDF (await(B){C}); return E)) ∧ (W |t = (await(B){C}; return E)) ∨

∃B,C,E. (W1 |t = (await(B ∧ ¬done){C; . . .}; . . . ; return E)) ∧ (W |t = (await(B){C}; return E)) ∨
∃E. (W1 |t = (done := false;while (done){}; return E)) ∧ (W |t = return E) ∨
∃E. (W1 |t = (while (done){}; return E)) ∧ (W |t = return E).

If (W1, (σ
′
c ,Σ
′
1
,K ′)) p

T2 (i+1)
−−−−−→ (W ′

1
, (σ ′′c ,Σ

′′
1
,K ′′)), then there existW ′

, Σ′′ and an exten-

sion T i+1
3

of T i
3
with the corresponding derivation such that

(let Γ in C1 ∥ . . . ∥Cn , (σc ,Σ,})) p
T i+1
3

−−−−→∗ (W ′, (σ ′′c ,Σ
′′,K ′′)),

Σ′′ = Σ′′
1
\{done}, W ′

1
⌣K ′′ W

′, get_clt(T2 (1..i + 1)) = get_clt(T i+1
3

).

Also, if (W1, (σ
′
c ,Σ
′
1
,K ′)) p

T2 (i+1)
−−−−−→ abort, then there exists an extension T i+1

3
of T i

3

such that (let Γ in C1 ∥ . . . ∥ Cn , (σc ,Σ,})) p
T i+1
3

−−−→ ∗ abort and get_clt(T2 (1..i + 1)) =
get_clt(T i+1

3
).

To prove the claim, we make a case-split on the derivation of T2 (i + 1).

• If T2 (i + 1) is a client event, then we could generate the same client event at the next step of

(W , (σ ′c ,Σ
′,K ′)).

• If T2 (i + 1) is an invocation event, then we could generate the same invocation event at the

next step of (W , (σ ′c ,Σ
′,K ′)).

• If T2 (i + 1) is an object event and the step is executing while (done){}, then we execute zero

step of (W , (σ ′c ,Σ
′,K ′)) (that is, T i+1

3
= T i

3
).

• If T2 (i + 1) is an object event and the step is executing await(B ∧ ¬done)){C ; done := true; },
then we execute one step of (W , (σ ′c ,Σ

′,K ′)) and that step is executing await(B){C}.
• If T2 (i + 1) is an object event and the step is executing done := false, then we execute zero

step of (W , (σ ′c ,Σ
′,K ′)) (that is, T i+1

3
= T i

3
).

• IfT2 (i + 1) is a return event, then we could generate the same return event at the next step of

(W , (σ ′c ,Σ
′,K ′)).

Thus E ∈ OJ(let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})K and we are done. �

Proof of Lemma A.38. Similar to the proof of Lemma A.14. For any n, σ , Σ and T̂o such that

T̂o ∈ T
o

ω JΠ,σK, sfair-o(T̂o ) and φ (σ ) = Σ, suppose

¬abt(T̂o ) and ¬prog-p(T̂o ) and ¬well-blocked-o(T̂o , (Γ,Σ)) .

Since T̂o ∈ T
o

ω JΠ,σK, we know there exist n and T̂c such that

T̂c ∈ T
c

ω JMGCp1n ,σMGC(n)K, get_hist(T̂c ) = get_hist(T̂o ), n = tnum(T̂o ),

¬abt(T̂c ), sfair-c(T̂c ), fin_coherent(T̂c ,T̂o ) .

By Composition Theorem A.2, we know there exists T such that

T ∈ TωJlet Π inMGCp1n , (σMGC(n) ,σ ,})K, T̂c = get_clt(T ), T̂o = get_obj(T ).

Since sfair-o(T̂o ) and sfair-c(T̂c ), by Lemma A.7, we know

sfair(T ).

Since φ (σ ) = Σ and Π ⊑sfairwrPDF (φ )
wrsfairPDF (Γ), we know:

OsfairJ(let Π in MGCp1n ), (σMGC(n) ,σ )K ⊆
OsfairJ(let wrsfairPDF (Γ) in MGCp1n ), (σMGC(n) ,Σ ⊎ {done ❀ false})K .
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Thus there exists T ′ such that

T ′ ∈ TωJ(let wrsfairPDF (Γ) in MGCp1n ), (σMGC(n) ,Σ ⊎ {done ❀ false},})K ,
sfair(T ′) and get_obsv(T ′) = get_obsv(T ) .

Also, by the definition of MGCp1n and the operational semantics, we can construct T1 and an

execution such that

T1 ∈ TωJ(let wrsfairPDF (Γ) in MGCp1n ), (σMGC(n) ,Σ ⊎ {done ❀ false},})K,
sfair(T1), get_obsv(T1) = E, get_hist(T ) = get_hist(T1).

By Decomposition Theorem A.1, we know there exists T̂1 such that

T̂1 ∈ T
o

ω JwrsfairPDF (Γ),Σ ⊎ {done ❀ false}K, T̂1 = get_obj(T1), n = tnum(T̂1).

Since sfair(T1), by Lemma A.6, we know

sfair-o(T̂1).

Since T̂1 = get_obj(T1), T̂o = get_obj(T ) and get_hist(T ) = get_hist(T1), we know

get_hist(T̂o ) = get_hist(T̂1) .

Since n = tnum(T̂o ) and n = tnum(T̂1), we know

tnum(T̂o ) = tnum(T̂1) .

Since ¬prog-p(T̂o ) and get_hist(T̂o ) = get_hist(T̂1), we know

∃e . e ∈ pend_inv(T̂1) ∧ (( |T̂1 | , ω) ∨ ∃i . ∀j ≥ i . ¬is_ret(evt(T̂1 (j )))) .

Since sfair-o(T̂1), we know

∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t) ∨ (t ∈ bset(last(T̂1))) ∨ e-a-dis(t,T̂1) ∨ ( |(T̂1 |t) | = ω) .

Thus, by the operational semantics, we know

|T̂1 | = ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1) ∨ ( |(T̂1 |tid(e ) ) | = ω))

∧ (∃i . ∀j ≥ i . ¬is_ret(evt(T̂1 (j )))) ,

|T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))) .

By Lemma A.40, we know there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1),

|T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a )),
|T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))).

Thus well-blocked-o(T̂o , (Γ,Σ)) holds, which contradicts our assumption. Thus we are done. �

Lemma A.40. If T̂1 ∈ T
o

ω JwrsfairPDF (Γ),Σ ⊎ {done ❀ false}K and |T̂1 | = ω =⇒ (∀e . e ∈

pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1) ∨ ( |(T̂1 |tid(e ) ) | = ω)) ∧ (∃i . ∀j ≥ i . ¬is_ret(evt(T̂1 (j ))))
and |T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))), then there exists T̂a such

that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1),

|T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a )),
|T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))).

Proof. Since T̂1 ∈ T
o

ω JwrsfairPDF (Γ),Σ ⊎ {done ❀ false}K, we know there exist n, T̂ and C̃0 such

that T̂1 = ((spawn,n),∅) ::get_obj(T̂ ) and
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(C̃0, (Σ ⊎ {done ❀ false},}))
T̂
�7−→ω

wrsfairPDF (Γ)
· or (C̃0, (Σ,}))

T̂
�7−→∗

wrsfairPDF (Γ)
abort or

∃C̃ ′
1
,Σ′

1
,K ′

1
. ((C̃0, (Σ,}))

T̂
�7−→∗

wrsfairPDF (Γ)
(C̃ ′

1
, (Σ′

1
,K ′

1
))) ∧ ¬(∃̂ι. (C̃ ′

1
, (Σ′

1
,K ′

1
))

ι̂
�7−→wrsfairPDF (Γ)

_).

Below we only consider the case when |T̂ | = ω. Proof for the case when |T̂ | , ω is similar. We

construct the trace T̂a such that ((spawn,n),∅) ::get_obj(T̂a ) satisfies the desired properties. The

idea is to construct a simulation between the executions. Informally, our construction is similar to

the one in the proof of Lemma A.37.

Then, suppose |T̂a | = ω. By the construction of T̂a , we know |T̂1 | = ω. For any e ∈ pend_inv(T̂a )
and t = tid(e ), by the operational semantics and the code of Γ, we know |(T̂a |t) | , ω. Since

get_hist(T̂a ) = get_hist(T̂1), we know e ∈ pend_inv(T̂1). Thus e-a-dis(t,T̂1)) or |(T̂1 |t) | = ω holds.

• |(T̂1 |t) | = ω holds. Suppose the configurations deriving the trace T̂1 are

(C̃0, (σ0,K0)), (C̃1, (σ1,K1)), (C̃2, (σ2,K2)), . . ., then there exist i , B, C and E such that

∀j ≥ i . C̃j |t = E[while (done){} ].

However, since ∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1) ∨ ( |(T̂1 |tid(e ) ) | = ω) and

∃i ′. ∀j ′ ≥ i ′. ¬is_ret(evt(T̂1 (j ′))), we know there exists i1 ≥ i such that

∀j1 ≥ i1. (σj1 ,Kj1 (t)) |= ¬done .

Thus it is impossible to have ∀j ≥ i . C̃j |t = E[while (done){} ].

• e-a-dis(t,T̂1)) holds. Suppose the configurations deriving the trace T̂1 are

(C̃0, (σ0,K0)), (C̃1, (σ1,K1)), (C̃2, (σ2,K2)), . . ., then there exist i , B, C and E such that

∀j ≥ i . C̃j |t = E[ await(B ∧ ¬done){C; done := true; } ],
and ∀j ≥ i . ¬((σj ,Kj (t)) |= (B ∧ ¬done)).

Since ∃i ′. ∀j ′ ≥ i ′. ¬is_ret(evt(T̂1 (j ′))), we know there exists i1 ≥ i such that

∀j1 ≥ i1. ¬((σj1 ,Kj1 (t)) |= B) .

Thus e-a-dis(t,T̂a ).

Thus we are done. �

Proof of Lemma A.39. The key is to show the following (A.5).

For any n, C1, . . . , Cn , σc , σ , Σ, T and Ta such that φ (σ ) = Σ,
if T ∈ TωJlet Π in C1 ∥ . . . ∥ Cn , (σc ,σ ,})K, ¬abt(T ) and sfair(T ), then there exists

Ta such that Ta ∈ TωJlet wrsfairPDF (Γ) in C1 ∥ . . . ∥ Cn , (σc ,Σ ⊎ {done ❀ false},})K,
get_obsv(T ) = get_obsv(Ta ) and sfair(Ta ).

(A.5)

Since T ∈ TωJlet Π in C1 ∥ . . . ∥Cn , (σc ,σ ,})K and ¬abt(T ), by Decomposition Theorem A.1, we

know there exist T̂c and T̂o such that

T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, T̂o ∈ T
o

ω JΠ,σK,
get_hist(T̂c ) = get_hist(T̂o ), T̂c = get_clt(T ), T̂o = get_obj(T ), n = tnum(T̂o ).

Since sfair(T ), by Lemmas A.5 and A.6, we know

sfair-c(T̂c ) and sfair-o(T̂o ).

Thus we know

( |T̂c | , ω) =⇒ ∀t ∈ [1..tnum(T̂c )]. term-c(T̂c |t) ∨ t ∈ bset(last(T̂c )) .

Since PDF-Osfair
φ,Γ (Π), we know prog-p(T̂o ) ∨ well-blocked-o(T̂o , (Γ,Σ)) holds.
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• prog-p(T̂o ) holds. Since Π ⊑finφ Γ, we know

H JΠ,σK ⊆ H JΓ,ΣK.

By Lemma A.34, we know there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂a ) = get_hist(T̂o ), tnum(T̂a ) = tnum(T̂o ).

By Lemma A.41, we know there exists T̂1 such that

T̂1 ∈ T
o

ω JwrsfairPDF (Γ),Σ ⊎ {done ❀ false}K,
get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1), sfair-o(T̂1).

Thus get_hist(T̂c ) = get_hist(T̂1), n = tnum(T̂1) and ¬abt(T̂1). Thus

( |T̂1 | , ω) =⇒ ∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t) ∨ (t ∈ bset(last(T̂1))).

Thus fin_coherent(T̂c ,T̂1) holds. By Composition Theorem A.2, we know there existsT1 such
that

T1 ∈ TωJlet wrsfairPDF (Γ) in C1 ∥ . . . ∥Cn , (σc ,Σ ⊎ {done ❀ false},})K,
T̂c = get_clt(T1), T̂1 = get_obj(T1).

Thus

get_obsv(T ) = get_obsv(T1).

Then, by Lemma A.7, we know

sfair(T1).

• well-blocked-o(T̂o , (Γ,Σ)) holds. Thus there exists T̂a such that

T̂a ∈ T
o

ω JΓ,ΣK, get_hist(T̂ ) = get_hist(T̂a ), tnum(T̂ ) = tnum(T̂a ),

|T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a )),
|T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))).

By Lemma A.42, we know there exists T̂1 such that

T̂1 ∈ T
o

ω JwrsfairPDF (Γ),Σ ⊎ {done ❀ false}K, get_hist(T̂a ) = get_hist(T̂1),
tnum(T̂a ) = tnum(T̂1),

|T̂1 | = ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1) ∨ ( |(T̂1 |tid(e ) ) | = ω)),

|T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))).

Thus get_hist(T̂c ) = get_hist(T̂1), n = tnum(T̂1) and ¬abt(T̂1). Also we know

( |T̂1 | , ω) =⇒ ∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t) ∨ t ∈ bset(last(T̂1)) .

Thus fin_coherent(T̂c ,T̂1) holds. By Composition Theorem A.2, we know there existsT1 such
that

T1 ∈ TωJlet wrsfairPDF (Γ) in C1 ∥ . . . ∥Cn , (σc ,Σ ⊎ {done ❀ false},})K,
T̂c = get_clt(T1), T̂1 = get_obj(T1).

Thus

get_obsv(T ) = get_obsv(T1).

By Lemma A.21, we know

sfair-o(T̂1).

Then, by Lemma A.7, we know

sfair(T1).

Thus we are done. �
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LemmaA.41. If T̂a ∈ T
o

ω JΓ,ΣK and prog-p(T̂a ), then there exists T̂1 such that T̂1 ∈ T o

ω JwrsfairPDF (Γ),Σ⊎

{done ❀ false}K, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1) and sfair-o(T̂1).

Proof. Similar to the proof of Lemma A.42, we can construct the trace T̂1 such that T̂1 ∈

T o
ω JwrsfairPDF (Γ),Σ ⊎ {done ❀ false}K, get_hist(T̂a ) = get_hist(T̂1) and tnum(T̂a ) = tnum(T̂1). Since

prog-p(T̂a ), we know prog-p(T̂1).
Suppose |T̂1 | , ω. Since prog-p(T̂1), we know pend_inv(T̂1) = ∅. Thus

( |T̂1 | , ω) =⇒ ∀t ∈ [1..tnum(T̂1)]. term-o(T̂1 |t).

Suppose |T̂1 | = ω. For any t ∈ [1..tnum(T̂1)], we know either |(T̂1 |t) | = ω or |(T̂1 |t) | , ω. Suppose

|(T̂1 |t) | , ω. Then, since T̂1 ∈ T
o

ω JwrsfairPDF (Γ),Σ ⊎ {done ❀ false}K, we know

|(T̂1 |t) | = 0 ∨ is_ret(evt(last(T̂1 |t))) ∨ is_inv(evt(last(T̂1 |t))) ∨ evt(last(T̂1 |t)) = (t,obj).

If |(T̂1 |t) | = 0∨ is_ret(evt(last(T̂1 |t))) holds, then sfair-o(T̂1) holds. Otherwise, we know there exists

e such that e ∈ pend_inv(T̂1 |t). By the construction of T̂1, we know |(T̂1 |t) | = ω holds, which

contradicts the assumption. Thus we are done. �

LemmaA.42. If T̂a ∈ T
o

ω JΓ,ΣK and |T̂a | = ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ e-a-dis(tid(e ),T̂a ))
and |T̂a | , ω =⇒ (∀e . e ∈ pend_inv(T̂a ) =⇒ tid(e ) ∈ bset(last(T̂a ))), then there exists T̂1 such
that

T̂1 ∈ T
o

ω JwrsfairPDF (Γ),Σ ⊎ {listid ❀ ϵ }K, get_hist(T̂a ) = get_hist(T̂1), tnum(T̂a ) = tnum(T̂1),

|T̂1 | = ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ e-a-dis(tid(e ),T̂1) ∨ ( |(T̂1 |tid(e ) ) | = ω)),

|T̂1 | , ω =⇒ (∀e . e ∈ pend_inv(T̂1) =⇒ tid(e ) ∈ bset(last(T̂1))).

Proof. Since T̂a ∈ T
o

ω JΓ,ΣK, we know there exist n, T̂ and C̃0 such that T̂a = ((spawn,n),∅) ::
get_obj(T̂ ) and

(C̃0, (Σ,}))
T̂
�7−→ω

Γ · or (C̃0, (Σ,}))
T̂
�7−→∗Γ abort or

∃C̃ ′,Σ′,K ′. ((C̃0, (Σ,}))
T̂
�7−→∗Γ (C̃

′, (Σ′,K ′))) ∧ ¬(∃̂ι. (C̃ ′, (Σ′,K ′))
ι̂
�7−→ Γ _).

Below we only consider the case when |T̂ | = ω. Proof for the case when |T̂ | , ω is similar. Let

Sp = {(i, t) | ∃e . e ∈ pend_inv(T̂ ) ∧ t = tid(e ) ∧ (e = evt(T̂ (i )))}.

We construct the trace T̂1 such that ((spawn,n),∅) :: get_obj(T̂1) satisfies the desired properties.

The idea is to construct a simulation between the executions. Informally, our construction of T̂1
considers every prefix T̂ (1..i ) of T̂ and builds traces T̂ i

1
and their derivations for T̂ i

1
. The resulting

series are such that for i < j , the derivation of T̂ i
1
is a prefix of that of T̂ j

1
, which also implies that the

trace T̂ i
1
is a prefix of T̂ j

1
. Because of this, we could get a simulation relation between the executions,

and the limit derivation and the limit trace are the desired T̂1 and the corresponding derivation.

The following claim lies at the core of our construction:

Consider a prefix T̂ (1..i ) of T̂ , the trace T̂ i
1
and C̃1, C̃ , Σ

′
1
, Σ′, K ′ such that
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(C̃0, (Σ,})) �p
T̂ (1..i )
−−−−−−→∗Γ (C̃, (Σ

′,K ′)),

(C̃0, (Σ ⊎ {done ❀ false},})) �p
T̂ i
1

−−→∗
wrsfairPDF (Γ)

(C̃1, (Σ
′
1
,K ′)),

Σ′
1
= Σ′ ⊎ {done ❀ false},

C̃ ⌣K ′ C̃1, get_hist(T̂ (1..i )) = get_hist(T̂ i
1
).

Here C̃ ⌣K ′ C̃1 requires the following hold:

∀t. (K ′(t) = ◦) =⇒ (C̃1 |t = C̃ |t),

∀t. (K ′(t) , ◦) =⇒ (C̃ |t = C̃1 |t) ∨

∃B,C,E. (C̃ |t = (await(B){C}; return E)) ∧ (C̃1 |t = (wrsfairPDF (await(B){C}); return E)) ∨

∃E. (C̃ |t = return E) ∧ (C̃1 |t = (while (done){}; return E)).

If (C̃, (Σ′,K ′)) �p
T̂ (i+1)
−−−−−→ Γ (C̃

′, (Σ′′,K ′′)), then there exist C̃ ′
1
, Σ′′

1
and an extension T̂ i+1

1

of T̂ i
1
with the corresponding derivation such that

(C̃0, (Σ ⊎ {done ❀ false}, ,})) �p
T̂ i+1
1

−−−−→∗
wrsfairPDF (Γ)

(C̃ ′
1
, (Σ′′

1
,K ′′)),

Σ′′
1
= Σ′′ ⊎ {done ❀ false},

C̃ ′ ⌣K ′′ C̃
′
1
, get_hist(T̂ (1..i + 1)) = get_hist(T̂ i+1

1
).

Also, if (C̃, (Σ′,K ′)) �p
T̂ (i+1)
−−−−−→ Γ abort, then there exists an extension T̂ i+1

1
of T̂ i

1
such

that (C̃0, (Σ ⊎ {done ❀ false}, ,})) �p
T̂ i+1
1

−−−→ ∗

wrsfairPDF (Γ)
abort and get_hist(T̂ (1..i + 1)) =

get_hist(T̂ i+1
1

).

To prove the claim, we make a case-split on the derivation of T̂ (i + 1).

• If T̂ (i + 1) is an abort event, then we could generate the same abort event at the next step of

(C̃1, (Σ
′
1
,K ′)).

• If T̂ (i + 1) is a client event, then we could generate the same client event at the next step of

(C̃1, (Σ
′
1
,K ′)). If ∀j > i . is_clt(T̂ (j )) holds, then for each thread t′ ∈ Sp , we infinitely often

execute the while loop (whose boolean condition must be continuously evaluated to true) of
wrsfairPDF (await(B){C}) of the thread t′.
• If T̂ (i + 1) is an invocation event of thread t, then we could generate the same invocation

event at the next step of (C̃1, (Σ
′
1
,K ′)).

• If T̂ (i + 1) is an object event and the step is executing await(B){C} of thread t, then we

first execute the while-loop (whose boolean condition must be evaluated to false) and the

await steps of wrsfairPDF (await(B){C}) from (C̃1, (Σ
′
1
,K ′)). Then, for each thread t′ such that

∃i ′ ≤ i . (i ′, t) ∈ Sp , we execute one iteration of the while loop (whose boolean condition

must be evaluated to true) of wrsfairPDF (await(B){C}) of the thread t′. Finally we execute the

step of resetting done of wrsfairPDF (await(B){C}) of thread t.
• If T̂ (i + 1) is a return event, then we execute the second while-loop (whose boolean condition

must be evaluated to false) of wrsfairPDF (await(B){C}) and the following return command of

thread t. We could generate the same return event at the next step of (C̃1, (Σ
′
1
,K ′)).

By the construction, we are done. �
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(RelAssn) P ,Q , I ::= B | own(x ) | emp | E 7→ E | E Z⇒ E | TpU | P ∗Q | P ∧Q | P ∨Q | . . .

(FullAssn) p,q, J ::= P | arem(C ) | ♦(E) | �(Ek , . . . ,E1) | ⌊p⌋♦ | ⌊p⌋a | p ∗ q | p ∧ q | . . .

(RelAct) R,G ::= P nk Q | [P] | ⌊G⌋0 | D | G ∗G | G ∧G | G ∨G | . . .

(DAct) D ::= P ❀ Q | ∀x .D | D ∧ D

Fig. 16. Syntax of assertions. (We highlight the constructs which are new here if compared with Fig. 9.)

B FULL LOGIC AND SOUNDNESS PROOFS
B.1 LRG-style program logic
We have explained the basic ideas and key inference rules of our program logic in Sec. 7. In this

section we give the full version, which extends the advanced Rely-Guarantee-based logic LRG [Feng

2009] to support dynamic allocation and ownership transfer. The top level judgment is now in the

form of D,R,G, I ⊢ {P }Π : Γ. Here the fence I is used to determine the boundary of the shared

memory following LRG [Feng 2009]. Just like P , I is also a relational assertion specifying the

consistency relation between the concrete data representation and the abstract value.

B.1.1 Assertions. The full set of the syntax of the assertions is given in Fig. 16. We highlight the

constructs which are not shown in Fig. 9. Following LRG [Feng 2009], we treat program variables as

resources [Parkinson et al. 2006] and use own(x ) for the ownership of the program variable x . We

use ⌊p⌋♦ to ignore the descriptions in p about the number of ♦-tokens. ⌊p⌋♦ will be useful when we

want to hide the ♦-tokens that are introduced for the proofs of while-loops. Similarly, ⌊p⌋a ignores
the descriptions in p about arem(C ). It will be used in the inference rule for return commands.

Fig. 17 shows the semantics of assertions. Fig. 18 defines the transition levels and the ordering

over token numbers. Fig. 19 shows the definitions ofwffAct(R,D), stability and “view shifts” (which

execute the abstract code). These definitions are the same as in LiLi [Liang and Feng 2016]. The

syntactic sugars Id, Emp and True represent arbitrary identity transitions, empty transitions and

arbitrary transitions respectively.

Fence. Since we logically split states into local and shared parts as in LRG [Feng 2009], we need

a precise invariant I to uniquely determine the boundary between local and shared resources.

We define the fence I ◃G in Fig. 17(c), which says that the transition G must be made within the

boundary specified by I . Here Precise(I ) follows its usual meaning as in separation logic but is now

interpreted over relational states. The need of fence I ◃ {R,G} is inherited from LRG. It is orthogonal

to the problems studied in this paper, and readers who are unfamiliar with LRG can safely ignore it.

B.1.2 Inference rules. Figure 20 presents the complete set of inference rules. We have explained

the obj, whl, await-w and await-s rules in Sec. 7. The slight modifications here are only to

distinguish shared and local state assertions. For instance, R andG should describe transitions over

shared states only, and be fenced by I .
The await-w and await-s rules have the premise D,[I ],G, I ⊢ {p ∧ B}⟨C⟩{q}, which can be

derived using the atom rule. The atom rule allows us to logically execute the abstract code

simultaneously with every concrete step. We use ⊢ [p]C[q′] to represent the total correctness of

C in sequential separation logic. The corresponding rules are standard and elided here. We use

q′ Vk q (defined in Fig. 19) for the zero or multiple-step executions from the abstract code specified

by q′ to the code specified by q. It also requires the number of �-tokens at level k to be decreased if

k ≥ 1. That is, the current thread should lose �-tokens when it performs a level-k action that may

delay other threads. The atom rule allows us to execute zero-or-more steps of the abstract code
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((s,h), (s,h)) |= B iff JBKs⊎s = true
((s,h), (s,h)) |= own(x ) iff dom(s ⊎ s) = {x }

((s,h), (s,h)) |= emp iff dom(h) = dom(h) = ∅

((s,h), (s,h)) |= E1 7→ E2 iff h = {JE1Ks⊎s ❀ JE2Ks⊎s}

((s,h), (s,h)) |= E1 Z⇒ E2 iff h = {JE1Ks⊎s ❀ JE2Ks⊎s}

S |= P ∗Q iff ∃S1,S2. (S =S1 ⊎S2) ∧ (S1 |= P ) ∧ (S2 |= Q )

(σ ,Σ) ⊎ (σ ′,Σ′)
def

= (σ ⊎ σ ′,Σ ⊎ Σ′) where (s,h)⊎ (s ′,h′)
def

= (s⊎s ′,h⊎h′)

(a) Semantics of relational state assertions P and Q .

(S, (u,w ),C ) |= P iff S |= P

(S, (u,w ),C ) |= arem(C ′) iff C = C ′

(S, (u,w ),C ) |= ♦(E) iff ∃n. (JEKS.s = n) ∧ (n ≤ w )

(S, (u,w ),C ) |= �(Ek , . . . ,E1) iff (JEk KS.s , . . . ,JE1KS.s ) ≤ u

(S, (u,w ),C ) |= ⌊p⌋♦ iff ∃w ′. (S, (u,w ′),C ) |= p

(S, (u,w ),C ) |= ⌊p⌋a iff ∃C ′. (S, (u,w ),C ′) |= p

S |= TpU iff ∃u,w ,C . (S, (u,w ),C ) |= p

C ⊎C ′
def

=

{
C ′ if C = skip
C if C ′ = skip

(S, (u,w ),C ) ⊎ (S′, (u ′,w ′),C ′)
def

=

(S⊎S′, (u+u ′,w+w ′),C⊎C ′)

(b) Semantics of full assertions p and q.

(S,S′) |= P nk ′ Q iff (S |= P ) ∧ (S′ |= Q )

(S,S′) |= [P] iff (S′ =S) ∧ (S |= P )

(S,S′) |= G1 ∗G2 iff ∃S1,S2,S
′
1
,S′

2
.S =S1 ⊎S2 ∧S

′ =S′
1
⊎S′

2

∧ ((S1,S
′
1
) |= G1) ∧ ((S2,S

′
2
) |= G2)

Emp
def

= emp n emp True
def

= true n true Id
def

= [true]

I ◃G iff ([I ]⇒ G ) ∧ (G ⇒ (I n I )) ∧ Precise(I )

(c) Semantics of relational rely/guarantee assertions R and G.

(S,S′) |= P ❀ Q iff (S |= P ) =⇒ (S′ |= Q )

(S,S′) |= ∀x .D iff ∀n. (S{x ❀ n},S′{x ❀ n}) |= D

(S,S′) |= D1 ∧ D2 iff ((S,S′) |= D1) ∧ ((S,S′) |= D2)

Enabled(P ❀ Q )
def

= P

Enabled(∀x .D)
def

= ∃x . Enabled(D)

Enabled(D1 ∧ D2)
def

= Enabled(D1) ∨ Enabled(D2)

⟨D⟩
def

= D ∧ (Enabled(D) n true)

[D]

def

= Enabled(D) ❀ Enabled(D)

D ′ 6 D iff (Enabled(D ′) ⇒ Enabled(D)) ∧ (D ⇒ D ′)

(d) Semantics of definite actions D.

Fig. 17. Semantics of assertions.

with the execution of C , as long as the overall transition (including the abstract steps, the concrete
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L ((S,S′),P nk Q )
def

=

{
k if (S,S′) |= P nk Q
maxL otherwise

L ((S,S′),[P])
def

=

{
0 if (S,S′) |= [P]
maxL otherwise

L ((S,S′),D)
def

=

{
0 if (S,S′) |= D
maxL otherwise

L ((S,S′),R ∧ R′)
def

= max(L ((S,S′),R),L ((S,S′),R′))

L ((S,S′),R ∨ R′)
def

= min(L ((S,S′),R),L ((S,S′),R′))

L ((S,S′), ⌊R⌋0)
def

=

{
0 if L ((S,S′),R) = 0

maxL otherwise

L ((S,S′),G1 ∗G2)
def

= min{k | ∃S1,S2,S
′
1
,S′

2
. (S =S1 ⊎S2) ∧ (S′ =S′

1
⊎S′

2
)

∧ k = max (L ((S1,S
′
1
),G1),L ((S2,S

′
2
),G2))}

(S,S′) |= ⌊R⌋0 iff L ((S,S′),R) = 0

(S,S′,k ) |= R iff L ((S,S′),R) = k and k < maxL

R ⇒ R′ iff ∀S,S′,k . ((S,S′,k ) |= R) =⇒ ∃k ′ ≤ k . (S,S′,k ′) |= R′

u ::= (nk , . . . ,n1) (1 ≤ k < maxL)

(n′m , . . . ,n
′
1
) <k (nm , . . . ,n1) iff (∀i > k . (n′i = ni )) ∧ (n′k < nk )

(n′m , . . . ,n
′
1
) ≈k (nm , . . . ,n1) iff (∀i ≥ k . (n′i = ni ))

u < u ′ iff ∃k . u <k u ′ u ≤ u ′ iff u < u ′ ∨ u = u ′

(u,w ) <k (u ′,w ′) iff (u <k u ′) ∨ (k = 0 ∧ u = u ′ ∧w = w ′)

(u,w ) ≈k (u ′,w ′) iff u ≈k u ′ ∧ (k = 0 =⇒ w = w ′)

Fig. 18. Levels of state transitions and tokens.

wffAct(R,D) iff ∀t. ⌊Rt⌋0 ⇒ [Dt] ∧ (∀t′ , t. [Dt′] ∨ Dt′ )

p Vk q iff ∀t,σ ,Σ,u,w ,C,ΣF .
(((σ ,Σ), (u,w ),C ) |= p) ∧ (Σ⊥ΣF ) =⇒ ∃u

′,w ′,C ′,Σ′.
((C,Σ⊎ΣF ) −_∗t (C

′,Σ′⊎ΣF )) ∧ (((σ ,Σ′), (u ′,w ′),C ′) |= q)
∧ (u ′,w ′) <k (u,w )

p
G
=⇒ q iff ∀t,σ ,Σ,u,w ,C,ΣF .

(((σ ,Σ), (u,w ),C ) |= p) ∧ (Σ⊥ΣF ) =⇒ ∃k,u
′,w ′,C ′,Σ′.

((C,Σ⊎ΣF ) −_∗t (C
′,Σ′⊎ΣF )) ∧ (((σ ,Σ), (σ ,Σ′),k ) |= G ∗ True)

∧ (((σ ,Σ′), (u ′,w ′),C ′) |= q) ∧ (u ′,w ′) <k (u,w )

Sta(p,R) iff ∀S,S′,u,w ,C,k .
((S, (u,w ),C ) |= p) ∧ ((S,S′,k ) |= R) =⇒ ∃u ′,w ′.
((S′, (u ′,w ′),C ) |= p) ∧ ((u ′,w ′) ≈k (u,w ))

Fig. 19. Key auxiliary definitions for inference rules.

steps and the level k) satisfies the relational guarantee G. We can lift C’s total correctness to the
concurrent setting as long as the environment consists of identity transitions only.

, Vol. 1, No. 1, Article . Publication date: January 2018.



:64 Hongjin Liang and Xinyu Feng

for all f ∈ dom(Π) : Π( f ) = (P ,x ,C ) Γ( f ) = (P ′,y,C ′) P ⇒ (P ∧ P ′) ∨ (¬P ∧ ¬P ′)
D,R,G ⊢ {(P ∧ P ) ∗ own(x ,y) ∧ (x = y) ∧ arem(C ′) ∧ �(Ek , . . . ,E1)}C {P ∗ own(x ,y) ∧ arem(skip)}
∀t, t′. t , t′ =⇒ Gt ⇒ Rt′ wffAct(R,D) P ⇒ ¬Enabled(D) P ∨ Enabled(D) ⇒ I

D,R,G, I ⊢ {P }Π : Γ
(obj)

p∧B ⇒ p′ p∧B∧ (Enabled(D)∨Q ) ∗ true⇒ p′∗ (♦∧emp) D,R,G, I ⊢ {p′}C{p}

p ⇒ (B = B) ∗ I J ∨Q ⇒ I Sta(J ,R ∨G ) D ′ 6 D wffAct(R,D ′)

p ∧ B ⇒ J ∗ true ∧ arem(await(B′){C ′}) J ⇒ (R,G : D ′
f
−−→ (Q ,B′))

D,R,G, I ⊢ {p}while (B){C}{p ∧ ¬B}
(whl)

p ∧ Enabled(D) ∗ true⇒ B D,[I ],G, I ⊢ {p ∧ B}⟨C⟩{q} Sta({p,q},R ∗ Id)

D ′ 6 D wffAct(R,D ′) p ⇒ ∃B′,C ′. arem(await(B′){C ′}) ∧ (R : D ′◦
f
−→ (B,B′))

D,R,G, I ⊢wfair {p}await(B){C}{q}
(await-w)

p ∧ Enabled(D) ∗ true⇒ B D,[I ],G, I ⊢ {p ∧ B}⟨C⟩{q} Sta({p,q},R ∗ Id)

D ′ 6 D wffAct(R,D ′) p ⇒ ∃B′,C ′. arem(await(B′){C ′}) ∧ (R : D ′•
f
−→ (B,B′))

D,R,G, I ⊢sfair {p}await(B){C}{q}
(await-s)

⊢ [p]C[q′] I ◃G p ∨ q ⇒ I ∗ true q′ Vk q (TpU nk TqU) ⇒ G ∗ True

D,[I ],G, I ⊢ {p}⟨C⟩{q}
(atom)

⊢ [p]C[q] Sta(r ,R ∗ Id) I ◃ {G,R} r ⇒ I ∗ true

D,R,G, I ⊢ {p ∗ r }C{q ∗ r }
(prim)

p ⇒ (E = E) ∗ I Sta(p,R ∗ Id) I ◃ {R,G}

D,R,G, I ⊢ {⌊p⌋a ∧ arem(return E)}return E{⌊p⌋a ∧ arem(skip)}
(ret)

D,R,G, I ⊢ {p}C1{r }
D,R,G, I ⊢ {r }C2{q}

D,R,G, I ⊢ {p}C1;C2{q}
(seq)

p ⇒ (B = B) ∗ I D,R,G, I ⊢ {p ∧ B}C1{q}
D,R,G, I ⊢ {p ∧ ¬B}C2{q}

D,R,G, I ⊢ {p}if (B) C1 else C2{q}
(if)

D,R,G, I ⊢ {p}C{q}

D,R,G, I ⊢ {⌊p⌋♦}C{⌊q⌋♦}
(hide-♦)

D,R,G, I ⊢ {p}C{q}

D,R,G, I ⊢ {p ∗ r }C{q ∗ r }
(frm)

p′
G
=⇒ p R′ ⇒ R q

G
=⇒ q′ G ⇒ G ′

D,R,G, I ⊢ {p}C{q} Enabled(D) ⇒ I wffAct(R,D)
p′ ∨ q′ ⇒ I ′ ∗ true I ′ ◃ {G ′,R′} Sta({p′,q′},R ∗ Id)

D,R′,G ′, I ′ ⊢ {p′}C{q′}
(csq)

D,R,G, I ⊢ {p}C{q}
x < fv(D,R,G, I )

D,R,G, I ⊢ {∃x . p}C{∃x . q}
(ex)

D,R,G, I ⊢ {p1}C{q1}
D,R,G, I ⊢ {p2}C{q2}

D,R,G, I ⊢ {p1 ∧ p2}C{q1 ∧ q2}
(conj)

D,R,G, I ⊢ {p1}C{q1}
D,R,G, I ⊢ {p2}C{q2}

D,R,G, I ⊢ {p1 ∨ p2}C{q1 ∨ q2}
(disj)

Fig. 20. LRG-style inference rules.
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Π ≼linφ Γ ∧ PSFwfairφ,Γ (Π) Π ≼linφ Γ ∧ PDFwfairφ,Γ (Π)Π ≼linφ Γ ∧ PSFsfairφ,Γ (Π) Π ≼linφ Γ ∧ PDFsfairφ,Γ (Π)

Π ⊑wfairφ̂ wrwfairPSF (Γ) Π ⊑wfairφ̂ wrwfairPDF (Γ)Π ⊑sfairφ̂ wrsfairPSF (Γ) Π ⊑sfairφ̂ wrsfairPDF (Γ)

∀C . |=χ {P }(let Π in C ) - (let Γ in C ) ∀C . |= \χ {P }(let Π in C ) - (let wr∗ (Γ) in C,Γ)

D,R,G |=χ {P }Π - Γ D,R,G |= \χ {P }Π - (Γ,wr∗ (Γ))

D,R,G |=χ {P }Π : Γ

D,R,G, I ⊢χ {P }Π : Γ

10 11 12 13

9876

54

(R ⇒ ⌊R⌋0) ∧ (G ⇒ ⌊G⌋0)
32

1

Fig. 21. Structures of logic soundness proofs.

The (csq) rule uses p ′
G
=⇒ p and q

G
=⇒ q′. The definition of p

G
=⇒ q is similar to p Vk q, as defined

in Fig. 19. In addition to executing the abstract code and decreasing the corresponding �-tokens,

p
G
=⇒ q also requires the overall transition to satisfy G.

B.2 Overview of the structures of soundness proofs
In the following sections, we prove Theorem 7.3 about the logic soundness. We first give an overview

of the proof structures. Notice that the two await rules actually give us two program logics, for

strongly fair and weakly fair scheduling respectively. So we need two definitions of the semantics,

D,R,G |=wfair {P }Π : Γ and D,R,G |=sfair {P }Π : Γ, for the two judgments for object verification.

On the other hand, our logics need to ensure four contextual refinements, each of which gives

us one combination of PSF/PDF and strong/weak fairness (by Abstraction Theorem). Thus the

soundness proofs go through four paths towards the final goals.

We show the proof structures in Fig. 21. Each proof path follows LiLi. The key in each path

is a termination-preserving simulation, which extends the simulation in LiLi to support partial

methods of objects, and await commands at both concrete and abstract levels. The logic ensures

that the concrete implementation Π is simulated by the abstraction generated by the wrapper. Then

we prove the simulation ensures the contextual refinement ⊑. In the diagram, we use “=⇒” for

implications and “⇐⇒” for equivalences.

The top at Fig. 21 shows our final goals: verifying linearizability Π ≼linP Γ, and the PSF/PDF

properties Progχφ,Γ (Π). By the Abstraction Theorem, we reduce the goals (see 10 , 11 , 12 and 13 in

Fig. 21) to verifying contextual refinements ⊑. Next we propose four simulations Π - Π′ as a proof
technique for the contextual refinement ⊑.

At the bottom of Fig. 21, we define semantics for our logic judgment D,R,G ⊢χ {P }Π : Γ
(χ ∈ {sfair,wfair}). Note that the logic uses the atomic Γ as specification. The judgment semantics

D,R,G |=χ {P }Π : Γ is also based on simulations, but it is much closer to the logic rules, which can

simplify the task of proving the validity of each rule in Fig. 20. It can be directly (see 2 and 3 )

translated to Π - Π′, where Π′ is either Γ (for PSF objects) or wr∗ (Γ) (for PDF objects). The special
wrapper wr∗ is defined similarly as wrsfairPDF .

All the formal definitions and detailed proofs are given in the following subsections.

• Section B.3 defines the judgments’ semantics:D,R,G |=χ {P }Π : Γ andD,R,G, I |=χ {p}C{q}.
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• Section B.4 shows the proofs of 1 of Fig. 21, i.e., the logic rules are sound with respect to the

judgment semantics.

• Section B.5 defines the local simulations - and shows the proofs of 2 and 3 of Fig. 21, i.e.,

the judgment semantics implies the simulations.

• Section B.6 and Section B.7 show the proofs of 4 and 5 of Fig. 21. Section B.6 lifts the local

simulations - to thread simulations, and Section B.7 defines the whole-program simulations

and proves the parallel compositionality.

• Section B.8 and Section B.9 show the proofs of 6 , 7 , 8 and 9 of Fig. 21, i.e., the simulations

imply the contextual refinements.

B.3 Judgment semantics
The judgment semantics D,R,G |=χ {P }Π : Γ (here χ ∈ {sfair,wfair}) is based on a simulation

between Π and Γ, parameterized with well-founded metrics: M , ξ , M and u. The metric M is to

ensure that the current thread t must fulfill its definite action Dt in a finite number of steps. If

thread t is blocked, the metric ξ specifies the set of the environment threads that t is waiting for.
It shrinks when an environment thread t′ finishes definite action Dt′ . The metricM corresponds

to the number of white tokens ♦, which is to ensure that thread t progresses on its own when ξ
becomes empty. The last metric u corresponds to the tuple of black tokens. It bounds the number

of actions made by thread t which could delay the progress of its environment threads.

Definition B.1. D,R,G |=χ {P }Π : Γ iff, for any f ∈ dom(Π), for any σ and Σ, for any t, if
Π( f ) = (P ,x ,C ), Γ( f ) = (P ′,y,C) and (σ ,Σ) |= (Pt ∧ Pt) ∗ own(x ) ∗ own(y) ∧ (x = y), there exist
four well-founded metrics u,M,M and aw, a boolean flag wb and two sets ξ ,ξa ∈P (ThrdID) such
that wb = false and

D,R,G |=
χ
t (C,σ )≼ (C,Σ) � (u,M,M ,wb,aw) ⇓ξ ,ξa (P ∗ own(x ) ∗ own(y)).

Here D,R,G |=
χ
t (C,σ )≼ (C,Σ) � (u,M,M ,wb,aw) ⇓ξ ,ξa Q is co-inductively defined as follows.

