
A Program Logic for
Concurrent Objects under Fair Scheduling

(Extended Version)

Hongjin Liang Xinyu Feng
School of Computer Science and Technology & Suzhou Institute for Advanced Study

University of Science and Technology of China
lhj1018@ustc.edu.cn xyfeng@ustc.edu.cn

Abstract
Existing work on verifying concurrent objects is mostly concerned
with safety only, e.g., partial correctness or linearizability. Although
there has been recent work verifying lock-freedom of non-blocking
objects, much less efforts are focused on deadlock-freedom and
starvation-freedom, progress properties of blocking objects. These
properties are more challenging to verify than lock-freedom because
they allow the progress of one thread to depend on the progress of
another, assuming fair scheduling.

We propose LiLi, a new rely-guarantee style program logic for
verifying linearizability and progress together for concurrent objects
under fair scheduling. The rely-guarantee style logic unifies thread-
modular reasoning about both starvation-freedom and deadlock-
freedom in one framework. It also establishes progress-aware
abstraction for concurrent objects, which can be applied when
verifying safety and liveness of client code. We have successfully
applied the logic to verify starvation-freedom or deadlock-freedom
of representative algorithms such as ticket locks, queue locks, lock-
coupling lists, optimistic lists and lazy lists.

1. Introduction
A concurrent object or library provides a set of methods that al-
low multiple client threads to manipulate the shared data structure.
Blocking synchronization (i.e., mutual exclusion locks), as a straight-
forward technique to ensure exclusive accesses and to control the
interference, has been widely-used in object implementations to
achieve linearizability, which ensures the object methods behave as
atomic operations in a concurrent setting.

In addition to linearizability, a safety property, object imple-
mentations are expected to also satisfy progress properties. The
non-blocking progress properties, such as wait-freedom and lock-
freedom which have been studied a lot (e.g., [5, 10, 16, 23]), guar-
antee the termination of the method calls independently of how the
threads are scheduled. Unfortunately these properties are too strong
to be satisfied by algorithms with blocking synchronization. For
clients using lock-based objects, a delay of a thread holding a lock
will block other threads requesting the lock. Thus their progress
relies on the assumption that every thread holding the lock will
eventually be scheduled to release it. This assumption requires fair
scheduling, i.e., every thread gets eventually executed. As summa-
rized by Herlihy and Shavit [14], there are two desirable progress
properties for blocking algorithms, both assuming fair scheduling:

• Deadlock-freedom: In each fair execution, there always exists
some method call that can finish. It disallows the situation in
which multiple threads requesting locks are waiting for each

other to release the locks in hand. It ensures the absence of
livelock, but not starvation.

• Starvation-freedom: Every method call should finish in fair
executions. It requires that every thread attempting to acquire
a lock should eventually succeed and in the end release the
lock. Starvation-freedom is stronger than deadlock-freedom.
Nevertheless it can often be achieved by using fair locks [13].

Recent program logics for verifying concurrent objects either
prove only linearizability and ignore the issue of termination (e.g., [6,
21, 29, 30]), or aim for non-blocking progress properties (e.g., [5,
10, 16, 23]), which cannot be applied to blocking algorithms that
progress only under fair scheduling. The fairness assumption intro-
duces complicated interdependencies among progress properties of
threads, making it incredibly more challenging to verify the lock-
based algorithms than their non-blocking counterparts. We will
explain the challenges in detail in Sec. 2.

It is important to note that, although there has been much work
on deadlock detection or deadlock-freedom verification (e.g., [4, 20,
31]), deadlock-freedom is often defined as a safety property, which
ensures the lack of circular waiting for locks. It does not prevent live-
lock or non-termination inside the critical section. Another limitation
of this kind of work is that it often assumes built-in lock primitives,
and lacks support of ad-hoc synchronization (e.g., mutual exclusion
achieved using spin-locks implemented by the programmers). The
deadlock-freedom we discuss in this paper is a liveness property and
its definition does not rely on built-in lock primitives. We discuss
more related work on liveness verification in Sec. 8.

In this paper we propose LiLi, a new rely-guarantee style logic
for concurrent objects under fair scheduling. LiLi is the first program
logic that unifies verification of linearizability, starvation-freedom
and deadlock-freedom in one framework (the name LiLi stands for
Linearizability and Liveness). It supports verification of both mutex-
based pessimistic algorithms (including fine-grained ones such as
lock-coupling lists) and optimistic ones such as optimistic lists and
lazy lists. The unified approach allows us to prove in the same logic,
for instance, the lock-coupling list algorithm is starvation-free if we
use fair locks, e.g., ticket locks [24], and is deadlock-free if regular
test-and-set (TAS) based spin locks are used. Our work is based on
earlier work on concurrency verification, but we make the following
new contributions:

• We divide environment interference that affects progress of a
thread into two classes, namely blocking and delay. We show
different occurrences of them correspond to the classification of
progress into wait-freedom, lock-freedom, starvation-freedom
and deadlock-freedom (see Sec. 2.2.1 and Sec. 6). Recognizing

1

the two classes of interference allows us to come up with
different mechanisms in our program logic to reason about them
separately. Our logic also provides parameterized specifications,
which can be instantiated to choose different combinations of
the mechanisms. This gives us a unified program logic that can
verify different progress properties using the same set of rules.

• We propose two novel mechanisms, definite actions and strat-
ified tokens, to reason about blocking and delay, respectively.
They are also our key techniques to avoid circularity in rely-
guarantee style liveness reasoning. A definite action character-
izes a thread’s progress that does not rely on the progress of the
environment. Each blocked thread waits for a queue of definite
actions. Starvation-freedom requires the length of the queue be
strictly decreasing, while deadlock-freedom allows disciplined
queue jumps based on the token-transfer ideas [16, 23]. To avoid
circular delay, we further generalize the token-transfer ideas by
stratifying tokens into multiple levels, which enables us to verify
complex algorithms that involve both nested locks and rollbacks
(e.g., the optimistic list algorithm).

• By verifying linearizability and progress together, we can pro-
vide progress-aware abstractions for concurrent objects (see
Sec. 5). Our logic is based on termination-preserving simula-
tions as the meta-theory, which establish contextual refinements
that assume fair scheduling at both the concrete and the abstract
levels. We prove the contextual refinements are equivalent to
linearizability and starvation-freedom/deadlock-freedom. The
refinements allow us to replace object implementations with
progress-aware abstract specifications when the client code is
verified. As far as we know, our abstraction for deadlock-free
(and linearizable) objects has never been proposed before.

• We have applied our logic to verify simple objects with coarse-
grained synchronization using TAS locks, ticket locks [24] and
various queue locks (including Anderson array-based locks,
CLH locks and MCS locks) [13]. For examples with more
permissive locking schemes, we have successfully verified the
two-lock queues, and various fine-grained and optimistic list
algorithms. To the best of our knowledge, we are the first to
formally verify the starvation-freedom/deadlock-freedom of
lock-coupling lists, optimistic lists and lazy lists.

Notice that with the assumption of fair scheduling, wait-freedom
and lock-freedom are equivalent to starvation-freedom and deadlock-
freedom, respectively. Therefore our logic can also be applied to
verify wait-free and lock-free algorithms. We discuss this in Sec. 6.

In the rest of this paper, we first analyze the challenges and
explain our approach informally in Sec. 2. Then we give the basic
technical setting in Sec. 3, and present our logic in Sec. 4, whose
soundness theorem, together with the abstraction theorem, is given
in Sec. 5. We discuss how our logic supports wait-free and lock-free
objects too in Sec. 6. Finally, we summarize the examples we have
verified in Sec. 7, and discuss related work and conclude in Sec. 8.

2. Informal Development
Below we first give an overview of the traditional rely-guarantee
logic for safety proofs [18], and the way to encode linearizability
verification in the logic. Then we explain the challenges and our
ideas in supporting liveness verification under fair scheduling.

2.1 Background
Rely-guarantee reasoning. In rely-guarantee reasoning [18],
each thread is verified in isolation under some assumptions on
its environment (i.e., the other threads in the system). The judgment
is in the form of R,G ` {P}C{Q}, where the pre- and post-
conditions P and Q specify the initial and final states respectively.

(a) abstract operation INC: <x++>;

dfInc :
1 local b := false, r;
2 while (!b) { b := cas(&L, 0, cid); } // lock L
3 r := x; x := r + 1; // critical section
4 L := 0; // unlock L

(b) deadlock-free implementation dfInc using a test-and-set lock

sfInc :
1 local i, o, r;
2 i := getAndInc(next);
3 o := owner; while (i != o) { o := owner; }
4 r := x; x := r + 1; // critical section
5 owner := i + 1;

(c) starvation-free implementation sfInc using a ticket lock

Figure 1. Counters.

The rely condition R specifies the assumptions on the environ-
ment, which are the permitted state transitions that the environment
threads may have. The guarantee condition G specifies the possible
transitions made by the thread itself. To ensure that parallel threads
can collaborate, the guarantee of each thread needs to satisfy the
rely of every other thread.

Encoding linearizability verification. As a working example,
Fig. 1(b) shows a counter object dfInc implemented with a test-
and-set (TAS) lock L. Verifying linearizability of dfInc requires
us to prove it has the same abstract behaviors as INC in Fig. 1(a),
which increments the counter x atomically.

Following previous work [21, 23, 30], one can extend a rely-
guarantee logic to verify linearizability. We use an assertion
arem(C) to specify as an auxiliary state the abstract operation C to
be fulfilled, and logically execute C at the linearization point (LP)
of the concrete implementation. For dfInc, we prove a judgment in
the form of R,G ` {P ∧ arem(INC)}dfInc{Q ∧ arem(skip)}.
Here R and G specify the object’s actions (i.e., lock acquire and
release, and the counter updates at both the concrete and the abstract
sides) made by the environment and the current thread respectively.
P andQ are relational assertions specifying the consistency relation
between the program states at the concrete and the abstract sides.
The postcondition arem(skip) shows that at the end of dfInc there
is no abstract operation to fulfill.

2.2 Challenges of Progress Verification
Progress properties of objects such as deadlock-freedom and
starvation-freedom have various termination requirements of ob-
ject methods. They must be satisfied with interference from other
threads considered, which makes the verification challenging.

2.2.1 Non-Termination Caused by Interference
In a concurrent setting, an object method may fail to terminate
due to interference from its environment. Below we point out there
are two different kinds of interference that may cause thread non-
termination, namely blocking and delay. Let’s first see a classic
deadlocking example.

DL-12 : DL-21 :
lock L1; lock L2; lock L2; lock L1;
unlock L2; unlock L1; unlock L1; unlock L2;

The methods DL-12 and DL-21 may fail to terminate because
of the circular dependency of locks. This non-termination is caused
by permanent blocking. That is, when DL-12 tries to acquire L2, it
could be blocked if the lock has been acquired by DL-21.

For a second example, the call of the dfInc method (in Fig. 1(b))
by the left thread below may never terminate.

dfInc(); while (true) dfInc();

2

When the left thread tries to acquire the lock, even if the lock is
available at that time, the thread could be preempted by the right
thread, who gets the lock ahead of the left. Then the left thread
would fail at the cas command in the code of dfInc and have to
loop at least one more round before termination. This may happen
infinitely many times, causing non-termination of the dfInc method
on the left. In this case we say the progress of the left method is
delayed by its environment’s successful acquirement of the lock.

The key difference between blocking and delay is that blocking
is caused by the absence of certain environment actions, e.g.,
releasing a lock, while delay is caused by the occurrence of certain
environment actions, e.g., acquiring the lock needed by the current
thread (even if the lock is subsequently released). In other words, a
blocked thread can progress only if its environment progresses first,
while a delayed thread can progress if we suspend the execution of
its environment.

Lock-free algorithms disallow blocking (thus they do not rely on
fair scheduling), although delay is common, especially in optimistic
algorithms. Starvation-free algorithms allow (limited) blocking, but
not delay. As the dfInc example shows, delay from non-terminating
clients may cause starvation. Deadlock-free algorithms allow both
(with restrictions). As the optimistic list in Fig. 2(a) (explained in
Sec. 2.3.4) shows, blocking and delay can be intertwined by the
combined use of blocking-based synchronization and optimistic con-
currency, which makes the reasoning significantly more challenging
than reasoning about lock-free algorithms.

How do we come up with general principles to allow blocking
and/or delay, but on the other hand to guarantee starvation-freedom
or deadlock-freedom?

2.2.2 Avoid Circular Reasoning
Rely-guarantee style logics provide the power of thread-modular
verification by circular reasoning. When proving the behaviors
of a thread t guarantee G, we assume that the behaviors of the
environment thread t′ satisfy R. Conversely, the proof of thread t′

relies on the assumptions on the behaviors of thread t.
However, circular reasoning is usually unsound in liveness

verification [1]. For instance, we could prove termination of each
thread in the deadlocking example above, under the assumption that
each environment thread eventually releases the lock it owns. How
do we avoid the circular reasoning without sacrificing rely-guarantee
style thread-modular reasoning?

The deadlocking example shows that we should avoid circular
reasoning to rule out circular dependency caused by blocking. Delay
may also cause circular dependency too. Figure 2(b) shows a thread
t using two locks. It first acquires L1 (line 1) and then tests whether
L2 is available (line 2). If the test fails, the thread rolls back. It
releases L1 (line 4), and then repeats the process of acquiring L1
(line 5) and testing L2 (line 6). Suppose another thread t′ does the
opposite: repeatedly acquiring L2 and testing L1. In this example the
acquirement of L2 by t′ may cause t to fail its test of the availability
of L2. The test could have succeeded if t′ did not interfere, so t′

delays t. Conversely, the acquirement of L1 by t may delay t′. Then
the two threads can cause each other to continually roll back, and
neither method progresses.

Usually when delay is allowed, we need to make sure that the
action delaying other threads is a “good” one in that it makes the
executing thread progress (e.g., a step towards termination). This
is the case with the “benign delays” in the dfInc example and the
optimistic list example. But how do we tell if an action is good or
not? The acquirements of locks in Fig. 2(b) do seem to be good
because they make the threads progress towards termination. How
do we prevent such lock acquirements from delaying others, which
may cause circular delay?

2.2.3 Ad-Hoc Synchronization and Dynamic Locks
One may argue that the circularity can be avoided by simply
enforcing certain orders of lock acquirements, which has been
a standard way to avoid “deadlock cycles” (note this is a safety
property, as we explained in Sec. 1). Although lock orders can help
liveness reasoning, it has many limitations in practice.

First, the approach cannot apply for ad-hoc synchronization. For
instance, there are no locks in the following deadlocking program.

x := 1;
while (y = 1) skip;
x := 0;

y := 1;
while (x = 1) skip;
y := 0;

Moreover, sometimes we need to look into the lock implementa-
tion to prove starvation-freedom. For instance, the dfInc in Fig. 1(b)
using a TAS lock is deadlock-free but not starvation-free. If we re-
place the TAS lock with a ticket lock, as in sfInc in Fig. 1(c), the
counter becomes starvation-free. Again, there are actually no locks
in the programs if we have to work at a low abstraction level to look
into lock implementations.

Second, it can be difficult to enforce the ordering for fine-grained
algorithms on dynamic data structures (e.g., lock-coupling list).
Since the data structure is changing dynamically, the set of locks
associated with the nodes is dynamic too. To allow a thread to
determine dynamically the order of locks, we have to ensure its view
of ordering is consistent with all the other threads in the system,
a challenge for thread-modular verification. Although dynamic
locks are supported in some previous work treating deadlock-
freedom as a safety property (e.g., [4, 19]), it is unclear how to
apply the techniques for general progress reasoning, with possible
combination of locks, ad-hoc synchronization and rollbacks.

2.3 Our Approaches
To address these problems, our logic enforces the following princi-
ples to permit restricted forms of blocking and delay, but prevent
circular reasoning and non-termination.

First, if a thread is blocked, the events it waits for must eventually
occur. To avoid circular reasoning, we find “definite actions” of
each thread, which under fair scheduling will definitely happen
once enabled, regardless of the interference from the environment.
Then each blocked thread needs to show it waits for only a finite
number of definite actions from the environment threads. They form
an acyclic queue, and there is always at least one of them enabled.
This is what we call “definite progress”, which is crucial for proving
starvation-freedom.

Second, actions of a thread can delay others only if they are
making the executing object method to move towards termination.
Each object method can only execute a finite number of such
delaying actions to avoid indefinite delay. This is enforced by
assigning a finite number of tokens to each method. A token must
be paid to execute a delaying action.

Third, we divide actions of a thread into normal ones (which do
not delay others) and delaying ones, and further stratify delaying
actions into multiple levels. When a thread is delayed by a level-k
action from its environment, it is allowed to execute not only more
normal actions, but also more delaying actions at lower levels.
Allowing one delaying action to trigger more steps of other delaying
actions is necessary for verifying algorithms with nested locks and
rollbacks, such as the optimistic lists in Fig. 2(a). The stratification
prevents the circular delay in the example of Fig. 2(b).

Fourth, our delaying actions and definite actions are all seman-
tically specified as part of object specifications, therefore we can
support ad-hoc synchronizaiton and do not rely on built-in synchro-
nization primitives to enforce ordering of events. Moreover, since
the specifications are all parametrized over states, they are expres-
sive enough to support dynamic locks as in lock-coupling lists. Also

3

our “definite progress” condition allows each blocked thread to de-
cide locally and dynamically a queue of definite actions it waits for.
There is no need to enforce a global ordering of blocking depen-
dencies agreed by every thread. This also provides thread-modular
support of dynamic locks.

Below we give more details about some of these key ideas.

2.3.1 Using Tokens to Prevent Infinite Loops
The key to ensuring termination is to require each loop to terminate.
Earlier work [16, 23] requires each round of the loop to consume
resources called tokens. The rule for loops is in the following form:

P ∧B ⇒ P ′ ∗ ♦ R,G ` {P ′}C{P}
R,G ` {P}while (B) C{P ∧ ¬B}

(TERM)

Here ♦ represents one token, and “∗” is the normal separating
conjunction in separation logic. The premise says the precondition
P ′ of the loop body C has one less token than P , showing that one
token needs to be consumed to start this new round of loop. Since
the number of tokens strictly decreases, we know the loop must
terminate when the thread has no token.

We use this simple idea to enforce termination of loops, and
extend it to handle blocking and delay in a concurrent setting.

2.3.2 Definite Actions and Definite Progress
Our approach to cut the blocking-caused circular dependency is
inspired by the implementation of ticket locks, which is used to
implement the starvation-free counter sfInc in Fig. 1(c). It uses
the shared variables owner and next to guarantee the first-come-
first-served property of the lock. Initially owner equals next. To
acquire the lock, a thread atomically increments next and reads
its old value to a variable i (line 2). The value of i becomes the
thread’s ticket. The thread waits until owner equals its ticket value i
(line 3). Finally the lock is released by incrementing owner (line 5)
such that the next waiting thread (the thread with ticket i + 1, if
there is one) can now enter the critical section.

We can see sfInc is not concerned with the circular dependency
problem. Intuitively the ticket lock algorithm ensures that the threads
requesting the lock always constitute a queue t1, t2, . . . , tn. The
head thread, t1, gets the ticket number which equals owner and
can immediately acquire the lock. Once it releases the lock (by
increasing owner), t1 is dequeued. Moreover, for any thread t in
this queue, the number of threads ahead of t never increases. Thus t
must eventually become the head of the queue and acquire the lock.
Here the dependencies among progress of the threads are in concert
with the queue.

Following this queue principle, we explicitly specify the queue
of progress dependencies in our logic to avoid circular reasoning.

Definite actions. First, we introduce a novel notion called a
“definite action”D, which models a thread action that, once enabled,
must be eventually finished regardless of what the environment
does. In detail, D is in the form of Pd ; Qd. It requires in every
execution thatQd should eventually hold if Pd holds, and Pd should
be preserved (by both the current thread and the environment) until
Qd holds. For sfInc, the definite action Pd ; Qd of a thread can
be defined as follows. Pd says that owner equals the thread’s ticket
number i, andQd says that owner has been increased to i+1. That
is, a thread definitely releases the lock when acquiring it. Of course
we have to ensure in our logic that D is indeed definite. We will
explain in detail the logic rule that enforces it in Sec. 4.2.2.

Definite progress. Then we use definite actions to prove termina-
tion of loops. We need to first find an assertion Q specifying the
condition when the thread t can progress on its own, i.e., it is not
blocked. Then we enforce the following principles:

1. If Q is continuously true, we need to prove the loop terminates
following the idea of the TERM rule;

2. If Q is false, the following must always be true:

(a) There is a finite queue of definite actions of other threads
that the thread t is waiting for, among which there is at least
one (from a certain thread t′) enabled. The length of the
queue is E.

(b) E decreases whenever one of these definite actions is fin-
ished;

(c) The expression E is never increased by any threads (no
matter whether Q holds or not); and it is non-negative.

We can see E serves as a well-founded metric. By induction over E
we know eventually Q holds, which implies the termination of the
loop by the above condition 1.

These conditions are enforced in our new inference rule for
loops, which extends the TERM rule (in Sec. 2.3.1) and is presented
in Sec. 4.2.2. The condition 2 shows the use of definite actions
in our reasoning about progress. We call it the “definite progress”
condition.

The reasoning above implicitly makes use of the fairness as-
sumption. The fair scheduling ensures that the environment thread t′

mentioned in the condition 2(a) is scheduled infinitely often, there-
fore its definite action will definitely happen. By conditions 2(b)
and 2(c) we know E will become smaller. In this way E keeps
decreasing until Q holds eventually.

For sfInc, Q is defined as (i = owner) and the metric E is
(i− owner). Whenever an environment thread t′ finishes a definite
action by releasing the lock, it increases owner, so E decreases.
When E is decreased to 0, the current thread is unblocked. Its loop
terminates and it succeeds in acquiring the lock.

2.3.3 Allowing Queue Jumps for Deadlock-Free Objects
The method dfInc in Fig. 1(b) implements a deadlock-free counter
using the TAS lock. If the current thread t waits for the lock, we
know the queue of definite actions it waits for is of length one
because it is possible for the thread to acquire the lock immediately
after the lock is released. However, as we explain in Sec. 2.2.1,
another thread t′ may preempt t and do a successful cas. Then
thread t is blocked and waits for a queue of definite actions again.
This delay caused by thread t′ can be viewed as a queue jump in our
definite-progress-based reasoning. Actually dfInc cannot satisfy
the definite progress requirement because we cannot find a strictly
decreasing queue size E. It is not starvation-free.

However, the queue jump here is acceptable when verifying
deadlock-freedom. This is because thread t′ delays t only if t′

successfully acquires the lock, which allows it to eventually finish
the dfInc method. Thus the system as a whole progresses.

Nevertheless, as explained in Sec. 2.2.2, we have to make sure
the queue jump (which is a special form of delay) is a “good” one.

We follow the token-transfer ideas [16, 23] to support disci-
plined queue jumps. We explicitly specify in the rely/guarantee
conditions which steps could delay the progress of other threads
(jump their queues). To prohibit unlimited queue jumps without
making progress, we assign a finite number m of �-tokens to an
object method, and require that a thread can do at most m delaying
actions before the method finishes.

Whenever a step of thread t′ delays the progress of thread t,
we require t′ to consume one �-token. At the same time, thread t
could increase ♦-tokens so that it can loop more rounds. Besides,
we redefine the definite progress condition to allow the metric E
(about the length of the queue) to be increased when an environment
thread jumps the queue at the cost of a �-token.

4

1 local b := false, p, c;
2 while (!b) {
3 (p, c) := find(e);
4 lock p; lock c;
5 b := validate(p, c);
6 if (!b) {
7 unlock c; unlock p; }
8 }
9 update(p, c, e);

10 unlock c; unlock p;

(a) optimistic list

1 lock L1;
2 local r := L2;
3 while (r != 0) {
4 unlock L1;
5 lock L1;
6 r := L2;
7 }
8 lock L2;
9 unlock L2;

10 unlock L1;

(b) rollback

Figure 2. Examples with multiple locks.

2.3.4 Allowing Rollbacks for Optimistic Locking
The ideas we just explained already support simple deadlock-free
objects such as dfInc in Fig. 1(b), but they cannot be applied to
objects with optimistic synchronization, such as optimistic lists [13]
and lazy lists [11].

Figure 2(a) shows part of the optimistic list implementation.
Each node of the list is associated with a TAS lock, the same lock
as in Fig. 1(b). A thread first traverses the list without acquiring any
locks (line 3). The traversal find returns two adjacent node pointers
p and c. The thread then locks the two nodes (line 4), and calls
validate to check if the two nodes are still valid list nodes (line 5).
If validation succeeds, then the thread performs its updates (adding
or removing elements) to the list (line 9). Otherwise it releases the
two node locks (line 7) and restarts the traversal.

For this object, when the validation fails, a thread will release
the locks it has acquired and roll back. Thus the thread may acquire
the locks for an unbounded number of times. Since each lock
acquirement will delay other threads requesting the same lock and
each delaying action should consume one �-token, it seems that
the thread would need an infinite number of �-tokens, which we
prohibit in the preceding subsection to ensure deadlock-freedom,
even though this list object is indeed deadlock-free.

We generalize the token-transfer ideas to allow rollbacks in order
to verify this kind of optimistic algorithms, but still have to be
careful to avoid the circular delay caused by the “bad” rollbacks in
Fig. 2(b), as we explain in Sec. 2.2.2.

Our solution is to stratify the delaying actions. Each action is
now labeled with a level k. The normal actions which cannot delay
other threads are at the lowest level 0. The �-tokens are stratified
accordingly. A thread can roll back and do more actions at level k
only when its environment does an action at a higher level k′, at the
cost of a k′-level �-token. Note that the �-tokens at the highest level
are strictly decreasing, which means a thread cannot roll back its
actions of the highest level. In fact, the numbers of �-tokens at all
levels constitute a tuple (mk, . . . ,m2,m1). It is strictly descending
along the dictionary order.

The stratified �-tokens naturally prohibit the circular delay
problem discussed in Sec. 2.2.2 with the object in Fig. 2(b) . The
deadlock-free optimistic list in Fig. 2(a) can now be verified. We
classify its delaying actions into two levels. Actions at level 2 (the
highest level) update the list, which correspond to line 9 in Fig. 2(a),
and each method can do only one such action. Lock acquirements
are classified at level 1, so a thread is allowed to roll back and
re-acquire the locks when its environment updates the list.

3. Programming Language
Fig. 3 gives the syntax of the language. A program W consists of
multiple parallel threads sharing an object Π. We say the threads
are the clients of the object. An object declaration is a mapping
from a method name f to a pair of argument and code (method
body). The statements C are similar to those in the simple language

(MName) f ∈ String

(Expr) E,E ::= x | n | E + E | . . .
(BExp) B,B ::= true | false | E = E | !B | . . .
(Instr) c, c ::= x := E | x := [E] | [E] := E | print(E)

| x := cons(E, . . . , E) | dispose(E) | . . .
(Stmt) C,C ::= skip | c | x := f(E) | return E | 〈C〉

| end | C;C | if (B) C else C | while (B){C}
(Prog) W,W ::= skip | let Π in C ‖ . . .‖C

(ODecl) Π,Γ ::= {f1 ; (x1, C1), . . . , fn ; (xn, Cn)}

Figure 3. Syntax of the programming language.

used for separation logic. The commands x := [E] and [E] := E′

reads and writes the memory cell at the location E, respectively.
x := cons(E, . . . , E) and dispose(E) allocates and frees memory
blocks respectively. The command print(E) generates externally
observable events, which allows us to observe behaviors of programs.
We use 〈C〉 to represent an atomic block in which C is executed
atomically. We introduce an auxiliary command end to help define
liveness properties (see Sec. 5). It is appended at the end of each
thread when the program W starts to run, and is not supposed to
be used directly by programmers. Executing it generates a special
event, which marks the termination of the corresponding thread.

Note that we use one language for both the concrete implemen-
tation at the low level and the abstract specification at the high level.
We introduce two sets of symbols for each syntactic category (e.g.,
W and W for programs, and Π and Γ for objects).

To simplify the presentation, we make several simplifications
here. We assume there is only one concurrent object in the system.
Each method of the object takes only one argument, and the method
body ends with a return E command. Also we assume there is no
nested method invocation. For the abstract object specification Γ,
each method body is an atomic operation 〈C〉 (ahead of the return
command), and executing the code is always safe and never blocks.

The model of program states S is defined in Fig. 4. To ensure
that the client code does not touch the object state, in S we
separate the states accessed by clients (σc) and by the object (σo).
Execution of programs is modelled as a labelled transition system
(W,S)

e7−→ (W ′,S ′) in Fig. 5. The event e is defined in Fig. 4.
(t, obj) and (t, clt) represent an execution step by the thread t inside
and outside the object method, respectively. (t, f, n) and (t, ret, n)
record the invocation and the return of an object respectively.
The event (t, obj, abort) (or (t, clt, abort)) is generated when the
thread t aborts inside (or outside) the object method body. The
output event (t, out, n) is generated by the print(E) command.
(t, term) marks the termination of the thread t, generated by the
end command. The event (spawn, n) is used to record the number n
of threads in the program, which is helpful to define fair executions
(see Sec. 5). We use T to represent an event trace, a (possibly
infinite) sequence of events.

Externally observable events. We treat (t, out, n), (t, obj, abort)
and (t, clt, abort) as externally observable events, and we use
get obsv(T) to represent the subsequence of T consisting of exter-
nally observable events only.

4. Program Logic LiLi
LiLi verifies the linearizability of objects by proving the method
implementations refine abstract atomic operations. The top level
judgment is in the form of D, R,G ` {P}Π : Γ. (The OBJ rule for
this judgment is given in Fig. 9 and will be explained later.) To verify
an object Π, we give a corresponding object specification Γ (see

5

(let Π in skip‖ . . .‖ skip,S) 7−→ (skip,S)

(Ci, (σc, σo,K(i)))
e−→ i,Π abort

(let Π in C1‖ . . . Ci . . .‖Cn, (σc, σo,K))
e7−→ abort

(Ci, (σc, σo,K(i)))
e−→ i,Π (C′i, (σ

′
c, σ
′
o, κ
′))) K′ = K{i; κ′}

(let Π in C1‖ . . . Ci . . .‖Cn, (σc, σo,K))
e7−→ (let Π in C1‖ . . . C′i . . .‖Cn, (σ′c, σ′o,K′))

(a) program transitions

Π(f) = (y, C) JEKsc = n x ∈ dom(sc) κ = ({y ; n}, x,E[skip])

(E[x := f(E)], ((sc, hc), σo, ◦))
(t,f,n)−−−−→ t,Π (C, ((sc, hc), σo, κ))

f 6∈ dom(Π) or JEKsc undefined or x 6∈ dom(sc)

(E[x := f(E)], ((sc, hc), σo, ◦))
(t,clt,abort)−−−−−−−→ t,Π abort

κ = (sl, x, C) JEKsl = n s′c = sc{x; n}

(E[return E], ((sc, hc), σo, κ))
(t,ret,n)−−−−−→ t,Π (C, ((s′c, hc), σo, ◦))

κ = (sl, x, C) JEKsl undefined

(E[return E], ((sc, hc), σo, κ))
(t,obj,abort)−−−−−−−→ t,Π abort

JEKsc = n

(E[print(E)], ((sc, hc), σo, ◦))
(t,out,n)−−−−−→ t,Π (E[skip], ((sc, hc), σo, ◦)) (end, (σc, σo, ◦))

(t,term)−−−−−→ t,Π (skip, (σc, σo, ◦))

(C, (so] sl, ho)) −_ t (C′, (s′o] s′l, h
′
o)) dom(sl) = dom(s′l)

(C, (σc, (so, ho), (sl, x, C)))
(t,obj)−−−−→ t,Π (C′, (σc, (s′o, h

′
o), (s

′
l, x, C)))

(C, σc) −_ t (C′, σ′c)

(C, (σc, σo, ◦))
(t,clt)−−−→ t,Π (C′, (σ′c, σo, ◦))

(b) thread transitions

(C, σ) −_∗t (skip, σ′)
(E[〈C〉], σ)−_t (E[skip], σ′)

(C, σ) −_ω
t ·

(E[〈C〉], σ)−_t (E[〈C〉], σ)

(C, σ) −_∗t abort
(E[〈C〉], σ)−_t abort

(c) local thread transitions

Figure 5. Selected operational semantics rules.

(ThrdID) t ∈ Nat (ExecCtxt) E ::= [] | E;C

(Store) s, s ∈ Var ⇀ Int (Heap) h,h ∈ Nat ⇀ Int

(Mem) σ,Σ ::= (s, h) (CallStk) κ, k ::= (sl, x, C) | ◦
(ThrdPool) K,K ::= {t1 ; κ1, . . . , tn ; κn}

(PState) S, S ::= (σc, σo,K)

(Evt) e ::= (t, f, n) | (t, ret, n) | (t, obj) | (t, clt)
| (t, out, n) | (t, term) | (spawn, n)
| (t, obj, abort) | (t, clt, abort)

(ETrace) T,T ::= ε | e ::T (co-inductive)

Figure 4. States and event traces.

Fig. 3), which maps method names to atomic commands. In addition,
we need to provide an object invariant (P) and rely/guarantee
conditions (R and G) for the refinement reasoning in a concurrent
setting. Here P is a relational assertion that specifies the consistency
relation between the concrete data representation and the abstract
value. Similarly, R and G lift regular rely and guarantee conditions
to the binary setting, which now specify transitions of states at both
the concrete level and the abstract level. The definite actions D is
a special form of state transitions used for progress reasoning. The
definitions of P , R, G and D are shown in Sec. 4.1.

Note LiLi is a logic for concurrent objects Π only. We do not
provide logic rules for clients. See Sec. 5 for more discussions.

To simplify the presentation in this paper, we describe LiLi based
on the plain Rely-Guarantee Logic [18]. Also, to avoid “variables as
resources” [26], we assume program variables are either thread-
local or read-only. The full version of LiLi (see Appendix A)
extends the more advanced Rely-Guarantee-based logic LRG [7] to
support dynamic allocation and ownership transfer. It also drops the
assumption about program variables.

(RelAssn) P,Q, J ::= B | emp | E 7→ E | E Z⇒ E
| TpU | P ∗Q | P ∧Q | P ∨Q | . . .

(RelAct) R,G ::= P nk Q | [P] | D
| bGc0 | G ∧G | G ∨G | . . .

(DAct) D ::= P ; Q | ∀x.D | D ∧ D
(FullAssn) p, q ::= P | arem(C) | ♦(E) | �(Ek, . . . , E1)

| bpca | bpc♦ | p ∗ q | p ∧ q | p ∨ q | . . .

Figure 6. Syntax of the assertion language.

4.1 Assertions
We define assertions in Fig. 6. The relational state assertions P
and Q specify the relationship between the concrete state σ and the
abstract state Σ. Here we use s and h for the store and the heap at the
abstract level (see Fig. 3). For simplicity, we assume the program
variables used in the concrete code are different from those in the
abstract code (e.g., we use x and X at the concrete and abstract levels
respectively). We use the relational state S to represent the pair of
states (σ,Σ), as defined in Fig. 7.

Figure 7(a) defines semantics of state assertions. The boolean
expression B holds if it evaluates to true at the combined store
of s and s. emp describes empty heaps. The assertion E1 7→ E2

specifies a singleton heap at the concrete level with the value of
the expression E2 stored at the location E1. Its counterpart for
an abstract level heap is represented as E1 Z⇒ E2. Semantics of
separating conjunction P ∗Q is similar as in separation logic, except
that it is now lifted to relational states S. The disjoint union of two
relational states is defined at the top of the figure. Semantics of the
assertion TpU will be defined latter (see Fig. 7(c)).

Rely/guarantee assertions R and G specify the transitions over
the relational states S. Their semantics is defined in Fig. 7(b). The
action P nkQ says that the initial relational states satisfy P and the

6

S ::= (σ,Σ) (σ,Σ)] (σ′,Σ′)
def
= (σ] σ′,Σ] Σ′)

where (s, h)](s′, h′)
def
= (s, h]h′) , if s=s′

((s, h), (s,h)) |= B iff JBKs]s = true
((s, h), (s,h)) |= emp iff dom(h) = dom(h) = ∅
((s, h), (s,h)) |= E1 7→ E2 iff h = {JE1Ks]s ; JE2Ks]s}
((s, h), (s,h)) |= E1 Z⇒ E2 iff h = {JE1Ks]s ; JE2Ks]s}
S |= P ∗Q iff ∃S1,S2.S = S1]S2

∧(S1 |= P) ∧ (S2 |= Q)

(a) Semantics of relational state assertions P and Q.

(S,S′) |= P nk′ Q iff (S |= P) ∧ (S′ |= Q)

(S,S′) |= [P] iff (S′ = S) ∧ (S |= P)

(b) Semantics of relational rely/guarantee assertions R and G.

(S, (u,w), C) |= P iff S |= P

(S, (u,w), C) |= arem(C′) iff C = C′

(S, (u,w), C) |= ♦(E) iff ∃n. (JEKS.s = n) ∧ (n ≤ w)

(S, (u,w), C) |= �(Ek, . . . , E1) iff (JEkKS.s, . . . , JE1KS.s) ≤ u
(S, (u,w), C) |= bpc♦ iff ∃w′. (S, (u,w′), C) |= p

(S, (u,w), C) |= bpca iff ∃C′. (S, (u,w), C′) |= p

S |= TpU iff ∃u,w,C. (S, (u,w), C) |= p

C] C′ def
=

{
C′ if C = skip
C if C′ = skip

(S, (u,w), C)] (S′, (u′, w′), C′)
def
= (S]S′, (u+u′, w+w′), C]C′)

(c) Semantics of full assertions p and q.

Figure 7. Semantics of assertions.

resulting states satisfy Q. We can ignore the index k for now, which
is used to stratify actions that may delay the progress of other threads
and will be explained in Sec. 4.3. [P] specifies identity transitions
with the initial states satisfying P . Semantics of bGc0 is defined
in Sec. 4.3 too (see Fig. 12). Below we use P nQ as a shorthand
for P n0 Q. We also use Id for [true], which represents arbitrary
identity transitions.

We further instrument the relational state assertions with the
specifications of the abstract level code and various tokens. The
resulting full assertions p and q are defined in Fig. 6, whose
semantics is given in Fig. 7(c). The assertion p is interpreted over
(S, (u,w), C). C is the abstract-level code that remains to be
refined. It is specified by the assertion arem(C). Since our logic
verifies linearizability of objects, C is always in the form of atomic
commands 〈C′〉 (ahead of return commands). The pair (u,w)
records the numbers of various tokens � and ♦. It serves as a well-
founded metric for our progress reasoning. Informally w specifies
the upper bound of the round of loops that the current thread can
execute if it is neither blocked nor delayed by its environment. The
assertion ♦(E) says the number w of ♦-tokens is no less than E.
Therefore ♦(0) always holds, and ♦(n+ 1) implies ♦(n) for any n.
We postpone the explanation of u and the assertion �(Ek, . . . , E1)
to Sec. 4.3. Below we use ♦ as the shorthand for ♦(1). We use bpc♦
to ignore the descriptions in p about the number of tokens. TpU
converts p back to a relational state assertion.

Separating conjunction p ∗ q has the standard meaning as in
separation logic, which says p and q hold over disjoint parts of
(S, (u,w), C) respectively (the formal definition elided here). The
disjoint union is defined in Fig. 7(c). The disjoint union of the
numbers of tokens is the sum of them. The disjoint union of C1

and C2 is defined only if at least one of them is skip. Therefore we
know the following holds (for any P and C):

(S,S′) |= P ; Q iff (S |= P) =⇒ (S′ |= Q)

(S,S′) |= ∀x.D iff ∀n. (S{x; n},S′{x; n}) |= D
(S,S′) |= D1 ∧ D2 iff ((S,S′) |= D1) ∧ ((S,S′) |= D2)

(a) Semantics of D.

Enabled(P ; Q)
def
= P

Enabled(∀x.D)
def
= ∃x. Enabled(D)

Enabled(D1 ∧ D2)
def
= Enabled(D1) ∨ Enabled(D2)

〈D〉 def
= D ∧ (Enabled(D) n true)

[D]
def
= Enabled(D) ; Enabled(D)

D′ 6 D iff (Enabled(D′)⇒ Enabled(D)) ∧ (D ⇒ D′)
(b) Useful syntactic sugars.

Figure 8. Semantics of definite actions.

(P ∧ arem(C) ∧ ♦) ∗ (♦ ∧ emp) ⇔ (P ∧ arem(C) ∧ ♦(2))

Definite actions. Fig. 6 also defines definite actions D, whose
semantics is given in Fig. 8(a). P ; Q specifies the transitions
where the final states satisfy Q if the initial states satisfy P . It is
different from P nQ in that P ; Q does not restrict the transitions
if initially P does not hold. Consider the following example Dx.

Dx
def
= ∀n. ((x 7→ n) ∧ (n > 0)) ; (x 7→ n+ 1)

Dx describes the state transitions which increment x if x is positive
initially. It is satisfied by any transitions where initially x is not
positive. The conjunctionD1∧D2 is useful for enumerating definite
actions. For instance, when the program uses two locks L1 and L2,
the definite action D of the whole program is usually in the form of
D1 ∧ D2, where D1 and D2 specify L1 and L2 respectively.

We define some useful syntactic sugars in Fig. 8(b). The state
assertion Enabled(D) takes the guard condition of D. We use 〈D〉
to represent the state transitions ofD when it is enabled at the initial
state. Intuitively 〈D〉 gives us the corresponding “n” actions. For
instance, 〈P ; Q〉 is equivalent to P n Q. For the example Dx
defined above, 〈Dx〉 is equivalent to the following:

∃n. ((x 7→ n) ∧ (n > 0)) n (x 7→ n+ 1)

In addition, we define the syntactic sugar [D] as a definite action
describing the preservation of Enabled(D). For the example Dx
above, [Dx] represents the following definite action:

(∃n. (x 7→ n) ∧ (n > 0)) ; (∃n. (x 7→ n) ∧ (n > 0))

It specifies the transitions which keep x positive if it is positive
initially. The notation D′ 6 D will be explained later in Sec. 4.2.2.
Since D is a special rely/guarantee assertion, the semantics of
D ⇒ D′ follows the standard meaning of R ⇒ R′ [7] (or see
the definition in Fig. 12).

Thread IDs as implicit assertion parameters. All the assertions
in our logic, including state assertions, rely/guarantee conditions
and definite actions, are implicitly parametrized over thread IDs.
Although our logic does modular reasoning about the object code
without any knowledge about clients, it is useful for assertions to
refer to thread IDs. For instance, we may use L 7→ t to represent
that the lock L is acquired by the thread t. We use Pt to represent the
instantiation of the thread ID parameter in P with t, which means
P holds on thread t. Then P alone can also be understood as ∀t.Pt,
and P ⇒ Q can be viewed as ∀t.Pt ⇒ Qt. The same convention
applies to rely/guarantee conditions and definite actions.

7

for all f ∈ dom(Π) : Π(f) = (x,C) Γ(f) = (y, C′) dom(Π) = dom(Γ)
D, R,G ` {P ∧ (x = y) ∧ arem(C′) ∧ �(Ek, . . . , E1)}C{P ∧ arem(skip)}

∀t, t′. t 6= t′ =⇒ Gt ⇒ Rt′ wffAct(R,D) P ⇒ ¬Enabled(D)

D, R,G ` {P}Π : Γ
(OBJ)

p ∧B ⇒ p′ p ∧B ∧ (Enabled(D) ∨Q)⇒ p′ ∗ (♦ ∧ emp) D, R,G ` {p′}C{p}
p⇒ J Sta(J,R ∨G) D′ 6 D wffAct(R,D′) J ⇒ (R,G : D′ f−→Q)

D, R,G ` {p}while (B){C}{p ∧ ¬B}
(WHL)

D, R,G ` {p}C{q}
D, R,G ` {bpc♦}C{bqc♦}

(HIDE-♦)

` [p]C[q′] q′ Vk q (TpU nk TqU)⇒ G

D, Id, G ` {p}〈C〉{q}
(ATOM)

D, Id, G ` {p}〈C〉{q} Sta({p, q}, R)

D, R,G ` {p}〈C〉{q}
(ATOM-R)

p⇒ (E = E′) Sta(p,R)

D, R,G ` {bpca ∧ arem(return E′)}return E{bpca ∧ arem(skip)}
(RET)

D, R,G ` {p}C1{r} D, R,G ` {r}C2{q}
D, R,G ` {p}C1;C2{q}

(SEQ)

D, R,G ` {p ∧B}C1{q} D, R,G ` {p ∧ ¬B}C2{q}
D, R,G ` {p}if (B) C1 else C2{q}

(IF)
D, R,G ` {bpca ∧ arem(C1)}C{bpca ∧ arem(C2)}

D, R,G ` {bpca ∧ arem(C1;C3)}C{bpca ∧ arem(C2;C3)}
(AREM)

p′ ⇒ p R′ ⇒ R D, R,G ` {p}C{q} q ⇒ q′ G⇒ G′ Sta({p′, q′}, R) wffAct(R,D)

D, R′, G′ ` {p′}C{q′}
(CSQ)

D, R,G ` {p}C{q}
x 6∈ fv(D, R,G)

D, R,G ` {∃x. p}C{∃x. q}
(EX)

D, R,G ` {p1}C{q1}
D, R,G ` {p2}C{q2}

D, R,G ` {p1 ∧ p2}C{q1 ∧ q2}
(CONJ)

D, R,G ` {p1}C{q1}
D, R,G ` {p2}C{q2}

D, R,G ` {p1 ∨ p2}C{q1 ∨ q2}
(DISJ)

Figure 9. Inference rules.

4.2 Verifying Starvation-Freedom with Definite Actions
Figure 9 presents the inference rules of LiLi. We explain the logic in
two steps. In this subsection we explain the use of definite actions
to reason about starvation-freedom. Then we explain the delay
mechanism for deadlock-freedom in Sec. 4.3.

4.2.1 The OBJ Rule
The OBJ rule requires that each method in Π refine its atomic
specification in Γ. Starting from the initial concrete and abstract
object states related by P , and with the equivalent method arguments
x and y at the concrete and the abstract levels, the method body C
must fulfil the abstract atomic operation C′. We can temporarily
ignore the assertion �(Ek, . . . , E1) for deadlock-freedom.

The last three premises of the OBJ rule checks the well-
formedness of the specifications. The first one says the guarantee
of one thread must implies the rely of all others, a standard require-
ment in rely/guarantee reasoning. In Fig. 10 we give a simplified
definition of wffAct used in the second premise. Its complete def-
inition is given in Fig. 13, which will be explained later when we
introduce stratified actions and �-tokens. wffAct(R,D) says once a
definite actionDt of a thread t is enabled it cannot be disabled by an
environment step in Rt. Also such an environment step either fulfils
a definite action Dt′ of some thread t′ different from t, or preserves
Enabled(Dt′) too. Together with the previous premise Gt′ ⇒ Rt,
this condition implies ∀t′. Gt′ ⇒ [Dt′] ∨ Dt′ . Therefore, once Dt

is enabled, the only way to disable it is to let the thread t finish the
action. As an example, consider the following Dt:

Dt
def
= (L 7→ t) ; (L 7→ 0)

It says that whenever a thread t acquires the lock L, it will finally
release the lock. Then, wffAct(R,D) require that when t acquires
L, every step in the system either keeps L unchanged or releases L.
In particular, Rt keeps L unchanged, that is, the environment cannot
update the lock when L 7→ t.