Whenever D,R,G |=
χ
t (C,σ )≼ (C,Σ) � (u,M,M ,wb,aw) ⇓ξ ,ξa Q holds, then the following hold:

(1)(a) Suppose σ = (s,h). Then ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If wb = false, then ξ = ∅. If wb = true, then ξ , ∅ ∨ Σ |= ¬en(C).
(d) If σ |= ¬en(C ) and Σ |= en(C), then ξa , ∅.
(e) If (σ ,Σ) |= Enabled(Dt) ∗ true, then σ |= en(C ).

(2) If C = E[ return E ], then there exists E such that

(a) C = (return E), and
(b) (σ ,Σ) |= Qt and JEKσ .s = JEKΣ.s , and
(c) ((σ ,Σ), (σ ,Σ),0) |= Gt ∗ True, and
(d) wb = false.

(3) For any σF , (C,σ ⊎ σF ) −̸_ t abort.
(4) For any C ′, σ ′′, σF and ΣF , if (C,σ ⊎ σF ) −_ t (C

′,σ ′′) and Σ⊥ΣF , then there exist σ ′, C′, Σ′,
k , u ′,M′,M ′, wb′, aw′, ξ ′ and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) (C,Σ ⊎ ΣF ) −_ ∗

t (C
′,Σ′ ⊎ ΣF ), and

(c) D,R,G |=
χ
t (C ′,σ ′)≼ (C′,Σ′) � (u ′,M′,M ′,wb′,aw′) ⇓ξ ′,ξ ′a Q , and

(d) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, and
(e) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andM′ < M,

or u ′ = u and k = 0 andM′ = M and wb
′ = wb = true and ξ ⊆ ξ ′; and
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(f) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, thenM ′ < M .

(5) For any k , σ ′ and Σ′, if ((σ ,Σ), (σ ′,Σ′),k ) |= Rt ∗ Id, then there exist u ′,M′,M ′, wb′, aw′, ξd ,
ξad , ξ

′
and ξ ′a such that

(a) D,R,G |=
χ
t (C,σ ′)≼ (C,Σ′) � (u ′,M′,M ′,wb′,aw′) ⇓ξ ′,ξ ′a Q , and

(b) u ′ ≈k u, and
(c) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and

k = 0 =⇒ M′ < M ∨ (M′ = M ∧ wb
′ = wb) and

k = 0 ∧ wb = true ∧ (ξd , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ M′ < M and

k = 0 ∧M′ = M ∧ wb
′ = wb = true =⇒ ξ\ξd ⊆ ξ ′, and

(d) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, thenM ′ ≤ M ; and

(e) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ is_await(C ) =⇒ ξa\ξad ⊆ ξ ′a and

k = 0 ∧ is_await(C ) ∧ (ξad , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ aw
′ < aw and

(χ = sfair) ∧ k = 0 ∧ is_await(C ) ∧ (σ |= ¬en(C )) ∧ (σ ′ |= ¬en(C )) =⇒ aw
′ ≤ aw and

(χ = wfair) ∧ k = 0 ∧ is_await(C ) =⇒ aw
′ ≤ aw.

Definition B.2. D,R,G |=χ {p}C{q} iff, for any σ , Σ,u,w andC, for any t, if ((σ ,Σ), (u,w ),C) |= pt,
then there exist aw and ξa such that

D,R,G |=
χ
t (C,σ )≼ (C,Σ) � (u, ((0,0), |C |), (0, |C |),aw,w ,height(C ),height(C )) ⇓∅,ξa q.

Here D,R,G |=
χ
t (C,σ ) ≼ (C,Σ) � (u,ws,ws,aw,w ,wk,H ) ⇓ξ ,ξa q is co-inductively defined as

follows.

Whenever D,R,G |=
χ
t (C,σ ) ≼ (C,Σ) � (u,ws,ws,aw,w ,wk,H ) ⇓ξ ,ξa q holds, then the following

hold:

(1)(a) Suppose σ = (s,h). Then ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If (σ ,Σ) |= Enabled(Dt) ∗ true, then σ |= en(C ).
(d) If σ |= ¬en(C ) and Σ |= en(C), then ξa , ∅.
(e) If wk = H , then ξ = ∅. If wk < H , then ξ , ∅ ∨ Σ |= ¬en(C).
(f) |ws| ≤ H and (1 ≤ wk ≤ |ws| − 1) ∨ (wk = H ).

(2) If C = skip, then for any ΣF such that Σ⊥ΣF , there exist C
′
and Σ′ such that

(a) (C,Σ ⊎ ΣF ) −_ ∗
t (C

′,Σ′ ⊎ ΣF ), and
(b) ((σ ,Σ′), (u,w ),C′) |= qt, and
(c) ws = ((0,0),0) and ws = (0,0) and wk = H and ξ = ∅, and
(d) ((σ ,Σ), (σ ,Σ′),0) |= Gt ∗ True.

(3) If C = E[ return E ], then there exists E such that

(a) C = (return E), and
(b) ((σ ,Σ), (u,w ),skip) |= qt and JEKσ .s = JEKΣ.s , and
(c) ((σ ,Σ), (σ ,Σ),0) |= Gt ∗ True, and
(d) wk = H .

(4) For any σF , (C,σ ⊎ σF ) −̸_ t abort.
(5) For any C ′, σ ′′, σF and ΣF , if (C,σ ⊎ σF ) −_ t (C

′,σ ′′), then there exist σ ′, C′, Σ′, k , u ′, ws′,
ws
′
, aw

′
,w ′, wk′, ξ ′ and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) (C,Σ ⊎ ΣF ) −_ ∗

t (C
′,Σ′ ⊎ ΣF ), and

(c) D,R,G |=
χ
t (C ′,σ ′)≼ (C′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, and

(d) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, and
(e) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′ <wk
H

ws,
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or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ < wk,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ = wk < H and ξ ⊆ ξ ′; and

(f) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′ <H ws.

(6) For any k , σ ′ and Σ′, if ((σ ,Σ), (σ ′,Σ′),k ) |= Rt ∗ Id, then there exist u ′, ws′, ws′, aw′,w ′, wk′,
ξd , ξad , ξ

′
and ξ ′a such that

(a) D,R,G |=
χ
t (C,σ ′)≼ (C,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, and

(b) u ′ ≈k u, and
k = 0 =⇒ w ′ = w , and

(c) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 =⇒ ws′ <wk

H
ws ∨ ws′ ≈wk

H
ws and

k = 0 ∧ wk < H ∧ (ξd , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ ws′ <wk
H

ws and
k = 0 ∧ (ξ\ξd , ∅ ∨ Σ′ |= ¬en(C)) =⇒ wk

′ ≤ wk, and

k = 0 ∧ wk
′ = wk =⇒ ξ\ξd ⊆ ξ ′, and

(d) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, then ws
′ ≤H ws; and

(e) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ is_await(C ) =⇒ ξa\ξad ⊆ ξ ′a and

k = 0 ∧ is_await(C ) ∧ (ξad , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ aw
′ < aw and

(χ = sfair) ∧ k = 0 ∧ is_await(C ) ∧ (σ |= ¬en(C )) ∧ (σ ′ |= ¬en(C )) =⇒ aw
′ ≤ aw and

(χ = wfair) ∧ k = 0 ∧ is_await(C ) =⇒ aw
′ ≤ aw.

Below we also define the semantics for the sequential judgment used in the atom rule. Note that

C only accesses the concrete memory σ , therefore we require the other components in the full state

(i.e., u,w , C and Σ) should remain unchanged during the execution of C .

Definition B.3 (SL judgment semantics, total correctness). |= [p]C[q] iff, for all σ , Σ, u, w and C,
for any t, if ((σ ,Σ), (u,w ),C) |= pt, the following are true:

(1) for any σ ′, if (C,σ ) −_ ∗
t (skip,σ

′), then ((σ ′,Σ), (u,w ),C) |= qt;

(2) (C,σ ) −̸_ ∗
t abort;

(3) (C,σ ) −̸_ω
t ·.

Lemma B.4. If ⊢ [p]C[q], then |= [p]C[q].

Definition B.5 (Locality).

Locality(C ) iff, for any σ1 and σ2, let σ = σ1 ⊎ σ2, then the following hold:

(1) (Safety monotonicity) If (C,σ1) −̸_ ∗
t abort, then (C,σ ) −̸_ ∗

t abort.
(2) (Termination monotonicity) If (C,σ1) −̸_ ∗

t abort and (C,σ1) −̸_ω
t ·, then (C,σ ) −̸_ω

t ·.

(3) (Frame property) For any n and σ ′, if (C,σ1) −̸_ ∗
t abort and (C,σ ) −_n

t (C
′,σ ′), then there

exists σ ′
1
such that σ ′ = σ ′

1
⊎ σ2 and (C,σ1) −_n

t (C
′,σ ′

1
).

B.3.1 Instantiating Metrics and Well-Founded Orders. The judgment semantics in Definition B.2

can be viewed as an instantiation of the simulation in Definition B.1. The key is to instantiate the

metricsM andM and the boolean flag wb in D,R,G |=
χ
t (C,σ )≼ (C,Σ) � (u,M,M ,wb,aw) ⇓ξ ,ξa Q .

The flag wb is instantiated as the testing wk , H . That is, wb = false if wk = H ; and wb = true
if wk , H .

The metricM is instantiated as follows.

(Metric) M ::= (ws,H )

(WfStack) ws,ws ::= (wn,n) | (wn,n) ::ws

(StkHeight) H ∈ Nat
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For each single thread, its metric ws is usually a list of (wn,n) pairs, where wn is the while-specific

metric (which is left to be instantiated later) and n is a natural number specifying the “code size” as

in Liang et al.’s work [Liang et al. 2014]. We let the threaded metric ws be a list (a stack actually) to

allow different while-specific metrics for nested loops. That is, when entering a loop, we can push

a (wn,n) pair to the ws stack; and when exiting the loop, we pop the pair out of ws.

The threaded metric ws follows the dictionary order. However, the usual dictionary order over

lists is not well-founded (consider B > AB > AAB > AAAB > . . . in a dictionary). To address this

issue, we introduce a bound of the list length (stack height),H , and define the well-founded order

≺H by requiring the length of the lists should be not larger thanH . Intuitively, the stack heightH

represents the maximal depth of nested loops, so it can be determined for any given program. The

well-founded ordersM ′ < M and ws
′ ≺H ws are defined as follows.

ws
′ ≺H ws H ′ = H

(ws′,H ′) < (ws,H )

ws
′ <H ws iff (ws′ ≺≺ ws) ∧ ( |ws′ | ≤ H ) ∧ ( |ws| ≤ H )

ws
′ ≤H ws iff (ws′ <H ws) ∨ (ws′ = ws)

(wn′,n′) < (wn,n)

(wn′,n′) ≺≺ (wn,n)

(wn′,n′) < (wn,n)

(wn′,n′) ::ws′
1
≺≺ (wn,n) ::ws1

(wn′,n′) = (wn,n) ws
′
1
≺≺ ws1

(wn′,n′) ::ws′
1
≺≺ (wn,n) ::ws1

(wn′,n′) < (wn,n)

(wn′,n′) ::ws′
1
≺≺ (wn,n)

(wn′,n′) ≤ (wn,n)

(wn′,n′) ≺≺ (wn,n) ::ws1

Here |ws| is the length of ws, which is defined as follows:

|(wn,n) | = 1

|(wn,n) ::ws| = 1 + |ws|

The well-founded order over the (wn,n) pairs is a usual dictionary order below, where the order

over wn is instantiated later depending on the type of wn.

(wn′,n′) < (wn,n) iff (wn′ < wn) ∨ (wn′ = wn ∧ n′ < n)

(wn′,n′) = (wn,n) iff (wn′ = wn) ∧ (n′ = n)

(wn′,n′) ≤ (wn,n) iff (wn′,n′) < (wn,n) ∨ (wn′,n′) = (wn,n)

Lemma B.6 (Well-foundedness). The relationsM ′ < M and ws
′ <H ws defined above are both

well-founded relations.

The metricM is instantiated as follows.

(Metric’) M ::= (ws,wk,H )

ws′ <wk
H

ws H ′ = H

(ws′,wk′,H ′) < (ws,wk,H )

ws′ ≈wk
H

ws wk
′ < wk H ′ = H

(ws′,wk′,H ′) < (ws,wk,H )

ws′ ≈wk
H

ws wk
′ = wk H ′ = H

(ws′,wk′,H ′) = (ws,wk,H )

ws′ <wk
H

ws iff (ws′ ≪wk ws) ∧ ( |ws′ | ≤ H ) ∧ ( |ws| ≤ H )

ws′ ≈wk
H

ws iff (ws′ ≈wk ws) ∧ ( |ws′ | ≤ H ) ∧ ( |ws| ≤ H )
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Here ws′ ≪wk ws is defined as follows.

(wn′,n′) < (wn,n) wk ≥ 1

(wn′,n′) ≪wk (wn,n)

wn
′ < wn

(wn′,n′) ≪0 (wn,n)

(wn′,n′) < (wn,n) wk ≥ 1

(wn′,n′) ::ws′
1
≪wk (wn,n) ::ws1

wn
′ < wn

(wn′,n′) ::ws′
1
≪0 (wn,n) ::ws1

(wn′,n′) = (wn,n) ws
′
1
≪wk

ws1

(wn′,n′) ::ws′
1
≪wk+1 (wn,n) ::ws1

(wn′,n′) < (wn,n) wk ≥ 1

(wn′,n′) ::ws′
1
≪wk (wn,n)

(wn′,n′) = (wn,n) wk ≥ 1

(wn′,n′) ≪wk (wn,n) ::ws1

wn
′ < wn

(wn′,n′) ::ws′
1
≪0 (wn,n)

wn
′ < wn

(wn′,n′) ≪0 (wn,n) ::ws1

And ws′ ≈wk ws is defined as follows.

(wn′,n′) = (wn,n) wk ≥ 1

(wn′,n′) ≈wk (wn,n)

wn
′ = wn

(wn′,n′) ≈0 (wn,n)

(wn′,n′) = (wn,n) ws
′
1
≈wk ws1

(wn′,n′) ::ws′
1
≈wk+1 (wn,n) ::ws1

wn
′ = wn

(wn′,n′) ::ws′
1
≈0 (wn,n) ::ws1

wn
′ = wn

(wn′,n′) ::ws′
1
≈wk (wn,n)

Height H . As we said, the stack height H represents the maximal depth of nested loops. For

any given program C , we can determine the stack height using a function height defined below.

height(skip) def

= 1

height(return E)
def

= 1

height(c )
def

= 1

height(await(B){C}) def

= 1

height(C1;C2)
def

= max{height(C1),height(C2)}

height(if (B) C1 else C2)
def

= max{height(C1),height(C2)}

height(while (B){C})
def

= height(C ) + 1

Initial code size. In Definition B.2, the judgment semantics initially takes the static code size |C |
defined below as the second dimension of ws and ws.

, Vol. 1, No. 1, Article . Publication date: January 2018.



Progress of Concurrent Objects with Partial Methods (Extended Version) :71

|skip| def

= 0

|return E |
def

= 1

|c |
def

= 1

|await(B){C}| def

= 1

|C1;C2 |
def

= |C1 | + |C2 | + 1

|if (B) C1 else C2 |
def

= max{|C1 |, |C2 |} + 1

|while (B){C}|
def

= 1

Example of ws. Below we use a simple example to show how we assign a proper ws to each state

during an execution. In the code below, we assign different labels to different layers of a nested

while loop. The initial code is while(i > 0) i--;. The loop is labeled with 1 and its body code is

labeled with 2. After the loop is unfolded, we use the syntax while to be distinguished from the

original while which has not been unfolded.

In the ws below, the first dimension specifies the number of iterations left to unfold, and the

second dimension specifies the “code size” at each layer.

C σ ws

1 while1(i > 0) i--2; i = 2 (0,1)

2 → i--2; while1(i > 0) i--2; i = 2 (0,0) :: (1,2)

3 → skip2; while1(i > 0) i--2; i = 1 (0,0) :: (1,1)

4 → while1(i > 0) i--2; i = 1 (0,0) :: (1,0)

5 → i--2; while1(i > 0) i--2; i = 1 (0,0) :: (0,2)

6 → skip2; while1(i > 0) i--2; i = 0 (0,0) :: (0,1)

7 → while1(i > 0) i--2; i = 0 (0,0) :: (0,0)

8 → skip1; i = 0 (0,0)

Initially, ws is (0,1): the first dimension is 0 because we have not started to unfold the loop, and

the second dimension is 1 because the code size of the whole loop is 1. After one step of the loop,

ws becomes (0,0) :: (1,2). Since we have unfolded the loop, the ws stack contains two pairs now. In

the second pair, the first dimension is 1 because the loop needs only one more iteration to finish

(i.e., we only need to unfold it one more time). Its second dimension is 2 because the size of the

loop body code is 2. After the next step, this dimension decreases. At the step of line 5, we unfold

the loop again. So the first dimension of the second pair decreases to 0, saying that we do not need

to unfold the loop anymore. Finally, at the step of line 8, the loop finishes, thus we pop out the

second pair of the ws stack.

B.4 Soundness of the inference rules
In this section, we prove Lemma B.7 by induction over the derivation.

Lemma B.7 ( 1 in Fig. 21). If D,R,G, I ⊢χ {P }Π : Γ, then D,R,G |=χ {P }Π : Γ.

Proof. By induction over derivation. By Lemma B.8, we only need to prove the following:

If for all f ∈ dom(Π) such that Π( f ) = (P ,x ,C ) and Γ( f ) = (P ′,y,C), we have
D,R,G |=χ {(P ∧ P ) ∗ own(x ) ∗ own(y) ∧ (x = y) ∧ arem(C) ∧ �(Ek , . . . ,E1)} C {P ∗
own(x ) ∗ own(y) ∧ arem(skip)},
then D,R,G |=χ {P }Π : Γ.

(B.1)
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By co-induction. We instantiate the metricsM andM and the boolean flag wb following the way

described in Sec. B.3.1.

The difficult case is to prove the environment step 5(c). From D,R,G |=
χ
t (C,σ ) ≼ (C,Σ) �

(u,ws,ws,aw,w ,wk,H ) ⇓ξ ,ξa q, 6(c), we know

k = 0 =⇒ ws′ <wk
H

ws ∨ ws′ ≈wk
H

ws and

k = 0 ∧ wk < H ∧ (ξd , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ ws′ <wk
H

ws and
k = 0 ∧ (ξ\ξd , ∅ ∨ Σ′ |= ¬en(C)) =⇒ wk

′ ≤ wk, and

k = 0 ∧ wk
′ = wk =⇒ ξ\ξd ⊆ ξ ′,

Thus we know: if k = 0, then

ws′ <wk
H

ws ∨
(ws′ ≈wk

H
ws ∧ wk = H ∧ ξ = ∅ ∧ ξd = ∅ ∧ (wk′ < wk ∨ wk

′ = wk ∧ ξ ⊆ ξ ′)) ∨

(ws′ ≈wk
H

ws ∧ ξd = ∅ ∧ (Σ |= en(C) ∨ Σ′ |= ¬en(C)) ∧
(wk′ < wk ∨ wk

′ = wk ∧ ξ ⊆ ξ ′ ∨ wk
′ > wk ∧ ξ\ξd = ∅ ∧ Σ′ |= en(C)))

For the very last case, we have:

ws′ ≈wk
H

ws ∧ ξd = ∅ ∧ (Σ |= en(C) ∨ Σ′ |= ¬en(C)) ∧ wk
′ > wk ∧ ξ\ξd = ∅ ∧ Σ′ |= en(C)

=⇒ wk
′ > wk ∧ ξ = ∅ ∧ Σ |= en(C)

=⇒ wk
′ > wk ∧ wk = H =⇒ false

As a result, we know

k = 0 =⇒ M′ < M ∨ (M′ = M ∧ wb
′ = wb)

k = 0 ∧ wb = true ∧ (ξd , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ M′ < M
k = 0 ∧M′ = M ∧ wb

′ = wb = true =⇒ ξ\ξd ⊆ ξ ′

Thus we are done. �

Lemma B.8. If

(1) D,R,G, I ⊢χ {p}C{q};
(2) Enabled(D) ⇒ I ;
(3) for any t and t′ such that t , t′, we have Gt ⇒ Rt′ ;

then D,R,G |=χ {p}C{q}.

In the following subsections, we prove Lemma B.8 by induction over the derivation.

B.4.1 The whl Rule.

Lemma B.9 (whl-Sound). If

(1) p ∧ B ⇒ p ′; p ∧ B ∧ (Enabled(D) ∨Q ) ∗ true⇒ p ′ ∗ (♦ ∧ emp);
(2) D,R,G |=χ {p

′}C{p};
(3) p ⇒ (B = B) ∗ I ; J ⇒ I ; Sta(J ,R ∨G ); Q ⇒ I ; p ∧ B ⇒ J ∗ true ∧ arem(await(B′){C′});

(4) J ⇒ (R,G : D ′
f
−−→ (Q ,B′)); D ′ 6 D; wffAct(R,D ′);

(5) I ◃ {R,G}; Sta(p,R ∗ Id); Enabled(D) ⇒ I ;
(6) for any t and t′ such that t , t′, we have Gt ⇒ Rt′ ;

then D,R,G |=χ {p}while (B){C}{p ∧ ¬B}.

Proof. LetH = height(while (B){C}) = height(C ) + 1. We know |while (B){C}| = 1. Let

ws = ((0,0),1) , ws = (0,1) , aw = 0 , wk = H , ξ = ∅ , ξa = ∅.
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Below we prove: for any t, for any σ , Σ, u,w and C,
if ((σ ,Σ), (u,w ),C) |= pt, then

D,R,G |=
χ
t (while (B){C},σ )≼ (C,Σ) � (u,ws,ws,aw,w ,wk,H ) ⇓ξ ,ξa p ∧ ¬B .

By co-induction. Suppose σ = (s,h). Since p ⇒ (B = B) ∗ I , we know

(σ ,Σ) |= I ∗ true, and either JBKs = true or JBKs = false .

We only need to prove the following (1)(2)(3)(4)(5)(6).

(1)(a) ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If (σ ,Σ) |= Enabled(Dt) ∗ true, then σ |= en(while (B){C}).
(d) If σ |= ¬en(while (B){C}) and Σ |= en(C), then ξa , ∅.
(e) If wk = H , then ξ = ∅. If wk < H , then ξ , ∅ ∨ Σ |= ¬en(C).
(f) |ws| ≤ H and (1 ≤ wk ≤ |ws| − 1) ∨ (wk = H ).
Proof : Trivial.

(2) If while (B){C} = skip, then ....

Proof : It is vacantly true.

(3) If while (B){C} = E[ return E ], then ....

Proof : It is vacantly true.

(4) For any σF , (while (B){C},σ ⊎ σF ) −̸_ t abort.
Proof : It holds because JBKs is not undefined.

(5) If (while (B){C},σ ⊎ σF ) −_ t (C
′,σ ′′), then there exist σ ′, C′, Σ′, k , u ′, ws′, ws′, aw′, w ′,

wk
′
, ξ ′ and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) (C,Σ ⊎ ΣF ) −_ ∗

t (C
′,Σ′ ⊎ ΣF ), and

(c) D,R,G |=
χ
t (C ′,σ ′)≼ (C′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a p ∧ ¬B, and

(d) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, and
(e) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′ <wk
H

ws,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ < wk,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ = wk < H and ξ ⊆ ξ ′; and

(f) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′ <H ws.

Proof : We have two cases depending on whether JBKs is true or false.
(I) If JBKs = true, we know σ ′′ = σ⊎σF and (while (B){C},σ⊎σF ) −_ t (C ;while (B){C},σ⊎

σF ).
Also we know ((σ ,Σ), (u,w ),C) |= pt ∧ B. From p ∧ B ⇒ p ′ and D,R,G |=χ {p

′}C{p}, let
ws1 = ((0,0), |C |) and ws1 = (0, |C |) and wk1 = height(C ), we get: there exist aw′ and ξ ′a
such that

D,R,G |=
χ
t (C,σ )≼ (C,Σ) � (u,ws1,ws1,aw′,w ,wk1,height(C )) ⇓∅,ξ ′a p .

Also since p ∧ B ⇒ J ∗ true ∧ arem(await(B′){C′}), we know
(σ ,Σ) |= J ∗ true, C = arem(await(B′){C′}) .

Let

ws
′ = (0,0) :: (w , |C | + 1) ,

we know ws
′ <H ws. Let

ws′ = ((0,0),0) :: ((ks ,w ), |C | + 1) .
We know ws′ <wk

H
ws. Let

ks = ft (σ ,Σ) and ξ0 = {t′′ | (t′′ , t) ∧ ((σ ,Σ) |= Enabled(D ′t′′ ) ∗ true)} .
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Since J ⇒ (R,G : D ′
f
−−→ (Q ,B′)), we have two cases:

• ξ0 , ∅ ∨ Σ |= ¬en(C).
By Lemma B.10, let

wk
′ = 1 and ξ ′ = ξ0 .

we know

D,R,G |=
χ
t (C;while (B){C},σ )≼ (C,Σ) � (u,ws′,ws′,aw′,w ,wk′,H ) ⇓ξ ′,ξ ′a p ∧ ¬B .

• ξ0 = ∅ ∧ Σ |= en(C).
By Lemma B.10, let

wk
′ = wk1 + 1 and ξ

′ = ∅ .

we know

D,R,G |=
χ
t (C;while (B){C},σ )≼ (C,Σ) � (u,ws′,ws′,aw′,w ,wk′,H ) ⇓ξ ′,ξ ′a p ∧ ¬B .

(II) If JBKs = false, we know (while (B){C},σ ⊎ σF ) −_ t (skip,σ ⊎ σF ).
By (skip) rule, let

ws′ = ((0,0),0) and ws
′ = (0,0) ,

we know

D,R,G |=
χ
t (skip,σ )≼ (C,Σ) � (u,ws′,ws′,aw,w ,wk,H ) ⇓∅,∅ p ∧ ¬B .

Also we know ws′ <wk
H

ws and ws
′ <H ws.

Since (σ ,Σ) |= I ∗ true, we know
((σ ,Σ), (σ ,Σ),0) |= [I ] ∗ True .

Since I ◃G, we know

((σ ,Σ), (σ ,Σ),0) |= Gt ∗ True .
(6) If ((σ ,Σ), (σ ′,Σ′),k ) |= Rt ∗ Id, then there exist u ′, ws′, ws′, aw′, w ′, wk′, ξd , ξad , ξ ′ and ξ ′a

such that

(a) D,R,G |=
χ
t (while (B){C},σ ′)≼ (C,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a p ∧ ¬B, and

(b) u ′ ≈k u, and
k = 0 =⇒ w ′ = w , and

(c) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 =⇒ ws′ <wk

H
ws ∨ ws′ ≈wk

H
ws and

k = 0 ∧ wk < H ∧ (ξd , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ ws′ <wk
H

ws and
k = 0 ∧ (ξ\ξd , ∅ ∨ Σ′ |= ¬en(C)) =⇒ wk

′ ≤ wk, and

k = 0 ∧ wk
′ = wk =⇒ ξ\ξd ⊆ ξ ′, and

(d) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, then ws
′ ≤H ws.

Proof : Since Sta(p,R ∗ Id), we know there exist u ′ andw ′ such that

((σ ′,Σ′), (u ′,w ′),C) |= pt and u ′ ≈k u and k = 0 =⇒ w ′ = w .

By the co-induction hypothesis, we get

D,R,G |=
χ
t (while (B){C},σ ′)≼ (C,Σ′) � (u ′,ws,ws,aw,w ′,wk,H ) ⇓ξ ,ξa p ∧ ¬B .

We know ξd = ∅.

Thus we are done. �

We define:

head(ws)
def

=

{
((n1,n2),n3) if ws = ((n1,n2),n3)
((n1,n2),n3) if ws = ((n1,n2),n3) ::ws′

inchead(ws, ((k1,k2),k3))
def

=

{
((n1 + k1,n2 + k2),n3 + k3) if ws = ((n1,n2),n3)
((n1 + k1,n2 + k2),n3 + k3) ::ws′ if ws = ((n1,n2),n3) ::ws′

Lemma B.10. If
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(1) p ∧ B ⇒ p ′; p ∧ B ∧ (Enabled(D) ∨Q ) ∗ true⇒ p ′ ∗ (♦ ∧ emp);
(2) D,R,G |=χ {p

′}C{p};
(3) p ⇒ (B = B) ∗ I ; J ⇒ I ; Sta(J ,R ∨G ); Q ⇒ I ; p ∧ B ⇒ J ∗ true ∧ arem(await(B′){C′});

(4) J ⇒ (R,G : D ′
f
−−→ (Q ,B′)); D ′ 6 D; wffAct(R,D ′);

(5) I ◃ {R,G}; Sta(p,R ∗ Id); Enabled(D) ⇒ I ;
(6) for any t and t′ such that t , t′, we have Gt ⇒ Rt′ ;

(7) D,R,G |=
χ
t (C1,σ )≼ (C,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p;

(8) (σ ,Σ) |= J ∗ true; height(C ) = H ; C = await(B′){C′}; ft (σ ,Σ) = ks ;w1 ≤ w ;

(9) ξ0 = {t′ | (t′ , t) ∧ ((σ ,Σ) |= Enabled(D ′t′ ) ∗ true)};
(10) ws = (0,0) :: inchead(ws1, (w1,1));
(11) ws = ((0,0),0) :: inchead(ws1, ((ks ,w1),1));
(12) one of the following holds:

• ξ0 , ∅ ∨ Σ |= ¬en(C): wk = 1 ∧ ξ = ξ0;
• ξ0 = ∅ ∧ Σ |= en(C): wk = wk1 + 1 ∧ ξ = ξ1;

then D,R,G |=
χ
t (C1;while (B){C},σ )≼ (C,Σ) � (u,ws,ws,aw,w ,wk,H + 1) ⇓ξ ,ξa p ∧ ¬B.

Proof. By co-induction. We only need to prove the following (1)(2)(3)(4)(5).

(1)(a) Suppose σ = (s,h). Then ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If (σ ,Σ) |= Enabled(Dt) ∗ true, then σ |= en(C1;while (B){C}).
(d) If σ |= ¬en(C1;while (B){C}) and Σ |= en(C), then ξa , ∅.
(e) If wk = H + 1, then ξ = ∅. If wk < H + 1, then ξ , ∅ ∨ Σ |= ¬en(C).
(f) |ws| ≤ H + 1 and (1 ≤ wk ≤ |ws| − 1) ∨ (wk = H + 1).
Proof : From

D,R,G |=
χ
t (C1,σ )≼ (C,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p ,

we know for any t′ ∈ ξ1 ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true. SinceD ′ 6 D, we know

for any t′ ∈ ξ0, we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true. Thus we are done.
(2) If (C1;while (B){C}) = skip, then ...

Proof : It is vacantly true.

(3) For any σF , (C1;while (B){C},σ ⊎ σF ) −̸_ t abort.
Proof : From

D,R,G |=
χ
t (C1,σ )≼ (C,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p ,

we know (C1,σ ⊎ σF ) −̸_ t abort. By the operational semantics, we are done.

(4) If (C1;while (B){C},σ ⊎ σF ) −_ t (C
′,σ ′′), then there exist σ ′, C′′, Σ′, k , u ′, ws′, ws′, aw′,w ′,

wk
′
, ξ ′ and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) (C,Σ ⊎ ΣF ) −_ ∗

t (C
′′,Σ′ ⊎ ΣF ), and

(c) D,R,G |=
χ
t (C ′,σ ′)≼ (C′′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a p ∧ ¬B, and

(d) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, and
(e) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′ <wk
H+1

ws,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H+1

ws and wk
′ < wk,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H+1

ws and wk
′ = wk < H + 1 and ξ ⊆ ξ ′; and

(f) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′ <H+1 ws.

Proof : We have two cases depending on whether C1 is skip or not.
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(I) If (C1;while (B){C},σ ⊎ σF ) −_ t (C
′
1
;while (B){C},σ ′′), then (C1,σ ⊎ σF ) −_ t (C

′
1
,σ ′′).

From D,R,G |=
χ
t (C1,σ ) ≼ (C,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p, we know there

exist σ ′, C′′, Σ′, k , u ′, ws′
1
, ws

′
1
, aw

′
,w ′

1
, wk

′
1
, ξ ′

1
and ξ ′a such that

(A) σ ′′ = σ ′ ⊎ σF , and
(B) (C,Σ ⊎ ΣF ) −_ ∗

t (C
′′,Σ′ ⊎ ΣF ), and

(C) D,R,G |=
χ
t (C ′

1
,σ ′)≼ (C′′,Σ′) � (u ′,ws′

1
,ws′

1
,aw′,w ′

1
,wk′

1
,H ) ⇓ξ ′

1
,ξ ′a p, and

(D) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, and
(E) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′
1
= w1 and ws′

1
<wk1
H

ws1,

or u ′ = u and k = 0 andw ′
1
= w1 and ws′

1
≈
wk1

H
ws1 and wk

′
1
< wk1,

or u ′ = u and k = 0 andw ′
1
= w1 and ws′

1
≈
wk1

H
ws1 and wk

′
1
= wk1 < H and ξ1 ⊆ ξ ′

1
; and

(F) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′
1
<H ws1.

Since ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, (σ ,Σ) |= J ∗ true, J ⇒ I , I ◃G and Sta(J ,G ∨ R), we
know

(σ ′,Σ′) |= J ∗ true .

Suppose k ′s = ft (σ
′,Σ′). Since J ⇒ (R,G : D ′

f
−−→ (Q ,B′)), we can prove

k = 0 =⇒ k ′s ≤ ks .
Let

ξ ′
0
= {t′ | (t′ , t) ∧ ((σ ′,Σ′) |= Enabled(D ′t′ ) ∗ true)} .

Since for any t′ such that t′ , t we have Gt ⇒ Rt′ , and since wffAct(R,D ′), D ′ 6 D and

Enabled(D) ⇒ I , we can prove:

k = 0 =⇒ ξ0 ⊆ ξ ′
0
.

Let

ws
′ = (0,0) :: inchead(ws′

1
, (w ′

1
,1)) , ws′ = ((0,0),0) :: inchead(ws′

1
, ((k ′s ,w

′
1
),1)) .

Ifw ′
1
= w1, letw

′ = w ; otherwise letw ′ = w ′
1
. Thus we knoww ′

1
≤ w ′.

Also we know: if k = 0, thenw ′ = w , and if ws
′
1
<H ws1 then ws

′ <H+1 ws.
If ξ ′

0
, ∅∨ Σ′ |= ¬en(C′′), let wk′ = 1 and ξ ′ = ξ ′

0
; otherwise let wk

′ = wk
′
1
+ 1 and ξ ′ = ξ ′

1
.

Since C = await(B′){C′}, we know C′′ = await(B′){C′} or C′′ = skip. Then, by the

co-induction hypothesis or by Lemma B.11, we know

D,R,G |=
χ
t (C ′

1
;while (B){C},σ ′)≼ (C′′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H + 1) ⇓ξ ′,ξ ′a p ∧ ¬B .

One of the following holds:

• If ξ0 , ∅ ∨ Σ |= ¬en(C), then wk = 1 and ξ = ξ0.

If k = 0, we know ws′
1
<wk1
H

ws1 or ws′
1
≈
wk1

H
ws1. Since wk1 ≥ 1, we know

ws′ <wk
H+1

ws or ws′ ≈wk
H+1

ws.
If k = 0,

• Suppose ξ0 , ∅. Since ξ0 ⊆ ξ ′
0
, we know ξ ′

0
, ∅. Thus wk′ = 1 and ξ ′ = ξ ′

0
.

• Suppose Σ |= ¬en(C). Since (C,Σ ⊎ ΣF ) −_ ∗
t (C

′′,Σ′ ⊎ ΣF ), we know Σ′ |= ¬en(C′′).
Thus wk

′ = 1 and ξ ′ = ξ ′
0
.

• If ξ0 = ∅ ∧ Σ |= en(C), then wk = wk1 + 1 and ξ = ξ1.

If k = 0, we know ws′
1
<wk1
H

ws1 or ws′
1
≈
wk1

H
ws1. Thus we know

ws′ <wk
H+1

ws or ws′ ≈wk
H+1

ws.
Since Σ |= en(C), C = await(B′){C′} and (C,Σ ⊎ ΣF ) −_ ∗

t (C
′′,Σ′ ⊎ ΣF ), we know

Σ′ |= en(C′′). If k = 0,

• Suppose ξ ′
0
, ∅. Thus wk′ = 1 and ξ ′ = ξ ′

0
. Thus wk

′ < wk.

• Suppose ξ ′
0
= ∅. Thus wk′ = wk

′
1
+ 1 and ξ ′ = ξ ′

1
.

• If wk
′
1
< wk1, then wk

′ < wk.
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• If wk
′
1
= wk1 < H and ξ1 ⊆ ξ ′

1
, then wk

′ = wk < H + 1 and ξ ⊆ ξ ′.
(II) If C1 = skip and (C1;while (B){C},σ ⊎ σF ) −_ t (while (B){C},σ ⊎ σF ),

from D,R,G |=
χ
t (C1,σ ) ≼ (C,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p, we know there

exist C′′ and Σ′ such that

(A) (C,Σ ⊎ ΣF ) −_ ∗
t (C

′′,Σ′ ⊎ ΣF ), and
(B) ((σ ,Σ′), (u,w1),C

′′) |= pt, and
(C) ws1 = ((0,0),0) and ws1 = (0,0) and wk1 = H and ξ1 = ∅, and
(D) ((σ ,Σ), (σ ,Σ′),0) |= Gt ∗ True.
Since (σ ,Σ) |= J ∗ true, J ⇒ I , I ◃G and Sta(J ,G ∨ R), we know

(σ ,Σ′) |= J ∗ true .

Suppose k ′s = ft (σ ,Σ
′). Since J ⇒ (R,G : D ′

f
−→Q ), we can prove

k = 0 =⇒ k ′s ≤ ks .
Let

ξ ′
0
= {t′ | (t′ , t) ∧ ((σ ,Σ′) |= Enabled(D ′t′ ) ∗ true)} .

Since for any t′ such that t′ , t we have Gt ⇒ Rt′ , and since wffAct(R,D ′), D ′ 6 D and

Enabled(D) ⇒ I , we can prove:

k = 0 =⇒ ξ0 ⊆ ξ ′
0
.

Let

ws
′ = (0,0) :: inchead(ws1, (w1,0)) = (0,0) :: (w1,0) .

Thus ws
′ <H+1 ws. Let

ws′ = ((0,0),0) :: inchead(ws1, ((k ′s ,w1),0)) = ((0,0),0) :: ((k ′s ,w1),0) .
If ξ ′

0
, ∅ ∨ Σ′ |= ¬en(C′′), let wk′ = 1 and ξ ′ = ξ ′

0
; otherwise let wk

′ = H + 1 and ξ ′ = ∅.
Then we know in either case ξ ′ = ξ ′

0
.

One of the following holds:

• If ξ0 , ∅ ∨ Σ |= ¬en(C), then wk = 1 and ξ = ξ0.
If k = 0, we know

ws′ <wk
H+1

ws or ws′ ≈wk
H+1

ws.
If k = 0,

• Suppose ξ0 , ∅. Since ξ0 ⊆ ξ ′
0
, we know ξ ′

0
, ∅. Thus wk′ = 1 and ξ ′ = ξ ′

0
.

• Suppose Σ |= ¬en(C). Since (C,Σ ⊎ ΣF ) −_ ∗
t (C

′′,Σ′ ⊎ ΣF ), we know Σ′ |= ¬en(C′′).
Thus wk

′ = 1 and ξ ′ = ξ ′
0
.

• If ξ0 = ∅ ∧ Σ |= en(C), then wk = wk1 + 1 and ξ = ξ1.
Since wk1 ≥ 1, we know

ws′ <wk
H+1

ws.
Below we prove:

D,R,G |=
χ
t (while (B){C},σ )≼ (C′′,Σ′) � (u,ws′,ws′,aw,w ,wk′,H + 1) ⇓ξ ′,ξa p ∧ ¬B . (B.2)

Proof : By co-induction. Suppose σ = (s,h). Since p ⇒ (B = B) ∗ I , we know
(σ ,Σ′) |= I ∗ true, and either JBKs = true or JBKs = false .

We only need to prove the following (1)(2)(3)(4)(5).

(1)(a) ξ ′ ∪ ξa ⊆ s (TIDS) and t < ξ ′ and t < ξa .
(b) For any t′ ∈ ξ ′ ∪ ξa , we have (σ ,Σ′) |= Enabled(Dt′ ) ∗ true.
(c) If (σ ,Σ′) |= Enabled(Dt) ∗ true, then σ |= en(while (B){C}).
(d) If σ |= ¬en(while (B){C}) and Σ′ |= en(C′′), then ξa , ∅.
(e) If wk

′ = H + 1, then ξ ′ = ∅. If wk′ < H + 1, then ξ ′ , ∅ ∨ Σ′ |= ¬en(C′′).
(f) |ws′ | ≤ H + 1 and (1 ≤ wk

′ ≤ |ws′ | − 1) ∨ (wk′ = H + 1).
Proof : Immediate from D ′ 6 D.
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(2) If while (B){C} = skip, then ...

Proof : It is vacantly true.

(3) For any σF , (while (B){C},σ ⊎ σF ) −̸_ t abort.
Proof : It holds because JBKs is not undefined.

(4) If (while (B){C},σ ⊎ σF ) −_ t (C
′,σ ′′), then there exist σ ′, C′′′, Σ′′, k , u ′, ws′′, ws′′, aw′,

w ′, wk′′, ξ ′′ and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) (C′′,Σ′ ⊎ ΣF ) −_ ∗

t (C
′′′,Σ′′ ⊎ ΣF ), and

(c) D,R,G |=
χ
t (C ′,σ ′)≼ (C′′′,Σ′′)� (u ′,ws′′,ws′′,aw′,w ′,wk′′,H + 1) ⇓ξ ′′,ξ ′a p ∧ ¬B, and

(d) ((σ ,Σ′), (σ ′,Σ′′),k ) |= Gt ∗ True, and
(e) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′′ <wk
′

H+1
ws′,

or u ′ = u and k = 0 andw ′ = w and ws′′ ≈wk
′

H+1
ws′ and wk

′′ < wk
′
,

or u ′ = u and k = 0 and w ′ = w and ws′′ ≈wk
′

H+1
ws′ and wk

′′ = wk
′ < H + 1 and

ξ ′ ⊆ ξ ′′; and
(f) if ((σ ,Σ′), (σ ′,Σ′′)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws

′′ <H+1 ws
′
.

Proof : We have two cases depending on whether JBKs is true or false.
• If JBKs = true, we know (while (B){C},σ ⊎ σF ) −_ t (C;while (B){C},σ ⊎ σF ). Also
we know ((σ ,Σ′), (u,w1),C

′′) |= pt ∧B. Since p ∧B ⇒ J ∗ true∧ arem(await(B′){C′}),
we know

(σ ,Σ′) |= J ∗ true and C′′ = await(B′){C′}.
• If ξ ′

0
, ∅ ∨ Σ′ |= ¬en(C′′), then wk

′ = 1 and ξ ′ = ξ ′
0
. We have two cases below:

• If (σ ,Σ′) |= Enabled(Dt) ∗ true, we know
((σ ,Σ′), (u,w1),C

′′) |= pt ∧ B ∧ Enabled(Dt) ∗ true .
Since p ∧ B ∧ Enabled(Dt) ∗ true⇒ p ′ ∗ (♦∧ emp), we know there existsw ′

1
such

thatw ′
1
< w1 and

((σ ,Σ′), (u,w ′
1
),C′′) |= p ′t .

From D,R,G |=χ {p
′}C{p} and height(C ) = H , let ws

′
1
= (0, |C |) and ws′

1
=

((0,0), |C |) and wk
′
1
= H , we get: there exists aw

′
and ξ ′a such that

D,R,G |=
χ
t (C,σ )≼ (C′′,Σ′) � (u,ws′

1
,ws′

1
,aw′,w ′

1
,wk′

1
,H ) ⇓∅,ξ ′a p .

Let

ws
′′ = (0,0) :: (w ′

1
, |C | + 1) and ws′′ = ((0,0),0) :: ((k ′s ,w

′
1
), |C | + 1) .

Then, by the co-induction hypothesis, we know

D,R,G |=
χ
t (C;while (B){C},σ )≼

(C′′,Σ′) � (u,ws′′,ws′′,aw′,w ,wk′,H + 1) ⇓ξ ′,ξ ′a p ∧ ¬B .

Also we have ws
′′ <H+1 ws

′
and ws′′ <wk

′

H+1
ws′. Since (σ ,Σ′) |= I ∗ true, we can

prove

((σ ,Σ′), (σ ,Σ′),0) |= Gt ∗ True .
• Otherwise, from p ∧ B ⇒ p ′, we know

((σ ,Σ′), (u,w1),C
′′) |= p ′t .

From D,R,G |=χ {p
′}C{p} and height(C ) = H , let ws

′
1
= (0, |C |) and ws′

1
=

((0,0), |C |) and wk
′
1
= H , we get: there exists aw

′
and ξ ′a such that

D,R,G |=
χ
t (C,σ )≼ (C′′,Σ′) � (u,ws′

1
,ws′

1
,aw′,w1,wk

′
1
,H ) ⇓∅,ξ ′a p .

Let

ws
′′ = (0,0) :: (w1, |C | + 1) and ws′′ = ((0,0),0) :: ((k ′s ,w1), |C | + 1) .

Then, by the co-induction hypothesis, we know
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D,R,G |=
χ
t (C;while (B){C},σ )≼

(C′′,Σ′) � (u,ws′′,ws′′,aw′,w ,wk′,H + 1) ⇓ξ ′,ξ ′a p ∧ ¬B .

Also we know ws′′ ≈wk
′

H+1
ws′ and wk

′ < H + 1. Since (σ ,Σ′) |= I ∗ true, we can
prove:

((σ ,Σ′), (σ ,Σ′),0) |= Gt ∗ True .

• If ξ ′
0
= ∅ ∧ Σ′ |= en(C′′), then wk

′ = H + 1 and ξ ′ = ∅. Also from J ⇒ (R,G : D ′
f
−−→

(Q ,B′)), we know (σ ,Σ′) |= Qt ∗ true. Thus we know
((σ ,Σ′), (u,w1),C

′′) |= pt ∧ B ∧Qt ∗ true .
Since p ∧ B ∧Q ∗ true⇒ p ′ ∗ (♦∧ emp), we know there existsw ′

1
such thatw ′

1
< w1

and

((σ ,Σ′), (u,w ′
1
),C′′) |= p ′t .

From D,R,G |=χ {p
′}C{p} and height(C ) = H , let ws

′
1
= (0, |C |) and ws′

1
=

((0,0), |C |) and wk
′
1
= H , we get: there exists aw

′
and ξ ′a such that

D,R,G |=
χ
t (C,σ )≼ (C′′,Σ′) � (u,ws′

1
,ws′

1
,aw′,w ′

1
,wk′

1
,H ) ⇓∅,ξ ′a p .

Let

ws
′′ = (0,0) :: (w ′

1
, |C | + 1) and ws′′ = ((0,0),0) :: ((k ′s ,w

′
1
), |C | + 1) .

Then, by the co-induction hypothesis, we know

D,R,G |=
χ
t (C;while (B){C},σ )≼ (C′′,Σ′) � (u,ws′′,ws′′,aw′,w ,wk′,H + 1) ⇓ξ ′,ξ ′a

p ∧ ¬B .

Also we have ws
′′ <H+1 ws

′
and ws′′ <wk

′

H+1
ws′. Since (σ ,Σ′) |= I ∗ true, we can

prove:

((σ ,Σ′), (σ ,Σ′),0) |= Gt ∗ True .
• If JBKs = false, we know (while (B){C},σ ⊎σF ) −_ t (skip,σ ⊎σF ). By (skip) rule, let

ws′′ = ((0,0),0) and ws
′′ = (0,0) and wk

′′ = H + 1 and ξ ′′ = ∅,
we know

D,R,G |=
χ
t (skip,σ )≼ (C′′,Σ′) � (u,ws′′,ws′′,aw,w ,wk′′,H + 1) ⇓ξ ′′,ξa p ∧ ¬B .

Also we have ws
′′ <H+1 ws

′
and ws′′ <wk

′

H+1
ws′. Since (σ ,Σ′) |= I ∗ true, we can prove

((σ ,Σ′), (σ ,Σ′),0) |= Gt ∗ True .
(5) If ((σ ,Σ′), (σ ′,Σ′′),k ) |= Rt ∗ Id, then there exist u ′, ws′′, ws′′, aw′, w ′, wk′′, ξd , ξ ′′ and

ξ ′a such that

(a) D,R,G |=
χ
t (while (B){C},σ ′) ≼ (C′′,Σ′′) � (u ′,ws′′,ws′′,aw′,w ′,wk′′,H + 1) ⇓ξ ′′,ξ ′a

p ∧ ¬B, and
(b) u ′ ≈k u, and

k = 0 =⇒ w ′ = w , and

(c) ξd = {t′ | (t′ ∈ ξ ′) ∧ (((σ ,Σ′), (σ ′,Σ′′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 =⇒ ws′′ <wk

′

H+1
ws′ ∨ ws′′ ≈wk

′

H+1
ws′ and

k = 0∧wk′ < H + 1∧ (ξd , ∅∨ (Σ
′ |= ¬en(C′′) ∧ Σ′′ |= en(C′′))) =⇒ ws′′ <wk

′

H+1
ws′

and

k = 0 ∧ (ξ ′\ξd , ∅ ∨ Σ′′ |= ¬en(C′′)) =⇒ wk
′′ ≤ wk

′
, and

k = 0 ∧ wk
′′ = wk

′ =⇒ ξ ′\ξd ⊆ ξ ′′, and
(d) if k = 0 and (σ ,Σ′) |= Enabled(Dt) ∗ true, then ws

′′ ≤H+1 ws
′
.

Proof : Since Sta(p,R ∗ Id), we know there exist u ′ andw ′
1
such that

((σ ′,Σ′′), (u ′,w ′
1
),C′′) |= pt and u ′ ≈k u and k = 0 =⇒ w ′

1
= w1 .

Also we know

(σ ′,Σ′′) |= J ∗ true .

Suppose k ′′s = ft (σ
′,Σ′′). Since J ⇒ (R,G : D ′

f
−−→ (Q ,B′)), we can prove

, Vol. 1, No. 1, Article . Publication date: January 2018.



:80 Hongjin Liang and Xinyu Feng

k = 0 =⇒ k ′′s ≤ k ′s .
Let

ξ ′′
0
= {t′′ | (t′′ , t) ∧ ((σ ′,Σ′′) |= Enabled(D ′t′′ ) ∗ true)} and
ξd = {t′ | (t′ ∈ ξ ′) ∧ (((σ ,Σ′), (σ ′,Σ′′)) |= ⟨Dt′⟩ ∗ Id)}.

Since Enabled(D) ⇒ I , D ′ 6 D and wffAct(R,D ′), we can prove:

k = 0 =⇒ ξ ′\ξd ⊆ ξ ′′
0
.

Ifw ′
1
= w1, letw

′ = w ; otherwise letw ′ = w ′
1
. Thus we knoww ′

1
≤ w ′. Also we know: if

k = 0, thenw ′ = w . Let

ws
′′ = (0,0) :: inchead(ws1, (w ′1,0)) = (0,0) :: (w ′

1
,0) and

ws′′ = ((0,0),0) :: inchead(ws1, ((k ′′s ,w
′
1
),0)) = ((0,0),0) :: ((k ′′s ,w

′
1
),0) .

Thus if k = 0, then ws
′′ = ws

′
, and

ws′′ <wk
′

H+1
ws′ or ws′′ ≈wk

′

H+1
ws′.

If ξ ′′
0
, ∅ ∨ Σ′′ |= ¬en(C′′), let wk′′ = 1 and ξ ′′ = ξ ′′

0
; otherwise let wk

′′ = H + 1 and

ξ ′′ = ∅.
By the co-induction hypothesis, we know

D,R,G |=
χ
t (while (B){C},σ ′)≼ (C′′,Σ′′) � (u,ws′′,ws′′,aw,w ′,wk′′,H + 1) ⇓ξ ′′,ξa

p ∧ ¬B .

Suppose k = 0. If wk
′ < H + 1, then wk

′ = 1. If ξd , ∅, then there exists t′ such that

t′ ∈ ξ ′ and ((σ ,Σ′), (σ ′,Σ′′)) |= ⟨Dt′⟩ ∗ Id. Since D ′ 6 D, we can prove

((σ ,Σ′), (σ ′,Σ′′)) |= ⟨D ′t′⟩ ∗ Id .

Since J ⇒ (R,G : D ′
f
−−→ (Q ,B′)), we know for any t′ , t,σ ′ and Σ′′, if ((σ ,Σ′), (σ ′,Σ′′),0) |=

(⟨D ′t′⟩ ∧ Rt) ∗ Id, then ft (σ
′,Σ′′) < k ′s . Thus we can prove:

k ′′s < k ′s .

Also if Σ′ |= ¬en(C′′) ∧ Σ′′ |= en(C′′), from J ⇒ (R,G : D ′
f
−−→ (Q ,B′)), we can still

prove:

k ′′s < k ′s .

Thus ws′′ <wk
′

H+1
ws′ holds.

If k = 0 ∧ (ξ ′\ξd , ∅ ∨ Σ′′ |= ¬en(C′′)), we know wk
′′ = 1. Thus wk

′′ ≤ wk
′
.

If k = 0 ∧ wk
′′ = wk

′
, we know ξ ′\ξd ⊆ ξ ′′.

Thus we have proved (B.2).

(5) If ((σ ,Σ), (σ ′,Σ′),k ) |= Rt ∗ Id, then there exist u ′, ws′, ws′, aw′, w ′, wk′, ξd , ξad , ξ ′ and ξ ′a
such that

(a) D,R,G |=
χ
t (C1;while (B){C},σ ′)≼ (C,Σ′)�(u ′,ws′,ws′,aw′,w ′,wk′,H + 1) ⇓ξ ′,ξ ′a p ∧ ¬B,

and

(b) u ′ ≈k u, and
k = 0 =⇒ w ′ = w , and

(c) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 =⇒ ws′ <wk

H+1
ws ∨ ws′ ≈wk

H+1
ws and

k = 0 ∧ wk < H + 1 ∧ (ξd , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ ws′ <wk
H+1

ws and
k = 0 ∧ (ξ\ξd , ∅ ∨ Σ′ |= ¬en(C)) =⇒ wk

′ ≤ wk, and

k = 0 ∧ wk
′ = wk =⇒ ξ\ξd ⊆ ξ ′, and

(d) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, then ws
′ ≤H+1 ws; and

(e) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ is_await(C1;while (B){C}) =⇒ ξa\ξad ⊆ ξ ′a and

k = 0∧ is_await(C1;while (B){C})∧ (ξad , ∅∨ (Σ |= ¬en(C)∧Σ′ |= en(C))) =⇒ aw
′ < aw

and
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(χ = sfair) ∧ k = 0 ∧ is_await(C1;while (B){C}) ∧ (σ |= ¬en(C1;while (B){C})) ∧ (σ ′ |=
¬en(C1;while (B){C})) =⇒ aw

′ ≤ aw and

(χ = wfair) ∧ k = 0 ∧ is_await(C1;while (B){C}) =⇒ aw
′ ≤ aw.

Proof : FromD,R,G |=
χ
t (C1,σ )≼ (C,Σ)� (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p, we know there

exist u ′, ws′
1
, ws

′
1
, aw

′
,w ′

1
, wk

′
1
, ξ ′d , ξad , ξ

′
1
and ξ ′a such that

(A) D,R,G |=
χ
t (C1,σ

′)≼ (C,Σ′) � (u ′,ws′
1
,ws′

1
,aw′,w ′

1
,wk′

1
,H ) ⇓ξ ′

1
,ξ ′a p, and

(B) u ′ ≈k u, and
k = 0 =⇒ w ′

1
= w1, and

(C) ξ ′d = {t
′ | (t′ ∈ ξ1) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and

k = 0 =⇒ ws′
1
<wk1
H

ws1 ∨ ws′
1
≈
wk1

H
ws1 and

k = 0 ∧ wk1 < H ∧ (ξ ′d , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ ws′
1
<wk1
H

ws1 and
k = 0 ∧ (ξ1\ξ

′
d , ∅ ∨ Σ′ |= ¬en(C)) =⇒ wk

′
1
≤ wk1, and

k = 0 ∧ wk
′
1
= wk1 =⇒ ξ1\ξ

′
d ⊆ ξ ′

1
, and

(D) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, then ws
′
1
≤H ws1; and

(E) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ is_await(C1) =⇒ ξa\ξad ⊆ ξ ′a and

k = 0 ∧ is_await(C1) ∧ (ξad , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ aw
′ < aw and

(χ = sfair) ∧ k = 0 ∧ is_await(C1) ∧ (σ |= ¬en(C1)) ∧ (σ ′ |= ¬en(C1)) =⇒ aw
′ ≤ aw and

(χ = wfair) ∧ k = 0 ∧ is_await(C1) =⇒ aw
′ ≤ aw.

Since (σ ,Σ) |= J ∗ true and Sta(J ,G ∨ R), we know
(σ ′,Σ′) |= J ∗ true .

Suppose k ′s = ft (σ
′,Σ′). Since J ⇒ (R,G : D ′

f
−−→ (Q ,B′)), we can prove

k = 0 =⇒ k ′s ≤ ks .

Let

ξ ′
0
= {t′′ | (t′′ , t) ∧ ((σ ′,Σ′) |= Enabled(D ′t′′ ) ∗ true)},

ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
ξ ′′d = {t

′ | (t′ ∈ ξ0) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)}.
Let

ws
′ = (0,0) :: inchead(ws′

1
, (w1,1)) , ws′ = ((0,0),0) :: inchead(ws′

1
, ((k ′s ,w

′
1
),1)) .

Ifw ′
1
= w1, letw

′ = w ; otherwise letw ′ = w ′
1
. Thus we knoww ′

1
≤ w ′.

Also we know: if k = 0, thenw ′ = w , and if ws
′
1
≤H ws1 then ws

′ ≤H+1 ws.

If ξ ′
0
, ∅ ∨ Σ′ |= ¬en(C), let wk′ = 1 and ξ ′ = ξ ′

0
; otherwise let wk

′ = wk
′
1
+ 1 and ξ ′ = ξ ′

1
.

Then, by the co-induction hypothesis, we know

D,R,G |=
χ
t (C ′

1
;while (B){C},σ ′)≼ (C,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H + 1) ⇓ξ ′,ξ ′a p ∧ ¬B .

One of the following holds:

• If ξ0 , ∅ ∨ Σ |= ¬en(C), then wk = 1 and ξ = ξ0.
Thus ξd = ξ ′′d . Since Enabled(D) ⇒ I , D ′ 6 D and wffAct(R,D ′), we can prove:

k = 0 =⇒ ξ0\ξ
′′
d ⊆ ξ ′

0
.

If k = 0, we know ws′
1
<wk1
H

ws1 or ws′
1
≈
wk1

H
ws1. Since wk1 ≥ 1, we know

ws′ <wk
H+1

ws or ws′ ≈wk
H+1

ws.
Suppose k = 0. If ξd , ∅, then there exists t′ such that t′ ∈ ξ and ((σ ,Σ), (σ ′,Σ′)) |=
⟨Dt′⟩ ∗ Id. Since D ′ 6 D, we can prove

((σ ,Σ), (σ ′,Σ′)) |= ⟨D ′t′⟩ ∗ Id .

Since J ⇒ (R,G : D ′
f
−−→ (Q ,B′)), we know
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k ′s < ks .

Also if Σ |= ¬en(C) ∧ Σ′ |= en(C), from J ⇒ (R,G : D ′
f
−−→ (Q ,B′)), we can still prove:

k ′s < ks .
Thus ws′ <wk

H+1
ws holds.

If k = 0 ∧ (ξ\ξd , ∅ ∨ Σ′ |= ¬en(C)), we know wk
′ = 1. Thus wk

′ ≤ wk.

If k = 0 ∧ wk
′ = wk, we know ξ\ξd ⊆ ξ ′.

• If ξ0 = ∅ ∧ Σ |= en(C), then wk = wk1 + 1 and ξ = ξ1.

Thus ξd = ξ ′d . If k = 0, we know ws′
1
<wk1
H

ws1 or ws′
1
≈
wk1

H
ws1. Thus we know

ws′ <wk
H+1

ws or ws′ ≈wk
H+1

ws.
If k = 0 ∧ wk < H + 1 ∧ (ξd , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))), we know k = 0 ∧ wk1 <

H ∧ (ξ ′d , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))). Thus ws′
1
<wk1
H

ws1. Thus ws′ <wk
H+1

ws.
If k = 0 ∧ (ξ\ξd , ∅ ∨ Σ′ |= ¬en(C)), we know wk

′
1
≤ wk1. Thus wk

′ ≤ wk.

If k = 0 ∧ wk
′ = wk, we know wk

′ = wk
′
1
+ 1, wk′

1
= wk1 and ξ

′ = ξ ′
1
. Thus ξ\ξd ⊆ ξ ′.

Thus we are done. �

Lemma B.11. If

(1) p ∧ B ⇒ p ′; p ∧ B ∧ (Enabled(D) ∨Q ) ∗ true⇒ p ′ ∗ (♦ ∧ emp);
(2) D,R,G |=χ {p

′}C{p};
(3) p ⇒ (B = B) ∗ I ; J ⇒ I ; Sta(J ,R ∨G ); Q ⇒ I ; p ∧ B ⇒ J ∗ true ∧ arem(await(B′){C′});

(4) J ⇒ (R,G : D ′
f
−−→ (Q ,B′)); D ′ 6 D; wffAct(R,D ′);

(5) I ◃ {R,G}; Sta(p,R ∗ Id); Enabled(D) ⇒ I ;
(6) for any t and t′ such that t , t′, we have Gt ⇒ Rt′ ;

(7) D,R,G |=
χ
t (C1,σ )≼ (skip,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p;

(8) (σ ,Σ) |= J ∗ true; height(C ) = H ; await(B′){C′} , await(true){skip}; ft (σ ,Σ) = ks ;
w1 ≤ w ;

(9) ξ0 = {t′ | (t′ , t) ∧ ((σ ,Σ) |= Enabled(D ′t′ ) ∗ true)};
(10) ws = (0,0) :: inchead(ws1, (w1,1));
(11) ws = ((0,0),0) :: inchead(ws1, ((ks ,w1),1));
(12) one of the following holds:

• ξ0 , ∅: wk = 1 ∧ ξ = ξ0;
• ξ0 = ∅: wk = wk1 + 1 ∧ ξ = ξ1;

then D,R,G |=
χ
t (C1;while (B){C},σ )≼ (skip,Σ) � (u,ws,ws,aw,w ,wk,H + 1) ⇓ξ ,ξa p ∧ ¬B.

Proof. By co-induction. We only need to prove the following (1)(2)(3)(4)(5).

(1)(a) Suppose σ = (s,h). Then ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If (σ ,Σ) |= Enabled(Dt) ∗ true, then σ |= en(C1;while (B){C}).
(d) If σ |= ¬en(C1;while (B){C}) and Σ |= en(skip), then ξa , ∅.
(e) If wk = H + 1, then ξ = ∅. If wk < H + 1, then ξ , ∅ ∨ Σ |= ¬en(skip).
(f) |ws| ≤ H + 1 and (1 ≤ wk ≤ |ws| − 1) ∨ (wk = H + 1).
Proof : From

D,R,G |=
χ
t (C1,σ )≼ (skip,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p ,

we know for any t′ ∈ ξ1 ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true. SinceD ′ 6 D, we know

for any t′ ∈ ξ0, we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true. Thus we are done.
(2) If (C1;while (B){C}) = skip, then ...

Proof : It is vacantly true.
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(3) For any σF , (C1;while (B){C},σ ⊎ σF ) −̸_ t abort.
Proof : From

D,R,G |=
χ
t (C1,σ )≼ (skip,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p ,

we know (C1,σ ⊎ σF ) −̸_ t abort. By the operational semantics, we are done.

(4) If (C1;while (B){C},σ ⊎ σF ) −_ t (C
′,σ ′′), then there exist σ ′, k , u ′, ws′, ws′, aw′,w ′, wk′, ξ ′

and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) D,R,G |=

χ
t (C ′,σ ′)≼ (skip,Σ) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a p ∧ ¬B, and

(c) ((σ ,Σ), (σ ′,Σ),k ) |= Gt ∗ True, and
(d) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′ <wk
H+1

ws,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H+1

ws and wk
′ < wk,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H+1

ws and wk
′ = wk < H + 1 and ξ ⊆ ξ ′; and

(e) if ((σ ,Σ), (σ ′,Σ)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′ <H+1 ws.

Proof : We have two cases depending on whether C1 is skip or not.

(I) If (C1;while (B){C},σ ⊎ σF ) −_ t (C
′
1
;while (B){C},σ ′′), then (C1,σ ⊎ σF ) −_ t (C

′
1
,σ ′′).

From D,R,G |=
χ
t (C1,σ )≼ (skip,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p, we know there

exist σ ′, k , u ′, ws′
1
, ws

′
1
, aw

′
,w ′

1
, wk

′
1
, ξ ′

1
and ξ ′a such that

(A) σ ′′ = σ ′ ⊎ σF , and
(B) D,R,G |=

χ
t (C ′

1
,σ ′)≼ (skip,Σ) � (u ′,ws′

1
,ws′

1
,aw′,w ′

1
,wk′

1
,H ) ⇓ξ ′

1
,ξ ′a p, and

(C) ((σ ,Σ), (σ ′,Σ),k ) |= Gt ∗ True, and
(D) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′
1
= w1 and ws′

1
<wk1
H

ws1,

or u ′ = u and k = 0 andw ′
1
= w1 and ws′

1
≈
wk1

H
ws1 and wk

′
1
< wk1,

or u ′ = u and k = 0 andw ′
1
= w1 and ws′

1
≈
wk1

H
ws1 and wk

′
1
= wk1 < H and ξ1 ⊆ ξ ′

1
; and

(E) if ((σ ,Σ), (σ ′,Σ)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′
1
<H ws1.

Since ((σ ,Σ), (σ ′,Σ),k ) |= Gt ∗ True, (σ ,Σ) |= J ∗ true, J ⇒ I , I ◃G and Sta(J ,G ∨ R), we
know

(σ ′,Σ) |= J ∗ true .

Suppose k ′s = ft (σ
′,Σ). Since J ⇒ (R,G : D ′

f
−−→ (Q ,B′)), we can prove

k = 0 =⇒ k ′s ≤ ks .
Let

ξ ′
0
= {t′ | (t′ , t) ∧ ((σ ′,Σ) |= Enabled(D ′t′ ) ∗ true)} .

Since for any t′ such that t′ , t we have Gt ⇒ Rt′ , and since wffAct(R,D ′), D ′ 6 D and

Enabled(D) ⇒ I , we can prove:

k = 0 =⇒ ξ0 ⊆ ξ ′
0
.

Let

ws
′ = (0,0) :: inchead(ws′

1
, (w ′

1
,1)) , ws′ = ((0,0),0) :: inchead(ws′

1
, ((k ′s ,w

′
1
),1)) .

Ifw ′
1
= w1, letw

′ = w ; otherwise letw ′ = w ′
1
. Thus we knoww ′

1
≤ w ′.

Also we know: if k = 0, thenw ′ = w , and if ws
′
1
<H ws1 then ws

′ <H+1 ws.
If ξ ′

0
, ∅, let wk′ = 1 and ξ ′ = ξ ′

0
; otherwise let wk

′ = wk
′
1
+ 1 and ξ ′ = ξ ′

1
.

Then, by the co-induction hypothesis, we know

D,R,G |=
χ
t (C ′

1
;while (B){C},σ ′)≼ (skip,Σ) � (u ′,ws′,ws′,aw′,w ′,wk′,H + 1) ⇓ξ ′,ξ ′a p ∧ ¬B .

One of the following holds:

• If ξ0 , ∅, then wk = 1 and ξ = ξ0.

If k = 0, we know ws′
1
<wk1
H

ws1 or ws′
1
≈
wk1

H
ws1. Since wk1 ≥ 1, we know
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ws′ <wk
H+1

ws or ws′ ≈wk
H+1

ws.
Since ξ0 ⊆ ξ ′

0
, we know ξ ′

0
, ∅. Thus wk′ = 1 and ξ ′ = ξ ′

0
.

• If ξ0 = ∅, then wk = wk1 + 1 and ξ = ξ1.

If k = 0, we know ws′
1
<wk1
H

ws1 or ws′
1
≈
wk1

H
ws1. Thus we know

ws′ <wk
H+1

ws or ws′ ≈wk
H+1

ws.
If k = 0,

• Suppose ξ ′
0
, ∅. Thus wk′ = 1 and ξ ′ = ξ ′

0
. Thus wk

′ < wk.

• Suppose ξ ′
0
= ∅. Thus wk′ = wk

′
1
+ 1 and ξ ′ = ξ ′

1
.

• If wk
′
1
< wk1, then wk

′ < wk.

• If wk
′
1
= wk1 < H and ξ1 ⊆ ξ ′

1
, then wk

′ = wk < H + 1 and ξ ⊆ ξ ′.
(II) If C1 = skip and (C1;while (B){C},σ ⊎ σF ) −_ t (while (B){C},σ ⊎ σF ),

from D,R,G |=
χ
t (C1,σ )≼ (skip,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p, we know

(A) ((σ ,Σ), (u,w1),skip) |= pt, and
(B) ws1 = ((0,0),0) and ws1 = (0,0) and wk1 = H and ξ1 = ∅, and
(C) ((σ ,Σ), (σ ,Σ),0) |= Gt ∗ True.
Let

ws
′ = (0,0) :: inchead(ws1, (w1,0)) = (0,0) :: (w1,0) .

Thus ws
′ <H+1 ws. Let

ws′ = ((0,0),0) :: inchead(ws1, ((ks ,w1),0)) = ((0,0),0) :: ((ks ,w1),0) .
If ξ0 , ∅, let wk

′ = 1 and ξ ′ = ξ0; otherwise let wk
′ = H + 1 and ξ ′ = ∅. Then we know in

either case ξ ′ = ξ0.
One of the following holds:

• If ξ0 , ∅, then wk = 1 and ξ = ξ0. Also wk
′ = 1 and ξ ′ = ξ0.

If k = 0, we know

ws′ ≈wk
H+1

ws.
• If ξ0 = ∅, then wk = wk1 + 1 and ξ = ξ1 = ∅. Also wk

′ = H + 1 and ξ ′ = ∅.
Since wk1 ≥ 1, we know

ws′ <wk
H+1

ws.
Below we prove:

D,R,G |=
χ
t (while (B){C},σ )≼ (skip,Σ) � (u,ws′,ws′,aw,w ,wk′,H + 1) ⇓ξ ′,ξa p ∧ ¬B . (B.3)

Proof : By co-induction. Suppose σ = (s,h). Since p ⇒ (B = B) ∗ I , we know
(σ ,Σ) |= I ∗ true, and either JBKs = true or JBKs = false .

If JBKs = true, since ((σ ,Σ), (u,w1),skip) |= pt andp∧B ⇒ J ∗true∧arem(await(B′){C′}),
we know ((σ ,Σ), (u,w1),skip) |= arem(await(B′){C′}), which is impossible. Thus

JBKs = false.
We only need to prove the following (1)(2)(3)(4)(5).

(1)(a) ξ ′ ∪ ξa ⊆ s (TIDS) and t < ξ ′ and t < ξa .
(b) For any t′ ∈ ξ ′ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If (σ ,Σ) |= Enabled(Dt) ∗ true, then σ |= en(while (B){C}).
(d) If σ |= ¬en(while (B){C}) and Σ |= en(skip), then ξa , ∅.
(e) If wk

′ = H + 1, then ξ ′ = ∅. If wk′ < H + 1, then ξ ′ , ∅ ∨ Σ′ |= ¬en(skip).
(f) |ws′ | ≤ H + 1 and (1 ≤ wk

′ ≤ |ws′ | − 1) ∨ (wk′ = H + 1).
Proof : Immediate from D ′ 6 D.

(2) If while (B){C} = skip, then ...

Proof : It is vacantly true.

(3) For any σF , (while (B){C},σ ⊎ σF ) −̸_ t abort.
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Proof : It holds because JBKs is not undefined.
(4) If (while (B){C},σ ⊎ σF ) −_ t (C

′,σ ′′), then there exist σ ′, k , u ′, ws′′, ws′′, aw′,w ′, wk′′,
ξ ′′ and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) D,R,G |=

χ
t (C ′,σ ′)≼ (skip,Σ) � (u ′,ws′′,ws′′,aw′,w ′,wk′′,H + 1) ⇓ξ ′′,ξ ′a p ∧ ¬B, and

(c) ((σ ,Σ), (σ ′,Σ),k ) |= Gt ∗ True, and
(d) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′′ <wk
′

H+1
ws′,

or u ′ = u and k = 0 andw ′ = w and ws′′ ≈wk
′

H+1
ws′ and wk

′′ < wk
′
,

or u ′ = u and k = 0 and w ′ = w and ws′′ ≈wk
′

H+1
ws′ and wk

′′ = wk
′ < H + 1 and

ξ ′ ⊆ ξ ′′; and
(e) if ((σ ,Σ), (σ ′,Σ)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws

′′ <H+1 ws
′
.

Proof : Since JBKs = false, we know (while (B){C},σ ⊎σF ) −_ t (skip,σ ⊎σF ). By (skip)
rule, let

ws′′ = ((0,0),0) and ws
′′ = (0,0) and wk

′′ = H + 1 and ξ ′′ = ∅,
we know

D,R,G |=
χ
t (skip,σ )≼ (skip,Σ) � (u,ws′′,ws′′,aw,w ,wk′′,H + 1) ⇓ξ ′′,ξa p ∧ ¬B .

Also we have ws
′′ <H+1 ws

′
and ws′′ <wk

′

H+1
ws′. Since (σ ,Σ) |= I ∗ true, we can prove

((σ ,Σ), (σ ,Σ),0) |= Gt ∗ True .
(5) If ((σ ,Σ), (σ ′,Σ′),k ) |= Rt ∗ Id, then there exist u ′, ws′′, ws′′, aw′,w ′, wk′′, ξd , ξ ′′ and ξ ′a

such that

(a) D,R,G |=
χ
t (while (B){C},σ ′) ≼ (skip,Σ′) � (u ′,ws′′,ws′′,aw′,w ′,wk′′,H + 1) ⇓ξ ′′,ξ ′a

p ∧ ¬B, and
(b) u ′ ≈k u, and

k = 0 =⇒ w ′ = w , and

(c) ξd = {t′ | (t′ ∈ ξ ′) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 =⇒ ws′′ <wk

′

H+1
ws′ ∨ ws′′ ≈wk

′

H+1
ws′ and

k = 0 ∧ wk
′ < H + 1 ∧ ξd , ∅ =⇒ ws′′ <wk

′

H+1
ws′ and

k = 0 ∧ ξ ′\ξd , ∅ =⇒ wk
′′ ≤ wk

′
, and

k = 0 ∧ wk
′′ = wk

′ =⇒ ξ ′\ξd ⊆ ξ ′′, and
(d) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, then ws

′′ ≤H+1 ws
′
.

Proof : Since ((σ ,Σ), (u,w1),skip) |= pt and Sta(p,R ∗ Id), we know there exist u ′ andw ′
1

such that

((σ ′,Σ′), (u ′,w ′
1
),skip) |= pt and u ′ ≈k u and k = 0 =⇒ w ′

1
= w1 .

Also we know

(σ ′,Σ′) |= J ∗ true .

Suppose k ′s = ft (σ
′,Σ′). Since J ⇒ (R,G : D ′

f
−−→ (Q ,B′)), we can prove

k = 0 =⇒ k ′s ≤ ks .
Let

ξ ′′
0
= {t′′ | (t′′ , t) ∧ ((σ ′,Σ′) |= Enabled(D ′t′′ ) ∗ true)} and
ξd = {t′ | (t′ ∈ ξ ′) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)}.

Since Enabled(D) ⇒ I , D ′ 6 D and wffAct(R,D ′), we can prove:

k = 0 =⇒ ξ ′\ξd ⊆ ξ ′′
0
.

Ifw ′
1
= w1, letw

′ = w ; otherwise letw ′ = w ′
1
. Thus we knoww ′

1
≤ w ′. Also we know: if

k = 0, thenw ′ = w . Let
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ws
′′ = (0,0) :: inchead(ws1, (w ′1,0)) = (0,0) :: (w ′

1
,0) and

ws′′ = ((0,0),0) :: inchead(ws1, ((k ′s ,w
′
1
),0)) = ((0,0),0) :: ((k ′s ,w

′
1
),0) .

Thus if k = 0, then ws
′′ = ws

′
, and

ws′′ <wk
′

H+1
ws′ or ws′′ ≈wk

′

H+1
ws′.

If ξ ′′
0
, ∅, let wk′′ = 1 and ξ ′′ = ξ ′′

0
; otherwise let wk

′′ = H + 1 and ξ ′′ = ∅.
By the co-induction hypothesis, we know

D,R,G |=
χ
t (while (B){C},σ ′)≼ (skip,Σ′) � (u,ws′′,ws′′,aw,w ′,wk′′,H + 1) ⇓ξ ′′,ξa

p ∧ ¬B .

Suppose k = 0. If wk
′ < H + 1, then wk

′ = 1. If ξd , ∅, then there exists t′ such that

t′ ∈ ξ ′ and ((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id. Since D ′ 6 D, we can prove

((σ ,Σ), (σ ′,Σ′)) |= ⟨D ′t′⟩ ∗ Id .

Since J ⇒ (R,G : D ′
f
−−→ (Q ,B′)), we know for any t′ , t,σ ′ and Σ′, if ((σ ,Σ), (σ ′,Σ′),0) |=

(⟨D ′t′⟩ ∧ Rt) ∗ Id, then ft (σ
′,Σ′) < ks . Thus we can prove:

k ′s < ks .

Thus ws′′ <wk
′

H+1
ws′ holds.

If k = 0 ∧ ξ ′\ξd , ∅, we know wk
′′ = 1. Thus wk

′′ ≤ wk
′
.

If k = 0 ∧ wk
′′ = wk

′
, we know ξ ′\ξd ⊆ ξ ′′.

Thus we have proved (B.3).

(5) If ((σ ,Σ), (σ ′,Σ′),k ) |= Rt ∗ Id, then there exist u ′, ws′, ws′, aw′, w ′, wk′, ξd , ξad , ξ ′ and ξ ′a
such that

(a) D,R,G |=
χ
t (C1;while (B){C},σ ′) ≼ (skip,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H + 1) ⇓ξ ′,ξ ′a

p ∧ ¬B, and
(b) u ′ ≈k u, and

k = 0 =⇒ w ′ = w , and

(c) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 =⇒ ws′ <wk

H+1
ws ∨ ws′ ≈wk

H+1
ws and

k = 0 ∧ wk < H + 1 ∧ ξd , ∅ =⇒ ws′ <wk
H+1

ws and
k = 0 ∧ ξ\ξd , ∅ =⇒ wk

′ ≤ wk, and

k = 0 ∧ wk
′ = wk =⇒ ξ\ξd ⊆ ξ ′, and

(d) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, then ws
′ ≤H+1 ws; and

(e) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ is_await(C1;while (B){C}) =⇒ ξa\ξad ⊆ ξ ′a and

k = 0 ∧ is_await(C1;while (B){C}) ∧ ξad , ∅ =⇒ aw
′ < aw and

(χ = sfair) ∧ k = 0 ∧ is_await(C1;while (B){C}) ∧ (σ |= ¬en(C1;while (B){C})) ∧ (σ ′ |=
¬en(C1;while (B){C})) =⇒ aw

′ ≤ aw and

(χ = wfair) ∧ k = 0 ∧ is_await(C1;while (B){C}) =⇒ aw
′ ≤ aw.

Proof : From D,R,G |=
χ
t (C1,σ ) ≼ (skip,Σ) � (u,ws1,ws1,aw,w1,wk1,H ) ⇓ξ1,ξa p, we know

there exist u ′, ws′
1
, ws

′
1
, aw

′
,w ′

1
, wk

′
1
, ξ ′d , ξad , ξ

′
1
and ξ ′a such that

(A) D,R,G |=
χ
t (C1,σ

′)≼ (skip,Σ′) � (u ′,ws′
1
,ws′

1
,aw′,w ′

1
,wk′

1
,H ) ⇓ξ ′

1
,ξ ′a p, and

(B) u ′ ≈k u, and
k = 0 =⇒ w ′

1
= w1, and

(C) ξ ′d = {t
′ | (t′ ∈ ξ1) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and

k = 0 =⇒ ws′
1
<wk1
H

ws1 ∨ ws′
1
≈
wk1

H
ws1 and

k = 0 ∧ wk1 < H ∧ ξ
′
d , ∅ =⇒ ws′

1
<wk1
H

ws1 and
k = 0 ∧ ξ1\ξ

′
d , ∅ =⇒ wk

′
1
≤ wk1, and

k = 0 ∧ wk
′
1
= wk1 =⇒ ξ1\ξ

′
d ⊆ ξ ′

1
, and
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(D) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, then ws
′
1
≤H ws1; and

(E) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ is_await(C1) =⇒ ξa\ξad ⊆ ξ ′a and

k = 0 ∧ is_await(C1) ∧ ξad , ∅ =⇒ aw
′ < aw and

(χ = sfair) ∧ k = 0 ∧ is_await(C1) ∧ (σ |= ¬en(C1)) ∧ (σ ′ |= ¬en(C1)) =⇒ aw
′ ≤ aw and

(χ = wfair) ∧ k = 0 ∧ is_await(C1) =⇒ aw
′ ≤ aw.

Since (σ ,Σ) |= J ∗ true and Sta(J ,G ∨ R), we know

(σ ′,Σ′) |= J ∗ true .

Suppose k ′s = ft (σ
′,Σ′). Since J ⇒ (R,G : D ′

f
−−→ (Q ,B′)), we can prove

k = 0 =⇒ k ′s ≤ ks .

Let

ξ ′
0
= {t′′ | (t′′ , t) ∧ ((σ ′,Σ′) |= Enabled(D ′t′′ ) ∗ true)},

ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
ξ ′′d = {t

′ | (t′ ∈ ξ0) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)}.

Let

ws
′ = (0,0) :: inchead(ws′

1
, (w1,1)) , ws′ = ((0,0),0) :: inchead(ws′

1
, ((k ′s ,w

′
1
),1)) .

Ifw ′
1
= w1, letw

′ = w ; otherwise letw ′ = w ′
1
. Thus we knoww ′

1
≤ w ′.

Also we know: if k = 0, thenw ′ = w , and if ws
′
1
≤H ws1 then ws

′ ≤H+1 ws.

If ξ ′
0
, ∅, let wk′ = 1 and ξ ′ = ξ ′

0
; otherwise let wk

′ = wk
′
1
+ 1 and ξ ′ = ξ ′

1
. Then, by the

co-induction hypothesis, we know

D,R,G |=
χ
t (C ′

1
;while (B){C},σ ′)≼ (C,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H + 1) ⇓ξ ′,ξ ′a p ∧ ¬B .

One of the following holds:

• If ξ0 , ∅, then wk = 1 and ξ = ξ0.
Thus ξd = ξ ′′d . Since Enabled(D) ⇒ I , D ′ 6 D and wffAct(R,D ′), we can prove:

k = 0 =⇒ ξ0\ξ
′′
d ⊆ ξ ′

0
.

If k = 0, we know ws′
1
<wk1
H

ws1 or ws′
1
≈
wk1

H
ws1. Since wk1 ≥ 1, we know

ws′ <wk
H+1

ws or ws′ ≈wk
H+1

ws.
Suppose k = 0. If ξd , ∅, then there exists t′ such that t′ ∈ ξ and ((σ ,Σ), (σ ′,Σ′)) |=
⟨Dt′⟩ ∗ Id. Since D ′ 6 D, we can prove

((σ ,Σ), (σ ′,Σ′)) |= ⟨D ′t′⟩ ∗ Id .

Since J ⇒ (R,G : D ′
f
−−→ (Q ,B′)), we know

k ′s < ks .
Thus ws′ <wk

H+1
ws holds.

If k = 0 ∧ ξ\ξd , ∅, we know wk
′ = 1. Thus wk

′ ≤ wk.

If k = 0 ∧ wk
′ = wk, we know ξ\ξd ⊆ ξ ′.

• If ξ0 = ∅, then wk = wk1 + 1 and ξ = ξ1.

Thus ξd = ξ ′d . If k = 0, we know ws′
1
<wk1
H

ws1 or ws′
1
≈
wk1

H
ws1. Thus we know

ws′ <wk
H+1

ws or ws′ ≈wk
H+1

ws.

If k = 0 ∧ wk < H + 1 ∧ ξd , ∅, we know k = 0 ∧ wk1 < H ∧ ξ
′
d , ∅. Thus ws′

1
<wk1
H

ws1.

Thus ws′ <wk
H+1

ws.
If k = 0 ∧ ξ\ξd , ∅, we know wk

′
1
≤ wk1. Thus wk

′ ≤ wk.

If k = 0 ∧ wk
′ = wk, we know wk

′ = wk
′
1
+ 1, wk′

1
= wk1 and ξ

′ = ξ ′
1
. Thus ξ\ξd ⊆ ξ ′.

Thus we are done. �
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B.4.2 The await-w rule.

Lemma B.12 (await-w-Sound). If

(1) D,[I ],G |=wfair {p ∧ B}⟨C⟩{q};
(2) p ∧ Enabled(D) ∗ true⇒ B; p ⇒ (B = B);
(3) Sta({p,q},R ∗ Id);

(4) D ′ 6 D; wffAct(R,D ′); p ⇒ ∃B′,C′. arem(await(B′){C′}) ∧ (R : D ′◦
f
−→ (B,B′));

then D,R,G |=wfair {p}await(B){C}{q}.

Proof. LetH = height(await(B){C}) = 1. We know |await(B){C}| = 1. Let

ws = ((0,0),1) and ws = (0,1) and wk = H = 1 and ξ = ∅.

For any t, for any σ , Σ, u,w and C, if ((σ ,Σ), (u,w ),C) |= pt, then let

aw = ft (σ ,Σ) and ξa = {t′ | (t′ , t) ∧ ((σ ,Σ) |= Enabled(D ′t′ ) ∗ true)} .

Below we prove:

D,R,G |=wfairt (await(B){C},σ )≼ (C,Σ) � (u,ws,ws,aw,w ,wk,H ) ⇓ξ ,ξa q .

By co-induction. Since p ⇒ ∃B′,C′. arem(await(B′){C′}) ∧ (R : D ′◦
f
−→ (B,B′)), we know there

exist B′ and C ′ such that

C = await(B′){C′} and (σ ,Σ) |= (R : D ′◦
f
−→ (B,B′)).