The last premise (P ⇒ ¬Enabled(D)) says there cannot be
enabled but unfinished definite actions when the method terminates
and the object invariant P is true.

The judgment D, R,G ` {p ∧ arem(C′)}C{q ∧ arem(skip)}
establishes a simulation relation between C and C′, which ensures
the preservation of termination when the environment guarantees
the definite action D. It also ensures the execution of C guarantees
D too. We explain the key rules for the judgment below.

4.2.2 The WHL Rule for Loops
The WHL rule, shown in Fig. 9, is the most important rule of the
logic. It establishes both of the following properties of the loop:

(1) it cannot loop forever with D continuously enabled;

(2) it cannot loop forever unless the current thread is waiting for
some definite actions of its environment.

The former guarantees a definite action of the current thread is
definite to happen once it is enabled. The latter is crucial to establish
the starvation-freedom.

Why definite actions are definite. The WHL verifies the loop
body with a precondition p′, which can be derived from the loop
invariant p if B holds. Moreover, we require each iteration to
consume a ♦-token if Enabled(D) holds at the beginning, as shown
by the second premise (ignore the assertion Q for now). Since each
thread has only a finite number of ♦-tokens, the loop must terminate
if Enabled(D) is continuously true.

However, the last premise of the OBJ rule says Enabled(D)
cannot be true if the method terminates. Therefore, Enabled(D)
cannot be continuously true. Also recall the other two side conditions
(wffAct(R,D) and Gt ⇒ Rt′) of the OBJ rule guarantee that, once
Enabled(D) holds, the only way to make it false is to let the current
thread finish the action.

Putting all these together, we know D will be finished once it is
enabled, even with the interference R.

8

Starvation-freedom. To establish starvation freedom, we need to
find a conditionQ saying the current thread is not blocked by others.
Then the second premise requires each iteration to consume a ♦-
token if Q holds at the beginning. Since the number of tokens is
finite, the loop must terminate if Q always holds.

If Q is false, the current thread is blocked by others. Then the
premise (R,G : D′ f−→Q) requires the thread must be waiting for its
environment to perform a finite number of definite actions.

Definition 1 (Definite Progress). S |= (R,G : D f−→Q) iff the
following hold for all t:

(1) either S |= Qt,
or there exists t′ such that t′ 6= t and S |= Enabled(Dt′);

(2) for any t′ 6= t and S′, if (S,S′, 0) |= Rt ∧ 〈Dt′〉, then
ft(S

′) < ft(S);
(3) for any S′, if (S,S′, 0) |= Rt ∨Gt, then ft(S

′) ≤ ft(S).

Here f is a function that maps the relational states S to some metrics
over which there is a well-founded order <.

Ignoring the index 0 above, the definition says either Q holds
over S or the definite action Dt′ of some environment thread t′

is enabled. Also we require the metric f(S) to decrease when
a definite action is performed. Besides, the metric should never
increase at any step of the execution.

To ensure that the metric f decreases regardless of the time when
the environment’s definite actions take place, the definite progress
should always hold. This is enforced by finding a stronger assertion
J such that p⇒ J and Sta(J,R∨G) hold, that is, J is an invariant
that holds at every program point of the loop. If (R,G : D f−→Q)

happens to satisfy the two premises, we can use (R,G : D f−→Q)
directly as J , but in practice it could be easier to prove the stability
requirement by finding a stronger J . The definition of stability
Sta(p,R) is given in Fig. 10.

Notice in (R,G : D′ f−→ Q) we can use D′ instead of D to
simplify the proof, as long as D′ 6 D and wffAct(R,D′) are
satisfied. The premise D′ 6 D, defined in Fig. 8, says D′ specifies
a subset of definite actions in D. For instance, if D consists of
multiple definite actions and is in the form of D1 ∧ . . . ∧ Dn, D′
may contain only a subset of these Dk (1 ≤ k ≤ n). The way to
exclude in D′ irrelevant definite actions can simplify the proof of
the condition (2) of definite progress (see Definition 1).

Given the definite progress condition, we know Q will be
eventually true because each definite action is definite to happen.
Then the loop starts to consume ♦-tokens and needs to finally
terminate, following our argument at the beginning.

4.2.3 More Inference Rules
The HIDE-♦ rule allows us to discard the tokens (by using b c♦)
when the termination of code C is already established, which is
useful for modular verification of nested loops.

ATOM rules for refinement reasoning. The ATOM rule allows us
to logically execute the abstract code simultaneously with every
concrete step (let’s first ignore the index k in the premises of the
rule). We use ` [p]C[q] to represent the total correctness of C in
sequential separation logic. The corresponding rules are standard
and elided here. We use p V q for the zero or multiple-step
executions from the abstract code specified by p to the code specified
by q, which is defined in Fig. 10. Then, the ATOM rule allows us to
execute zero-or-more steps of the abstract code with the execution
of C, as long as the overall transition (including the abstract steps
and the concrete steps) satisfies the relational guarantee G. We can
lift C’s total correctness to the concurrent setting as long as the
environment consists of identity transitions only. To allow a weaker

wffAct(R,D) iff ∀t. Rt ⇒ [Dt] ∧ (∀t′ 6= t. [Dt′] ∨ Dt′)

Sta(p,R) iff ∀S,S′, u, w,C.
((S, (u,w), C) |= p) ∧ ((S,S′) |= R) =⇒ (S′, (u,w), C) |= p

pV q iff ∀t, σ,Σ, u, w,C,ΣF .
(((σ,Σ), (u,w), C) |= p) ∧ (Σ⊥ΣF) =⇒ ∃C′,Σ′.

((C,Σ]ΣF) −_∗t (C′,Σ′]ΣF)) ∧ ((σ,Σ′), (u,w), C′) |=q

Figure 10. Auxiliary defs. used in logic rules (simplified version).

1 local i, o, r;

2 <i := getAndInc(next); ticket[i] := cid >;

3 o := [owner]; while (i != o) { o := [owner]; }
4 [owner] := i + 1;

Pt
def
= ∃tl, n1, n2. lockIrrt(tl, n1, n2) Gt

def
= Lockt ∨ Unlockt

Lockt
def
= ∃tl, n1, n2. lockIrrt(tl, n1, n2) n locked(tl :: t, n1, n2 + 1)

Unlockt
def
= ∃tl, n1, n2. locked(t :: tl, n1, n2) n lockIrrt(tl, n1+1, n2)

Dt
def
= ∀tl, n1, n2. locked(t :: tl, n1, n2) ; lockIrrt(tl, n1 + 1, n2)

Jt
def
= ∃n1, n2, tl1, tl2. tlockedtl1,t,tl2 (n1, i, n2) ∧ (o ≤ n1)

Qt
def
= ∃n2, tl2. locked(t :: tl2, i, n2) ∧ (o ≤ i)

f(S) = k iff S |= ∃n1. (owner 7→ n1) ∗ true ∧ (i− n1 = k)

Figure 11. Proofs for the ticket lock (with auxiliary code in gray).

R, we can apply the ATOM-R rule later, which requires that the pre-
and post-conditions be stable with respect to R.

4.2.4 Example: Ticket Locks
We prove the starvation-freedom of the ticket lock implementation
in Fig. 11 using our logic rules. We have informally discussed in
Sec. 2 the verification of the counter using a ticket lock (sfInc in
Fig. 1(c)). To simplify the presentation, here we erase the increment
in the critical section and focus on the progress property of the
code in Fig. 11. With an empty critical section, the code functions
just as skip, so Fig. 11 proves it is linearizable with respect to
skip. The proofs of sfInc (including its starvation-freedom and
linearizability with respect to the atomic INC in Fig. 1(a)) are given
in Appendix C.1.

To help specify the queue of the threads requesting the lock, we
introduce an auxiliary array ticket. As shown in Fig. 11, each
array cell ticket[i] records the ID of the unique thread which gets
the ticket number i. Here we use cid for the current thread ID.

We then define some predicates to describe the lock status.
lock(tl, n1, n2) contains the auxiliary ticket array in addition to
owner and next, where owner 7→ n1 and next 7→ n2, and tl is
the list of the threads recorded in ticket[n1], . . . , ticket[n2− 1].
We also use locked(tl, n1, n2) for the case when tl is not empty.
That is, the lock is acquired by the first thread in tl, while the
other threads in tl are waiting for the lock in order. Besides, we use
lockIrrt(tl, n1, n2) short for lock(tl, n1, n2) ∧ (t 6∈ tl). That is, the
thread t is “irrelevant” to the lock: it does not request the lock. The
formal definitions are given in Appendix C.1.

The bottom of Fig. 11 defines the precondition P and the
guarantee condition G of the code. Gt specifies the possible atomic
actions of a thread t. Lock t adds the thread t at the end of tl of the
threads requesting the lock and increments next. It corresponds
to line 2 of Fig. 11. Unlock t releases the lock by incrementing
owner and dequeuing the thread t which currently holds the lock. It
corresponds to line 4 of Fig. 11. The rely condition Rt includes all
the Gt′ made by the environment threads t′.

Next we define the definite action D. As we explained in
Sec. 2, Dt requires that whenever the thread t holds a lock with

9

owner 7→ n1, it should eventually release the lock by incrementing
owner to n1 + 1. We can prove the side conditions about well-
formedness of specifications in the OBJ rule hold.

The key to verifying the loop at line 3 is to find a metric
function f and prove definite progress J ⇒ (R,G′ : D f−→Q) for a
stable J . As shown in Fig. 11, we define Jt to say that the thread
t is requesting the lock. Here tlockedtl1,t,tl2(n1, i, n2) is similar
to locked(tl1 :: t :: tl2, n1, n2). It also says that the thread t takes
the ticket number i. Qt specifies the case when tl1 is empty (thus
owner 7→ i). We also strengthen the guarantee condition G′ of the
loop to Id, the identity transitions.

The metric function f maps each state S to the difference
between i and owner at that state, which describes the number
of threads ahead of t in the waiting queue. We use the usual < order
on natural numbers as the associated well-founded order. Then, we
can verify J ⇒ (R,G′ : D f−→Q).

Finally, we prove that the loop terminates with one ♦-token when
Q holds or D is enabled. Then we can conclude linearizability and
starvation-freedom of the ticket lock implementation in Fig. 11.

4.3 Adding Delay for Deadlock-Free Objects
As we explained in Sec. 2, deadlock-free objects allow the progress
of a thread to be delayed by its environment, as long as the whole
system makes progress. Correspondingly, to verify deadlock-free
objects, we extend our logic with a delay mechanism. First we find
out the delaying actions and stratify them for objects with rollbacks
where a delaying action may trigger more steps of other delaying
actions. Then, we introduce �-tokens (we use � here to distinguish
them from ♦-tokens for loops) to bound the number of delaying
actions in each method, so we avoid infinite delays without whole-
system progress.

Multi-level rely/guarantee assertions. As shown in Fig. 6, we
index the rely/guarantee assertion P nk Q with a natural number k
and call it a level-k action. We require 0 ≤ k < maxL, where maxL
is a predefined upper bound of all levels. Intuitively, P nk Q could
make other threads do more actions at a level k′ < k. Thus P n0 Q
cannot make other threads do any more actions, i.e., it cannot delay
other threads. P n1 Q could make other threads do more actions
at level 0 but no more at level 1, thus we avoid the problem of
delay-caused circular dependency discussed in Sec. 2.2.2.

To interpret the level numbers in the assertion semantics, we de-
fine L((S,S′), R) in Fig. 12 which assigns a level to the transition
(S,S′), given the specification R. That is, if L((S,S′), R) = k,
we say R views (S,S′) as a level-k transition. We let k = maxL if
the transition does not satisfy R. Given the level function, we can
now define the semantics of bRc0, which picks out the transitions
that R views as level-0 ones. For the following example R,

R
def
= (P n0 Q) ∨ (P ′ n1 Q′)

bRc0 is equivalent to P n0 Q. Besides, R ⇒ bRc0 means that R
views all state transitions as level-0 ones, thus any state transitions
of R should not delay the progress of other threads.

We use (S,S′, k) |= R as a shorthand for L((S,S′), R) = k
(k < maxL). Then the implication R⇒ R′ is redefined under this
new interpretation, as shown in Fig. 12.

�-tokens in assertions. To ensure the progress of the whole
system, we require the steps of delaying actions to pay �-tokens.
Since we allow multi-levels of transitions to delay other threads,
the �-tokens are stratified accordingly. Thus we introduce the new
assertion �(Ek, . . . , E1) in Fig. 6, whose semantics is defined in
Fig. 7. It says the number of each level-j �-tokens is no less than
Ej . Here u is a sequence (nk, . . . , n1) recording the numbers of �-
tokens at different levels, as defined in Fig. 12. We overload< as the

L((S,S′), P nk Q)
def
=

{
k if (S,S′) |= P nk Q
maxL otherwise

L((S,S′), [P])
def
=

{
0 if (S,S′) |= [P]
maxL otherwise

L((S,S′),D)
def
=

{
0 if (S,S′) |= D
maxL otherwise

L((S,S′), R ∧R′) def
= max(L((S,S′), R),L((S,S′), R′))

L((S,S′), R ∨R′) def
= min(L((S,S′), R),L((S,S′), R′))

L((S,S′), bRc0)
def
=

{
0 if L((S,S′), R) = 0
maxL otherwise

(S,S′) |= bRc0 iff L((S,S′), R) = 0

(S,S′, k) |= R iff L((S,S′), R) = k and k < maxL

R⇒ R′ iff ∀S,S′, k. ((S,S′, k) |= R) =⇒ (S,S′, k) |= R′

u ::= (nk, . . . , n1) (1 ≤ k < maxL)

(n′m, . . . , n
′
1) <k (nm, . . . , n1) iff (∀i > k. (n′i = ni)) ∧ (n′k < nk)

(n′m, . . . , n
′
1) ≈k (nm, . . . , n1) iff (∀i ≥ k. (n′i = ni))

u < u′ iff ∃k. u <k u′ u ≤ u′ iff u < u′ ∨ u = u′

(u,w) <k (u′, w′) iff (u <k u
′) ∨ (k = 0 ∧ u = u′ ∧ w = w′)

(u,w) ≈k (u′, w′) iff u ≈k u′ ∧ (k = 0 =⇒ w = w′)

Figure 12. Levels of state transitions and tokens.

dictionary order for the sequence of natural numbers. The ordering
over u and other related definitions are also given in Fig. 12.

4.3.1 Inference Rules Revisited
To use the logic to verify deadlock-free objects, we need to first
find in each object method the actions that may delay the progress
of others. Since some of these actions may be further delayed by
others, we assign levels to them to ensure each action can only be
delayed by ones at higher levels. We specify the actions and their
levels in the rely/guarantee conditions. We also need to decide an
upper bound of these execution steps at each level and specify them
as the number of �-tokens in the precondition of each method.

Below we revisit the inference rules in Fig. 9 and explain their use
of multi-level actions and�-tokens. In the OBJ rule, we specify in the
precondition the number of �-tokens needed for each object method.
The side condition wffAct(R,D) is also redefined in Fig. 13, which
is explained below.

Decreasing �-tokens at the ATOM rule. The thread loses �-
tokens when it performs an action that may delay other threads. This
is required by the ATOM rule. Depending on whether the atomic
command may delay others or not, we assign a level k in the premise
q′ Vk q, which is redefined in Fig. 13. Similar to pV q in Fig. 10,
it allows us to execute the abstract code. Now it also requires the
number of �-tokens at level k to be decreased if k ≥ 1.

Note k cannot be arbitrarily chosen. The assignment of the
level k to the atomic operation must be consistent with the level
specification in G, as required by the third premise.

Being delayed: increasing tokens at stability checking. When
the progress of the thread t is delayed by a level-k (k ≥ 1) action
from its environment thread t′, thread t could gain more ♦-tokens
to do more loop iterations. It could also gain more level-k′ (k′ < k)
�-tokens to execute more level-k′ actions. Here increasing tokens
would not affect the soundness of our logic because the environment
thread t′ must pay a higher-level token for its higher-level delaying
action. As we explained in Sec. 2.3.4, the �-tokens at all levels in

10

wffAct(R,D) iff ∀t. bRtc0 ⇒ [Dt] ∧ (∀t′ 6= t. [Dt′] ∨ Dt′)

pVk q iff ∀t, σ,Σ, u, w,C,ΣF .
(((σ,Σ), (u,w), C) |= p) ∧ (Σ⊥ΣF) =⇒ ∃u′, w′, C′,Σ′.
((C,Σ]ΣF) −_∗t (C′,Σ′]ΣF)) ∧ (((σ,Σ′), (u′, w′), C′) |= q)
∧ (u′, w′) <k (u,w) (<k defined in Fig. 12)

Sta(p,R) iff ∀S,S′, u, w,C, k.
((S, (u,w), C) |= p) ∧ ((S,S′, k) |= R) =⇒ ∃u′, w′.
((S′, (u′, w′), C) |= p) ∧ ((u′, w′) ≈k (u,w))

where ≈k is defined in Fig. 12.

Figure 13. Key auxiliary definitions for inference rules (final
version that supersedes definitions in Fig. 10).

lockedt
def
= (L 7→ t) envLockedt

def
= ∃t′. lockedt′ ∧ (t′ 6= t)

unlocked
def
= (L 7→ 0) notOwnt

def
= unlocked ∨ envLockedt

Gt
def
= Lockt ∨ Unlockt

Lockt
def
= unlocked n1 lockedt Unlockt

def
= lockedt n0 unlocked

Dt
def
= lockedt ; unlocked Jt

def
= notOwnt ∨ lockedt

Qt
def
= unlocked ∨ lockedt ft(S) =

{
1 if S |= envLockedt

0 if S |= Qt{
notOwncid ∧ �

}
1 local b := false;{

((¬b) ∧ notOwncid ∧ � ∧ ♦) ∨ (b ∧ lockedcid)
}

2 while (!b) {{
(unlocked ∧ �) ∨ (envLockedcid ∧ � ∧ ♦)

}
3 b := cas(L, 0, cid);{

(b ∧ lockedcid) ∨ ((¬b) ∧ notOwncid ∧ � ∧ ♦)
}

4 }{
lockedcid

}
5 [L] := 0;{

notOwncid
}

Figure 14. Proofs for the TAS lock.

the whole system actually form a tuple which strictly descends along
the dictionary order, ensuring the whole-system progress.

We re-define the stability Sta(p,R) in Fig. 13 to reflect the
possible increasing of tokens for the thread t. We could reset w and
the number at level k′ < k in u after the environment step R if this
step is associated with a level k (k ≥ 1).

Allowing queue jumps at definite progress and wffAct. As we
explained in Sec. 2.3.3, for deadlock-free objects, the environment
steps could cause queue jumps to delay the progress of the thread t.
Like starvation-free objects, the thread t using deadlock-free objects
may wait for a queue of definite actions made by its environment. A
queue jump would make the thread t wait for a longer queue of the
environment’s definite actions.

As shown in Definition 1, the definite progress condition (R,G :

D f−→Q) allows the thread to reset its metric f(S) for a queue jump
when the environment step is associated with level k ≥ 1 (i.e., it is
a delaying action). In this case, although the current thread may be
blocked for a longer time, the whole system must progress since a
�-token is paid by the environment thread for the delaying action.

Also the requirement wffAct(R,D) (used at the OBJ rule and
the WHL rule) should be revised to allow queue jumps. The new
definition is shown in Fig. 13. Here we allow a queue jump to disable
the definite action D of the thread at the head of the queue, so it
is not necessary to require Enabled(D) to be preserved when the
environment step is associated with level k ≥ 1.

4.3.2 Example: Test-and-Set Locks
In Fig. 14, we verify the test-and-set lock implementation explained
in Sec. 2. Like the ticket lock proofs in Sec. 4.2.4, we simplify the
code and prove it is linearizable with respect to skip. Here we omit
the assertion arem(skip) at each line in the proof, and focus on
proving deadlock-freedom of the code.

As defined at the top of Fig. 14, the action Lockt (corresponding
to the successful cas at line 3) is at level 1, which may delay other
threads trying to acquire the lock. The Unlockt action is at level 0,
which cannot delay other threads. Also the precondition is given a
�-token, which is required to pay for the Lockt action.

The definite action D simply says that the thread t would
eventually release the lock when it acquires the lock. It is easy
to check that the side conditions about R, G and D in the OBJ rule,
e.g., wffAct(R,D), are satisfied.
R,G : D f−→Q specifies the queue of definite actions which now

contains at most one environment thread. That is, the metric f(S)
is 1 if the lock is not available, and is 0 otherwise. When an
environment thread t′ cuts in line by acquiring the lock when the
lock is free, the current thread t has to wait for Dt′ before t itself
progresses. Thus in R,G : D f−→Q the current thread t can reset its
metric f(S) when its environment acquires the lock.

The detailed proof at the bottom of Fig. 14 shows the changes of
tokens. We give the current thread one ♦-token (using the HIDE-♦
rule) to do its loop at lines 2-4. It consumes this ♦-token at the
beginning of the loop body when Q holds, as shown in the left
branch of the assertion p before line 3. When Q does not hold, as
shown in p’s right branch, the loop does not consume the ♦-token.

Next we stabilize p. For the left branch, if an environment thread
t′ acquires the lock, which is a delaying action Lock t′ , we let the
current thread regain a ♦-token. The resulting state just satisfies the
right branch of p. Thus p is already stable.

The current thread pays its �-token when its cas at line 3
succeeds (i.e., it acquires the lock), as shown in the left branch
of the assertion after line 3. If the cas fails, the thread still has � to
acquire the lock in the future and ♦ to try one more iteration.

4.3.3 Another Example: Nested Locks with Rollback
To demonstrate the use of action levels, we verify the rollback code
in Fig. 2(b) which we informally discussed in Sec. 2. Here we
assume all the methods of the object either acquire L1 before L2 (as
in the method of Fig. 2(b)), or acquire only one lock.

Stratified delaying actions. As in the TAS lock example in
Sec. 4.3.2, lock acquirements are delaying actions. Here we have
two locks L1 and L2, and a thread may roll back and re-acquire L1
if its environment owns L2. To support the rollbacks, we stratify
the delaying actions and �-tokens in two levels. Acquirements of
L2 are at level 2, defined as Lock2 in Fig. 15, which may trigger
rollbacks and more acquirements of L1. Acquirements of L1 at
level 1 may delay other threads requesting L1, causing them to do
more non-delaying actions, but cannot reversely trigger more level-2
actions. Thus we avoid the circular delay problem.

However, acquirements of L1 in some special cases cannot
be viewed as delaying actions. Suppose L2 is acquired by an
environment thread t′ before the current thread t starts the method.
Then t would continuously roll back until t′ releases L2. It may
acquire L1 infinitely often. In this case, viewing all acquirements
of L1 as delaying actions would require t to pay �-tokens infinitely
often, and consequently require an infinite number of �-tokens be
assigned to the method at the beginning, which is impossible. To
address the problem, we define in Fig. 15 that acquiring L1 is a
level-1 action Lock1 only if L2 is free. When L2 is acquired by the
environment, we say the current thread is “blocked”, and we view
its acquirement of L1 as a non-delaying action Lock0 at level 0.

11

Gt
def
= Lock2 t ∨ Lock1 t ∨ Lock0 t ∨ Unlock2 t ∨ Unlock1 t

Lock2 t
def
= (unlocked(L2) n2 lockedt(L2)) ∗ [L1 7→]

Lock1 t
def
= (unlocked(L1) n1 lockedt(L1)) ∗ [unlocked(L2)]

Lock0 t
def
= (unlocked(L1) n0 lockedt(L1)) ∗ [envLockedt(L2)]

Unlock2 t
def
= (lockedt(L2) n0 unlocked(L2)) ∗ [L1 7→]

Unlock1 t
def
= (lockedt(L1) n0 unlocked(L1)) ∗ [L2 7→]

Dt
def
= D2t ∧ D1t

D2t
def
= ∀s. lockedt(L2) ∗ (L1 7→ s) ; unlocked(L2) ∗ (L1 7→ s)

D1t
def
= lockedt(L1) ∗ unlocked(L2) ; unlocked(L1) ∗ unlocked(L2)

Figure 15. Multi-level actions for the example in Fig. 2(b).

{
notOwncid(L1) ∗ notOwncid(L2) ∧ �(1, 1)

}
1 lock L1;

p1
def
=

{
lockedcid(L1) ∗ (unlocked(L2) ∧ �(1, 0)

∨ envLockedcid(L2) ∧ �(1, 1))

}
2 local r := L2;{

lockedcid(L1) ∗ notOwncid(L2)
∧ ((r = 0) ∧ �(1, 0) ∨ (r 6= 0) ∧ �(1, 1) ∧ ♦)

}
3 while (r != 0) {

p2
def
=

{
lockedcid(L1)
∗ (unlocked(L2) ∨ envLockedcid(L2) ∧ ♦) ∧ �(1, 1)

}
4 unlock L1;
5 lock L1;{

lockedcid(L1) ∗ (unlocked(L2) ∧ �(1, 0)
∨ envLockedcid(L2) ∧ �(1, 1) ∧ ♦)

}
6 r := L2;{

lockedcid(L1) ∗ notOwncid(L2)
∧ ((r = 0) ∧ �(1, 0) ∨ (r = 1) ∧ �(1, 1) ∧ ♦)

}
7 }{

lockedcid(L1) ∗ notOwncid(L2) ∧ �(1, 0)
}

8 lock L2;{
lockedcid(L1) ∗ lockedcid(L2)

}
9 unlock L2;

10 unlock L1;{
notOwncid(L1) ∗ notOwncid(L2)

}
Qt

def
= (lockedt(L1) ∨ unlocked(L1)) ∗ unlocked(L2)

Figure 16. Proof outline for the rollback example in Fig. 2(b).

To simplify the presentation, the definitions in Fig. 15 follow the
notations in LRG [7], using “∗ [P]” to mean that the actions on the
irrelevant part P of the states are identity transitions.

Definite actions. There are two kinds of definite actions, which
release the two locks respectively. As shown in Fig. 15, D2 says a
thread holding L2 eventually releases it, regardless of the status of
the lock L1. D1 says L1 will be definitely released when L2 is free.
Note that a thread holding L1 may not be able to release the lock if
it cannot acquire L2.

Proof outline for the rollback. As shown in Fig. 16, when thread t
starts the method, it is given �(1, 1), where the level-2 �-token is for
doing Lock2 and the level-1 �-token is for Lock1 . The assertions
notOwn is defined similarly as in Fig. 14.

lock L1 at line 1 is implemented using the TAS lock, and its
detailed proof is in Fig. 17, which will be explained later. The
acquirement of L1 may or may not consume a level-1 �-token,
depending on whether L2 is free or not (see p1 in Fig. 16). If L2 is
free, line 1 is a Lock1 action, which consumes a token. Otherwise it
is a Lock0 action and the token is not consumed, allowing the thread
t to roll back and do Lock1 later. Then we stabilize the assertion.
For the left branch, when an environment thread acquires L2, i.e.,
the interference is at level 2, the thread t could re-gain the level-1

p01
def
= unlocked(L1) ∗ unlocked(L2)

p02
def
= (unlocked(L1) ∗ envLockedcid(L2)) ∧ ♦

p03
def
= (envLockedcid(L1) ∗ notOwncid(L2)) ∧ ♦{
notOwncid(L1) ∗ notOwncid(L2) ∧ �(1, 1)

}
1 local b := false;{

(¬b) ∧ (notOwncid(L1) ∗ notOwncid(L2)) ∧ �(1, 1) ∧ ♦
∨ b ∧ p1

}
2 while (!b) {{

(p01 ∨ p02 ∨ p03) ∧ �(1, 1)
}

3 b := cas(L1, 0, cid);
b ∧ lockedcid(L1)
∗ (unlocked(L2) ∧ �(1, 0) ∨ envLockedcid(L2) ∧ �(1, 1))
∨ (¬b) ∧ ((unlocked(L1) ∨ envLockedcid(L1))

∗ notOwncid(L2)) ∧ �(1, 1) ∧ ♦


4 }{

p1
}

Figure 17. Proof outline for lock L1 in the rollback example.

�-token, resulting in the right branch of the assertion. Stabilizing
the right branch gives us the whole p1 too. Thus p1 is stable.

Then thread t tests L2 at line 2 in Fig. 16. When r is not 0, thread
t goes into the loop at line 3. The Q for the loop is defined at the
bottom of Fig. 16, which says that thread t could terminate the loop
when L1 is not acquired by the environment and L2 is free. Before
line 3, we give the thread one ♦-token for the loop (applying the
HIDE-♦ rule). The token is consumed at the beginning of an iteration
when the above Q holds. Thus, the loop body (from line 4 to line 6)
is verified with the precondition p2. Note the thread still has one
♦-token if L2 is not available, because the loop does not consume
the token if Q does not hold. The token will be consumed at the
next round when L2 is free. On the other hand, stabilizing the left
branch of the above assertion p2 just gives us the whole p2: When
an environment thread acquires L2, thread t could re-gain a ♦-token.

Besides, the definite progress R,G : D f−→Q is verified as fol-
lows. When thread t is blocked (i.e., Q does not hold), there is a
queue of definite actions of the environment threads. The length of
the queue is at most 2, as shown by f defined below:

ft(S)
def
=

 2 if S |= envLockedt(L2) ∗ true
1 if S |= envLockedt(L1) ∗ unlocked(L2)
0 if S |= Q

When the environment thread t′ holding L2 releases the lock (i.e., it
does D2t′), the queue becomes shorter. Thread t only needs to wait
for the environment thread to release L1.

Acquirements of L1 in the rollback example. Finally we discuss
the proof of the implementation of lock L1 in Fig. 17. Here we use
the same Q in Fig. 16 to verify the loop. That is, we think the thread
is “blocked” if L2 is not available. Initially we give one ♦-token
for the loop. Depending on whether Q holds or not, there are three
cases (p01, p02 and p03) when we enter the loop. For the case p01,
the loop consumes the ♦-token because Q holds. For the other two
cases (p02 and p03), Q does not hold and the token is kept. Note
that stabilizing p01 results in p03 when the environment acquires L1:
Since L2 is free, the environment action is a level-1 delaying action
Lock1 , allowing the thread to re-gain the ♦-token.

For line 3, if b is true, we know p01 or p02 holds before the line.
Depending on whether L2 is available or not, the action may or
may not consume a level-1 �-token, following the same argument
as in line 1 in Fig. 16. If b is false, then p03 holds before the line.
Stabilizing this case results in the right branch of the postcondition
of line 3, with a ♦-token for the next round of loop.

It may seem strange that for the loop we do not use a Q′ def
=

lockedt(L1) ∨ unlocked(L1), i.e., the same Q as in Fig. 14. If we
use Q′ instead, then the case p02 before line 3 cannot have the

12

♦-token because Q′ is true in this case and the ♦-token needs
to be consumed by the loop. Thus p02 needs to be changed to
p′02

def
= envLockedcid(L1) ∗ notOwncid(L2). Stabilizing p′02 can no

longer give us p03 when the environment acquires L1, because the
acquirement action is Lock0 instead of Lock1 (since L2 is not free
in this case). The thread cannot re-gain the ♦-token in p03, so p03

cannot have the ♦-token either. As a result, we no longer have a
♦-token to pay for the next round of loop if the cas in line 3 fails.

5. Soundness and Abstraction Theorems
Our logic LiLi is a sound proof technique for concurrent objects
based on blocking algorithms, as shown by the following theorem.

Theorem 2 (Soundness). If D, R,G ` {P}Π : Γ, then

(1) both Π �lin
P Γ and deadlock-freeP (Π) hold; and

(2) if R⇒ bRc0 and G⇒ bGc0, then starvation-freeP (Π) holds.

Here Π �lin
P Γ describes linearizability of the object Π. Infor-

mally it says that Π has the same effects as the atomic operations
of Γ (assuming the initial object states satisfy P). The formal def-
inition is standard [15] and omitted here. deadlock-freeP (Π) and
starvation-freeP (Π) are the two progress properties defined follow-
ing their informal meanings [14] (or see Sec. 1).

Theorem 2 shows that LiLi ensures linearizability and deadlock-
freedom together, and it also ensures starvation-freedom when the
rely/guarantee specification of the object satisfies certain constraints.
The constraints R ⇒ bRc0 and G ⇒ bGc0 require R and G to
specify actions of level 0 only. That is, none of the object actions of a
thread could delay the progress of other threads. With the specialized
R and G, we can derive the progress of each single thread, which
gives us starvation-freedom.

Abstraction. The soundness theorem shows that our logic ensures
linearizability with respect to atomic operations. However, from the
client code’s point of view, the methods of deadlock-free objects
do not refine atomic operations when termination is concerned.
Consider the example below.

dfInc(); s:=1; while (s=0) dfInc();

INC; s:=1; while (s=0) INC;

The first line shows the client code using a lock-free counter,
while the second line uses an atomic counter (see Fig. 1 for the
implementation of counters). Assuming s=0 initially, it is easy to
see the first program may or may not terminate, but the second one
must terminate under fair scheduling. Therefore the first program
is not a termination-preserving refinement of the second one. Note
that if we replace dfInc with the starvation-free counter sfInc, the
first program must terminate too under fair scheduling.

We propose a novel “progress-aware” object specification wrl(Γ)
for deadlock-free objects that are linearizable with respect to Γ. As
defined below, wrl(Γ) wraps the atomic operations in Γ with some
auxiliary code for synchronization.

wrl(Γ)(f)
def
= (x, wrl(〈C〉); return E) if Γ(f) = (x, 〈C〉; return E)

wrl(〈C〉)
def
= local u1 := nondet(), u2 := nondet();

while(u1 >= 0) { lock l; unlock l; u1--; }
〈C〉;
while(u2 >= 0) { lock l; unlock l; u2--; }

Here we assume l is a fresh variable, i.e., l 6∈ fv(Π,Γ, P). The
wrapper function wrl inserts a finite (but arbitrary) number of lock-
acquire (lock l) and lock-release (unlock l) actions before and
after the atomic abstract code 〈C〉. The command u := nondet()
assigns to u a nondeterministic number. The lock l is a TAS lock
(implementation shown in Fig. 1(b)). Then the progress of a thread
executing wrl(Γ) could be delayed by other threads acquiring the

lock l. By introducing the explicit delay mechanism, the abstract
specification can model the deadlock-freedom property. In our
previous example, if we replace INC with wrl(INC), the second
program may fail to terminate too, even under fair scheduling.

Before showing our abstraction theorem, we first define contex-
tual refinement below.

Definition 3 (Contextual Refinement under Fair Scheduling).
Π vP Π′ iff ∀n,C1, . . . , Cn, σc, σo,Σo. ((σo,Σo) |= P)

=⇒ OfωJ(W, (σc, σo))K ⊆ OfωJ(W ′, (σc,Σo)K ;

where W = let Π in C1‖ . . .‖Cn and W ′ = let Π′ in C1‖ . . .‖Cn.

Here OfωJW,SK generates the full traces of externally observ-
able events in fair executions starting from (W,S). In our language
in Sec. 3, only outputs (produced by print commands) and fault
events are externally observable. Note thatOfωJW,SK contains only
full execution traces (which could be infinite for non-terminating
executions), therefore v is a termination-preserving refinement.

As an important and novel result, we show the following ab-
straction theorem, saying that our logic LiLi ensures the contextual
refinements v.

Theorem 4 (Progress-Aware Abstraction).
Suppose l 6∈ fv(Π,Γ, P,D, R,G). If D, R,G ` {P}Π : Γ, then

(1) Π vwrl(P) wrl(Γ) holds; and
(2) if R⇒ bRc0 and G⇒ bGc0, then Π vP Γ holds.

where wrl(P) extends the precondition P with the lock variable l,
i.e., wrl(P)

def
= (P ∗ (l 7→ 0)).

The contextual refinements v provide abstractions for concur-
rent objects under fair scheduling, which can be applied for modular
verification of client code. When proving liveness properties of a
client of an object under fair scheduling, we can soundly replace the
concrete object implementation Π by some more abstract code. For
starvation-free objects (case (2) in the theorem), the substitute is Γ,
the atomic abstract operations. For deadlock-free objects (case (1)
in the theorem), the substitute is wrl(Γ), where the atomic abstract
operations Γ are wrapped with auxiliary code for synchronization.
In this paper we do not discuss the verification of clients.

More details about proofs. Due to splace limit, we omit defini-
tions of some key concepts, e.g., linearizability, deadlock-freedom
and starvation-freedom. They are mostly standard and are presented
in Appendix B.5. The proofs of Theorems 2 and 4 are shown in
detail in Appendix B. Here we only give a brief overview about the
structure of the proofs.

To prove Theorem 4, we introduce a termination-preserving
simulation, which extends previous work [23] to reason about
blocking and delay. LiLi ensures that the concrete implementation
Π is simulated by the abstract specification (Γ for starvation-free
objects and wrl(Γ) for deadlock-free ones). Then we prove the
simulation ensures the contextual refinement v.

We also establish the equivalence between the contextual re-
finements and the combination of linearizability and deadlock-
freedom/starvation-freedom, as in Liang et al.’s previous work [22].
Then Theorem 2 follows from these equivalence results and Theo-
rem 4.

In more detail, Theorem 2 is proved in a unified framework in
Fig. 18. In the diagram, we use “=⇒” for implications and “⇐⇒”
for equivalences. The dashed arrow a 99K b and the dotted arrow
b a both mean that b is an instance of a.

The top at Fig. 18 shows our final goals: verifying lineariz-
ability Π �lin

P Γ, and starvation-freeP (Π) or deadlock-freeP (Π).
Inspired by earlier work [8, 22], we reduce the goals (see 1 and 2
in Fig. 18) to verifying contextual refinements v in Definition 3.

13

Π �lin
P Γ ∧ starvation-freeP (Π) Π �lin

P Γ ∧ deadlock-freeP (Π)

Π vP Γ Π vwrl(P) wrl(Γ)

Π vP ′ Π′

Π -P ′ Π′

Π -P Γ Π -wrl(P) wrl(Γ)

D, R,G |= {P}Π : Γ

D, R,G ` {P}Π : Γ

(R⇒ bRc0)
∧ (G⇒ bGc0)

1 2

3 4

5 6

7 8

9

Figure 18. A unified framework for logic soundness proofs.

When using v to characterize deadlock-free objects Π (see 2
in Fig. 18), their methods at the abstract side are no longer atomic.
We need to use the “progress-aware” object specification wrl(Γ).

Our results 1 and 2 in Fig. 18 unify starvation-freedom and
deadlock-freedom. Both can be characterized by contextual refine-
ment Π vP ′ Π′, where Π′ may not be atomic. (See 3 and 4 .)

Next we propose the simulation Π -P ′ Π′ as a proof technique
for the contextual refinement v. (See the gray box at the center
of Fig. 18.) The simulation ensures that executions of Π preserve
the behaviors of Π′ under fair scheduling. It is adapted from the
compositional simulations in earlier work [21, 23].

At the bottom 9 of Fig. 18, we define semantics for our logic
judgment D, R,G ` {P}Π : Γ. Note that the logic uses the atomic
Γ as specification. The judgment semantics D, R,G |= {P}Π : Γ
is also based on a simulation, but it is much closer to the logic rules,
which can simplify the task of proving the validity of each rule in
Fig. 9. It can be directly (see 8) translated to Π -wrl(P) wrl(Γ),
where wrl is the wrapper function we just defined (still assume l is
an arbitrary fresh variable). If the rely/guarantee conditions R and
G specify actions of level 0 only (see case (2) in Theorem 2), the
judgment semantics can also be reduced to Π -P Γ (see 7). Both
Π -wrl(P) wrl(Γ) and Π -P Γ are instances of the more general
simulation Π -P ′ Π′ (see 5 and 6).

The proof framework in Fig. 18 unifies the logic soundness
proofs for both starvation-freedom and deadlock-freedom. All the
formal definitions and detailed proofs are given in Appendix B.

6. On Lock-Freedom and Wait-Freedom
As a program logic for concurrent objects under fair scheduling,
LiLi unifies the verification of linearizability, starvation-freedom
and deadlock-freedom. It has been applied to verify objects with
blocking synchronization (i.e., mutual exclusion locks).

LiLi can also be applied to verify non-blocking objects. For non-
blocking objects, wait-freedom and lock-freedom are two commonly
accepted progress criteria, which require method-wise progress and
whole-system progress respectively. Then, under fair scheduling,
wait-freedom and lock-freedom are degraded to starvation-freedom
and deadlock-freedom, respectively.

Fig. 19 shows the relationships among all the four progress
properties (where “⇒” represents implications). We sort them in two
dimensions: blocking and delay (their difference has been explained
in Sec. 2.2.1). Starvation-free or deadlock-free objects allow a thread
to be blocked, and lock-free and deadlock-free objects permit delay.

non-delay delay
non-blocking wait-freedom ⇒ lock-freedom

⇓ ⇓
blocking starvation-freedom ⇒ deadlock-freedom

Figure 19. Progress properties of concurrent objects.

Our logic LiLi handles blocking by definite actions, and supports
delay by �-tokens and multi-level actions. By ignoring either or
both features, it can be instantiated to verify objects with any of the
four progress properties in Fig. 19.

To verify lock-free objects, we instantiate the definite actions
D to be false ; true, and use only the supports for delay. Then a
thread cannot rely on the environment threads’ D, meaning that it is
never blocked. The WHL rule in Fig. 9 is reduced to requiring that
the loop terminates (the ♦-tokens decrease at each iteration) unless
being delayed by the environment. The definite progress condition
J ⇒ (R,G : D f−→Q) could trivially hold by setting both Q and J
to be true and f to be a constant function.

To verify wait-free objects, besides instantiating D as false ;

true, we also requireR andG to specify actions of level 0 only, as in
Theorem 2(2). The instantiation results in the logic rules disallowing
both blocking and delay, so we know every method would terminate
regardless of the environment interference.

In fact, Liang et al.’s program logic rules [23] for lock-free
algorithms can be viewed as a specialization of LiLi. Thus all the
examples verified in their work can also be verified in LiLi.

7. More Examples
We have seen a few small examples showing the use of LiLi. Below
we give an overview of other blocking algorithms we have verified.
Their proofs are in Appendix C (for starvation-free examples) and
Appendix D (for deadlock-free examples).

• Coarse-grained synchronization. The easiest way to implement
a concurrent object is using a single lock to protect all the object
data. Our logic can be applied to such an object. As an example,
we verified the counter with various lock implementations [13,
24], including ticket locks, Anderson array-based queue locks,
CLH list-based queue locks, MCS list-based queue locks, and
TAS locks. We show that the coarse-grained object with ticket
locks or queue locks is starvation-free, and it is deadlock-free
with TAS locks.

• Fine-grained and optimistic synchronization. As examples with
more permissive locking scheme, we verified Michael-Scott two-
lock queues [25], lock-coupling lists [13], optimistic lists [13],
and lazy lists [11]. We show that the two-lock queues and
the lock-coupling lists are starvation-free if all their locks are
implemented using ticket locks, and they are deadlock-free if
their locks are TAS locks. The optimistic lists and the lazy lists
have rollback mechanisms, and we prove they are deadlock-free.

To the best of our knowledge, we are the first to formally verify
the starvation-freedom of lock-coupling lists and the deadlock-
freedom of optimistic lists and lazy lists.

Optimistic lists. Below we verify the optimistic list-based imple-
mentation in Fig. 2(a) of a mutable set data structure. The algorithm
has operations add, which adds an element to the set, and rmv,
which removes an element from the set. Fig. 20 shows the code and
the proof outline for rmv.

We have informally explained the idea of the algorithm in
Sec. 2.3.4. To verify its progress in LiLi, we need to recognize
the delaying actions, specify them in rely and guarantee conditions

14

rmv(int e) {{
�(1, 2) ∧ arem(RMV(e)) ∧ . . .

}
1 local b := false, p, c, n;{

¬b ∧ �(1, 2) ∧ ♦ ∧ . . . ∨ b ∧ . . .
}

2 while (!b) {{
�(1, 2) ∧ . . .

}
3 (p, c) := find(e); // a loop of list traversal{

valid(p, c) ∧ �(1, 2) ∧ . . . ∨ invalid(p, c) ∧ �(1, 4) ∧ ♦ ∧ . . .
}

4 lock p; lock c;{
valid(p, c) ∧ �(1, 0) ∧ . . . ∨ invalid(p, c) ∧ �(1, 2) ∧ ♦ ∧ . . .

}
5 b := validate(p, c); // a loop of list traversal
6 if (!b) { unlock c; unlock p; }{

b ∧ valid(p, c) ∧ �(1, 0) ∧ . . . ∨ ¬b ∧ �(1, 2) ∧ ♦ ∧ . . .
}

7 }{
valid(p, c) ∧ �(1, 0) ∧ arem(RMV(e)) ∧ . . .

}
8 if (c.data = e) {
9 n := c.next;{

valid(p, c, e, n) ∧ �(1, 0) ∧ arem(RMV(e)) ∧ . . .
}

10 < p.next := n; gn := gn ∪ {c} >; // LP{
valid(p, n) ∧ arem(skip) ∧ . . .

}
11 }
12 unlock c; unlock p;{

arem(skip) ∧ . . .
}

}

Figure 20. Proofs for optimistic lists (with auxiliary code in gray).

with appropriate levels, define the definite actions, and finally prove
the termination of loops following the WHL rule.

Following the earlier linearizability proofs in RGSep [30], the
basic actions of a thread include the lock acquire (line 4) and release
actions (lines 6 and 12), and the Add and Rmv actions (lines 8-11)
that insert and delete nodes from the list respectively. Since we use
TAS locks here, acquirements of a lock will delay other threads
competing for the same lock. Thus lock acquirements are delaying
actions, as illustrated in Sec. 4.3.2. Also, the Add and Rmv actions
may cause the failure of the validation (at line 5) in other threads.
The failed validation will further cause the threads to roll back and
to acquire the locks again. Therefore the Add and Rmv actions are
also delaying actions that may lead to more lock acquirements. In
our rely and guarantee specifications, the Add and Rmv actions are
level-2 delaying actions, while lock acquirements are at level 1.

Next we define the definite actions D that a blocked thread
may wait for. Since a thread is blocked only if the lock it tries to
acquire is unavailable, we only need to specify in D the various
scenarios under which the lock release would definitely happen. The
definitions are omitted here.

We also need to find a metric f to prove the definite progress
condition in the WHL rule. We define f as the number of all the
locked nodes, including those on the list and those that have been
removed from the list but have not been unlocked yet. It is a
conservative upper bound of the length of the queue of definite
actions that a blocked thread is waiting for. It is easy to check that
every definite action D makes the metric to decrease, and that a
thread is unblocked to acquire the lock when the metric becomes 0.

In Fig. 20, the precondition is given �(1, 2), two level-1 �-
tokens for locking two adjacent nodes, and one level-2 �-token for
doing Rmv . We apply the (HIDE-♦) rule and assign one ♦-token to
the loop at lines 2-7, so the loop should terminate in one round if it
is not delayed by the environment.