Suppose σ = (s,h). We only need to prove the following (1)(2)(3)(4)(5)(6).

(1)(a) ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If (σ ,Σ) |= Enabled(Dt) ∗ true, then σ |= en(await(B){C}).
(d) If σ |= ¬en(await(B){C}) and Σ |= en(C), then ξa , ∅.
(e) If wk = H , then ξ = ∅. If wk < H , then ξ , ∅ ∨ Σ |= ¬en(C).
(f) |ws| ≤ H and (1 ≤ wk ≤ |ws| − 1) ∨ (wk = H ).
Proof : (a), (e) and (f) are immediate.

(b) Immediate from D ′ 6 D.

(c) Immediate from p ∧ Enabled(D) ∗ true⇒ B.

(d) From (σ ,Σ) |= (R : D ′◦
f
−→ (B,B′)), we know: either σ |= B, or Σ |= ¬B′, or ∃t′ , t. (σ ,Σ) |=

Enabled(D ′t′ ) ∗ true. Thus we are done.
(2) If await(B){C} = skip, then ....

Proof : It is vacantly true.

(3) If await(B){C} = E[ return E ], then ....

Proof : It is vacantly true.

(4) For any σF , (await(B){C},σ ⊎ σF ) −̸_ t abort.
Proof : By the operational semantics and D,[I ],G |=wfair {p ∧ B}⟨C⟩{q}.

(5) For anyC ′, σ ′′, σF and ΣF , if (await(B){C},σ ⊎ σF ) −_ t (C
′,σ ′′), then there exist σ ′, C′, Σ′,

k , u ′, ws′, ws′, aw′,w ′, wk′, ξ ′ and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) (C,Σ ⊎ ΣF ) −_ ∗

t (C
′,Σ′ ⊎ ΣF ), and

(c) D,R,G |=wfairt (C ′,σ ′)≼ (C′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, and
(d) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, and
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(e) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′ <wk
H

ws,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ < wk,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ = wk < H and ξ ⊆ ξ ′; and

(f) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′ <H ws.

Proof : By the operational semantics, we know C ′ must be skip and

JBKs = true and (C,σ ⊎ σF ) −_ ∗
t (skip,σ

′′) .

Thus

(⟨C⟩,σ ⊎ σF ) −_ ∗
t (skip,σ

′′) .

From D,[I ],G |=wfair {p ∧ B}⟨C⟩{q}, we know there exist aw
′′
and ξ ′′a such that

D,[I ],G |=wfairt (⟨C⟩,σ )≼ (C,Σ) � (u,ws,ws,aw′′,w ,wk,H ) ⇓ξ ,ξ ′′a q .

Thus there exist σ ′, C′, Σ′, k , u ′, ws′, ws′, aw′,w ′, wk′, ξ ′ and ξ ′a such that

(A) σ ′′ = σ ′ ⊎ σF , and
(B) (C,Σ ⊎ ΣF ) −_ ∗

t (C
′,Σ′ ⊎ ΣF ), and

(C) D,[I ],G |=wfairt (skip,σ ′)≼ (C′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, and
(D) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, and
(E) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′ <wk
H

ws,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ < wk,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ = wk < H and ξ ⊆ ξ ′; and

(F) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′ <H ws.

From D,[I ],G |=wfairt (skip,σ ′) ≼ (C′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, we know
there exist C′′ and Σ′′ such that

(G) (C′,Σ′ ⊎ ΣF ) −_ ∗
t (C

′′,Σ′′ ⊎ ΣF ), and
(H) ((σ ′,Σ′′), (u ′,w ′),C′′) |= qt, and
(I) ws′ = ((0,0),0) and ws

′ = (0,0) and wk
′ = H and ξ ′ = ∅, and

(J) ((σ ′,Σ′), (σ ′,Σ′′),0) |= Gt ∗ True.
Since Sta(q,R ∗ Id), by (skip) rule, we can prove

D,R,G |=wfairt (skip,σ ′)≼ (C′′,Σ′′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q .

Also we know

(C,Σ ⊎ ΣF ) −_ ∗
t (C

′′,Σ′′ ⊎ ΣF ) and ws
′ <H ws and

((σ ,Σ), (σ ′,Σ′′),k ) |= Gt ∗ True (suppose G is transitive-closed)

(6) If ((σ ,Σ), (σ ′,Σ′),k ) |= R ∗ Id, then there exist u ′, ws′, ws′, aw′, w ′, wk′, ξd , ξad , ξ ′ and ξ ′a
such that

(a) D,R,G |=wfairt (await(B){C},σ ′)≼ (C,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, and
(b) u ′ ≈k u, and

k = 0 =⇒ w ′ = w , and

(c) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 =⇒ ws′ <wk

H
ws ∨ ws′ ≈wk

H
ws and

k = 0 ∧ wk < H ∧ (ξd , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ ws′ <wk
H

ws and
k = 0 ∧ (ξ\ξd , ∅ ∨ Σ′ |= ¬en(C)) =⇒ wk

′ ≤ wk, and

k = 0 ∧ wk
′ = wk =⇒ ξ\ξd ⊆ ξ ′, and

(d) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, then ws
′ ≤H ws; and

(e) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ is_await(await(B){C}) =⇒ ξa\ξad ⊆ ξ ′a and
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k = 0 ∧ is_await(await(B){C}) ∧ (ξad , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ aw
′ < aw

and

k = 0 ∧ is_await(await(B){C}) =⇒ aw
′ ≤ aw.

Proof : Since Sta(p,R ∗ Id), we know there exist u ′ andw ′ such that

((σ ′,Σ′), (u ′,w ′),C) |= pt and u ′ ≈k u and k = 0 =⇒ w ′ = w .

Let

aw
′ = ft (σ

′,Σ′) and ξ ′a = {t
′ | (t′ , t) ∧ ((σ ′,Σ′) |= Enabled(D ′t′ ) ∗ true)} .

By the co-induction hypothesis, we know

D,R,G |=wfairt (await(B){C},σ ′)≼ (C,Σ′) � (u ′,ws,ws,aw′,w ′,wk,H ) ⇓ξ ,ξ ′a q .

Let

ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)}.
Since Enabled(D) ⇒ I , D ′ 6 D and wffAct(R,D ′), we can prove:

k = 0 =⇒ ξa\ξad ⊆ ξ ′a .

From (σ ,Σ) |= (R : D ′◦
f
−→ (B,B′)), we know

k = 0 =⇒ aw
′ ≤ aw .

Suppose k = 0. If ξad , ∅, then there exists t′ such that t′ ∈ ξa and ((σ ,Σ), (σ ′,Σ′)) |=
⟨Dt′⟩ ∗ Id. Since D ′ 6 D, we can prove

((σ ,Σ), (σ ′,Σ′)) |= ⟨D ′t′⟩ ∗ Id .

Since (σ ,Σ) |= (R : D ′◦
f
−→ (B,B′)), we know

aw
′ < aw .

Also if Σ |= ¬en(C) ∧ Σ′ |= en(C), from (σ ,Σ) |= (R : D ′◦
f
−→ (B,B′)), we can still prove:

aw
′ < aw .

Thus we are done. �

B.4.3 The await-s rule.

Lemma B.13 (await-s-Sound). If

(1) D,[I ],G |=sfair {p ∧ B}⟨C⟩{q};
(2) p ∧ Enabled(D) ∗ true⇒ B; p ⇒ (B = B);
(3) Sta({p,q},R ∗ Id);

(4) D ′ 6 D; wffAct(R,D ′); p ⇒ ∃B′,C′. arem(await(B′){C′}) ∧ (R : D ′•
f
−→ (B,B′));

then D,R,G |=sfair {p}await(B){C}{q}.

Proof. LetH = height(await(B){C}) = 1. We know |await(B){C}| = 1. Let

ws = ((0,0),1) and ws = (0,1) and wk = H = 1 and ξ = ∅.

For any t, for any σ , Σ, u,w and C, if ((σ ,Σ), (u,w ),C) |= pt, then let

aw = ft (σ ,Σ) and ξa = {t′ | (t′ , t) ∧ ((σ ,Σ) |= Enabled(D ′t′ ) ∗ true)} .

Below we prove:

D,R,G |=sfairt (await(B){C},σ )≼ (C,Σ) � (u,ws,ws,aw,w ,wk,H ) ⇓ξ ,ξa q .

By co-induction. Since p ⇒ ∃B′,C′. arem(await(B′){C′}) ∧ (R : D ′•
f
−→ (B,B′)), we know there

exist B′ and C ′ such that
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C = await(B′){C′} and (σ ,Σ) |= (R : D ′•
f
−→ (B,B′)).

Suppose σ = (s,h). We only need to prove the following (1)(2)(3)(4)(5)(6).

(1)(a) ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If (σ ,Σ) |= Enabled(Dt) ∗ true, then σ |= en(await(B){C}).
(d) If σ |= ¬en(await(B){C}) and Σ |= en(C), then ξa , ∅.
(e) If wk = H , then ξ = ∅. If wk < H , then ξ , ∅ ∨ Σ |= ¬en(C).
(f) |ws| ≤ H and (1 ≤ wk ≤ |ws| − 1) ∨ (wk = H ).
Proof : (a), (e) and (f) are immediate.

(b) Immediate from D ′ 6 D.

(c) Immediate from p ∧ Enabled(D) ∗ true⇒ B.

(d) From (σ ,Σ) |= (R : D ′•
f
−→ (B,B′)), we know: either σ |= B, or Σ |= ¬B′, or ∃t′ , t. (σ ,Σ) |=

Enabled(D ′t′ ) ∗ true. Thus we are done.
(2) If await(B){C} = skip, then ....

Proof : It is vacantly true.

(3) If await(B){C} = E[ return E ], then ....

Proof : It is vacantly true.

(4) For any σF , (await(B){C},σ ⊎ σF ) −̸_ t abort.
Proof : By the operational semantics and D,[I ],G |=sfair {p ∧ B}⟨C⟩{q}.

(5) For anyC ′, σ ′′, σF and ΣF , if (await(B){C},σ ⊎ σF ) −_ t (C
′,σ ′′), then there exist σ ′, C′, Σ′,

k , u ′, ws′, ws′, aw′,w ′, wk′, ξ ′ and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) (C,Σ ⊎ ΣF ) −_ ∗

t (C
′,Σ′ ⊎ ΣF ), and

(c) D,R,G |=sfairt (C ′,σ ′)≼ (C′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, and
(d) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, and
(e) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′ <wk
H

ws,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ < wk,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ = wk < H and ξ ⊆ ξ ′; and

(f) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′ <H ws.

Proof : By the operational semantics, we know C ′ must be skip and

JBKs = true and (C,σ ⊎ σF ) −_ ∗
t (skip,σ

′′) .

Thus

(⟨C⟩,σ ⊎ σF ) −_ ∗
t (skip,σ

′′) .

From D,[I ],G |=sfair {p ∧ B}⟨C⟩{q}, we know there exist aw
′′
and ξ ′′a such that

D,[I ],G |=sfairt (⟨C⟩,σ )≼ (C,Σ) � (u,ws,ws,aw′′,w ,wk,H ) ⇓ξ ,ξ ′′a q .

Thus there exist σ ′, C′, Σ′, k , u ′, ws′, ws′, aw′,w ′, wk′, ξ ′ and ξ ′a such that

(A) σ ′′ = σ ′ ⊎ σF , and
(B) (C,Σ ⊎ ΣF ) −_ ∗

t (C
′,Σ′ ⊎ ΣF ), and

(C) D,[I ],G |=sfairt (skip,σ ′)≼ (C′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, and
(D) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ True, and
(E) either u ′ <k u and k > 0,

or u ′ = u and k = 0 andw ′ = w and ws′ <wk
H

ws,
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or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ < wk,

or u ′ = u and k = 0 andw ′ = w and ws′ ≈wk
H

ws and wk
′ = wk < H and ξ ⊆ ξ ′; and

(F) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, then ws
′ <H ws.

From D,[I ],G |=sfairt (skip,σ ′) ≼ (C′,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, we know
there exist C′′ and Σ′′ such that

(G) (C′,Σ′ ⊎ ΣF ) −_ ∗
t (C

′′,Σ′′ ⊎ ΣF ), and
(H) ((σ ′,Σ′′), (u ′,w ′),C′′) |= qt, and
(I) ws′ = ((0,0),0) and ws

′ = (0,0) and wk
′ = H and ξ ′ = ∅, and

(J) ((σ ′,Σ′), (σ ′,Σ′′),0) |= Gt ∗ True.
Since Sta(q,R ∗ Id), by (skip) rule, we can prove

D,R,G |=sfairt (skip,σ ′)≼ (C′′,Σ′′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q .

Also we know

(C,Σ ⊎ ΣF ) −_ ∗
t (C

′′,Σ′′ ⊎ ΣF ) and ws
′ <H ws and

((σ ,Σ), (σ ′,Σ′′),k ) |= Gt ∗ True (suppose G is transitive-closed)

(6) If ((σ ,Σ), (σ ′,Σ′),k ) |= R ∗ Id, then there exist u ′, ws′, ws′, aw′, w ′, wk′, ξd , ξad , ξ ′ and ξ ′a
such that

(a) D,R,G |=sfairt (await(B){C},σ ′)≼ (C,Σ′) � (u ′,ws′,ws′,aw′,w ′,wk′,H ) ⇓ξ ′,ξ ′a q, and
(b) u ′ ≈k u, and

k = 0 =⇒ w ′ = w , and

(c) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 =⇒ ws′ <wk

H
ws ∨ ws′ ≈wk

H
ws and

k = 0 ∧ wk < H ∧ (ξd , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ ws′ <wk
H

ws and
k = 0 ∧ (ξ\ξd , ∅ ∨ Σ′ |= ¬en(C)) =⇒ wk

′ ≤ wk, and

k = 0 ∧ wk
′ = wk =⇒ ξ\ξd ⊆ ξ ′, and

(d) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, then ws
′ ≤H ws; and

(e) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ is_await(await(B){C}) =⇒ ξa\ξad ⊆ ξ ′a and

k = 0 ∧ is_await(await(B){C}) ∧ (ξad , ∅ ∨ (Σ |= ¬en(C) ∧ Σ′ |= en(C))) =⇒ aw
′ < aw

and

k = 0 ∧ is_await(await(B){C}) ∧ (σ |= ¬en(C )) ∧ (σ ′ |= ¬en(C )) =⇒ aw
′ ≤ aw.

Proof : Since Sta(p,R ∗ Id), we know there exist u ′ andw ′ such that

((σ ′,Σ′), (u ′,w ′),C) |= pt and u ′ ≈k u and k = 0 =⇒ w ′ = w .

Let

aw
′ = ft (σ

′,Σ′) and ξ ′a = {t
′ | (t′ , t) ∧ ((σ ′,Σ′) |= Enabled(D ′t′ ) ∗ true)} .

By the co-induction hypothesis, we know

D,R,G |=sfairt (await(B){C},σ ′)≼ (C,Σ′) � (u ′,ws,ws,aw′,w ′,wk,H ) ⇓ξ ,ξ ′a q .

Let

ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)}.
Since Enabled(D) ⇒ I , D ′ 6 D and wffAct(R,D ′), we can prove:

k = 0 =⇒ ξa\ξad ⊆ ξ ′a .

From (σ ,Σ) |= (R : D ′•
f
−→ (B,B′)), we know

k = 0 ∧ (σ |= ¬en(C )) ∧ (σ ′ |= ¬en(C )) =⇒ aw
′ ≤ aw .

Suppose k = 0. If ξad , ∅, then there exists t′ such that t′ ∈ ξa and ((σ ,Σ), (σ ′,Σ′)) |=
⟨Dt′⟩ ∗ Id. Since D ′ 6 D, we can prove
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wr∗ (Γ) ( f )
def

= (P ,x , wr∗ (await(B){C}); return E)
if Γ( f ) = (P ,x , await(B){C}; return E)

wr∗ (await(B){C}) def

=

local u1 := nondet(), u2 := nondet();
while ( u1 >= 0 ) {
while ( !B || done ) { };
u1--;
done := true;
done := false;

}
await(B ∧ ¬done){C; done := true; };
done := false;
while ( u2 >= 0 ) {

while ( done ) { };
u2--;
done := true;
done := false;

}

wr∗ (φ) (σ )
def

= wrχPDF (φ) (σ )

Fig. 22. The special SFAIR-PDF wrapper wr∗.

((σ ,Σ), (σ ′,Σ′)) |= ⟨D ′t′⟩ ∗ Id .

Since (σ ,Σ) |= (R : D ′•
f
−→ (B,B′)), we know

aw
′ < aw .

Also if Σ |= ¬en(C) ∧ Σ′ |= en(C), from (σ ,Σ) |= (R : D ′•
f
−→ (B,B′)), we can still prove:

aw
′ < aw .

Thus we are done. �

B.5 Local simulations with respect to abstractions
In this subsection, we define the simulations D,R,G |=χ {P }Π - Γ and D,R,G |=\χ {P }Π -
(Γ,wr∗ (Γ)), and prove 2 and 3 in Fig. 21. We define the special wrapper wr∗ in Fig. 22. We also

give some useful auxiliary definitions in Fig. 24, which describe the executions of the wrapper.

Definition B.14 (Simulations with respect to abstractions). D,R,G |=χ {P }Π - Γ iff there exist

D, R and G such that D,R,G |=χ {P }Π : Γ, R ⇒ ⌊R⌋0 and G ⇒ ⌊G⌋0.
D,R,G |=\χ {P }Π - (Γ,wr∗ (Γ)) iff, for any f ∈ dom(Π), for any σ , C and Σ, for any t, if

Π( f ) = (P ,x ,C ), Γ( f ) = (P ′,y, (await(B){C0}; return E)), C = (wr∗ (await(B){C0}); return E)
and (σ ,Σ) |= (Pt ∧ Pt) ∗ (done = false) ∗ own(x ) ∗ own(y) ∧ (x = y), there exist three well-founded
metricsM,M and aw, a boolean flag wb and two sets ξ ,ξa ∈P (ThrdID) such that wb = false and

D,R,G |= \χt (C,σ ) - (B,C,Σ) � (M,M ,wb,aw) ⇓ξ ,ξa (P ∗ own(x ) ∗ own(y)).

Here D,R,G |=\χt (C,σ ) - (B,C,Σ) � (M,M ,wb,aw) ⇓ξ ,ξa Q is co-inductively defined as follows.

Whenever D,R,G |=\χt (C,σ ) - (B,C,Σ) � (M,M ,wb,aw) ⇓ξ ,ξa Q holds, then the following hold:

(1)(a) Suppose σ = (s,h). Then ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
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wr0 (await(B){C}) def

=

while ( u1 >= 0 ) {
while ( !B || done ) { };
u1--;
done := true;
done := false;

}
await(B ∧ ¬done){C; done := true; };
done := false;

wr1 (return E)
def

=

while ( u2 >= 0 ) {
while ( done ) { };
u2--;
done := true;
done := false;

}
return E;

wr′
0
(await(B){C}) def

=

while ( !B || done ) { };
u1--;
done := true;
done := false;
while ( u1 >= 0 ) {
while ( !B || done ) { };
u1--;
done := true;
done := false;

}
await(B ∧ ¬done){C; done := true; };
done := false;

wr′
1
(return E)

def

=

while ( done ) { };
u2--;
done := true;
done := false;
while ( u2 >= 0 ) {

while ( done ) { };
u2--;
done := true;
done := false;

}
return E;

Fig. 23. Useful notations for the special wrapper wr∗.

wrsteps0t ((C,Σ), (C
′,Σ′)) iff

C = C′ ∧ Σ = Σ′

wrstepsn+1t ((C,Σ), (C′,Σ′)) iff
∃C′′,Σ′′. (C,Σ) −_ t (C

′′,Σ′′) ∧ wrstepsnt ((C
′′,Σ′′), (C′,Σ′))

∧ Σ′′ = Σ{done ❀ _,u1 ❀ _,u2 ❀ _}

exec0t ((C,Σ), (C′,Σ′)) iff
∃C′′,Σ′′,n1,n2. wrsteps

n1+1
t ((C,Σ), (C′′,Σ′′)) ∧ Σ′′(done) = true

∧ wrstepsn2+1
t ((C′′,Σ′′), (C′,Σ′))

exec1t ((C,Σ), (C′,Σ′)) iff
∃C′′,Σ′′,C′′′,Σ′′′,C′′′′,Σ′′′′,n1,n2,n3. wrsteps

n1+1
t ((C,Σ), (C′′,Σ′′)) ∧ Σ′′(done) = true

∧ wrstepsn2+1
t ((C′′,Σ′′), (C′′′,Σ′′′))

∧ (C′′′,Σ′′′) −_ t (C
′′′′,Σ′′′′)

∧ wrstepsn3+1
t ((C′′′′,Σ′′′′), (C′,Σ′))

is_while0(C,B) iff ∃E,C0. C = (wr′
0
(await(B){C0});wr1 (return E))

is_while1(C) iff ∃E. C = wr′
1
(return E)

is_return(C ) iff ∃E,E. C = E[ return E ]

Fig. 24. Executions of the special wrapper wr∗.

, Vol. 1, No. 1, Article . Publication date: January 2018.



Progress of Concurrent Objects with Partial Methods (Extended Version) :95

(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If wb = false, then ξ = ∅. If wb = true, then ξ , ∅ ∨ Σ |= ¬B.
(d) If σ |= ¬en(C ) and Σ |= B, then ξa , ∅.
(e) If (σ ,Σ) |= Enabled(Dt) ∗ true, then σ |= en(C ).
(f) Σ(done) = false.
(g) If Σ |= ¬B, then is_while0(C,B). If ¬is_return(C ), then is_while0(C,B) ∨ is_while1(C).

(2) If C = E[ return E ], then there exists E such that

(a) C = (return E), and
(b) (σ ,Σ) |= Qt and JEKσ .s = JEKΣ.s , and
(c) ((σ ,Σ), (σ ,Σ),0) |= Gt ∗ True, and
(d) wb = false.

(3) For any σF , (C,σ ⊎ σF ) −̸_ t abort.
(4) For any C ′, σ ′′, σF and ΣF , if (C,σ ⊎ σF ) −_ t (C

′,σ ′′) and Σ⊥ΣF , then there exist σ ′, C′, Σ′,
k ,M′,M ′, wb′, aw′, ξ ′, ξ ′a , n and B′ such that

(a) σ ′′ = σ ′ ⊎ σF , and
(b) (C,Σ ⊎ ΣF ) −_n

t (C
′,Σ′ ⊎ ΣF ); and

if k > 0, then exec0t ((C,Σ ⊎ ΣF ), (C
′,Σ′ ⊎ ΣF )) ∨ exec1t ((C,Σ ⊎ ΣF ), (C

′,Σ′ ⊎ ΣF )); and
if is_while1(C′), then B′ = true, otherwise B′ = B; and

(c) D,R,G |= \χt (C ′,σ ′) - (B′,C′,Σ′) � (M′,M ′,wb′,aw′) ⇓ξ ′,ξ ′a Q , and
(d) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ [done = false] ∗ True, and
(e) either n > 0,

orM′ < M,

orM′ = M and wb
′ = wb = true and ξ ⊆ ξ ′; and

(f) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, thenM ′ < M .

(5) For any k , σ ′ and Σ′, if ((σ ,Σ), (σ ′,Σ′),k ) |= Rt ∗ [done = false] ∗ Id, then there existM′,M ′,
wb
′
, aw

′
, ξd , ξad , ξ

′
and ξ ′a such that

(a) D,R,G |= \χt (C,σ ′) - (B,C,Σ′) � (M′,M ′,wb′,aw′) ⇓ξ ′,ξ ′a Q , and
(b) if k > 0 and ¬is_return(C ), then for any Σ′′ and ΣF such that Σ′′ = Σ{done ❀ true} and

ΣF⊥Σ we have (C,Σ′′ ⊎ ΣF ) −_+
t (C,Σ′′ ⊎ ΣF );

(c) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 =⇒ M′ < M ∨ (M′ = M ∧ wb

′ = wb) and
k = 0 ∧ wb = true ∧ (ξd , ∅ ∨ (Σ |= ¬B ∧ Σ′ |= B)) =⇒ M′ < M and

k = 0 ∧M′ = M ∧ wb
′ = wb = true =⇒ ξ\ξd ⊆ ξ ′, and

(d) if k = 0 and (σ ,Σ) |= Enabled(Dt) ∗ true, thenM ′ ≤ M ; and

(e) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ is_await(C ) =⇒ ξa\ξad ⊆ ξ ′a and

k = 0 ∧ is_await(C ) ∧ (ξad , ∅ ∨ (Σ |= ¬B ∧ Σ′ |= B)) =⇒ aw
′ < aw and

(χ = sfair) ∧ k = 0 ∧ is_await(C ) ∧ (σ |= ¬en(C )) ∧ (σ ′ |= ¬en(C )) =⇒ aw
′ ≤ aw and

(χ = wfair) ∧ k = 0 ∧ is_await(C ) =⇒ aw
′ ≤ aw.

B.5.1 Transforming to simulations with respect to abstractions. The key point of Π - Π′ is that
we remove the metric u and use the non-atomic abstract code Π′ to describe the effects of delay.
Below we prove 2 and 3 in Fig. 21.

• By Definition B.14, the proofs of 2 are trivial.

• Lemma B.15 shows 3 .

Lemma B.15 ( 3 in Fig. 21). If D,R,G |=χ {P }Π : Γ, then D,R,G |=\χ {P }Π - (Γ,wr∗ (Γ)).
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Proof. For any f ∈ dom(Π), for any σ , C and Σ, for any t, if Π( f ) = (P ,x ,C ), Γ( f ) =
(P ′,y, (await(B){C0}; return E)), C = (wr∗ (await(B){C0}); return E) and (σ ,Σ) |= (Pt ∧ Pt) ∗
(done = false) ∗ own(x ) ∗ own(y) ∧ (x = y), we know there exists Σ1 such that Σ = Σ1 ⊎ {done ❀

false} and

(σ ,Σ1) |= (Pt ∧ Pt) ∗ own(x ) ∗ own(y) ∧ (x = y)

Let C1 = (await(B){C0}; return E). From D,R,G |=χ {P }Π : Γ, we know there exist four well-

founded metrics u, M, M and aw, a boolean flag wb and two sets ξ ,ξa ∈ P (ThrdID) such that

wb = false and

D,R,G |=
χ
t (C,σ )≼ (C1,Σ1) � (u,M,M ,wb,aw) ⇓ξ ,ξa (P ∗ own(x ) ∗ own(y)).

We want to prove:

D,R,G |= \χt (C,σ ) - (B,C,Σ) � (M,M ,wb,aw) ⇓ξ ,ξa (P ∗ own(x ) ∗ own(y)).

Fig. 23 gives some useful notations for the special wrapper. We only need to prove the following:

(1) If D,R,G |=
χ
t (C,σ )≼ ((await(B){C0}; return E),Σ1) � (u,M,M ,wb,aw) ⇓ξ ,ξa Q

and Σ = Σ1 ⊎ {done ❀ false,u1 ❀ u1,u2 ❀ u2} and 0 ≤ u ≤ u1 and 0 ≤ u ≤ u2,
thenD,R,G |= \χt (C,σ ) - (B, (wr′

0
(await(B){C0});wr1 (return E)),Σ) � (M,M ,wb,aw) ⇓ξ ,ξa

Q .
(2) If D,R,G |=

χ
t (C,σ )≼ ((return E),Σ1) � (u,M,M ,wb,aw) ⇓ξ ,ξa Q and ¬is_return(C )

and Σ = Σ1 ⊎ {done ❀ false,u1 ❀ u1,u2 ❀ u2} and 0 ≤ u ≤ u2,
then D,R,G |=\χt (C,σ ) - (true,wr′

1
(return E),Σ) � (M,M ,wb,aw) ⇓ξ ,ξa Q .

(3) If D,R,G |=
χ
t (C,σ )≼ ((return E),Σ1) � (u,M,M ,wb,aw) ⇓ξ ,ξa Q and is_return(C )

and Σ = Σ1 ⊎ {done ❀ false,u1 ❀ u1,u2 ❀ u2},
then D,R,G |=\χt (C,σ ) - (true, (return E),Σ) � (M,M ,wb,aw) ⇓ξ ,ξa Q .

By co-induction. �

B.6 Lifting to Simulations for Client Threads
Since we have two kinds of object-local simulations in Fig. 21, we also need two kinds of simulations

for client threads. Below Definition B.16 gives the client simulation with PSF objects (under

either strong or weak fairness, corresponding to D,R,G |=χ {P }Π - Γ). Definition B.17 gives

the client simulation with PDF objects (under either strong or weak fairness, corresponding to

D,R,G |=\χ {P }Π - (Γ,wr∗ (Γ))).
In the definitions, we use is_clt(e ) to say that e is a client event in the form of (t,out,n), (t,clt)

and (t,term). Similarly we use is_obj(e ) to say that e is an event inside method calls in the form of

(t,obj). We also define:

getB(Π, f )
def

= en(C ) if Π( f ) = (P ,x ,C )

inObj(C,κ) iff (κ , ◦) ∧ ¬is_return(C )

Similar to the definitions of exec0t ((C,Σ), (C′,Σ′)) and exec1t ((C,Σ), (C′,Σ′)) in Fig. 24, we can

also define exec0t ((C,δ ), (C′,δ ′)) and exec1t ((C,δ ), (C′,δ ′)) for the executions of the thread.

Definition B.16 (Simulation for Thread with PSF objects). D,R,G |=χ {P }(Π,C ) - (Γ,C) iff, for
any σc , σ and Σ, for any t, if (σ ,Σ) |= Pt, there exist three well-founded metricsM, M and aw, a

boolean flag wb and two sets ξ ,ξa ∈P (ThrdID) such that wb = false and
D,R,G |=

χ
t (Π,C, (σc ,σ ,◦)) - (Γ,C, (Σ,◦)) � (M,M ,wb,aw) ⇓ξ ,ξa P .
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Here D,R,G |=
χ
t (Π,C, (σc ,σ ,κ)) - (Γ,C, (Σ,k)) � (M,M ,wb,aw) ⇓ξ ,ξa Q is co-inductively

defined as follows.

Whenever D,R,G |=
χ
t (Π,C, (σc ,σ ,κ)) - (Γ,C, (Σ,k)) � (M,M ,wb,aw) ⇓ξ ,ξa Q holds, then the

following hold:

(1)(a) Suppose σ = (s,h). Then ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If wb = false, then ξ = ∅. If wb = true, then ξ , ∅ ∨ (Σ,k) |= ¬en(C).
(d) If (σ ,κ) |= ¬en(C ) and (Σ,k) |= en(C) and κ , ◦, then ξa , ∅.
(e) If (σ ,Σ) |= Enabled(Dt) ∗ true and κ , ◦, then (σ ,κ) |= en(C ).
(f) If ¬inObj(C,κ), then wb = false.
(g) κ = ◦ =⇒ C = C, and κ = ◦ ⇐⇒ k = ◦, and C = skip⇐⇒ C = skip.

(2) If ¬inObj(C,κ), then (σ ,Σ) |= Qt.

(3) For any σF and ΣF , if (C, (σc ,σ ⊎ σF ,κ))
e
−→ t,Π abort and Σ⊥ΣF , then

e = (t,clt,abort) and (C, (σc ,Σ ⊎ ΣF ,k))
e
−→ t,Γ abort.

(4) For any C ′, σ ′c , σ
′′
, κ ′, σF and ΣF , if (C, (σc ,σ ⊎ σF ,κ))

e
−→ t,Π (C ′, (σ ′c ,σ

′′,κ ′)) and Σ⊥ΣF ,
then there exist n, σ ′, E, C′, Σ′, k′,M′,M ′, wb′, aw′, ξ ′ and ξ ′a such that

(a) σ ′′ = σ ′ ⊎ σF , and

(b) (C, (σc ,Σ ⊎ ΣF ,k))
E
−→n

t,Γ (C
′, (σ ′c ,Σ

′ ⊎ ΣF ,k′)), and n = 0 ∨ n = 1, and

(c) is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ E = e ::ϵ , and
is_obj(e ) =⇒ (∀i,e ′ = E (i ). is_obj(e ′)), and

(d) D,R,G |=
χ
t (Π,C ′, (σ ′c ,σ

′,κ ′)) - (Γ,C′, (Σ′,k′)) � (M′,M ′,wb′,aw′) ⇓ξ ′,ξ ′a Q , and
(e) ((σ ,Σ), (σ ′,Σ′),0) |= Gt ∗ True, and
(f) if inObj(C,κ), then n > 0, orM′ < M, orM′ = M and wb

′ = wb = true and ξ ⊆ ξ ′; and
(g) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True, thenM ′ < M .

(5) For any σ ′ and Σ′, if ((σ ,Σ), (σ ′,Σ′),0) |= Rt ∗ Id, then there existM′, M ′, wb′, aw′, ξd , ξad ,
ξ ′ and ξ ′a such that

(a) D,R,G |=
χ
t (Π,C, (σ ′c ,σ

′,κ)) - (Γ,C, (Σ′,k)) � (M′,M ′,wb′,aw′) ⇓ξ ′,ξ ′a Q , and
(b) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and

inObj(C,κ) =⇒ M′ < M ∨ (M′ = M ∧ wb
′ = wb) and

wb = true ∧ (ξd , ∅ ∨ ((Σ,k) |= ¬en(C) ∧ (Σ′,k) |= en(C))) =⇒ M′ < M and

M′ = M ∧ wb
′ = wb = true =⇒ ξ\ξd ⊆ ξ ′, and

(c) if (σ ,Σ) |= Enabled(Dt) ∗ true, thenM ′ ≤ M ; and

(d) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
inObj(C,κ) ∧ is_await(C ) =⇒ ξa\ξad ⊆ ξ ′a and

inObj(C,κ)∧ is_await(C )∧ (ξad , ∅∨ ((Σ,k) |= ¬en(C)∧ (Σ′,k) |= en(C))) =⇒ aw
′ < aw

and

(χ = sfair) ∧ inObj(C,κ) ∧ is_await(C ) ∧ ((σ ,κ) |= ¬en(C )) ∧ ((σ ′,κ) |= ¬en(C )) =⇒
aw
′ ≤ aw and

(χ = wfair) ∧ inObj(C,κ) ∧ is_await(C ) =⇒ aw
′ ≤ aw.

Definition B.17 (Simulation for Thread with PDF objects). D,R,G |=\χ {P }(Π,C ) - (Π′,Γ,C) iff,
for any σc , σ and Σ, for any t, if (σ ,Σ) |= Pt, there exist three well-founded metricsM,M and aw, a

boolean flag wb, a boolean expression B and two sets ξ ,ξa ∈P (ThrdID) such that wb = false and

B = true and
D,R,G |= \χt (Π,C, (σc ,σ ,◦)) - (Π′,Γ,B,C, (Σ,◦)) � (M,M ,wb,aw) ⇓ξ ,ξa P .

HereD,R,G |=\χt (Π,C, (σc ,σ ,κ)) - (Π′,Γ,B,C, (Σ,k)) � (M,M ,wb,aw) ⇓ξ ,ξa Q is co-inductively

defined as follows.
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Whenever D,R,G |=\χt (Π,C, (σc ,σ ,κ)) - (Π′,Γ,B,C, (Σ,k)) � (M,M ,wb,aw) ⇓ξ ,ξa Q holds, then

the following hold:

(1)(a) Suppose σ = (s,h). Then ξ ∪ ξa ⊆ s (TIDS) and t < ξ and t < ξa .
(b) For any t′ ∈ ξ ∪ ξa , we have (σ ,Σ) |= Enabled(Dt′ ) ∗ true.
(c) If wb = false, then ξ = ∅. If wb = true, then ξ , ∅ ∨ (Σ,k) |= ¬B.
(d) If (σ ,κ) |= ¬en(C ) and (Σ,k) |= B and κ , ◦, then ξa , ∅.
(e) If (σ ,Σ) |= Enabled(Dt) ∗ true and κ , ◦, then (σ ,κ) |= en(C ).
(f) If ¬inObj(C,κ), then wb = false.
(g) κ = ◦ =⇒ C = C, and κ = ◦ ⇐⇒ k = ◦, and C = skip⇐⇒ C = skip.
(h) Σ(done) = false.
(i) If (Σ,k) |= ¬B and k , ◦, then is_while0(C,B).

If inObj(C,κ), then is_while0(C,B) ∨ is_while1(C).
(2) If ¬inObj(C,κ), then (σ ,Σ) |= Qt.

(3) For any σF and ΣF , if (C, (σc ,σ ⊎ σF ,κ))
e
−→ t,Π abort and Σ⊥ΣF , then

e = (t,clt,abort) and (C, (σc ,Σ ⊎ ΣF ,k))
e
−→ t,Π′ abort.

(4) For any C ′, σ ′c , σ
′′
, κ ′, σF and ΣF , if (C, (σc ,σ ⊎ σF ,κ))

e
−→ t,Π (C ′, (σ ′c ,σ

′′,κ ′)) and Σ⊥ΣF ,
then there exist n, σ ′, E, C′, Σ′, k′, k ,M′,M ′, wb′, aw′, ξ ′, ξ ′a and B′ such that

(a) σ ′′ = σ ′ ⊎ σF , and

(b) (C, (σc ,Σ ⊎ ΣF ,k))
E
−→n

t,Π′ (C
′, (σ ′c ,Σ

′ ⊎ ΣF ,k′)); and
if k > 0 and inObj(C,κ), then
exec0t ((C, (σc ,Σ⊎ ΣF ,k)), (C′, (σ ′c ,Σ

′ ⊎ ΣF ,k′))) ∨ exec1t ((C, (σc ,Σ⊎ ΣF ,k)), (C′, (σ ′c ,Σ
′ ⊎

ΣF ,k′))); and
if e = (t, f ,_), then B′ = getB(Γ, f ), else if inObj(C,κ) ∧ is_while1(C′), then B′ = true,
else B′ = B; and

(c) is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ E = e ::ϵ , and
is_obj(e ) =⇒ (∀i,e ′ = E (i ). is_obj(e ′)), and

(d) D,R,G |= \χt (Π,C ′, (σ ′c ,σ
′,κ ′)) - (Π′,Γ,B′,C′, (Σ′,k′)) � (M′,M ′,wb′,aw′) ⇓ξ ′,ξ ′a Q , and

(e) ((σ ,Σ), (σ ′,Σ′),k ) |= Gt ∗ [done = false] ∗ True, and
(f) if inObj(C,κ), then n > 0, orM′ < M, orM′ = M and wb

′ = wb = true and ξ ⊆ ξ ′; and
(g) if ((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ ∗ True and k = 0, thenM ′ < M .

(5) For any k , σ ′ and Σ′, if ((σ ,Σ), (σ ′,Σ′),k ) |= Rt ∗ [done = false] ∗ Id, then there existM′,M ′,
wb
′
, aw

′
, ξd , ξad , ξ

′
and ξ ′a such that

(a) D,R,G |= \χt (Π,C, (σ ′c ,σ
′,κ)) - (Π′,Γ,B,C, (Σ′,k)) � (M′,M ′,wb′,aw′) ⇓ξ ′,ξ ′a Q , and

(b) if k > 0 and inObj(C,κ), then for any σ ′′c , Σ
′′
and ΣF such that Σ′′ = Σ{done ❀ true} and

ΣF⊥Σ we have (C, (σ ′′c ,Σ
′′ ⊎ ΣF ,k)) −→+t,Π′ (C, (σ

′′
c ,Σ

′′ ⊎ ΣF ,k));
(c) ξd = {t′ | (t′ ∈ ξ ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and

k = 0 ∧ inObj(C,κ) =⇒ M′ < M ∨ (M′ = M ∧ wb
′ = wb) and

k = 0 ∧ wb = true ∧ (ξd , ∅ ∨ ((Σ,k) |= ¬B ∧ (Σ′,k) |= B)) =⇒ M′ < M and

k = 0 ∧M′ = M ∧ wb
′ = wb = true =⇒ ξ\ξd ⊆ ξ ′, and

(d) if (σ ,Σ) |= Enabled(Dt) ∗ true and k = 0, thenM ′ ≤ M ; and

(e) ξad = {t′ | (t′ ∈ ξa ) ∧ (((σ ,Σ), (σ ′,Σ′)) |= ⟨Dt′⟩ ∗ Id)} and
k = 0 ∧ inObj(C,κ) ∧ is_await(C ) =⇒ ξa\ξad ⊆ ξ ′a and

k = 0∧ inObj(C,κ) ∧ is_await(C ) ∧ (ξad , ∅∨ ((Σ,k) |= ¬B∧ (Σ′,k) |= B)) =⇒ aw
′ < aw

and

(χ = sfair)∧k = 0∧inObj(C,κ)∧is_await(C )∧ ((σ ,κ) |= ¬en(C ))∧ ((σ ′,κ) |= ¬en(C )) =⇒
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aw
′ ≤ aw and

(χ = wfair) ∧ k = 0 ∧ inObj(C,κ) ∧ is_await(C ) =⇒ aw
′ ≤ aw.

Lemma B.18 (Lifting). Suppose dom(Π) = dom(Γ) = dom(Π′) and P ⇒ ¬Enabled(D). Then
both the following hold:

(1) If D,R,G |=χ {P }Π - Γ, then
for any C , we have D,R,G |=χ {P }(Π,C ) - (Γ,C ).

(2) If D,R,G |=\χ {P }Π - (Γ,wr∗ (Γ)), then
for any C , we have D,R,G |= \χ {P }(Π,C ) - (wr∗ (Γ),Γ,C ).

Proof. By structural induction over C and by co-induction. �

B.7 Whole-Program Simulations and Parallel Compositionality
Similar to Definitions B.16 and B.17 that give the client simulations with PSF and PDF objects

respectively, we also need two definitions (see Definition B.19 and B.20) for whole programs with

PSF and PDF objects respectively.

We use inObjThrds(W ,S) to get the set of threads who are executing the object methods. We

also use bset(W,S) to get the set of threads who are blocked. For B ∈ ThrdID ⇀ BExp, we use

ffset(B,S) to get the set of threads whose boolean condition in B is false at the state S. They are

defined as follows.

(let Π in Ĉ1 ∥ . . . Ĉt . . . ∥ Ĉn ) |t
def

= Ĉt

activeThrds(W )
def

= {t | ∃Ĉ . (W |t = Ĉ ) ∧ (Ĉ , skip) ∧ (Ĉ , end)}

tidset(E)
def

=

{
∅ if E = ϵ
{tid(e )} ∪ tidset(E ′) if E = e ::E ′

inObjThrds(W ,S)
def

= {t | ∃C,σc ,σ ,K . (S = (σc ,σ ,K )) ∧ (W |t = C ) ∧ inObj(C,K (t))}

bset(W ,S)
def

= ∆c ∪ ∆o if btids(W ,S) = (∆c ,∆o )

ffset(B,S)
def

= {t | ∃σc ,σ ,K . (S = (σc ,σ ,K )) ∧ (K (t) , ◦) ∧ (σ ,K (t)) |= ¬B(t)}

Definition B.19 (Simulation for whole programs with PSF objects). |=χ {P }W - W iff, for any σc ,
σ and Σ, if (σ ,Σ) |= P , there exist M ,α ∈ ThrdID ⇀ Metric, β ∈ ThrdID ⇀ Bool and ζ ,ζa ∈
ThrdID⇀P (ThrdID) such that

|=χ (W , (σc ,σ ,})) - (W, (σc ,Σ,})) � (M ,ζ ,β ,α ,ζa ).

Here |=χ (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) is co-inductively defined as follows.

Whenever |=χ (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) holds, then the following hold:

(1)(a) dom(M ) = dom(ζ ) = dom(β ) = dom(α ) = dom(ζa ) = inObjThrds(W ,S) = inObjThrds(W,S).
(b) For any t ∈ inObjThrds(W ,S), we have ζ (t) ∪ ζa (t) ⊆ (inObjThrds(W ,S)\{t}).
(c) For any t ∈ inObjThrds(W ,S), if β (t) = false, then ζ (t) = ∅; and if β (t) = true, then

ζ (t) , ∅ ∨ t ∈ bset(W,S).
(d) For any t ∈ inObjThrds(W ,S), if t ∈ bset(W ,S) and t < bset(W,S), then ζa (t) , ∅.
(e) For any t ∈ inObjThrds(W ,S), for any t′ ∈ ζ (t) ∪ ζa (t), we have t′ < bset(W ,S).

(2) IfW = (let Π in end ∥ . . . ∥ end), then ∃Π′.W = (let Π′ in end ∥ . . . ∥ end).
(3) If (W ,S)

ι
7−→ abort, then

there exists t such that ι = ((t,clt,abort),∅,∅) and (W,S)
ι
7−→ abort.

(4) If (W ,S)
ι
7−→ (W ′,S′), then

there exist t, T ,W′, S′, M ′
, ζ ′, β ′, α ′, ζ ′a , n, e , ∆c and ∆o such that all the following hold:
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(a) (W,S)
T
7−→n (W′,S′), and n = 0 ∨ n = 1;

(b) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T (i ). is_obj(ι′));

(c) |=χ (W ′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a );
(d) if t ∈ inObjThrds(W ,S), then

either t ∈ tidset(T ),
or M ′(t) <M (t),
or M ′(t) =M (t) and β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t) ⊆ (inObjThrds(W ,S)\{t});

(e) for any t′ ∈ inObjThrds(W ,S)\{t}, we have:
either M ′(t′) <M (t′),
or M ′(t′) =M (t′) and β ′(t′) = β (t′) = false,
orM ′(t′) =M (t′) and β ′(t′) = β (t′) = true and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′})
and t < ζ (t′);

(f) for any t′ ∈ inObjThrds(W ,S)\{t} and is_await(W |t′ ), we have:
if ((χ = sfair) ∧ (t′ ∈ bset(W ,S)) ∧ (t′ ∈ bset(W ′,S′))) ∨ (χ = wfair), then
either α ′(t′) < α (t′),
or α ′(t′) = α (t′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}) and t < ζa (t′) and
(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < bset(W,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ bset(W′,S′)).

Definition B.20 (Simulation for whole programs with PDF objects). |=\χ {P }W - (W,Γ) iff, for
any σc , σ and Σ, if (σ ,Σ) |= P , there exist B ∈ ThrdID ⇀ BExp, M ,α ∈ ThrdID ⇀ Metric,

β ∈ ThrdID⇀ Bool, and ζ ,ζa ∈ ThrdID⇀P (ThrdID) such that B = ∅ and

|= \χ (W , (σc ,σ ,})) - (W,Γ,B, (σc ,Σ,})) � (M ,ζ ,β ,α ,ζa ).

Here |=\χ (W ,S) - (W,Γ,B,S) � (M ,ζ ,β ,α ,ζa ) is co-inductively defined as follows.

Whenever |= \χ (W ,S) - (W,Γ,B,S) � (M ,ζ ,β ,α ,ζa ) holds, then the following hold:

(1)(a) dom(M ) = dom(ζ ) = dom(β ) = dom(α ) = dom(ζa ) = dom(B) = inObjThrds(W ,S) =
inObjThrds(W,S).

(b) For any t ∈ inObjThrds(W ,S), we have ζ (t) ∪ ζa (t) ⊆ (inObjThrds(W ,S)\{t}).
(c) For any t ∈ inObjThrds(W ,S), if β (t) = false, then ζ (t) = ∅; and if β (t) = true, then

ζ (t) , ∅ ∨ t ∈ ffset(B,S).
(d) For any t ∈ inObjThrds(W ,S), if t ∈ bset(W ,S) and ζa (t) = ∅, then t ∈ ffset(B,S).
(e) For any t ∈ inObjThrds(W ,S), for any t′ ∈ ζ (t) ∪ ζa (t), we have t′ < bset(W ,S).
(f) For any t ∈ ffset(B,S), we have is_while0(W|t,B(t)).

For any t ∈ inObjThrds(W ,S), we have is_while0(W|t,B(t)) ∨ is_while1(W|t).
(2) IfW = (let Π in end ∥ . . . ∥ end), then ∃Π′.W = (let Π′ in end ∥ . . . ∥ end).
(3) If (W ,S)

ι
7−→ abort, then

there exists t such that ι = ((t,clt,abort),∅,∅) and (W,S)
ι
7−→ abort.

(4) If (W ,S)
ι
7−→ (W ′,S′), then

there exist t, T ,W′, S′, M ′
, ζ ′, β ′, α ′, ζ ′a , B

′
, e , ∆c and ∆o such that all the following hold:

(a) (W,S)
T
7−→ ∗ (W′,S′);

(b) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T (i ). is_obj(ι′));
if e = (t, f ,_), then B′ = B{t ❀ getB(Γ, f )}, else if is_obj(e ) ∧ is_while1(W′ |t), then
B′ = B{t ❀ true}, else B′ = B;

(c) |=\χ (W ′,S′) - (W′,Γ,B′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a );
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(d) if t ∈ inObjThrds(W ,S), then
either t ∈ tidset(T ),
or M ′(t) <M (t),
or M ′(t) =M (t) and β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t) ⊆ (inObjThrds(W ,S)\{t});

(e) for any t′ ∈ inObjThrds(W ,S)\{t}, we have:
either t′ ∈ tidset(T ),
or M ′(t′) <M (t′),
or M ′(t′) =M (t′) and β ′(t′) = β (t′) = false,
orM ′(t′) =M (t′) and β ′(t′) = β (t′) = true and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′})
and t < ζ (t′);

(f) for any t′ ∈ inObjThrds(W ,S)\{t} and is_await(W |t′ ), we have:
if ((χ = sfair) ∧ (t′ ∈ bset(W ,S)) ∧ (t′ ∈ bset(W ′,S′))) ∨ (χ = wfair), then
either t′ ∈ tidset(T ),
or α ′(t′) < α (t′),
or α ′(t′) = α (t′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}) and t < ζa (t′) and
(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < ffset(B,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ ffset(B′,S′)).

Lemma B.21 (Parallel Compositionality for Simulations with PSF Objects).

If there exist R, G and D such that the following hold:

(1) for any t ∈ [1..n], we have D,R,G |=χ {P }(Π,Ct) - (Γ,Ct);
(2) ∀t, t′. t , t′ =⇒ Gt ⇒ Rt′ , wffAct(R,D), P ⇒ ¬Enabled(D), P ∨ Enabled(D) ⇒ I , I ◃ {R,G},

then |=χ {
∧

t∈[1..n] Pt}(let Π in C1 ∥ . . . ∥Cn ) - (let Γ in C1 ∥ . . . ∥Cn ).

Proof. For any σc , σ and Σ, if (σ ,Σ) |= (
∧

t∈[1..n] Pt), from the premises, we know: there exist

M1, . . . , Mn , M1, . . . , Mn , aw1, . . . , awn , wb1, . . . , wbn , ξ1, . . . , ξn , ξ
a
1
, . . . , ξ an such that wb1 = . . . =

wbn = false and for any t ∈ [1..n]:

D,R,G |=
χ
t (Π,Ct, (σc ,σ ,◦)) - (Γ,Ct, (Σ,◦)) � (Mt,Mt,wbt,awt) ⇓ξt,ξ at P .

We want to show that there exist M , α , β , ζ and ζa such that

|=χ ((let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})) - ((let Γ in C1 ∥ . . . ∥Cn ), (σc ,Σ,})) � (M ,ζ ,β ,α ,ζa ).

We generalize the result and prove the following (B.4):

If (σ ,Σ) |= I and the following holds for any t ∈ [1..n]:

Ĉt , end =⇒
D,R,G |=

χ
t (Π,Ĉt, (σc ,σ ⊎ σt,κt)) - (Γ, ˆCt, (Σ ⊎ Σt,kt)) � (Mt,Mt,wbt,awt) ⇓ξt,ξ at P ,

Ĉt = end =⇒ ˆCt = end ∧ κt = ◦ ∧ kt = ◦,

then

|=χ ((let Π in Ĉ1 ∥ . . . ∥ Ĉn ), (σc ,σ ⊎ (
⊎

t σt),K )) - ((let Γ in ˆC1 ∥ . . . ∥
ˆCn ), (σc ,Σ ⊎ (

⊎
t Σt),K)) � (M ,ζ ,β ,α ,ζa ).

Here for any t ∈ [1..n], K (t) = κt and K(t) = kt, and the functions M , ζ , β , α and ζa
are defined as follows.

• dom(M ) = dom(ζ ) = dom(β ) = dom(α ) = dom(ζa ) = inObjThrds((let Π in Ĉ1 ∥

. . . ∥ Ĉn ), (σc ,σ ⊎ (
⊎

t σt),K )).
• For any t ∈ dom(M ), we have
• M (t) = (Mt, {t′ ❀ Mt′ | t′ ∈ ξt});
• ζ (t) = ξt;
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• β (t) = wbt;

• α (t) = (awt, {t′ ❀ Mt′ | t′ ∈ ξ at });
• ζa (t) = ξ at .

The order (M′,M ′) < (M,M) is defined as a dictionary order:

(M′,M ′) < (M,M) iff (M′ < M) ∨ (M′ = M) ∧ (M ′ <M)

M ′ <M iff ∃t. (M ′(t) <M (t)) ∧ (∀t′ ∈ dom(M)\{t}.M ′(t′) ≤ M (t′))

M ′ ≤ M iff ∀t ∈ dom(M).M ′(t) ≤ M (t)
Clearly M ′(t) <M (t) is a well-founded order.

(B.4)

By co-induction. LetW
def

= (let Π in Ĉ1 ∥ . . . ∥ Ĉn ), W
def

= (let Γ in ˆC1 ∥ . . . ∥ ˆCn ), S
def

= (σc ,σ ⊎

(
⊎

t σt),K ) and S
def

= (σc ,Σ ⊎ (
⊎

t Σt),K). Suppose σ = (s,h). Then s (TIDS) = [1..n].

(1)(a) dom(M ) = dom(ζ ) = dom(β ) = dom(α ) = dom(ζa ) = inObjThrds(W ,S) = inObjThrds(W,S).
(b) For any t ∈ inObjThrds(W ,S), we have ζ (t) ∪ ζa (t) ⊆ (inObjThrds(W ,S)\{t}).
(c) For any t ∈ inObjThrds(W ,S), if β (t) = false, then ζ (t) = ∅; and if β (t) = true, then

ζ (t) , ∅ ∨ t ∈ bset(W,S).
(d) For any t ∈ inObjThrds(W ,S), if t ∈ bset(W ,S) and t < bset(W,S), then ζa (t) , ∅.
(e) For any t ∈ inObjThrds(W ,S), for any t′ ∈ ζ (t) ∪ ζa (t), we have t′ < bset(W ,S).
Proof : For any t ∈ [1..n], from the premise, we know: κt = ◦ ⇐⇒ kt = ◦. Thus we have

inObjThrds(W ,S) = inObjThrds(W,S).
Also, from the premise, we know: for any t′ ∈ ζ (t)∪ζa (t), we have t′ , t and (σ⊎σt′ ,Σ⊎Σt′ ) |=
Enabled(Dt′ ) ∗ true. Then we only need to prove inObj(Ct′ ,κt′ ). Suppose ¬inObj(Ct′ ,κt′ ),
then we have (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= Pt′ . Since P ⇒ ¬Enabled(D), we get a contradiction. Thus
inObj(Ct′ ,κt′ ) holds. Also, from the premise, we know: (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= en(Ct′ ). Thus
t′ < bset(W ,S) holds.

(2) IfW = (let Π in end ∥ . . . ∥ end), then ∃Π′.W = (let Π′ in end ∥ . . . ∥ end).
Proof : Since Ĉt = end =⇒ ˆCt = end, we are done.

(3) If (W ,S)
ι
7−→ abort, then

there exists t such that ι = ((t,clt,abort),∅,∅) and (W,S)
ι
7−→ abort.

Proof : By the operational semantics we know: there exist t ∈ [1..n] and e such that ι = (e,∅,∅)
and

(Ĉt, (σc ,σ ⊎ (
⊎

t σt),κt))
e
−→ t,Π abort.

By D,R,G |=
χ
t (Π,Ĉt, (σc ,σ ⊎ σt,κt)) - (Γ, ˆCt, (Σ ⊎ Σt,kt)) � (Mt,Mt,wbt,awt) ⇓ξt,ξ at P , we

know e = (t,clt,abort) and

( ˆCt, (σc ,Σ ⊎ (
⊎

t Σt),kt))
e
−→ t,Γ abort.

Thus (W,S)
ι
7−→ abort.

(4) If (W ,S)
ι
7−→ (W ′,S′), then

there exist t, T ,W′, S′, M ′
, ζ ′, β ′, α ′, ζ ′a , n, e , ∆c and ∆o such that all the following hold:

(a) (W,S)
T
7−→n (W′,S′), and n = 0 ∨ n = 1;

(b) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T (i ). is_obj(ι′));

(c) |=χ (W ′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a );
(d) if t ∈ inObjThrds(W ,S), then

either t ∈ tidset(T ),
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or M ′(t) <M (t),
or M ′(t) =M (t) and β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t) ⊆ (inObjThrds(W ,S)\{t});

(e) for any t′ ∈ inObjThrds(W ,S)\{t}, we have:
either M ′(t′) <M (t′),
or M ′(t′) =M (t′) and β ′(t′) = β (t′) = false,
orM ′(t′) =M (t′) and β ′(t′) = β (t′) = true and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′})
and t < ζ (t′);

(f) for any t′ ∈ inObjThrds(W ,S)\{t} and is_await(W |t′ ), we have:
if ((χ = sfair) ∧ (t′ ∈ bset(W ,S)) ∧ (t′ ∈ bset(W ′,S′))) ∨ (χ = wfair), then
either α ′(t′) < α (t′),
or α ′(t′) = α (t′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}) and t < ζa (t′) and
(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < bset(W,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ bset(W′,S′)).

Proof : By the operational semantics, we know one of the two cases holds:

• there exist t, Ĉ ′t ,W
′
, S′, e , ∆c and ∆o such that

Ĉt = skip, K (t) = ◦, Ĉ ′t = end, ι = (e,∆c ,∆o ), e = (t,term),

W ′ = (let Π in Ĉ1 ∥ . . . Ĉ
′
t . . . ∥ Ĉn ), S

′ = S, btids(W ,S) = (∆c ,∆o ) .

ByD,R,G |=
χ
t (Π,Ĉt, (σc ,σ ⊎σt,κt)) - (Γ, ˆCt, (Σ⊎ Σt,kt)) � (Mt,Mt,wbt,awt) ⇓ξt,ξ at P , we

know
ˆCt = skip and kt = ◦. Let ˆC′t = end, btids(W,S) = (∆′c ,∆

′
o ), ι

′ = (e,∆′c ,∆
′
o ) and

W′ = (let Γ in ˆC1 ∥ . . . ˆC
′
t . . . ∥

ˆCn ). Then (W,S)
ι′
7−→ (W′,S). From the premise, we know

∀t′. (κt′ = ◦ =⇒ Ĉt′ = ˆCt′ ) ∧ (κt′ = ◦ ⇐⇒ kt′ = ◦), thus
∆′c = ∆c .

Also we know

((σ ,Σ), (σ ,Σ),0) |= Gt.

For any t′ , t, since Gt ⇒ Rt′ , we have ((σ ,Σ), (σ ,Σ),0) |= Rt′ . Thus

((σ ⊎ σt′ ,Σ ⊎ Σt′ ), (σ ⊎ σt′ ,Σ ⊎ Σt′ ),0) |= Rt′ ∗ Id.
ByD,R,G |=

χ
t′ (Π,Ĉt′ , (σc ,σ⊎σt′ ,κt′ )) - (Γ, ˆCt′ , (Σ⊎Σt′ ,kt′ ))�(Mt′ ,Mt′ ,wbt′ ,awt′ ) ⇓ξt′,ξ at′ P ,

and by the co-induction hypothesis, we can finish the case.

• there exist t, Ĉ ′t ,W
′
, σ ′c , σ

′′
, κ ′t , K

′
, S′, e , ∆c and ∆o such that

(Ĉt, (σc ,σ ⊎ (
⊎

t σt),κt))
e
−→ t,Π (Ĉ ′t , (σ

′
c ,σ
′′,κ ′t ))), K

′ = K {t ❀ κ ′t }, S
′ = (σ ′c ,σ

′′,K ′),

W ′ = (let Π in Ĉ1 ∥ . . . Ĉ
′
t . . . ∥ Ĉn ), ι = (e,∆c ,∆o ), t = tid(e ), btids(W ′,S′) = (∆c ,∆o ).

ByD,R,G |=
χ
t (Π,Ĉt, (σc ,σ ⊎σt,κt)) - (Γ, ˆCt, (Σ⊎ Σt,kt)) � (Mt,Mt,wbt,awt) ⇓ξt,ξ at P , we

know

(A) For any t′ ∈ ξt ∪ ξ at , we have t
′ , t and (σ ⊎ σt,Σ ⊎ Σt) |= Enabled(Dt′ ) ∗ true.

And there exist n, σ ′′′, E, ˆC′t, Σ
′′′
, k′t,M

′
t,M

′
t , wb

′
t, aw

′
t, ξ
′
t and ξ

a1
t such that

(B) σ ′′ = σ ′′′ ⊎ (
⊎

t′,t σt′ ), and

(C) ( ˆCt, (σc ,Σ ⊎ (
⊎

t Σt),kt))
E
−→n

t,Γ (
ˆC′t, (σ

′
c ,Σ
′′′ ⊎ (

⊎
t′,t Σt′ ),k′t)), and n = 0 ∨ n = 1, and

(D) is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ E = e ::ϵ , and
is_obj(e ) =⇒ (∀i,e ′ = E (i ). is_obj(e ′)), and

(E) D,R,G |=
χ
t (Π,Ĉ ′t , (σ

′
c ,σ
′′′,κ ′t )) - (Γ, ˆC′t, (Σ

′′′,k′t)) � (M
′
t,M

′
t ,wb

′
t,aw

′
t) ⇓ξ ′t ,ξ a1t

P , and

(F) ((σ ⊎ σt,Σ ⊎ Σt), (σ
′′′,Σ′′′),0) |= Gt ∗ True, and

(G) if inObj(Ĉt,κt), then n > 0, orM′t < Mt, orM
′
t = Mt and wb

′
t = wbt = true and ξt ⊆ ξ ′t ;

and

(H) if ((σ ⊎ σt,Σ ⊎ Σt), (σ
′′′,Σ′′′)) |= ⟨[Dt]⟩ ∗ True, thenM ′t < Mt.

Since (σ ,Σ) |= I and I ◃ {R,G}, we know there exist σ ′, σ ′t , Σ
′
and Σ′t such that

σ ′′′ = σ ′ ⊎ σ ′t , Σ′′′ = Σ′ ⊎ Σ′t, (σ ′,Σ′) |= I and ((σ ,Σ), (σ ′,Σ′),0) |= Gt.
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For any t′ , t, since Gt ⇒ Rt′ , we have ((σ ,Σ), (σ
′,Σ′),0) |= Rt′ . Thus

((σ ⊎ σt′ ,Σ ⊎ Σt′ ), (σ
′ ⊎ σt′ ,Σ

′ ⊎ Σt′ ),0) |= Rt′ ∗ Id.
ByD,R,G |=

χ
t′ (Π,Ĉt′ , (σc ,σ⊎σt′ ,κt′ )) - (Γ, ˆCt′ , (Σ⊎Σt′ ,kt′ ))�(Mt′ ,Mt′ ,wbt′ ,awt′ ) ⇓ξt′,ξ at′ P ,

we know

(I) For any t′′ ∈ ξt′ ∪ ξ at′ , we have t
′′ , t′ and (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= Enabled(Dt′′ ) ∗ true.

And there existM′t′ ,M
′
t′ , wb

′
t′ , aw

′
t′ , ξ

d
t′ , ξ

ad
t′ , ξ ′t′ and ξ

a1
t′ such that

(J) D,R,G |=
χ
t′ (Π,Ĉt′ , (σ

′
c ,σ
′⊎σt′ ,κt′ )) - (Γ, ˆCt′ , (Σ

′⊎Σt′ ,kt′ ))� (M
′
t′ ,M

′
t′ ,wb

′
t′ ,aw

′
t′ ) ⇓ξ ′t′,ξ

a1
t′

P , and
(K) ξdt′ = {t

′′ | (t′′ ∈ ξt′ ) ∧ (((σ ⊎ σt′ ,Σ ⊎ Σt′ ), (σ
′ ⊎ σt′ ,Σ

′ ⊎ Σt′ )) |= ⟨Dt′′⟩ ∗ Id)} and
inObj(Ĉt′ ,κt′ ) =⇒ M

′
t′ < Mt′ ∨ (M′t′ = Mt′ ∧ wb

′
t′ = wbt′ ) and

wbt′ = true∧(ξdt′ , ∅∨((Σ⊎Σt′ ,kt′ ) |= ¬en( ˆCt′ )∧(Σ′⊎Σt′ ,kt′ ) |= en( ˆCt′ ))) =⇒ M′t′ < Mt′

and

M′t′ = Mt′ ∧ wb
′
t′ = wbt′ = true =⇒ ξt′\ξ

d
t′ ⊆ ξ ′t′ , and

(L) if (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= Enabled(Dt′ ) ∗ true, thenM ′t′ ≤ Mt′ ; and

(M) ξ adt′ = {t
′′ | (t′′ ∈ ξ at′ ) ∧ (((σ ⊎ σt′ ,Σ ⊎ Σt′ ), (σ

′ ⊎ σ ′t′ ,Σ
′ ⊎ Σt′ )) |= ⟨Dt′′⟩ ∗ Id)} and

inObj(Ĉt′ ,κt′ ) ∧ is_await(Ĉt′ ) =⇒ ξ at′ \ξ
ad
t′ ⊆ ξ a1t′ and

inObj(Ĉt′ ,κt′ ) ∧ is_await(Ĉt′ ) ∧ (ξ adt′ , ∅ ∨ ((Σ ⊎ Σt′ ,kt′ ) |= ¬en( ˆCt′ ) ∧ (Σ′ ⊎ Σt′ ,kt′ ) |=

en( ˆCt′ ))) =⇒ aw
′
t′ < awt′ and

(χ = sfair)∧ inObj(Ĉt′ ,κt′ )∧ is_await(Ĉt′ )∧ ((σ ⊎σt′ ,κt′ ) |= ¬en(Ĉt′ ))∧ ((σ
′⊎σt′ ,κt′ ) |=

¬en(Ĉt′ )) =⇒ aw
′
t′ ≤ awt′ and

(χ = wfair) ∧ inObj(Ĉt′ ,κt′ ) ∧ is_await(Ĉt′ ) =⇒ aw
′
t′ ≤ awt′ .

Let W′ = (let Γ in ˆC1 ∥ . . . ˆC
′
t . . . ∥

ˆCn ) and S
′ = (σ ′c ,Σ

′ ⊎ Σ′t ⊎ (
⊎

t′,t Σt′ ),K{t ❀ k′t}).
From (C), we know there exists T such that

(W,S))
T
7−→n (W′,S′) .

From (D), we know

is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T = (e,∆c ,_) ::ϵ ,
is_obj(e ) =⇒ (∀i,ι′ = T (i ). is_obj(ι′) ∧ t = tid(ι′)) .

Define the functions M ′
, ζ ′, β ′, α ′ and ζ ′a as follows.

• dom(M ′) = dom(ζ ′) = dom(β ′) = dom(α ′) = dom(ζ ′a ) = inObjThrds(W ′,S′).
• For any t ∈ dom(M ′), we have
• M ′(t) = (M′t, {t

′ ❀ M ′t′ | t
′ ∈ ξ ′t });

• ζ ′(t) = ξ ′t ;
• β ′(t) = wb

′
t;

• α ′(t) = (aw′t, {t
′ ❀ M ′t′ | t

′ ∈ ξ a1t });
• ζ ′a (t) = ξ a1t .

Then by the co-induction hypothesis, we know

|=χ (W ′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a ).
For the thread t, from (G), we know: if t ∈ inObjThrds(W ,S), then one of the following

holds:

• n > 0. Thus t ∈ tidset(T ).
• M′t < Mt. Thus M ′(t) <M (t).
• M′t = Mt and wb

′
t = wbt = true and ξt ⊆ ξ ′t .

Thus β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t). Also we know ξ ′t ⊆ (inObjThrds(W ,S)\{t}).
Then we only need to show the following (B.5):

{t′ ❀ M ′t′ | t
′ ∈ ξ ′t } ≤ {t

′ ❀ Mt′ | t′ ∈ ξt} (B.5)
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From (A), since ∀t′. Enabled(Dt′ ) ⇒ I and Precise(I ), we know: for any t′ ∈ ξt,
t′ , t and (σ ,Σ) |= Enabled(Dt′ ) .

Thus (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= Enabled(Dt′ ) ∗ true. From (M), we haveM ′t′ ≤ Mt′ . Thus (B.5)

holds.

For any t′ ∈ inObjThrds(W ,S)\{t}, from (K), we know one of the following holds:

• M′t′ < Mt′ . Thus M ′(t′) <M (t′).
• M′t′ = Mt′ and wb

′
t′ = wbt′ = false.

Thus β ′(t′) = β (t′) = false. Then from the premise, we know

ξt′ = ξ ′t′ = ∅.
Thus the following (B.6) holds:

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ ′t′ } = {t

′′ ❀ Mt′′ | t′′ ∈ ξt′ } (B.6)

Thus M ′(t′) =M (t′) holds.
• M′t′ = Mt′ and wb

′
t′ = wbt′ = true.

Thus β ′(t′) = β (t′) = true. From (K), we know

ξdt′ = ∅ ∧ ((Σ ⊎ Σt′ ,kt′ ) |= en( ˆCt′ ) ∨ (Σ′ ⊎ Σt′ ,kt′ ) |= ¬en( ˆCt′ )).
Also, since ξt′\ξ

d
t′ ⊆ ξ ′t′ , we know

ξt′ ⊆ ξ ′t′ .
One of the following holds:

• t < ξt′ . Thus t < ζ (t′) and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′}). We only need to

show the following (B.7):

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ ′t′ } ≤ {t

′′ ❀ Mt′′ | t′′ ∈ ξt′ } (B.7)

From (I), we know: for any t′′ ∈ ξt′ ,
t′′ , t′ and (σ ,Σ) |= Enabled(Dt′′ ) .

Thus (σ ⊎ σt′′ ,Σ ⊎ Σt′′ ) |= Enabled(Dt′′ ) ∗ true. From (L), we have M ′t′′ ≤ Mt′′ . Thus

(B.7) holds.

• t ∈ ξt′ . Since wffAct(R,D), we know
((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ .

From (H), we know

M ′t < Mt.

We only need to show the following (B.8):

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ ′t′ } < {t

′′ ❀ Mt′′ | t′′ ∈ ξt′ } (B.8)

For any t′′ ∈ ξt′\{t}, from (I), we know:

t′′ , t′ and (σ ,Σ) |= Enabled(Dt′′ ) .
Thus (σ ⊎ σt′′ ,Σ ⊎ Σt′′ ) |= Enabled(Dt′′ ) ∗ true. From (L), we have M ′t′′ ≤ Mt′′ . Thus

(B.8) holds. Thus M ′(t′) <M (t′) holds.
For any t′ ∈ inObjThrds(W ,S)\{t} and is_await(W |t′ ), we have:
if ((χ = sfair) ∧ (t′ ∈ bset(W ,S)) ∧ (t′ ∈ bset(W ′,S′))) ∨ (χ = wfair), then from (M), we

know aw
′
t′ ≤ awt′ . Thus one of the following holds:

• aw
′
t′ < awt′ . Thus α

′(t′) < α (t′).
• aw

′
t′ = awt′ . From (M), we know

ξ adt′ = ∅ ∧ ((Σ ⊎ Σt′ ,kt′ ) |= en( ˆCt′ ) ∨ (Σ′ ⊎ Σt′ ,kt′ ) |= ¬en( ˆCt′ )).
Also since ξ at′ \ξ

ad
t′ ⊆ ξ a1t′ , we know

ξ at′ ⊆ ξ a1t′ .
One of the following holds:

• t < ξ at′ . Thus t < ζa (t
′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}). Also we know
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(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < bset(W,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ bset(W′,S′)).
We only need to show the following (B.9):

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ a1t′ } ≤ {t

′′ ❀ Mt′′ | t′′ ∈ ξ at′ } (B.9)

From (I), we know: for any t′′ ∈ ξ at′ ,
t′′ , t′ and (σ ,Σ) |= Enabled(Dt′′ ) .

Thus (σ ⊎ σt′′ ,Σ ⊎ Σt′′ ) |= Enabled(Dt′′ ) ∗ true. From (L), we have M ′t′′ ≤ Mt′′ . Thus

(B.9) holds.

• t ∈ ξ at′ . Since wffAct(R,D), we know
((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ .

From (H), we know

M ′t < Mt.

We only need to show the following (B.10):

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ a1t′ } < {t

′′ ❀ Mt′′ | t′′ ∈ ξ at′ } (B.10)

For any t′′ ∈ ξ at′ \{t}, from (I), we know:

t′′ , t′ and (σ ,Σ) |= Enabled(Dt′′ ) .
Thus (σ ⊎ σt′′ ,Σ ⊎ Σt′′ ) |= Enabled(Dt′′ ) ∗ true. From (L), we have M ′t′′ ≤ Mt′′ . Thus

(B.10) holds. Thus α ′(t′) < α (t′) holds.
Thus we are done. �

Lemma B.22 (Parallel Compositionality for Simulations with PDF Objects).

If there exist R, G and D such that the following hold:

(1) for any t ∈ [1..n], we have D,R,G |=\χ {P }(Π,Ct) - (Π′,Γ,Ct);
(2) ∀t, t′. t , t′ =⇒ Gt ⇒ Rt′ , wffAct(R,D), P ⇒ ¬Enabled(D), P ∨ Enabled(D) ⇒ I , I ◃ {R,G},

then |= \χ {
∧

t∈[1..n] Pt}(let Π in C1 ∥ . . . ∥Cn ) - (let Π′ in C1 ∥ . . . ∥Cn ,Γ).

Proof. For any σc , σ and Σ, if (σ ,Σ) |= (
∧

t∈[1..n] Pt), from the premises, we know: there exist

M1, . . . , Mn , M1, . . . , Mn , aw1, . . . , awn , wb1, . . . , wbn , B1, . . . , Bn , ξ1, . . . , ξn , ξ
a
1
, . . . , ξ an such that

wb1 = . . . = wbn = false and for any t ∈ [1..n]:

D,R,G |= \χt (Π,Ct, (σc ,σ ,◦)) - (Π′,Γ,Bt,Ct, (Σ,◦)) � (Mt,Mt,wbt,awt) ⇓ξt,ξ at P .

We want to show that there exist B, M , α , β , ζ and ζa such that

|=\χ ((let Π in C1 ∥ . . . ∥Cn ), (σc ,σ ,})) - ((let Γ in C1 ∥ . . . ∥Cn ),Γ,B, (σc ,Σ,})) � (M ,ζ ,β ,α ,ζa ).

We generalize the result and prove the following (B.11):

If (σ ,Σ) |= I and the following holds for any t ∈ [1..n]:

Ĉt , end =⇒
D,R,G |=\χt (Π,Ĉt, (σc ,σ ⊎ σt,κt)) - (Π′,Γ,Bt, ˆCt, (Σ ⊎ Σt,kt)) � (Mt,Mt,wbt,awt) ⇓ξt,ξ at P ,

Ĉt = end =⇒ ˆCt = end ∧ κt = ◦ ∧ kt = ◦,

then

|=\χ ((let Π in Ĉ1 ∥ . . . ∥ Ĉn ), (σc ,σ ⊎ (
⊎

t σt),K )) - ((let Γ in ˆC1 ∥ . . . ∥
ˆCn ),Γ,B, (σc ,Σ ⊎ (

⊎
t Σt),K)) � (M ,ζ ,β ,α ,ζa ).

Here for any t ∈ [1..n], K (t) = κt and K(t) = kt, and the functions B, M , ζ , β , α and

ζa are defined as follows.

• dom(B) = dom(M ) = dom(ζ ) = dom(β ) = dom(α ) = dom(ζa ) = inObjThrds((let Π in Ĉ1 ∥

. . . ∥ Ĉn ), (σc ,σ ⊎ (
⊎

t σt),K )).
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• For any t ∈ dom(M ), we have
• B(t) = Bt;
• M (t) = (Mt, {t′ ❀ Mt′ | t′ ∈ ξt});
• ζ (t) = ξt;
• β (t) = wbt;

• α (t) = (awt, {t′ ❀ Mt′ | t′ ∈ ξ at });
• ζa (t) = ξ at .

The order (M′,M ′) < (M,M) is defined as a dictionary order:

(M′,M ′) < (M,M) iff (M′ < M) ∨ (M′ = M) ∧ (M ′ <M)

M ′ <M iff ∃t. (M ′(t) <M (t)) ∧ (∀t′ ∈ dom(M)\{t}.M ′(t′) ≤ M (t′))

M ′ ≤ M iff ∀t ∈ dom(M).M ′(t) ≤ M (t)

Clearly M ′(t) <M (t) is a well-founded order.

(B.11)

By co-induction. LetW
def

= (let Π in Ĉ1 ∥ . . . ∥ Ĉn ), W
def

= (let Γ in ˆC1 ∥ . . . ∥ ˆCn ), S
def

= (σc ,σ ⊎

(
⊎

t σt),K ) and S
def

= (σc ,Σ ⊎ (
⊎

t Σt),K). Suppose σ = (s,h). Then s (TIDS) = [1..n].

(1)(a) dom(B) = dom(M ) = dom(ζ ) = dom(β ) = dom(α ) = dom(ζa ) = inObjThrds(W ,S) =
inObjThrds(W,S).

(b) For any t ∈ inObjThrds(W ,S), we have ζ (t) ∪ ζa (t) ⊆ (inObjThrds(W ,S)\{t}).
(c) For any t ∈ inObjThrds(W ,S), if β (t) = false, then ζ (t) = ∅; and if β (t) = true, then

ζ (t) , ∅ ∨ t ∈ ffset(B,S).
(d) For any t ∈ inObjThrds(W ,S), if t ∈ bset(W ,S) and t < ffset(B,S), then ζa (t) , ∅.
(e) For any t ∈ inObjThrds(W ,S), for any t′ ∈ ζ (t) ∪ ζa (t), we have t′ < bset(W ,S).
(f) For any t ∈ ffset(B,S), we have is_while0(W|t,B(t)).

For any t ∈ inObjThrds(W ,S), we have is_while0(W|t,B(t)) ∨ is_while1(W|t).
Proof : For any t ∈ [1..n], from the premise, we know: κt = ◦ ⇐⇒ kt = ◦. Thus we have

inObjThrds(W ,S) = inObjThrds(W,S).
Also, from the premise, we know: for any t′ ∈ ζ (t)∪ζa (t), we have t′ , t and (σ⊎σt′ ,Σ⊎Σt′ ) |=
Enabled(Dt′ ) ∗ true. Then we only need to prove inObj(Ct′ ,κt′ ). Suppose ¬inObj(Ct′ ,κt′ ),
then we have (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= Pt′ . Since P ⇒ ¬Enabled(D), we get a contradiction. Thus
inObj(Ct′ ,κt′ ) holds. Also, from the premise, we know: (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= en(Ct′ ). Thus
t′ < bset(W ,S) holds.

(2) IfW = (let Π in end ∥ . . . ∥ end), then ∃Π′.W = (let Π′ in end ∥ . . . ∥ end).
Proof : Since Ĉt = end =⇒ ˆCt = end, we are done.

(3) If (W ,S)
ι
7−→ abort, then

there exists t such that ι = ((t,clt,abort),∅,∅) and (W,S)
ι
7−→ abort.

Proof : By the operational semantics we know: there exist t ∈ [1..n] and e such that ι = (e,∅,∅)
and

(Ĉt, (σc ,σ ⊎ (
⊎

t σt),κt))
e
−→ t,Π abort.

ByD,R,G |=\χt (Π,Ĉt, (σc ,σ ⊎σt,κt)) - (Π′,Γ,Bt, ˆCt, (Σ⊎Σt,kt))� (Mt,Mt,wbt,awt) ⇓ξt,ξ at P ,
we know e = (t,clt,abort) and

( ˆCt, (σc ,Σ ⊎ (
⊎

t Σt),kt))
e
−→ t,Π′ abort.

Thus (W,S)
ι
7−→ abort.

(4) If (W ,S)
ι
7−→ (W ′,S′), then

there exist t, T ,W′, S′, M ′
, ζ ′, β ′, α ′, ζ ′a , B

′
, e , ∆c and ∆o such that all the following hold:

, Vol. 1, No. 1, Article . Publication date: January 2018.



:108 Hongjin Liang and Xinyu Feng

(a) (W,S)
T
7−→ ∗ (W′,S′);

(b) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T (i ). is_obj(ι′));
if e = (t, f ,_), then B′ = B{t ❀ getB(Γ, f )}, else if is_obj(e ) ∧ is_while1(W′ |t), then
B′ = B{t ❀ true}, else B′ = B;

(c) |=\χ (W ′,S′) - (W′,Γ,B′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a );
(d) if t ∈ inObjThrds(W ,S), then

either t ∈ tidset(T ),
or M ′(t) <M (t),
or M ′(t) =M (t) and β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t) ⊆ (inObjThrds(W ,S)\{t});

(e) for any t′ ∈ inObjThrds(W ,S)\{t}, we have:
either t′ ∈ tidset(T ),
or M ′(t′) <M (t′),
or M ′(t′) =M (t′) and β ′(t′) = β (t′) = false,
orM ′(t′) =M (t′) and β ′(t′) = β (t′) = true and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′})
and t < ζ (t′);

(f) for any t′ ∈ inObjThrds(W ,S)\{t} and is_await(W |t′ ), we have:
if ((χ = sfair) ∧ (t′ ∈ bset(W ,S)) ∧ (t′ ∈ bset(W ′,S′))) ∨ (χ = wfair), then
either t′ ∈ tidset(T ),
or α ′(t′) < α (t′),
or α ′(t′) = α (t′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}) and t < ζa (t′) and
(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < ffset(B,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ ffset(B′,S′)).

Proof : By the operational semantics, we know one of the two cases holds:

• there exist t, Ĉ ′t ,W
′
, S′, e , ∆c and ∆o such that

Ĉt = skip, K (t) = ◦, Ĉ ′t = end, ι = (e,∆c ,∆o ), e = (t,term),

W ′ = (let Π in Ĉ1 ∥ . . . Ĉ
′
t . . . ∥ Ĉn ), S

′ = S, btids(W ,S) = (∆c ,∆o ) .

ByD,R,G |=\χt (Π,Ĉt, (σc ,σ ⊎σt,κt)) - (Π′,Γ,Bt, ˆCt, (Σ⊎Σt,kt))� (Mt,Mt,wbt,awt) ⇓ξt,ξ at
P , we know ˆCt = skip and kt = ◦. Let ˆC′t = end, btids(W,S) = (∆′c ,∆

′
o ), ι

′ = (e,∆′c ,∆
′
o )

andW′ = (let Γ in ˆC1 ∥ . . . ˆC
′
t . . . ∥

ˆCn ). Then (W,S)
ι′
7−→ (W′,S). From the premise, we

know ∀t′. (κt′ = ◦ =⇒ Ĉt′ = ˆCt′ ) ∧ (κt′ = ◦ ⇐⇒ kt′ = ◦), thus
∆′c = ∆c .

Also we know

((σ ,Σ), (σ ,Σ),0) |= Gt.

For any t′ , t, since Gt ⇒ Rt′ , we have ((σ ,Σ), (σ ,Σ),0) |= Rt′ . Thus

((σ ⊎ σt′ ,Σ ⊎ Σt′ ), (σ ⊎ σt′ ,Σ ⊎ Σt′ ),0) |= Rt′ ∗ Id.
ByD,R,G |=\χt′ (Π,Ĉt′ , (σc ,σ⊎σt′ ,κt′ )) - (Π′,Γ,Bt′ , ˆCt′ , (Σ⊎Σt′ ,kt′ ))�(Mt′ ,Mt′ ,wbt′ ,awt′ ) ⇓ξt′,ξ at′
P , and by the co-induction hypothesis, we can finish the case.

• there exist t, Ĉ ′t ,W
′
, σ ′c , σ

′′
, κ ′t , K

′
, S′, e , ∆c and ∆o such that

(Ĉt, (σc ,σ ⊎ (
⊎

t σt),κt))
e
−→ t,Π (Ĉ ′t , (σ

′
c ,σ
′′,κ ′t ))), K

′ = K {t ❀ κ ′t }, S
′ = (σ ′c ,σ

′′,K ′),

W ′ = (let Π in Ĉ1 ∥ . . . Ĉ
′
t . . . ∥ Ĉn ), ι = (e,∆c ,∆o ), t = tid(e ), btids(W ′,S′) = (∆c ,∆o ).

ByD,R,G |=\χt (Π,Ĉt, (σc ,σ ⊎σt,κt)) - (Π′,Γ,Bt, ˆCt, (Σ⊎Σt,kt))� (Mt,Mt,wbt,awt) ⇓ξt,ξ at
P , we know

(A) For any t′ ∈ ξt ∪ ξ at , we have t
′ , t and (σ ⊎ σt,Σ ⊎ Σt) |= Enabled(Dt′ ) ∗ true.

And there exist n, σ ′′′, E, ˆC′t, Σ
′′′
, k′t, k , B

′
t,M

′
t,M

′
t , wb

′
t, aw

′
t, ξ
′
t and ξ

a1
t such that

(B) σ ′′ = σ ′′′ ⊎ (
⊎

t′,t σt′ ), and
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(C) ( ˆCt, (σc ,Σ ⊎ (
⊎

t Σt),kt))
E
−→n

t,Π′ (
ˆC′t, (σ

′
c ,Σ
′′′ ⊎ (

⊎
t′,t Σt′ ),k′t)); and

if k > 0 and inObj(Ĉt,κt), then
exec0t (( ˆCt, (σc ,Σ ⊎ (

⊎
t Σt),kt)), ( ˆC

′
t, (σ

′
c ,Σ
′′′ ⊎ (

⊎
t′,t Σt′ ),k′t))) or exec1t (( ˆCt, (σc ,Σ ⊎

(
⊎

t Σt),kt)), ( ˆC
′
t, (σ

′
c ,Σ
′′′ ⊎ (

⊎
t′,t Σt′ ),k′t))); and

if e = (t, f ,_), then B′t = getB(Γ, f ), else if inObj(Ĉt,κt) ∧ is_while1( ˆC′t), then B
′
t = true,

else B′t = Bt; and
(D) is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ E = e ::ϵ , and

is_obj(e ) =⇒ (∀i,e ′ = E (i ). is_obj(e ′)), and
(E) D,R,G |=\χt (Π,Ĉ ′t , (σ

′
c ,σ
′′′,κ ′t )) - (Π′,Γ,B′t,

ˆC′t, (Σ
′′′,k′t)) � (M

′
t,M

′
t ,wb

′
t,aw

′
t) ⇓ξ ′t ,ξ a1t

P ,

and

(F) ((σ ⊎ σt,Σ ⊎ Σt), (σ
′′′,Σ′′′),k ) |= Gt ∗ [done = false] ∗ True, and

(G) if inObj(Ĉt,κt), then n > 0, orM′t < Mt, orM
′
t = Mt and wb

′
t = wbt = true and ξt ⊆ ξ ′t ;

and

(H) if ((σ ⊎ σt,Σ ⊎ Σt), (σ
′′′,Σ′′′)) |= ⟨[Dt]⟩ ∗ True and k = 0, thenM ′t < Mt.