A round of loop is started at the cost of the ♦-token. The code
find at line 3 traverses the list. After line 3, p and c may be
valid: both of them are on the list and p.next is c. However, if
the environment updates the list by the level-2 delaying actions Add
or Rmv , the two nodes p and c may no longer satisfy valid. In this
case, invalid(p, c) holds, and the current thread could gain two more

level-1 �-tokens and one more ♦-token, allowing it to roll back and
re-lock the nodes in a new round.

At line 4, lock p and lock c consume two level-1 �-tokens
respectively. The validation at line 5 succeeds in a valid state, and
fails in an invalid state. Thus we can re-establish the loop invariant
after line 6.

Lines 8-11 perform the node removal. Line 10 is the lineariza-
tion point (LP in the figure), at which we fulfill the abstract atomic
operation RMV(e). Afterwards, the remaining abstract code becomes
skip. To help specify the shared state, in line 10 we introduce an
auxiliary variable gn to collect the locations of removed nodes.

Due to space limit, here we only give a brief overview of
the proofs and omit many details, including the specifications
of rely and guarantee conditions, definite actions, and the proofs
of the implementation of find (line 3), validate (line 5) and
lock (line 4). The full specifications and proofs are given in
Appendix D.4.

8. Related Work and Conclusion
Using rely-guarantee style logics to verify liveness properties can
date back to work by Stark [27], Stølen [28], Abadi and Lamport [1]
and Xu et al. [32]. Among them the most closely related work is
the fair termination rule for while loops proposed by Stølen [28],
based on an idea of wait conditions. His rule requires each iteration
to descend if the wait condition Pw holds once in the round. Pw is
comparable to ¬Q in our WHL rule in Fig. 9. But it is difficult to
specify Pw which is part of the global interface of a thread, while our
Q can be constructed on-the-fly for each loop. Also it is difficult to
construct the well-founded order when ¬Pw is not stable (e.g., as in
the TAS lock). We address the problem with the token transfer idea.
Besides, his rule does not support starvation-freedom verification.

Gotsman et al. [10] propose a rely-guarantee-style logic to verify
non-blocking algorithms. They allow R and G to specify certain
types of liveness properties in temporal logic assertions, and do
layered proofs iteratively in multiple rounds to break circular rea-
soning. Afterwards Hoffmann et al. [16] propose the token-transfer
idea to handle delays in lock-free algorithms. Their approach can
be viewed as giving relatively lightweight guidelines (without the
need of multi-round reasoning) to discharge the temporal obligations
for lock-freedom verification. Liang et al. [23] then apply similar
ideas in refinement verification. Their logic can verify linearizability
and lock-freedom together. In LiLi, the use of stratified �-tokens
generalizes their token-transfer approaches to support delays and
rollbacks for deadlock-free objects. Also we propose the new idea
of definite actions as a specific guideline to support blocking for
progress verification under fair scheduling.

Recently, da Rocha Pinto et al. [5] take a different approach to
handle delay. They verify total correctness of non-blocking programs
by explicitly specifying the number of delaying actions that the
environment can do. As we explained, blocking and delay are two
different kinds of interference causing non-termination, both of
which are now handled in LiLi.

Jacobs et al. [17] also design logic rules for total correctness.
They prevent deadlock by global wait orders (proposed by Leino et
al. [20] to prove safety properties), where they need a global function
mapping locks to levels. It is unclear if their rules can be applied
to algorithms with dynamic locking and rollbacks, such as the list
algorithms verified with LiLi. Besides, the idea of wait orders relies
on built-in locks, which is ill-suited for object verification since it is
often difficult to identify a particular field in the object as a lock.

Boström and Müller [3] extend the approach of global wait
orders to verify finite blocking in non-terminating programs. They
propose a notion of obligations which are like our definite actions
D. But they still do not support starvation-freedom verification.

15

Here we propose the definite progress condition to also ensure the
termination of a thread if it is unblocked infinitely often.

Filipović et al. [8] first show the equivalence between lineariz-
ability and a contextual refinement. Gotsman and Yang [9] suggest
a connection between lock-freedom and a termination-sensitive con-
textual refinement. Afterwards Liang et al. [22] formulate several
contextual refinements, each of which can characterize a liveness
property of linearizable objects. However, their contextual refine-
ments for blocking properties assume fair scheduling at the concrete
level only, which lack transitivity. In this paper, we unify deadlock-
freedom and starvation-freedom with the contextual refinement v
(see Def. 3) which gives us the novel Abstraction Theorem (Thm. 4)
to support modular reasoning about client code.

Back and Xu [2] and Henzinger et al. [12] propose simulations
to verify refinement under fair scheduling. Their simulations are not
thread-local, and there is no program logic given.

There is also plenty of work for liveness verification based on
temporal logics and model checking. Temporal reasoning allows
one to verify progress properties in a unified and general way, but it
provides less guidance on how to discharge the proof obligations.
Our logic rules are based on program structures and enforce specific
patterns (e.g., definite actions and tokens) to guide liveness proofs.

Conclusion and future work. We propose LiLi to verify lineariz-
ability and starvation-freedom/deadlock-freedom of concurrent ob-
jects. It is the first program logic that supports progress verification
of blocking algorithms. We have applied it to verify several non-
trivial algorithms, including lock-coupling lists, optimistic lists and
lazy lists. In the future, we would like to further test its applicability
with more examples, such as tree algorithms which perform rota-
tion by fine-grained locking. We also hope to mechanize LiLi and
develop tools to automate the verification process.

Acknowledgments
We would like to thank Zhong Shao and anonymous referees for
their suggestions and comments on earlier versions of this paper.
This work is supported in part by grants from National Natural
Science Foundation of China (NSFC) under Grant Nos. 61229201,
61379039, 91318301 and 61502442.

References
[1] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans.

Program. Lang. Syst., 1995.
[2] R. Back and Q. Xu. Refinement of fair action systems. Acta Inf., 1998.
[3] P. Boström and P. Müller. Modular verification of finite blocking in

non-terminating programs. In ECOOP, pages 639–663, 2015.
[4] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe

programming: Preventing data races and deadlocks. In OOPSLA, pages
211–230, 2002.

[5] P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner, and J. Sutherland.
Modular termination verification for non-blocking concurrency, 2015.
Manuscript.

[6] J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified
proof obligations for linearizability. TOPLAS, 2011.

[7] X. Feng. Local rely-guarantee reasoning. In POPL, pages 315–327,
2009.

[8] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for
concurrent objects. Theor. Comput. Sci., 2010.

[9] A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction.
In ICALP, pages 453–465, 2011.

[10] A. Gotsman, B. Cook, M. J. Parkinson, and V. Vafeiadis. Proving that
non-blocking algorithms don’t block. In POPL, pages 16–28, 2009.

[11] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, and
N. Shavit. A lazy concurrent list-based set algorithm. In OPODIS’05.

[12] T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation.
Inf. Comput., 2002.

[13] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[14] M. Herlihy and N. Shavit. On the nature of progress. In OPODIS,
pages 313–328, 2011.

[15] M. Herlihy and J. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 1990.

[16] J. Hoffmann, M. Marmar, and Z. Shao. Quantitative reasoning for
proving lock-freedom. In LICS, pages 124–133, 2013.

[17] B. Jacobs, D. Bosnacki, and R. Kuiper. Modular termination verifica-
tion. In ECOOP, pages 664–688, 2015.

[18] C. B. Jones. Tentative steps toward a development method for
interfering programs. ACM Trans. Program. Lang. Syst., 1983.

[19] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded
programs. In ESOP 2009, pages 378–393, 2009.

[20] K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free channels and
locks. In ESOP, pages 407–426, 2010.

[21] H. Liang and X. Feng. Modular verification of linearizability with
non-fixed linearization points. In PLDI, pages 459–470, 2013.

[22] H. Liang, J. Hoffmann, X. Feng, and Z. Shao. Characterizing progress
properties of concurrent objects via contextual refinements. In CON-
CUR, pages 227–241, 2013.

[23] H. Liang, X. Feng, and Z. Shao. Compositional verification of
termination-preserving refinement of concurrent programs. In CSL-
LICS, 2014.

[24] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. TOCS, 1991.

[25] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC, 1996.

[26] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in
Hoare logics. In LICS, pages 137–146, 2006.

[27] E. W. Stark. A proof technique for rely/guarantee properties. In
FSTTCS, pages 369–391, 1985.

[28] K. Stølen. Shared-state design modulo weak and strong process fairness.
In FORTE, 1992.

[29] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-
style reasoning in a logic for higher-order concurrency. In ICFP, 2013.

[30] V. Vafeiadis. Modular fine-grained concurrency verification, 2008.
PhD Thesis.

[31] A. Williams, W. Thies, and M. D. Ernst. Static deadlock detection for
java libraries. In ECOOP, pages 602–629, 2005.

[32] Q. Xu, W. P. de Roever, and J. He. The rely-guarantee method for
verifying shared variable concurrent programs. Formal Asp. Comput.,
9(2):149–174, 1997.

16

A. The LRG-Style Full Version of LiLi
The full version of LiLi extends the advanced Rely-Guarantee-based logic LRG [7] to support dynamic allocation and ownership transfer. The
top level judgment is now in the form of D, R,G, I ` {P}Π : Γ. Here the fence I is used to determine the boundary of the shared memory
following LRG [7]. Just like P , I is also a relational assertion specifying the consistency relation between the concrete data representation and
the abstract value.

A.1 LRG-Style Assertions
(RelAssn) P,Q, I, J ::= . . . | own(x)

(RelAct) R,G ::= . . . | G ∗G

Following LRG [7], we treat program variables as resources [26] and use own(x) for the ownership of the program variable x. Also we
introduce separating conjunction over actions to locally define shared state updates. G1 ∗G2 means that the actions G1 and G2 start from
disjoint relational states and the resulting states are also disjoint. Here a level-k transition (S,S′) can be relaxed to a transition at a level
k′ ≤ k. Their semantics is defined below.

(σ,Σ)] (σ′,Σ′)
def
= (σ] σ′,Σ] Σ′) where (s, h)](s′, h′)

def
= (s]s′, h]h′)

((s, h), (s,h)) |= own(x) iff dom(s] s) = {x}
(S,S′) |= G1 ∗G2 iff ∃S1,S2,S′1,S

′
2.S = S1]S2 ∧S′ = S′1]S′2

∧ ((S1,S′1) |= G1) ∧ ((S2,S′2) |= G2)

L((S,S′), G1 ∗G2)
def
= min{k | ∃S1,S2,S′1,S

′
2. (S = S1]S2) ∧ (S′ = S′1]S′2)

∧ k = max(L((S1,S′1), G1),L((S2,S′2), G2))}
R⇒ R′ iff ∀S,S′, k. ((S,S′, k) |= R) =⇒ ∃k′ ≤ k. (S,S′, k′) |= R′

The syntactic sugars Id, Emp and True represent arbitrary identity transitions, empty transitions and arbitrary transitions respectively.

Emp
def
= emp n emp True

def
= true n true Id

def
= [true]

Fence. Since we logically split states into local and shared parts as in LRG [7], we need a precise invariant I to uniquely determine the
boundary between local and shared resources. We define the fence I . G below, which says that the transition G must be made within the
boundary specified by I .

I . G iff ([I]⇒ G) ∧ (G⇒ (I n I)) ∧ Precise(I)

The formal definition of the precise requirement Precise(I) is given in earlier work [21, 23], which follows its usual meaning as in separation
logic but is now interpreted over relational states. Since the need of fenced rely/guarantee conditions is inherited from LRG and is orthogonal
to the problem we study in this paper, readers unfamiliar with LRG can safely ignore it.

A.2 Inference Rules
Figure 21 presents the complete set of inference rules of LiLi.

Executing abstract code at (ATOM) and (CSQ) rules. Below we first define p G
=⇒ q used in the (CSQ) rule.

p
G
=⇒ q iff ∀t, σ,Σ, u, w,C,ΣF .

(((σ,Σ), (u,w), C) |= p) ∧ (Σ⊥ΣF) =⇒ ∃k, u′, w′, C′,Σ′.
((C,Σ]ΣF) −_∗t (C′,Σ′]ΣF)) ∧ (((σ,Σ), (σ,Σ′), k) |= G ∗ True)
∧ (((σ,Σ′), (u′, w′), C′) |= q) ∧ (u′, w′) <k (u,w) (<k defined in Fig. 12)

The definition of p G
=⇒ q is similar to pVk q defined in Fig. 13. In addition to executing the abstract code and decreasing the corresponding

black tokens, p G
=⇒ q also requires the overall transition to satisfy G.

17

for all f ∈ dom(Π) : Π(f) = (x,C) Γ(f) = (y,C) dom(Π) = dom(Γ)
D, R,G, I ` {P ∗ own(x) ∗ own(y) ∧ (x = y) ∧ arem(C) ∧ �(Ek, . . . , E1)}C{P ∗ own(x) ∗ own(y) ∧ arem(skip)}
∀t, t′. t 6= t′ =⇒ Gt ⇒ Rt′ wffAct(R,D) P ⇒ ¬Enabled(D) P ∨ Enabled(D)⇒ I

D, R,G, I ` {P}Π : Γ
(OBJ)

p ∧B ⇒ p′ p ∧B ∧ (Enabled(D) ∨Q) ∗ true⇒ p′ ∗ (♦ ∧ emp) D, R,G, I ` {p′}C{p}
p⇒ (B = B) ∗ J J ∨Q⇒ I Sta(J,R ∨G) D′ 6 D wffAct(R,D′) J ⇒ (R,G : D′ f−→Q)

D, R,G, I ` {p}while (B){C}{p ∧ ¬B}
(WHL)

` [p]C[q′] q′ Vk q (TpU nk TqU)⇒ G ∗ True I . G p ∨ q ⇒ I ∗ true

D, [I], G, I ` {p}〈C〉{q}
(ATOM)

D, [I], G, I ` {p}〈C〉{q} Sta({p, q}, R ∗ Id) I . R

D, R,G, I ` {p}〈C〉{q}
(ATOM-R)

D, R,G, I ` {p}C{q}
D, R,G, I ` {bpc♦}C{bqc♦}

(HIDE-♦)

p⇒ (E = E) ∗ I Sta(p,R ∗ Id) I . {R,G}
D, R,G, I ` {bpca ∧ arem(return E)}return E{bpca ∧ arem(skip)}

(RET)

` [p]C[q] Sta(r,R ∗ Id) I . {G,R} r ⇒ I ∗ true

D, R,G, I ` {p ∗ r}C{q ∗ r}
(PRIM)

D, R,G, I ` {p}C1{r} D, R,G, I ` {r}C2{q}
D, R,G, I ` {p}C1;C2{q}

(SEQ)

p⇒ (B = B) ∗ I D, R,G, I ` {p ∧B}C1{q} D, R,G, I ` {p ∧ ¬B}C2{q}
D, R,G, I ` {p}if (B) C1 else C2{q}

(IF)

D, R,G, I ` {p}C{q}
D, R,G, I ` {p ∗ r}C{q ∗ r}

(FRM)
D, R,G, I ` {bpca ∧ arem(C1)}C{bpca ∧ arem(C2)}

D, R,G, I ` {bpca ∧ arem(C1;C3)}C{bpca ∧ arem(C2;C3)}
(AREM)

p′
G
=⇒ p R′ ⇒ R D, R,G, I ` {p}C{q} q

G
=⇒ q′ G⇒ G′

p′ ∨ q′ ⇒ I′ ∗ true I′ . {G′, R′} Sta({p′, q′}, R ∗ Id) Enabled(D)⇒ I wffAct(R,D)

D, R′, G′, I′ ` {p′}C{q′}
(CSQ)

D, R,G, I ` {p}C{q}
x 6∈ fv(D, R,G, I)

D, R,G, I ` {∃x. p}C{∃x. q}
(EX)

D, R,G, I ` {p1}C{q1}
D, R,G, I ` {p2}C{q2}

D, R,G, I ` {p1 ∧ p2}C{q1 ∧ q2}
(CONJ)

D, R,G, I ` {p1}C{q1}
D, R,G, I ` {p2}C{q2}

D, R,G, I ` {p1 ∨ p2}C{q1 ∨ q2}
(DISJ)

Figure 21. LRG-style inference rules.

18

B. Logic Soundness Proofs
In this appendix, we give the detailed proofs of Theorem 2 following the unified proof framework in Fig. 18.

• Appendix B.1 defines the judgment semantics D, R,G |= {P}Π : Γ.

• Appendix B.2 shows the proofs of 9 of Fig. 18, i.e., the logic rules are sound with respect to the judgment semantics.

• Appendix B.3 defines the “common simulation” Π -P ′ Π′. Appendix B.3.1 shows the proofs of 7 and 8 of Fig. 18, i.e., the judgment
semantics D, R,G |= {P}Π : Γ implies instantiations of the common simulation.

• Appendix B.4 shows the core proofs for the gray box at the center of Fig. 18, i.e., the common simulation implies Π vP ′ Π′, the contextual
refinement under fair scheduling.

• Appendix B.5 shows the proofs of 1 and 2 of Fig. 18, i.e., deadlock-freedom/starvation-freedom and linearizability can be characterized
by the contextual refinements.

B.1 Judgment Semantics
The judgment semantics D, R,G |= {P}Π : Γ is based on a simulation between Π and Γ, with four well-founded metrics: M , ξ, M and u.
The metric M is to ensure that the current thread t must fulfill its definite action Dt in a finite number of steps. If thread t is blocked, the
metric ξ specifies the set of the environment threads that t is waiting for. It shrinks when an environment thread t′ finishes definite action Dt′ .
The metric M corresponds to the number of white tokens ♦, which is to ensure that thread t progresses on its own when ξ becomes empty. The
last metric u corresponds to the tuple of black tokens. It bounds the number of actions made by thread t which could delay the progress of its
environment threads.

Definition 5. D, R,G |= {P}Π : Γ iff, for any f ∈ dom(Π), for any σ and Σ, for any t, if Π(f) = (x,C), Γ(f) = (y,C) and
(σ,Σ) |= Pt ∗ own(x) ∗ own(y) ∧ (x = y), there exist three well-founded metrics u, M and M and a set ξ ∈P(ThrdID) such that

D, R,G |=t (C, σ)� (C,Σ) � (u,M,M) ⇓ξ (P ∗ own(x) ∗ own(y)).

Here D, R,G |=t (C, σ)� (C,Σ) � (u,M,M) ⇓ξ Q is co-inductively defined as follows.
Whenever D, R,G |=t (C, σ)� (C,Σ) � (u,M,M) ⇓ξ Q holds, then the following hold:

(1) Suppose σ = (s, h). Then ξ ⊆ s(TIDS) and t 6∈ ξ.
For any t′ ∈ ξ, we have (σ,Σ) |= Enabled(Dt′) ∗ true.

(2) If C = E[return E], then for any ΣF such that Σ⊥ΣF , there exist E and Σ′ such that
(a) (C,Σ] ΣF) −_∗

t (return E,Σ′] ΣF), and
(b) (σ,Σ′) |= Qt and JEKσ.s = JEKΣ′.s, and
(c) ((σ,Σ), (σ,Σ′), 0) |= Gt ∗ True.

(3) For any σF , (C, σ] σF) 6−_ t abort.
(4) For any C′, σ′′, σF and ΣF , if (C, σ] σF) −_ t (C′, σ′′) and Σ⊥ΣF , then there exist σ′, C′, Σ′, k, u′, M′, M ′ and ξ′ such that

(a) σ′′ = σ′] σF , and
(b) (C,Σ] ΣF) −_∗

t (C′,Σ′] ΣF), and
(c) D, R,G |=t (C′, σ′)� (C′,Σ′) � (u′,M′,M ′) ⇓ξ′ Q, and
(d) ((σ,Σ), (σ′,Σ′), k) |= Gt ∗ True, and
(e) either u′ <k u,

or u′ = u and k = 0 and M′ < M,
or u′ = u and k = 0 and M′ = M and ξ 6= ∅ and ξ ⊆ ξ′; and

(f) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then M ′ < M .
(5) For any k, σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), k) |= Rt ∗ Id, then there exist u′, M′, M ′, ξd and ξ′ such that

(a) D, R,G |=t (C, σ′)� (C,Σ′) � (u′,M′,M ′) ⇓ξ′ Q, and
(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ\ξd ⊆ ξ′) and u′ ≈k u, and
(c) if k = 0, then either M′ < M, or M′ = M and ξd = ∅; and
(d) if k = 0 and (σ,Σ) |= Enabled(Dt) ∗ true, then M ′ ≤M .

Definition 6. D, R,G |= {p}C{q} iff, for any σ, Σ, u, w and C, for any t, if ((σ,Σ), (u,w),C) |= pt, then

D, R,G |=t (C, σ)� (C,Σ) � (u, ((0, 0), |C|), (0, |C|), w, height(C)) ⇓∅ q.

Here D, R,G |=t (C, σ)� (C,Σ) � (u,ws,ws, w,H) ⇓ξ q is co-inductively defined as follows.
Whenever D, R,G |=t (C, σ)� (C,Σ) � (u,ws,ws, w,H) ⇓ξ q holds, then the following hold:

(1) Suppose σ = (s, h). Then ξ ⊆ s(TIDS) and t 6∈ ξ.
For any t′ ∈ ξ, we have (σ,Σ) |= Enabled(Dt′) ∗ true.
If ξ 6= ∅, then |ws| > 1.

(2) If C = skip, then for any ΣF such that Σ⊥ΣF , there exist C′ and Σ′ such that
(a) (C,Σ] ΣF) −_∗

t (C′,Σ′] ΣF), and
(b) ((σ,Σ′), (u,w),C′) |= qt, and
(c) ws = ((0, 0), 0) and ws = (0, 0) and ξ = ∅, and
(d) ((σ,Σ), (σ,Σ′), 0) |= Gt ∗ True.

19

(3) If C = E[return E], then for any ΣF such that Σ⊥ΣF , there exist E and Σ′ such that
(a) (C,Σ] ΣF) −_∗

t (return E,Σ′] ΣF), and
(b) ((σ,Σ′), (u,w), skip) |= qt and JEKσ.s = JEKΣ′.s, and
(c) ((σ,Σ), (σ,Σ′), 0) |= Gt ∗ True.

(4) For any σF , (C, σ] σF) 6−_ t abort.
(5) For any C′, σ′′, σF and ΣF , if (C, σ] σF) −_ t (C′, σ′′), then there exist σ′, C′, Σ′, k, u′, ws′, ws ′, w′ and ξ′ such that

(a) σ′′ = σ′] σF , and
(b) (C,Σ] ΣF) −_∗

t (C′,Σ′] ΣF), and
(c) D, R,G |=t (C′, σ′)� (C′,Σ′) � (u′,ws′,ws ′, w′,H) ⇓ξ′ q, and
(d) ((σ,Σ), (σ′,Σ′), k) |= Gt ∗ True, and
(e) either u′ <k u,

or u′ = u and k = 0 and ws′ <H ws and w′ = w,
or u′ = u and k = 0 and ws′ = ws and w′ = w and ξ 6= ∅ and ξ ⊆ ξ′; and

(f) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then ws ′ <H ws .
(6) For any k, σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), k) |= Rt ∗ Id, then there exist u′, ws′, ws ′, w′, ξd and ξ′ such that

(a) D, R,G |=t (C, σ′)� (C,Σ′) � (u′,ws′,ws ′, w′,H) ⇓ξ′ q, and
(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ\ξd ⊆ ξ′) and u′ ≈k u, and
(c) if k = 0, then either ws′ <H ws and w′ = w, or ws′ = ws and w′ = w and ξd = ∅; and
(d) if k = 0 and (σ,Σ) |= Enabled(Dt) ∗ true, then ws ′ ≤H ws .

Below we also define the semantics for the sequential judgment used in the ATOM rule. Note that C only accesses the concrete memory σ,
therefore we require the other components in the full state (i.e., u, w, C and Σ) should remain unchanged during the execution of C.

Definition 7 (SL judgment semantics, total correctness). |= [p]C[q] iff, for all σ, Σ, u, w and C, for any t, if ((σ,Σ), (u,w),C) |= pt, the
following are true:

1. for any σ′, if (C, σ) −_∗
t (skip, σ′), then ((σ′,Σ), (u,w),C) |= qt;

2. (C, σ) 6−_∗
t abort;

3. (C, σ) 6−_ω
t ·.

Lemma 8. If ` [p]C[q], then |= [p]C[q].

Definition 9 (Locality).
Locality(C) iff, for any σ1 and σ2, let σ = σ1] σ2, then the following hold:

1. (Safety monotonicity) If (C, σ1) 6−_∗
t abort, then (C, σ) 6−_∗

t abort.
2. (Termination monotonicity) If (C, σ1) 6−_∗

t abort and (C, σ1) 6−_ω
t ·, then (C, σ) 6−_ω

t ·.
3. (Frame property) For any n and σ′, if (C, σ1) 6−_ ∗

t abort and (C, σ) −_n
t (C′, σ′), then there exists σ′1 such that σ′ = σ′1] σ2 and

(C, σ1) −_n
t (C′, σ′1).

B.1.1 Instantiating Metrics and Well-Founded Orders
The judgment semantics in Definition 6 can be viewed as an instantiation of the simulation in Definition 5. The key is to instantiate the metrics
M and M in D, R,G |=t (C, σ)� (C,Σ) � (u,M,M) ⇓ξ Q. Below we take the instantiation for M as an example.

(Metric) M ::= (ws,H)

(WfStack) ws ::= (w, n) | (w, n) ::ws

(StkHeight) H ∈ Nat

For each single thread, its metric ws is usually a list of (w, n) pairs, where w is the while-specific metric (which is left to be instantiated later)
and n is a natural number specifying the “code size” as in Liang et al.’s work [23]. We let the threaded metric ws be a list (a stack actually) to
allow different while-specific metrics for nested loops. That is, when entering a loop, we can push a (w, n) pair to the ws stack; and when
exiting the loop, we pop the pair out of ws .

The threaded metric ws follows the dictionary order. However, the usual dictionary order over lists is not well-founded (consider
B > AB > AAB > AAAB > . . . in a dictionary). To address this issue, we introduce a bound of the list length (stack height), H, and
define the well-founded order ≺H by requiring the length of the lists should be not larger thanH. Intuitively, the stack heightH represents
the maximal depth of nested loops, so it can be determined for any given program. The well-founded orders M ′ < M and ws ′ ≺H ws are
defined as follows.

ws ′ ≺H ws H′ = H
(ws ′,H′) < (ws,H)

ws ′ ≺H ws iff (ws ′ ≺≺ ws) ∧ (|ws ′| ≤ H) ∧ (|ws| ≤ H)

ws ′ 4H ws iff (ws ′ ≺H ws) ∨ (ws ′ = ws)

20

(w′, n′) < (w, n)

(w′, n′) ≺≺ (w, n)

(w′, n′) < (w, n)

(w′, n′) ::ws ′1 ≺≺ (w, n) ::ws1

(w′, n′) = (w, n) ws ′1 ≺≺ ws1

(w′, n′) ::ws ′1 ≺≺ (w, n) ::ws1

(w′, n′) < (w, n)

(w′, n′) ::ws ′1 ≺≺ (w, n)

(w′, n′) ≤ (w, n)

(w′, n′) ≺≺ (w, n) ::ws1

Here |ws| is the length of ws , which is defined as follows:

|(w, n)| = 1
|(w, n) ::ws| = 1 + |ws|

The well-founded order over the (w, n) pairs is a usual dictionary order below, where the order over w is instantiated later depending on the
type of w.

(w′, n′) < (w, n) iff (w′ < w) ∨ (w′ = w ∧ n′ < n)

(w′, n′) = (w, n) iff (w′ = w) ∧ (n′ = n)

(w′, n′) ≤ (w, n) iff (w′, n′) < (w, n) ∨ (w′, n′) = (w, n)

Lemma 10 (Well-foundedness). The relations M ′ < M and ws ′ <H ws defined above are both well-founded relations.

The judgment semantics in Definition 6 has more restrictions on the well-founded order over ws . We define the order ws ′ <H ws below,
which is stronger than the more general order ws ′ ≺H ws above.

ws ′ <H ws iff (ws ′ � ws) ∧ (|ws ′| ≤ H) ∧ (|ws| ≤ H)

ws ′ ≤H ws iff (ws ′ <H ws) ∨ (ws ′ = ws)

(w′, n′) < (w, n)

(w′, n′)� (w, n)

(w′, n′) = (w, n) ws ′1 � ws1

(w′, n′) ::ws ′1 � (w, n) ::ws1

(w′, n′) < (w, n)

(w′, n′) ::ws ′1 � (w, n)

(w′, n′) = (w, n)

(w′, n′)� (w, n) ::ws1

(w′0, n′0) = (w0, n0) (w′, n′) < (w, n)

(w′0, n′0) :: (w′, n′) ::ws ′1 � (w0, n0) :: (w, n) ::ws1

HeightH. As we said, the stack heightH represents the maximal depth of nested loops. For any given program C, we can determine the
stack height using a function height defined below.

height(skip)
def
= 1

height(return E)
def
= 1

height(c)
def
= 1

height(〈C〉) def
= 1

height(C1;C2)
def
= max{height(C1), height(C2)}

height(if (B) C1 else C2)
def
= max{height(C1), height(C2)}

height(while (B){C}) def
= height(C) + 1

Initial code size. In Definition 6, the judgment semantics initially takes the static code size |C| defined below as the second dimension of
ws and ws.

|skip| def
= 0

|return E| def
= 1

|c| def
= 1

|〈C〉| def
= 1

|C1;C2|
def
= |C1|+ |C2|+ 1

|if (B) C1 else C2|
def
= max{|C1|, |C2|}+ 1

|while (B){C}| def
= 1

Example of ws . Below we use a simple example to show how we assign a proper ws to each state during an execution. In the code below,
we assign different labels to different layers of a nested while loop. The initial code is while(i > 0) i--;. The loop is labeled with 1 and
its body code is labeled with 2. After the loop is unfolded, we use the syntax while to be distinguished from the original while which has not
been unfolded.

21

In the ws below, the first dimension specifies the number of iterations left to unfold, and the second dimension specifies the “code size” at
each layer.

C σ ws

1 while1(i > 0) i--2; i = 2 (0, 1)

2 → i--2; while1(i > 0) i--2; i = 2 (0, 0) :: (1, 2)

3 → skip2; while1(i > 0) i--2; i = 1 (0, 0) :: (1, 1)

4 → while1(i > 0) i--2; i = 1 (0, 0) :: (1, 0)

5 → i--2; while1(i > 0) i--2; i = 1 (0, 0) :: (0, 2)

6 → skip2; while1(i > 0) i--2; i = 0 (0, 0) :: (0, 1)

7 → while1(i > 0) i--2; i = 0 (0, 0) :: (0, 0)

8 → skip1; i = 0 (0, 0)

Initially, ws is (0, 1): the first dimension is 0 because we have not started to unfold the loop, and the second dimension is 1 because the
code size of the whole loop is 1. After one step of the loop, ws becomes (0, 0) :: (1, 2). Since we have unfolded the loop, the ws stack contains
two pairs now. In the second pair, the first dimension is 1 because the loop needs only one more iteration to finish (i.e., we only need to unfold
it one more time). Its second dimension is 2 because the size of the loop body code is 2. After the next step, this dimension decreases. At the
step of line 5, we unfold the loop again. So the first dimension of the second pair decreases to 0, saying that we do not need to unfold the loop
anymore. Finally, at the step of line 8, the loop finishes, thus we pop out the second pair of the ws stack.

22

B.2 Soundness of the Inference Rules
In this section, we prove Lemma 11 by induction over the derivation.

Lemma 11 (9 in Fig. 18). If D, R,G, I ` {P}Π : Γ, then D, R,G |= {P}Π : Γ.

Proof. By induction over derivation. By Lemma 12, we only need to prove the following:

If dom(Π) = dom(Γ) and for all f ∈ dom(Π) such that Π(f) = (x,C) and Γ(f) = (y,C), we have
D, R,G |= {P ∗ own(x) ∗ own(y) ∧ (x = y) ∧ arem(C) ∧ �(Ek, . . . , E1)} C {P ∗ own(x) ∗ own(y) ∧ arem(skip)},
then D, R,G |= {P}Π : Γ.

(B.1)

By co-induction.

Lemma 12. If

1. D, R,G, I ` {p}C{q};
2. Enabled(D)⇒ I;
3. for any t and t′ such that t 6= t′, we have Gt ⇒ Rt′ ;

then D, R,G |= {p}C{q}.
In the following subsections, we prove Lemma 12 by induction over the derivation.

B.2.1 The WHL Rule
Lemma 13 (WHL-Sound). If

1. p ∧B ⇒ p′; p ∧B ∧Q ∗ true⇒ p′ ∗ (♦ ∧ emp);
2. D, R,G |= {p′}C{p};
3. p⇒ (B = B) ∗ J ; J ⇒ I; Sta(J,R ∨G); Q⇒ I;

4. J ⇒ (R,G : D′ f−→Q); D′ 6 D; wffAct(R,D′);
5. I . {R,G}; Sta(p,R ∗ Id); Enabled(D)⇒ I;
6. for any t and t′ such that t 6= t′, we have Gt ⇒ Rt′ ;

then D, R,G |= {p}while (B){C}{p ∧ ¬B}.

Proof. LetH = height(while (B){C}) = height(C) + 1. We know |while (B){C}| = 1. Let

ws = ((0, 0), 1) and ws = (0, 1) and ξ = ∅.

Below we prove: for any t, for any σ, Σ, u, w and C,
if ((σ,Σ), (u,w),C) |= pt, then

D, R,G |=t (while (B){C}, σ)� (C,Σ) � (u,ws,ws, w,H) ⇓ξ p ∧ ¬B .

By co-induction. Suppose σ = (s, h). Since p⇒ (B = B) ∗ I , we know

(σ,Σ) |= I ∗ true, and either JBKs = true or JBKs = false .

Since p⇒ J ∗ true, we know

(σ,Σ) |= J ∗ true .

We only need to prove the following (1)(2)(3)(4)(5)(6).

(1) For any t′ ∈ ξ, we have (σ,Σ) |= Enabled(Dt′) ∗ true.
Proof : It is vacantly true.

(2) If while (B){C} = skip, then
Proof : It is vacantly true.

(3) If while (B){C} = E[return E], then
Proof : It is vacantly true.

(4) For any σF , (while (B){C}, σ] σF) 6−_ t abort.
Proof : It holds because JBKs is not undefined.

(5) If (while (B){C}, σ] σF) −_ t (C′, σ′′), then there exist σ′, C′, Σ′, k, u′, ws′, ws ′, w′ and ξ′ such that
(a) σ′′ = σ′] σF , and
(b) (C,Σ] ΣF) −_∗

t (C′,Σ′] ΣF), and
(c) D, R,G |=t (C′, σ′)� (C′,Σ′) � (u′,ws′,ws ′, w′,H) ⇓ξ′ p ∧ ¬B, and
(d) ((σ,Σ), (σ′,Σ′), k) |= Gt ∗ True, and
(e) either u′ <k u,

or u′ = u and k = 0 and ws′ <H ws and w′ = w,
or u′ = u and k = 0 and ws′ = ws and w′ = w and ξ 6= ∅ and ξ ⊆ ξ′; and

23

(f) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then ws ′ <H ws .
Proof : We have two cases depending on whether JBKs is true or false.
(I) If JBKs = true, we know σ′′ = σ] σF and (while (B){C}, σ] σF) −_ t (C; while (B){C}, σ] σF).

Also we know ((σ,Σ), (u,w),C) |= pt∧B. From p∧B ⇒ p′ andD, R,G |= {p′}C{p}, let ws1 = ((0, 0), |C|) and ws1 = (0, |C|),
we get:

D, R,G |=t (C, σ)� (C,Σ) � (u,ws1,ws1, w, height(C)) ⇓∅ p .
Let

ws ′ = (0, 0) :: (w, |C|+ 1) ,
we know ws ′ <H ws . Let

ks = f(σ,Σ) and ξ0 = {t′′ | (t′′ 6= t) ∧ ((σ,Σ) |= Enabled(D′t′′) ∗ true)} .

Since J ⇒ (R,G : D′ f−→Q), we have two cases:
• (σ,Σ) |= ∃t′ 6= t. Enabled(D′t′) ∗ true.

Then we know ξ0 6= ∅. By Lemma 14, let
ws′ = ((0, 0), 0) :: ((ks, w), 0) .

we know
D, R,G |=t (C; while (B){C}, σ)� (C,Σ) � (u,ws′,ws ′, w,H) ⇓ξ0 p ∧ ¬B .

Also we know ws′ <H ws.
• (σ,Σ) |= Qt ∗ true.

By Lemma 14, let
ws′ = ((0, 0), 0) :: ((ks, w), |C|+ 1) ,

we know
D, R,G |=t (C; while (B){C}, σ)� (C,Σ) � (u,ws′,ws ′, w,H) ⇓ξ0 p ∧ ¬B .

Also, ws′ <H ws holds.
(II) If JBKs = false, we know (while (B){C}, σ] σF) −_ t (skip, σ] σF).

By (SKIP) rule, let
ws′ = ((0, 0), 0) and ws ′ = (0, 0) ,

we know
D, R,G |=t (skip, σ)� (C,Σ) � (u,ws′,ws ′, w,H) ⇓∅ p ∧ ¬B .

Also we know ws′ <H ws and ws ′ <H ws .
Since (σ,Σ, i) |= I ∗ true, we know

((σ,Σ), (σ,Σ), 0) |= [I] ∗ True .

Since I . G, we know

((σ,Σ), (σ,Σ), 0) |= Gt ∗ True .

(6) If ((σ,Σ), (σ′,Σ′), k) |= Rt ∗ Id, then there exist u′, ws′, ws ′, w′, ξd and ξ′ such that
(a) D, R,G |=t (while (B){C}, σ′)� (C,Σ′) � (u′,ws′,ws ′, w′,H) ⇓ξ′ p ∧ ¬B, and
(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ\ξd ⊆ ξ′) and u′ ≈k u, and
(c) if k = 0, then either ws′ <H ws and w′ = w, or ws′ = ws and w′ = w and ξd = ∅; and
(d) if k = 0 and (σ,Σ) |= Enabled(Dt) ∗ true,

then ws ′ ≤H ws .
Proof : Since Sta(p,R ∗ Id), we know there exist u′ and w′ such that

((σ′,Σ′), (u′, w′),C) |= pt and u′ ≈k u and k = 0 =⇒ w′ = w .

By the co-induction hypothesis, we get

D, R,G |=t (while (B){C}, σ′)� (C,Σ′) � (u,ws,ws, w′,H) ⇓ξ p ∧ ¬B .

If k = 0, we know w′ = w and ξd = ∅.

Thus we are done.

We define:

head(ws)
def
=

{
((n1, n2), n3) if ws = ((n1, n2), n3)
((n1, n2), n3) if ws = ((n1, n2), n3) ::ws′

inchead(ws, ((k1, k2), k3))
def
=

{
((n1 + k1, n2 + k2), n3 + k3) if ws = ((n1, n2), n3)
((n1 + k1, n2 + k2), n3 + k3) ::ws′ if ws = ((n1, n2), n3) ::ws′

Lemma 14. If

1. p ∧B ⇒ p′; p ∧B ∧Q ∗ true⇒ p′ ∗ (♦ ∧ emp);
2. D, R,G |= {p′}C{p};
3. p⇒ (B = B) ∗ J ; J ⇒ I; Sta(J,R ∨G); Q⇒ I;

24

4. J ⇒ (R,G : D′ f−→Q); D′ 6 D; wffAct(R,D′);
5. I . {R,G}; Sta(p,R ∗ Id); Enabled(D)⇒ I;
6. for any t and t′ such that t 6= t′, we have Gt ⇒ Rt′ ;
7. D, R,G |=t (C1, σ)� (C,Σ) � (u,ws1,ws1, w1,H) ⇓ξ1 p;
8. (σ,Σ) |= J ∗ true; height(C) = H; head(ws1) = ((n1, n2), n3); f(σ,Σ, i) = ks; w1 ≤ w;
9. ξ0 = {t′ | (t′ 6= t) ∧ ((σ,Σ) |= Enabled(D′t′) ∗ true)}; ξ = ξ0 ∪ ξ1;

10. ws = (0, 0) :: inchead(ws1, (w1, 1));
11. one of the following holds:

• ξ0 6= ∅; ws = ((0, 0), 0) :: inchead(ws1, ((ks, w1),−n3));
• (σ,Σ) |= Qt ∗ true; ws = ((0, 0), 0) :: inchead(ws1, ((ks, w1), 1));

then D, R,G |=t (C1; while (B){C}, σ)� (C,Σ) � (u,ws,ws, w,H+ 1) ⇓ξ p ∧ ¬B.

Proof. By co-induction. We only need to prove the following (1)(2)(3)(4)(5).

(1) For any t′ ∈ ξ, we have (σ,Σ) |= Enabled(Dt′) ∗ true.
Proof : From

D, R,G |=t (C1, σ)� (C,Σ) � (u,ws1,ws1, w1,H) ⇓ξ1 p ,

we know for any t′ ∈ ξ1, we have (σ,Σ) |= Enabled(Dt′) ∗ true. Since D′ 6 D, we know for any t′ ∈ ξ0, we have
(σ,Σ) |= Enabled(Dt′) ∗ true. Thus we are done.

(2) If (C1; while (B){C}) = skip, then ...
Proof : It is vacantly true.

(3) For any σF , (C1; while (B){C}, σ] σF) 6−_ t abort.
Proof : From

D, R,G |=t (C1, σ)� (C,Σ) � (u,ws1,ws1, w1,H) ⇓ξ1 p ,

we know (C1, σ] σF) 6−_ t abort. By the operational semantics, we are done.
(4) If (C1; while (B){C}, σ] σF) −_ t (C′, σ′′), then there exist σ′, C′, Σ′, k, u′, ws′, ws ′, w′ and ξ′ such that

(a) σ′′ = σ′] σF , and
(b) (C,Σ] ΣF) −_∗

t (C′,Σ′] ΣF), and
(c) D, R,G |=t (C′, σ′)� (C′,Σ′) � (u′,ws′, w′,H+ 1) ⇓ξ′ p ∧ ¬B, and
(d) ((σ,Σ), (σ′,Σ′), k) |= Gt ∗ True, and
(e) either u′ <k u,

or u′ = u and k = 0 and ws′ <H+1 ws and w′ = w,
or u′ = u and k = 0 and ws′ = ws and w′ = w and ξ 6= ∅ and ξ ⊆ ξ′; and

(f) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then ws ′ <H+1 ws .
Proof : We have two cases depending on whether C1 is skip or not.
(I) If (C1; while (B){C}, σ] σF) −_ t (C′1; while (B){C}, σ′′), then (C1, σ] σF) −_ t (C′1, σ

′′). From D, R,G |=t (C1, σ)�
(C,Σ) � (u,ws1,ws1, w1,H) ⇓ξ1 p, we know there exist σ′, C′, Σ′, k, u′, ws′1, ws ′1, w′1 and ξ′1 such that
(A) σ′′ = σ′] σF , and
(B) (C,Σ] ΣF) −_∗

t (C′,Σ′] ΣF), and
(C) D, R,G |=t (C′1, σ

′)� (C′,Σ′) � (u′,ws′1,ws
′
1, w

′
1,H) ⇓ξ′1 p, and

(D) ((σ,Σ), (σ′,Σ′), k) |= Gt ∗ True, and
(E) either u′ <k u,

or u′ = u and k = 0 and ws′1 <H ws1 and w′1 = w1,
or u′ = u and k = 0 and ws′1 = ws1 and w′1 = w1 and ξ1 6= ∅ and ξ1 ⊆ ξ′; and

(F) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then ws ′1 <H ws1.
Since ((σ,Σ), (σ′,Σ′)) |= Gt ∗ True, (σ,Σ) |= J ∗ true, J ⇒ I , I . G and Sta(J,G ∨R), we know

(σ′,Σ′) |= J ∗ true .

Suppose k′s = f(σ′,Σ′). Since J ⇒ (R,G : D′ f−→Q), we can prove
k = 0 =⇒ k′s ≤ ks .

Also we have
(σ′,Σ′) |= Qt ∗ true ∨ (∃t′ 6= t. Enabled(D′t′) ∗ true) .

Let
ξ′0 = {t′ | (t′ 6= t) ∧ ((σ′,Σ′) |= Enabled(D′t′) ∗ true)} .

Since for any t′ such that t′ 6= t we have Gt ⇒ Rt′ , and since wffAct(R,D′), D′ 6 D and Enabled(D)⇒ I , we can prove:
k = 0 =⇒ ξ0 ⊆ ξ′0 .

Let
ws ′ = (0, 0) :: inchead(ws ′1, (w1, 1)) .

25

We know: if ws ′1 <H ws1, then ws ′ <H+1 ws . If w′1 = w1, let w′ = w; otherwise let w′ = w′1. Thus we know w′1 ≤ w′.
Suppose head(ws′1) = ((n′1, n

′
2), n′3).

• If ξ′0 6= ∅, let
ws′ = ((0, 0), 0) :: inchead(ws′1, ((k

′
s, w1),−n′3)) and ξ′ = ξ′0 ∪ ξ′1 .

Then by the co-induction hypothesis, we know
D, R,G |=t (C′1; while (B){C}, σ′)� (C′,Σ′) � (u′,ws′,ws ′, w′,H+ 1) ⇓ξ′ p ∧ ¬B .

Also, if ws′1 ≤H ws1, then ws′ ≤H+1 ws. Thus, we know: either u′ <k u, or u′ = u and k = 0 and ws′ ≤H+1 ws and w′ = w.
For the case that u′ = u and k = 0 and ws′ = ws and w′ = w, we know

ws = ((0, 0), 0) :: inchead(ws1, ((ks, w1),−n3)) and ξ0 6= ∅ and ξ = ξ0 ∪ ξ1,
thus ξ 6= ∅.
• Suppose ws′1 <H ws1, since ws′ = ws, we know n′3 < n3. Then, from the definition of <H, we know ws1 = ((n1, n2), n3),

thus ξ1 = ∅. Thus ξ1 ⊆ ξ′1.
• Suppose ws′1 = ws1. Then we know ξ1 ⊆ ξ′1.

Thus ξ ⊆ ξ′.
• If ξ′0 = ∅, then we know (σ′,Σ′) |= Qt ∗ true. Since ξ0 ⊆ ξ′0, we know ξ0 = ∅. Thus we know (σ,Σ) |= Qt ∗ true and

ws = ((0, 0), 0) :: inchead(ws1, ((ks, w1), 1)). Also we have ξ = ξ0 ∪ ξ1 = ξ1. Let
ws′ = ((0, 0), 0) :: inchead(ws′1, ((k

′
s, w1), 1)) and ξ′ = ξ′0 ∪ ξ′1 = ξ′1 .

By the co-induction hypothesis, we know
D, R,G |=t (C′1; while (B){C}, σ′)� (C′,Σ′) � (u′,ws′,ws ′, w′,H+ 1) ⇓ξ′ p ∧ ¬B .

Also, if ws′1 ≤H ws1, then ws′ ≤H+1 ws. Thus, we know: either u′ <k u, or u′ = u and k = 0 and ws′ ≤H+1 ws and w′ = w.
For the case that u′ = u and k = 0 and ws′ = ws and w′ = w, we know ws′1 = ws1, thus ξ 6= ∅. Since ξ1 ⊆ ξ′1, we know ξ ⊆ ξ′.

(II) If C1 = skip and (C1; while (B){C}, σ] σF) −_ t (while (B){C}, σ] σF),
from D, R,G |=t (C1, σ)� (C,Σ) � (u,ws1,ws1, w1,H) ⇓ξ1 p, we know there exist C′ and Σ′ such that

(A) (C,Σ] ΣF) −_∗
t (C′,Σ′] ΣF), and

(B) ((σ,Σ′), (u,w1),C′) |= pt, and
(C) ws1 = ((0, 0), 0) and ws1 = (0, 0) and ξ1 = ∅, and
(D) ((σ,Σ), (σ,Σ′), 0) |= Gt ∗ True.
Since (σ,Σ) |= J ∗ true, J ⇒ I , I . G and Sta(J,G ∨R), we know

(σ,Σ′) |= J ∗ true .

Suppose k′s = f(σ,Σ′). Since J ⇒ (R,G : D′ f−→Q), we can prove
k′s ≤ ks .

Also we have
(σ,Σ′) |= Qt ∗ true ∨ (∃t′ 6= t. Enabled(D′t′) ∗ true) .

Let
ξ′0 = {t′ | (t′ 6= t) ∧ ((σ,Σ′) |= Enabled(D′t′) ∗ true)} .

Since for any t′ such that t′ 6= t we have Gt ⇒ Rt′ , and since wffAct(R,D′), D′ 6 D and Enabled(D)⇒ I , we can prove:
ξ0 ⊆ ξ′0 .

Let
ws ′ = (0, 0) :: inchead(ws1, (w1, 0)) .

Thus ws ′ ≤H+1 ws . Let
ws′ = ((0, 0), 0) :: inchead(ws1, ((k

′
s, w1), 0)) .

Thus ws′ ≤H+1 ws. Also, if ws′ = ws, then ws = ((0, 0), 0) :: inchead(ws1, ((ks, w1),−n3)) and ξ0 6= ∅ and ξ = ξ0 ∪ ξ1, thus
ξ 6= ∅ and ξ ⊆ ξ′0.
Below we prove:

D, R,G |=t (while (B){C}, σ)� (C′,Σ′) � (u,ws′,ws ′, w,H+ 1) ⇓ξ′0 p ∧ ¬B . (B.2)

Proof : By co-induction. Suppose σ = (s, h). Since p⇒ (B = B) ∗ I , we know
(σ,Σ′) |= I ∗ true, and either JBKs = true or JBKs = false .

We only need to prove the following (1)(2)(3)(4)(5).
(1) For any t′ ∈ ξ′0, we have (σ,Σ′) |= Enabled(Dt′) ∗ true.

Proof : Immediate from D′ 6 D.
(2) If while (B){C} = skip, then ...

Proof : It is vacantly true.
(3) For any σF , (while (B){C}, σ] σF) 6−_ t abort.

Proof : It holds because JBKs is not undefined.
(4) If (while (B){C}, σ] σF) −_ t (C′, σ′′), then there exist σ′, C′′, Σ′′, k, u′′, ws′′, ws ′′, w′′ and ξ′ such that

(a) σ′′ = σ′] σF , and
(b) (C′,Σ′] ΣF) −_∗

t (C′′,Σ′′] ΣF), and
(c) D, R,G |=t (C′, σ′)� (C′′,Σ′′) � (u′′,ws′′,ws ′′, w′′,H+ 1) ⇓ξ′ p ∧ ¬B, and
(d) ((σ,Σ′), (σ′,Σ′′), k) |= Gt ∗ True, and

26

(e) either u′′ <k u,
or u′′ = u and k = 0 and ws′′ <H+1 ws′ and w′′ = w,
or u′′ = u and k = 0 and ws′′ = ws′ and w′′ = w and ξ′0 6= ∅ and ξ′0 ⊆ ξ′; and

(f) if ((σ,Σ′), (σ′,Σ′′)) |= 〈[Dt]〉 ∗ True, then ws ′′ <H+1 ws ′.
Proof : We have two cases depending on whether JBKs is true or false.
• If JBKs = true, we know (while (B){C}, σ]σF) −_ t (C; while (B){C}, σ]σF). Also we know ((σ,Σ′), (u,w1),C′) |=
pt ∧B.
• If ξ′0 6= ∅, we have two cases below:
• If (σ,Σ′) |= Enabled(Dt) ∗ true, we know

((σ,Σ′), (u,w1),C′) |= pt ∧B ∧ Enabled(Dt) ∗ true .
Since p ∧B ∧ Enabled(Dt) ∗ true⇒ p′ ∗ (wf(1) ∧ emp), we know there exists w′1 such that w′1 < w1 and

((σ,Σ′), (u,w′1),C′) |= p′t .
From D, R,G |= {p′}C{p} and height(C) = H, let ws ′1 = (0, |C|) and ws′1 = ((0, 0), |C|), we get:

D, R,G |=t (C, σ)� (C′,Σ′) � (u,ws′1,ws
′
1, w

′
1,H) ⇓∅ p .

Let
ws′′ = ((0, 0), 0) :: ((k′s, w

′
1), 0) and ws ′′ = (0, 0) :: (w′1, |C|+ 1) ,

By the co-induction hypothesis, we know
D, R,G |=t (C; while (B){C}, σ)� (C′,Σ′) � (u,ws′′,ws ′′, w,H+ 1) ⇓ξ′0 p ∧ ¬B .

Also we have ws ′′ <H+1 ws ′ and ws′′ <H+1 ws′. Since (σ,Σ′) |= I ∗ true, we can prove
((σ,Σ′), (σ,Σ′), 0) |= Gt ∗ True .

• Otherwise, from p ∧B ⇒ p′, we know
((σ,Σ′), (u,w1),C′) |= p′t .

From D, R,G |= {p′}C{p} and height(C) = H, let ws′1 = ((0, 0), |C|) and ws ′1 = (0, |C|), we get:
D, R,G |=t (C, σ)�i (C′,Σ′) � (u,ws′1,ws

′
1, w1,H) ⇓∅ p .

Let
ws′′ = ((0, 0), 0) :: ((k′s, w1), 0) and ws ′′ = (0, 0) :: (w1, |C|+ 1) .

By the co-induction hypothesis, we know
D, R,G |=t (C; while (B){C}, σ)� (C′,Σ′) � (u,ws′′,ws ′′, w,H+ 1) ⇓ξ′0 p ∧ ¬B .

Also we know ws′′ = ws′ and ξ′0 6= ∅. Since (σ,Σ′) |= I ∗ true, we can prove:
((σ,Σ′), (σ,Σ′), 0) |= Gt ∗ True .

• If ξ′0 = ∅, then we know (σ,Σ′) |= Qt ∗ true. Thus we know
((σ,Σ′), (u,w1),C′) |= pt ∧B ∧Qt ∗ true .

Since p ∧B ∧Q ∗ true⇒ p′ ∗ (♦(1) ∧ emp), we know there exists w′1 such that w′1 < w1 and
((σ,Σ′, i), (u,w′1),C′) |= p′t .

From D, R,G |= {p′}C{p} and height(C) = H, let ws′1 = ((0, 0), |C|), we get:
D, R,G |=t (C, σ)�i (C′,Σ′) � (u,ws′1, w

′
1,H) ⇓∅ p .

Let
ws′′ = ((0, 0), 0) :: ((k′s, w

′
1), |C|+ 1) .

By the co-induction hypothesis, we know
D, R,G |=t (C; while (B){C}, σ)�i (C′,Σ′) � (u,ws′′, w,H+ 1) ⇓ξ′0 p ∧ ¬B .

Also we have ws′′ <H+1 ws′. Since (σ,Σ′) |= I ∗ true, we can prove:
((σ,Σ′), (σ,Σ′), 0) |= Gt ∗ True .

• If JBKs = false, we know (while (B){C}, σ] σF) −_ t (skip, σ] σF). By (SKIP) rule, let
ws′′ = ((0, 0), 0) and ws ′′ = (0, 0) ,

we know
D, R,G |=t (skip, σ)� (C′,Σ′) � (u,ws′′,ws ′′, w,H+ 1) ⇓∅ p ∧ ¬B .

Also we have ws ′′ <H+1 ws ′ and ws′′ <H+1 ws′. Since (σ,Σ′) |= I ∗ true, we can prove
((σ,Σ′), (σ,Σ′), 0) |= Gt ∗ True .

(5) If ((σ,Σ′), (σ′,Σ′′), k) |= Rt ∗ Id, then there exist u′, ws′′, ws ′′, w′′, ξd and ξ′ such that
(a) D, R,G |=t (while (B){C}, σ′)� (C′,Σ′′) � (u′,ws′′,ws ′′, w′′,H+ 1) ⇓ξ′ p ∧ ¬B, and
(b) ξd = {t′ | (t′ ∈ ξ′0) ∧ (((σ,Σ′), (σ′,Σ′′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ′0\ξd ⊆ ξ′) and u′ ≈k u, and
(c) if k = 0, then either ws′′ <H+1 ws′ and w′′ = w, or ws′′ = ws′ and w′′ = w and ξd = ∅; and
(d) if k = 0 and (σ,Σ′) |= Enabled(Dt) ∗ true, then ws ′′ ≤H+1 ws ′.
Proof : Since Sta(p,R ∗ Id), we know there exist u′ and w′1 such that

((σ′,Σ′′), (u′, w′1),C′) |= pt and u′ ≈k u and k = 0 =⇒ w′1 = w1 .
Also we know

(σ′,Σ′′) |= J ∗ true .

Suppose k′′s = f(σ′,Σ′′). Since J ⇒ (R,G : D′ f−→Q), we can prove
k′′s ≤ k′s .

27

Let
ξ′′0 = {t′′ | (t′′ 6= t) ∧ ((σ′,Σ′′) |= Enabled(D′t′′) ∗ true)} and ξd = {t′ | (t′ ∈ ξ′0) ∧ (((σ,Σ′), (σ′,Σ′′)) |= 〈Dt′〉 ∗ Id)}.

Since Enabled(D)⇒ I , D′ 6 D and wffAct(R,D′), we can prove:
k = 0 =⇒ ξ′0\ξd ⊆ ξ′′0 .

If w′1 = w1, let w′′ = w; otherwise let w′′ = w′1. Thus we know w′1 ≤ w′′. Let
ws′′ = ((0, 0), 0) :: inchead(ws1, ((k

′′
s , w

′
1), 0)) .

By the co-induction hypothesis, we know
D, R,G |=t (while (B){C}, σ′)� (C′,Σ′′) � (u,ws′′,ws ′, w′′,H+ 1) ⇓ξ′′0 p ∧ ¬B .

Also we know: if k = 0, then ws′′ ≤H+1 ws′ and w′′ = w.
If k = 0 and ξd 6= ∅, then there exists t′ such that t′ ∈ ξ′0 and ((σ,Σ′), (σ′,Σ′′)) |= 〈Dt′〉 ∗ Id. Since D′ 6 D, we can prove

((σ,Σ′), (σ′,Σ′′)) |= 〈D′t′〉 ∗ Id .

Since J ⇒ (R,G : D′ f−→Q), we know for any t′ 6= t, σ′ and Σ′′, if ((σ,Σ′), (σ′,Σ′′), 0) |= (〈D′t′〉∧Rt)∗Id, then f(σ′,Σ′′) < k′s.
Thus we can prove:

k′′s < k′s .
Thus ws′′ <H+1 ws′ holds.

Thus we have proved (B.2).
(5) If ((σ,Σ), (σ′,Σ′), k) |= Rt ∗ Id, then there exist u′, ws′, ws ′, w′, ξd and ξ′ such that

(a) D, R,G |=t (C1; while (B){C}, σ′)� (C,Σ′) � (u′,ws′,ws ′, w′,H+ 1) ⇓ξ′ p ∧ ¬B, and
(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ\ξd ⊆ ξ′) and u′ ≈k u, and
(c) if k = 0, then either ws′ <H+1 ws and w′ = w, or ws′ = ws and w′ = w and ξd = ∅; and
(d) if k = 0 and (σ,Σ) |= Enabled(Dt) ∗ true, then ws ′ ≤H+1 ws .
Proof : From D, R,G |=t (C1, σ)� (C,Σ) � (u,ws1,ws1, w1,H) ⇓ξ1 p, we know there exist u′, ws′1, ws ′1, w′1, ξ′d and ξ′1 such that

(A) D, R,G |=t (C1, σ
′)� (C,Σ′) � (u,ws′1,ws

′
1, w

′
1,H) ⇓ξ′1 p, and

(B) ξ′d = {t′ | (t′ ∈ ξ1) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ1\ξ′d ⊆ ξ′1) and u′ ≈k u, and
(C) if k = 0, then either ws′1 <H ws1 and w′1 = w1, or ws′1 = ws1 and w′1 = w1 and ξ′d = ∅; and
(D) if k = 0 and (σ,Σ) |= Enabled(Dt) ∗ true, then ws ′1 ≤H ws1.
Since (σ,Σ) |= J ∗ true and Sta(J,G ∨R), we know

(σ′,Σ′) |= J ∗ true .

Suppose k′s = f(σ′,Σ′). Since J ⇒ (R,G : D′ f−→Q), we can prove

k′s ≤ ks .

Also we have

(σ′,Σ′) |= Qt ∗ true ∨ (∃t′ 6= t. Enabled(D′t′) ∗ true) .

Let

ξ′0 = {t′′ | (t′′ 6= t) ∧ ((σ′,Σ′) |= Enabled(D′t′′) ∗ true)},
ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and
ξ′′d = {t′ | (t′ ∈ ξ0) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)}.

Since Enabled(D)⇒ I , D′ 6 D and wffAct(R,D′), we can prove:

k = 0 =⇒ ξ0\ξ′′d ⊆ ξ′0 .

Then, since ξ1\ξ′d ⊆ ξ′1, we have:

k = 0 =⇒ (ξ0 ∪ ξ1)\(ξ′d ∪ ξ′′d) ⊆ (ξ′0 ∪ ξ′1) .

Since ξ = ξ0 ∪ ξ1, we know ξd = ξ′d ∪ ξ′′d .
If ξ′′d 6= ∅, then there exists t′ such that t′ ∈ ξ0 and ((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id. Since D′ 6 D, we can prove

((σ,Σ), (σ′,Σ′)) |= 〈D′t′〉 ∗ Id .

Since J ⇒ (R,G : D′ f−→Q), we know for any t′ 6= t, σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), 0) |= (〈D′t′〉 ∧Rt) ∗ Id, then f(σ′,Σ′) < ks. Then
we have

k′s < ks .

Let

ws ′ = (0, 0) :: inchead(ws ′1, (w1, 1)) .

We know: if ws ′1 <H ws1, then ws ′ <H+1 ws . If w′1 = w1, let w′ = w; otherwise let w′ = w′1. Thus we know w′1 ≤ w′.
Suppose head(ws′1) = ((n′1, n

′
2), n′3).

28

• If ξ′0 6= ∅, let
ws′ = ((0, 0), 0) :: inchead(ws′1, ((k

′
s, w1),−n′3)) and ξ′ = ξ′0 ∪ ξ′1 .

Then by the co-induction hypothesis, we know
D, R,G |=t (C1; while (B){C}, σ′)� (C,Σ′) � (u,ws′,ws ′, w′,H+ 1) ⇓ξ′ p ∧ ¬B .

If k = 0, we know ξ\ξd ⊆ ξ′, ws′ ≤H+1 ws and w′ = w.
For the case k = 0 and ξd 6= ∅, we know ξ′d 6= ∅ or ξ′′d 6= ∅. If ξ′′d 6= ∅, we know ws′ <H+1 ws. If ξ′d 6= ∅, we know ξ1 6= ∅ and
ws′1 <H ws1. Thus |ws1| > 1. From the definition of <H, we can prove: ws′ <H+1 ws.
• If ξ′0 = ∅, then we know (σ′,Σ′, i) |= Qt ∗ true. Let

ws′ = ((0, 0), 0) :: inchead(ws′1, ((k
′
s, w1), 1)) and ξ′ = ξ′0 ∪ ξ′1 = ξ′1 .

By the co-induction hypothesis, we know
D, R,G |=t (C1; while (B){C}, σ′)�i (C,Σ′) � (u,ws′, w′,H+ 1) ⇓ξ′ p ∧ ¬B .

If k = 0, we know ξ\ξd ⊆ ξ′, w′ = w and ws′1 ≤H+1 ws1.
• If ξ0 6= ∅ and ws = ((0, 0), 0) :: inchead(ws1, ((ks, w1),−n3)), since ξ0\ξ′′d ⊆ ξ′0, we can prove

ξ′′d 6= ∅ .
Then we know k′s < ks. Thus, if k = 0, then ws′ <H+1 ws.
• If (σ,Σ, i) |= Qt ∗ true and ws = ((0, 0), 0) :: inchead(ws1, ((ks, w1), 1)), we know: if k = 0, ws′ ≤H+1 ws. If ξd 6= ∅, then
ξ′d 6= ∅ or ξ′′d 6= ∅, thus ws′ <H+1 ws.

Thus we are done.

B.2.2 The ATOM rule
Lemma 15 (ATOM-Sound). If

1. |=SL [p]C[q′];
2. q′ Vk q;
3. (TpU nk TqU)⇒ G ∗ True;
4. p ∨ q ⇒ I ∗ true;
5. Locality(C);

then D, [I], G |= {p}〈C〉{q}.

Proof. LetH = height(〈C〉) = 1. We know |〈C〉| = 1. Let

ws = ((0, 0), 1) and ws = (0, 1) and ξ = ∅.

Below we prove: for any t, for any σ, Σ, u, w and C, if ((σ,Σ), (u,w),C) |= pt, then

D, [I], G |=t (〈C〉, σ)� (C,Σ) � (u,ws,ws, w,H) ⇓ξ q .

By co-induction. Since p⇒ I ∗ true, we know (σ,Σ) |= I ∗ true. From the premises, we can prove:

(C, σ) 6−_∗
t abort and (C, σ) 6−_ω

t · .

We only need to prove the following (1)(2)(3)(4)(5)(6).

(1) For any t′ ∈ ξ, we have (σ,Σ) |= Enabled(Dt′) ∗ true.
Proof : It is vacantly true.

(2) If 〈C〉 = skip, then
Proof : It is vacantly true.

(3) If 〈C〉 = E[return E], then
Proof : It is vacantly true.

(4) For any σF , (〈C〉, σ] σF) 6−_ t abort.
Proof : By the operational semantics and Locality(C).

(5) For any C′, σ′′, σF and ΣF , if (〈C〉, σ] σF) −_ t (C′, σ′′), then there exist σ′, C′, Σ′, k, u′, ws′, ws ′, w′ and ξ′ such that
(a) σ′′ = σ′] σF , and
(b) (C,Σ] ΣF) −_∗

t (C′,Σ′] ΣF), and
(c) D, [I], G |=t (C′, σ′)� (C′,Σ′) � (u′,ws′,ws ′, w′,H) ⇓ξ′ q, and
(d) ((σ,Σ), (σ′,Σ′), k) |= Gt ∗ True, and
(e) either u′ <k u,

or u′ = u and k = 0 and ws′ <H ws and w′ = w,
or u′ = u and k = 0 and ws′ = ws and w′ = w and ξ 6= ∅ and ξ ⊆ ξ′; and

(f) if ((σ,Σ), (σ′,Σ′), k) |= 〈[Dt]〉 ∗ True, then ws ′ <H ws .
Proof : By the operational semantics, we know C′ must be skip and

(C, σ] σF) −_∗
t (skip, σ′′) .

By Locality(C), we know there exists σ′ such that σ′′ = σ′] σF and

29

(C, σ) −_∗
t (skip, σ′) .

From |=SL [p]C[q′], we know

((σ′,Σ), (u,w),C) |= q′t .

From q′ Vk q, we know: there exist u′, w′, C′ and Σ′ such that
(A) (C,Σ] ΣF) −_∗

t (C′,Σ′] ΣF), and
(B) ((σ′,Σ′), (u′, w′),C′) |= qt, and
(C) either u′ <k u, or k = 0 and u′ = u and w′ = w.
Thus we know

((σ,Σ), (σ′,Σ′), k) |= (TpU nk TqU) .

Since (TpU nk TqU)⇒ G ∗ True, we know

((σ,Σ), (σ′,Σ′), k) |= Gt ∗ True .

By (SKIP) rule, let

ws′ = ((0, 0), 0) and ws ′ = (0, 0) ,

we know

D, [I], G |=t (skip, σ′)� (C′,Σ′) � (u′,ws′,ws ′, w′,H) ⇓∅ q

Also we know ws′ <H ws and ws ′ <H ws .
(6) If ((σ,Σ), (σ′,Σ′), k′) |= [I] ∗ Id, then there exist u′, ws′, ws ′, w′, ξd and ξ′ such that

(a) D, R,G |=t (〈C〉, σ′)� (C,Σ′) � (u′,ws′,ws ′, w′,H) ⇓ξ′ p ∧ ¬B, and
(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k′ = 0 =⇒ ξ\ξd ⊆ ξ′) and u′ ≈k′ u, and
(c) if k′ = 0, then either ws′ <H ws and w′ = w, or ws′ = ws and w′ = w and ξd = ∅; and
(d) if k′ = 0 and (σ,Σ) |= Enabled(Dt) ∗ true, then ws ′ ≤H ws .
Proof : We know σ′ = σ and Σ′ = Σ and k′ = 0.
By the co-induction hypothesis, we get

D, [I], G |=t (〈C〉, σ′)� (C,Σ′) � (u,ws,ws, w,H) ⇓ξ q .

Thus we are done.

30

B.3 Common Simulation and Instantiations
We introduce a state-updating function ∆ to describe the high-level state updates which may delay other threads. That is, at any state ∆t(Σ),
another thread t′ is possible to make stuttering steps.

∆ ∈ ThrdID×Mem ⇀ Mem

Definition 16 (Common Simulation for Object). Π -P Π′ iff there exists ∆, D, R and G such that D, R,G |=∆ {P}Π - Π′ holds.
D, R,G |=∆ {P}Π - Π′ iff, for any f ∈ dom(Π), for any σ and Σ, for any t, if Π(f) = (x,C), Π′(f) = (y,C) and

(σ,Σ) |= Pt ∗ own(x) ∗ own(y) ∧ (x = y), there exist two well-founded metrics M and M and a set ξ ∈P(ThrdID) such that

D, R,G |=∆
t (C, σ) - (C,Σ) � (M,M) ⇓ξ (P ∗ own(x) ∗ own(y)).

Here D, R,G |=∆
t (C, σ) - (C,Σ) � (M,M) ⇓ξ Q is co-inductively defined as follows.

Whenever D, R,G |=∆
t (C, σ) - (C,Σ) � (M,M) ⇓ξ Q holds, then the following hold:

(1) Suppose σ = (s, h). Then ξ ⊆ s(TIDS) and t 6∈ ξ.
For any t′ ∈ ξ, we have (σ,Σ) |= Enabled(Dt′) ∗ true.

(2) If C = E[return E], then for any ΣF such that Σ⊥ΣF , there exist E and Σ′ such that
(a) (C,Σ] ΣF) −_∗

t (return E,Σ′] ΣF), and
(b) (σ,Σ′) |= Qt and JEKσ.s = JEKΣ′.s, and
(c) ((σ,Σ), (σ,Σ′), 0) |= Gt ∗ True.

(3) For any σF , (C, σ] σF) 6−_ t abort.
(4) For any C′, σ′′, σF and ΣF , if (C, σ] σF) −_ t (C′, σ′′) and Σ⊥ΣF , then there exist σ′, n, C′, Σ′, k, M′, M ′ and ξ′ such that

(a) σ′′ = σ′] σF , and
(b) (C,Σ] ΣF) −_n

t (C′,Σ′] ΣF); and
if k > 0, then there exist n1, n2 and C′′ such that n = n1 + n2 > 0 and (C,Σ] ΣF) −_n1

t (C′′,∆t(Σ)] ΣF) and
(C′′,∆t(Σ)] ΣF) −_n2

t (C′,Σ′] ΣF); and
(c) D, R,G |=∆

t (C′, σ′) - (C′,Σ′) � (M′,M ′) ⇓ξ′ Q, and
(d) ((σ,Σ), (σ′,Σ′), k) |= Gt ∗ True, and
(e) either n > 0, or M′ < M, or M′ = M and ξ 6= ∅ and ξ ⊆ ξ′; and
(f) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then M ′ < M .

(5) For any k, σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), k) |= Rt ∗ Id, then there exist M′, M ′, ξd and ξ′ such that
(a) D, R,G |=∆

t (C, σ′) - (C,Σ′) � (M′,M ′) ⇓ξ′ Q, and
(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ\ξd ⊆ ξ′), and
(c) if k > 0, then for any t′ 6= t and ΣF⊥Σ we have (C,∆t′(Σ)] ΣF) −_ t (C,∆t′(Σ)] ΣF);

otherwise, M′ < M, or M′ = M and ξd = ∅; and
(d) if k = 0 and (σ,Σ) |= Enabled(Dt) ∗ true, then M ′ ≤M .

B.3.1 Instantiating the Common Simulation

Lemma 17 (7 in Fig. 18). Suppose R⇒ bRc0 and G⇒ bGc0. If D, R,G |= {P}Π : Γ, then D, R,G |=∅ {P}Π - Γ.

Proof. For any f ∈ dom(Π), for any σ and Σ, for any t, if Π(f) = (x,C), Γ(f) = (y,C) and (σ,Σ) |= Pt ∗ own(x) ∗ own(y) ∧ (x = y),
from D, R,G |= {P}Π : Γ, we know: there exist three well-founded metrics u, M and M and a set ξ ∈P(ThrdID) such that

D, R,G |=t (C, σ)� (C,Σ) � (u,M,M) ⇓ξ (P ∗ own(x) ∗ own(y)).

We want to prove: there exist two well-founded metric M and M and a set ξ ∈P(ThrdID) such that

D, R,G |=∅t (C, σ) - (C,Σ) � (M,M) ⇓ξ (P ∗ own(x) ∗ own(y)).

We only need to prove the following:

If D, R,G |=t (C, σ)� (C,Σ) � (u,M,M) ⇓ξ Q, then D, R,G |=∅t (C, σ) - (C,Σ) � ((u,M),M) ⇓ξ Q.

By co-induction.

(1) Suppose σ = (s, h). Then ξ ⊆ s(TIDS) and t 6∈ ξ. For any t′ ∈ ξ, we have (σ,Σ) |= Enabled(Dt′) ∗ true.
Proof : Immediate.

(2) If C = E[return E], then for any ΣF such that Σ⊥ΣF , there exist n, E and Σ′ such that
(a) (C,Σ] ΣF) −_n

t (return E,Σ′] ΣF), and
(b) (σ,Σ′) |= Qt and JEKσ.s = JEKΣ′.s, and
(c) ((σ,Σ), (σ,Σ′), 0) |= Gt ∗ True.
Proof : Immediate.

(3) For any σF , (C, σ] σF) 6−_ t abort.
Proof : Immediate.

(4) For any C′, σ′′, σF and ΣF , if (C, σ] σF) −_ t (C′, σ′′) and Σ⊥ΣF , then there exist σ′, n, C′, Σ′, M′, M ′ and ξ′ such that

31

(a) σ′′ = σ′] σF , and
(b) (C,Σ] ΣF) −_n

t (C′,Σ′] ΣF); and
(c) D, R,G |=∅t (C′, σ′) - (C′,Σ′) � (M′,M ′) ⇓ξ′ Q, and
(d) ((σ,Σ), (σ′,Σ′), 0) |= Gt ∗ True, and
(e) either n > 0, or M′ < (u,M), or M′ = (u,M) and ξ 6= ∅ and ξ ⊆ ξ′; and
(f) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then M ′ < M .
Proof : Since D, R,G |=t (C, σ)� (C,Σ) � ((u,M),M) ⇓ξ Q, we know there exist σ′, C′, Σ′, k′, u′, M′, M ′ and ξ′ such that

(A) σ′′ = σ′] σF , and
(B) (C,Σ] ΣF) −_∗

t (C′,Σ′] ΣF), and
(C) D, R,G |=t (C′, σ′)� (C′,Σ′) � ((u′,M′),M ′) ⇓ξ′ Q, and
(D) ((σ,Σ), (σ′,Σ′), k′) |= Gt ∗ True, and
(E) either u′ <k′ u,

or u′ = u and k′ = 0 and M′ < M,
or u′ = u and k′ = 0 and M′ = M and ξ 6= ∅ and ξ ⊆ ξ′; and

(F) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then M ′ < M .
From (C), by the co-induction hypothesis, we know

D, R,G |=∅t (C′, σ′) - (C′,Σ′) � ((u′,M′),M ′) ⇓ξ′ Q .

From (E), by the dictionary order, we know

either (u′,M′) < (u,M), or (u′,M′) = (u,M) and ξ 6= ∅ and ξ ⊆ ξ′.

From (D), since G⇒ bGc0, we know

((σ,Σ), (σ′,Σ′), 0) |= Gt ∗ True .

(5) For any k, σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), k) |= Rt ∗ Id, then there exist M′, M ′, ξd and ξ′ such that
(a) D, R,G |=∅t (C, σ′) - (C,Σ′) � (M′,M ′) ⇓ξ′ Q, and
(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ\ξd ⊆ ξ′), and
(c) if k > 0, then for any t′ 6= t and ΣF⊥Σ we have (C,∆t′(Σ)] ΣF) −_ t (C,∆t′(Σ)] ΣF);

otherwise, M′ < (u,M), or M′ = (u,M) and ξd = ∅; and
(d) if k = 0 and (σ,Σ) |= Enabled(Dt) ∗ true, then M ′ ≤M .
Proof : Since R⇒ bRc0, we know

((σ,Σ), (σ′,Σ′), 0) |= Rt ∗ Id .

Then, since D, R,G |=t (C, σ)� (C,Σ) � (u,M,M) ⇓ξ Q, we know there exist u′, M′, M ′, ξd and ξ′ such that
(A) D, R,G |=t (C, σ′)� (C,Σ′) � (u′,M′,M ′) ⇓ξ′ Q, and
(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and ξ\ξd ⊆ ξ′ and u′ = u, and
(c) either M′ < M, or M′ = M and ξd = ∅; and
(d) if (σ,Σ) |= Enabled(Dt) ∗ true, then M ′ ≤M .
From (A), by the co-induction hypothesis, we know

D, R,G |=∅t (C, σ′) - (C,Σ′) � ((u′,M′),M ′) ⇓ξ′ Q .

From (C), by the dictionary order, we know

either (u′,M′) < (u,M), or (u′,M′) = (u,M) and ξd = ∅.

Thus we are done.

Lemma 18 (8 in Fig. 18). Suppose l 6∈ fv(D, R,G, P,Π,Γ).
If D, R,G |= {P}Π : Γ, then D, R ∗ [l = 0], G ∗ [l = 0] |=∆l {P ∗ (l = 0)}Π - wrl(Γ). Here

∆l(t,Σ)
def
=

{
Σ{l ; t} if Σ(l) = 0
undefined if l 6∈ dom(Σ) or Σ(l) 6= 0

Proof. For any f ∈ dom(Π), for any σ and Σ, for any t, if Π(f) = (x,C), Γ(f) = (y, 〈C〉; return E) and (σ,Σ) |= Pt ∗ (l =
0) ∗ own(x) ∗ own(y) ∧ (x = y), we know there exists Σ1 such that Σ = Σ1] {l ; 0} and

(σ,Σ1) |= Pt ∗ own(x) ∗ own(y) ∧ (x = y)

From D, R,G |= {P}Π : Γ, we know: there exist three well-founded metrics u, M and M and a set ξ ∈P(ThrdID) such that

D, R,G |=t (C, σ)� (〈C〉; return E,Σ1) � (u,M,M) ⇓ξ (P ∗ own(x) ∗ own(y)).

We want to prove: there exist two well-founded metric M and M and a set ξ ∈P(ThrdID) such that

32

wrl(〈C〉)
def
=

while (u1 >= 0) {
lock l;
unlock l;
u1 := rand_lessthan(u1);

}
〈C〉;

wrl(return E)
def
=

while (u2 >= 0) {
lock l;
unlock l;
u2 := rand_lessthan(u2);

}
return E;

wr′l(〈C〉)
def
=

lock l;
unlock l;
u1 := rand_lessthan(u1);
while (u1 >= 0) {

lock l;
unlock l;
u1 := rand_lessthan(u1);

}
〈C〉;

wr′l(return E)
def
=

lock l;
unlock l;
u2 := rand_lessthan(u2);
while (u2 >= 0) {

lock l;
unlock l;
u2 := rand_lessthan(u2);

}
return E;

wr′′l (〈C〉) def
=

unlock l;
u1 := rand_lessthan(u1);
while (u1 >= 0) {

lock l;
unlock l;
u1 := rand_lessthan(u1);

}
〈C〉;

wr′′l (return E)
def
=

unlock l;
u2 := rand_lessthan(u2);
while (u2 >= 0) {

lock l;
unlock l;
u2 := rand_lessthan(u2);

}
return E;

wr′′′l (〈C〉) def
=

u1 := rand_lessthan(u1);
while (u1 >= 0) {

lock l;
unlock l;
u1 := rand_lessthan(u1);

}
〈C〉;

wr′′′l (return E)
def
=

u2 := rand_lessthan(u2);
while (u2 >= 0) {

lock l;
unlock l;
u2 := rand_lessthan(u2);

}
return E;

Figure 22. Useful notations for the abstract code wrapper.

D, R ∗ [l = 0], G ∗ [l = 0] |=∆l
t (C, σ) - (wrl(〈C〉; return E),Σ) � (M,M) ⇓ξ (P ∗ (l = 0) ∗ own(x) ∗ own(y)).

Fig. 22 gives some useful notations for the abstract code wrapper. We only need to prove the following:

1. If D, R,G |=t (C, σ)� (〈C〉; return E,Σ1) � (u,M,M) ⇓ξ Q
and Σ = Σ1] {l ; 0, u1 ; u1, u2 ; u2} and 0 ≤ u ≤ u1 and 0 ≤ u ≤ u2,
then D, R ∗ [l = 0], G ∗ [l = 0] |=∆l

t (C, σ) -i (wr′l(〈C〉); wrl(return E),Σ) � (M,M) ⇓ξ (Q ∗ (l = 0)).
2. If D, R,G |=t (C, σ)� (return E,Σ1) � (u,M,M) ⇓ξ Q

and Σ = Σ1] {l ; 0, u1 ; u1, u2 ; u2} and 0 ≤ u ≤ u2,
then D, R ∗ [l = 0], G ∗ [l = 0] |=∆l

t (C, σ) - (wr′l(return E),Σ) � (M,M) ⇓ξ (Q ∗ (l = 0)).

By co-induction. Below we use Ĉ for the abstract code in the above two goals.

(1) Suppose σ = (s, h). Then ξ ⊆ s(TIDS) and t 6∈ ξ.
For any t′ ∈ ξ, we have (σ, i) |= Enabled(Dt′) ∗ true.
Proof : Immediate.

(2) If C = E[return E], then for any ΣF such that Σ⊥ΣF , there exist E and Σ′ such that
(a) (C,Σ] ΣF) −_∗

t (return E,Σ′] ΣF), and
(b) (σ,Σ′) |= Qt ∗ (l = 0) and JEKσ.s = JEKΣ′.s, and
(c) ((σ,Σ), (σ,Σ′), 0) |= Gt ∗ [l = 0] ∗ True.
Proof : Immediate from the premise.

(3) For any σF , (C, σ] σF) 6−_ t abort.
Proof : Immediate.

(4) For any C′, σ′′, σF and ΣF , if (C, σ] σF) −_ t (C′, σ′′) and Σ⊥ΣF , then there exist σ′, n, C′, Σ′, k, M′, M ′ and ξ′ such that
(a) σ′′ = σ′] σF , and

33

(b) (Ĉ,Σ] ΣF) −_n
t (C′,Σ′] ΣF); and

if k > 0, then there exist n1, n2 and C′′ such that n = n1 + n2 > 0 and (Ĉ,Σ] ΣF) −_n1
t (C′′,∆t(Σ)] ΣF) and

(C′′,∆t(Σ)] ΣF) −_n2
t (C′,Σ′] ΣF); and

(c) D, R ∗ [l = 0], G ∗ [l = 0] |=∆l
t (C′, σ′) - (C′,Σ′) � (M′,M ′) ⇓ξ′ (Q ∗ (l = 0)), and

(d) ((σ,Σ), (σ′,Σ′), k) |= Gt ∗ [l = 0] ∗ True, and
(e) either n > 0, or M′ < M, or M′ = M and ξ 6= ∅ and ξ ⊆ ξ′; and
(f) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then M ′ < M .
Proof : For 1, from D, R,G |=t (C, σ)� (〈C〉; return E,Σ1) � (u,M,M) ⇓ξ Q, we know there exist σ′, C′, Σ′1, k, u′, M′, M ′ and ξ′

such that
(A1) σ′′ = σ′] σF , and
(B1) (〈C〉; return E,Σ1] ΣF) −_∗

t (C′1,Σ′1] ΣF), and
(C1) D, R,G |=t (C′, σ′)� (C′1,Σ′1) � (u′,M′,M ′) ⇓ξ′ Q, and
(D1) ((σ,Σ1), (σ′,Σ′1), k) |= Gt ∗ True, and
(E1) either u′ <k u,

or u′ = u and k = 0 and M′ < M,
or u′ = u and k = 0 and M′ = M and ξ 6= ∅ and ξ ⊆ ξ′; and

(F1) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then M ′ < M .
From (B1), by the operational semantics, we know

either C′1 = (〈C〉; return E), or C′1 = (return E) .

(i) C′1 = (〈C〉; return E): Let
C′ = (wr′l(〈C〉); wrl(return E)) and u′1 = u′ and Σ′ = Σ′1] {l ; 0, u1 ; u′1, u2 ; u2} .

From (E1), we know: u′ ≤ u, thus u′ ≤ u2. Then, from (C1), by the co-induction hypothesis, we know
D, R ∗ [l = 0], G ∗ [l = 0] |=∆l

t (C′, σ′) - (C′,Σ′) � (M′,M ′) ⇓ξ′ (Q ∗ (l = 0)) .
From (D1), we know

((σ,Σ), (σ′,Σ′), k) |= Gt ∗ [l = 0] ∗ True .
• If k > 0, from (E1), we know: u′ < u. Thus u′1 < u1. Let

C′′ = (wr′′l (〈C〉); wrl(return E)) .
Also we know

∆l(t,Σ) = Σ1] {l ; t, u1 ; u1, u2 ; u2} .
Thus we know

(wr′l(〈C〉); wrl(return E),Σ] ΣF) −_+
t (C′′,∆l(t,Σ)] ΣF) and

(C′′,∆l(t,Σ)] ΣF) −_+
t (wr′l(〈C〉); wrl(return E),Σ′] ΣF) .

• If k = 0, from (E1), we know: either M′ < M or M′ = M and ξ 6= ∅ and ξ ⊆ ξ′. Also u′ = u. Thus u′1 ≤ u1. Thus we know
(wr′l(〈C〉); wrl(return E),Σ] ΣF) −_∗

t (wr′l(〈C〉); wrl(return E),Σ′] ΣF) .
(ii) C′1 = (return E): Let

C′ = wrl(return E) and u′2 = u′ and Σ′ = Σ′1] {l ; 0, u1 ; u1, u2 ; u′2} .
From (C1), by the second goal, we know

D, R ∗ [l = 0], G ∗ [l = 0] |=∆l
t (C′, σ′) - (C′,Σ′) � (M′,M ′) ⇓ξ′ (Q ∗ (l = 0)) .

From (D1), we know
((σ,Σ), (σ′,Σ′), k) |= Gt ∗ [l = 0] ∗ True .

From (E1), we know u′ ≤ u, thus u′2 ≤ u2. From (B1), we know
(wr′l(〈C〉); wrl(return E),Σ] ΣF) −_+

t (wr′l(return E),Σ′] ΣF) .
If k > 0, let

C′′ = (wr′′l (〈C〉); wrl(return E)) .
Also we know

∆l(t,Σ) = Σ1] {l ; t, u1 ; u1, u2 ; u2} .
From (B1), we know

(wr′l(〈C〉); wrl(return E),Σ] ΣF) −_+
t (C′′,∆l(t,Σ)] ΣF) and

(C′′,∆l(t,Σ)] ΣF) −_+
t (wr′l(return E),Σ′] ΣF) .

For 2, from D, R,G |=t (C, σ)� (return E,Σ1) � (u,M,M) ⇓ξ Q, we know there exist σ′, C′, Σ′1, k, u′, M′, M ′ and ξ′ such that
(A2) σ′′ = σ′] σF , and
(B2) (return E,Σ1] ΣF) −_∗

t (C′1,Σ′1] ΣF), and
(C2) D, R,G |=t (C′, σ′)� (C′1,Σ′1) � (u′,M′,M ′) ⇓ξ′ Q, and
(D2) ((σ,Σ1), (σ′,Σ′1), k) |= Gt ∗ True, and
(E2) either u′ <k u,

or u′ = u and k = 0 and M′ < M,
or u′ = u and k = 0 and M′ = M and ξ 6= ∅ and ξ ⊆ ξ′; and

(F2) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then M ′ < M .

34

From (B2), by the operational semantics, we know C′1 = (return E). Let

C′ = wr′l(return E) and u′2 = u′ and Σ′ = Σ′1] {l ; 0, u1 ; u1, u2 ; u′2} .

From (C2), by the co-induction hypothesis, we know

D, R ∗ [l = 0], G ∗ [l = 0] |=∆l
t (C′, σ′) - (C′,Σ′) � (M′,M ′) ⇓ξ′ (Q ∗ (l = 0)) .

From (D2), we know

((σ,Σ), (σ′,Σ′), k) |= Gt ∗ [l = 0] ∗ True .

• If k > 0, from (E2), we know: u′ < u. Thus u′2 < u2. Let
C′′ = wr′′l (return E) .

Also we know
∆l(t,Σ) = Σ1] {l ; t, u1 ; u1, u2 ; u2} .

Thus we know
(wr′l(return E),Σ] ΣF) −_+

t (C′′,∆l(t,Σ)] ΣF) and (C′′,∆l(t,Σ)] ΣF) −_+
t (wr′l(return E),Σ′] ΣF) .

• If k = 0, from (E2), we know: either M′ < M or M′ = M and ξ 6= ∅ and ξ ⊆ ξ′. Also u′ = u. Thus u′2 ≤ u2. Thus we know
(wr′l(return E),Σ] ΣF) −_∗

t (wr′l(return E),Σ′] ΣF) .
(5) For any k, σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), k) |= Rt ∗ [l = 0] ∗ Id, then there exist M′, M ′, ξd and ξ′ such that

(a) D, R ∗ [l = 0], G ∗ [l = 0] |=∆l
t (C, σ′) - (Ĉ,Σ′) � (M′,M ′) ⇓ξ′ (Q ∗ (l = 0)), and

(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ\ξd ⊆ ξ′), and
(c) if k > 0, then for any t′ 6= t and ΣF⊥Σ we have (Ĉ,∆t′(Σ)] ΣF) −_ t (Ĉ,∆t′(Σ)] ΣF);

otherwise, M′ < M, or M′ = M and ξd = ∅; and
(d) if k = 0 and (σ,Σ) |= Enabled(Dt) ∗ true, then M ′ ≤M .
Proof : Since {l, u1, u2} ∩ fv(R) = ∅, we know there exists Σ′1 such that

((σ,Σ1), (σ′,Σ′1), k) |= Rt ∗ Id and Σ′ = Σ′1] {l ; 0, u1 ; u1, u2 ; u2} .

Also we know

∆l(t′,Σ) = Σ1] {l ; t′, u1 ; u1, u2 ; u2} .

Thus we know

(wr′l(〈C〉); wrl(return E),∆l(t′,Σ)] ΣF) −_ t (wr′l(〈C〉); wrl(return E),∆l(t′,Σ)] ΣF) ,

and

(wr′l(return E),∆l(t′,Σ)] ΣF) −_ t (wr′l(return E),∆l(t′,Σ)] ΣF) .

By the co-induction hypothesis, we can prove the goals.

Thus we are done.

35

B.4 Core Proofs: From Common Simulation to Contextual Refinement
Lemma 19 (Gray Box in Fig. 18). If

1. D, R,G |=∆ {P}Π - Π′,
2. ∀t, t′. t 6= t′ =⇒ Gt ⇒ Rt′ , wffAct(R,D), P ⇒ ¬Enabled(D), P ∨ Enabled(D)⇒ I , I . {R,G},

then Π vP Π′.

Proof. From D, R,G |=∆ {P}Π - Π′, by Lemma 21, we get: for any C, for any t,

D, R,G |=∆
t {P}(Π, C) - (Π′,C){P} .

(See Sec. B.4.1 for their definitions.) By Lemma 22, we know: for any n, C1, . . . , Cn,

{
∧

t Pt}(let Π in C1‖ . . .‖Cn) - (let Π′ in C1‖ . . .‖Cn) .

(Here the simulation - for the whole programs is defined in Definition 24.) By the following Lemma 25, we know

{
∧

t Pt}(let Π in C1‖ . . .‖Cn)v (let Π′ in C1‖ . . .‖Cn) .

(Here the fair refinement v is defined in Definition 23.) Thus we get: Π vP Π′.

B.4.1 Lifting to Simulation for Client Threads

Definition 20 (Simulation for Thread). D, R,G |=∆
t {P}(Π, C) - (Π′,C){Q} iff, for any σc, σ and Σ, if (σ,Σ) |= P , there exist two

well-founded metrics M and M and a set ξ ∈P(ThrdID) such that

D, R,G |=∆
t (Π, C, (σc, σ, ◦)) - (Π′,C, (σc,Σ, ◦)) � (M,M) ⇓ξ Q.

Here D, R,G |=∆
t (Π, C, (σc, σ, κ)) - (Π′,C, (Σc,Σ, k)) � (M,M) ⇓ξ Q is co-inductively defined as follows.

Whenever D, R,G |=∆
t (Π, C, (σc, σ, κ)) - (Π′,C, (Σc,Σ, k)) � (M,M) ⇓ξ Q holds, then the following hold:

(1) σc = Σc; and (C 6= skip)⇒ (C 6= skip).
(2) Suppose σ = (s, h). Then ξ ⊆ s(TIDS) and t 6∈ ξ. For any t′ ∈ ξ, we have (σ,Σ) |= Enabled(Dt′) ∗ true.
(3) If C = skip, then C = skip and (σ,Σ) |= Qt.
(4) If (C, (σc, σ] σF , κ))

e−→ t,Π abort and Σ⊥ΣF , then
e = (t, clt, abort) and there exists T such that e = get obsv(T) and (C, (Σc,Σ] ΣF , k))

T−→∗t,Π abort.
(5) If (C, (σc, σ] σF , κ))

e−→ t,Π (C′, (σ′c, σ
′′, κ′)) and Σ⊥ΣF , then there exist σ′, n, T, C′, Σ′, k′, k, M′, M ′ and ξ′ such that

(a) σ′′ = σ′] σF ;
(b) (C, (Σc,Σ] ΣF , k))

T−→n
t,Π′ (C′, (σ′c,Σ′] ΣF , k′)); and

if k > 0, then there exist n1, n2, T1, T2 and C′′ such that n = n1 + n2 > 0 and T = T1 ::T2 and
(C, (Σc,Σ] ΣF , k))

T1−→n1
t,Π′ (C

′′, (Σc,∆t(Σ
′)] ΣF , k)) and (C′′, (Σc,∆t(Σ

′)] ΣF , k))
T2−→n2

t,Π′ (C
′, (σ′c,Σ

′] ΣF , k′));
and

(c) get obsv(e) = get obsv(T) and (e = (t, term))⇒ (e = last(T)), and
(d) D, R,G |=∆

t (Π, C′, (σ′c, σ
′, κ′)) - (Π′,C′, (σ′c,Σ′, k′)) � (M′,M ′) ⇓ξ′ Q, and

(e) ((σ,Σ), (σ′,Σ′), k) |= Gt ∗ True, and
(f) either n > 0, or M′ < M, or M′ = M and ξ 6= ∅ and ξ ⊆ ξ′; and
(g) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then M ′ < M .