Since (σ ,Σ) |= I and I ◃ {R,G}, we know there exist σ ′, σ ′t , Σ
′
and Σ′t such that

σ ′′′ = σ ′ ⊎ σ ′t , Σ′′′ = Σ′ ⊎ Σ′t, (σ ′,Σ′) |= I and ((σ ,Σ), (σ ′,Σ′),k ) |= Gt.

For any t′ , t, since Gt ⇒ Rt′ , we have ((σ ,Σ), (σ
′,Σ′),k ) |= Rt′ . Thus

((σ ⊎ σt′ ,Σ ⊎ Σt′ ), (σ
′ ⊎ σt′ ,Σ

′ ⊎ Σt′ ),k ) |= Rt′ ∗ Id.
ByD,R,G |=\χt′ (Π,Ĉt′ , (σc ,σ⊎σt′ ,κt′ )) - (Π′,Γ,Bt′ , ˆCt′ , (Σ⊎Σt′ ,kt′ ))�(Mt′ ,Mt′ ,wbt′ ,awt′ ) ⇓ξt′,ξ at′
P , we know
(I) For any t′′ ∈ ξt′ ∪ ξ at′ , we have t

′′ , t′ and (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= Enabled(Dt′′ ) ∗ true.
And there exist B′t′ ,M

′
t′ ,M

′
t′ , wb

′
t′ , aw

′
t′ , ξ

d
t′ , ξ

ad
t′ , ξ ′t′ and ξ

a1
t′ such that B′t′ = Bt′ and

(J) D,R,G |=\χt′ (Π,Ĉt′ , (σ
′
c ,σ
′⊎σt′ ,κt′ )) - (Π′,Γ,Bt′ , ˆCt′ , (Σ

′⊎Σt′ ,kt′ ))�(M
′
t′ ,M

′
t′ ,wb

′
t′ ,aw

′
t′ ) ⇓ξ ′t′,ξ

a1
t′

P , and
(K) if k > 0 and inObj(Ĉt′ ,κt′ ), then for any σ ′′c , Σ

′′
and ΣF such that Σ′′ = Σ{done ❀ true}

and ΣF⊥Σ we have ( ˆCt′ , (σ
′′
c ,Σ

′′ ⊎ Σt′ ⊎ ΣF ,kt′ )) −→
+
t′,Π′ (

ˆCt′ , (σ
′′
c ,Σ

′′ ⊎ Σt′ ⊎ ΣF ,kt′ ));

(L) ξdt′ = {t
′′ | (t′′ ∈ ξt′ ) ∧ (((σ ⊎ σt′ ,Σ ⊎ Σt′ ), (σ

′ ⊎ σt′ ,Σ
′ ⊎ Σt′ )) |= ⟨Dt′′⟩ ∗ Id)} and

k = 0 ∧ inObj(Ĉt′ ,κt′ ) =⇒ M
′
t′ < Mt′ ∨ (M′t′ = Mt′ ∧ wb

′
t′ = wbt′ ) and

k = 0∧wbt′ = true∧ (ξdt′ , ∅∨ ((Σ⊎Σt′ ,kt′ ) |= ¬Bt′∧ (Σ
′⊎Σt′ ,kt′ ) |= Bt′ )) =⇒ M

′
t′ < Mt′

and

k = 0 ∧M′t′ = Mt′ ∧ wb
′
t′ = wbt′ = true =⇒ ξt′\ξ

d
t′ ⊆ ξ ′t′ , and

(M) if (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= Enabled(Dt′ ) ∗ true and k = 0, thenM ′t′ ≤ Mt′ ; and

(N) ξ adt′ = {t
′′ | (t′′ ∈ ξ at′ ) ∧ (((σ ⊎ σt′ ,Σ ⊎ Σt′ ), (σ

′ ⊎ σ ′t′ ,Σ
′ ⊎ Σt′ )) |= ⟨Dt′′⟩ ∗ Id)} and

k = 0 ∧ inObj(Ĉt′ ,κt′ ) ∧ is_await(Ĉt′ ) =⇒ ξ at′ \ξ
ad
t′ ⊆ ξ a1t′ and

k = 0∧ inObj(Ĉt′ ,κt′ )∧ is_await(Ĉt′ )∧ (ξ
ad
t′ , ∅∨ ((Σ⊎Σt′ ,kt′ ) |= ¬Bt′ ∧ (Σ

′⊎Σt′ ,kt′ ) |=
Bt′ )) =⇒ aw

′
t′ < awt′ and

k = 0 ∧ (χ = sfair) ∧ inObj(Ĉt′ ,κt′ ) ∧ is_await(Ĉt′ ) ∧ ((σ ⊎ σt′ ,κt′ ) |= ¬en(Ĉt′ )) ∧ ((σ ′ ⊎
σt′ ,κt′ ) |= ¬en(Ĉt′ )) =⇒ aw

′
t′ ≤ awt′ and

k = 0 ∧ (χ = wfair) ∧ inObj(Ĉt′ ,κt′ ) ∧ is_await(Ĉt′ ) =⇒ aw
′
t′ ≤ awt′ .

Let W′ = (let Π′ in ˆC1 ∥ . . . ˆC
′
t . . . ∥

ˆCn ) and S
′ = (σ ′c ,Σ

′ ⊎ Σ′t ⊎ (
⊎

t′,t Σt′ ),K{t ❀ k′t}).
From (C) and (K), we know there exists T such that

(W,S))
T
7−→ ∗ (W′,S′) , ∀t′ ∈ inObjThrds(W ,S)\{t}. k > 0 =⇒ t′ ∈ tidset(T ) .

From (D) and (K), we know

is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T = (e,∆c ,_) ::ϵ ,
is_obj(e ) =⇒ (∀i,ι′ = T (i ). is_obj(ι′)) .
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Define the functions B′, M ′
, ζ ′, β ′, α ′ and ζ ′a as follows.

• dom(B′) = dom(M ′) = dom(ζ ′) = dom(β ′) = dom(α ′) = dom(ζ ′a ) = inObjThrds(W ′,S′).
• For any t ∈ dom(M ′), we have
• B′(t) = B′t;
• M ′(t) = (M′t, {t

′ ❀ M ′t′ | t
′ ∈ ξ ′t });

• ζ ′(t) = ξ ′t ;
• β ′(t) = wb

′
t;

• α ′(t) = (aw′t, {t
′ ❀ M ′t′ | t

′ ∈ ξ a1t });
• ζ ′a (t) = ξ a1t .

Then by the co-induction hypothesis, we know

|=\χ (W ′,S′) - (W′,Γ,B′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a ).
For the thread t, from (G), we know: if t ∈ inObjThrds(W ,S), then one of the following

holds:

• n > 0. Thus t ∈ tidset(T ).
• M′t < Mt. Thus M ′(t) <M (t).
• M′t = Mt and wb

′
t = wbt = true and ξt ⊆ ξ ′t .

Thus β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t). Also we know ξ ′t ⊆ (inObjThrds(W ,S)\{t}).
Then we only need to show the following (B.12):

{t′ ❀ M ′t′ | t
′ ∈ ξ ′t } ≤ {t

′ ❀ Mt′ | t′ ∈ ξt} (B.12)

From (A), since ∀t′. Enabled(Dt′ ) ⇒ I and Precise(I ), we know: for any t′ ∈ ξt,
t′ , t and (σ ,Σ) |= Enabled(Dt′ ) .

Thus (σ ⊎ σt′ ,Σ ⊎ Σt′ ) |= Enabled(Dt′ ) ∗ true. From (M), we haveM ′t′ ≤ Mt′ . Thus (B.12)

holds.

For any t′ ∈ inObjThrds(W ,S)\{t}, from (K) and (L), we know one of the following holds:

• k > 0. Then t′ ∈ tidset(T ).
• M′t′ < Mt′ . Thus M ′(t′) <M (t′).
• M′t′ = Mt′ and wb

′
t′ = wbt′ = false.

Thus β ′(t′) = β (t′) = false. Then from the premise, we know

ξt′ = ξ ′t′ = ∅.
Thus the following (B.13) holds:

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ ′t′ } = {t

′′ ❀ Mt′′ | t′′ ∈ ξt′ } (B.13)

Thus M ′(t′) =M (t′) holds.
• M′t′ = Mt′ and wb

′
t′ = wbt′ = true.

Thus β ′(t′) = β (t′) = true. From (L), we know

ξdt′ = ∅ ∧ ((Σ ⊎ Σt′ ,kt′ ) |= Bt′ ∨ (Σ′ ⊎ Σt′ ,kt′ ) |= ¬Bt′ ).

Also, since ξt′\ξ
d
t′ ⊆ ξ ′t′ , we know

ξt′ ⊆ ξ ′t′ .
One of the following holds:

• t < ξt′ . Thus t < ζ (t′) and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′}). We only need to

show the following (B.14):

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ ′t′ } ≤ {t

′′ ❀ Mt′′ | t′′ ∈ ξt′ } (B.14)

From (I), we know: for any t′′ ∈ ξt′ ,
t′′ , t′ and (σ ,Σ) |= Enabled(Dt′′ ) .

Thus (σ ⊎ σt′′ ,Σ ⊎ Σt′′ ) |= Enabled(Dt′′ ) ∗ true. From (M), we have M ′t′′ ≤ Mt′′ . Thus

(B.14) holds.
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• t ∈ ξt′ . Since wffAct(R,D), we know
((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ .

From (H), we know

M ′t < Mt.

We only need to show the following (B.15):

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ ′t′ } < {t

′′ ❀ Mt′′ | t′′ ∈ ξt′ } (B.15)

For any t′′ ∈ ξt′\{t}, from (I), we know:

t′′ , t′ and (σ ,Σ) |= Enabled(Dt′′ ) .
Thus (σ ⊎ σt′′ ,Σ ⊎ Σt′′ ) |= Enabled(Dt′′ ) ∗ true. From (M), we have M ′t′′ ≤ Mt′′ . Thus

(B.15) holds. Thus M ′(t′) <M (t′) holds.
For any t′ ∈ inObjThrds(W ,S)\{t} and is_await(W |t′ ), we have:
if ((χ = sfair) ∧ (t′ ∈ bset(W ,S)) ∧ (t′ ∈ bset(W ′,S′))) ∨ (χ = wfair), then from (K) and

(N), we know one of the following holds:

• k > 0. Then t′ ∈ tidset(T ).
• aw

′
t′ < awt′ . Thus α

′(t′) < α (t′).
• aw

′
t′ = awt′ . From (M), we know

ξ adt′ = ∅ ∧ ((Σ ⊎ Σt′ ,kt′ ) |= Bt′ ∨ (Σ′ ⊎ Σt′ ,kt′ ) |= ¬Bt′ ).

Also since ξ at′ \ξ
ad
t′ ⊆ ξ a1t′ , we know

ξ at′ ⊆ ξ a1t′ .
One of the following holds:

• t < ξ at′ . Thus t < ζa (t
′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}). Also we know

(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < ffset(B,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ ffset(B′,S′)).
We only need to show the following (B.16):

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ a1t′ } ≤ {t

′′ ❀ Mt′′ | t′′ ∈ ξ at′ } (B.16)

From (I), we know: for any t′′ ∈ ξ at′ ,
t′′ , t′ and (σ ,Σ) |= Enabled(Dt′′ ) .

Thus (σ ⊎ σt′′ ,Σ ⊎ Σt′′ ) |= Enabled(Dt′′ ) ∗ true. From (M), we have M ′t′′ ≤ Mt′′ . Thus

(B.16) holds.

• t ∈ ξ at′ . Since wffAct(R,D), we know
((σ ,Σ), (σ ′,Σ′)) |= ⟨[Dt]⟩ .

From (H), we know

M ′t < Mt.

We only need to show the following (B.17):

{t′′ ❀ M ′t′′ | t
′′ ∈ ξ a1t′ } < {t

′′ ❀ Mt′′ | t′′ ∈ ξ at′ } (B.17)

For any t′′ ∈ ξ at′ \{t}, from (I), we know:

t′′ , t′ and (σ ,Σ) |= Enabled(Dt′′ ) .
Thus (σ ⊎ σt′′ ,Σ ⊎ Σt′′ ) |= Enabled(Dt′′ ) ∗ true. From (M), we have M ′t′′ ≤ Mt′′ . Thus

(B.17) holds. Thus α ′(t′) < α (t′) holds.

Thus we are done. �

B.8 Towards Simulations with Fixed Low-Level Traces
As in the proof of LiLi, we extend each event e in a trace to include the information that can

uniquely determine a step (for instance, to include the value written to x for the non-deterministic

instruction x := rand()). We overload the notations e , ι, E and T .

, Vol. 1, No. 1, Article . Publication date: January 2018.



:112 Hongjin Liang and Xinyu Feng

(W ,S)
T
7−→+ (W ′,S′) get_obsv(T ) = ϵ T ′ |=∆ O

co−ω
sfair (W ′,S′,ϵ )

activeThrds(W ) − ∆ ⊆ tidset(T ) ∆ ⊆ bset(W ,S) ∀i,ι = T (i ). ∆ ⊆ bset(ι)

T ::T ′ |=∆ O
co−ω
sfair (W ,S,ϵ )

(W ,S)
T
7−→+ (W ′,S′) get_obsv(T ) = e ::E T ′ |=∆ O

co−ω
sfair (W ′,S′,E ′)

activeThrds(W ) − ∆ ⊆ tidset(T ) ∆ ⊆ bset(W ,S) ∀i,ι = T (i ). ∆ ⊆ bset(ι)

T ::T ′ |=∆ O
co−ω
sfair (W ,S,e ::E ::E ′)

(a) χ = sfair

(W ,S)
T
7−→+ (W ′,S′) get_obsv(T ) = ϵ T ′ |=∆ O

co−ω
wfair (W

′,S′,ϵ )

activeThrds(W ) − ∆ = tidset(T ) ∀t ∈ ∆. ∃i . t ∈ bset(T (i ))

T ::T ′ |=∆ O
co−ω
wfair (W ,S,ϵ )

(W ,S)
T
7−→+ (W ′,S′) get_obsv(T ) = e ::E T ′ |=∆ O

co−ω
wfair (W

′,S′,E ′)

activeThrds(W ) − ∆ = tidset(T ) ∀t ∈ ∆. ∃i . t ∈ bset(T (i ))

T ::T ′ |=∆ O
co−ω
wfair (W ,S,e ::E ::E

′)

(b) χ = wfair

Fig. 25. Co-inductive definitions for generating observable event traces of infinite and χ -fair executions.

We define Oω
χ JW ,SK for the set of observable traces generated from infinite and χ -fair executions

in TωJW ,SK.

T ω
ω JW ,SK def

= {((spawn, |W |),∆c ,∆o ) ::T | btids(W ,S) = (∆c ,∆o ) ∧ ((W ,S)
T
7−→ω · ) }

Oωχ JW ,SK def

= {(E,T ) | T ∈ T ω
ω JW ,SK ∧ χ (T ) ∧ get_obsv(T ) = E} χ ∈ {sfair,wfair}

Then Oχ JW ,SK is equivalent to the union of Oω
χ JW ,SK and the set of observable traces generated

from finite executions (note that all finite traces are χ -fair). Actually here we pair each observable

trace E in Oχ JW ,SK with the execution trace T generating E.

T fin
ω JW ,SK def

= {((spawn, |W |),∆c ,∆o ) ::T | btids(W ,S) = (∆c ,∆o ) ∧

(((W ,S)
T
7−→∗ abort) ∨ ∃W ′,S′. ((W ,S)

T
7−→∗ (W ′,S′)) ∧ ¬(∃ι. (W ′,S′)

ι
7−→ _)) }

Oχ JW ,SK = Oωχ JW ,SK ∪ {(E,T ) | T ∈ T fin
ω JW ,SK ∧ get_obsv(T ) = E}

We observe that for each traceT in Oω
χ JW ,SK, from some point on, it can be cut into pieces where

each piece (called a round) contains at least one step of every thread (unless the thread is not needed

to execute in a χ -fair execution). In Fig. 25 we give the definition of T |=∆ O
co−ω
χ (W ,S,E), which

says that T can be cut into such kind of pieces. This is useful to help derive the whole-program

simulations with fixed low-level traces (see Definitions B.23 and B.24).

Definition B.23 (Simulation with fixed low-level traces (for whole programs with PSF objects)).

T |= (W ,S)≼ (W,S) �M is co-inductively defined as follows. HereM ∈ ThrdID⇀ Metric.

Whenever T |= (W ,S)≼ (W,S) �M holds, then the following hold:

(1) dom(M) = inObjThrds(W ,S) = inObjThrds(W,S).
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(2) If (W ,S)
ι
7−→ (W ′,S′) and T = ι ::T ′, then

there exist t, e , ∆c , ∆o , T
′′
, n,W′, S′ andM ′

such that all the following hold:

(a) (W,S)
T ′′
7−→n (W′,S′), and n = 0 ∨ n = 1;

(b) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T ′′ = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T ′′(i ). is_obj(ι′));

(c) T ′ |= (W ′,S′)≼ (W′,S′) �M ′
;

(d) for any t′ ∈ inObjThrds(W ,S), we have:
either t′ ∈ tidset(T ′′),
orM ′(t′) <M (t′),
orM ′(t′) =M (t′) and t′ ∈ bset(W,S) and t′ ∈ bset(W′,S′).

Definition B.24 (Simulation with fixed low-level traces (for whole programs with PDF objects)).

T |=\ (W ,S)≼ (W,Γ,B,S) �M is co-inductively defined as follows. HereM ∈ ThrdID⇀ Metric.

Whenever T |=\ (W ,S)≼ (W,Γ,B,S) �M holds, then the following hold:

(1) dom(M) = inObjThrds(W ,S) = inObjThrds(W,S);
for any t ∈ ffset(B,S), we have is_while0(W|t,B(t)).

(2) If (W ,S)
ι
7−→ (W ′,S′) and T = ι ::T ′, then

there exist t, e , ∆c , ∆o , T
′′
, B′,W′, S′ andM ′

such that all the following hold:

(a) (W,S)
T ′′
7−→ ∗ (W′,S′);

(b) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T ′′ = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T ′′(i ). is_obj(ι′));
if e = (t, f ,_), then B′ = B{t ❀ getB(Γ, f )}, else if is_obj(e ) ∧ is_while1(W′ |t), then
B′ = B{t ❀ true}, else B′ = B;

(c) T ′ |=\ (W ′,S′)≼ (W′,Γ,B′,S′) �M ′
;

(d) for any t′ ∈ inObjThrds(W ,S), we have:
either t′ ∈ tidset(T ′′),
orM ′(t′) <M (t′),
orM ′(t′) =M (t′) and t′ ∈ ffset(B,S) and t′ ∈ ffset(B′,S′).

Below we prove in Lemmas B.25, B.29, B.32 and B.33 that the whole-program simulations

(Definitions B.19 and B.20) imply the simulations with fixed low-level traces (Definitions B.23

and B.23) if the low-level traces are strongly/weakly fair. We first define some useful predicates

and ordering in Fig. 26.

Lemma B.25 (Towards Simulations with Fixed Low-Level Traces (for PSF Objects under

Strong Fairness)). If T |=∆ O
co−ω
sfair (W ,S,E) and |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ), then

there existsM such that T |= (W ,S)≼ (W,S) �M.

Proof. We prove the following (B.18) by inversion over T |=∆ O
co−ω
sfair (W ,S,E).

If T |=∆ O
co−ω
sfair (W ,S,E), then there exists Tx such that roundsub(T ,activeThrds(W ) −

∆,Tx ).
(B.18)

Also, by inversion over |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ), we know

dom(M ) = dom(ζ ) = dom(β ) = dom(α ) = dom(ζa ) = inObjThrds(W ,S) = inObjThrds(W,S).

Choose Tx such that roundsub(T ,activeThrds(W ) − ∆,Tx ). Next we chooseM to be a function

such that the following hold:
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roundsub(T ,ξ ,Tx ) iff ( |T | , ω) ∧ (Tx = T ) ∨ ∃T
′. (T = Tx ::T

′) ∧ ( |Tx | , ω) ∧ (ξ ⊆ tidset(Tx ))

minPos(T ,ξ )
def

=




0 if ξ = ∅
1 if T = ϵ ∧ ξ , ∅
1 if T = ι ::T ′ ∧ |T | , ω ∧ tid(ι) ∈ ξ
1 +minPos(T ′,ξ ) if T = ι ::T ′ ∧ |T | , ω ∧ tid(ι) < ξ ∧ ξ , ∅

minDis∆ (T , t)
def

=




0 if t < ∆
1 if T = ϵ ∧ t ∈ ∆
1 if T = ι ::T ′ ∧ t ∈ bset(ι) ∧ t ∈ ∆
1 +minDis∆ (T ′, t) if T = ι ::T ′ ∧ t < bset(ι) ∧ t ∈ ∆

minPos∆ (T ,ξ )
def

=




minPos(T ,ξ − ∆) if ξ − ∆ , ∅
min{minDis∆ (T , t′) | t′ ∈ ξ } if ∅ ⊂ ξ ⊆ ∆
0 if ξ = ∅

minPos∆,β (T ,ξ , t)
def

=




minPos(T ,ξ − ∆) if ξ − ∆ , ∅
min{minDis∆ (T , t′) | t′ ∈ ξ } if ∅ ⊂ ξ ⊆ ∆
−1 if ξ = ∅ ∧ β (t) = false ∧ t ∈ ∆
minPos(T , {t}) if ξ = ∅ ∧ β (t) = false ∧ t < ∆
0 if ξ = ∅ ∧ β (t) = true

Fig. 26. Definitions related to rounds.

(1) dom(M) = inObjThrds(W ,S).
(2) For any t ∈ dom(M), we have:

M (t) = (M (t), (ζ (t),dom(ζ )\{t}), minPos∆,β (Tx ,ζ (t), t),
α (t), (ζa (t),dom(ζa )\{t}), minPos∆ (Tx ,ζa (t))) .

We define the orderM ′(t) <M (t) as a dictionary order:

(M ′, (ξ ′,ξ ′D ),k
′,M ′a , (ξ

′
a ,ξ
′
aD ),k

′
a ) < (M , (ξ ,ξD ),k,Ma , (ξa ,ξaD ),ka ) iff

(M ′ < M )
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) < (ξ ,ξD ))
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ < k )
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k = −1) ∧ (M ′a < Ma )
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k = −1) ∧ (M ′a = Ma ) ∧ ((ξ ′a ,ξ

′
aD ) < (ξa ,ξaD ))

∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k = −1) ∧ (M ′a = Ma ) ∧ ((ξ ′a ,ξ
′
aD ) = (ξa ,ξaD )) ∧ (k ′a < ka )

(ξ ′,ξ ′D ) < (ξ ,ξD ) iff

(ξ ′ ⊃ ξ ) ∧ (ξ ′ ⊆ ξ ′D ) ∧ (ξ ⊆ ξD ) ∧ (ξ ′D ⊆ ξD )

(ξ ′,ξ ′D ) = (ξ ,ξD ) iff

(ξ ′ = ξ ) ∧ (ξ ′ ⊆ ξ ′D ) ∧ (ξ ⊆ ξD ) ∧ (ξ ′D ⊆ ξD )

Clearly thatM ′(t) <M (t) is a well-founded order.

Next we prove: for any T , ∆,W , S, E,W, S, M , ζ , β , α , ζa ,M and Tx , if

(1) T |=∆ O
co−ω
sfair (W ,S,E);

(2) |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa );
(3) roundsub(T ,activeThrds(W ) − ∆,Tx );

dom(M) = inObjThrds(W ,S); and
for any t ∈ dom(M), we haveM (t) = (M (t), (ζ (t),dom(ζ )\{t}), minPos∆,β (Tx ,ζ (t), t),
α (t), (ζa (t),dom(ζa )\{t}), minPos∆ (Tx ,ζa (t))),

then T |= (W ,S)≼ (W,S) �M.
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By co-induction. We need to prove: if (W ,S)
ι
7−→ (W ′,S′) and T = ι ::T ′, then

there exist t, e , ∆c , ∆o , T
′′
, n,W′, S′ andM ′

such that all the following hold:

(a) (W,S)
T ′′
7−→n (W′,S′), and n = 0 ∨ n = 1;

(b) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T ′′ = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T ′′(i ). is_obj(ι′));

(c) T ′ |= (W ′,S′)≼ (W′,S′) �M ′
;

(d) for any t′ ∈ inObjThrds(W ,S), we have:
either t′ ∈ tidset(T ′′),
orM ′(t′) <M (t′),
orM ′(t′) =M (t′) and t′ ∈ bset(W,S) and t′ ∈ bset(W′,S′).

From |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ), we know there exist t, T ′′,W′, S′, M ′
, ζ ′, β ′, α ′,

ζ ′a , n, e , ∆c and ∆o such that all the following hold:

(A) (W,S)
T ′′
7−→n (W′,S′), and n = 0 ∨ n = 1;

(B) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T ′′ = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T ′′(i ). is_obj(ι′));

(C) |=sfair (W
′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a );

(D) if t ∈ inObjThrds(W ,S), then
either t ∈ tidset(T ′′),
or M ′(t) <M (t),
or M ′(t) =M (t) and β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t) ⊆ (inObjThrds(W ,S)\{t});

(E) for any t′ ∈ inObjThrds(W ,S)\{t}, we have:
either M ′(t′) <M (t′),
or M ′(t′) =M (t′) and β ′(t′) = β (t′) = false,
or M ′(t′) =M (t′) and β ′(t′) = β (t′) = true and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′})
and t < ζ (t′);

(F) for any t′ ∈ inObjThrds(W ,S)\{t} and is_await(W |t′ ), we have:
if (t′ ∈ bset(W ,S)) ∧ (t′ ∈ bset(W ′,S′)), then
either α ′(t′) < α (t′),
or α ′(t′) = α (t′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}) and t < ζa (t′) and
(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < bset(W,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ bset(W′,S′)).

Since T |=∆ O
co−ω
sfair (W ,S,E), by Lemmas B.26 and B.27, we know there exists E ′ such that

E = (get_obsv(ι)) ::E ′ and T ′ |=∆ Oco−ω
sfair (W ′,S′,E ′).

By (B.18), we know there exists T ′x such that roundsub(T ′,activeThrds(W ′) − ∆,T ′x ).
ChooseM ′

such that dom(M ′) = inObjThrds(W ′,S′); and
for any t ∈ dom(M ′), we haveM ′(t) = (M ′(t), (ζ ′(t),dom(ζ ′)\{t}), minPos∆,β ′ (T ′x ,ζ

′(t), t),
α ′(t), (ζ ′a (t),dom(ζ ′a )\{t}), minPos∆ (T ′x ,ζ

′
a (t))).

By the co-induction hypothesis, we know T ′ |= (W ′,S′)≼ (W′,S′) �M ′
.

(1) If t ∈ inObjThrds(W ,S), below we prove: either t ∈ tidset(T ′′), or M ′(t) < M (t), or
M ′(t) = M (t) and t ∈ bset(W,S) and t ∈ bset(W′,S′). From (D), we know one of the

following holds:

• t ∈ tidset(T ′′). Thus we are done.
• M ′(t) <M (t). ThenM ′(t) <M (t).
• M ′(t) =M (t) and β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t) ⊆ (inObjThrds(W ,S)\{t}).
We know one of the following three cases holds:

, Vol. 1, No. 1, Article . Publication date: January 2018.



:116 Hongjin Liang and Xinyu Feng

• ζ (t) ⊂ ζ ′(t).
We proveM ′(t) < M (t) as follows. From |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) and
|=sfair (W

′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a ), we know
dom(ζ ′) = inObjThrds(W ′,S′), dom(ζ ) = inObjThrds(W ,S),

ζ ′(t) ⊆ (dom(ζ ′)\{t}), ζ (t) ⊆ (dom(ζ )\{t}).
By the operational semantics, we know inObjThrds(W ′,S′) ⊆ inObjThrds(W ,S). Thus
we have

(ζ ′(t),dom(ζ ′)\{t}) < (ζ (t),dom(ζ )\{t}).
ThusM ′(t) <M (t).
• ∅ ⊂ ζ (t) = ζ ′(t).
We proveM ′(t) <M (t) as follows. First we have (ζ ′(t),dom(ζ ′)\{t}) = (ζ (t),dom(ζ )\{t}).
Also, since |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ), we know for any t′ ∈ ζ (t), we have
t′ < bset(W ,S). Then, from T |=∆ O

co−ω
sfair (W ,S,E), we know
ζ (t) ∩ ∆ = ∅.

Thus we know

minPos∆,β ′ (T ′x ,ζ
′(t), t) = minPos(T ′x ,ζ (t)) and

minPos∆,β (Tx ,ζ (t), t) = minPos(Tx ,ζ (t)).
Since roundsub(T ,activeThrds(W )−∆,Tx ), we know there existsTz such thatT = Tx ::Tz .
AlsoTx , ϵ . SinceT = ι ::T ′, we know there existsTy such thatTx = ι ::Ty andT

′ = Ty ::Tz .
Also since roundsub(T ,activeThrds(W )−∆,Tx ), we know activeThrds(W )−∆ ⊆ tidset(Tx ).
Thus ζ (t) ⊆ tidset(Tx ). Since t = tid(ι) and t < ζ (t), we know

ζ (t) ⊆ tidset(Ty ).
Thus

roundsub(T ′,ζ (t),Ty ).
Then by Lemma B.28, we know

minPos(T ′x ,ζ (t)) = minPos(Ty ,ζ (t)) < minPos(Tx ,ζ (t)).
ThusM ′(t) <M (t).
• ∅ = ζ (t) = ζ ′(t).
We have (ζ ′(t),dom(ζ ′)\{t}) = (ζ (t),dom(ζ )\{t}). Since β ′(t) = β (t) = true, we know

t ∈ bset(W,S) and t ∈ bset(W′,S′).
Also we know

minPos∆,β ′ (T ′x ,ζ
′(t), t) = 0 and

minPos∆,β (Tx ,ζ (t), t) = 0.

ThusM ′(t) =M (t).
(2) For any t′ ∈ inObjThrds(W ,S)\{t}, below we prove: eitherM ′(t′) < M (t′), orM ′(t′) =
M (t′) and t′ ∈ bset(W,S) and t′ ∈ bset(W′,S′). From (E), we know one of the following

holds:

• M ′(t′) <M (t′). ThenM ′(t′) <M (t′).
• M ′(t′) =M (t′) and β ′(t′) = β (t′) = false.
Since β ′(t′) = β (t′) = false, we know ζ (t′) = ζ ′(t′) = ∅. Thus

(ζ ′(t′),dom(ζ ′)\{t′}) = (ζ (t′),dom(ζ )\{t′}).
One of the following two cases holds:

• t′ < ∆. Thus we know
minPos∆,β ′ (T ′x ,ζ

′(t′), t′) = minPos(T ′x , {t
′}) and

minPos∆,β (Tx ,ζ (t′), t′) = minPos(Tx , {t′}).
Since roundsub(T ,activeThrds(W )−∆,Tx ), we know there existsTz such thatT = Tx ::Tz .
AlsoTx , ϵ . SinceT = ι ::T ′, we know there existsTy such thatTx = ι ::Ty andT

′ = Ty ::Tz .
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Also since roundsub(T ,activeThrds(W )−∆,Tx ), we know activeThrds(W )−∆ ⊆ tidset(Tx ).
Thus t′ ∈ tidset(Tx ). Since t = tid(ι) and t , t′, we know

t′ ∈ tidset(Ty ).
Thus

roundsub(T ′, {t′},Ty ).
Then by Lemma B.28, we know

minPos(T ′x , {t
′}) = minPos(Ty , {t′})) < minPos(Tx , {t′}).

ThusM ′(t′) <M (t′).
• t′ ∈ ∆. Thus we know

minPos∆,β ′ (T ′x ,ζ
′(t′), t′) = −1 and

minPos∆,β (Tx ,ζ (t′), t′) = −1.
Since T |=∆ O

co−ω
sfair (W ,S,E) and t′ ∈ ∆, we know

t′ ∈ bset(W ,S) and t′ ∈ bset(W ′,S′).
From (F), we know one of the following holds:

• α ′(t′) < α (t′). ThenM ′(t′) <M (t′).
• α ′(t′) = α (t′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}) and t < ζa (t′) and
(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < bset(W,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ bset(W′,S′)).
We know one of the following three cases holds:

• ζa (t′) ⊂ ζ ′a (t
′).

We proveM ′(t′) <M (t′) as follows. From |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa )
and |=sfair (W

′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a ), we know
dom(ζ ′a ) = inObjThrds(W ′,S′), dom(ζa ) = inObjThrds(W ,S),

ζ ′a (t
′) ⊆ (dom(ζ ′a )\{t

′}), ζa (t′) ⊆ (dom(ζa )\{t′}).
By the operational semantics, we know inObjThrds(W ′,S′) ⊆ inObjThrds(W ,S).
Thus we have

(ζ ′a (t
′),dom(ζ ′a )\{t

′}) < (ζa (t′),dom(ζa )\{t′}).
ThusM ′(t′) <M (t′).
• ∅ ⊂ ζa (t′) = ζ ′a (t

′).
We proveM ′(t′) <M (t′) as follows. First (ζ ′a (t

′),dom(ζ ′a )\{t
′}) = (ζa (t′),dom(ζa )\{t′}).

Also, since |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ), we know for any t′′ ∈ ζa (t′), we
have t′′ < bset(W ,S). Then, from T |=∆ O

co−ω
sfair (W ,S,E), we know

ζa (t′) ∩ ∆ = ∅.
Thus we know

minPos∆ (T ′x ,ζ
′
a (t
′)) = minPos(T ′x ,ζa (t

′)) and
minPos∆ (Tx ,ζa (t′)) = minPos(Tx ,ζa (t′)).

Since roundsub(T ,activeThrds(W ) − ∆,Tx ), we know there exists Tz such that T =
Tx ::Tz . Also Tx , ϵ . Since T = ι ::T ′, we know there exists Ty such that Tx = ι ::Ty
and T ′ = Ty ::Tz .
Also since roundsub(T ,activeThrds(W ) − ∆,Tx ), we know activeThrds(W ) − ∆ ⊆
tidset(Tx ). Thus ζa (t′) ⊆ tidset(Tx ). Since t = tid(ι) and t < ζa (t′), we know

ζa (t′) ⊆ tidset(Ty ).
Thus

roundsub(T ′,ζa (t′),Ty ).
Then by Lemma B.28, we know

minPos(T ′x ,ζa (t
′)) = minPos(Ty ,ζa (t′)) < minPos(Tx ,ζa (t′)).

ThusM ′(t′) <M (t′).
• ∅ = ζa (t′) = ζ ′a (t

′).
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Wehave (ζ ′a (t
′),dom(ζ ′a )\{t

′}) = (ζa (t′),dom(ζa )\{t′}). From |=sfair (W ,S) - (W,S)�
(M ,ζ ,β ,α ,ζa ) and |=sfair (W ′,S′) - (W′,S′)�(M ′,ζ ′,β ′,α ′,ζ ′a ), since t

′ ∈ bset(W ,S)
and t′ ∈ bset(W ′,S′), we know

t′ ∈ bset(W,S) and t′ ∈ bset(W′,S′).
Also we know

minPos∆ (T ′x ,ζ
′
a (t
′)) = 0 and

minPos∆ (Tx ,ζa (t′)) = 0.

ThusM ′(t′) =M (t′).
• M ′(t′) =M (t′) and β ′(t′) = β (t′) = true and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′})
and t < ζ (t′).
We know one of the following three cases holds:

• ζ (t′) ⊂ ζ ′(t′).
We proveM ′(t′) <M (t′) as follows. From |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) and
|=sfair (W

′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a ), we know
dom(ζ ′) = inObjThrds(W ′,S′), dom(ζ ) = inObjThrds(W ,S),

ζ ′(t′) ⊆ (dom(ζ ′)\{t′}), ζ (t′) ⊆ (dom(ζ )\{t′}).
By the operational semantics, we know inObjThrds(W ′,S′) ⊆ inObjThrds(W ,S). Thus
we have

(ζ ′(t′),dom(ζ ′)\{t′}) < (ζ (t′),dom(ζ )\{t′}).
ThusM ′(t′) <M (t′).
• ∅ ⊂ ζ (t′) = ζ ′(t′).
We proveM ′(t′) <M (t′) as follows. First we have (ζ ′(t′),dom(ζ ′)\{t′}) = (ζ (t′),dom(ζ )\{t′}).
Also, since |=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ), we know for any t′′ ∈ ζ (t′), we have
t′′ < bset(W ,S). Then, from T |=∆ O

co−ω
sfair (W ,S,E), we know
ζ (t′) ∩ ∆ = ∅.

Thus we know

minPos∆,β ′ (T ′x ,ζ
′(t′), t′) = minPos(T ′x ,ζ (t

′)) and
minPos∆,β (Tx ,ζ (t′), t′) = minPos(Tx ,ζ (t′)).

Since roundsub(T ,activeThrds(W )−∆,Tx ), we know there existsTz such thatT = Tx ::Tz .
AlsoTx , ϵ . SinceT = ι ::T ′, we know there existsTy such thatTx = ι ::Ty andT

′ = Ty ::Tz .
Also since roundsub(T ,activeThrds(W )−∆,Tx ), we know activeThrds(W )−∆ ⊆ tidset(Tx ).
Thus ζ (t′) ⊆ tidset(Tx ). Since t = tid(ι) and t < ζ (t′), we know

ζ (t′) ⊆ tidset(Ty ).
Thus

roundsub(T ′,ζ (t′),Ty ).
Then by Lemma B.28, we know

minPos(T ′x ,ζ (t
′)) = minPos(Ty ,ζ (t′)) < minPos(Tx ,ζ (t′)).

ThusM ′(t′) <M (t′).
• ∅ = ζ (t′) = ζ ′(t′).
We have (ζ ′(t′),dom(ζ ′)\{t′}) = (ζ (t′),dom(ζ )\{t′}). Since β ′(t′) = β (t′) = true, we
know

t′ ∈ bset(W,S) and t′ ∈ bset(W′,S′).
Also we know

minPos∆,β ′ (T ′x ,ζ
′(t′), t′) = 0 and

minPos∆,β (Tx ,ζ (t′), t′) = 0.

ThusM ′(t′) =M (t′).

Thus we are done. �
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Lemma B.26. If (ι ::T ) |=∆ O
co−ω
χ (W ,S,Ea ), then there exists Eb such that Ea = (get_obsv(ι)) ::

Eb .

Lemma B.27. If (ι ::T ) |=∆ O
co−ω
χ (W ,S,Ea ), (W ,S)

ι
7−→ (Wx ,Sx ) and Ea = (get_obsv(ι)) ::Eb ,

then T |=∆ O
co−ω
χ (W ,S,Eb ).

Proof. By co-induction, and then by inversion three times over (ι ::T ) |=∆ O
co−ω
χ (W ,S,Ea ). �

Lemma B.28. If |T | = ω, ξ , ∅, roundsub(T ,ξ ,Tx ) and roundsub(T ,ξ ,Ty ), then minPos(Tx ,ξ ) =
minPos(Ty ,ξ ).

Proof. From the premises, we know |Tx | , ω and |Ty | , ω. Suppose |Tx | ≤ |Ty |.
From roundsub(T ,ξ ,Tx ), we know there exists T ′x such that T = Tx ::T

′
x and ξ ⊆ tidset(Tx ).

From roundsub(T ,ξ ,Ty ), we know there exists T ′y such that T = Ty ::T
′
y .

Thus there existsTz such thatTy = Tx ::Tz andT
′
x = Tz ::T

′
y . Since ξ , ∅, we know tidset(Tx ) , ∅.

Thus there exist ι and T0 such that Tx = ι ::T0. Thus Ty = ι ::T0 ::Tz . By induction over |T0 |. We are

done. �

Lemma B.29 (Towards Simulations with Fixed Low-Level Traces (for PSF Objects under

Weak Fairness)). IfT |=∆ O
co−ω
wfair (W ,S,E) and |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ), then there

existsM such that T |= (W ,S)≼ (W,S) �M.

Proof. We prove the following (B.19) by inversion over T |=∆ O
co−ω
wfair (W ,S,E).

If T |=∆ O
co−ω
wfair (W ,S,E), then there exists Tx such that roundsub(T ,activeThrds(W ) −

∆,Tx ), activeThrds(W ) − ∆ = tidset(Tx ) and (∀t ∈ ∆. ∃i . t ∈ bset(Tx (i ))).
(B.19)

Also, by inversion over |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ), we know

dom(M ) = dom(ζ ) = dom(β ) = dom(α ) = dom(ζa ) = inObjThrds(W ,S) = inObjThrds(W,S).

Choose Tx such that roundsub(T ,activeThrds(W ) − ∆,Tx ). Next we chooseM to be a function

such that the following hold:

(1) dom(M) = inObjThrds(W ,S).
(2) For any t ∈ dom(M), we have:

M (t) = (M (t), (ζ (t),dom(ζ )\{t}), minPos∆,β (Tx ,ζ (t), t),
α (t), (ζa (t),dom(ζa )\{t}), minPos∆ (Tx ,ζa (t)),
(t ∈ bset(W,S),minDis∆ (Tx , t))) .

We define the orderM ′(t) <M (t) as a dictionary order:
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(M ′, (ξ ′,ξ ′D ),k
′,M ′a , (ξ

′
a ,ξ
′
aD ),k

′
a , (b

′,k ′d )) < (M , (ξ ,ξD ),k,Ma , (ξa ,ξaD ),ka , (b,kd )) iff

(M ′ < M )
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) < (ξ ,ξD ))
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ < k )
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k = −1) ∧ (M ′a < Ma )
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k = −1) ∧ (M ′a = Ma ) ∧ ((ξ ′a ,ξ

′
aD ) < (ξa ,ξaD ))

∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k = −1) ∧ (M ′a = Ma ) ∧ ((ξ ′a ,ξ
′
aD ) = (ξa ,ξaD ))

∧ (k ′a < ka )
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k = −1) ∧ (M ′a = Ma ) ∧ ((ξ ′a ,ξ

′
aD ) = (ξa ,ξaD ))

∧ (k ′a = ka = 0) ∧ (b ′,k ′d ) < (b,kd )

(M ′, (ξ ′,ξ ′D ),k
′,M ′a , (ξ

′
a ,ξ
′
aD ),k

′
a , (b

′,k ′d )) = (M , (ξ ,ξD ),k,Ma , (ξa ,ξaD ),ka , (b,kd )) iff

(M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k , −1)
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k = −1) ∧ (M ′a = Ma ) ∧ ((ξ ′a ,ξ

′
aD ) = (ξa ,ξaD ))

∧ (k ′a = ka , 0)
∨ (M ′ = M ) ∧ ((ξ ′,ξ ′D ) = (ξ ,ξD )) ∧ (k ′ = k = −1) ∧ (M ′a = Ma ) ∧ ((ξ ′a ,ξ

′
aD ) = (ξa ,ξaD ))

∧ (k ′a = ka = 0) ∧ (b ′,k ′d ) = (b,kd )

(b ′,k ′d ) < (b,kd ) iff

(b ′ = b = false ∧ k ′ < k ) ∨ (b ′ = true ∧ b = false)

(b ′,k ′d ) = (b,kd ) iff

(b ′ = b = true) ∨ (b ′ = b = false ∧ k ′ = k )

Clearly thatM ′(t) <M (t) is a well-founded order.