(6) For any k, σ′c, σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), k) |= Rt ∗ Id, then there exist M′, M ′, ξd and ξ′ such that
(a) D, R,G |=∆

t (Π, C, (σ′c, σ
′, κ)) - (Π′,C, (σ′c,Σ′, k)) � (M′,M ′) ⇓ξ′ Q, and

(b) ξd = {t′ | (t′ ∈ ξ) ∧ (((σ,Σ), (σ′,Σ′)) |= 〈Dt′〉 ∗ Id)} and (k = 0 =⇒ ξ\ξd ⊆ ξ′), and

(c) if k > 0, then for any t′ 6= t, ΣF⊥Σ and Σ′c there exists T such that (C, (Σ′c,∆t′(Σ)]ΣF , k))
T−→ t,Π′ (C, (Σ′c,∆t′(Σ)]ΣF , k));

otherwise, M′ < M, or M′ = M and ξd = ∅; and
(d) if k = 0 and (σ,Σ) |= Enabled(Dt) ∗ true, then M ′ ≤M .

Lemma 21 (Lifting). If dom(Π) = dom(Π′) and D, R,G |=∆ {P}Π - Π′, then
for any t and C, we have D, R,G |=∆

t {P}(Π, C) - (Π′,C){P}.

Proof. By structural induction over C and by co-induction.

36

B.4.2 Parallel Compositionality
Lemma 22 (Parallel Compositionality).
If there exists R, G, D, P and ∆ such that the following hold for any t ∈ [1..n]:

(1) D, R,G |=∆
t {P}(Π, Ct) - (Π′,Ct){P},

(2) ∀t, t′. t 6= t′ =⇒ Gt ⇒ Rt′ , wffAct(R,D), P ⇒ ¬Enabled(D), P ∨ Enabled(D)⇒ I , I . {R,G},
then {

∧
t Pt}(let Π in C1‖ . . .‖Cn) - (let Π′ in C1‖ . . .‖Cn).

Proof. For any σc, σ and Σ, if (σ,Σ) |= (
∧

t Pt), from the premises and by sequential compositionality, we can prove: there exist M1, . . . ,
Mn, M1, . . . , Mn, ξ1, . . . , ξn such that the following holds for any t ∈ [1..n]:

D, R,G |=∆
t (Π, (Ct; end), (σc, σ, ◦)) - (Π′, (Ct; end), (σc,Σ, ◦)) � (Mt,Mt) ⇓ξt P .

We want to show that there exist M and ζ such that

((let Π in (C1; end)‖ . . .‖(Cn; end)), (σc, σ,}))�((let Π′ in (C1; end)‖ . . .‖(Cn; end)), (σc,Σ,})) � (M , ζ).

We generalize the result and prove the following (B.3):

If (σ,Σ) |= I and the following holds for any t ∈ [1..n]:

D, R,G |=∆
t (Π, Ct, (σc, σ] σt, κt)) - (Π′,Ct, (σc,Σ] Σt, kt)) � (Mt,Mt) ⇓ξt P ,

then

((let Π in C1‖ . . .‖Cn), (σc, σ] (
⊎

t σt),K))�((let Π′ in C1‖ . . .‖Cn), (σc,Σ] (
⊎

t Σt),K)) � (M , ζ).

Here for any t ∈ [1..n], K(t) = κt and K(t) = kt, and the functions M and ζ are defined as follows.
• dom(M) = dom(ζ) = activeThrds(let Π in C1‖ . . .‖Cn) = {t | (Ct 6= skip)}.
• For any t ∈ dom(M), we have M (t) = (Mt, {t′ ;Mt′ | t′ ∈ ξt}) and ζ(t) = ξt.

The order (M′,M′) < (M,M) is defined as a dictionary order:

(M′,M′) < (M,M) iff (M′ < M) ∨ (M′ = M) ∧ (M′ <M)

M′ <M iff ∃t. (M′(t) <M(t)) ∧ (∀t′ ∈ dom(M)\{t}.M′(t′) ≤M(t′))

M′ ≤M iff ∀t ∈ dom(M).M′(t) ≤M(t)

Clearly M ′(t) < M (t) is a well-founded order.
(B.3)

By co-induction. LetW def
= (let Π in C1‖ . . .‖Cn), W def

= (let Π′ in C1‖ . . .‖Cn), S def
= (σc, σ] (

⊎
t σt),K) and S def

= (σc,Σ] (
⊎

t Σt),K).
Suppose σ = (s, h). Then s(TIDS) = [1..n].

(1) dom(M) = dom(ζ) = activeThrds(W) = activeThrds(W), and ∀t ∈ dom(ζ). ζ(t) ⊆ (dom(ζ)\{t}).
Proof : For any t ∈ [1..n], from the premise, we know: (Ct 6= skip) ⇔ (Ct 6= skip). Thus activeThrds(let Π in C1 ‖ . . . ‖ Cn) =
activeThrds(let Π′ in C1‖ . . .‖Cn).
Also, ζ(t) ⊆ s(TIDS) = [1..n]. And for any t′ ∈ ζ(t), we have t′ 6= t and (σ,Σ) |= Enabled(Dt′) ∗ true. Then we only need to prove
(Ct′ 6= skip). Suppose (Ct′ = skip), then we have (σ,Σ) |= Pt′ . Since Pt ⇒ I , we know (σ,Σ) |= I . Since Enabled(Dt′) ⇒ I and
Precise(bIc), we know (σ,Σ) |= Enabled(Dt′). Since Pt′ ∧ Enabled(Dt′)⇒ false, we get (σ,Σ) |= false, which is impossible. Thus
(Ct′ 6= skip).

(2) If (W,S) 7−→ (skip,S ′), then there exist T and S′ such that get obsv(T) = ε and (W, S)
T7−→+ (skip, S′).

Proof : By the operational semantics we know: for any t ∈ [1..n], we have Ct = skip. By D, R,G |=∆
t (Π, Ct, (σc, σ] σt, κt)) -

(Π′,Ct, (σc,Σ] Σt, kt)) � (Mt,Mt) ⇓ξt P , we have Ct = skip. Thus we have (W, S) 7−→ (skip, S).

(3) If (W,S)
e7−→ abort, then there exist t and T such that e = (t, clt, abort), e = get obsv(T) and (W, S)

T7−→+ abort.
Proof : By the operational semantics we know: there exists t ∈ [1..n] such that

(Ct, (σc, σ] (
⊎

t σt), κt))
e−→ t,Π abort.

By D, R,G |=∆
t (Π, Ct, (σc, σ] σt, κt)) - (Π′,Ct, (σc,Σ]Σt, kt)) � (Mt,Mt) ⇓ξt P , we know e = (t, clt, abort) and there exists T

such that e = get obsv(T) and

(Ct, (σc,Σ] (
⊎

t Σt), kt))
T−→+

t,Π abort.

Thus (W, S)
T7−→+ abort.

(4) If (W, (σc, σ] (
⊎

t σt),K))
e7−→ (W ′, (σ′c, σ

′′,K′)), then there exist t, T, W′, S′, M ′ and ζ′ such that all the following hold:

(a) (W, (σc,Σ] (
⊎

t Σt),K))
T7−→∗ (W′, S′);

(b) t = tid(e), get obsv(e) = get obsv(T), (e = (t, term))⇒ (e = last(T));
(c) (W ′, (σ′c, σ

′′,K′))�(W′, S′) � (M ′, ζ′);

37

(d) either t ∈ tidset(T),
or M ′(t) < M (t),
or M ′(t) = M (t) and ζ(t) 6= ∅ and ζ(t) ⊆ ζ′(t);

(e) for any t′ ∈ dom(M)\{t}, we have:
either t′ ∈ tidset(T),
or M ′(t′) < M (t′),
or M ′(t′) = M (t′) and t 6∈ ζ(t′) and ζ(t′) ⊆ ζ′(t′).

Proof : By the operational semantics, we know there exist t, C′t and κ′t such that

W ′ = (let Π in C1‖ . . . C′t . . .‖Cn) , t = tid(e) ,
(Ct, (σc, σ] (

⊎
t σt), κt))

e−→ t,Π (C′t , (σ
′
c, σ
′′, κ′t))) and K′ = K{t ; κ′t} .

By D, R,G |=∆
t (Π, Ct, (σc, σ] σt, κt)) - (Π′,Ct, (σc,Σ] Σt, kt)) � (Mt,Mt) ⇓ξt P , we know

(A) For any t′ ∈ ξt, we have t′ 6= t and (σ] σt,Σ] Σt) |= Enabled(Dt′) ∗ true.
And there exist σ′′′, n, T, C′t, Σ′′′, k′t, k, M′t, M ′t and ξ′t such that
(B) σ′′ = σ′′′] (

⊎
t′ 6=t σt′), and

(C) (Ct, (σc,Σ] (
⊎

t Σt), kt))
T−→n

t,Π′ (C′t, (σ′c,Σ′′′] (
⊎

t′ 6=t Σt′), k
′
t)); and

if k > 0, then there exist C′′t , T1, T2, n1 and n2 such that T = T1 ::T2 and n = n1 + n2 > 0 and
(Ct, (σc,Σ] (

⊎
t Σt), kt))

T1−→n1
t,Π′ (C

′′
t , (σc,∆t(Σ)] (

⊎
t Σt), kt)) and

(C′′t , (σc,∆t(Σ)] (
⊎

t Σt), kt))
T2−→n2

t,Π′ (C
′
t, (σ

′
c,Σ
′′′] (

⊎
t′ 6=t Σt′), k

′
t));

and
(D) get obsv(e) = get obsv(T) and (e = (t, term))⇒ (e = last(T)), and
(E) D, R,G |=∆

t (Π, C′t , (σ
′
c, σ
′′′, κ′t)) - (Π′,C′t, (σ′c,Σ′′′, k′t)) � (M′t,M

′
t) ⇓ξ′t P , and

(F) ((σ] σt,Σ] Σt), (σ
′′′,Σ′′′), k) |= Gt ∗ True, and

(G) either n > 0, or M′t < Mt, or M′t = Mt and ξt 6= ∅ and ξt ⊆ ξ′t ; and
(H) if ((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 ∗ True, then M ′t < Mt.
Since (σ,Σ) |= I and I . {R,G}, we know there exist σ′, σ′t , Σ′ and Σ′t such that

σ′′′ = σ′] σ′t , Σ′′′ = Σ′] Σ′t, (σ′,Σ′) |= I and ((σ,Σ), (σ′,Σ′), k) |= Gt.

For any t′ 6= t, since Gt ⇒ Rt′ , we have ((σ,Σ), (σ′,Σ′), k) |= Rt′ . Thus

((σ] σt′ ,Σ] Σt′), (σ
′] σt′ ,Σ

′] Σt′), k) |= Rt′ ∗ Id.

By D, R,G |=∆
t′ (Π, Ct′ , (σc, σ] σt′ , κt′)) - (Π′,Ct′ , (σc,Σ] Σt′ , kt′)) � (Mt′ ,Mt′) ⇓ξt′ P , we know

(I) For any t′′ ∈ ξt′ , we have t′′ 6= t′ and (σ] σt′ ,Σ] Σt′) |= Enabled(Dt′′) ∗ true.
And there exist M′t′ , M

′
t′ , ξd and ξ′t′ such that

(J) D, R,G |=∆
t′ (Π, Ct′ , (σ

′
c, σ
′] σt′ , κt′)) - (Π′,Ct′ , (σ

′
c,Σ
′] Σt′ , kt′)) � (M′t′ ,M

′
t′) ⇓ξ′

t′
P , and

(K) ξd = {t′′ | (t′′ ∈ ξt′) ∧ (((σ] σt′ ,Σ] Σt′), (σ
′] σt′ ,Σ

′] Σt′)) |= 〈Dt′′〉 ∗ Id)} and (k = 0 =⇒ ξt′\ξd ⊆ ξ′t′), and

(L) if k > 0, then there exists T′ such that (Ct′ , (σc,∆t(Σ)] (
⊎

t Σt), kt′))
T′−→ t′,Π′ (Ct′ , (σc,∆t(Σ)] (

⊎
t Σt), kt′)),

otherwise, M′t′ < Mt′ , or M′t′ = Mt′ and ξd = ∅; and
(M) if k = 0 and (σ] σt′ ,Σ] Σt′) |= Enabled(Dt′) ∗ true, then M ′t′ ≤Mt′ .
From (C), we know

(Ct, (σc,Σ] (
⊎

t Σt), kt))
T−→n

t,Π′ (C′t, (σ′c,Σ′] Σ′t] (
⊎

t′ 6=t Σt′), k
′
t)) .

Let W′ = (let Π′ in C1‖ . . .C′t . . .‖Cn) and S′ = (σ′c,Σ
′]Σ′t] (

⊎
t′ 6=t Σt′),K{t ; k′t}). With (L), we know there exist T and n such

that

(W, (σc,Σ] (
⊎

t Σt),K))
T7−→n (W′, S′) .

Also, for any t′ 6= t, we have: either t′ ∈ tidset(T), or M′t′ < Mt′ , or M′t′ = Mt′ and ξd = ∅.
From (G), we know: either t ∈ tidset(T), or M′t < Mt, or M′t = Mt and ξt 6= ∅ and ξt ⊆ ξ′t .
Besides, we have

k > 0 =⇒ (t ∈ tidset(T)) ∧ (t′ ∈ tidset(T)) .

Define the functions M ′ and ζ′ as follows.
• dom(M ′) = dom(ζ′) = activeThrds(W ′).
• For any t ∈ dom(M ′), we have M ′(t) = (M′t, {t′ ;M ′t′ | t′ ∈ ξ′t}) and ζ′(t) = ξ′t .

Then by the co-induction hypothesis, we know

(W ′, (σ′c, σ
′′,K′))�(W′, S′) � (M ′, ζ′) .

For the thread t, suppose t 6∈ tidset(T), then k = 0. Then,

38

• If M′t < Mt, then M ′(t) < M (t).
• If M′t = Mt and ξt 6= ∅ and ξt ⊆ ξ′t , we know ζ(t) 6= ∅ and ζ(t) ⊆ ζ′(t). We only need to show the following (B.4):

{t′ ;M ′t′ | t′ ∈ ξ′t} ≤ {t′ ;Mt′ | t′ ∈ ξt} (B.4)

From (A), since ∀t′. Enabled(Dt′)⇒ I and Precise(I), we know: for any t′ ∈ ξt,
t′ 6= t and (σ,Σ) |= Enabled(Dt′) .

Thus (σ] σt′ ,Σ] Σt′) |= Enabled(Dt′) ∗ true. From (M), we have M ′t′ ≤Mt′ . Thus (B.4) holds.
For any t′ ∈ dom(M)\{t}, suppose t′ 6∈ tidset(T), then k = 0. Then,
• If M′t′ < Mt′ , then M ′(t′) < M (t′).
• If M′t′ = Mt′ , ξd = ∅ and t 6∈ ξt′ , from (K), we know ξt′ ⊆ ξ′t′ . Thus t 6∈ ζ(t′) and ζ(t′) ⊆ ζ′(t′). We only need to show the following

(B.5):
{t′′ ;M ′t′′ | t′′ ∈ ξ′t′} ≤ {t′′ ;Mt′′ | t′′ ∈ ξt′} (B.5)

From (I), we know: for any t′′ ∈ ξt′ ,
t′′ 6= t′ and (σ,Σ) |= Enabled(Dt′′) .

Thus (σ] σt′′ ,Σ] Σt′′) |= Enabled(Dt′′) ∗ true. From (M), we have M ′t′′ ≤Mt′′ . Thus (B.5) holds.
• If M′t′ = Mt′ , ξd = ∅ and t ∈ ξt′ , since wffAct(R,D) and k = 0, we know

((σ,Σ), (σ′,Σ′)) |= 〈[Dt]〉 .
From (H), we know

M ′t < Mt.
We only need to show the following (B.6):

{t′′ ;M ′t′′ | t′′ ∈ ξ′t′} < {t′′ ;Mt′′ | t′′ ∈ ξt′} (B.6)

For any t′′ ∈ ξt′\{t}, from (I), we know:
t′′ 6= t′ and (σ,Σ) |= Enabled(Dt′′) .

Thus (σ] σt′′ ,Σ] Σt′′) |= Enabled(Dt′′) ∗ true. From (M), we have M ′t′′ ≤Mt′′ . Thus (B.6) holds.

Thus we are done.

B.4.3 Simulation for Whole Programs and Fair Refinement
Definition 23 (Fair refinement). {P}W vW iff

∀σc, σ,Σ. (σ,Σ) |= P =⇒ OfωJW, (σc, σ,}))K ⊆ OfωJW, (σc,Σ,})K .

Definition 24 (Simulation for the whole program). {P}W -W iff, for any σc, σ and Σ, if (σ,Σ) |= P , there exist M ∈ ThrdID ⇀ Metric
and ζ ∈ ThrdID ⇀ P(ThrdID) such that

(bW c, (σc, σ,}))�(bWc, (σc,Σ,})) � (M , ζ).

Here (W,S)�(W, S) � (M , ζ) is co-inductively defined as follows.
Whenever (W,S)�(W, S) � (M , ζ) holds, then the following hold:

(1) dom(M) = dom(ζ) = activeThrds(W) = activeThrds(W), and ∀t ∈ dom(ζ). ζ(t) ⊆ (dom(ζ)\{t}).
(2) If (W,S) 7−→ (skip,S ′), then

there exist T and S′ such that get obsv(T) = ε and (W, S)
T7−→+ (skip, S′).

(3) If (W,S)
e7−→ abort, then

there exist t and T such that e = (t, clt, abort), e = get obsv(T) and (W, S)
T7−→+ abort.

(4) If (W,S)
e7−→ (W ′,S ′), then

there exist t, T, W′, S′, M ′ and ζ′ such that all the following hold:

(a) (W, S)
T7−→∗ (W′, S′);

(b) t = tid(e), get obsv(e) = get obsv(T), (e = (t, term))⇒ (e = last(T));
(c) (W ′,S ′)�(W′, S′) � (M ′, ζ′);
(d) either t ∈ tidset(T),

or M ′(t) < M (t),
or M ′(t) = M (t) and ζ(t) 6= ∅ and ζ(t) ⊆ ζ′(t);

(e) for any t′ ∈ dom(M)\{t}, we have:
either t′ ∈ tidset(T),
or M ′(t′) < M (t′),
or M ′(t′) = M (t′) and t 6∈ ζ(t′) and ζ(t′) ⊆ ζ′(t′).

Lemma 25 (Simulation for whole program ensures fair refinement).
If {P}W -W and |W | = |W|, then {P}W vW.

To prove Lemma 25, we introduce the notion of scheduler T, which is similar to the event trace T but contains more information such that
it can uniquely determine an execution. That is, each step is deterministic given the code, the state, and the scheduler. Note that the event trace
T is not sufficient to determine a unique execution if we allow non-deterministic instructions such as x := rand().

39

(let Π in C1‖ . . . Ct . . .‖Cn)|t
def
= Ct

activeThrds(W)
def
= {t | ∃C. (W |t = C) ∧ (C 6= skip)}

tidset(T)
def
=

{
∅ if T = ε
{tid(e)} ∪ tidset(T ′) if T = e ::T ′

Figure 23. Auxiliary definitions.

(SchEvt) ι ::= (t, f, n) | (t, ret, n) | (t, obj, info) | (t, obj, abort)
| (t, out, n, info) | (t, clt, info) | (t, clt, abort)
| (t, term) | (spawn, n)

(Sched) T ::= ε | ι ::T (co-inductive)

Here info denotes the additional information that can uniquely determine a step. For instance, it could be the value written to x for the
non-deterministic instruction x := rand(). We can even record the initial and final states of the step if necessary.

We strengthen the labelled transition system (W,S)
e7−→ (W ′,S ′) in Fig. 5 to (W,S)

ι7−→ (W ′,S ′). The definition of the strengthened
transition system is similar to the original one and omitted here. Then (W,S)

T7−→ ∗ (W ′,S ′) represents a zero or multi-step execution of
(W,S) that leads to (W ′,S ′) under the scheduler T. (W,S)

T7−→ω · represents an infinite execution with the infinite scheduler T. We use
e = bιc to remove the additional information in ι, and T = bTc to remove the additional information in each event in T. We also overload all
the predicates over T to be defined over T. For instance, get obsv(T) gives us an observable “scheduler” To, which is the subsequence of T
consisting of externally observable events only.

To facilitate the proofs, we give alternative definitions of Ofω . Fig. 24 shows the alternative co-inductive definitions for generating
observable event traces of complete fair executions. We prove they are equivalent to the original definitions, as shown in the following lemmas.
Their proofs are given later.

Lemma 26. (To ∈ OfωJW,SK) ⇐⇒ (∃T,To. (T |= Oco
fω(bW c,S,To)) ∧ (bToc = To)).

Lemma 27. (∃T. T |= Oco
fω(W,S,To)) ⇐⇒ Oco

fω(W,S,To).

Lemma 28. IfM |= Om
fω(W,S,To), then Oco

fω(W,S,To).

We also define a simulation between whole programs under an explicit scheduler T at the low level, T |= (W,S)� (W, S) �M, as a
bridge that relates the simulation (W,S)�(W, S) � (M , ζ) in Definition 24 to the fair refinement.

Definition 29 (Simulation for the whole program with fixed scheduling at the low level).
T |= (W,S)�(W, S) �M is co-inductively defined as follows. HereM∈ ThrdID ⇀ Metric.
Whenever T |= (W,S)�(W, S) �M holds, then the following hold:

(1) dom(M) = activeThrds(W) = activeThrds(W).
(2) If (W,S) 7−→ (skip,S ′) and T = ε, then

there exist T and S′ such that get obsv(T) = ε and (W, S)
T7−→+ (skip, S′).

(3) If (W,S)
ι7−→ abort and T = ι ::ε, then

there exist t and T such that bιc = (t, clt, abort), bιc = get obsv(T) and (W, S)
T7−→+ abort.

(4) If (W,S)
ι7−→ (W ′,S ′) and T = ι ::T′, then

there exist t, T, W′, S′ andM′ such that all the following hold:

(a) (W, S)
T7−→∗ (W′, S′);

(b) t = tid(bιc), get obsv(bιc) = get obsv(T), (bιc = (t, term))⇒ (bιc = last(T));
(c) T′ |= (W ′,S ′)�(W′, S′) �M′;
(d) for any t′ ∈ dom(M), either t′ ∈ tidset(T), orM′(t′) <M(t′).

Lemma 30. For any T, W , S, To, W, S, M and ξ, if T |= Oco
fω(W,S,To) and (W,S)� (W, S) � (M , ζ), then there existsM such that

T |= (W,S)�(W, S) �M.

Lemma 31. If T |= Oco
fω(W,S,To) and T |= (W,S)�(W, S) �M, thenM |= Om

fω(W, S,To).

The proofs of the above lemmas are given later. With the auxiliary simulation with an explicit scheduler and these useful lemmas, we can
finish the proof of Lemma 25.

40

(W,S)
T7−→+ abort get obsv(T) = To

T |= Oco
fω(W,S,To)

(W,S)
T7−→+ (skip,) get obsv(T) = To

T |= Oco
fω(W,S,To)

(W,S)
T7−→+ (W ′,S′) get obsv(T) = ε T′ |= Oco

fω(W ′,S′, ε) activeThrds(W) ⊆ tidset(T)

T ::T′ |= Oco
fω(W,S, ε)

(W,S)
T7−→+ (W ′,S′) get obsv(T) = ι ::To T′ |= Oco

fω(W ′,S′,T′o) activeThrds(W) ⊆ tidset(T)

T ::T′ |= Oco
fω(W,S, e ::To ::T′o)

(a) with an explicit scheduler

(W,S)
T7−→+ abort get obsv(T) = To

Oco
fω(W,S,To)

(W,S)
T7−→+ (skip,) get obsv(T) = To

Oco
fω(W,S,To)

(W,S)
T7−→+ (W ′,S′) get obsv(T) = ε Oco

fω(W ′,S′, ε) activeThrds(W) ⊆ tidset(T)

Oco
fω(W,S, ε)

(W,S)
T7−→+ (W ′,S′) get obsv(T) = ι ::To Oco

fω(W ′,S′,T′o) activeThrds(W) ⊆ tidset(T)

Oco
fω(W,S, e ::To ::T′o)

(b) the scheduler is implicit

(W,S)
T7−→+ abort get obsv(T) = To

M |= Om
fω(W,S,To)

(W,S)
T7−→+ (skip,) get obsv(T) = To

M |= Om
fω(W,S,To)

(W,S)
T7−→∗ (W ′,S′) get obsv(T) = ε M′ |= Om

fω(W ′,S′, ε)
dom(M) = activeThrds(W) 6= ∅ ∀t ∈ dom(M)\tidset(T).M′(t) <M(t)

M |= Om
fω(W,S, ε)

(W,S)
T7−→+ (W ′,S′) get obsv(T) = ι ::To M |= Om

fω(W ′,S′,T′o)
dom(M) = activeThrds(W) ∀t ∈ dom(M)\tidset(T).M′(t) <M(t)

M |= Om
fω(W,S, e ::To ::T′o)

(c) with the metric mappingM∈ ThrdID ⇀ Metric

Figure 24. Co-inductive definitions for generating observable event traces of complete fair executions.

41

Proof of Lemma 25. By Lemmas 26 and 27, we only need to show: for any σc, σ, Σ, i, T and To, if (σ,Σ, i) |= P and T |=
Oco

fω(bW c, (σc, σ,}),To), then Oco
fω(bWc, (σc,Σ,}),To).

From {P}W -W, we know there exists M and ζ such that

(bW c, (σc, σ,}))�(bWc, (σc,Σ,})) � (M , ζ).

By Lemma 30, we know there existsM such that

T |= (bW c, (σc, σ,}))�(bWc, (σc,Σ,})) �M.

Then by Lemma 31, we know

M |= Om
fω(bWc, (σc,Σ,}),To).

By Lemma 28, we get

Oco
fω(bWc, (σc,Σ,}),To).

Thus we are done.

42

Proof of Lemma 26. To ∈ OfωJW,SK can be unfolded as follows.

To ∈ OfωJW,SK iff ∃T. ((bW c,S)
T7−→+ abort) ∧ (To = get obsv(T))

∨ ((bW c,S)
T7−→+ (skip,)) ∧ (To = get obsv(T))

∨ ((bW c,S)
T7−→ω ·) ∧ (To = get obsv(T))

∧ (∀t ∈ activeThrds(bW c). |(T |t)| = ω ∨ last(T |t) = (t, term))

We define (To,T) ∈ OfωJW,SK as follows.

(To,T) ∈ OfωJW,SK iff ((W,S)
T7−→+ abort) ∧ (To = get obsv(T))

∨ ((W,S)
T7−→+ (skip,)) ∧ (To = get obsv(T))

∨ ((W,S)
T7−→ω ·) ∧ (To = get obsv(T))

∧ (∀t ∈ activeThrds(W). |(T|t)| = ω ∨ last(T|t) = (t, term))

Then (To ∈ OfωJW,SK) ⇐⇒ (∃To,T. ((To,T) ∈ OfωJ(bW c),SK) ∧ (bToc = To)). Below we prove

(T |= Oco
fω(W,S,To)) ⇐⇒ ((To,T) ∈ OfωJW,SK) (B.7)

• =⇒: We have two cases:
• |T| 6= ω:

Proof : By induction over |T|, and then by inversion over T |= Oco
fω(W,S,To).

• |T| = ω: We prove (W,S)
T7−→ω ·, To = get obsv(T) and ∀t ∈ activeThrds(W). |(T|t)| = ω ∨ last(T|t) = (t, term).

• We prove (W,S)
T7−→ω · by co-induction.

• We prove To = get obsv(T) by co-induction.
• Let termThrds(T)

def
= {t | last(T|t) = (t, term)}. For any t ∈ activeThrds(W)\termThrds(T), we prove |(T|t)| = ω by

co-induction.
• ⇐=: By co-induction.

Proof of Lemma 27. By co-induction.

43

Proof of Lemma 28. We want to prove the following:

∀W,S,To.
(∃M. (M |= Om

fω(W,S,To))) =⇒ Oco
fω(W,S,To)

By co-induction.

Co-induction Principle: ∀x. (∃S. S ⊆ F (S) ∧ x ∈ S) =⇒ x ∈ gfp F

Figure 24 defines F and gfp F (i.e., Oco
fω at the middle part of the figure). Let

S
def
= {(W,S,To) | ∃M. (M |= Om

fω(W,S,To))}.

So from the co-induction principle, we only need to prove:

S ⊆ F (S), i.e., ∀W,S,To. (W,S,To) ∈ S =⇒ (W,S,To) ∈ F (S) .

By unfolding S and by inversion over Om
fω , we have the following cases.

1. (W,S)
T7−→+ abort and get obsv(T) = To:

From the definition of F (at the middle part in Figure 24), we know (W,S,To) ∈ F (S).

2. (W,S)
T7−→+ (skip,) and get obsv(T) = To:

From the definition of F (at the middle part in Figure 24), we know (W,S,To) ∈ F (S).

3. To = ε, (W,S)
Tx7−→∗ (Wy,Sy), get obsv(Tx) = ε, (My |= Om

fω(Wy,Sy, ε)),
dom(M) = activeThrds(W) 6= ∅ and ∀t ∈ dom(M)\tidset(Tx).My(t) <M(t):
We want to prove (T,W,S, ε) ∈ F (S). We have two cases:
(a) activeThrds(W) ⊆ tidset(Tx):

Since activeThrds(W) 6= ∅, we know (W,S)
Tx7−→+ (Wy,Sy). From (My |= Om

fω(Wy,Sy, ε)), we know (Wy,Sy, ε) ∈ S. From
the definition of F (at the middle part in Figure 24), we know (W,S, ε) ∈ F (S).

(b) dom(M)\tidset(Tx) 6= ∅:
By transfinite induction over the metric (dom(M)\tidset(Tx),My).

Transfinite Induction Principle: (∀M. (∀M ′. M ′ < M =⇒ P (M ′)) =⇒ P (M)) =⇒ ∀M.P (M)
The order over the metrics, (ξ2,M2) < (ξ1,M1), is defined as follows.

(ξ2,M2) < (ξ1,M1) iff (ξ2 ⊂ ξ1) ∨ (ξ2 = ξ1 6= ∅) ∧ (∀t ∈ ξ2.M2(t) <M1(t))
It is clear that (ξ2,M2) < (ξ1,M1) is a well-founded order.
We view our goal as ∀M,Tx,My.P (M,Tx,My), which is reformulated as follows.

∀M,Tx,My.
∀Wy,Sy.
((W,S)

Tx7−→∗ (Wy,Sy)) ∧ (get obsv(Tx) = ε)
∧ (My |= Om

fω(Wy,Sy, ε)) ∧ (∀t ∈ dom(M)\tidset(Tx).My(t) <M(t))
=⇒
(W,S, ε) ∈ F (S)

By the transfinite induction principle, we only need to prove
∀M,Tx,My.
(∀M′,T′x,M′y. (dom(M′)\tidset(T′x),M′y) < (dom(M)\tidset(Tx),My) =⇒ P (M′,T′x,M′y))
=⇒ P (M,Tx,My)

The proof is by inversion over (My |= Om
fω(Wy,Sy, ε)). We only have two possible cases:

i. (Wy,Sy)
Ty7−→+ (skip,) and get obsv(Ty) = ε:

We get (W,S) p
Tx::Ty−−−−→+ (skip,) and get obsv(Tx ::Ty) = ε. By the definition of F (at the middle part in Figure 24), we know

(W,S, ε) ∈ F (S).

ii. (Wy,Sy)
T′x7−→∗ (W ′y,S ′y), get obsv(T′x) = ε, (M′y |= Om

fω(W ′y,S ′y, ε)),
dom(My) = activeThrds(Wy) 6= ∅ and ∀t ∈ dom(My)\tidset(T′x).M′y(t) <My(t):
We first show

(dom(My)\tidset(Tx ::T′x),M′y) < (dom(M)\tidset(Tx),My) . (B.8)

By the operational semantics, we know
dom(My) = activeThrds(Wy) ⊆ activeThrds(W) = dom(M).

Since tidset(Tx) ⊆ tidset(Tx ::T′x), we know dom(My)\tidset(Tx ::T′x) ⊆ dom(M)\tidset(Tx). If dom(My)\tidset(Tx ::
T′x) = dom(M)\tidset(Tx), for any t ∈ dom(My)\tidset(Tx :: T′x), we know t ∈ dom(My)\tidset(T′x). ThusM′y(t) <
My(t). Thus we have proved (B.8).
By the transfinite induction hypothesis, we have

44

∀W ′y,S ′y.

((W,S) p
Tx::T′x−−−−→∗ (W ′y,S ′y)) ∧ (get obsv(Tx ::T′x) = ε)

∧ (M′y |= Om
fω(W ′y,S ′y, ε)) ∧ (∀t ∈ dom(My)\tidset(Tx ::T′x).M′y(t) <My(t))

=⇒
(W,S, ε) ∈ F (S)

Thus we get (W,S, ε) ∈ F (S).

4. To = ι ::Ta ::Tb, (W,S)
Tx7−→+ (Wy,Sy), get obsv(Tx) = ι ::Ta, (My |= Om

fω(Wy,Sy,Tb)),
dom(M) = activeThrds(W) and ∀t ∈ dom(M)\tidset(Tx).My(t) <M(t):
We want to prove (W,S, ε) ∈ F (S). We have two cases:
(a) activeThrds(W) ⊆ tidset(Tx):

From (My |= Om
fω(Wy,Sy,Tb)), we know (Wy,Sy,Tb) ∈ S. From the definition of F (at the middle part in Figure 24), we know

(W,S,To) ∈ F (S).
(b) dom(M)\tidset(Tx) 6= ∅:

By transfinite induction over the metric (dom(M)\tidset(Tx),My).
Transfinite Induction Principle: (∀M. (∀M ′. M ′ < M =⇒ P (M ′)) =⇒ P (M)) =⇒ ∀M.P (M)

The order over the metrics, (ξ2,M2) < (ξ1,M1), is defined as follows.
(ξ2,M2) < (ξ1,M1) iff (ξ2 ⊂ ξ1) ∨ (ξ2 = ξ1 6= ∅) ∧ (∀t ∈ ξ2.M2(t) <M1(t))

It is clear that (ξ2,M2) < (ξ1,M1) is a well-founded order.
We view our goal as ∀M,Tx,My.P (M,Tx,My), which is reformulated as follows.

∀M,Tx,My.
∀Wy,Sy, ι,Ta,Tb.
(To = ι ::Ta ::Tb) ∧ ((W,S)

Tx7−→+ (Wy,Sy)) ∧ (get obsv(Tx) = ι ::Ta)
∧ (My |= Om

fω(Wy,Sy,Tb)) ∧ (∀t ∈ dom(M)\tidset(Tx).My(t) <M(t))
=⇒
(W,S,To) ∈ F (S)

By the transfinite induction principle, we only need to prove
∀M,Tx,My.
(∀M′,T′x,M′y. (dom(M′)\tidset(T′x),M′y) < (dom(M)\tidset(Tx),My) =⇒ P (M′,T′x,M′y))
=⇒ P (M,Tx,My)

The proof is by inversion over (My |= Om
fω(Wy,Sy,Tb)). We have four cases:

i. (Wy,Sy)
Ty7−→+ abort and get obsv(Ty) = Tb:

We get (W,S) p
Tx::Ty−−−−→+ abort and get obsv(Tx ::Ty) = To. By the definition of F (at the middle part in Figure 24), we know

(W,S,To) ∈ F (S).

ii. (Wy,Sy)
Ty7−→+ (skip,) and get obsv(Ty) = Tb:

We get (W,S) p
Tx::Ty−−−−→+ (skip,) and get obsv(Tx ::Ty) = To. By the definition of F (at the middle part in Figure 24), we know

(W,S,To) ∈ F (S).

iii. Tb = ε, (Wy,Sy)
T′x7−→∗ (W ′y,S ′y), get obsv(T′x) = ε, (M′y |= Om

fω(W ′y,S ′y, ε)),
dom(My) = activeThrds(Wy) 6= ∅ and ∀t ∈ dom(My)\tidset(T′x).M′y(t) <My(t):
With (B.8), by the transfinite induction hypothesis, we have

∀W ′y,S ′y, ι,Ta,Tb.

(To = ι ::Ta ::Tb) ∧ ((W,S) p
Tx::T′x−−−−→+ (W ′y,S ′y)) ∧ (get obsv(Tx ::T′x) = ι ::Ta)

∧ (M′y |= Om
fω(W ′y,S ′y,Tb)) ∧ (∀t ∈ dom(My)\tidset(Tx ::T′x).M′y(t) <My(t))

=⇒
(W,S,To) ∈ F (S)

Thus we can get (W,S,To) ∈ F (S).

iv. Tb = ι′ ::T′a ::T′b, (Wy,Sy)
T′x7−→+ (W ′y,S ′y), get obsv(T′x) = ι′ ::T′a, (M′y |= Om

fω(W ′y,S ′y,T′b)),
dom(My) = activeThrds(Wy) and ∀t ∈ dom(My)\tidset(T′x).M′y(t) <My(t):
With (B.8), by the transfinite induction hypothesis, we have

∀W ′y,S ′y, ι,Ta, ι′,T′a,T′b.

(To = ι ::Ta :: ι′ ::T′a ::T′b) ∧ ((W,S) p
Tx::T′x−−−−→+ (W ′y,S ′y))

∧ (get obsv(Tx ::T′x) = ι ::Ta :: ι′ ::T′a)
∧ (M′y |= Om

fω(W ′y,S ′y,T′b)) ∧ (∀t ∈ dom(My)\tidset(Tx ::T′x).M′y(t) <My(t))
=⇒
(W,S,To) ∈ F (S)

Thus we can get (W,S,To) ∈ F (S).

Then we are done.

45

Proof of Lemma 30. First we define

roundsub(T, ξ,Tx) iff (|T| 6= ω) ∧ (Tx = T) ∨ ∃T′. (T = Tx ::T′) ∧ (|Tx| 6= ω) ∧ (ξ ⊆ tidset(Tx))

minPos(T, ξ1, ξ2)
def
=

{
minPos(T, ξ2) if ξ1 = ∅
minPos(T, ξ1) if ξ1 6= ∅

minPos(T, ξ)
def
=

 1 if T = ε
1 if T = ι ::T′, |T| 6= ω and tid(ι) ∈ ξ
1 + minPos(T′, ξ) if T = ι ::T′, |T| 6= ω and tid(ι) 6∈ ξ

We prove the following (B.9) by inversion over T |= Oco
fω(W,S,To).

If T |= Oco
fω(W,S,To), then there exists Tx such that roundsub(T, activeThrds(W),Tx).

(B.9)

Also, by inversion over (W,S)�(W, S) � (M , ζ), we know

dom(M) = dom(ζ) = activeThrds(W) = activeThrds(W).

Choose Tx such that roundsub(T, activeThrds(W),Tx). Next we chooseM to be a function such that the following hold:

(1) dom(M) = activeThrds(W).
(2) For any t ∈ dom(M), we haveM(t) = (M (t), (ζ(t), dom(ζ)\{t}),minPos(Tx, ζ(t), {t})).

We define the orderM′(t) <M(t) as a dictionary order:

(M ′, (ξ′, ξ′D), k′) < (M, (ξ, ξD), k) iff
(M ′ < M) ∨ (M ′ = M) ∧ ((ξ′, ξ′D) < (ξ, ξD)) ∨ (M ′ = M) ∧ ((ξ′, ξ′D) = (ξ, ξD)) ∧ (k′ < k)

(ξ′, ξ′D) < (ξ, ξD) iff
(ξ′ ⊃ ξ) ∧ (ξ′ ⊆ ξ′D) ∧ (ξ ⊆ ξD) ∧ (ξ′D ⊆ ξD)

(ξ′, ξ′D) = (ξ, ξD) iff
(ξ′ = ξ) ∧ (ξ′ ⊆ ξ′D) ∧ (ξ ⊆ ξD) ∧ (ξ′D ⊆ ξD)

Clearly thatM′(t) <M(t) is a well-founded order.
Next we prove: for any T, W , S, To, W, S, M , ξ,M and Tx, if

(1) T |= Oco
fω(W,S,To);

(2) (W,S)�(W, S) � (M , ζ);
(3) roundsub(T, activeThrds(W),Tx);

dom(M) = activeThrds(W); and
for any t ∈ dom(M), we haveM(t) = (M (t), (ζ(t), dom(ζ)\{t}),minPos(Tx, ζ(t), {t})),

then T |= (W,S)�(W, S) �M.
By co-induction. We need to prove the following.

(1) dom(M) = activeThrds(W) = activeThrds(W).
Proof : From (W,S)�(W, S) � (M , ζ), we know dom(M) = dom(ζ) = activeThrds(W) = activeThrds(W).

(2) If (W,S) 7−→ (skip,S ′) and T = ε, then
there exist T and S′ such that get obsv(T) = ε and (W, S)

T7−→+ (skip, S′).
Proof : From (W,S)�(W, S) � (M , ζ), we know there exist T and S′ such that get obsv(T) = ε and (W, S)

T7−→+ (skip, S′).
(3) If (W,S)

ι7−→ abort and T = ι ::ε, then
there exist t and T such that bιc = (t, clt, abort), bιc = get obsv(T) and (W, S)

T7−→+ abort.
Proof : From (W,S) � (W, S) � (M , ζ), we know there exist t and T such that bιc = (t, clt, abort), bιc = get obsv(T) and
(W, S)

T7−→+ abort.
(4) If (W,S)

ι7−→ (W ′,S ′) and T = ι ::T′, then
there exist t, T, W′, S′ andM′ such that all the following hold:

(a) (W, S)
T7−→∗ (W′, S′);

(b) t = tid(bιc), get obsv(bιc) = get obsv(T), (bιc = (t, term))⇒ (bιc = last(T));
(c) T′ |= (W ′,S ′)�(W′, S′) �M′;
(d) for any t′ ∈ dom(M), either t′ ∈ tidset(T), orM′(t′) <M(t′).
Proof : From (W,S)�(W, S) � (M , ζ), we know there exist t, T, W′, S′, M ′ and ζ′ such that all the following hold:

(A) (W, S)
T7−→∗ (W′, S′);

(B) t = tid(bιc), get obsv(bιc) = get obsv(T), (bιc = (t, term))⇒ (bιc = last(T));
(C) (W ′,S ′)�(W′, S′) � (M ′, ζ′);

46

(D) either t ∈ tidset(T),
or M ′(t) < M (t),
or M ′(t) = M (t) and ζ(t) 6= ∅ and ζ(t) ⊆ ζ′(t);

(E) for any t′ ∈ dom(M)\{t}, we have:
either t′ ∈ tidset(T),
or M ′(t′) < M (t′),
or M ′(t′) = M (t′) and t 6∈ ζ(t′) and ζ(t′) ⊆ ζ′(t′).

Since T |= Oco
fω(W,S,To), by Lemmas 32 and 33, we know there exists T′o such that To = (get obsv(ι)) :: T′o and T′ |=

Oco
fω(W ′,S ′,T′o).

By (B.9), we know there exists T′x such that roundsub(T′, activeThrds(W ′),T′x).
ChooseM′ such that dom(M′) = activeThrds(W ′) and for any t ∈ dom(M′), we have
M′(t) = (M ′(t), (ζ′(t), dom(ζ′)\{t}),minPos(T′x, ζ

′(t), {t})).
By the co-induction hypothesis, we know T′ |= (W ′,S ′)�(W′, S′) �M′.
Below we prove: either t ∈ tidset(T), orM′(t) <M(t). From (D), we know either t ∈ tidset(T), or M ′(t) < M (t), or M ′(t) = M (t)
and ζ(t) 6= ∅ and ζ(t) ⊆ ζ′(t).
• If M ′(t) < M (t), thenM′(t) <M(t).
• If M ′(t) = M (t) and ∅ ⊂ ζ(t) ⊂ ζ′(t), we prove M′(t) < M(t) as follows. From (W,S) � (W, S) � (M , ζ) and

(W ′,S ′)�(W′, S′) � (M ′, ζ′), we know
dom(ζ′) = activeThrds(W ′), dom(ζ) = activeThrds(W),

ζ′(t) ⊆ (dom(ζ′)\{t}), ζ(t) ⊆ (dom(ζ)\{t}).
By the operational semantics, we know activeThrds(W ′) ⊆ activeThrds(W). Thus we have

(ζ′(t), dom(ζ′)\{t}) < (ζ(t), dom(ζ)\{t}).
ThusM′(t) <M(t).
• If M ′(t) = M (t) and ∅ ⊂ ζ(t) = ζ′(t), we prove M′(t) < M(t) as follows. First we have (ζ′(t), dom(ζ′)\{t}) =

(ζ(t), dom(ζ)\{t}).
Below we prove minPos(T′x, ζ

′(t), {t}) < minPos(Tx, ζ(t), {t}). We know
minPos(T′x, ζ

′(t), {t}) = minPos(T′x, ζ(t)) and minPos(Tx, ζ(t), {t}) = minPos(Tx, ζ(t)).
Since roundsub(T, activeThrds(W),Tx), we know there exists Tz such that T = Tx ::Tz . Since T 6= ε and activeThrds(W) 6= ∅,
we know Tx 6= ε. Since T = ι ::T′, we know there exists Ty such that Tx = ι ::Ty and T′ = Ty ::Tz . Since t 6∈ ζ(t) and t = tid(bιc),
we know

minPos(Ty, ζ(t)) < minPos(Tx, ζ(t)).
Next we prove roundsub(T′, ζ(t),Ty). From roundsub(T, activeThrds(W),Tx), we have two cases:
• If |T| 6= ω and Tx = T, then Tz = ε. Thus |T′| 6= ω and Ty = T′.
• If |Tx| 6= ω and activeThrds(W) ⊆ tidset(Tx), then |Ty| 6= ω and ζ(t) ⊆ tidset(Tx). Since Tx = ι ::Ty and t = tid(bιc), we

know tidset(Tx) = {t} ∪ tidset(Ty). Since t 6∈ ζ(t), we know ζ(t) ⊆ tidset(Ty).
Thus roundsub(T′, ζ(t),Ty). On the other hand, since roundsub(T′, activeThrds(W ′),T′x) and ζ(t) = ζ′(t) ⊆ activeThrds(W ′),
we know roundsub(T′, ζ(t),T′x). Then by Lemma 34, we know

minPos(Ty, ζ(t)) = minPos(T′x, ζ(t)).
ThusM′(t) <M(t).

Next we prove: for any t′ ∈ dom(M)\{t}, either t′ ∈ tidset(T), orM′(t′) < M(t′). From (E), we know either t′ ∈ tidset(T), or
M ′(t′) < M (t′), or M ′(t′) = M (t′) and t 6∈ ζ(t′) and ζ(t′) ⊆ ζ′(t′).
• If M ′(t′) < M (t′), thenM′(t′) <M(t′).
• If M ′(t′) = M (t′) and ζ(t′) ⊂ ζ′(t′), we prove M′(t′) < M(t′) as follows. From (W,S) � (W, S) � (M , ζ) and

(W ′,S ′)�(W′, S′) � (M ′, ζ′), we know
dom(ζ′) = activeThrds(W ′), dom(ζ) = activeThrds(W),

ζ′(t′) ⊆ (dom(ζ′)\{t′}), ζ(t′) ⊆ (dom(ζ)\{t′}).
By the operational semantics, we know activeThrds(W ′) ⊆ activeThrds(W). Thus we have

(ζ′(t′), dom(ζ′)\{t′}) < (ζ(t′), dom(ζ)\{t′}).
ThusM′(t′) <M(t′).
• If M ′(t′) = M (t′) and ∅ = ζ(t′) = ζ′(t′), we prove M′(t′) < M(t′) as follows. First we have (ζ′(t′), dom(ζ′)\{t′}) =

(ζ(t′), dom(ζ)\{t′}).
Below we prove minPos(T′x, ζ

′(t′), {t′}) < minPos(Tx, ζ(t′), {t′}). We know
minPos(T′x, ζ

′(t′), {t′}) = minPos(T′x, {t′}) and minPos(Tx, ζ(t′), {t′}) = minPos(Tx, {t′}).
Since roundsub(T, activeThrds(W),Tx), we know there exists Tz such that T = Tx ::Tz . Since T 6= ε and activeThrds(W) 6= ∅,
we know Tx 6= ε. Since T = ι ::T′, we know there exists Ty such that Tx = ι ::Ty and T′ = Ty ::Tz . Since t 6= t′ and t = tid(bιc),
we know

minPos(Ty, {t′}) < minPos(Tx, {t′}).
Next we prove roundsub(T′, {t′},Ty). From roundsub(T, activeThrds(W),Tx), we have two cases:
• If |T| 6= ω and Tx = T, then Tz = ε. Thus |T′| 6= ω and Ty = T′.
• If |Tx| 6= ω and activeThrds(W) ⊆ tidset(Tx), then |Ty| 6= ω and {t′} ⊆ tidset(Tx). Since Tx = ι ::Ty and t = tid(bιc), we

know tidset(Tx) = {t} ∪ tidset(Ty). Since t 6= t′, we know {t′} ⊆ tidset(Ty).

47

Thus roundsub(T′, {t′},Ty). On the other hand, since roundsub(T′, activeThrds(W ′),T′x) and {t′} ⊆ activeThrds(W ′), we know
roundsub(T′, {t′},T′x). Then by Lemma 34, we know

minPos(Ty, {t′}) = minPos(T′x, {t′}).
ThusM′(t) <M(t).
• If M ′(t′) = M (t′), ∅ ⊂ ζ(t′) = ζ′(t′) and t 6∈ ζ(t′), we proveM′(t′) <M(t′) as follows. First we have (ζ′(t′), dom(ζ′)\{t′}) =

(ζ(t′), dom(ζ)\{t′}).
Below we prove minPos(T′x, ζ

′(t′), {t′}) < minPos(Tx, ζ(t′), {t′}). We know
minPos(T′x, ζ

′(t′), {t′}) = minPos(T′x, ζ(t′)) and minPos(Tx, ζ(t′), {t′}) = minPos(Tx, ζ(t′)).
Since roundsub(T, activeThrds(W),Tx), we know there exists Tz such that T = Tx ::Tz . Since T 6= ε and activeThrds(W) 6= ∅,
we know Tx 6= ε. Since T = ι :: T′, we know there exists Ty such that Tx = ι :: Ty and T′ = Ty :: Tz . Since t 6∈ ζ(t′) and
t = tid(bιc), we know

minPos(Ty, ζ(t′)) < minPos(Tx, ζ(t′)).
Next we prove roundsub(T′, ζ(t′),Ty). From roundsub(T, activeThrds(W),Tx), we have two cases:
• If |T| 6= ω and Tx = T, then Tz = ε. Thus |T′| 6= ω and Ty = T′.
• If |Tx| 6= ω and activeThrds(W) ⊆ tidset(Tx), then |Ty| 6= ω and ζ(t′) ⊆ tidset(Tx). Since Tx = ι ::Ty and t = tid(bιc), we

know tidset(Tx) = {t} ∪ tidset(Ty). Since t 6∈ ζ(t′), we know ζ(t′) ⊆ tidset(Ty).
Thus roundsub(T′, ζ(t′),Ty). On the other hand, since roundsub(T′, activeThrds(W ′),T′x) and ζ(t′) = ζ′(t′) ⊆ activeThrds(W ′),
we know roundsub(T′, ζ(t′),T′x). Then by Lemma 34, we know

minPos(Ty, ζ(t′)) = minPos(T′x, ζ(t′)).
ThusM′(t) <M(t).

Thus we are done.

Lemma 32. If (ι ::Tx) |= Oco
fω(W,S,Ta), then there exists Tb such that Ta = (get obsv(ι)) ::Tb.

Lemma 33. If (ι ::Tx) |= Oco
fω(W,S,Ta), (W,S)

ι7−→ (Wx,Sx) and Ta = (get obsv(ι)) ::Tb, then Tx |= Oco
fω(Wx,Sx,Tb).

Proof. By co-induction, and then by inversion three times over (e ::Tx) |= Oco
fω(W,S,Ta).

Lemma 34. If ξ 6= ∅, roundsub(T, ξ,Tx) and roundsub(T, ξ,Ty), then minPos(Tx, ξ) = minPos(Ty, ξ).

Proof. From the premises, we know |Tx| 6= ω and |Ty| 6= ω. Suppose |Tx| ≤ |Ty|. We have two cases:

• |T| 6= ω and Tx = T:
We know there exists T′y such that T = Ty ::T′y . Thus Ty = T. Then we have Tx = Ty and we are done.
• there exists T′x such that T = Tx ::T′x and ξ ⊆ tidset(Tx):

We know there exists T′y such that T = Ty ::T′y . Thus there exists Tz such that Ty = Tx ::Tz and T′x = Tz ::T′y . Since ξ 6= ∅, we know
tidset(Tx) 6= ∅. Thus there exist e and T0 such that Tx = e ::T0. Thus Ty = e ::T0 ::Tz . By induction over |T0|.

48

Proof of Lemma 31. By co-induction.

Co-induction Principle: ∀x. (∃S. S ⊆ F (S) ∧ x ∈ S) =⇒ x ∈ gfp F

Figure 24 defines F and gfp F (i.e., Om
fω at the bottom part of the figure).

S
def
= {(M,W, S,To) | ∃T,W,S. (T |= Oco

fω(W,S,To)) ∧ (T |= (W,S)�(W, S) �M)}.

So from the co-induction principle, we only need to prove:

S ⊆ F (S), i.e., ∀M,W, S,To. (M,W, S,To) ∈ S =⇒ (M,W, S,To) ∈ F (S) .

By unfolding S and by inversion over Oco
fω , we have the following cases.

1. (T |= (W,S)�(W, S) �M), n > 0, (W,S)
T7−→n abort and get obsv(T) = To:

2. (T |= (W,S)�(W, S) �M), n > 0, (W,S)
T7−→n (skip,) and get obsv(T) = To:

3. (T |= (W,S)�(W, S) �M), n > 0, T = Tx ::Ty , To = ε, (W,S)
Tx7−→n (Wy,Sy),

get obsv(Tx) = ε, (Ty |= Oco
fω(Wy,Sy, ε)), activeThrds(W) ⊆ tidset(Tx):

To prove (M,W, S, ε) ∈ F (S), we want to prove: there exist Tx, Wy , Sy andMy such that

(W, S)
Tx7−→∗ (Wy, Sy), get obsv(Tx) = ε, (My,Wy, Sy, ε) ∈ S,

dom(M) = activeThrds(W) 6= ∅, ∀t ∈ dom(M)\tidset(Tx).My(t) <M(t) .

Since (Ty |= Oco
fω(Wy,Sy, ε)), we only need to prove:

∀n,T,W,S,W, S,M,Tx,Ty,Wy,Sy,To.
(n > 0) ∧ (T |= (W,S)�(W, S) �M) ∧ (T = Tx ::Ty)

∧ ((W,S)
Tx7−→n (Wy,Sy)) ∧ (get obsv(Tx) = To)

=⇒
∃Tx,Wy, Sy,My.

((W, S)
Tx7−→∗ (Wy, Sy)) ∧ (get obsv(Tx) = To)

∧ (Ty |= (Wy,Sy)�(Wy, Sy) �My)
∧ (dom(M) = activeThrds(W) 6= ∅) ∧ (∀t ∈ dom(M)\tidset(Tx).My(t) <M(t))

(B.10)

By induction over n.
• Base case: n = 1. Suppose Tx = e :: ε. Since T |= (W,S) � (W, S) � M, we know dom(M) = activeThrds(W) =

activeThrds(W) 6= ∅. Also there exist t, T, W′, S′ andM′ such that all the following hold:

(A) (W, S)
T7−→∗ (W′, S′);

(B) t = tid(e), get obsv(e) = get obsv(T), (e = (t, term))⇒ (e = last(T));
(C) Ty |= (Wy,Sy)�(W′, S′) �M′;
(D) for any t′ ∈ dom(M), either t′ ∈ tidset(T), orM′(t′) <M(t′).
From (D), we have: ∀t ∈ dom(M)\tidset(T).M′(t) <M(t).
• Inductive step: n = k + 1 and k > 0. Suppose Tx = e ::T′x and

(W,S)
e7−→ (Wx,Sx) and (Wx,Sx)

T′x7−→k (Wy,Sy) .
Since T |= (W,S)�(W, S) �M, we know dom(M) = activeThrds(W) = activeThrds(W) 6= ∅. Also there exist t, T, W′, S′ and
M′ such that all the following hold:

(A) (W, S)
T7−→∗ (W′, S′);

(B) t = tid(e), get obsv(e) = get obsv(T), (e = (t, term))⇒ (e = last(T));
(C) (T′x ::Ty) |= (Wx,Sx)�(W′, S′) �M′;
(D) for any t′ ∈ dom(M), either t′ ∈ tidset(T), orM′(t′) <M(t′).
From (D), we have: ∀t ∈ dom(M)\tidset(T).M′(t) <M(t).
From the induction hypothesis, we have:

∃Tx,Wy, Sy,My.

((W′, S′) Tx7−→∗ (Wy, Sy)) ∧ (get obsv(Tx) = get obsv(T′x))
∧ (Ty |= (Wy,Sy)�(Wy, Sy) �My)
∧ (dom(M′) = activeThrds(W′) 6= ∅) ∧ (∀t ∈ dom(M′)\tidset(Tx).My(t) <M′(t))

Thus we have (W, S) pT::Tx−−−→ ∗ (Wy, Sy) and get obsv(T :: Tx) = get obsv(e :: T′x) = get obsv(Tx). Also, for any t ∈
dom(M)\tidset(T :: Tx), we know t ∈ dom(M)\tidset(Tx). ThusM′(t) < M(t). Also, we know t ∈ dom(M′)\tidset(Tx).
ThusMy(t) <M′(t). By the transitivity of the well-founded order, we haveMy(t) <M(t).

4. (T |= (W,S)�(W, S) �M), n > 0, T = Tx ::Ty , To = ea ::Ta ::Tb, (W,S)
Tx7−→n (Wy,Sy),

get obsv(Tx) = ea ::Ta, (Ty |= Oco
fω(Wy,Sy,Tb)), activeThrds(W) ⊆ tidset(Tx):

To prove (M,W, S,To) ∈ F (S), we want to prove: there exist Tx, Wy , Sy andMy such that

49

(W, S)
Tx7−→∗ (Wy, Sy), get obsv(Tx) = ea ::Ta, (My,Wy, Sy,Tb) ∈ S,

dom(M) = activeThrds(W) 6= ∅, ∀t ∈ dom(M)\tidset(Tx).My(t) <M(t) .

Since (Ty |= Oco
fω(Wy,Sy,Tb)), we are done by (B.10).

50

B.5 Equivalence between Contextual Refinement and Starvation-Freedom/Deadlock-Freedom
Below we first define starvation-freedom starvation-freeP (Π) and deadlock-freedom deadlock-freeP (Π). They are defined over complete
execution traces.

Then we give the full formal definition of linearizability, Π �lin
P Γ, and present a contextual refinement which observes finite event traces

only, Π vfin
P Γ. Following earlier work [8, 21, 22], we prove Π �lin

P Γ is equivalent to Π vfin
P Γ. This equivalence result (Theorem 42) is the

basis of our new results that relate Π vP Γ to starvation-freedom and deadlock-freedom of linearizable objects.
Finally, we show the new equivalence results (Theorems 43 and 44) between linearizability, starvation-freedom, deadlock-freedom and the

contextual refinement under fair scheduling.

Formalizing starvation-freedom and deadlock-freedom. Following the earlier work [14, 22], we define starvation-freedom and deadlock-
freedom over execution traces. We first introduce some auxiliary definitions in Fig. 25. We use TωJW,SK to represent the set of whole event
traces generated by executions starting from (bW c,S). Here (bW c,S)

T7−→∗ (W ′,S ′) represents a zero or multi-step execution of (bW c,S)

that leads to (W ′,S ′) with the sequence T of events generated; (bW c,S)
T7−→ω · then represents an infinite execution with the whole event

trace T , which must be infinite too. We also insert a (spawn, n) event at the head of each event trace to record the number of threads in the
program. The lifting bW c appends an end command at the end of each thread, which generates a (t, term) event to mark the termination of
this thread t.

Besides, we say T is fair, i.e., fair(T), if T is finite or every non-terminating thread t has infinite steps on the trace. Here T |t is the
subsequence of T consisting of events from thread t only.

Also in Fig. 25, we define prog-t(T) to say that every method call in T eventually finishes. Here pend inv(T (1..i)) gets the set of pending
invocation events in the sub-trace T (1), . . . , T (i) of T , and match(e, T (j)) says that T (j) is a return event which matches with the invocation
e, so the corresponding method call finishes. prog-s(T) requires that some pending method call finishes. Different from prog-t(T), the return
event T (j) in prog-s(T) does not have to be a matching return of the pending invocation e. We also write abt(T) to say that T ends with a
fault event.

Starvation-freedom and deadlock-freedom require prog-t and prog-s, respectively, in every fair execution. They are defined below.

Definition 35 (Starvation-free objects). starvation-freeP (Π) iff

∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ∧ ((σo,) |= P) ∧ fair(T)
=⇒ prog-t(T) ∨ abt(T) .

Here } = {t1 ; ◦, . . . , tn ; ◦}.
Definition 36 (Deadlock-free objects). deadlock-freeP (Π) iff

∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ∧ ((σo,) |= P) ∧ fair(T)
=⇒ prog-s(T) ∨ abt(T) .

Formalizing linearizability. Linearizability describes atomic behaviors of object implementations. Following its standard definition [15],
we define linearizability using histories, which are finite event traces T consisting of only method invocations, returns, and object faults. As
defined in Fig. 25, we say a return e2 matches an invocation e1, denoted as match(e1, e2), iff they have the same thread ID. An invocation is
pending in T if no matching return follows it. We use pend inv(T) to get the set of pending invocations in T . We complete a history T by
appending zero or more return events, and dropping the remaining pending invocations. The result is denoted by completions(T). It is a set of
histories, and for each history in it, every invocation has a matching return event.

Definition 37 (Linearizable histories). T �lin T ′ iff both the following hold.

1. ∀t. T |t = T ′|t.
2. There exists a bijection π : {1, . . . , |T |} → {1, . . . , |T ′|} such that ∀i. T (i) = T ′(π(i)) and

∀i, j. i < j ∧ is res(T (i)) ∧ is inv(T (j)) =⇒ π(i) < π(j) .

That is, T is linearizable with respect to T ′ if the latter is a permutation of the former, preserving the order of events in the same threads
and the order of the non-overlapping method calls. Then an object is linearizable iff each of its concurrent histories after completions is
linearizable with respect to some legal sequential history. As defined in Fig. 25, we use Γ B (Σ, T ′) to mean that T ′ is a legal sequential
history generated by any client using the specification Γ with an abstract initial state Σ.

Definition 38 (Extensions of a history). extensions(T) is a set of well-formed histories where we extend T by appending return events. It is
inductively defined as follows.

well formed(T)

T ∈ extensions(T)

T ′ ∈ extensions(T) is ret(e) well formed(T ′ ::e)

T ′ ::e ∈ extensions(T)

Definition 39 (Completions of a history). truncate(T) is the maximal complete sub-history of T . It is inductively defined by dropping the
pending invocations in T .

truncate(ε)
def
= ε

truncate(e ::T)
def
=

{
e :: truncate(T) if is res(e) or ∃i. match(e, T (i))
truncate(T) otherwise

Then completions(T)
def
= {truncate(T ′) | T ′ ∈ extensions(T)} .

51

TωJW,SK def
=

{(spawn, |W |) ::T | (bW c,S)
T7−→ω ·

∨ (bW c,S)
T7−→∗ (skip,) ∨ (bW c,S)

T7−→∗ abort}

blet Π in C1‖ . . .‖Cnc
def
= let Π in (C1; end)‖ . . .‖(Cn; end)

|let Π in C1 ‖ . . . ‖ Cn|
def
= n tnum((spawn, n) ::T)

def
= n

fair(T) iff |T | = ω =⇒ ∀t ∈ [1..tnum(T)]. |(T |t)| = ω ∨ last(T |t) = (t, term)

match(e1, e2)
def
= is inv(e1) ∧ is res(e2) ∧ (tid(e1) = tid(e2))

pend inv(T)
def
= {e | ∃i. e = T (i) ∧ is inv(e) ∧ ¬∃j. (j > i ∧match(e, T (j)))}

prog-t(T) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧match(e, T (j))

prog-s(T) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧ is ret(T (j))

abt(T) iff ∃i. is abt(T (i))

OfωJW,SK def
= {get obsv(T) | T ∈ TωJW,SK ∧ fair(T)}

OωJW,SK def
= {get obsv(T) | T ∈ TωJW,SK}

T JW,SK def
= {T | ∃W ′,S′. (W,S)

T7−→∗ (W ′,S′) ∨ (W,S)
T7−→∗ abort}

HJW,SK def
= {get hist(T) | T ∈ T JW,SK }

OJW,SK def
= {get obsv(T) | T ∈ T JW,SK }

seq(ε)

is inv(e)

seq(e :: ε)

match(e1, e2) seq(T)

seq(e1 :: e2 :: T)

∀t. seq(T |t)
well formed(T)

Γ B (Σ, T) iff ∃n,C1, . . . , Cn, σc. T ∈ HJ(let Γ in C1‖ . . .‖Cn), (σc,Σ,})K ∧ seq(T)

Figure 25. Event traces.

Definition 40 (Linearizability of objects). The object implementation Π is linearizable with respect to Γ, written as Π �lin
P Γ, iff

∀n,C1, . . . , Cn, σc, σ,Σ, T. T ∈ HJ(let Π in C1‖ . . .‖Cn), (σc, σ,})K ∧ ((σ,Σ) |= P)
=⇒ ∃Tc, T ′. Tc ∈ completions(T) ∧ Γ B (Σ, T ′) ∧ Tc �lin T ′

Equivalence results.

Definition 41 (Basic contextual refinement). Π vfin
P Π′ iff

∀n,C1, . . . , Cn, σc, σ,Σ. ((σ,Σ) |= P) =⇒
OJ(let Π in C1‖ . . .‖Cn), (σc, σ,})K ⊆ OJ(let Π′ in C1‖ . . .‖Cn), (σc,Σ,})K .

Theorem 42 (Basic equivalence for linearizability). Π �lin
P Γ ⇐⇒ Π vfin

P Γ.

Theorem 43 (1 in Fig. 18). Π �lin
P Γ ∧ starvation-freeP (Π) ⇐⇒ Π vP Γ.

Theorem 44 (2 in Fig. 18). Π �lin
P Γ ∧ deadlock-freeP (Π) ⇐⇒ Π vwrl(P) wrl(Γ).

In the following subsections, we give the proofs of the above equivalence theorems.

B.5.1 Most general client
The key in our proofs is the use of the Most General Client (MGC). Informally, an MGC is a special client which itself can produce all the
possible behaviors produced by any clients. We can define the MGC versions of linearizability, progress properties, and observable refinements,
and prove their relationships to the original definitions, which universally quantify over arbitrary client programs. Then we reduce the problems
of proving the equivalence between original definitions to proving some relationships between the MGC versions. Since an MGC is a specific
client, the latter task is usually much simpler.

In fact, we define three MGCs, which produce different “general” behaviors. We assume dom(Π) = {f1, . . . , fm}, and introduce two
instructions to get a random (nondeterministic) value. x := rand(m) assigns x a random integer i ∈ [1..m], and x := rand() computes an
arbitrarily large random integer. Then, for any n, we define MGCn as follows.

MGTt
def
= while (true){

xt := rand(); yt := rand(m);
zt := fyt (xt);
}

MGCn
def
=

f
t∈[1..n] MGTt

52

Here xt, yt and zt are all local variables for thread t. Each thread in MGCn keeps calling a random method with a random argument. We also
define MGCpn, which print out the arguments and return values for method calls.

MGTpt
def
= while (true){

xt := rand(); yt := rand(m); print(yt, xt);
zt := fyt (xt); print(zt);
}

MGCpn
def
=

f
t∈[1..n] MGTpt

The third MGC MGCp1n is useful to observe the progress of objects. Each thread non-deterministically decides whether to continue calling
the methods or to end itself. Also it always prints out 0 before a method call and prints out 1 when the method call finishes.

MGTp1t
def
= while (rand() > 0){

xt := rand(); yt := rand(m); print(0);
zt := fyt (xt); print(1);
}
print(2);

MGCp1n
def
=

f
t∈[1..n] MGTp1t

The client memory for the above MGCs should contain the local variables for each thread.

σMGC(n)
def
= {xt ; , yt ; , zt ; | 1 ≤ t ≤ n}

B.5.2 Basic equivalence for linearizability
Follow earlier work [22], we first define the MGC versions of “linearizability” and “refinement”.

Definition 45. Π �MGC
P Γ iff

∀n, σMGC(n), σ,Σ, T. T ∈ HJ(let Π in MGCn), (σMGC(n), σ,})K ∧ ((σ,Σ) |= P)

=⇒ ∃Tc, T ′. Tc ∈ completions(T) ∧ Γ Bn (σMGC(n),Σ, T
′) ∧ Tc �lin T ′

where

Γ Bn (σMGC(n),Σ, T)
def
= T ∈ HJ(let Γ in MGCn), (σMGC(n),Σ,})K ∧ seq(T) .

Definition 46. Π jP Γ iff

∀n, σMGC(n), σ,Σ. ((σ,Σ) |= P)
=⇒ HJ(let Π in MGCn), (σMGC(n), σ,})K ⊆ HJ(let Γ in MGCn), (σMGC(n),Σ,})K .

To prove Theorem 42, we prove the following lemmas.

Lemma 47. Π �lin
P Γ ⇐⇒ Π �MGC

P Γ .

Lemma 48. Π vfin
P Γ ⇐⇒ Π jP Γ .

Lemma 49. Π jP Γ ⇐⇒ Π �MGC
P Γ .

Proof of Lemma 47. We can see Π �MGC
P Γ is simply defined by fixing the arbitrarily quantified client programs in Π �lin

P Γ (Definition 40)
as MGCn. Intuitively, the key to prove this lemma is to show that any history generated by an arbitrary client program can also be generated by
MGC, as shown in the following lemma.

Lemma 50 (MGC is the most general). For any n, C1, . . . , Cn, σc, σMGC(n) and σo, we have
HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ⊆ HJ(let Π in MGCn), (σMGC(n), σo,})K.

Proof. We construct a simulation .MGC between the client program and the MGC. We need the simulation relation to satisfy the following
(B.11).

For any W1, S1, W2, S2 and e1, if (W1,S1) .MGC (W2,S2), then
(1) if (W1,S1)

e17−→ abort and is obj abt(e1), then
there exists T2 such that (W2,S2)

T27−→∗ abort and
e1 = get hist(T2);

(2) if (W1,S1)
e17−→ (W ′1,S ′1), then

there exist T2, W ′2 and S ′2 such that (W2,S2)
T27−→∗ (W ′2,S ′2),

get hist(e1) = get hist(T2) and (W ′1,S ′1) .MGC (W ′2,S ′2).
(B.11)

The simulation relation is constructed as shown in Fig. 26(a). That is, for each client thread t, if the left side is in some normal client code,
it corresponds to MGTt at the right side; otherwise, if the left side is inside a method call, its code is the same as the right side. Informally, the
following hold for each thread t.

(1) Each normal client step of the left corresponds to zero step of MGTt.
(2) Each method invocation corresponds to the steps executing MGTt to the same method body, with the same argument.

53

(3) Each step inside the method body at the left corresponds to the same step at the right.
(4) Each return step at the left corresponds to the same return step (plus a few client steps) executing the right side code to MGTt.

Then with (B.11), we can prove the following by induction over the number of steps generating the event trace ofHJW1,S1K.

If (W1,S1) .MGC (W2,S2), thenHJW1,S1K ⊆ HJW2,S2K.

Also we have

(let Π in C1‖ . . .‖Cn, (σc, σo,})) .MGC (let Π in MGCn, (σMGC(n), σo,})) ,

thus we are done.

Then Lemma 47 is immediate by unfolding the definitions of Π �MGC
P Γ and Π �lin

P Γ, and applying Lemma 50.

Proof of Lemma 48.

1. Π vfin
P Γ =⇒ Π jP Γ :

To prove this direction, we show that any history generated by MGCn is “equivalent” to an observable trace generated by MGCpn, i.e., the
following lemma holds.

Lemma 51. For any n, σo and σMGC(n), both the following holds.

(a) For any T1, if T1 ∈ HJ(let Π in MGCn), (σMGC(n), σo,})K, then
there exists T2 such that T2 ∈ OJ(let Π in MGCpn), (σMGC(n), σo,})K and T1 ≈ T2.

(b) For any T2, if T2 ∈ OJ(let Π in MGCpn), (σMGC(n), σa,})K, then
there exists T1 such that T1 ∈ HJ(let Π in MGCn), (σMGC(n), σa,})K and T1 ≈ T2.

Here T1 ≈ T2 is inductively defined as follows.

ε ≈ ε
e1 ≈ e2 T1 ≈ T2

e1 ::T1 ≈ e2 ::T2

(t, fi, n) ≈ (t, out, (i, n)) (t, ret, n) ≈ (t, out, n)

(t, obj, abort) ≈ (t, obj, abort)

Proof. By constructing simulations between MGCn and MGCpn.

2. Π jP Γ =⇒ Π vfin
P Γ :

Proof. For any n, C1, . . . , Cn, σc, σMGC(n) and σo, by Lemma 50, we know

HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ⊆ HJ(let Π in MGCn), (σMGC(n), σo,})K .

Since Π jP Γ, we know for any σa such that (σo, σa) |= P , we have

HJ(let Π in MGCn), (σMGC(n), σo,})K ⊆ HJ(let Γ in MGCn), (σMGC(n), σa,})K .

Thus, for any T such that

T ∈ T J(let Π in C1‖ . . .‖Cn), (σc, σo,})K ,

there exists TMGC such that get hist(T) = get hist(TMGC) and

TMGC ∈ T J(let Γ in MGCn), (σMGC(n), σa,})K .

Intuitively, we can then replace the object events in T with those in TMGC and keep other events (and the order between them) unchanged.
Thus the resulting trace T ′ satisfies get obsv(T ′) = get obsv(T). We prove T ′ can be produced by the corresponding abstract client
program, that is

T ′ ∈ T J(let Γ in C1‖ . . .‖Cn), (σc, σa,})K .

Then we are done.
Alternatively, we can actually construct a “simulation” relation . (see Fig. 26(b)) between the three programs: the concrete client program,
the abstract MGC and the corresponding abstract client program, and prove it satisfies the following (B.12).

For any W1, S1, W2, S2, W3, S3 and e1,
if (W1,S1) . (W2,S2;W3,S3), then

54

(let Π in C1‖ . . .‖Cn, (σc, σo, {1 ; κ1, . . . , n; κn}))
.MGC (let Π in C′1‖ . . .‖C′n, (σMGC(n), σo, {1 ; κ′1, . . . , n; κ′n}))

where ∀i. (Ci, κi) .iMGC (C′i, κ
′
i)

(C, ◦) .t
MGC (MGTt, ◦) (C, (σl, x, C

′)) .t
MGC (C, (σl, zt, (skip; MGTt)))

(a) the program is simulated by MGC

(let Π in C1‖ . . .‖Cn, (σc, σo, {1 ; κ1, . . . , n; κn}))
. (let Γ in C′1‖ . . .‖C′n, (σMGC(n), σ

′
o, {1 ; κ′1, . . . , n; κ′n});

let Γ in C′′1 ‖ . . .‖C′′n , (σc, σ′o, {1 ; κ′′1 , . . . , n; κ′′n}))
where ∀i. (Ci, κi) . (C′i, κ

′
i;C
′′
i , κ
′′
i)

andHJlet Π in C1‖ . . .‖Cn, (σc, σo, {1 ; κ1, . . . , n; κn})K
⊆ HJlet Γ in C′1‖ . . .‖C′n, (σMGC(n), σ

′
o, {1 ; κ′1, . . . , n; κ′n})K

(C, ◦) . (C′, ◦;C, ◦) (C, (σl, x, Cc)) . (C′, (σ′l, x
′, C′c);C

′, (σ′l, x, Cc))

(b) the concrete program is “simulated” by the abstract MGC and the abstract program

Figure 26. Simulations between programs and MGC.

(1) if (W1,S1)
e17−→ abort, then there exists T3 such that

(W3,S3)
T37−→∗ abort and e1 = get obsv(T3);

(2) if (W1,S1)
e17−→ (W ′1,S ′1) and is clt(e1), then

there exist W ′3 and S ′3 such that (W3,S3)
e17−→ (W ′3,S ′3) and (W ′1,S ′1) . (W2,S2;W ′3,S ′3).

(3) if (W1,S1)
e17−→ (W ′1,S ′1) and is obj(e1), then

there exist T2, W ′2, S ′2, T3, W ′3 and S ′3 such that
(W2,S2)

T27−→∗ (W ′2,S ′2), (W3,S3)
T37−→∗ (W ′3,S ′3),

get hist(e1) = get hist(T2), get obj(T2) = T3 and
(W ′1,S ′1) . (W ′2,S ′2;W ′3,S ′3).

(B.12)

That is, the executions of the abstract program W3 follow the concrete program W1 for client steps and the abstract MGC W2 for object
steps. Here we use get obj(T) to get the sub-trace of T consisting of object events only. We can prove the following from (B.12).

If (W1,S1) . (W2,S2;W3,S3), then OJW1,S1K ⊆ OJW3,S3K.

Initially,

(let Π in C1‖ . . .‖Cn, (σc, σo,}))
. (let Γ in MGCn, (σMGC(n), σa,}); let Γ in C1‖ . . .‖Cn, (σc, σa,}))

holds, and we are done.

Proof of Lemma 49.

1. Π jP Γ =⇒ Π �MGC
P Γ :

The premise Π jP Γ tells us that every history generated by using the concrete object Π can also be generated with the abstract object Γ.
Thus, to prove the concrete object Π is linearizable, we only need to show the abstract object Γ (whose methods are atomic) is linearizable
with respect to itself.

Lemma 52 (Γ is linearizable).
For any n, σMGC(n), σa and T , if T ∈ HJ(let Γ in MGCn), (σMGC(n), σa,})K, then there exist Tc and T ′ such that Tc ∈ completions(T),
Tc �lin T ′, seq(T ′) and T ′ ∈ HJ(let Γ in MGCn), (σMGC(n), σa,})K.

Proof. From the execution that generates T , we construct another execution as follows. We postpone every invocation step and advance
the latter return step to the single step of the atomic method body in between. We prove the resulting execution generates a history T ′

satisfying all the requirements.

2. Π �MGC
P Γ =⇒ Π jP Γ :

The key is to prove that every linearizable history can be generated by the MGC with the abstract object Γ.

Lemma 53 (Rearrangement).
For any n, σMGC(n), σa, T and T ′, if T �lin T ′, seq(T ′) and T ′ ∈ HJ(let Γ in MGCn), (σMGC(n), σa,})K, then
T ∈ HJ(let Γ in MGCn), (σMGC(n), σa,})K.

55

Proof. We construct the execution generating T , where the order to execute the atomic method body for concurrent method calls simply
follows the order of the pairs of invocation and subsequent return events in T ′. The detailed proof is by induction over the length of T .

B.5.3 Equivalence for starvation-freedom
By Theorem 42, the goal is reduced to the following:

Π vfin
P Γ ∧ starvation-freeP (Π) ⇐⇒ Π vP Γ .

We first define the MGC version of starvation-freedom.

Definition 54. SF-MGCP (Π), iff

∀n, σo, T. T ∈ TωJ(let Π in MGCp1n), (σMGC(n), σo,})K ∧ fair(T) ∧ ((σo,) |= P)
=⇒ prog-t(T) ∨ abt(T) .

We only need to prove the following lemmas.

Lemma 55. Π vP Γ =⇒ Π vfin
P Γ .

Lemma 56. Π vP Γ =⇒ SF-MGCP (Π) .

Lemma 57. SF-MGCP (Π) =⇒ starvation-freeP (Π) .

Lemma 58. Π vfin
P Γ ∧ starvation-freeP (Π) =⇒ Π vP Γ .

Proof of Lemma 55. For any n, C1, . . . , Cn, σc, σo and σa such that (σo, σa) |= P , for any T , if

T ∈ OJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K,

we know there exists T1 such that T = get obsv(T1) and

T1 ∈ T J(let Π in C1‖ . . .‖Cn), (σc, σo,})K .

We can prove: there exists T ′1 and T ′′1 such that

T ′′1 = (spawn, n) ::T1 ::T ′1 , fair(T ′′1) and T ′′1 ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K.

Since Π vP Γ, we know there exists T ′′2 such that

T ′′2 ∈ TωJ(let Γ in C1‖ . . .‖Cn), (σc, σa,})K , fair(T ′′2) and get obsv(T ′′2) = get obsv(T ′′1) = T ::get obsv(T ′1) .

Thus there exists T2 such that

T2 ∈ T J(let Γ in C1‖ . . .‖Cn), (σc, σa,})K and get obsv(T2) = T .

Thus T ∈ OJ(let Γ in C1‖ . . .‖Cn), (σc, σa,})K and we are done.

Proof of Lemma 56. For any n, σo, σa and T such that T ∈ TωJ(let Π in MGCp1n), (σMGC(n), σo,})K, fair(T) and (σo, σa) |= P ,
suppose

¬abt(T) ,

then by the operational semantics, we only need to prove:

for any i and e, if e ∈ pend inv(T (1..i)), then there exists j > i such that match(e, T (j)) .

Suppose it does not hold. Then we know there exists t0 such that

∃i. ∀j. j ≥ i⇒ (T |t0)(j) = (t0, obj) .

Thus we have

|(get obsv(T)|t0)| < i and last(get obsv(T)|t0) = (t0, out, 0) .

Since Π vP Γ, we know:

OfωJ(let Π in MGCp1n), (σMGC(n), σo,})K ⊆ OfωJ(let Γ in MGCp1n), (σMGC(n), σa,})K .

Thus there exists T ′ such that

T ′ ∈ TωJ(let Γ in MGCp1n), (σMGC(n), σa,})K , fair(T ′) and get obsv(T ′) = get obsv(T) .

Thus last(get obsv(T ′)|t0) = (t0, out, 0). But this is impossible from the operational semantics, fair(T ′) and the fact that Γ is atomic and
total. Thus we are done.

Proof of Lemma 57. Similar to the proof of Lemma 47, we first prove the following two lemmas (Lemma 59 and Lemma 60). Then, from
SF-MGCP (Π), we know: if T ′ ∈ TωJ(let Π in MGCp1n), (σMGC(n), σo,})K, (σo,) |= P and fair(T ′), then either prog-t(T ′) or abt(T ′).
By the definition of MGCp1n and the operational semantics, we know either prog-t(T ′) or obj abt(T ′). From Lemmas 59 and 60, we know:
if T ∈ TωJ(let Π in C1 ‖ . . .‖Cn), (σc, σo,})K, (σo,) |= P and fair(T), then either clt abt(T), or prog-t(T), or obj abt(T). Thus we
have starvation-freeP (Π).

Lemma 59 (MGC is the most general). For any n, C1, . . . , Cn, σc, σo and T , if

56

T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K and fair(T),

then one of the following holds:

(1) clt abt(T); or
(2) there exists T ′ such that

(T ′ ∈ TωJ(let Π in MGCp1n), (σMGC(n), σo,})K) ∧ (get obj(T) = get obj(T ′)) ∧ fair(T ′) .

Here get obj(T) gets the sub-trace consisting of only object events (i.e., method invocation, return, object fault and normal object events).

Proof. We construct a simulation relation between the arbitrary client program and the MGC, under the fixed scheduling T for the client at the
left side.

Lemma 60. For any T and T ′, if get obj(T) = get obj(T ′) and prog-t(T ′), then prog-t(T).

Proof. By unfolding the definitions.

Proof of Lemma 58. The key is to show the following (B.13).

For any n, C1, . . . , Cn, σc, σo and σa such that (σo, σa) |= P ,
if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))

T7−→ω · and fair(T), then there exists Ta such that
(blet Γ in C1‖ . . .‖Cnc, (σc, σa,}))

Ta7−→ω ·, get obsv(T) = get obsv(Ta) and fair(Ta).
(B.13)

Its proof is similar to the proof of Π jP Γ =⇒ Π vfin
P Γ. We can replace the object events in the concrete infinite trace T with those generated

by MGC using Γ. The resulting trace Ta satisfies get obsv(Ta) = get obsv(T). From starvation-freeP (Π), we can show Ta must be infinite
and fair.

In detail, we construct a “simulation” relation . (see Fig. 26(b)) between the three programs: the concrete client program, the abstract
MGC and the corresponding abstract client program, and prove it satisfies the following (B.14). (It is derived from (B.12).) Here we use
T\(, obj) for a sub-trace resulting from removing all the events of the form (, obj) in T .

For any W1, S1, W2, S2, W3, S3 and e1,
if (W1,S1) . (W2,S2;W3,S3) and (W1,S1)

e17−→ (W ′1,S ′1),
then there exist T2, W ′2, S ′2, T3, W ′3 and S ′3 such that
(W2,S2)

T27−→∗ (W ′2,S ′2), (W3,S3)
T37−→∗ (W ′3,S ′3),

T3\(, obj) = e1\(, obj) and (W ′1,S ′1) . (W ′2,S ′2;W ′3,S ′3).
(B.14)

With (B.14), we can prove the following (B.15) by induction over the length of T1.

For any W1, S1, W2, S2, W3, S3 and T1,
if (W1,S1) . (W2,S2;W3,S3), (W1,S1)

T17−→+ (W ′1,S ′1) and last(T1) 6= (, obj),
then there exist T2, W ′2, S ′2, T3, W ′3 and S ′3 such that
(W2,S2)

T27−→∗ (W ′2,S ′2), (W3,S3)
T37−→+ (W ′3,S ′3),

T1\(, obj) = T3\(, obj) and (W ′1,S ′1) . (W ′2,S ′2;W ′3,S ′3).
(B.15)

Then we prove the following (B.16) by co-induction.

For any n, C1, . . . , Cn, σc, σo, W1, S1, W2, S2, W3, S3, T0 and T1,
if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))

T07−→∗ (W1,S1),
(W1,S1) . (W2,S2;W3,S3), (W1,S1)

T17−→ω · and prog-t(T0 ::T1),
then there exists T3 such that (W3,S3)

T37−→ω · and T1\(, obj) = T3\(, obj).
(B.16)

Also we can prove: for any n, C1, . . . , Cn, σc, σo and σa, if (σo, σa) |= P , then

(blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
. (let Γ in MGCn, (σMGC(n), σa,}); blet Γ in C1‖ . . .‖Cnc, (σc, σa,})) .

If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω · and fair(T), by starvation-freeP (Π), we know prog-t(T). Then from (B.16) we get: there

exists Ta such that

(blet Γ in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω · , and T\(, obj) = Ta\(, obj).

Thus we know get obsv(T) = get obsv(Ta).
Below we prove fair(Ta). Since fair(T) and |T | = ω, we know for any t,

either |(T |t)| = ω, or last(T |t) = (t, term) .

57

(a) last(T |t) = (t, term):
Since T\(, obj) = Ta\(, obj) and by the operational semantics, we know last(Ta|t) = (t, term).

(b) |(T |t)| = ω:
Since T\(, obj) = Ta\(, obj), we know

(T |t)\(t, obj) = (Ta|t)\(t, obj) .

Suppose |(Ta|t)| 6= ω. Then we know | ((Ta|t)\(t, obj)) | 6= ω. Thus

∃i. ∀j. j ≥ i ⇒ (T |t)(j) = (t, obj) .

By the operational semantics, we know there exists i such that

tid(T (i)) = t , is inv(T (i)) , and ∀j. j ≥ i ⇒ ¬match(T (i), T (j)) .

This contradicts the premise prog-t(T). Thus we know |(Ta|t)| = ω.

Thus fair(Ta) holds and we are done.

B.5.4 Equivalence for deadlock-freedom

We first define the following contextual refinement v̂ which assumes fair scheduling at the concrete side only.

Definition 61. Π v̂P Γ iff

∀n,C1, . . . , Cn, σc, σ,Σ. ((σ,Σ) |= P) =⇒
OfωJ(let Π in C1‖ . . .‖Cn), (σc, σ,})K ⊆ OωJ(let Γ in C1‖ . . .‖Cn), (σc,Σ,})K .

We also define the assertion id for the identity relation between the lower-level and the higher-level states:

(σ,Σ) |= id iff σ = Σ

Then wrl(id) adds the shared variable l to the higher-level states, and wr−1
l (id) removes l which should be 0:

(σ,Σ) |= wrl(id) iff Σ = σ] {l ; 0}
(σ,Σ) |= wr−1

l (id) iff σ = Σ] {l ; 0}
To prove Theorem 44, we prove the following:

Π vfin
P Γ ∧ deadlock-freeP (Π) ⇐⇒ Π v̂P Γ (B.17)

Π vwrl(P) wrl(Γ) =⇒ Π v̂P Γ (B.18)

Π vfin
P Γ ∧ deadlock-freeP (Π) =⇒ Π vwrl(P) wrl(Γ) (B.19)

Proofs of (B.17). We first define the MGC version of deadlock-freedom.

Definition 62. deadlock-freeMGC
P (Π), iff

∀n, σo, T. T ∈ TωJ(let Π in MGCp1n), (σMGC(n), σo,})K ∧ fair(T) ∧ ((σo,) |= P)
=⇒ prog-s(T) ∨ abt(T) .

We only need to prove the following lemmas.

Lemma 63. Π v̂P Γ =⇒ Π vfin
P Γ .

Lemma 64. Π v̂P Γ =⇒ deadlock-freeMGC
P (Π) .

Lemma 65. deadlock-freeMGC
P (Π) =⇒ deadlock-freeP (Π) .

Lemma 66. Π vfin
P Γ ∧ deadlock-freeP (Π) =⇒ Π v̂P Γ .

Proof of Lemma 63. Similar to the proof of Lemma 55.

Proof of Lemma 64. Similar to the proof of Lemma 56. For any n, σo, σa and T such that T ∈ TωJ(let Π in MGCp1n), (σMGC(n), σo,})K,
fair(T) and (σo, σa) |= P , suppose

¬abt(T) ,

then by the operational semantics, we only need to prove:

for any i and e, if e ∈ pend inv(T (1..i)), then there exists j > i such that is ret(T (j)) holds.

Suppose it does not hold. Then we know:

58

∃i. ∀j. j ≥ i⇒ T (j) = (, obj) .

Since fair(T), we have

∀t0 ∈ [1..n]. last(get obsv(T)|t0) = (t0, out, 0) ∨ last(get obsv(T)|t0) = (t0, out, 2) .

Since Π v̂P Γ, we know:

OfωJ(let Π in MGCp1n), (σMGC(n), σo,})K ⊆ OωJ(let Γ in MGCp1n), (σMGC(n), σa,})K .

Thus there exists T ′ such that

T ′ ∈ TωJ(let Γ in MGCp1n), (σMGC(n), σa,})K and get obsv(T ′) = get obsv(T) .

Thus ∀t0 ∈ [1..n]. last(get obsv(T ′)|t0) = (t0, out, 0) ∨ last(get obsv(T ′)|t0) = (t0, out, 2). But this is impossible from the operational
semantics and the fact that Γ is atomic and total. Thus we are done.

Proof of Lemma 65. Similar to the proof of Lemma 57. From deadlock-freeMGC
P (Π), we get: if T ′ ∈ TωJ(let Π in MGCp1n), (σMGC(n), σo,})K,

(σo,) |= P and fair(T ′), then either prog-s(T ′) or abt(T ′). By the definition of MGCp1n and the operational semantics, we know either
prog-s(T ′) or obj abt(T ′). From Lemma 59, we can prove: if T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K, (σo,) |= P and fair(T), then
either clt abt(T), or prog-s(T), or obj abt(T). Thus we have deadlock-freeP (Π).

Proofs of Lemma 66. Similar to the proof of Lemma 58. The key is to show the following (B.20).

For any n, C1, . . . , Cn, σc, σo and σa such that (σo, σa) |= P ,
if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))

T7−→ω · and fair(T), then there exists Ta such that
(blet Γ in C1‖ . . .‖Cnc, (σc, σa,}))

Ta7−→ω · and get obsv(T) = get obsv(Ta).
(B.20)

As in the proofs for (B.13), we construct a “simulation” relation . (see Fig. 26(b)) between the three programs: the concrete client program,
the abstract MGC and the corresponding abstract client program, and prove it satisfies the following (B.21).

For any n, C1, . . . , Cn, σc, σo, W1, S1, W2, S2, W3, S3, T0 and T1,
if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))

T07−→∗ (W1,S1),
(W1,S1) . (W2,S2;W3,S3), (W1,S1)

T17−→ω · and prog-s(T0 ::T1),
then there exists T3 such that (W3,S3)

T37−→ω · and T1\(, obj) = T3\(, obj).
(B.21)

Also we can prove: for any n, C1, . . . , Cn, σc, σo and σa, if (σo, σa) |= P , then

(blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
. (let Γ in MGCn, (σMGC(n), σa,}); blet Γ in C1‖ . . .‖Cnc, (σc, σa,})) .

If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω · and fair(T), by deadlock-freeP (Π), we know prog-s(T). Then from (B.21) we get: there

exists Ta such that

(blet Γ in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω · , and T\(, obj) = Ta\(, obj).