Next we prove: for any T , ∆,W , S, E,W, S, M , ζ , β , α , ζa ,M and Tx , if

(1) T |=∆ O
co−ω
wfair (W ,S,E);

(2) |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa );
(3) roundsub(T ,activeThrds(W ) − ∆,Tx ); activeThrds(W ) − ∆ = tidset(Tx );

(∀t ∈ ∆. ∃i . t ∈ bset(Tx (i )));
dom(M) = inObjThrds(W ,S); and
for any t ∈ dom(M), we haveM (t) = (M (t), (ζ (t),dom(ζ )\{t}), minPos∆,β (Tx ,ζ (t), t),
α (t), (ζa (t),dom(ζa )\{t}), minPos∆ (Tx ,ζa (t)), (t ∈ bset(W,S),minDis∆ (Tx , t))),

then T |= (W ,S)≼ (W,S) �M.

By co-induction. We need to prove: if (W ,S)
ι
7−→ (W ′,S′) and T = ι ::T ′, then

there exist t, e , ∆c , ∆o , T
′′
, n,W′, S′ andM ′

such that all the following hold:

(a) (W,S)
T ′′
7−→n (W′,S′), and n = 0 ∨ n = 1;

(b) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T ′′ = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T ′′(i ). is_obj(ι′));

(c) T ′ |= (W ′,S′)≼ (W′,S′) �M ′
;

(d) for any t′ ∈ inObjThrds(W ,S), we have:
either t′ ∈ tidset(T ′′),
orM ′(t′) <M (t′),
orM ′(t′) =M (t′) and t′ ∈ bset(W,S) and t′ ∈ bset(W′,S′).

From |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ), we know there exist t, T ′′,W′, S′, M ′
, ζ ′, β ′, α ′,

ζ ′a , n, e , ∆c and ∆o such that all the following hold:

(A) (W,S)
T ′′
7−→n (W′,S′), and n = 0 ∨ n = 1;
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(B) ι = (e,∆c ,∆o ); t = tid(e );
is_clt(e ) ∨ is_inv(e ) ∨ is_ret(e ) =⇒ T ′′ = (e,∆c ,_) ::ϵ ;
is_obj(e ) =⇒ (∀i,ι′ = T ′′(i ). is_obj(ι′));

(C) |=wfair (W
′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a );

(D) if t ∈ inObjThrds(W ,S), then
either t ∈ tidset(T ′′),
or M ′(t) <M (t),
or M ′(t) =M (t) and β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t) ⊆ (inObjThrds(W ,S)\{t});

(E) for any t′ ∈ inObjThrds(W ,S)\{t}, we have:
either M ′(t′) <M (t′),
or M ′(t′) =M (t′) and β ′(t′) = β (t′) = false,
or M ′(t′) =M (t′) and β ′(t′) = β (t′) = true and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′})
and t < ζ (t′);

(F) for any t′ ∈ inObjThrds(W ,S)\{t} and is_await(W |t′ ), we have:
either α ′(t′) < α (t′),
or α ′(t′) = α (t′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}) and t < ζa (t′) and
(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < bset(W,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ bset(W′,S′)).

Since T |=∆ O
co−ω
wfair (W ,S,E), by Lemmas B.26 and B.27, we know there exists E ′ such that

E = (get_obsv(ι)) ::E ′ and T ′ |=∆ Oco−ω
wfair (W

′,S′,E ′).
By (B.19), we know there exists T ′x such that roundsub(T ′,activeThrds(W ′) − ∆,T ′x ),

activeThrds(W ′) − ∆ = tidset(T ′x ) and (∀t ∈ ∆. ∃i . t ∈ bset(T ′x (i ))).
ChooseM ′

such that dom(M ′) = inObjThrds(W ′,S′); and
for any t ∈ dom(M ′), we haveM ′(t) = (M ′(t), (ζ ′(t),dom(ζ ′)\{t}), minPos∆,β ′ (T ′x ,ζ

′(t), t),
α ′(t), (ζ ′a (t),dom(ζ ′a )\{t}), minPos∆ (T ′x ,ζ

′
a (t)), (t ∈ bset(W

′,S′),minDis∆ (T ′x , t))).
By the co-induction hypothesis, we know T ′ |= (W ′,S′)≼ (W′,S′) �M ′

.

(1) If t ∈ inObjThrds(W ,S), below we prove: either t ∈ tidset(T ′′), or M ′(t) < M (t), or
M ′(t) = M (t) and t ∈ bset(W,S) and t ∈ bset(W′,S′). From (D), we know one of the

following holds:

• t ∈ tidset(T ′′). Thus we are done.
• M ′(t) <M (t). ThenM ′(t) <M (t).
• M ′(t) =M (t) and β ′(t) = β (t) = true and ζ (t) ⊆ ζ ′(t) ⊆ (inObjThrds(W ,S)\{t}).
We know one of the following three cases holds:

• ζ (t) ⊂ ζ ′(t).
We proveM ′(t) <M (t) as follows. From |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) and
|=wfair (W

′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a ), we know
dom(ζ ′) = inObjThrds(W ′,S′), dom(ζ ) = inObjThrds(W ,S),

ζ ′(t) ⊆ (dom(ζ ′)\{t}), ζ (t) ⊆ (dom(ζ )\{t}).
By the operational semantics, we know inObjThrds(W ′,S′) ⊆ inObjThrds(W ,S). Thus
we have

(ζ ′(t),dom(ζ ′)\{t}) < (ζ (t),dom(ζ )\{t}).
ThusM ′(t) <M (t).
• ∅ ⊂ ζ (t) = ζ ′(t).
We proveM ′(t) <M (t) as follows. First we have (ζ ′(t),dom(ζ ′)\{t}) = (ζ (t),dom(ζ )\{t}).
Since roundsub(T ,activeThrds(W )−∆,Tx ), we know there existsTz such thatT = Tx ::Tz .
AlsoTx , ϵ . SinceT = ι ::T ′, we know there existsTy such thatTx = ι ::Ty andT

′ = Ty ::Tz .
Since roundsub(T ′,activeThrds(W ′)−∆,T ′x ), we know there existsT ′z such thatT ′ = T ′x ::
T ′z .
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We know one of the following holds:

• ζ (t) − ∆ , ∅.
Thus we know

minPos∆,β ′ (T ′x ,ζ
′(t), t) = minPos(T ′x ,ζ (t) − ∆) and

minPos∆,β (Tx ,ζ (t), t) = minPos(Tx ,ζ (t) − ∆).
Also since roundsub(T ,activeThrds(W ) − ∆,Tx ), we know activeThrds(W ) − ∆ ⊆
tidset(Tx ). Thus ζ (t) − ∆ ⊆ tidset(Tx ). Since t = tid(ι) and t < ζ (t), we know

ζ (t) − ∆ ⊆ tidset(Ty ).
Thus

roundsub(T ′,ζ (t) − ∆,Ty ).
Then by Lemma B.28, we know

minPos(T ′x ,ζ (t) − ∆) = minPos(Ty ,ζ (t) − ∆) < minPos(Tx ,ζ (t) − ∆).
ThusM ′(t) <M (t).
• ζ (t) ⊆ ∆.
Thus we know

minPos∆,β ′ (T ′x ,ζ
′(t), t) = min{minDis∆ (T ′x , t

′) | t′ ∈ ζ (t)} and
minPos∆,β (Tx ,ζ (t), t) = min{minDis∆ (Tx , t′) | t′ ∈ ζ (t)}.

Since |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) and |=wfair (W ′,S′) - (W′,S′) �
(M ′,ζ ′,β ′,α ′,ζ ′a ), we know for any t′ ∈ ζ (t), we have t′ < bset(W ,S) and t′ <
bset(W ′,S′). Since (W ,S)

ι
7−→ (W ′,S′), we know

ζ (t) ∩ bset(ι) = ∅.
Then, since Tx = ι ::Ty , we know

min{minDis∆ (Tx , t′) | t′ ∈ ζ (t)} = min{minDis∆ (Ty , t′) | t′ ∈ ζ (t)} + 1.
Also since (∀t′ ∈ ∆. ∃i . t′ ∈ bset(Tx (i ))), we know

(∀t′ ∈ ζ (t). ∃i . t′ ∈ bset(Ty (i ))).
Then, since (∀t′ ∈ ζ (t). ∃i . t′ ∈ bset(T ′x (i ))), by Lemma B.31, we know

min{minDis∆ (T ′x , t
′) | t′ ∈ ζ (t)} = min{minDis∆ (Ty , t′) | t′ ∈ ζ (t)}.

ThusM ′(t) <M (t).
• ∅ = ζ (t) = ζ ′(t).
We have (ζ ′(t),dom(ζ ′)\{t}) = (ζ (t),dom(ζ )\{t}). Since β ′(t) = β (t) = true, we know

t ∈ bset(W,S) and t ∈ bset(W′,S′).
Also we know

minPos∆,β ′ (T ′x ,ζ
′(t), t) = 0 and

minPos∆,β (Tx ,ζ (t), t) = 0.

ThusM ′(t) =M (t).
(2) For any t′ ∈ inObjThrds(W ,S)\{t}, below we prove: eitherM ′(t′) < M (t′), orM ′(t′) =
M (t′) and t′ ∈ bset(W,S) and t′ ∈ bset(W′,S′). From (E), we know one of the following

holds:

• M ′(t′) <M (t′). ThenM ′(t′) <M (t′).
• M ′(t′) =M (t′) and β ′(t′) = β (t′) = false.
Since β ′(t′) = β (t′) = false, we know ζ (t′) = ζ ′(t′) = ∅. Thus

(ζ ′(t′),dom(ζ ′)\{t′}) = (ζ (t′),dom(ζ )\{t′}).
Since roundsub(T ,activeThrds(W ) − ∆,Tx ), we know there exists Tz such that T = Tx ::Tz .
Also Tx , ϵ . Since T = ι ::T ′, we know there exists Ty such that Tx = ι ::Ty and T ′ = Ty ::Tz .
Since roundsub(T ′,activeThrds(W ′)−∆,T ′x ), we know there existsT ′z such thatT

′ = T ′x ::T
′
z .

One of the following two cases holds:

• t′ < ∆. Thus we know
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minPos∆,β ′ (T ′x ,ζ
′(t′), t′) = minPos(T ′x , {t

′}) and
minPos∆,β (Tx ,ζ (t′), t′) = minPos(Tx , {t′}).

Also since roundsub(T ,activeThrds(W )−∆,Tx ), we know activeThrds(W )−∆ ⊆ tidset(Tx ).
Thus t′ ∈ tidset(Tx ). Since t = tid(ι) and t , t′, we know

t′ ∈ tidset(Ty ).
Thus

roundsub(T ′, {t′},Ty ).
Then by Lemma B.28, we know

minPos(T ′x , {t
′}) = minPos(Ty , {t′})) < minPos(Tx , {t′}).

ThusM ′(t′) <M (t′).
• t′ ∈ ∆. Thus we know

minPos∆,β ′ (T ′x ,ζ
′(t′), t′) = −1 and

minPos∆,β (Tx ,ζ (t′), t′) = −1.
Since activeThrds(W ) −∆ = tidset(Tx ) and (∀t′ ∈ ∆. ∃i . t′ ∈ bset(Tx (i ))) and t′ ∈ ∆, we
know

is_await(W |t′ ).
From (F), we know one of the following holds:

• α ′(t′) < α (t′). ThenM ′(t′) <M (t′).
• α ′(t′) = α (t′) and ζa (t′) ⊆ ζ ′a (t

′) ⊆ (inObjThrds(W ,S)\{t′}) and t < ζa (t′) and
(ζa (t′) , ∅) ∨ (ζa (t′) = ∅ ∧ t′ < bset(W,S)) ∨ (ζa (t′) = ∅ ∧ t′ ∈ bset(W′,S′)).
We know one of the following three cases holds:

• ζa (t′) ⊂ ζ ′a (t
′).

We proveM ′(t′) <M (t′) as follows. From |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa )
and |=wfair (W

′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a ), we know
dom(ζ ′a ) = inObjThrds(W ′,S′), dom(ζa ) = inObjThrds(W ,S),

ζ ′a (t
′) ⊆ (dom(ζ ′a )\{t

′}), ζa (t′) ⊆ (dom(ζa )\{t′}).
By the operational semantics, we know inObjThrds(W ′,S′) ⊆ inObjThrds(W ,S).
Thus we have

(ζ ′a (t
′),dom(ζ ′a )\{t

′}) < (ζa (t′),dom(ζa )\{t′}).
ThusM ′(t′) <M (t′).
• ∅ ⊂ ζa (t′) = ζ ′a (t

′).
We proveM ′(t′) <M (t′) as follows. First (ζ ′a (t

′),dom(ζ ′a )\{t
′}) = (ζa (t′),dom(ζa )\{t′}).

We know one of the following holds:

• ζa (t′) − ∆ , ∅.
Thus we know

minPos∆ (T ′x ,ζ
′
a (t
′)) = minPos(T ′x ,ζa (t

′) − ∆) and
minPos∆ (Tx ,ζa (t′)) = minPos(Tx ,ζa (t′) − ∆).

Also since roundsub(T ,activeThrds(W ) − ∆,Tx ), we know activeThrds(W ) − ∆ ⊆
tidset(Tx ). Thus ζa (t′) − ∆ ⊆ tidset(Tx ). Since t = tid(ι) and t < ζa (t′), we know

ζa (t′) − ∆ ⊆ tidset(Ty ).
Thus

roundsub(T ′,ζa (t′) − ∆,Ty ).
Then by Lemma B.28, we know

minPos(T ′x ,ζa (t
′) − ∆) = minPos(Ty ,ζa (t′) − ∆) < minPos(Tx ,ζa (t′) − ∆).

ThusM ′(t′) <M (t′).
• ζa (t′) ⊆ ∆.
Thus we know

minPos∆ (T ′x ,ζ
′
a (t
′)) = min{minDis∆ (T ′x , t

′′) | t′′ ∈ ζa (t′)} and
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minPos∆ (Tx ,ζa (t′)) = min{minDis∆ (Tx , t′′) | t′′ ∈ ζa (t′)}.
Since |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) and |=wfair (W ′,S′) - (W′,S′) �
(M ′,ζ ′,β ′,α ′,ζ ′a ), we know for any t′′ ∈ ζa (t′), we have t′′ < bset(W ,S) and
t′′ < bset(W ′,S′). Since (W ,S)

ι
7−→ (W ′,S′), we know

ζa (t′) ∩ bset(ι) = ∅.
Then, since Tx = ι ::Ty , we know

min{minDis∆ (Tx , t′′) | t′′ ∈ ζa (t′)} = min{minDis∆ (Ty , t′′) | t′′ ∈ ζa (t′)} + 1.
Also since (∀t′′ ∈ ∆. ∃i . t′′ ∈ bset(Tx (i ))), we know

(∀t′′ ∈ ζa (t′). ∃i . t′′ ∈ bset(Ty (i ))).
Then, since (∀t′′ ∈ ζa (t′). ∃i . t′′ ∈ bset(T ′x (i ))), by Lemma B.31, we know

min{minDis∆ (T ′x , t
′′) | t′′ ∈ ζa (t′)} = min{minDis∆ (Ty , t′′) | t′′ ∈ ζa (t′)}.

ThusM ′(t′) <M (t′).
• ∅ = ζa (t′) = ζ ′a (t

′).
We have (ζ ′a (t

′),dom(ζ ′a )\{t
′}) = (ζa (t′),dom(ζa )\{t′}). Also we know

minPos∆ (T ′x ,ζ
′
a (t
′)) = 0 and

minPos∆ (Tx ,ζa (t′)) = 0.

One of the following holds:

• t′ ∈ bset(W,S) and t′ ∈ bset(W′,S′). ThusM ′(t′) =M (t′).
• t′ < bset(W,S) and t′ ∈ bset(W′,S′). ThusM ′(t′) <M (t′).
• t′ < bset(W,S) and t′ < bset(W′,S′).
Since |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) and |=wfair (W ′,S′) - (W′,S′) �
(M ′,ζ ′,β ′,α ′,ζ ′a ), we know

t′ < bset(W ,S) and t′ < bset(W ′,S′).

Since (W ,S)
ι
7−→ (W ′,S′), we know

t′ < bset(ι).
Then, since Tx = ι ::Ty , we know

minDis∆ (Tx , t′) = minDis∆ (Ty , t′) + 1.
Also since t′ ∈ ∆ and (∀t′′ ∈ ∆. ∃i . t′′ ∈ bset(Tx (i ))), we know

∃i . t′ ∈ bset(Ty (i ))).
Then, since ∃i . t′ ∈ bset(T ′x (i ))), by Lemma B.30, we know

minDis∆ (T ′x , t
′) = minDis∆ (Ty , t′).

ThusM ′(t′) <M (t′).
• M ′(t′) =M (t′) and β ′(t′) = β (t′) = true and ζ (t′) ⊆ ζ ′(t′) ⊆ (inObjThrds(W ,S)\{t′})
and t < ζ (t′).
We know one of the following three cases holds:

• ζ (t′) ⊂ ζ ′(t′).
We proveM ′(t′) <M (t′) as follows. From |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) and
|=wfair (W

′,S′) - (W′,S′) � (M ′,ζ ′,β ′,α ′,ζ ′a ), we know
dom(ζ ′) = inObjThrds(W ′,S′), dom(ζ ) = inObjThrds(W ,S),

ζ ′(t′) ⊆ (dom(ζ ′)\{t′}), ζ (t′) ⊆ (dom(ζ )\{t′}).
By the operational semantics, we know inObjThrds(W ′,S′) ⊆ inObjThrds(W ,S). Thus
we have

(ζ ′(t′),dom(ζ ′)\{t′}) < (ζ (t′),dom(ζ )\{t′}).
ThusM ′(t′) <M (t′).
• ∅ ⊂ ζ (t′) = ζ ′(t′).
We proveM ′(t′) <M (t′) as follows. First we have (ζ ′(t′),dom(ζ ′)\{t′}) = (ζ (t′),dom(ζ )\{t′}).
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Since roundsub(T ,activeThrds(W )−∆,Tx ), we know there existsTz such thatT = Tx ::Tz .
AlsoTx , ϵ . SinceT = ι ::T ′, we know there existsTy such thatTx = ι ::Ty andT

′ = Ty ::Tz .
Since roundsub(T ′,activeThrds(W ′)−∆,T ′x ), we know there existsT ′z such thatT ′ = T ′x ::
T ′z .
We know one of the following holds:

• ζ (t′) − ∆ , ∅.
Thus we know

minPos∆,β ′ (T ′x ,ζ
′(t′), t′) = minPos(T ′x ,ζ (t

′) − ∆) and
minPos∆,β (Tx ,ζ (t′), t′) = minPos(Tx ,ζ (t′) − ∆).

Also since roundsub(T ,activeThrds(W ) − ∆,Tx ), we know activeThrds(W ) − ∆ ⊆
tidset(Tx ). Thus ζ (t′) − ∆ ⊆ tidset(Tx ). Since t = tid(ι) and t < ζ (t′), we know

ζ (t′) − ∆ ⊆ tidset(Ty ).
Thus

roundsub(T ′,ζ (t′) − ∆,Ty ).
Then by Lemma B.28, we know

minPos(T ′x ,ζ (t
′) − ∆) = minPos(Ty ,ζ (t′) − ∆) < minPos(Tx ,ζ (t′) − ∆).

ThusM ′(t′) <M (t′).
• ζ (t′) ⊆ ∆.
Thus we know

minPos∆,β ′ (T ′x ,ζ
′(t′), t′) = min{minDis∆ (T ′x , t

′′) | t′′ ∈ ζ (t′)} and
minPos∆,β (Tx ,ζ (t′), t′) = min{minDis∆ (Tx , t′′) | t′′ ∈ ζ (t′)}.

Since |=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ) and |=wfair (W ′,S′) - (W′,S′) �
(M ′,ζ ′,β ′,α ′,ζ ′a ), we know for any t′′ ∈ ζ (t′), we have t′′ < bset(W ,S) and t′′ <
bset(W ′,S′). Since (W ,S)

ι
7−→ (W ′,S′), we know

ζ (t′) ∩ bset(ι) = ∅.
Then, since Tx = ι ::Ty , we know

min{minDis∆ (Tx , t′′) | t′′ ∈ ζ (t′)} = min{minDis∆ (Ty , t′′) | t′′ ∈ ζ (t′)} + 1.
Also since (∀t′′ ∈ ∆. ∃i . t′′ ∈ bset(Tx (i ))), we know

(∀t′′ ∈ ζ (t′). ∃i . t′′ ∈ bset(Ty (i ))).
Then, since (∀t′′ ∈ ζ (t′). ∃i . t′′ ∈ bset(T ′x (i ))), by Lemma B.31, we know

min{minDis∆ (T ′x , t
′′) | t′′ ∈ ζ (t′)} = min{minDis∆ (Ty , t′′) | t′′ ∈ ζ (t′)}.

ThusM ′(t′) <M (t′).
• ∅ = ζ (t′) = ζ ′(t′).
We have (ζ ′(t′),dom(ζ ′)\{t′}) = (ζ (t′),dom(ζ )\{t′}). Since β ′(t′) = β (t′) = true, we
know

t′ ∈ bset(W,S) and t′ ∈ bset(W′,S′).
Also we know

minPos∆,β ′ (T ′x ,ζ
′(t′), t′) = 0 and

minPos∆,β (Tx ,ζ (t′), t′) = 0.

ThusM ′(t′) =M (t′).
Thus we are done. �

Lemma B.30. If t ∈ ∆, (∃i . t ∈ bset(Tx (i ))), (∃i . t ∈ bset(Ty (i ))), T = Tx ::T
′
x and T = Ty ::T

′
y ,

then minDis∆ (Tx , t) = minDis∆ (Ty , t).

Proof. By induction over |Tx |. �

Lemma B.31. If ξ ⊆ ∆, ξ , ∅, (∀t ∈ ξ . ∃i . t ∈ bset(Tx (i ))), (∀t ∈ ξ . ∃i . t ∈ bset(Ty (i ))),
T = Tx ::T

′
x and T = Ty ::T

′
y , then min{minDis∆ (Tx , t) | t ∈ ξ } = min{minDis∆ (Ty , t) | t ∈ ξ }.
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Proof. By induction over the size of ξ and by applying Lemma B.30. �

Lemma B.32 (Towards Simulations with Fixed Low-Level Traces (for PDF Objects under

Strong Fairness)). If T |=∆ O
co−ω
sfair (W ,S,E) and |=\sfair (W ,S) - (W,Γ,B,S) � (M ,ζ ,β ,α ,ζa ),

then there existsM such that T |=\ (W ,S)≼ (W,Γ,B,S) �M.

Proof. Similar to the proof of Lemma B.25. �

Lemma B.33 (Towards Simulations with Fixed Low-Level Traces (for PDF Objects under

Weak Fairness)). IfT |=∆ O
co−ω
wfair (W ,S,E) and |=\wfair (W ,S) - (W,Γ,B,S) � (M ,ζ ,β ,α ,ζa ), then

there existsM such that T |=\ (W ,S)≼ (W,Γ,B,S) �M.

Proof. Choose Tx such that roundsub(T ,activeThrds(W ) − ∆,Tx ). Then we chooseM to be a

function such that the following hold:

(1) dom(M) = inObjThrds(W ,S).
(2) For any t ∈ dom(M), we have:

M (t) = (M (t), (ζ (t),dom(ζ )\{t}), minPos∆,β (Tx ,ζ (t), t),
α (t), (ζa (t),dom(ζa )\{t}), minPos∆ (Tx ,ζa (t)),
(t ∈ ffset(B,S),minDis∆ (Tx , t))) .

Similar to the proof of Lemma B.29, we are done. �

B.9 From Simulations to Progress-Aware Contextual Refinements
In this section, we finish the proof of the logic soundness Theorem 7.3.

Proof of Theorem 7.3. From D,R,G, I ⊢χ {P }Π : Γ, by Lemma B.7, we know

D,R,G |=χ {P }Π : Γ.

Also we know

dom(Π) = dom(Γ), ∀t, t′. t , t′ =⇒ Gt ⇒ Rt′ ,

wffAct(R,D), P ⇒ ¬Enabled(D), P ∨ Enabled(D) ⇒ I , I ◃ {R,G}.

By Lemma B.15, we know

D,R,G |=\χ {P }Π - (Γ,wr∗ (Γ)).

Then, by Lemma B.18, we know

(1) Suppose R ⇒ ⌊R⌋0 and G ⇒ ⌊G⌋0. Then for any C , we have D,R,G |=χ {P }(Π,C ) - (Γ,C ).
(2) For any C , we have D,R,G |=\χ {P }(Π,C ) - (wr∗ (Γ),Γ,C ).

For (1), by Lemma B.21, we know:

for any n, C1, . . . , Cn , we have |=χ {
∧

t∈[1..n] Pt}(let Π in C1 ∥ . . . ∥Cn ) - (let Γ in C1 ∥ . . . ∥Cn ).

For (2), by Lemma B.22, we know

for any n, C1, . . . , Cn , |=\χ {
∧

t∈[1..n] Pt}(let Π in C1 ∥ . . . ∥Cn ) - (let wr∗ (Γ) in C1 ∥ . . . ∥Cn ,Γ).

We prove four contextual refinements:

(1) Suppose R ⇒ ⌊R⌋0 and G ⇒ ⌊G⌋0. Then Π ⊑sfairφ wrsfairPSF (Γ).

Proof. For any n, C1, . . . , Cn , σc , σ and Σ, if φ (σ ) = Σ, we know (σ ,Σ) |=
∧

t∈[1..n] Pt. Let

W = (let Π in C1 ∥ . . . ∥ Cn ), W = (let wrsfairPSF (Γ) in C1 ∥ . . . ∥ Cn ), S = (σc ,σ ,}) and
S = (σc ,Σ,}). For any E and T , if (E,T ) ∈ OsfairJW ,SK, we know one of the following holds:
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(a) T ∈ T fin
ω JW ,SK and get_obsv(T ) = E.

Since |=sfair {
∧

t∈[1..n] Pt}W -W, we know there exist M , ζ , β , α and ζa such that

|=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ).
By induction over |T |, we know there existsT ′ such thatT ′ ∈ T fin

ω JW,SK and get_obsv(T ′) =
E. Thus (E,T ′) ∈ OsfairJW,SK.

(b) (E,T ) ∈ Oω
sfairJW ,SK.

Let ∆ = {t | e-a-disabled(t,T ) ∧ ( |(T |t) | , ω)}. We know there must exist i such that

∀j ≥ i . ∀t ∈ ∆. t ∈ bset(T (j )). Thus there existW1, S1, T0, T1, E0 and E1 such that

T0 = T (1..i ), T = T0 ::T1, E = E0 ::E1, E0 = get_obsv(T0), E1 = get_obsv(T1),

(W ,S)
T0
7−→ ∗ (W1,S1), (W1,S1)

T1
7−→ω ·, sfair-c(get_clt(T1)).

Also we know

T1 |=∆ O
co−ω
sfair (W1,S1,E1).

Since |=sfair {
∧

t∈[1..n] Pt}W -W, we know there exist M , ζ , β , α and ζa such that

|=sfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ).
Then we know there existW1, S1, T

′
0
, M ′

, ζ ′, β ′, α ′ and ζ ′a such that

(W,S)
T ′
0

7−→ ∗ (W1,S1), E0 = get_obsv(T ′
0
),

|=sfair (W1,S1) - (W1,S1) � (M ′,ζ ′,β ′,α ′,ζ ′a ).
By Lemma B.25, we know there existsM such that

T1 |= (W1,S1)≼ (W1,S1) �M.

By Lemma B.34, we know there exists T ′
1
such that

T ′
1
∈ T ω

ω JW1,S1K, sfair-o(get_obj(T ′1 )), get_clt(T
′
1
) = get_clt(T1).

Thus we know sfair(T ′
1
) and get_obsv(T ′

1
) = E1. Thus (E,T

′
0
::T ′

1
) ∈ Oω

sfairJW,SK.
Thus we are done. �

(2) Suppose R ⇒ ⌊R⌋0 and G ⇒ ⌊G⌋0. Then Π ⊑wfair
wrwfairPSF (φ )

wrwfairPSF (Γ).

Proof. For any n, C1, . . . , Cn , σc , σ , Σ and Σ′, if φ (σ ) = Σ and Σ′ = Σ ⊎ {listid ❀ ϵ }, we
know (σ ,Σ) |=

∧
t∈[1..n] Pt. LetW = (let Π in C1 ∥ . . . ∥ Cn ), W = (let Γ in C1 ∥ . . . ∥ Cn ),

W′ = (let wrwfairPSF (Γ) in C1 ∥ . . . ∥Cn ), S = (σc ,σ ,}), S = (σc ,Σ,}) and S
′ = (σc ,Σ

′,}). For
any E and T , if (E,T ) ∈ OwfairJW ,SK, we know one of the following holds:

(a) T ∈ T fin
ω JW ,SK and get_obsv(T ) = E.

Similar to the proof of (1)(a).

(b) (E,T ) ∈ Oω
wfairJW ,SK.

Let ∆ = {t | i-o-disabled(t,T ) ∧ ( |(T |t) | , ω)}. We know there must exist i such that

∀j ≥ i . ∀t ∈ ∆. tid(T (j )) , t. Thus there existW1, S1, T0, T1, E0 and E1 such that

T0 = T (1..i ), T = T0 ::T1, E = E0 ::E1, E0 = get_obsv(T0), E1 = get_obsv(T1),

(W ,S)
T0
7−→ ∗ (W1,S1), (W1,S1)

T1
7−→ω ·, wfair-c(get_clt(T1)).

Also we know

T1 |=∆ O
co−ω
wfair (W1,S1,E1).

Since |=wfair {
∧

t∈[1..n] Pt}W -W, we know there exist M , ζ , β , α and ζa such that

|=wfair (W ,S) - (W,S) � (M ,ζ ,β ,α ,ζa ).
Then we know there existW1, S1, T

′
0
, M ′

, ζ ′, β ′, α ′ and ζ ′a such that

(W,S)
T ′
0

7−→ ∗ (W1,S1), get_clt(T ′0 ) = get_clt(T0),
|=wfair (W1,S1) - (W1,S1) � (M ′,ζ ′,β ′,α ′,ζ ′a ).

By Lemma B.29, we know there existsM such that

T1 |= (W1,S1)≼ (W1,S1) �M.

By Lemma B.34, we know there exists T ′
1
such that
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T ′
1
∈ T ω

ω JW1,S1K, sfair-o(get_obj(T ′1 )), get_clt(T
′
1
) = get_clt(T1).

Thus we know

T ′
0
::T ′

1
∈ T ω

ω JW,SK, sfair-o(get_obj(T ′
0
::T ′

1
)), get_clt(T ′

0
::T ′

1
) = get_clt(T ).

By Decomposition Theorem A.1, we know there exist T̂c and T̂o such that

T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, T̂o ∈ T
o

ω JΓ,ΣK, n = tnum(T̂o ),

T̂c = get_clt(T ), T̂o = get_obj(T ).
By Lemma B.36, we know there exists T̂a such that

T̂a ∈ T
o

ω JwrwfairPSF (Γ),Σ ⊎ {listid ❀ ϵ }K, tnum(T̂o ) = tnum(T̂a ),

get_hist(T̂o ) = get_hist(T̂a ), sfair-o(T̂a ).
Thus we know |T̂a | , ω =⇒ ∀t ∈ [1..tnum(T̂a )]. term-o(T̂a |t) ∨ (t ∈ bset(last(T̂a ))). Thus
fin_coherent(T̂c ,T̂a ). By Composition Theorem A.2, we know there exists T ′′ such that

T ′′ ∈ TωJW′,S′K, T̂c = get_clt(T ′′), T̂a = get_obj(T ′′).
Thus we know wfair(T ′′) and get_obsv(T ′′) = E. Thus (E,T ′′) ∈ Oω

wfairJW
′,S′K.

Thus we are done. �

(3) Π ⊑sfair
wrsfairPDF (φ )

wrsfairPDF (Γ).

Proof. For any n, C1, . . . , Cn , σc , σ , Σ and Σ′, if φ (σ ) = Σ and Σ′ = Σ ⊎ {done ❀ false}, we
know (σ ,Σ) |=

∧
t∈[1..n] Pt. LetW = (let Π in C1 ∥ . . . ∥Cn ),W = (let wr∗ (Γ) in C1 ∥ . . . ∥

Cn ),W
′ = (let wrsfairPDF (Γ) in C1 ∥ . . . ∥Cn ), S = (σc ,σ ,}) and S = (σc ,Σ

′,}). For any E and

T , if (E,T ) ∈ OsfairJW ,SK, we know one of the following holds:

(a) T ∈ T fin
ω JW ,SK and get_obsv(T ) = E.

Similar to the proof of (1)(a).

(b) (E,T ) ∈ Oω
sfairJW ,SK.

Let ∆ = {t | e-a-disabled(t,T ) ∧ ( |(T |t) | , ω)}. We know there must exist i such that

∀j ≥ i . ∀t ∈ ∆. t ∈ bset(T (j )). Thus there existW1, S1, T0, T1, E0 and E1 such that

T0 = T (1..i ), T = T0 ::T1, E = E0 ::E1, E0 = get_obsv(T0), E1 = get_obsv(T1),

(W ,S)
T0
7−→ ∗ (W1,S1), (W1,S1)

T1
7−→ω ·, sfair-c(get_clt(T1)).

Also we know

T1 |=∆ O
co−ω
sfair (W1,S1,E1).

Since |=\sfair {
∧

t∈[1..n] Pt}W - (W,Γ), we know there exist B, M , ζ , β , α and ζa such that

|=\sfair (W ,S) - (W,Γ,B,S) � (M ,ζ ,β ,α ,ζa ).
Then we know there existW1, S1, T

′
0
, B′, M ′

, ζ ′, β ′, α ′ and ζ ′a such that

(W,S)
T ′
0

7−→ ∗ (W1,S1), E0 = get_obsv(T ′
0
),

|=\sfair (W1,S1) - (W1,Γ,B′,S1) � (M ′,ζ ′,β ′,α ′,ζ ′a ).
By Lemma B.32, we know there existsM such that

T1 |= \ (W1,S1)≼ (W1,Γ,B′,S1) �M.

By Lemma B.35, we know there exists T ′
1
such that

T ′
1
∈ T ω

ω JW1,S1K, sfair-o(get_obj(T ′1 )), get_clt(T
′
1
) = get_clt(T1).

Thus we know

T ′
0
::T ′

1
∈ T ω

ω JW,SK, sfair-o(get_obj(T ′
0
::T ′

1
)), get_clt(T ′

0
::T ′

1
) = get_clt(T ).

By Decomposition Theorem A.1, we know there exist T̂c and T̂o such that

T̂c ∈ T
c

ω JC1 ∥ . . . ∥Cn ,σcK, T̂o ∈ T
o

ω Jwr∗ (Γ),Σ′K, n = tnum(T̂o ),

T̂c = get_clt(T ), T̂o = get_obj(T ).
By Lemma B.37, we know there exists T̂a such that

T̂a ∈ T
o

ω JwrsfairPDF (Γ),Σ
′K, tnum(T̂o ) = tnum(T̂a ),
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get_hist(T̂o ) = get_hist(T̂a ), sfair-o(T̂a ).
Thus we know |T̂a | , ω =⇒ ∀t ∈ [1..tnum(T̂a )]. term-o(T̂a |t) ∨ (t ∈ bset(last(T̂a ))). Thus
fin_coherent(T̂c ,T̂a ). By Composition Theorem A.2, we know there exists T ′′ such that

T ′′ ∈ TωJW′,SK, T̂c = get_clt(T ′′), T̂a = get_obj(T ′′).
Thus we know sfair(T ′′) and get_obsv(T ′′) = E1. Thus (E,T ′′) ∈ Oω

sfairJW
′,SK.

Thus we are done. �

(4) Π ⊑wfair
wrwfairPDF (φ )

wrwfairPDF (Γ).

Similar to the proof of (3), but by applying Lemma B.38.

Thus we are done. �

Lemma B.34. If T |= (W ,S) ≼ (W,S) � M and T ∈ T ω
ω JW ,SK, then there exists T ′ such that

T ′ ∈ T ω
ω JW,SK, sfair-o(get_obj(T ′)), get_clt(T ′) = get_clt(T ).

Lemma B.35. IfT |=\ (W ,S)≼ (W,Γ,B,S) �M andT ∈ T ω
ω JW ,SK, then there existsT ′ such that

T ′ ∈ T ω
ω JW,SK, sfair-o(get_obj(T ′)), get_clt(T ′) = get_clt(T ).

Lemma B.36. Suppose every method body in Γ is in the form of an await block. If T̂o ∈ T o

ω JΓ,ΣK,
sfair-o(T̂o ) and ¬abt(T̂o ), then there exists T̂a such that T̂a ∈ T

o

ω JwrwfairPSF (Γ),Σ ⊎ {listid ❀ ϵ }K,
tnum(T̂o ) = tnum(T̂a ), get_hist(T̂o ) = get_hist(T̂a ) and sfair-o(T̂a ).

Proof. By constructing simulations. �

LemmaB.37. Suppose everymethod body in Γ is in the form of anawait block. If T̂o ∈ T o

ω Jwr∗ (Γ),ΣK,
Σ(done) = false, sfair-o(T̂o ) and ¬abt(T̂o ), then there exists T̂a such that T̂a ∈ T

o

ω JwrsfairPDF (Γ),ΣK,
tnum(T̂o ) = tnum(T̂a ), get_hist(T̂o ) = get_hist(T̂a ) and sfair-o(T̂a ).

Proof. By constructing simulations. �

LemmaB.38. Suppose everymethod body in Γ is in the form of anawait block. If T̂o ∈ T o

ω JwrsfairPDF (Γ),ΣK,
Σ(done) = false, sfair-o(T̂o ) and ¬abt(T̂o ), then there exists T̂a such that T̂a ∈ T

o

ω JwrwfairPDF (Γ),ΣK,
tnum(T̂o ) = tnum(T̂a ), get_hist(T̂o ) = get_hist(T̂a ) and wfair-o(T̂a ).

Proof. By constructing simulations. �

C EXAMPLE PROOFS
In this section, we show the proofs of ticket locks, bounded partial queues with two locks [Herlihy

and Shavit 2008] and Treiber stacks [Treiber 1986] with blocking pop. We also prove that the various

wrappers defined in Sec. 6 (as object implementations) are contextual refinement of themselves (as

abstraction) under the designated fairness condition.

C.1 Ticket locks
Sec. 8.2 shows the key ideas of the proofs of ticket locks. Here we give the formal details.

Fig. 27 defines the invariant I , rely/guarantee conditions R andG , and definite actionsG of ticket

locks. The definitions are the same as in Fig. 12 in Sec. 8.2, so we omit the explanations.

Fig. 28 shows the proof outlines of the methods tkL_acq and tkL_rel. The tkL_rel method

have the annotated precondition l = cid. For tkL_acq, we verify it using the precondition P ′,
which is just the object invariant lock(s, tl,n1,n2). For tkL_rel, we verify it using the precondition

P ′′, saying that a thread should have acquired the lock before calling the method. The key part in

the proofs is to verify the loop in the method tkL_acq using the whl rule, which we have already

explained in Sec. 8.2.
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tl ::= ϵ | t :: tl

list2set(ϵ )
def

= ∅

list2set(t :: tl)
def

= {t} ∪ list2set(tl)

I
def

= ∃s, tl,n1,n2. lock(s, tl,n1,n2)

lock(s, tl,n1,n2)
def

= (l = L = s ∧ (s = head(tl) ∨ s = 0))
∗ ((owner = n1) ∗ (next = n2) ∧ (n1 ≤ n2)) ∗ tickets(tl,n1,n2)

tickets(tl,n1,n2)
def

= tickets_used(0,n1) ∗ tickets_used(tl,n1,n2) ∗ tickets_new(n2)

tickets_used(n1,n2)
def

= ∃tl. tickets_used(tl,n1,n2)

tickets_used(tl,n1,n2)
def

= (tl = ϵ ) ∧ (n1 = n2) ∧ emp
∨ ∃t, tl′. (tl = t :: tl′) ∧ (ticketn1

= t) ∗ tickets_used(tl′,n1 + 1,n2)

tickets_new(n2)
def

= (~i≥n2
ticketi = −1)

Rt
def

=
∨

t′,tGt′

Gt
def

= (Reqt ∨ Acqt ∨ Relt ∨ Id) ∗ Id ∧ (I n I )

Reqt
def

= ∃s, tl,n1,n2. lock(s, tl,n1,n2) n lock(s, tl++[t],n1,n2 + 1)

Acqt
def

= ∃tl,n1,n2. lock(0, t :: tl,n1,n2) n lock(t, t :: tl,n1,n2)

RelLockt
def

= ∃tl,n1,n2. lock(t, t :: tl,n1,n2) n lock(0, tl,n1 + 1,n2)

Dt
def

= ∀tl,n1,n2. lock(0, t :: tl,n1,n2) ❀ lock(t, t :: tl,n1,n2)

Fig. 27. Auxiliary definitions for verifying ticket locks.
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P ′
def

= ∃s, tl,n1,n2. lock(s, tl,n1,n2)

P ′′
def

= ∃tl,n1,n2. lock(t, t :: tl,n1,n2)

tlocked
tl1,t,tl2 (s,n1,n,n2)

def

=

(l = L = s ∧ (s = head(tl1) ∨ s = 0)) ∗ ((owner = n1) ∗ (next = n2) ∧ (n1 ≤ n < n2))
∗ tickets_used(0,n1) ∗ tickets_used(tl1,n1,n) ∗ tickets_used(t :: tl2,n,n2) ∗ tickets_new(n2)

P0 (n1,n,n2)
def

= ∃tl1, tl2,s . tlockedtl1,t,tl2 (s,n1,n,n2)

P1 (n1,n2)
def

= ∃tl. lock(0, t :: tl,n1,n2)

P3 (n1,n,n2)
def

= ∃t′, tl1, tl2,s . tlockedt′::tl1,t,tl2 (s,n1,n,n2)

J
def

= ∃n1,n2. P0 (n1,n,n2) Q
def

= Enabled(D)

f (S)
def

=

{
2k + 1 ifS |= (n − owner = k ) ∗ (l = 0)
2k ifS |= (n − owner = k ) ∗ (l , 0)

tkL_acq():
1 local i, o;{

P ′ ∧ arem(L_ACQ’)
}

2 < i := getAndInc(&next); ticketi := cid; >{
∃n1,n,n2. P0 (n1,n,n2) ∧ (i = n) ∧ arem(L_ACQ’)

}
{
∃n1,n2. P0 (n1,n,n2) ∧ (i = n) ∧ arem(L_ACQ’)

}

3 o := owner;{
∃n1,n2. P0 (n1,n,n2) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(L_ACQ’)

}
{
∃n1,n2. P0 (n1,n,n2) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(L_ACQ’) ∧ ♦(n − o)

}

4 while (i != o) {{
∃n1,n2. (P1 (n,n2) ∧ ♦(n − (o + 1)) ∨ P3 (n1,n,n2) ∧ ♦(n − o))
∧ (o ≤ n1 ≤ n = i) ∧ (o , i) ∧ arem(L_ACQ’)

}
5 o := owner;{

∃n1,n2. P0 (n1,n,n2) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(L_ACQ’) ∧ ♦(n − o)
}

6 }{
∃n1,n2. P1 (n1,n2) ∧ arem(L_ACQ’)

}

7 <l := cid>;{
P ′′ ∧ arem(skip)

}

tkL_rel():{
P ′′ ∧ arem(L_REL)

}

8 < owner := owner + 1; l := 0; >{
P ′ ∧ arem(skip)

}

Fig. 28. Proof outline of ticket locks.
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C.2 Bounded partial queues

initialize(){ Size := 0; Tail := Head := cons(0, null); Hlock := Tlock := 0;

e := 0; d := 0; }

enq(v){
1 local x;
2 x := cons(v, null);
3 await (Tlock = 0) { Tlock := cid; }
4 await (Size < MAX) {}

5 <Tail.next := x; e := 1 >;
6 Tail := x;

7 <Size := Size + 1; e := 0 >;
8 Tlock := 0;
}

deq(){
9 local h, x, v;
10 await (Hlock = 0) { Hlock := cid; }
11 await (Size > 0) {}
12 h := Head;
13 x := h.next;
14 v := x.data;

15 <Head := x; d := 1 >;

16 <Size := Size - 1; d := 0 >;
17 Hlock := 0;
18 dispose(h);
19 return v;
}

Fig. 29. Bounded partial queues (with auxiliary code in gray).

In this section, we verify the bounded partial queue object [Herlihy and Shavit 2008]. At the

abstract side, the object data is a shared variable Q, whose value is a mathematical list representing

the queue. The number of items in the queue is limited. The ENQ method should be blocked if the

queue is full, and the DEQ method should be blocked if the queue is empty. We define the atomic

partial specifications as follows:

ENQ(V) { await(|Q| < MAX){ Q := Q ++ [V] }; }
DEQ() { local V; await(|Q| > 0){ V := head(Q); Q := tail(Q) }; return V; }

Here we use |Q| to get the length of the list. head(Q) returns the first item of the list, and tail(Q)
removes the first item and returns the remaining list.

Fig. 29 shows the concrete implementation code. The queue is implemented as a singly-linked list

with the Head and Tail pointers and a sentinel node pointed to by Head. The enq method inserts

a new node at the tail of the queue. The deq method replaces the sentinel node by its next node

and returns the value in the new sentinel. The Tail and Head pointers are protected by two locks

Tlock and Hlock respectively. The locks ensure that at any time at most one enq thread and one

deq thread can access the queue, but an enq thread and a deq thread do not need to wait for each

other.
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Note that the lock-acquire and lock-release code (i.e., lines 3, 8, 10 and 17) is implemented using

await instructions, as in the lock’s atomic partial specifications L_ACQ' and L_REL (defined in

(2.3)). They are abstractions for the ticket locks under strongly fair scheduling, and abstractions

for test-and-set locks under weakly fair scheduling (see Sec. 2). Below we will verify that the

queue object in Fig. 29 is PDF under weakly fair scheduling. Thus if we use the concrete lock

implementations (either ticket locks or test-and-set-locks) to replace the await code here (i.e.,

lines 3, 8, 10 and 17), the resulting queue object is still PDF under weakly fair scheduling.

The queue implementation also uses the shared variable Size to record the number of nodes

(except the sentinel) in the queue, and to block the methods at appropriate situations. Note that the

updates of Size and the queue’s linked list are not simultaneous. So, in order to help verification,

we introduce two auxiliary write-only variables e and d (highlighted in gray in Fig. 29), to indicate

whether the item list has been updated but Size has not.

Below we will verify that the queue object in Fig. 29 is PDF under weakly fair scheduling. Since

strong fairness is stronger than weak fairness, we will also know that it is PDF under strongly fair

scheduling.

Fig. 30 defines the invariant fence I , the object invariant P (served as the pre- and post-conditions

of the object methods), the rely/guarantee conditions and the definite actions. We have lock-acquire

actions LockT and LockH, and lock-release actions UnlockT and UnlockH. The actions Enq and Deq

add and remove nodes respectively. Swing moves the tail pointer, and ESz and DSz update Size.
Here all the actions are defined as level-1 actions, i.e., completing any action is a step towards

progress of the method.

The definite actions say that if the thread acquires the lock Tlock and Size < MAX, it will
eventually release the lock; if the thread acquires the lock Hlock and Size > 0, it will eventually
release the lock; and if the thread has set e (or d), it will eventually resets e (or d).
Fig. 31 and 32 show the proof outlines for enq and deq respectively. Below we only discuss the

verification of the await statements (lines 3 and 4) of enq. The await statements in deq are verified
in similar ways.

For line 3 in enq, we apply the await-w rule and discharge the premises (we use p to denote the

pre-condition for the await block):
• p ∧ Enabled(D) ∗ true⇒ (Tlock = 0) holds, because p ∧ Enabled(D) ∗ true is false.

• p ⇒ (R : D◦
f
−→ ((Tlock = 0),(|Q| < MAX))) holds, if the metric f is a constant function.

In detail, if pt for thread t holds, and if (Tlock , 0) and (|Q| < MAX) hold, we know some

other thread t′ must acquire Tlock. Also either Size < MAX holds, or another thread t′′

acquires Hlock and d = 1 holds. Thus ∃t′ , t. Enabled(Dt′ ) holds.

For line 4 in enq, we apply the await-w rule and discharge the premises (we use p1 to denote

the pre-condition for this await block):
• It is easy to see that p1 ∧ Enabled(D) ∗ true⇒ (Size < MAX) holds.

• p1 ⇒ (R : D◦
f
−→ ((Size < MAX),(|Q| < MAX))) holds, if the metric f is a constant function.

In detail, ifp1 for thread t holds, and if (|Q| < MAX) holds but (Size < MAX) does not hold, we
know some other thread t′ must acquire Hlock and d = 1 holds. Thus ∃t′ , t. Enabled(Dt′ )
holds.
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I
def

= ∃h,z,s,s ′,m,e,d . (Head = h) ∗ (Tail = z) ∗ queuee (m,h,z) ∗ locks (Tlock) ∗ locks ′ (Hlock) ∗ szs,s ′ (m,e,d )

szs,s ′ (m,e,d )
def

= ∃m′. (e = e ) ∗ (d = d ) ∗ (Size =m′) ∧ 0 ≤ m′ ≤ MAX
∧ (s = 0⇒ e = 0) ∧ (s ′ = 0⇒ d = 0) ∧ (e = 0 ∨ e = 1) ∧ (d = 0 ∨ d = 1) ∧ (m =m′ + e − d )

queuee (m,h,z)
def

= ∃vd ,A. (Q = A ∧ |A| =m)
∗ (unlag(h,z,vd ::A) ∨ (lag(h,z,_,vd ::A) ∧ (e = 1)) ∨ (cross(h,z,vd ::A) ∧ (e = 1)))

unlag(h,z,A)
def

= ∃v,A′. (A = A′ ::v ) ∧ ls(h,A′,z) ∗ N(z,v,null)

lag(h,z,x ,A)
def

= ∃v,v ′,A′. (A = A′ ::v ::v ′) ∧ ls(h,A′,z) ∗ N2(z,v,x ,v ′,null)

cross(h,z,A)
def

= ∃v . (A = v ::ϵ ) ∧ N(h,v,null) ∧ (h , z)

ls(x ,A,y)
def

= (x = y ∧A = ϵ ) ∨ (x , y ∧ ∃z,v,A′. A = v ::A′ ∧ N(x ,v,z) ∗ ls(z,A′,y))

N(p,v,y)
def

= (p.data = v ) ∗ (p.next = y) N2(p,v,y,v ′,z)
def

= N(p,v,y) ∗ N(y,v ′,z)

locks (l )
def

= (l = s ) lockIrrt,s (l )
def

= locks (l ) ∧ (s , t)

Pt
def

= ∃h,z,s,s ′,m,e,d . (Head = h) ∗ (Tail = z) ∗ queuee (m,h,z)
∗ lockIrrt,s (Tlock) ∗ lockIrrt,s ′ (Hlock) ∗ szs,s ′ (m,e,d )

Rt
def

=
∨

t′,tGt′

Gt
def

= (Enqt ∨ Swingt ∨ ESzt ∨ LockT t ∨ UnlockT t ∨ Deqt ∨ DSzt ∨ LockHt ∨ UnlockHt ∨ Id) ∗ Id ∧ (I n I )

Enqt
def

= ∃x ,y,A,v,v ′,s ′. [lockt (Tlock) ∗ (Tail = x ) ∧ |A| < MAX]
∗ (N(x ,v,null) ∗ (e = 0) ∗ (Q = A) n1 N2(x ,v,y,v ′,null) ∗ (e = 1) ∗ (Q = A ::v ′))

Swingt
def

= ∃x ,v . [lockt (Tlock) ∗ N(x ,v,null)] ∗ ((Tail = _) n1 (Tail = x ))

ESzt
def

= ∃h,z,vd ,A,m
′. [lockt (Tlock) ∗ (Head = h) ∗ (Tail = z) ∗ unlag(h,z,vd ::A)]

∗ ((Size =m′) ∗ (e = 1) n1 (Size =m′ + 1) ∗ (e = 0))

LockT t
def

= ∃s ′. [lockIrrt,s ′ (Hlock)] ∗ (lock0 (Tlock) n1 lockt (Tlock))

UnlockT t
def

= [(e = 0)] ∗ (lockt (Tlock) n1 lock0 (Tlock))

Deqt
def

= ∃x ,y,z,v,v ′,A. [lockt (Hlock)]
∗ ((Head = x ) ∗ N2(x ,v,y,v ′,z) ∗ (d = 0) ∗ (Q = v ′ ::A) n1 (Head = y) ∗ N(y,v ′,z) ∗ (d = 1) ∗ (Q = A))

DSzt
def

= ∃m′. [lockt (Hlock)] ∗ ((Size =m′) ∗ (d = 1) n1 (Size =m′ − 1) ∗ (d = 0))

LockHt
def

= ∃s . [lockIrrt,s (Tlock)] ∗ (lock0 (Hlock) n1 lockt (Hlock))

UnlockHt
def

= [(d = 0)] ∗ (lockt (Hlock) n1 lock0 (Hlock))

Dt
def

= (pTt ❀ qTt) ∧ (pHt ❀ qHt) ∧ (pEt ❀ qEt) ∧ (pDt ❀ qDt)

pTt
def

= lockt (Tlock) ∗ (Size < MAX) ∗ true ∧ I qTt
def

= lock0 (Tlock) ∗ true ∧ I

pHt
def

= lockt (Hlock) ∗ (Size > 0) ∗ true ∧ I qHt
def

= lock0 (Hlock) ∗ true ∧ I

pEt
def

= lockt (Tlock) ∗ (e = 1) ∗ true ∧ I qEt
def

= lockt (Tlock) ∗ (e = 0) ∗ true ∧ I

pDt
def

= lockt (Hlock) ∗ (d = 1) ∗ true ∧ I qDt
def

= lockt (Hlock) ∗ (d = 0) ∗ true ∧ I

Fig. 30. Auxiliary definitions for verifying bounded partial queues.
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P1
def

= ∃A. P1 (A,0)

P1 (A,e )
def

= ∃h,z,vd ,s
′,d . (Head = h) ∗ (Tail = z) ∗ (Q = A)

∗ unlag(h,z,vd ::A) ∗ lockt (Tlock) ∗ lockIrrt,s ′ (Hlock) ∗ sz1,s ′ ( |A|,e,d )

P2
def

= ∃A. P1 (A,0) ∧ ( |A| < MAX)

P3 (x )
def

= ∃h,z,vd ,A,s
′,d . (Head = h) ∗ (Tail = z) ∗ (Q = A) ∗ sz1,s ′ ( |A|,1,d )

∗ (lag(h,z,x ,vd ::A) ∨ (cross(h,z,vd ::A) ∧ (h = x ))) ∗ lockt (Tlock) ∗ lockIrrt,s ′ (Hlock)

P4
def

= ∃A. P1 (A,1)

enq(v) {
1 local x;{

P ∧ arem(ENQ) ∧ (v = V) ∧ �(5)
}

2 x := cons(v, null);{
P ∗ N(x,v,null) ∧ arem(ENQ) ∧ (v = V) ∧ �(5)

}

3 await (Tlock = 0) { Tlock := cid; }{
P1 ∗ N(x,v,null) ∧ arem(ENQ) ∧ (v = V) ∧ �(4)

}

4 await (Size < MAX) {}{
P2 ∗ N(x,v,null) ∧ arem(ENQ) ∧ (v = V) ∧ �(4)

}

5 <Tail.next := x; e := 1 >;{
P3 (x) ∧ arem(skip) ∧ �(3)

}

6 Tail := x;{
P4 ∧ arem(skip) ∧ �(2)

}

7 <Size := Size + 1; e := 0 >;{
P1 ∧ arem(skip) ∧ �(1)

}

8 Tlock := 0;{
P ∧ arem(skip)

}

}

Fig. 31. Proof outline for enq.
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P ′
1

def

= ∃h,m. P ′
1
(h,m,0)

P ′
1
(h,m,d )

def

= ∃z,s,e . (Head = h) ∗ (Tail = z) ∗ queuee (m,h,z) ∗ lockIrrt,s (Tlock) ∗ lockt (Hlock) ∗ szs,1 (m,e,d )

P ′
2
(h)

def

= ∃m. P ′
1
(h,m,0) ∧ (m > 0)

P ′
3
(h,x )

def

= ∃z,A,s,m,e . (Head = h) ∗ (Tail = z) ∗ (Q = A ∧ |A| =m > 0) ∗ N(h,_,x )
∗ (unlag(x ,z,A) ∨ lag(x ,z,_,A) ∧ (e = 1)) ∗ lockIrrt,s (Tlock) ∗ lockt (Hlock) ∗ szs,1 (m,e,0)

P ′
4
(h,x ,v )

def

= ∃s . (Head = h) ∗ (Tail = h) ∗ (Q = v ::ϵ ) ∗ N2(h,_,x ,v,null)
∗ lockIrrt,s (Tlock) ∗ lockt (Hlock) ∗ szs,1 (1,1,0)

P ′
5
(h,x ,v )

def

= ∃y,z,v,v ′,A,s,e . (Head = h) ∗ (Tail = z) ∗ (Q = v ::A) ∗ N2(h,_,x ,v,y)
∗ ((x = z) ∧ (y = null) ∧ (A = ϵ ) ∨ unlag(y,z,A) ∨ (x = z) ∧ N(y,v ′,null) ∧ (A = v ′ ::ϵ ) ∧ (e = 1)
∨ lag(y,z,_,A) ∧ (e = 1)) ∗ lockIrrt,s (Tlock) ∗ lockt (Hlock) ∗ szs,1 ( |A| + 1,e,0)

P ′
6
(h)

def

= ∃m. P ′
1
(h,m,1)

int deq() {
9 local h, x, v;{

P ∧ arem(DEQ) ∧ �(4)
}

10 await (Hlock = 0) { Hlock := cid; }{
P ′
1
∧ arem(DEQ) ∧ �(3)

}

11 await (Size > 0) {}{
∃h. P ′

2
(h) ∧ arem(DEQ) ∧ �(3)

}

12 h := Head;{
P ′
2
(h) ∧ arem(DEQ) ∧ �(3)

}

13 x := h.next;{
(P ′

3
(h,x) ∨ P ′

4
(h,s,_)) ∧ arem(DEQ) ∧ �(3)

}

14 v := x.data;{
(P ′

5
(h,x,v) ∨ P ′

4
(h,x,v)) ∧ arem(DEQ) ∧ �(3)

}

15 <Head := x; d := 1 >;{
P ′
6
(x) ∗ N(h,_,x) ∧ arem(skip) ∧ (v = V) ∧ �(2)

}

16 <Size := Size - 1; d := 0 >;{
P ′
1
∗ N(h,_,x) ∧ arem(skip) ∧ (v = V) ∧ �(1)

}

17 Hlock := 0;{
P ∗ N(h,_,x) ∧ arem(skip) ∧ (v = V)

}

18 dispose(h);{
P ∧ arem(skip) ∧ (v = V)

}

19 return v;
}

Fig. 32. Proof outline for deq.
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I
def

= ∃A. stack(A) stack(A)
def

= ∃x . stack(x ,A)

stack(x ,A)
def

= (Stk = A) ∗ (Top = x ) ∗ ls(x ,A,null) ∗ garb

ls(x ,A,y)
def

= (x = y ∧A = ϵ ∧ emp) ∨ (x , y ∧ ∃z,v,A′. A = v ::A′ ∧ node(x ,v,z) ∗ ls(z,A′,y))

garb
def

= ∃Sд . (GN = Sд ) ∗ (~x ∈Sд .node(x ))

node(x ,v,y)
def

= x 7→ (v,y) node(x )
def

= node(x ,_,_)

R = G
def

= (Push ∨ Pop ∨ Id) ∗ Id ∧ (I n I )

Push

def

= ∃x ,y,v,A. (Stk = A) ∗ (Top = y) n1 (Stk = v ::A) ∗ (Top = x ) ∗ node(x ,v,y)

Pop

def

= ∃x ,y,v,A,Sд . (Stk = v ::A) ∗ (Top = x ) ∗ node(x ,v,y) ∗ (GN = Sд )
n1 (Stk = A) ∗ (Top = y) ∗ node(x ,v,y) ∗ (GN = Sд ∪ {x })

D
def

= false ❀ true

Fig. 33. Auxiliary definitions for verifying Treiber stacks with partial pops.

C.3 Treiber stacks with partial pops
We have given the code of Treiber stacks with partial pops at the top of Fig. 8. At the abstract side,

the object data is a shared variable Stk, whose value is a mathematical list representing the stack.

The PUSHmethod is total, and the POPmethod is blocked if the stack is empty. We define the atomic

partial specifications as follows:

PUSH(V) { Stk := V :: Stk; }
POP() { local V; await(|Stk| > 0){ V:=head(Stk); Stk:=tail(Stk) }; return V; }

Below we verify that the stack object in Fig. 8 satisfies PDF under weakly fair scheduling. Since

strong fairness is stronger than weak fairness, we will also know that it is PDF under strongly fair

scheduling.

We define the precise invariant I , the rely/guarantee conditions R andG , and the definite actions

D in Figure 33. The invariant I in Figure 33 maps the value sequence A of the concrete list pointed

to by Top (denoted by (Top = x ) ∗ ls(x ,A,null)) to the abstract stack Stk. To ensure there is no

“ABA” problem [Herlihy and Shavit 2008], we follow Turon and Wand [Turon and Wand 2011] and

introduce a write-only auxiliary variable GN to remember the nodes which used to be on the stack

but no longer are. The precise invariant for shared states should include those garbage nodes (garb).
GN does not affect the behaviors of the implementation and is introduced for verification only.

The guarantee condition G includes the Push and Pop actions. At the concrete side, the steps at

line 8 for push and line 12 for pop in Figure 8 are the linearization points, i.e., they correspond to

executions of the abstract atomic PUSH and POP operations. Note that when popping a node, we

also add the node to GN. Both the Push and Pop actions are defined as level-1 actions. They may

delay the progress of other threads. The definite actions D could be defined as false ❀ true.
We show the proof outline in Figure 34. Belowwe only explain the verification of thewhile-loops.
To verify the loop in the push method, we apply the whl rule and prove:

I ⇒ (R,G : D
f1
−−→ (Q1, true)).

Here we define Q1 as true, and f1 as a constant function.
To verify the loop in the pop method, we apply the whl rule and prove:
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push(v){
1 local x, b, t;{

I ∧ arem(PUSH) ∧ v = V ∧ �
}

2 b := false;
3 x := cons(v, null);{

(¬b ∧ I ∗ node(x,v,_) ∧ arem(PUSH) ∧ (v = V) ∧ � ∧ ♦) ∨ (b ∧ I ∧ arem(skip))
}

4 while (!b) {{
¬b ∧ I ∗ node(x,v,_) ∧ arem(PUSH) ∧ (v = V) ∧ �

}

5 t := Top;
6 x.next := t;{

∃a. ¬b ∧ stack(a,_) ∗ node(x,v,t) ∧ (t = a ∨ t , a ∧ ♦) ∧ arem(PUSH) ∧ (v = V) ∧ �
}

7 b := cas(&Top, t, x);{
(b ∧ I ∧ arem(skip)) ∨ (¬b ∧ I ∗ node(x,v,_) ∧ arem(PUSH) ∧ (v = V) ∧ � ∧ ♦)

}

8 }{
I ∧ arem(skip)

}

}

IntSet GN; //Auxiliary global variable for verification: popped garbage nodes

pop(){
9 local x, b, t, v;{

I ∧ arem(POP) ∧ �
}

10 b := false;{
(¬b ∧ I ∧ arem(POP) ∧ � ∧ ♦) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))

}

11 while (!b) {{
∃A. ¬b ∧ stack(A) ∧ (A = ϵ ∧ ♦ ∨A , ϵ ) ∧ arem(POP) ∧ �

}

12 t := Top;{
((t = null) ∧ ¬b ∧ I ∧ arem(POP) ∧ � ∧ ♦)
∨ (∃a. node(t) ∗ true ∧ ¬b ∧ stack(a,_) ∧ (t = a ∨ t , a ∧ ♦) ∧ arem(POP) ∧ �)

}
13 if (t != null) {{

∃a. node(t) ∗ true ∧ stack(a,_) ∧ (t = a ∨ t , a ∧ ♦) ∧ arem(POP) ∧ �
}

14 v := t.data;
15 x := t.next;{

∃a. node(t,v,x) ∗ true ∧ stack(a,_) ∧ (t = a ∨ t , a ∧ ♦) ∧ arem(POP) ∧ �
}

16 < b := cas(&Top, t, x); if (b) { GN := GN ∪ t; } >;{
(b ∧ I ∧ arem(skip) ∧ (v = V)) ∨ (¬b ∧ I ∧ arem(POP) ∧ � ∧ ♦)

}

17 }
18 }{

I ∧ arem(skip) ∧ (v = V)
}

19 return v;
}

Fig. 34. Proof outline of Treiber stacks with partial pops.

I ⇒ (R,G : D
f2
−−→ (Q2, (|Stk| > 0))).

Here we define f2 as a constant function, and Q2 as follows:

Q2

def

= ∃A. stack(A) ∧ (A , ϵ ).
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C.4 Our wrappers
Below we use locks as examples and show that the various wrappers defined in Sec. 6 (as object

implementations) are contextual refinement of themselves (as abstraction) under the certain fairness

condition.

The atomic partial specifications for locks are L_ACQ' and L_REL defined in (2.3).

initialize(){ l := 0; }

lock(){
1 await (l = 0) {
2 l := cid;
3 }
}

unlock(){
4 l := 0;
}

Fig. 35. Simple PSF locks under strong fairness.

C.4.1 Simple PSF locks under strong fairness. We first verify that the code shown in Fig. 35 (which

is the same as (2.3)) as the lock’s implementation is PSF under strong fairness. The lockmethod has

the annotated precondition true, and the unlock method has the annotated precondition (l=cid).
One may think that the proof for this example would be trivial, because the implementation code

and the atomic partial specification code are exactly the same, so they could always be executed

simultaneously. Our proof is indeed simple. In our proof, we indeed let the implementation and the

specification be executed simultaneously. But there is another key point in our proof: we also need

to prove that the implementation code ensures PSF (not only PDF) under strong fairness.

We first define the invariant fence I , the rely/guarantee conditions R and G, and the definite

actions D in Fig. 36. Note that since we are verifying PSF, all the actions should be defined as

level-0 actions. This is very different from the proof for test-and-set locks (see Sec. 8.1).

Fig. 37 gives the proof outline. When verifying the await statement at line 1, we use a similar

metric f (defined at the bottom of Fig. 37) as in the proof of test-and-set locks. The difference is,

for test-and-set locks, the lock-acquire actions from the environment threads are level-1 actions,

allowing the metric f to increase. But here, the lock-acquire actions are level-0 actions. The metric

f is still allowed to increase, because the definite progress condition for await under strong
fairness (see the second bullet of Definition 7.2) requires the metric to not increase only when the

environment transitions satisfy ((l , 0) n (l , 0)) (lock-acquire actions are not this case). As we
explained in Sec. 7, this is the key to make use of strong fairness.
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I
def

= unlocked ∨ locked

unlocked
def

= (l = L = 0)

locked
def

= ∃t. lockedByt

lockedByt
def

= (l = L = t) ∧ (t ∈ TIDS)

Gt
def

= (Lockt ∨ Unlockt ∨ Id) ∗ Id ∧ (I n I )

Lockt
def

= unlocked n0 lockedByt

Unlockt
def

= lockedByt n0 unlocked

Dt
def

= false ❀ true

Fig. 36. Auxiliary definitions for verifying the simple PSF locks under strong fairness.

lock():{
I ∧ arem(await(L = 0){L := cid})

}

1 await (l = 0) {{
unlocked ∧ arem(await(L = 0){L := cid})

}

2 l := cid;{
lockedBycid ∧ arem(skip)

}

3 }{
lockedBycid ∧ arem(skip)

}

unlock():{
lockedBycid ∧ arem(L := 0)

}

4 l := 0;{
I ∧ arem(skip)

}

Here the await command at lines 1-3 is verified as follows. Let

ft (S)
def

=

{
1 ifS |= locked
0 ifS |= unlocked

We can prove: I ⇒ (R : D•
f
−→ (l = 0,L = 0)).

Fig. 37. Proof outline of the simple PSF locks under strong fairness.
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C.4.2 Simple locks implemented using the wrapper for PSF under weak fairness. The code in

Fig. 38 results from applying the wrapper wrwfairPSF to the atomic partial specification (2.3) for locks.

Note that both L_ACQ' and L_REL are wrapped with the updates on listid. As we have discussed
in Sec. 6, we do not intend to claim that the methods in Fig. 38 give the simplest PSF lock under

weak fairness. In fact, we have verified that the example in Sec. 8.3 (which has a simpler lock-release

method) is also PSF under weak fairness.

initialize(){ l := 0; listid := ϵ; }

lock(){
1 listid := listid ++ [(cid, 'l=0')];
2 await (l = 0 /\ cid = enhd(listid)) {
3 l := cid;
4 listid := listid \ cid;
5 }
}

unlock(){
6 listid := listid ++ [(cid, 'true')];
7 await (cid = enhd(listid)) {
8 l := 0;
9 listid := listid \ cid;
10 }
}

Fig. 38. Simple locks implemented using the wrapper for PSF under weak fairness.

Below we verify the lock implementation in Fig. 38 using our logic with respect to the atomic

partial specification (2.3). By the logic soundness theorem, we know the code in Fig. 38 is PSF under

weak fairness. By the Abstraction Theorem, we also know that the code is a contextual refinement

of itself under weak fairness.

Fig. 39 defines the invariant I , the rely/guarantee conditions R and G, and the definite actions

D. The definitions are very similar to the ones in Fig. 13 for the example in Sec. 8.3. One of the

differences is that the items in the list listid may be either (t, ‘l = 0’) or (t, ‘true’), depending
on whether the thread t is calling the lock or unlock method. And since there could be at most

one thread calling the unlock method, there could be at most one (t, ‘true’) in listid. The unlock
method performs two actions ReqUnlock and Unlock. The actions AcqLock and Unlock are definite

(see the definition of D in Fig. 39). Note that since we are verifying PSF, all the actions are level-0

actions.

Fig. 40 gives the proof outline. The await statement in the lock method is verified in a similar

way as we explained in Sec. 8.3. The verification of the await statement in the unlock method

is trivial, because when inUnlockcid holds, the await condition (cid = enhd(listid)) always
holds for the current thread.
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tb ::= ϵ | (t, ‘B’) :: tb

list2set(ϵ )
def

= ∅

list2set((t, ‘B’) :: tb)
def

= {(t, ‘B’)} ∪ list2set(tb)

t < tb iff ¬∃B. (t, ‘B’) ∈ list2set(tb)

diff(tb) iff ∀tb′, tb′′, tb′′′, t1, t2,B1,B2. (tb = tb
′ ++ [(t1, ‘B1’)] ++ tb′′ ++ [(t2, ‘B2’)] ++ tb′′′) =⇒ (t1 , t2)

all_reqlock(tb) iff ∀t,B. (t, ‘B’) ∈ list2set(tb) =⇒ (B = (l = 0))

one_requnlockt (tb) iff ∃tb′, tb′′. (tb = tb
′ ++ [(t, ‘true’)] ++ tb′′)

∧ (∀t′,B. (t′, ‘B’) ∈ list2set(tb′ ++ tb′′) =⇒ (B = (l = 0)))

I
def

= ∃tb. lock(tb) lock(tb)
def

= unlocked(tb) ∨ notUnlocked(tb)

notUnlocked(tb)
def

= ∃t. lockedt (tb) ∨ inUnlockt (tb)

unlocked(tb)
def

= (l = L = 0) ∗ (listid = tb) ∧ all_reqlock(tb) ∧ diff(tb)

lockedt (tb)
def

= (l = L = t) ∗ (listid = tb) ∧ all_reqlock(tb) ∧ diff(tb)

inUnlockt (tb)
def

= (l = L = t) ∗ (listid = tb) ∧ one_requnlockt (tb) ∧ diff(tb)

lockedt
def

= ∃tb. lockedt (tb) inUnlockt
def

= ∃tb. inUnlockt (tb)

Pt
def

= ∃tb. lock(tb) ∧ (t < tb)

lockedByt (tb)
def

= lockedt (tb) ∧ (t < tb) lockedByt
def

= ∃tb. lockedByt (tb)

lockReqt (tb)
def

= lock(tb) ∧ ((t, ‘l = 0’) ∈ list2set(tb)) lockReqt
def

= ∃tb. lockReqt (tb)

Gt
def

= (ReqLockt ∨ AcqLockt ∨ ReqUnlockt ∨ Unlockt ∨ Id) ∗ Id ∧ (I n I )

ReqLockt
def

= ∃tb. ((listid = tb) ∧ (t < tb)) n (listid = tb ++ [(t, ‘l = 0’)])

AcqLockt
def

= ∃tb. unlocked((t, ‘l = 0’) :: tb) n lockedByt (tb)

ReqUnlockt
def

= ∃tb. lockedByt (tb) n inUnlockt (tb ++ [(t, ‘true’)])

Unlockt
def

= ∃tb, tb′. inUnlockt (tb ++ [(t, ‘true’)] ++ tb′) n unlocked(tb ++ tb′)

Dt
def

= (∀tb. unlocked((t, ‘l = 0’) :: tb) ❀ lockedByt (tb))
∧ (∀tb, tb′. inUnlockt (tb ++ [(t, ‘true’)] ++ tb′) ❀ unlocked(tb ++ tb′))

Fig. 39. Auxiliary definitions for verifying the locks with the wrapper for PSF under weak fairness.
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lock():{
Pcid ∧ arem(await(L = 0){L := cid})

}

1 listid := listid ++ [(cid, 'l=0')];{
lockReqcid ∧ arem(await(L = 0){L := cid})

}

2 await (l = 0 /\ cid = enhd(listid)) {{
∃tb. unlocked((cid, ‘l = 0’) :: tb) ∧ arem(await(L = 0){L := cid})

}

3 l := cid;
4 listid := listid \ cid;{

∃tb. lockedBycid (tb) ∧ arem(skip)
}

5 }{
lockedBycid ∧ arem(skip)

}

unlock():{
lockedBycid ∧ arem(L := 0)

}

6 listid := listid ++ [(cid, 'l=0')];{
inUnlockcid ∧ arem(L := 0)

}

7 await (cid = enhd(listid)) {{
inUnlockcid ∧ arem(L := 0)

}

8 l := 0;
9 listid := listid \ cid;{

Pcid ∧ arem(skip)
}

10 }{
Pcid ∧ arem(skip)

}

Here the await command at lines 2-5 is verified as follows. Let

ft (S)
def

=

{
2k + 1 if ∃tb, tb′. (S |= notUnlocked(tb ++ [(t, ‘l = 0’)] ++ tb′)) ∧ |tb| = k
2k if ∃tb, tb′. (S |= unlocked(tb ++ [(t, ‘l = 0’)] ++ tb′)) ∧ |tb| = k

We can prove: lockReq⇒ (R : D◦
f
−→ (l = 0 ∧ cid = enhd(listid),L = 0)).

Here the await command at lines 7-10 is verified as follows. Let f be a constant

function. We can prove: inUnlock⇒ (R : D◦
f
−→ (cid = enhd(listid), true)).

Fig. 40. Proof outline of the locks implemented using the wrapper for PSF under weak fairness.
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C.4.3 Simple locks implemented using the wrapper for PDF under weak fairness. The code in

Fig. 41 results from applying the wrapper wrwfairPDF to the atomic partial specification (2.3) for locks.

Both L_ACQ' and L_REL are wrapped with the updates on the shared variable done. Again, we do
not intend to claim that the code in Fig. 41 is the simplest PDF lock under weak fairness. In fact,

the atomic partial specification (2.3) itself is already PDF under weak fairness.

initialize(){ l := 0; done := false; }

lock(){
1 await (l = 0 /\ !done) {
2 l := cid;
3 done := true;
4 }
5 done := false;
6 await (!done) {};
}

unlock(){
7 await (!done) {
8 l := 0;
9 done := true;
10 }
11 done := false;
12 await (!done) {};
}

Fig. 41. Simple locks implemented using the wrapper for PDF under weak fairness.

Below we verify the lock implementation in Fig. 41 using our logic with respect to the atomic

partial specification (2.3). By the logic soundness theorem, we know the code in Fig. 41 is PDF under

weak fairness. By the Abstraction Theorem, we also know that the code is a contextual refinement

of itself under weak fairness.

Fig. 42 defines the invariant fence I , the object invariant P (see the obj rule in Fig. 10), the

rely/guarantee conditions R and G, and the definite actions D. The lock method performs two

actions Lock and LockDone, and the unlock method performs two actions Unlock and UnlockDone.

Here we play a trick and let the reset of done (i.e., line 10 in the unlockmethod in Fig. 41) correspond

to the lock-release step at the abstract side, as shown in the definitions of Unlock and UnlockDone.

Then we could know from the abstract lock L which thread needs to perform the reset of done.
The actions LockDone and UnlockDone are definite (see the definition ofD in Fig. 42). We define

Lock and Unlock as level-1 actions, and define other actions as non-delaying actions. In fact, for

this example, Unlock could also be defined as non-delaying actions, and the proofs could be done

without any change. (The reason why we label Unlock with level 1 here is to make the definitions

usable in the proofs for the next example in Fig. 44. We will explain this in Sec. C.4.4.)

Fig. 43 gives the proof outline. The verification of the four await statements are given at the

bottom of the figure. For the second await statement in lock (line 6) and the first await statement

in unlock (lines 7-10), the proofs are trivial, because when lockedcid (false) holds, the await
condition ¬done always holds.
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I
def

= ∃t. lockedt ∨ toUnlockedt ∨ unlocked

unlocked
def

= (l = L = 0) ∗ (done = false)

toUnlockedt
def

= (l = 0) ∗ (L = t) ∗ (done = true)

lockedt (b)
def

= (l = L = t) ∗ (done = b) lockedt
def

= ∃b . lockedt (b)

envLockedt (b)
def

= ∃t′. lockedt′ (b) ∧ (t′ , t) envLockedt
def

= ∃b . envLockedt (b)

envToUnlockedt
def

= ∃t′. toUnlockedt′ ∧ (t′ , t)

notOwnt
def

= unlocked ∨ envLockedt ∨ envToUnlockedt

Pt
def

= lockedt (false) ∨ notOwnt

Gt
def

= (Lockt ∨ LockDonet ∨ Unlockt ∨ UnlockDonet ∨ Id) ∗ Id ∧ (I n I )

Lockt
def

= unlocked n1 lockedt (true)

LockDonet
def

= lockedt (true) n0 lockedt (false)

Unlockt
def

= lockedt (false) n1 toUnlockedt

UnlockDonet
def

= toUnlockedt n0 unlocked

Dt
def

= (lockedt (true) ❀ lockedt (false)) ∧ (toUnlockedt ❀ unlocked)

Fig. 42. Auxiliary definitions for verifying the locks with the wrapper for PDF under weak fairness.
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lock():{
Pcid ∧ � ∧ arem(await(L = 0){L := cid})

}

1 await (l = 0 /\ !done) {{
unlocked ∧ � ∧ arem(await(L = 0){L := cid})

}

2 l := cid;
3 done := true;{

lockedcid (true) ∧ arem(skip)
}

4 }{
lockedcid (true) ∧ arem(skip)

}

5 done := false;{
lockedcid (false) ∧ arem(skip)

}

6 await (!done) {};{
lockedcid (false) ∧ arem(skip)

}

unlock():{
lockedcid (false) ∧ � ∧ arem(L := 0)

}

7 await (!done) {{
lockedcid (false) ∧ � ∧ arem(L := 0)

}

8 l := 0;
9 done := true;{

toUnlockedcid ∧ arem(L := 0)
}

10 }{
toUnlockedcid ∧ arem(L := 0)

}

11 done := false;{
notOwncid ∧ arem(skip)

}

12 await (!done) {};{
notOwncid ∧ arem(skip)

}

Here the await command at lines 1-4 is verified as follows. Let

ft (S)
def

=




3 ifS |= envLockedt (true)
2 ifS |= envLockedt (false)
1 ifS |= envToUnlockedt
0 ifS |= unlocked

We can prove: P ⇒ (R : D◦
f
−→ (l = 0 ∧ ¬done,L = 0)).

The await command at line 12 can be verified using the same metric f as

the above one for lines 1-4. We can prove: notOwn⇒ (R : D◦
f
−→ (¬done, true)).

The await commands at line 6 and at lines 7-10 are verified in the same way. Let f

be a constant function. We can prove: locked(false) ⇒ (R : D◦
f
−→ (¬done, true)).

Fig. 43. Proof outline of the locks implemented using the wrapper for PDF under weak fairness.
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C.4.4 Simple locks implemented using the wrapper for PDF under strong fairness. The code in

Fig. 44 results from applying the wrapper wrsfairPDF to the atomic partial specification (2.3) for locks.

Again, we do not intend to claim that Fig. 44 is the simplest PDF lock under strong fairness.

initialize(){ l := 0; done := false; }

lock(){
1 local b;
2 b := done;
3 while (b) {
4 b := done;
5 }
6 await (l = 0 /\ !done) {
7 l := cid;
8 done := true;
9 }
10 done := false;
11 b := done;
12 while (b) { b := done; }
}

unlock(){
13 local b;
14 b := done;
15 while (b) { b := done; }
16 await (!done) {
17 l := 0;
18 done := true;
19 }
20 done := false;
21 b := done;
22 while (b) {
23 b := done;
24 }
}

Fig. 44. Simple locks implemented using the wrapper for PDF under strong fairness.

Below we verify the lock implementation in Fig. 44 using our logic with respect to the atomic

partial specification (2.3). By the logic soundness theorem, we know the code in Fig. 44 is PDF

under strong fairness. By the Abstraction Theorem, we also know that the code is a contextual

refinement of itself under strong fairness.

We give the proof outlines in Fig. 45 and Fig. 46. The proofs use the same invariant fence I , the
same object invariant P , the same rely/guarantee conditions R andG , and the same definite actions

D, as for verifying the previous example of Fig. 41. The definitions have been given in Fig. 42. As

we have mentioned, the action Unlock has to be labeled with level 1 for this example. The reason is

that the Unlock action updates the variable done, which may delay a thread that is executing the

loops of lines 3-5 and lines 22-24. In particular, in the proof of lines 22-24 in Fig. 46, the current

thread could increase ♦-tokens when its environment does Unlock (that is why the assertion before

line 23 is stable).
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lock():
1 local b;{

Pcid ∧ � ∧ arem(await(L = 0){L := cid})
}

2 b := done;{
Pcid ∧ � ∧ arem(await(L = 0){L := cid}) ∧ (b ∧ ♦ ∨ ¬b)

}

3 while (b) {{
(unlocked ∨ lockedcid (false) ∨ (envLockedcid ∨ envToUnlockedcid) ∧ ♦)
∧ � ∧ arem(await(L = 0){L := cid})

}
4 b := done;{

Pcid ∧ (b ∧ ♦ ∨ ¬b) ∧ � ∧ arem(await(L = 0){L := cid})
}

5 }{
Pcid ∧ � ∧ arem(await(L = 0){L := cid})

}

6 await (l = 0 /\ !done) {{
unlocked ∧ � ∧ arem(await(L = 0){L := cid})

}

7 l := cid;
8 done := true;{

lockedcid (true) ∧ arem(skip)
}

9 }{
lockedcid (true) ∧ arem(skip)

}

10 done := false;{
lockedcid (false) ∧ arem(skip)

}

11 b := done;{
¬b ∧ lockedcid (false) ∧ arem(skip)

}

12 while (b) { b := done; }{
lockedcid (false) ∧ arem(skip)

}

Here the while loop at lines 3-5 is verified as follows. Let

Qt
def

= unlocked ∨ lockedt (false) Jt
def

= Pt ft (S)
def

=




3 ifS |= envLockedt (true)
2 ifS |= envLockedt (false)
1 ifS |= envToUnlockedt
0 ifS |= unlocked

We can prove: J ⇒ (R, Id : D
f
−→ (Q , (L = 0))).

The await command at lines 6-9 is verified using the same metric f as the above one for

the while loop at lines 3-5. We can prove: P ⇒ (R : D•
f
−→ (l = 0,L = 0)).

Proof of the while loop at line 12 is trivial, since the loop condition b does not hold.

Fig. 45. Proof outline for the lock method of the PDF lock under strong fairness (using the same I ,G, R and
D as Fig. 42).

, Vol. 1, No. 1, Article . Publication date: January 2018.



Progress of Concurrent Objects with Partial Methods (Extended Version) :149

unlock():
13 local b;{

lockedcid (false) ∧ � ∧ arem(L := 0)
}

14 b := done;{
lockedcid (false) ∧ � ∧ arem(L := 0) ∧ ¬b

}

15 while (b) { b := done; }{
lockedcid (false) ∧ � ∧ arem(L := 0)

}

16 await (!done) {{
lockedcid (false) ∧ � ∧ arem(L := 0)

}

17 l := 0;
18 done := true;{

toUnlockedcid ∧ arem(L := 0)
}

19 }{
toUnlockedcid ∧ arem(L := 0)

}

20 done := false;{
notOwncid ∧ arem(skip)

}

21 b := done;{
notOwncid ∧ arem(skip) ∧ (b ∧ ♦ ∨ ¬b)

}

22 while (b) {{
(unlocked ∨ envLockedcid (false) ∨ (envLockedcid (true) ∨ envToUnlockedcid) ∧ ♦) ∧ arem(skip)

}

23 b := done;{
notOwncid ∧ (b ∧ ♦ ∨ ¬b) ∧ arem(skip)

}

24 }{
notOwncid ∧ arem(skip)

}

Here the proof of the while loop at line 15 is trivial, since the loop condition b does not hold.

The await command at lines 16-19 is verified as follows. Let f be a constant function. We can prove:

locked(false) ⇒ (R : D•
f
−→ (¬done, true)).

The while loop at lines 22-24 is verified as follows. Let

Qt
def

= envLockedt (false) ∨ unlocked Jt
def

= notOwnt ft (S)
def

=




3 ifS |= envLockedt (true)
2 ifS |= envLockedt (false)
1 ifS |= envToUnlockedt
0 ifS |= unlocked

We can prove: J ⇒ (R, Id : D
f
−→ (Q , true)).

Fig. 46. Proof outline for the unlock method of the PDF lock under strong fairness (using the same I , G, R
and D as Fig. 42).
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