Thus we know get obsv(T) = get obsv(Ta) and we are done.

Proofs of (B.18). We only need to prove the following:

wrl(Γ) v̂
wr−1

l (id) Γ

By (B.17), we only need to show:

wrl(Γ) vfin

wr−1
l (id) Γ (B.22)

deadlock-free
wr−1

l (id)(wrl(Γ)) (B.23)

Proof of (B.22). We want to show: for any n, C1, . . . , Cn, σc and σa,

OJ(let wrl(Γ) in C1‖ . . .‖Cn), (σc, σa] {l ; 0}))K
⊆ OJ(let Γ in C1‖ . . .‖Cn), (σc, σa)K .

We construct a simulation relation . as follows.

59

(let wrl(Γ) in C′1‖ . . .‖C′n, (σc, σ′a, {1 ; κ′1, . . . , n; κ′n}))
. (let Γ in C1‖ . . .‖Cn, (σc, σa, {1 ; κ1, . . . , n; κn}))

if ∀i. (C′i, σ
′
a, κ
′
i) .i (Ci, σa, κi)

(C, σa] {l ; }, ◦) .t (C, σa, ◦)
(wrl(〈C〉); wrl(return E); noret, σa] {l ; }, κ′) .t (〈C〉; return E; noret, σa, κ)

(wr′l(〈C〉); wrl(return E); noret, σa] {l ; }, κ′) .t (〈C〉; return E; noret, σa, κ)

(wr′′l (〈C〉); wrl(return E); noret, σa] {l ; t}, κ′) .t (〈C〉; return E; noret, σa, κ)

(wr′′′l (〈C〉); wrl(return E); noret, σa] {l ; }, κ′) .t (〈C〉; return E; noret, σa, κ)

(〈C〉; wrl(return E); noret, σa] {l ; }, κ′) .t (〈C〉; return E; noret, σa, κ)

(wrl(return E); noret, σa] {l ; }, κ′) .t (return E; noret, σa, κ)

(wr′l(return E); noret, σa] {l ; }, κ′) .t (return E; noret, σa, κ)

(wr′′l (return E); noret, σa] {l ; t}, κ′) .t (return E; noret, σa, κ)

(wr′′′l (return E); noret, σa] {l ; }, κ′) .t (return E; noret, σa, κ)

(return E; noret, σa] {l ; }, κ′) .t (return E; noret, σa, κ)

where κ′ = (sl] {u1 ; , u2 ; }, x, C′) , if κ = (sl, x, C
′)

By case analysis and operational semantics, we can prove the following property of the simulation.

If (WB ,SB) . (WA,SA), then the following hold.
(1) If (WB ,SB)

eB7−→ abort, then
there exists TA such that (WA,SA)

TA7−→∗ abort and eB = get obsv(TA).
(2) If (WB ,SB)

eB7−→ (W ′B ,S ′B), then
there exist TA, W ′A and S ′A such that (WA,SA)

TA7−→∗ (W ′A,S ′A), get obsv(eB) = get obsv(TA) and (W ′B ,S ′B) . (W ′A,S ′A).
(B.24)

With (B.24), we can prove the following by induction over the number of steps generating the event trace of OJWB ,SBK.

If (WB ,SB) . (WA,SA) and T ∈ OJWB ,SBK, then T ∈ OJWA,SAK.
(B.25)

Since

(let wrl(Γ) in C1‖ . . .‖Cn, (σc, σa] {l ; 0},})) . (let Γ in C1‖ . . .‖Cn, (σc, σa,})) ,

from (B.25), we are done.

Proof of (B.23). We want to show: for any n, C1, . . . , Cn, σc and σa,

∀T. T ∈ TωJ(let wrl(Γ) in C1‖ . . .‖Cn), (σc, σa)K ∧ (σa(l) = 0)
=⇒ deadlock-free(T) .

It is reduced to the following.

∀T. T ∈ TωJ(let wrl(Γ) in C1‖ . . .‖Cn), (σc, σa)K ∧ (σa(l) = 0) ∧ fair(T) ∧ ¬abt(T)
=⇒ prog-s(T) .

• If |T | 6= ω, we know prog-s(T) must hold.
• If |T | = ω, suppose prog-s(T) does not hold. Then there exist i and e such that e ∈ pend inv(T (1..i)) and ∀j. j > i =⇒ ¬is ret(T (j)).

Suppose the execution generating such T is:

(W0,S0) pT (1)−−−→ (W1,S1) pT (2)−−−→ (W2,S2) pT (3)−−−→ . . .

Here we write W0 for let wrl(Γ) in C1‖ . . .‖Cn and S0 for (σc, σa,}).
Suppose tid(e) = t and e = T (i0). We know ¬∃j. (j > i0 ∧match(e, T (j))).
Since fair(T), we know |(T |t)| = ω. From the operational semantics, we know there exist i1, i2, . . . (an infinite number) such that
i0 < i1 < i2 < . . ., T (i1) = T (i2) = . . . = (t, obj), and the code of thread t in Wi1−1, Wi1 , Wi2−1, Wi2 , . . . is all the same, which is
either wr′l(〈C〉); wrl(return E); noret or wr′l(return E); noret.
Suppose the lock l has the values t1, t2, . . . in the states Si1 ,Si2 , We know t1 6= 0, t2 6= 0, Since there are only n threads, we
know there exist j, j1, j2, . . . (an infinite number) such that tj = tj1 = tj2 = In other words, thread tj holds the lock infinitely often
in the execution.
Since fair(T), we know |(T |tj)| = ω. By the operational semantics, we know tj must return infinitely often.
So we get a contradiction. Thus prog-s(T) holds.

Thus we are done.

60

Proofs of (B.19). The key is to show the following (B.26).

For any n, C1, . . . , Cn, σc, σo, σ1 and σa such that (σo, σ1) |= P and σa = σ1] {l ; 0},
if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))

T7−→ω · and fair(T), then there exists Tb such that

(blet wrl(Γ) in C1‖ . . .‖Cnc, (σc, σa,}))
Tb7−→ω ·, fair(Tb) and get obsv(T) = get obsv(Tb).

(B.26)

Following the proof of (B.20), we get:

For any n, C1, . . . , Cn, σc, σo and σ1 such that (σo, σ1) |= P ,
if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))

T7−→ω · and fair(T), then there exists Ta such that
(blet Γ in C1‖ . . .‖Cnc, (σc, σ1,}))

Ta7−→ω · and T\(, obj) = Ta\(, obj).
(B.27)

Since fair(T), we can prove that Ta satisfies the following cltfair in Definition 67. Since T\(, obj) = Ta\(, obj), from prog-s(T), we know
prog-s(Ta) holds. By the following Lemma 68, we can construct the execution of let wrl(Γ) in C1‖ . . .‖Cn generating the trace Tb such
that fair(Tb) and Ta\(, obj) = Tb\(, obj) hold. Thus we are done.

Definition 67. cltfair(Ta) iff

|Ta| = ω =⇒ ∀t ∈ [1..tnum(Ta)]. |(Ta|t)| = ω ∨ last(Ta|t) = (t, term)
∨ last(Ta|t) = (t, obj) ∨ ∃f, n. last(Ta|t) = (t, f, n)

Lemma 68. If (blet Γ in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω ·, cltfair(Ta) and prog-s(Ta), then

there exists Tb such that (blet wrl(Γ) in C1‖ . . .‖Cnc, (σc, σa] {l ; 0},}))
Tb7−→ω ·, fair(Tb) and Ta\(, obj) = Tb\(, obj).

Proof. We construct a simulation relation . that satisfies the following property.

If T |= (Wa,Sa) . (Wb,Sb) and (Wa,Sa)
ea7−→ (W ′a,S ′a), then

there exist Tb, W ′b and S ′b such that (Wb,Sb)
Tb7−→+ (W ′b,S ′b),

T ::ea |= (W ′a,S ′a) . (W ′b,S ′b), ea\(, obj) = Tb\(, obj) and
if is ret(ea) holds, then ∀e. e ∈ pend inv(T) ⇒ ∃i. tid(e) = tid(Tb(i)).

(B.28)

The simulation is established as follows.
T |= (let Γ in C1‖ . . .‖Cn, (σc, σa, {1 ; κ1, . . . , n; κn}))

. (let wrl(Γ) in C′1‖ . . .‖C′n, (σc, σ′a, {1 ; κ′1, . . . , n; κ′n}))
if ∀i. (Ci, σa, κi) .i (C′i, σ

′
a, κ
′
i)

(C, σa, ◦) .t (C, σa] {l ; 0}, ◦)
(〈C〉; return E; noret, σa, κ) .t (wrl(〈C〉); wrl(return E); noret, σa] {l ; 0}, κ′)
(return E; noret, σa, κ) .t (wrl(return E); noret, σa] {l ; 0}, κ′)
where κ′ = (sl] {u1 ; , u2 ; }, x, C′) , if κ = (sl, x, C

′)

We can prove (B.28) by case analysis and operational semantics. The idea is to execute the lock instructions of the threads which are pending
just after the lock instruction of the thread that returns. Then if is ret(ea) holds, the pending threads in T must have been executed in the
execution of (Wb,Sb).

With (B.28), we can prove the following by co-induction over the event trace Ta generated in (Wa,Sa)
Ta7−→ω ·.

If ε |= (Wa,Sa) . (Wb,Sb), (Wa,Sa)
Ta7−→ω · and prog-s(Ta), then

there exists Tb such that (Wb,Sb)
Tb7−→ω ·, Ta\(, obj) = Tb\(, obj) and

∀e. e ∈ pend inv(Tb) ⇒ ∀i. ∃j > i. tid(Tb(j)) = tid(e).
(B.29)

Since

ε |= (blet Γ in C1‖ . . .‖Cnc, (σc, σa,})) . (blet wrl(Γ) in C1‖ . . .‖Cnc, (σc, σa] {l ; 0},})) ,

from (B.29), we know there exists Tb such that

(blet wrl(Γ) in C1‖ . . .‖Cnc, (σc, σa] {l ; 0},}))
Tb7−→ω ·,

Ta\(, obj) = Tb\(, obj) and ∀e. e ∈ pend inv(Tb) ⇒ ∀i. ∃j > i. tid(Tb(j)) = tid(e).
Since (blet Γ in C1‖ . . .‖Cnc, (σc, σa,}))

Ta7−→ω · and cltfair(Ta), we know fair(Tb) holds. Thus we are done.

61

C. Starvation-free examples
C.1 Counter with ticket lock
Our logic LiLi can be applied to verify simple objects using a single lock to protect all the object data. As examples, we verify the counter
object using a ticket lock (see below), or a queue lock (see Secs. C.2, C.3 and C.4), or a test-and-set lock (see Sec. D.1).

Fig. 27 shows the concrete implementation of the counter sfInc with a ticket lock, where we write the auxiliary code in red. We implicitly
assume every instruction that accesses the shared state is in an atomic block.

As we explained in Sec. 2, sfInc in Fig. 1(c) is linearizable with respect to the abstract atomic operation INC because sfInc ensures
mutually exclusive access to x. When a thread acquires the lock, the shared resource x at both the concrete and the abstract sides is transferred
to the thread’s local state. sfInc ensures starvation-freedom because the threads which are currently requesting the lock constitute a queue.

We introduce some auxiliary structures to facilitate the proof. As shown in Fig. 27, we introduce the explicit tickets ticket0, ticket1,
. . . . Each ticketi records the ID of the unique thread which gets the ticket number i. We use cid to record the current thread ID. The explicit
connection from the ticket numbers to the thread IDs gives us the knowledge about the queue of the threads requesting the lock.

Besides, each ticket i is accompanied with a waiting bit waiti to indicate whether the thread ticketi is requesting the lock or has entered
its critical section. It helps describe the ownership transfer over the resource x. Initially waiti is false. It is set to true when the thread gets its
ticket at line 2. After the loop, waiti is reset (line 7) to transfer the shared resource x to the thread so that the thread can freely access x in the
critical section (line 8).

Fig. 28 defines the precise invariant I which determines the boundaries of shared states. A shared state contains the lock (with owner = n1

and next = n2), the wait bits (waits) and the protected resource if waitowner holds. Here resource requires x to be the same at the concrete
and the abstract sides. lock(tl, n1, n2) contains the auxiliary tickets in addition to owner and next, where tl (hidden in the definition of I)
is the list of the threads ticketowner, . . . , ticketnext−1. We also use locked(tl, n1, n2) for the case when tl is not empty. That is, the lock is
acquired by the first thread in tl, while the other threads in tl are waiting for the lock in order. Besides, we use lockIrrt(tl, n1, n2) short for
lock(tl, n1, n2) ∧ (t 6∈ tl). That is, the thread t is irrelevant to the lock: it does not acquire or request the lock. The precondition P is stronger
than I . For thread t, Pt requires the lock to satisfy ∃tl. lockIrrt(tl, n1, n2).

The guarantee condition G in Fig. 28 defines the atomic actions of a thread t. ReqLock t adds the thread t at the end of tl of the threads
requesting the lock and increments next. It corresponds to line 2 of Fig. 27. AcqResourcet transfers the resource to the thread t when it has
acquired the lock, corresponding to line 7 of Fig. 27. RelLock t releases the lock and transfers the resource back to the shared state. The thread
t which currently holds the lock is dequeued from the list tl and owner is incremented. It corresponds to line 9 of Fig. 27. The rely condition
R include all the atomic actions made by the environment threads.

Next we define the definite action D in Fig. 28. As we explained in Sec. 2, the thread t’s definite action Dt requires that whenever t holds a
lock with owner = n1 (specified by dpt(n1)), it should eventually release the lock by incrementing owner to n1 + 1 (specified by dqt(n1)).
Note that dpt(n1) allows the resource to be either in the shared state or in the thread t’s local state. The former case means that the thread t has
not executed line 7 but its loop at lines 4-6 must terminate. Besides, dpt(n1) is stable under the environment which may enqueue more threads
into the list tl of waiting threads. We can prove the side conditions about well-formedness of specifications in the OBJ rule in Fig. 9 holds.

Fig. 29 shows the proof outline. To verify the loop at lines 4-6, we first define J and Q in Fig. 28. Both J and Q are stronger than
I . For thread t, Jt says t is requesting the lock. Here tlockedtl1,t,tl2(n1, X, n2) says (1) t takes the ticket number X , which satisfies
n1 = owner ≤ X < next = n2, and (2) the threads requesting the lock before and after t constitute the lists tl1 and tl2 respectively. Then,
the first thread of the whole concatenated list tl1 :: t :: tl2 holds the lock. Qt specifies the case when tl1 is empty (thus X = owner). The loop
terminates when Q holds. We also strengthen the guarantee of the loop to G′ def

= [I], the identity transitions. We have Sta({J,Q}, G′ ∨R).
Next we define f and prove J ⇒ (R,G′ : D f−→Q). The metric function f maps each shared state S to the value of (X − owner) at that

state. Here X is a logical variable recording the ticket number of the current thread (i.e., X = i holds). Since J ensures owner ≤ X , we can
use the usual order on natural numbers as the associated well-founded order. The condition J ⇒ (R,G′ : D f−→Q) holds due to the following
reasons:

(1) Each action in R or G′ either increases owner or keeps owner unchanged.

(2) Either Q holds, or owner < X and some environment thread t′ acquires the lock. In the latter case, the value of (X − owner) decreases
when t′ releases the lock. That is, the metric decreases after a definite action made by the environment.

Finally we conclude the full correctness of sfInc with respect to the atomic INC under fair scheduling. By Theorem 2 (Soundness), we get
linearizability and starvation-freedom of sfInc.

62

initialize(){ owner := 0; next := 0; }

sfInc(){
1 local i, o, r;
2 <i := getAndInc(next); ticketi := cid; waiti := true>;
3 o := owner;
4 while (i != o) {
5 o := owner;
6 }
7 <waiti := false>;
8 r := x; x := r + 1;
9 owner := i + 1;
}

Figure 27. Counter sfInc with a ticket lock (auxiliary code in red).

tl ::= ε | t :: tl

list2set(ε)
def
= ∅

list2set(t :: tl) def
= {t} ∪ list2set(tl)

I
def
= ∃n1, n2. lock(n1, n2) ∗ (waitn1 ∗ resource ∨ ¬waitn1) ∗ waits(n1, n2)

resource
def
= (x = X) lres

def
= (x =)

waits(n1, n2)
def
= (~0≤i<n1∨i≥n2

(¬waiti)) ∗ (~n1<i<n2waiti)

lock(n1, n2)
def
= ∃tl. lock(tl, n1, n2)

lock(tl, n1, n2)
def
= ((owner = n1) ∗ (next = n2) ∧ (n1 ≤ n2)) ∗ tickets(0, n1) ∗ tickets(tl, n1, n2) ∗ tickets new(n2)

tickets(n1, n2)
def
= ∃tl. tickets(tl, n1, n2)

tickets(tl, n1, n2)
def
=

(tl = ε) ∧ (n1 = n2) ∧ emp ∨ ∃t, tl′. (tl = t :: tl′) ∧ (t 6∈ list2set(tl′)) ∧ (ticketn1 = t) ∗ tickets(tl′, n1 + 1, n2)

tickets new(n2)
def
= (~i≥n2

ticketi = −1)

Pt
def
= ∃n1, n2. lock irrt(n1, n2) ∗ (waitn1 ∗ resource ∨ ¬waitn1) ∗ waits(n1, n2)

lock irrt(n1, n2)
def
= ∃tl. lock irrt(tl, n1, n2) lock irrt(tl, n1, n2)

def
= lock(tl, n1, n2) ∧ (t 6∈ list2set(tl))

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= (ReqLockt ∨ AcqResourcet ∨ RelLockt ∨ Id) ∗ Id ∧ (I n I)

ReqLockt
def
=

∃tl, n1, n2. (lock irrt(tl, n1, n2) ∗ (¬waitn2)) n (lock(tl :: t, n1, n2 + 1) ∗ waitn2)

AcqResourcet
def
=

∃tl, n1, n2. (lock(t :: tl, n1, n2) ∗ waitn1 ∗ resource) n (lock(t :: tl, n1, n2) ∗ (¬waitn1))

RelLockt
def
=

∃tl, n1, n2. (lock(t :: tl, n1, n2)) n (lock irrt(tl, n1 + 1, n2) ∗ resource)

Dt
def
= ∀n1. dpt(n1) ; dqt(n1)

dpt(n1)
def
= ∃tl, n2. lock(t :: tl, n1, n2) ∗ true ∧ I

dqt(n1)
def
= ∃n2. lock irrt(n1 + 1, n2) ∗ true ∧ I

Figure 28. Invariant, precondition, rely/guarantee and definite action of counter with ticket lock.

63

tlockedtl1,t,tl2 (n1, n, n2)
def
=

(list2set(tl1) ∩ list2set(t :: tl2) = ∅) ∧ ((owner = n1) ∗ (next = n2) ∧ (n1 ≤ n < n2))
∗ tickets(0, n1) ∗ tickets(tl1, n1, n) ∗ tickets(t :: tl2, n, n2) ∗ tickets new(n2)

P0(n1, n, n2)
def
= ∃tl1. P0(tl1, n1, n, n2) P3(n1, n, n2)

def
= ∃t′, tl1. P0(t′ :: tl1, n1, n, n2)

P0(tl1, n1, n, n2)
def
= ∃tl2. tlockedtl1,t,tl2 (n1, n, n2) ∗ (waitn1 ∗ resource ∨ (¬waitn1) ∧ (n1 < n)) ∗ waits(n1, n2)

P1(n1, n2)
def
= ∃tl. lock(t :: tl, n1, n2) ∗ waitn1 ∗ resource ∗ waits(n1, n2)

P2(n1, n2)
def
= ∃tl. lock(t :: tl, n1, n2) ∗ (¬waitn1) ∗ waits(n1, n2)

inc():
1 local i, o, r;{

P ∧ arem(INC)
}

2 < i := getAndInc(next); ticketi := cid; waiti := true; >{
∃n1, n, n2. P0(n1, n, n2) ∧ (i = n) ∧ arem(INC)

}{
∃n1, n2. P0(n1, n, n2) ∧ (i = n) ∧ arem(INC)

}
3 o := owner;{
∃n1, n2. P0(n1, n, n2) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(INC)

}{
∃n1, n2. P0(n1, n, n2) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(INC) ∧ ♦(n− o)

}
4 while (i != o) {
5 o := owner;
6 }{
∃n1, n2. P1(n1, n2) ∧ (i = n1) ∧ arem(INC)

}
7 <waiti := false>;{

resource ∗ (∃n1, n2. P2(n1, n2)) ∧ (i = n1) ∧ arem(INC)
}

8 r := x; x := r + 1;{
(x = X + 1) ∗ (∃n1, n2. P2(n1, n2)) ∧ (i = n1) ∧ arem(INC)

}
9 owner := i + 1;{

P ∧ arem(skip)
}

Here the loop at lines 4-6 is verified as follows. Let
p′

def
= ∃n1, n2. (P1(n, n2) ∧ ♦(n− (o + 1)) ∨ P3(n1, n, n2) ∧ ♦(n− o)) ∧ (o ≤ n1 ≤ n = i) ∧ (o 6= i) ∧ arem(INC)

J
def
= ∃n1, n2. P0(n1, n, n2)

Q
def
= Enabled(D)

G′
def
= [I]

f(S) = k iff S |= (n− owner = k)

(∃n1, n2. P0(n1, n, n2) ∧ (i = n) ∧ (o ≤ n1) ∧ (i 6= o) ∧ arem(INC) ∧ ♦(n− o) ∧Q ∗ true)
=⇒ (∃n2. P1(n, n2) ∧ (i = n) ∧ (o < n) ∧ arem(INC) ∧ ♦(n− (o + 1))) ∗ (♦(1) ∧ emp)

{
p′
}{
∃n1, n2. (P1(n, n2) ∧ ♦(n− (o + 1)) ∨ P3(n1, n, n2) ∧ ♦(n− o)) ∧ (o ≤ n1 ≤ n = i) ∧ (o 6= i) ∧ arem(INC)

}
5 <o := owner>;{

∃n1, n2. P0(n1, n, n2) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(INC) ∧ ♦(n− o)
}{

p
}

We can prove:

(1) J ⇒ I; Q⇒ I; Sta(J,G′ ∨R).

(2) J ⇒ (R,G′ : D f−→Q) (where picking D′ in the WHL rule as D).

Figure 29. Proof outline. We prove: D, R,G, I ` {P ∧ arem(INC)}C{P ∧ arem(skip)}.

64

initialize(){ tail := 0; flag[0] := true; flag[1..TNUM-1] := false; }

inc(){
1 local i, b, r;
2 <i := getAndInc(tail) % TNUM; queue[i] := cid; wait[i] := true>;
3 b := flag[i];
4 while (!b) {
5 b := flag[i];
6 }
7 <wait[i] := false>;
8 r := x; x := r + 1;
9 flag[i] := false;

10 <flag[(i + 1) % TNUM] := true; queue[i] := -1>;
}

Figure 30. Counter with Anderson array-based lock.

C.2 Counter with Anderson array-based queue lock
In this section, we verify the counter implementation with the Anderson array-based queue lock is linearizable with respect to the atomic
operation INC and is starvation-free. Fig. 30 shows the concrete implementation with auxiliary code (in red). Suppose the maximum total
number of threads is TNUM. Anderson array-based lock algorithm [13] uses a boolean flag array which contains TNUM slots and a tail pointer
which points to the next available slot in the array. To acquire the lock, each thread reads the current value of tail and atomically increments
tail (line 2). Then the thread spins until the flag at its slot becomes true (lines 3-6). If flag[i] is true, then the thread with slot i has the
permission to acquire the lock. To release the lock, the thread sets the flag at its slot to false (line 9) and then sets the flag at the next slot to
true (line 10) to let the next thread acquire the lock.

To verify the code, we introduce an auxiliary array queue which contains TNUM slots (just like the flag array in the original code). The
queue array records the thread ID t if the corresponding slot at the flag array is held by the thread t. For an available slot i (i.e., which is not
held by any thread), queue[i] is −1. Thus we can know from the queue array the list of threads requesting the lock. Similarly to the previous
example of the counter with ticket lock, we also give each slot i a waiting bit wait[i] to indicate whether the thread queue[i] is requesting the
lock or has entered the critical section.

Fig. 31 shows the full definitions of the precise invariant, the precondition, the rely and guarantee conditions and the definite action. The
definitions are similar the the corresponding ones for the counter with ticket lock. The most interesting predicate in the definition of the
invariant I is queue(tl, n1, n2, sz), which gives the queue tl of the threads requesting the lock, and the start and the end slots n1 and n2 in the
arrays. The definition of queue(tl, n1, n2, sz) contains two cases: the first case says the queue of the threads does not step over the boundary
of the arrays (thus n1 ≤ n2), while the second case is the opposite. When n1 = n2, the first case means the queue is empty (no threads are
requesting the lock), while the second case means the queue is full (all the TNUM threads are requesting the lock).

Note that as shown in the definition of the guaranteed actions SetFlag and RelLock , we view line 10 as the action of releasing the lock
and giving up the slot of the current thread. Line 9 is to reset the slot of the current thread, which is viewed as an action happened when the
thread is holding the lock.

Fig. 32 shows the proof outline. The proofs are similar to the proofs of the counter with ticket lock.

65

tl ::= ε | t :: tl

list2set(ε)
def
= ∅

list2set(t :: tl) def
= {t} ∪ list2set(tl)

I
def
= ∃sz, n1, n2. (TNUM = sz) ∗ lock(n1, n2, sz) ∗ (wait[n1] ∗ resource ∨ ¬wait[n1]) ∗ waits(n1, n2, sz)

resource
def
= (x = X) lres

def
= (x =)

lock(n1, n2, sz)
def
= ∃tl, b. lock(tl, n1, n2, sz, b) lock irrt(n1, n2, sz)

def
= ∃tl, b. lock irrt(tl, n1, n2, sz, b)

lock(tl, n1, n2, sz, b)
def
= queue(tl, n1, n2, sz) ∗ (tail%sz = n2) ∗fflags(n1, sz) ∗ (flag[n1] = b) ∧ (b ∨ (¬b) ∧ (n1 < n2))

lock irrt(tl, n1, n2, sz, b)
def
= lock(tl, n1, n2, sz, b) ∧ (t 6∈ list2set(tl))

fflags(n1, sz)
def
= (~0≤i<n1∧n1<i<sz(¬flag[i]))

queue(tl, n1, n2, sz)
def
=

(0 ≤ n1 ≤ n2 < sz) ∧ free(0, n1) ∗ thrds(tl, n1, n2) ∗ free(n2, sz)
∨ (0 ≤ n2 ≤ n1 < sz) ∧ ∃tl1, tl2. (tl = tl1 :: tl2) ∧ thrds(tl2, 0, n2) ∗ free(n2, n1) ∗ thrds(tl1, n1, sz)

thrds(tl, n, n′) def
=

(tl = ε) ∧ (n = n′) ∧ emp ∨ ∃t, tl′. (tl = t :: tl′) ∧ (t 6∈ list2set(tl′)) ∧ (queue[n] = t) ∗ thrds(tl′, n+ 1, n′)

free(n, n′)
def
= (~n≤i<n′queue[i] = −1)

waits(n1, n2, sz)
def
=

(0 ≤ n1 ≤ n2 < sz) ∧ (~0≤i<n1∨n2≤i<sz(¬wait[i])) ∗ (~n1<i<n2wait[i])
∨ (0 ≤ n2 < n1 < sz) ∧ (~0≤i<n2

wait[i]) ∗ (~n2≤i<n1
(¬wait[i])) ∗ (~n1<i<szwait[i])

Pt
def
= ∃sz, n1, n2. (TNUM = sz) ∗ lock irrt(n1, n2, sz) ∗ (wait[n1] ∗ resource ∨ ¬wait[n1]) ∗ waits(n1, n2, sz) ∧ (1 ≤ t ≤ sz)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
=
∃sz. (ReqLockt(sz) ∨ AcqResourcet(sz) ∨ SetFlag t(sz) ∨ RelLockt(sz) ∨ Id)
∗ [(TNUM = sz) ∧ (1 ≤ t ≤ sz)] ∗ Id ∧ (I n I)

ReqLockt(sz)
def
=

∃tl, n1, n2, b. ((lock irrt(tl, n1, n2, sz, b) ∗ (¬wait[n2])) n (lock(tl :: t, n1, (n2 + 1)%sz, sz, b) ∗ wait[n2]))

AcqResourcet(sz)
def
=

∃tl, n1, n2. (lock(t :: tl, n1, n2, sz, true) ∗ wait[n1] ∗ resource) n (lock(t :: tl, n1, n2, sz, true) ∗ (¬wait[n1]))

SetFlag t(sz)
def
=

∃tl, n1, n2. lock(t :: tl, n1, n2, sz, true) n lock(t :: tl, n1, n2, sz, false)

RelLockt(sz)
def
=

∃tl, n1, n2. lock(t :: tl, n1, n2, sz, false) n (lock irrt(tl, (n1 + 1)%sz, n2, sz, true) ∗ resource)

Dt
def
= ∀n1. dpt(n1) ; dqt(n1)

dpt(n1)
def
= ∃tl, n2, sz, b. lock(t :: tl, n1, n2, sz, b) ∗ true ∧ I

dqt(n1)
def
= ∃tl, n2, sz. lock irrt(tl, (n1 + 1)%sz, n2, sz, true) ∗ true ∧ I

Figure 31. Invariant, precondition, rely/guarantee and definite action of counter with Anderson array-based lock.

66

tlockedt(tl1, tl2, n1, n, n2, sz, b)
def
=

tqueuet(tl1, tl2, n1, n, n2, sz) ∗ (tail%sz = n2) ∗fflags(n1, sz) ∗ (flag[n1] = b)
∧ (list2set(tl1) ∩ list2set(t :: tl2) = ∅) ∧ (b ∨ (¬b) ∧ (n1 < n))

tqueuet(tl1, tl2, n1, n, n2, sz)
def
=

(0 ≤ n1 ≤ n < n2 < sz) ∧ free(0, n1) ∗ thrds(tl1, n1, n) ∗ thrds(t :: tl2, n, n2) ∗ free(n2, sz)
∨ (0 ≤ n2 ≤ n1 ≤ n < sz) ∧ ∃tl21, tl22. (tl2 = tl21 :: tl22)
∧ thrds(tl22, 0, n2) ∗ free(n2, n1) ∗ thrds(tl1, n1, n) ∗ thrds(t :: tl21, n, sz)

∨ (0 ≤ n < n2 ≤ n1 < sz) ∧ ∃tl11, tl12. (tl1 = tl11 :: tl12)
∧ thrds(tl12, 0, n) ∗ thrds(t :: tl2, n, n2) ∗ free(n2, n1) ∗ thrds(tl11, n1, sz)

P0(n1, n, n2, b)
def
= ∃tl1. P0(tl1, n1, n, n2, b) P3(n1, n, n2, b)

def
= ∃t′, tl1. P0(t′ :: tl1, n1, n, n2, b)

P0(tl1, n1, n, n2, b)
def
=

∃tl2, sz. (TNUM = sz) ∗ tlockedt(tl1, tl2, n1, n, n2, sz, b)
∗ (wait[n1] ∗ resource ∨ (¬wait[n1]) ∧ (n1 6= n)) ∗ waits(n1, n2, sz) ∧ (1 ≤ t ≤ sz)

P1(n1, n2, b)
def
= ∃sz, tl. (TNUM = sz) ∗ lock(t :: tl, n1, n2, sz, b) ∗ wait[n1] ∗ resource ∗ waits(n1, n2, sz) ∧ (1 ≤ t ≤ sz)

P2(n1, n2, b)
def
= ∃sz, tl. (TNUM = sz) ∗ lock(t :: tl, n1, n2, sz, b) ∗ (¬wait[n1]) ∗ waits(n1, n2, sz) ∧ (1 ≤ t ≤ sz)

bef(b)
def
= 0 if b = true bef(b)

def
= 1 if b = false

inc():
1 local i, b, r;{

P ∧ arem(INC)
}

2 < i := getAndInc(tail) % TNUM; queue[i] := cid; wait[i] := true; >{
∃n1, n, n2, b. P0(n1, n, n2, b) ∧ (i = n) ∧ arem(INC)

}
3 b := flag[i];{
∃n1, n, n2, b. P0(n1, n, n2, b) ∧ (i = n) ∧ (b ∧ (b = b) ∧ (n1 = n) ∨ (¬b)) ∧ arem(INC)

}{
∃n1, n2, b. P0(n1, n, n2, b) ∧ (i = n) ∧ (b ∧ (b = b) ∧ (n1 = n) ∨ (¬b)) ∧ arem(INC) ∧ ♦(bef(b))

}
4 while (!b) {
5 b := flag[i];
6 }{
∃n1, n2. P1(n1, n2, true) ∧ (i = n1) ∧ arem(INC)

}
7 <wait[i] := false>;{

resource ∗ (∃n1, n2. P2(n1, n2, true) ∧ (i = n1)) ∧ arem(INC)
}

8 r := x; x := r + 1;{
(x = X + 1) ∗ (∃n1, n2. P2(n1, n2, true) ∧ (i = n1)) ∧ arem(INC)

}
9 flag[i] := false;{

(x = X + 1) ∗ (∃n1, n2. P2(n1, n2, false) ∧ (i = n1)) ∧ arem(INC)
}

10 <flag[(i + 1) % TNUM] := true; queue[i] := -1>;{
P ∧ arem(skip)

}
Here the loop at lines 4-6 is verified in Figure 33.

Figure 32. Proof outline.

67

p′
def
= ∃n1, n2, b. (P1(n, n2, true) ∧ ♦(0) ∨ P3(n1, n, n2, b) ∧ ♦(bef(b))) ∧ (i = n) ∧ (¬b) ∧ arem(INC)

J
def
= ∃n1, n2, b. P0(n1, n, n2, b)

Q
def
= Enabled(D)

G′
def
= [I]

f(S) = k iff ∃tl1, n1, n2, b. (S |= P0(tl1, n1, n, n2, b)) ∧ (k = len(tl1))

len(ε)
def
= 0 len(t :: tl) def

= 1 + len(tl)

(∃n1, n2, b. P0(n1, n, n2, b) ∧ (i = n) ∧ (¬b) ∧ arem(INC) ∧ ♦(bef(b)) ∧Q ∗ true)
=⇒ (∃n2. P1(n, n2, true) ∧ (i = n) ∧ (¬b) ∧ arem(INC) ∧ ♦(0)) ∗ (♦(1) ∧ emp)

{
p′
}{
∃n1, n2, b. (P1(n, n2, true) ∧ ♦(0) ∨ P3(n1, n, n2, b) ∧ ♦(bef(b))) ∧ (i = n) ∧ (¬b) ∧ arem(INC)

}
5 b := flag[i];{

∃n1, n2, b. P0(n1, n, n2, b) ∧ (i = n) ∧ (b ∧ (b = b) ∧ (n1 = n) ∨ (¬b)) ∧ arem(INC) ∧ ♦(bef(b))
}{

p
}

We can prove:

(1) J ⇒ I; Q⇒ I; Sta(J,G′ ∨R).

(2) J ⇒ (R,G′ : D f−→Q) (where picking D′ used in the WHL rule as D).

Figure 33. Proof outline – the loop at lines 4-6.

68

initialize(){
tail := new Node(false, 0);
tq := ε; acquired := false;

}

thread_initialize(){ // mynode: each thread’s local variable (pointing to a shared node)
mynode := new Node(false, cid); // fields: succwait, tid

}

inc(){
1 local p, b, r;
2 mynode.succwait := true;
3 <p := getAndSet(&tail, mynode); tq := tq::cid>;
4 b := p.succwait;
5 while (b) {
6 b := p.succwait;
7 }
8 <acquired := true>;
9 r := x; x := r + 1;

10 <mynode.succwait := false; tq := getTail(tq); acquired := false;
p.tid := cid; mynode.tid := 0>;

11 mynode := p;
}

Figure 34. Counter with CLH lock.

C.3 Counter with CLH list-based queue lock
In this section, we verify the counter implementation with the CLH list-based queue lock is linearizable with respect to the atomic operation
INC and is starvation-free. Fig. 34 shows the concrete implementation with auxiliary code (in red). The CLH lock algorithm uses a virtual
linked list, with the tail pointer pointing to the end of the list. Each list node contains a field succwait. If the field is true, then the
corresponding thread has either acquired the lock, or is waiting for the lock (thus its successor thread must be waiting for the lock). If the field
is false, then the thread has released the lock (i.e., its successor thread acquires the lock and is no longer waiting). We say the list is “virtual”
because there is no explicit “next” pointer in each node pointing to the successor node, and each thread refers to its predecessor through a
thread-local pointer p in the code.

Initially the list contains only the tail node, and each thread has its own node mynode (here mynode is a thread-local pointer, but the node
is shared, since the successor thread may keep a reference to the node). To acquire the lock, the thread first sets its succwait field to true to
indicate that the thread is requesting the lock (line 2). Next it makes its own node the tail of the list, simultaneously getting a reference p to its
predecessor, i.e., the original tail node (line 3). Then the thread spins on the predecessor’s succwait field until the predecessor releases the
lock (lines 4-7). To release the lock, the thread sets its succwait field to false (line 10). It reuses its predecessor’s node p as its new own
node for future lock accesses (line 11).

To verify the code, we give each list node an auxiliary field tid to record the thread which owns the node. If no thread owns the node, the
auxiliary tid field is 0. We also introduce an auxiliary variable tq which is a mathematical list with “::” for concatenation. tq plays a similar
role as the auxiliary array queue in the previous proofs of Anderson array-based lock. It records the queue of the threads requesting the lock.
The auxiliary variable acquired plays a similar role as the auxiliary array wait in the previous proofs of Anderson array-based lock, but
acquired is not a per-thread flag. It is set to true when the lock is acquired by some thread and reset to false when the lock is released.

In the code, we append the current thread ID cid at the end of the thread queue tq at the same time when the thread makes its own node the
tail of the list (line 3). The auxiliary variable acquired is set to true after the spinning loop (line 8). We view line 10 as the time of releasing
the lock, so we remove the head thread in tq and reset acquired at the same time. Simultaneously we set the predecessor node p’s tid field
to cid and the currently-owned node’s tid field to 0. That is, when releasing the lock, the current thread will reuse the predecessor’s node and
its original node is no longer owned by any thread. Line 11 physically sets the thread-local pointer mynode, but actually at line 10 of releasing
the lock, the thread already switches to own the predecessor node.

Fig. 35 shows the full definitions of the precise invariant, the precondition, the rely and guarantee conditions and the definite action. The
definitions are similar the the corresponding ones for Anderson array-based lock. Since the list is virtual, we introduce two mappings ta and tb
to record the address and the boolean succwait field of each thread’s node. Then as shown in the definition of queue(tl, x, ta, tb) (which is
the key to define the invariant I), the thread queue is recorded in tq and the nodes of these threads constitute a virtual list seg(tl, x, z, ta, tb).
We also have an additional node node(x, false, 0) as the predecessor of the virtual list. If the virtual list is empty, then tail points to this
additional node x; otherwise tail points to the end node of the virtual list. The first thread t at the virtual list acquires the lock. Its succwait
field must be true, indicating that its successor thread must be waiting now. Its predecessor x’s succwait field is false, saying that t is no
longer waiting and has acquired the lock.

Fig. 36 shows the proof outline, which is similar to the previous proofs of Anderson array-based lock.

69

tl ::= ε | t :: tl ta ∈ ThrdID ⇀ Nat tb ∈ ThrdID ⇀ Bool

list2set(ε)
def
= ∅

list2set(t :: tl) def
= {t} ∪ list2set(tl)

I
def
= ∃sz, tl, x0, ta, tb. (TNUM = sz) ∗ lock(tl, x0, ta, tb, sz) ∗ ((¬acquired) ∗ resource ∨ acquired ∧ (tl 6= ε))

resource
def
= (x = X) lres

def
= (x =)

lock(tl, x0, ta, tb, sz)
def
=

(dom(ta) = dom(tb) = {1, . . . , sz})
∧ queue(tl, x0, ta, tb) ∗ nodeset({t | (1 ≤ t ≤ sz) ∧ (t 6∈ list2set(tl))}, ta, tb)

lock irrt(tl, x0, ta, tb, sz)
def
= (t 6∈ list2set(tl)) ∧ lock(tl, x0, ta, tb, sz)

queue(tl, x, ta, tb)
def
= ∃z. (tq = tl) ∗ node(x, false, 0) ∗ seg(tl, x, z, ta, tb) ∗ (tail = z)

seg(tl, x, z, ta, tb)
def
=

(tl = ε) ∧ emp ∧ (x = z)
∨ ∃t, tl′, y. (tl = t :: tl′) ∧ (t 6∈ list2set(tl′)) ∧ (ta(t) = y) ∧ (tb(t) = true) ∧ node(y, true, t) ∗ seg(tl′, y, z, ta, tb)

nodeset(S, ta, tb)
def
= (~t∈Snode(ta(t), tb(t), t))

node(x, b, s)
def
= (x.succwait = b) ∗ (x.tid = s)

Pt
def
= Pt(mynode, false)

Pt(x, b)
def
=

∃x0, ta, tb, sz, tl. (TNUM = sz) ∗ lock irrt(tl, x0, ta] {t ; x}, tb] {t ; b}, sz)
∗ ((¬acquired) ∗ resource ∨ acquired ∧ (tl 6= ε)) ∧ (1 ≤ t ≤ sz)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
=
∃sz. (SetSuccwaitt(sz) ∨ ReqLockt(sz) ∨ AcqResourcet(sz) ∨ RelLockt(sz) ∨ Id)
∗ [(TNUM = sz) ∧ (1 ≤ t ≤ sz)] ∗ Id ∧ (I n I)

SetSuccwaitt(sz)
def
=

∃tl, x0, ta, tb. lock irrt(tl, x0, ta, tb] {t ; false}, sz) n lock irrt(tl, x0, ta, tb] {t ; true}, sz)

ReqLockt(sz)
def
=

∃tl, x0, ta, tb. lock irrt(tl, x0, ta, tb, sz) n lock(tl :: t, x0, ta, tb, sz)

AcqResourcet(sz)
def
=

∃tl, x0, ta, tb. (lock(t :: tl, x0, ta, tb, sz) ∗ (¬acquired) ∗ resource) n (lock(t :: tl, x0, ta, tb, sz) ∗ acquired)

RelLockt(sz)
def
=

∃tl, x0, ta, tb. (lock(t :: tl, x0, ta, tb, sz) ∗ acquired)
n (lock irrt(tl, ta(t), ta{t ; x0}, tb{t ; false}, sz) ∗ (¬acquired) ∗ resource)

Dt
def
= ∀x0, ta. dpt(x0, ta) ; dqt(x0, ta)

dpt(x0, ta)
def
= ∃tl, tb, sz. lock(t :: tl, x0, ta, tb, sz) ∗ true ∧ I

dqt(x0, ta)
def
= ∃tl, tb, sz. lock irrt(tl, ta(t), ta{t ; x0}, tb{t ; false}, sz) ∗ true ∧ I

Figure 35. Invariant, precondition, rely/guarantee and definite action.

70

tlockedt(tl1, tl2, x0, p, ta, tb, sz)
def
=

(dom(ta) = dom(tb) = {1, . . . , sz}) ∧ (list2set(tl1) ∩ list2set(t :: tl2) = ∅)
∧ tqueuet(tl1, tl2, x0, p, ta, tb) ∗ nodeset({t′ | (1 ≤ t′ ≤ sz) ∧ (t′ 6∈ list2set(tl1 :: t :: tl2))}, ta, tb)

tqueuet(tl1, tl2, x0, p, ta, tb)
def
=

∃z. (tq = tl1 :: t :: tl2) ∗ node(x0, false, 0) ∗ seg(tl1, x0, p, ta, tb) ∗ seg(t :: tl2, p, z, ta, tb) ∗ (tail = z)

P0(x0, p, x, b)
def
= ∃tl1. P0(tl1, x0, p, x, b) P3(x0, p, x, b)

def
= ∃t′, tl1. P0(t′ :: tl1, x0, p, x, b)

P0(tl1, x0, p, x, b)
def
=

∃tl2, sz, ta, tb. (TNUM = sz) ∗ tlockedt(tl1, tl2, x0, p, ta] {t ; x}, tb] {t ; b}, sz)
∗ ((¬acquired) ∗ resource ∨ acquired ∧ (tl1 6= ε)) ∧ (1 ≤ t ≤ sz)

P1(p, x, b)
def
=

∃sz, tl, ta, tb. (TNUM = sz) ∗ lock(t :: tl, p, ta] {t ; x}, tb] {t ; b}, sz) ∗ (¬acquired) ∗ resource ∧ (1 ≤ t ≤ sz)

P2(p, x, b)
def
=

∃sz, tl, ta, tb. (TNUM = sz) ∗ lock(t :: tl, p, ta] {t ; x}, tb] {t ; b}, sz) ∗ acquired ∧ (1 ≤ t ≤ sz)

bet(b)
def
= 1 if b = true bet(b)

def
= 0 if b = false

inc():
1 local p, b, r;{

P ∧ arem(INC)
}

2 mynode.succwait := true;{
P (mynode, true) ∧ arem(INC)

}
3 < p := getAndSet(&tail, mynode); tq := tq::cid>;{
∃x0. P0(x0, p, mynode, true) ∧ arem(INC)

}
4 b := p.succwait;{
∃x0. P0(x0, p, mynode, true) ∧ ((¬b) ∧ (p = x0) ∨ b) ∧ arem(INC)

}{
∃x0. (p = p) ∧ (mynode = x) ∧ P0(x0, p, x, true) ∧ ((¬b) ∧ (p = x0) ∨ b) ∧ arem(INC) ∧ ♦(bet(b))

}
5 while (b) {
6 b := p.succwait;
7 }{

P1(p, mynode, true) ∧ arem(INC)
}

8 <acquired := true>;{
resource ∗ P2(p, mynode, true) ∧ arem(INC)

}
9 r := x; x := r + 1;{

(x = X + 1) ∗ P2(p, mynode, true) ∧ arem(INC)
}

10 < mynode.succwait := false; tq := getTail(tq); acquired := false;
p.tid := cid; mynode.tid := 0>;{

(mynode =) ∧ P (p, false) ∧ arem(skip)
}

11 mynode := p;{
P ∧ arem(skip)

}
Here the loop at lines 5-7 is verified in Figure 37.

Figure 36. Proof outline.

71

p′
def
= ∃x0. (P1(p, x, true) ∧ ♦(0) ∨ P3(x0, p, x, true) ∧ ♦(bet(b))) ∧ (p = p) ∧ (mynode = x) ∧ b ∧ arem(INC)

J
def
= ∃x0. P0(x0, p, x, true)

Q
def
= Enabled(D)

G′
def
= [I]

f(S) = k iff ∃tl1, x0. (S |= P0(tl1, x0, p, x, true)) ∧ (k = len(tl1))

len(ε)
def
= 0 len(t :: tl) def

= 1 + len(tl)

(∃x0. (p = p) ∧ (mynode = x) ∧ P0(x0, p, x, true) ∧ b ∧ arem(INC) ∧ ♦(bet(b)) ∧Q ∗ true)
=⇒ ((p = p) ∧ (mynode = x) ∧ P1(p, x, true) ∧ b ∧ arem(INC) ∧ ♦(0)) ∗ (♦(1) ∧ emp)

{
p′
}{
∃x0. (P1(p, x, true) ∧ ♦(0) ∨ P3(x0, p, x, true) ∧ ♦(bet(b))) ∧ (p = p) ∧ (mynode = x) ∧ b ∧ arem(INC)

}
6 b := p.succwait;{

∃x0. P0(x0, p, x, true) ∧ ((¬b) ∧ (p = x0) ∨ b) ∧ (p = p) ∧ (mynode = x) ∧ arem(INC) ∧ ♦(bet(b))
}

We can prove:

(1) J ⇒ I; Q⇒ I; Sta(J,G′ ∨R).

(2) J ⇒ (R,G′ : D f−→Q) (where picking D′ needed in the WHL rule as D).

Figure 37. Proof outline – the loop at lines 5-7.

72

initialize(){
tail := null; tq := ε; acquired := false;

}

thread_initialize(){ // mynode: each thread’s local variable (pointing to a shared node)
mynode := new Node(false, null, cid); // fields: locked, next, tid

}

inc(){
1 local p, s, b, nos, r;
2 <p := getAndSet(&tail, mynode); tq := tq::cid>;
3 if (p != null) {
4 mynode.locked := true;
5 p.next := mynode;
6 b := mynode.locked;
7 while (b) {
8 b := mynode.locked;
9 }

10 }
11 <acquired := true>;
12 r := x; x := r + 1;
13 s := mynode.next;
14 if (s = null) {
15 <nos := cas(&tail, mynode, null); if(nos) { tq := getTail(tq); acquired := false; } >;
16 if (!nos) {
17 s := mynode.next;
18 while (s = null) {
19 s := mynode.next;
20 }
21 }
22 }
23 if (s != null) {
24 <s.locked := false; tq := getTail(tq); acquired := false>;
25 mynode.next := null;
26 }
}

Figure 38. Counter with MCS lock.

C.4 Counter with MCS list-based queue lock
In this section, we verify the counter implementation with the MCS list-based queue lock is linearizable with respect to the atomic operation
INC and is starvation-free. Fig. 38 shows the concrete implementation with auxiliary code (in red). Unlike the CLH lock algorithm, the MCS
lock algorithm uses an explicit linked list, with tail pointing to the end of the list. Each list node contains a locked field, indicating whether
the corresponding thread is waiting for the lock, and a next field, pointing to the next node in the list.

Initially the list is empty and tail points to null. Each thread owns a node mynode. To acquire the lock, a thread appends its own node at
the tail of the list (line 2). If the queue is not empty originally, then the thread sets its predecessor node’s next field to refer to its own node
(line 5). The thread then spins on the locked field of its own node, waiting until its predecessor sets this field to false (lines 6-9).

To release the lock, the thread checks whether it has a successor (lines 13-22). It first checks if its node’s next field is null (line 14). If
so, then either no other thread is requesting the lock, or there is another thread but it is slow. To distinguish the two cases, the current thread
checks if its own node is at the tail of the list, and set tail to null if it is the case (line 15). Otherwise, its own node is not at the tail, thus
we know some successor thread is requesting the lock. Then the current thread spins until the successor thread links its node as the next node
of the current thread (lines 17-20). When the successor node appears, the current thread sets its successor’s locked field to false (line 24),
indicating that the successor has gets the lock and does not need to wait anymore.

To verify the code, we introduce several auxiliary structures following the proofs of the CLH lock. we give each list node an auxiliary field
tid to record the thread which owns the node. Unlike the CLH lock algorithm, here a thread does not change its own node, thus this tid
field is set at the beginning and no longer modified during the executions. We also introduce the auxiliary variable tq to record the list of the
threads requesting the lock. The auxiliary variable acquired indicates whether the lock has been acquired by some thread.

In the code, we append the current thread ID cid at the end of the thread queue tq at the same time when the thread makes its own node at
the tail of the list (line 2). The auxiliary variable acquired is set to true after the spinning loop (line 11). When we are sure that there is
no successor thread (i.e., the cas succeeds at line 15), the current thread releases the lock by removing the head thread in tq and resetting
acquired at the same time. If there exists some successor thread, the lock is released at line 24.

Fig. 39 defines the precise invariant and the precondition. The lock satisfies either unlocked or locked. For the case of locked, we know the
threads requesting the lock constitute the queue tq. The head thread in tq acquires the lock. Its locked bit must be false since it does not
need to wait for the lock. Each remaining thread in tq is waiting, so either its locked bit is true and the thread has set its predecessor node’s
next field to refer to its own node, or we record the corresponding thread in a set S (the thread is slow and has not linked its node as the next
of its predecessor), as defined in the predicate lls. For all the other threads which do not request the lock, we use nodeset for their nodes in

73

tl ::= ε | t :: tl ta ∈ ThrdID ⇀ Nat tb ∈ ThrdID ⇀ Bool

list2set(ε)
def
= ∅ list2set(t :: tl) def

= {t} ∪ list2set(tl)

I
def
= ∃sz, tl, ta, tb, S. (TNUM = sz) ∗ lock(tl, ta, tb, sz, S) ∗ ((¬acquired) ∗ resource ∨ acquired ∧ (tl 6= ε))

resource
def
= (x = X) lres

def
= (x =)

lock(tl, ta, tb, sz, S)
def
= ∃y. lock(tl, ta, tb, y, sz, S)

lock(tl, ta, tb, y, sz, S)
def
=

(dom(ta) = dom(tb) = {1, . . . , sz})
∧ (unlocked(tl) ∧ (S = ∅) ∨ locked(tl, ta, tb, y, S)) ∗ nodeset({t | (1 ≤ t ≤ sz) ∧ (t 6∈ list2set(tl))}, ta, tb)

lock irrt(tl, ta, tb, y, sz, S)
def
=

∃x. (t 6∈ list2set(tl)) ∧ (dom(ta) = dom(tb) = {1, . . . , sz}) ∧ (ta(t) = x) ∧ (tb(t) = false)
∧ (unlocked(tl) ∨ locked(tl, ta, tb, S)) ∗ nodet(x, false, y) ∗ nodeset({t′ | (1 ≤ t′ ≤ sz) ∧ (t′ 6= t) ∧ (t′ 6∈ list2set(tl))}, ta, tb)

unlocked(tl) def
= (tq = tl) ∗ (tail = null) ∧ (tl = ε) locked(tl, ta, tb, S)

def
= ∃y. locked(tl, ta, tb, y, S)

locked(tl, ta, tb, y, S)
def
=

∃t, tl′, x, z. (tl = t :: tl′) ∧ (t 6∈ list2set(tl′)) ∧ (ta(t) = x) ∧ (tb(t) = false)
∧ (tq = tl) ∗ nodet(x, false, y) ∗ lls(tl′, x, y, z, null, ta, tb, S) ∗ (tail = z)

lls(tl, p, x, z, n, ta, tb, S)
def
=

(tl = ε) ∧ (p = z) ∧ (x = n) ∧ (S = ∅)
∨ ∃t, tl′, x′, b, S′. (tl = t :: tl′) ∧ (t 6∈ list2set(tl′)) ∧ (ta(t) = x′) ∧ (tb(t) = b)
∧ nodet(x′, b, y) ∗ lls(tl′, x′, y, z, n, ta, tb, S′) ∧ ((x = x′) ∧ (b = true) ∧ (S = S′) ∨ (x = null) ∧ (S = {t}] S′))

nodeset(S, ta, tb)
def
= (~t∈S(nodet(ta(t), false,) ∧ (tb(t) = false)))

nodes(x, b, y)
def
= (x.locked = b) ∗ (x.next = y) ∗ (x.tid = s)

Pt
def
= Pt(mynode, null)

Pt(x, y)
def
=

∃ta, tb, sz, tl, S. (TNUM = sz) ∗ lock irrt(tl, ta] {t ; x}, tb, y, sz, S)
∗ ((¬acquired) ∗ resource ∨ acquired ∧ (tl 6= ε)) ∧ (1 ≤ t ≤ sz)

Figure 39. Invariant and precondition.

the shared state. Their locked bits are all false. As in the proof of CLH lock, we use two mappings ta and tb to record the address and the
boolean locked field of each thread’s node.

Fig. 40 defines the rely and guarantee conditions and the definite actions. We have several actions since the code is very fine-grained. The
action ReqLock is for line 2, where the thread makes its node the tail of the list. If it has a predecessor, then SetLocked sets its locked
bit (line 4), and SetPred sets its predecessor node’s next to its own node (line 5). The head thread in tq does AcqResource (line 11) to
set acquired and transfer the shared resource. To release the lock, we distinguish the case when there is no successor thread (RelLock1 ,
corresponding to line 15) and the opposite case (RelLock2 , corresponding to line 24). Finally, the thread does ResetNext to set the next field
of its own node to null.

Note here we have two definite actions. dp1 ; dq1 corresponds to the action RelLock2 , which says the thread holding the lock will finally
release the lock by setting the successor thread’s locked bit to false. The other definite action dp2 ; dq2 corresponds to SetPred , saying
that the current slow thread which has requested the lock will finally link its node in the list by setting its predecessor node’s next field to
refer to its own node.

Fig. 41 and Fig. 43 show the proof outline. The proofs are similar to the previous proofs of Anderson array-based lock. Note that the two
loops in the code makes use of the two definite actions respectively.

74

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
=
∃sz. (ReqLockt(sz) ∨ SetLocked t(sz) ∨ SetPred t(sz) ∨ AcqResourcet(sz)
∨ RelLock1 t(sz) ∨ RelLock2 t(sz) ∨ ResetNextt(sz) ∨ Id)

∗ [(TNUM = sz) ∧ (1 ≤ t ≤ sz)] ∗ Id ∧ (I n I)

ReqLockt(sz)
def
=

∃tl, ta, tb, S. lock irrt(tl, ta, tb, null, sz, S) n lock(tl :: t, ta, tb, sz, S] {t})

SetLocked t(sz)
def
=

∃tl1, tl2, ta, tb, S. ((tl 6= ε) ∧ lock(tl1 :: t :: tl2, ta, tb] {t ; false}, sz, S)) n lock(tl1 :: t :: tl2, ta, tb] {t ; true}, sz, S)

SetPred t(sz)
def
=

∃tl1, tl2, ta, tb, S. lock(tl1 :: t :: tl2, ta, tb] {t ; true}, sz, S] {t}) n lock(tl1 :: t :: tl2, ta, tb] {t ; true}, sz, S)

AcqResourcet(sz)
def
=

∃tl, ta, tb, S. (lock(t :: tl, ta, tb, sz, S) ∗ (¬acquired) ∗ resource) n (lock(t :: tl, ta, tb, sz, S) ∗ acquired)

RelLock1 t(sz)
def
=

∃ta, tb. (lock(t, ta, tb, sz, ∅) ∗ acquired) n (lock irrt(ε, ta, tb, null, sz, ∅) ∗ (¬acquired) ∗ resource)

RelLock2 t(sz)
def
=

∃t′, tl, ta, tb, S. (lock(t :: t′ :: tl, ta, tb, sz, S) ∗ acquired ∧ (t′ 6∈ S))
n (lock irrt(t′ :: tl, ta, tb{t′ ; false}, ta(t′), sz, S) ∗ (¬acquired) ∗ resource)

ResetNextt(sz)
def
=

∃tl, ta, tb, S. lock irrt(tl, ta, tb, , sz, S) n lock irrt(tl, ta, tb, null, sz, S)

Dt
def
= (∀t′, ta, tl. dp1t(t′, ta, tl) ; dq1t(t′, ta, tl)) ∧ (∀tl1, ta, tl2. dp2t(tl1, ta, tl2) ; dq2t(tl1, ta, tl2))

dp1t(t′, ta, tl) def
= ∃tl′, tb, sz, S. lock(t :: t′ :: tl :: tl′, ta, tb, sz, S) ∗ true ∧ (t′ 6∈ S) ∧ I

dq1t(t′, ta, tl) def
= ∃tl′, tb, sz, S. lock irrt(t′ :: tl :: tl′, ta, tb{t′ ; false}, ta(t′), sz, S) ∗ true ∧ I

dp2t(tl1, ta, tl2)
def
= ∃tl′2, tb, sz, S. lock(tl1 :: t :: tl2 :: tl′2, ta, tb] {t ; }, sz, S] {t}) ∗ true ∧ I

dq2t(tl1, ta, tl2)
def
= ∃tl′2, tb, sz, S. lock(tl1 :: t :: tl2 :: tl′2, ta, tb] {t ; true}, sz, S) ∗ true ∧ I

Figure 40. Rely/guarantee and definite action.

75

tlockedt(tl1, tl2, p, x, ta, tb, sz, S1, S2)
def
=

(dom(ta) = dom(tb) = {1, . . . , sz}) ∧ (list2set(tl1) ∩ list2set(t :: tl2) = ∅)
∧ twaitt(tl1, tl2, p, x, ta, tb, S1, S2) ∗ nodeset({t′ | (1 ≤ t′ ≤ sz) ∧ (t′ 6∈ list2set(tl1 :: t :: tl2))}, ta, tb)

twaitt(tl1, tl2, p, x, ta, tb, S1, S2)
def
=

∃t′, tl′, x′, y′, z. (tl1 = t′ :: tl′) ∧ (t′ 6∈ list2set(tl′)) ∧ (ta(t′) = x′) ∧ (tb(t′) = false)
∧ (tq = tl1 :: t :: tl2) ∗ nodet′ (x

′, false, y′) ∗ lls(tl′, x′, y′, p, x, ta, tb, S1) ∗ lls(t :: tl2, p, x, z, null, ta, tb, S2) ∗ (tail = z)

P0(p, x, x′, b)
def
= ∃tl1, tl2, S1, S2. P0(tl1, tl2, p, x, x′, b, S1, S2) P2(x, b)

def
= ∃tl, y. P2(tl, x, b, y)

P0(tl1, tl2, p, x, x′, b, S1, S2)
def
=

∃sz, ta, tb. (TNUM = sz) ∗ tlockedt(tl1, tl2, p, x, ta] {t ; x′}, tb] {t ; b}, sz, S1, S2)
∗ ((¬acquired) ∗ resource ∨ acquired) ∧ (1 ≤ t ≤ sz)

P1(x, b)
def
=

∃sz, tl, ta, tb, S. (TNUM = sz) ∗ lock(t :: tl, ta] {t ; x}, tb] {t ; b}, sz, S) ∗ (¬acquired) ∗ resource ∧ (1 ≤ t ≤ sz)

P2(tl, x, b, y)
def
=

∃sz, ta, tb, S. (TNUM = sz) ∗ lock(t :: tl, ta] {t ; x}, tb] {t ; b}, y, sz, S) ∗ acquired ∧ (1 ≤ t ≤ sz)

bet(b)
def
= 1 if b = true bet(b)

def
= 0 if b = false

pez(s)
def
= 1 if s = null pez(s)

def
= 0 if s 6= null

inc():
1 local p, s, b, nos, r;{

P ∧ arem(INC)
}

2 < p := getAndSet(&tail, mynode); tq := tq::cid>;{
(P0(p, null, mynode, false) ∨ (p = null) ∧ P1(mynode, false)) ∧ arem(INC)

}
3 if (p != null) {{

P0(p, null, mynode, false) ∧ arem(INC)
}

4 mynode.locked := true;{
P0(p, null, mynode, true) ∧ arem(INC)

}
5 p.next := mynode;{

(P0(p, mynode, mynode, true) ∨ P1(mynode, false)) ∧ arem(INC)
}

6 b := mynode.locked;{
(P0(p, mynode, mynode, true) ∧ b ∨ P1(mynode, false)) ∧ arem(INC)

}{
(p = p) ∧ (mynode = x) ∧ (P0(p, x, x, true) ∧ b ∨ P1(x, false)) ∧ arem(INC) ∧ ♦(bet(b))

}
7 while (b) {
8 b := mynode.locked;
9 }

10 }{
P1(mynode, false) ∧ arem(INC)

}
11 <acquired := true>;{

resource ∗ P2(mynode, false) ∧ arem(INC)
}

12 ...

Here the loop at lines 7-9 is verified in Figure 42.

Figure 41. Proof outline.

76

p′
def
= (P1(x, false) ∧ ♦(0) ∨ P0(p, x, x, true) ∧ ♦(bet(b))) ∧ (p = p) ∧ (mynode = x) ∧ b ∧ arem(INC)

D′t
def
= (∀t′, ta, tl. dp1t(t′, ta, tl :: t0) ; dq1t(t′, ta, tl :: t0)) ∧ (∀tl1, ta, tl2. dp2t(tl1, ta, tl2 :: t0) ; dq2t(tl1, ta, tl2 :: t0))

Jt
def
= (P0(p, x, x, true) ∨ P1(x, false)) ∧ (t0 = t) , where t0 is a logical variable

Qt
def
= Enabled(Dt)

G′
def
= [I]

f(S) = k iff
∃tl1, tl2, S1, S2. (S |= P0(tl1, tl2, p, x, x, true, S1, S2)) ∧ (k = len(tl1) + |S1|)
∨ (S |= P1(x, false)) ∧ (k = 0)

len(ε)
def
= 0 len(t :: tl) def

= 1 + len(tl) |∅| def
= 0 |S] {x}| def

= |S|+ 1

(p = p) ∧ (mynode = x) ∧ (P0(p, x, x, true) ∨ P1(x, false)) ∧ b ∧ arem(INC) ∧ ♦(bet(b)) ∧Q ∗ true
=⇒ ((p = p) ∧ (mynode = x) ∧ P1(x, false) ∧ b ∧ arem(INC) ∧ ♦(0)) ∗ (♦(1) ∧ emp)

{
p′
}{

(P1(x, false) ∧ ♦(0) ∨ P0(p, x, x, true) ∧ ♦(bet(b))) ∧ (p = p) ∧ (mynode = x) ∧ b ∧ arem(INC)
}

8 b := mynode.locked;{
(P0(p, x, x, true) ∧ b ∨ P1(x, false)) ∧ (p = p) ∧ (mynode = x) ∧ arem(INC) ∧ ♦(bet(b))

}
We can prove:

(1) J ⇒ I; Q⇒ I; Sta(J,G′ ∨R).

(2) J ⇒ (R,G′ : D f−→Q) (where picking D′ needed in the WHL rule as above).

Figure 42. Proof outline – the loop at lines 7-9.

11 ...{
resource ∗ P2(mynode, false) ∧ arem(INC)

}
12 r := x; x := r + 1;{

(x = X + 1) ∗ P2(mynode, false) ∧ arem(INC)
}

13 s := mynode.next;{
∃tl, y. (x = X + 1) ∗ P2(tl, mynode, false, y) ∧ ((s = null) ∨ (s = y)) ∧ arem(INC)

}
14 if (s = null) {{

(x = X + 1) ∗ P2(mynode, false) ∧ (s = null) ∧ arem(INC)
}

15 <nos := cas(&tail, mynode, null); if(nos) { tq := getTail(tq); acquired := false; } >;{
(nos ∧ P ∧ (s = null) ∧ arem(skip)) ∨ ((¬nos) ∧ ∃tl, y. (tl 6= ε) ∧ (x = X + 1) ∗ P2(tl, mynode, false, y) ∧ arem(INC))

}
16 if (!nos) {{

∃tl, y. (tl 6= ε) ∧ (x = X + 1) ∗ P2(tl, mynode, false, y) ∧ arem(INC)
}

17 s := mynode.next;{
∃tl, y. (tl 6= ε) ∧ (x = X + 1) ∗ P2(tl, mynode, false, y) ∧ ((s = null) ∨ (s = y)) ∧ arem(INC)

}{
∃tl, y. (tl 6= ε) ∧ (mynode = x) ∧ (x = X + 1) ∗ P2(tl, x, false, y) ∧ ((s = null) ∨ (s = y)) ∧ arem(INC) ∧ ♦(pez(s))

}
18 while (s = null) {
19 s := mynode.next;
20 }
21 }
22 }{

(P ∧ (s = null) ∧ arem(skip)) ∨ (∃tl. (tl 6= ε) ∧ (x = X + 1) ∗ P2(tl, mynode, false, s) ∧ (s 6= null) ∧ arem(INC))
}

23 if (s != null) {{
∃tl. (tl 6= ε) ∧ (x = X + 1) ∗ P2(tl, mynode, false, s) ∧ (s 6= null) ∧ arem(INC)

}
24 <s.locked := false; tq := getTail(tq); acquired := false>;{

P (mynode,) ∧ arem(skip)
}

25 mynode.next := null;
26 }{

P ∧ arem(skip)
}

Here the loop at lines 18-20 is verified in Figure 44.

Figure 43. Proof outline (continued).

77

p′′
def
= ∃tl, y. (tl 6= ε) ∧ (mynode = x) ∧ (x = X + 1) ∗ P2(tl, x, false, y) ∧ (s = null) ∧ arem(INC)

∧ (y 6= null ∧ ♦(0) ∨ y = null ∧ ♦(pez(s)))

D′′t
def
= (∀tl1, ta, tl2. dp2t(tl1 :: t0, ta, tl2) ; dq2t(tl1 :: t0, ta, tl2))

J ′t
def
= ∃tl, y. (tl 6= ε) ∧ P2(tl, x, false, y) ∧ (t0 = t) , where t0 is a logical variable

Q′t
def
= Enabled(Dt)

G′
def
= [I]

f ′(S) = k iff ∃tl, y. (tl 6= ε) ∧ (S |= P2(tl, x, false, y)) ∧ (k = pez(y))

(∃tl, y. (tl 6= ε) ∧ (mynode = x) ∧ (x = X + 1) ∗ P2(tl, x, false, y) ∧ (s = null) ∧ arem(INC) ∧ ♦(pez(s)) ∧Q′ ∗ true)
=⇒ (∃tl, y. (tl 6= ε) ∧ (mynode = x) ∧ (x = X + 1) ∗ P2(tl, x, false, y) ∧ (y 6= null) ∧ (s = null) ∧ arem(INC) ∧ ♦(0))
∗ (♦(1) ∧ emp)

{
p′′
}{

∃tl, y. (tl 6= ε) ∧ (mynode = x) ∧ (x = X + 1) ∗ P2(tl, x, false, y) ∧ (s = null) ∧ arem(INC)
∧ (y 6= null ∧ ♦(0) ∨ y = null ∧ ♦(pez(s)))

}
19 s := mynode.next;{

∃tl, y. (tl 6= ε) ∧ (mynode = x) ∧ (x = X + 1) ∗ P2(tl, x, false, y) ∧ ((s = null) ∨ (s = y)) ∧ arem(INC) ∧ ♦(pez(s))
}

We can prove:

(1) J ′ ⇒ I; Q′ ⇒ I; Sta(J ′, G′ ∨R).

(2) J ′ ⇒ (R,G′ : D f ′−→Q′) (where picking D′ needed in the WHL rule as above D′′).

Figure 44. Proof outline (continued) – the loop at lines 18-20.

78

Abstract operations:

ENQ(V) { < Q := Q :: V; > }

DEQ() {
local V;
< if (Q = ε) {

V := EMPTY;
} else {

V := head(Q); Q := tail(Q);
}

>
return V;

}

struct Node {
int data;
struct Node *next;

}
struct Lock {

int lowner, lnext;
int[] ticket; //initially all -1

}
struct Queue {

struct Node *Head;
struct Node *Tail;
struct Lock *Hlock, Tlock;

}

initialize(){
Head := cons(0, null);
Tail := Head;
Hlock.lowner := Hlock.lnext := Tlock.lowner := Tlock.lnext := 0;

}

enq(v) {
1 local x, i, o;
2 x := cons(v, null);
3 <i := getAndInc(Tlock.lnext); Tlock.ticketi := cid>;
4 <o := Tlock.lowner>;
5 while (i <> o) {
6 <o := Tlock.lowner>;
7 }
8 Tail.next := x;
9 Tail := x;

10 <Tlock.lowner++>;
}

int deq() {
1 local h, s, v, i, o;
2 <i := getAndInc(Hlock.lnext); Hlock.ticketi := cid>;
3 <o := Hlock.lowner>;
4 while (i <> o) {
5 <o := Hlock.lowner>;
6 }
7 h := Head;
8 s := h.next;
9 if (s = null) {

10 <Hlock.lowner++>;
11 v := EMPTY;
12 } else {
13 v := s.data;
14 Head := s;
15 <Hlock.lowner++>;
16 dispose(h);
17 }
18 return v;
}

Figure 45. Two-lock queue implementation.

C.5 Two-lock queue with ticket lock
In Figure 45, we show the abstract code of the queue algorithm and the concrete implementation of the two-lock queue with auxiliary code
(in red). In the concrete implementation, the two locks are implemented using ticket lock. In the algorithm, the queue is implemented as a
singly-linked list with the Head and Tail pointers and a sentinel node pointed to by Head. The enq method inserts a new node at the tail of
the queue. The deq method replaces the sentinel node by its next node and returns the value in the new sentinel. The Tail and Head pointers
are protected by two locks Tlock and Hlock respectively. At any time at most one enq thread and one deq thread can access the queue. But
an enq thread and a deq thread do not need to wait for each other.

Since the locks are implemented using the ticket lock algorithm, we introduce the auxiliary tickets to verify the code (as in the proof for
the counter with ticket lock). Note here we do not need the auxiliary wait bits as in the proof for the counter with ticket lock, because now we
do not have ownership transfers of resource when the lock is acquired/released.

Fig. 46 defines the precise invariant and the precondition. Fig. 47 defines the rely and guarantee conditions and the definite action. The
definite action for the whole object is defined as the conjunction of the definite actions on the two locks: D def

= dT∧ dH, where dT (or dH) says
that the thread must eventually release the lock if it has acquired Tlock (or Hlock).

Fig. 48 and Fig. 50 show the proof outlines. The proof of the algorithm in our logic combines its linearizability proof [21] and the proofs
on the progress properties of the ticket lock implementation, which are similar to the above proofs for the counter object with ticket lock. It
also relies on the fact that if a thread is holding a lock, it will not request the other lock. Note that the proofs for the loops of acquiring the
locks follow the proofs for the counter with ticket lock (see Sec. C.1).

79

tl ::= ε | t :: tl

list2set(ε)
def
= ∅ list2set(t :: tl) def

= {t} ∪ list2set(tl)

I
def
= ∃h, z, tlT . (Head = h) ∗ (Tail = z) ∗ queue(tlT , h, z) ∗ lock(Hlock) ∗ lock(tlT , Tlock)

queue(tlT , h, z)
def
=

∃vd, A. (Q = A) ∗ (unlag(h, z, vd ::A) ∨ (lag(h, z, , vd ::A) ∧ (tlT 6= ε)) ∨ (cross(h, vd ::A) ∧ (tlT 6= ε)))

unlag(h, z,A)
def
= ∃v,A′. (A = A′ ::v) ∧ ls(h,A′, z) ∗ N(z, v, null)

lag(h, z, x,A)
def
= ∃v, v′, A′. (A = A′ ::v ::v′) ∧ ls(h,A′, z) ∗ N2(z, v, x, v′, null)

cross(h,A)
def
= ∃v. (A = v ::ε) ∧ N(h, v, null)

ls(x,A, y)
def
= (x = y ∧A = ε) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ N(x, v, z) ∗ ls(z,A′, y))

N(p, v, y)
def
= (p.data = v) ∗ (p.next = y) N2(p, v, y, v′, z)

def
= N(p, v, y) ∗ N(y, v′, z)

lock(l)
def
= ∃tl. lock(tl, l) lock(tl, l) def

= ∃n1, n2. lock(tl, l, n1, n2)

lock(tl, l, n1, n2)
def
=

((l.lowner = n1) ∗ (l.lnext = n2) ∧ (n1 ≤ n2)) ∗ tickets(l, 0, n1) ∗ tickets(tl, l, n1, n2) ∗ tickets new(l, n2)

tickets(l, n1, n2)
def
= ∃tl. tickets(tl, l, n1, n2)

tickets(tl, l, n1, n2)
def
=

(tl = ε) ∧ (n1 = n2) ∧ emp ∨ ∃t, tl′. (tl = t :: tl′) ∧ (t 6∈ list2set(tl′)) ∧ (l.ticketn1 = t) ∗ tickets(tl′, l, n1 + 1, n2)

tickets new(l, n2)
def
= (~i≥n2

l.ticketi = −1)

Pt
def
= ∃h, z, tlT . (Head = h) ∗ (Tail = z) ∗ queue(tlT , h, z) ∗ lock irrt(Hlock) ∗ lock irrt(tlT , Tlock)

lock irrt(l)
def
= ∃tl. lock irrt(tl, l) lock irrt(tl, l) def

= ∃n1, n2. lock irrt(tl, l, n1, n2)

lock irrt(tl, l, n1, n2)
def
= lock(tl, l, n1, n2) ∧ (t 6∈ list2set(tl))

Figure 46. Invariant and precondition of the two-lock queue.

80

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= (Enqt ∨ Swing t ∨ Deqt ∨ ReqLockHt ∨ UnlockHt ∨ ReqLockT t ∨ UnlockT t ∨ Id) ∗ Id ∧ (I n I)

Enqt
def
=
∃tl, x, y, A, v, v′. [lock(t :: tl, Tlock) ∗ (Tail = x)]
∗ ((N(x, v, null) ∗ (Q = A)) n (N2(x, v, y, v′, null) ∗ (Q = A ::v′))

Swing t
def
=

∃tl, x, v. [lock(t :: tl, Tlock) ∗ N(x, v, null)] ∗ ((Tail =) n (Tail = x))

Deqt
def
=
∃tl, x, y, z, v, v′, A. [lock(t :: tl, Hlock)]
∗ (((Head = x) ∗ N2(x, v, y, v′, z) ∗ (Q = v′ ::A)) n ((Head = y) ∗ N(y, v′, z) ∗ (Q = A)))

ReqLockHt
def
=

∃tl, n1, n2. [lock irrt(Tlock)] ∗ (lock irrt(tl, Hlock, n1, n2) n lock(tl :: t, Hlock, n1, n2 + 1))

UnlockHt
def
=

∃tl, n1, n2. [lock irrt(Tlock)] ∗ (lock(t :: tl, Hlock, n1, n2) n lock irrt(tl, Hlock, n1 + 1, n2))

ReqLockT t
def
=

∃tl, n1, n2. [lock irrt(Hlock)] ∗ (lock irrt(tl, Tlock, n1, n2) n lock(tl :: t, Tlock, n1, n2 + 1))

UnlockT t
def
=

∃z, v, tl, n1, n2. [lock irrt(Hlock) ∗ (Tail = z) ∗ N(z, v, null)]
∗ (lock(t :: tl, Tlock, n1, n2) n lock irrt(tl, Tlock, n1 + 1, n2))

Dt
def
= (∀n1. dpHt(n1) ; dqHt(n1)) ∧ (∀n1. dpTt(n1) ; dqTt(n1))

dpHt(n1)
def
= ∃tl, n2. lock(t :: tl, Hlock, n1, n2) ∗ true ∧ I

dqHt(n1)
def
= ∃tl, n2. lock irrt(tl, Hlock, n1 + 1, n2) ∗ true ∧ I

dpTt(n1)
def
= ∃tl, n2. lock(t :: tl, Tlock, n1, n2) ∗ true ∧ I

dqTt(n1)
def
= ∃tl, n2. lock irrt(tl, Tlock, n1 + 1, n2) ∗ true ∧ I

Figure 47. Rely, guarantee and definite actions of the two-lock queue.

81

tlockedtl1,t,tl2 (l, n1, n, n2)
def
=

(list2set(tl1) ∩ list2set(t :: tl2) = ∅) ∧ ((l.lowner = n1) ∗ (l.lnext = n2) ∧ (n1 ≤ n < n2))
∗ tickets(l, 0, n1) ∗ tickets(tl1, l, n1, n) ∗ tickets(t :: tl2, l, n, n2) ∗ tickets new(l, n2)

P0(n1, n, n2)
def
= ∃tl1. P0(tl1, n1, n, n2) P3(n1, n, n2)

def
= ∃t′, tl1. P0(t′ :: tl1, n1, n, n2)

P0(tl1, n1, n, n2)
def
=

∃h, z, tl2. (Head = h) ∗ (Tail = z) ∗ queue(tl1, h, z) ∗ lock irrt(Hlock) ∗ tlockedtl1,t,tl2 (Tlock, n1, n, n2)

P1(n1, n2)
def
=

∃h, z, vd, A, tl. (Head = h) ∗ (Tail = z) ∗ (Q = A) ∗ unlag(h, z, vd ::A) ∗ lock irrt(Hlock) ∗ lock(t :: tl, Tlock, n1, n2)

P2(x, n1, n2)
def
=

∃h, z, vd, A, tl. (Head = h) ∗ (Tail = z) ∗ (Q = A) ∗ (lag(h, z, x, vd ::A) ∨ (cross(h, vd ::A) ∧ (h = x)))
∗ lock irrt(Hlock) ∗ lock(t :: tl, Tlock, n1, n2)

enq(v) {
1 local x, i, o;{

P ∧ arem(ENQ) ∧ (v = V)
}

2 x := cons(v, null);{
P ∗ N(x, v, null) ∧ arem(ENQ) ∧ (v = V)

}
3 <i := getAndInc(Tlock.lnext); Tlock.ticketi := cid>;{
∃n1, n, n2. P0(n1, n, n2) ∗ N(x, v, null) ∧ (i = n) ∧ arem(ENQ) ∧ (v = V)

}
4 <o := Tlock.lowner>;{
∃n1, n, n2. P0(n1, n, n2) ∗ N(x, v, null) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(ENQ) ∧ (v = V)

}{
∃n1, n2. P0(n1, n, n2) ∗ N(x, v, null) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(ENQ) ∧ (v = V) ∧ ♦(n− o)

}
5 while (i <> o) {
6 <o := Tlock.lowner>;
7 }{
∃n1, n2. P1(n1, n2) ∗ N(x, v, null) ∧ (i = n1) ∧ arem(ENQ) ∧ (v = V)

}
8 Tail.next := x;{
∃n1, n2. P2(x, n1, n2) ∧ arem(skip)

}
9 Tail := x;{
∃n1, n2. P1(n1, n2) ∧ arem(skip)

}
10 <Tlock.lowner++>;{

P ∧ arem(skip)
}

}

Here the loop at lines 5-7 is verified in Figure 49.

Figure 48. Proof outline for enq.

p′
def
= ∃n1, n2. (P1(n, n2) ∧ ♦(n− (o + 1)) ∨ P3(n1, n, n2) ∧ ♦(n− o)) ∗ N(x, v, null)

∧ (o ≤ n1 ≤ n = i) ∧ (o 6= i) ∧ arem(ENQ) ∧ (v = V)

D′t
def
= (∀n1. dpTt(n1) ; dqTt(n1))

J
def
= ∃n1, n2. P0(n1, n, n2)

Q
def
= Enabled(D)

G′
def
= [I]

f(S) = k iff S |= (n− Tlock.lowner = k)

(∃n1, n2. P0(n1, n, n2) ∗ N(x, v, null) ∧ (i = n) ∧ (o ≤ n1) ∧ (i 6= o) ∧ arem(ENQ) ∧ (v = V) ∧ ♦(n− o) ∧Q ∗ true)
=⇒ (∃n2. P1(n, n2) ∗ N(x, v, null) ∧ (i = n) ∧ (o < n) ∧ arem(ENQ) ∧ (v = V) ∧ ♦(n− (o + 1))) ∗ (♦(1) ∧ emp)

{
p′
}{
∃n1, n2. (P1(n, n2) ∧ ♦(n− (o + 1)) ∨ P3(n1, n, n2) ∧ ♦(n− o)) ∗ N(x, v, null)
∧ (o ≤ n1 ≤ n = i) ∧ (o 6= i) ∧ arem(ENQ) ∧ (v = V)

}
6 <o := Tlock.lowner>;{

∃n1, n2. P0(n1, n, n2) ∗ N(x, v, null) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(ENQ) ∧ (v = V) ∧ ♦(n− o)
}

We can prove:

(1) J ⇒ I; Q⇒ I; Sta(J,G′ ∨R).

(2) J ⇒ (R,G′ : D f−→Q) (where picking D′ needed in the WHL rule as above).

Figure 49. Proof outline for enq – the loop at lines 5-7.

82

P ′0(n1, n, n2)
def
= ∃tl1. P ′0(tl1, n1, n, n2) P ′5(n1, n, n2)

def
= ∃t′, tl1. P ′0(t′ :: tl1, n1, n, n2)

P ′0(tl1, n1, n, n2)
def
=

∃h, z, tl2, tlT . (Head = h) ∗ (Tail = z) ∗ queue(tlT , h, z) ∗ tlockedtl1,t,tl2 (Hlock, n1, n, n2) ∗ lock irrt(tlT , Tlock)

P ′1(h)
def
= ∃n1, n2. P ′1(h, n1, n2) P ′3(h, s)

def
= ∃v. P ′3(h, s, v)

P ′1(h, n1, n2)
def
=

∃z, tl, tlT . (Head = h) ∗ (Tail = z) ∗ queue(tlT , h, z) ∗ lock(t :: tl, Hlock, n1, n2) ∗ lock irrt(tlT , Tlock)

P ′2(h, s)
def
=

∃z,A, tl, tlT . (Head = h) ∗ (Tail = z) ∗ (Q = A) ∗ N(h, , s) ∗ (unlag(s, z, A) ∨ lag(s, z, , A) ∧ (tlT 6= ε))
∗ lock(t :: tl, Hlock) ∗ lock irrt(tlT , Tlock)

P ′3(h, s, v)
def
=

∃tl, tlT . (Head = h) ∗ (Tail = h) ∗ (Q = v ::ε) ∗ N2(h, , s, v, null) ∗ lock(t :: tl, Hlock) ∗ lock irrt(tlT , Tlock) ∧ (tlT 6= ε)

P ′4(h, s, v)
def
=

∃x, z, v, A, tl, tlT . (Head = h) ∗ (Tail = z) ∗ (Q = v ::A) ∗ N2(h, , s, v, x) ∗ lock(t :: tl, Hlock) ∗ lock irrt(tlT , Tlock)
∗ ((s = z) ∧ (x = null) ∧ (A = ε) ∨ unlag(x, z, A)
∨ (s = z) ∧ N(x, v′, null) ∧ (A = v′ ::ε) ∧ (tlT 6= ε) ∨ lag(x, z, , A) ∧ (tlT 6= ε))

int deq() {
1 local h, s, v, i, o;{

P ∧ arem(DEQ)
}

2 <i := getAndInc(Hlock.lnext); Hlock.ticketi := cid>;{
∃n1, n, n2. P ′0(n1, n, n2) ∧ (i = n) ∧ arem(DEQ)

}
3 <o := Hlock.lowner>;{
∃n1, n, n2. P ′0(n1, n, n2) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(DEQ)

}{
∃n1, n2. P ′0(n1, n, n2) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(DEQ) ∧ ♦(n− o)

}
4 while (i <> o) {
5 <o := Hlock.lowner>;
6 }{
∃h. P ′1(h) ∧ arem(DEQ)

}
7 h := Head;{

P ′1(h) ∧ arem(DEQ)
}

8 s := h.next;{
((s = null) ∧ P ′1(h) ∧ arem(skip) ∧ (V = EMPTY)) ∨ (P ′2(h, s) ∨ P ′3(h, s)) ∧ arem(DEQ)

}
9 if (s = null) {{

P ′1(h) ∧ arem(skip) ∧ (V = EMPTY)
}

10 <Hlock.lowner++>;{
P ∧ arem(skip) ∧ (V = EMPTY)

}
11 v := EMPTY;
12 } else {{

(P ′2(h, s) ∨ P ′3(h, s)) ∧ arem(DEQ)
}

13 v := s.data;{
(P ′4(h, s, v) ∨ P ′3(h, s, v)) ∧ arem(DEQ)

}
14 Head := s;{

P ′1(s) ∗ N(h, , s) ∧ arem(skip) ∧ (v = V)
}

15 <Hlock.lowner++>;{
P ∗ N(h, , s) ∧ arem(skip) ∧ (v = V)

}
16 dispose(h);
17 }{

P ∧ arem(skip) ∧ (v = V)
}

18 return v;
}
Here the loop at lines 4-6 is verified in Figure 51.

Figure 50. Proof outline for deq.

83

p′′
def
= ∃h, n1, n2. (P ′1(h, n, n2) ∧ ♦(n− (o + 1)) ∨ P ′5(n1, n, n2) ∧ ♦(n− o))

∧ (o ≤ n1 ≤ n = i) ∧ (i 6= o) ∧ arem(DEQ)

D′′t
def
= (∀n1. dpHt(n1) ; dqHt(n1))

J ′
def
= ∃n1, n2. P ′0(n1, n, n2)

Q′
def
= Enabled(D)

G′
def
= [I]

f ′(S) = k iff S |= (n− Hlock.lowner = k)

(∃n1, n2. P ′0(n1, n, n2) ∧ (i = n) ∧ (o ≤ n1) ∧ (i 6= o) ∧ arem(DEQ) ∧ ♦(n− o) ∧Q′ ∗ true)
=⇒ (∃h, n2. P ′1(h, n, n2) ∧ (i = n) ∧ (o < n) ∧ arem(DEQ) ∧ ♦(n− (o + 1))) ∗ (♦(1) ∧ emp)

{
p′′
}{

∃h, n1, n2. (P ′1(h, n, n2) ∧ ♦(n− (o + 1)) ∨ P ′5(n1, n, n2) ∧ ♦(n− o))
∧ (o ≤ n1 ≤ n = i) ∧ (i 6= o) ∧ arem(DEQ)

}
5 <o := Hlock.lowner>;{

∃n1, n2. P ′0(n1, n, n2) ∧ (i = n) ∧ (o ≤ n1) ∧ arem(DEQ) ∧ ♦(n− o)
}

We can prove:

(1) J ′ ⇒ I; Q′ ⇒ I; Sta(J ′, G′ ∨R).

(2) J ′ ⇒ (R,G′ : D f ′−→Q′) (where picking D′ needed in the WHL rule as above D′′).

Figure 51. Proof outline for deq – the loop at lines 4-6.

84

C.6 Lock-coupling list with ticket lock
In Figure 52, we show the abstract code of the set algorithm and the concrete implementation of the lock-coupling list with auxiliary code (in
red and purple). In the concrete implementation, the node locks are all implemented using ticket lock. The algorithm implements an abstract
set with add and rmv operations. The concrete list is an ordered singly-linked list with the Head pointer and two sentinel nodes at the two
ends of the list containing the smallest and the biggest values respectively. Each list node is associated with a lock. Traversing the list uses
hand-over-hand locking: the lock on one node is not released until its successor is locked. add(e) inserts a new node with value e in the
appropriate position while holding the lock of its predecessor. rmv(e) redirects the predecessor’s pointer when both the node to be removed
and its predecessor are locked.

To verify the code, we need some auxiliary structures. Since the locks are implemented using the ticket lock algorithm, we introduce the
auxiliary tickets for the lock of each node (as in the previous proof for the two-lock queue with ticket locks). Also, we introduce the auxiliary
toadd bit for each thread to indicate whether the thread attempts to do the add operation. toaddt is true if the thread t is calling add but has
not really inserted the new node into the list. It is false if the thread t is not calling add or it has already inserted the new node. The auxiliary
tickets and toadd bits are all shared. In addition, we introduce an auxiliary local variable aux to encode the metric for the loop of list
traversal. Fig. 53 shows the auxiliary code, metric(p), to compute the metric for the loop of list traversal. Here p points to the “predecessor”
node during the list traversal Informally, metric(p) is the sum of the current maximal length of the remaining nodes to traverse (i.e., the
number of the nodes from p to the end of the list) and the number of the environment threads accessing the remaining nodes which attempt to
do add (i.e., these threads is going to add nodes, increasing the maximal length of the nodes remained for the current thread to traverse).

Fig. 54 defines the precise invariant and the precondition. The shared state contains the toadd bit for each thread and the list. Each list
node contains a ticket lock. The predicate ss requires the concrete list should be sorted and its elements should constitute the abstract set.

Fig. 55 defines the rely and guarantee conditions and the definite action. In addition to the actions add and rmv which successfully inserts
and removes a node, the thread may do the ToAdd action to set its toadd bit to true when it just starts its add operation. If the add fails (i.e.,
for the case when the value it attempts to insert has already in the list), the thread does the FailedAdd action that simply resets its toadd bit to
false. The ReqLockH action requests the lock of the head node in the list. At that time, the thread must just starts its operation, thus it has
not requested the lock of a list node. The ReqLock2 action requests the lock of a node when the thread has already acquired the lock of the
predecessor node. The Unlock action releases the lock of the predecessor node.

The difficulty of verifying the lock-coupling list algorithm lies in defining the definite actionD. Unlike the counter objects and the two-lock
queues, in lock-coupling lists, the thread t holding a lock does not guarantee to release the lock because t may first try to acquire the lock of
the successor node. In fact, the progress of t relies on the progress of the environment threads which start their list traversals earlier than the
thread t. The nodes being visited by these environment threads might be visited by t in the future. Therefore we define the definite action D to
describe the progress of the thread which is the first to start the list traversal, i.e., the thread accessing the node closest to the tail of the list.
Informally, Dt says that t eventually releases the lock of the node x, if t holds the lock and all the nodes remained to visit (the nodes from the
successor of x to the end of the list) are either unlocked or locked by t itself.

The whole proof follows the basic linearizability proof of lock-coupling list (e.g., see [21]). Now we also verify the starvation-freedom of
the object.

We first define the general well-founded order and the metrics for the loops in Fig. 56. We show the proof for the add operation in Fig. 57.
and the proof for the rmv operation in Fig. 61. Note we define the Q needed for verifying the loops similarly as the case when D is enabled.
Actually the outer loop of list traversal always terminates no matter whether D is enabled or not, because the number of the nodes remained to
traverse (including the nodes possibly added in the future by the environment threads) must be decreasing, i.e., the metric function metric(p)
defined in Fig. 53 must be decreasing at each loop iteration. For the inner loop of requesting the lock of a node c, if D is enabled, we know
there is no thread accessing the node c, then the current thread must succeeds in acquiring the lock and the loop could terminate.

Below we explain how we define f needed for verifying the loops. As shown in Fig. 56, for any state during the execution of a loop,
the metric contains two parts: toadd, the toadd bits of all the threads, and L, the list of the environment threads ahead of the current thread
(including the threads which are ahead of the current thread and are requesting the lock of the same node). The well-founded order defined at
the top of Fig. 56 says, the metric decreases if (1) the number of the environment threads in L decreases; or (2) the number of the environment
threads which attempt to do add and are ahead of the current thread decreases; or (3) some environment thread ahead of the current thread
gets closer to the end of the list. Thus the metric must decrease when a relevant environment thread progresses, and the key requirements
J ⇒ (R,G : D f−→Q) for verifying loops hold.

85

ADD(E) {
local R;
< if (E ∈ S) {

R := false;
} else {

S := S ∪ {E}; R := true;
}

>
return R;

}

RMV(E) {
local R;
< if (E 6∈ S) {

R := false;
} else {

S := S \ {E}; R := true;
}

>
return R;

}

(a) Abstract operations.

bool[] toadd; //initially all false

struct Node {
int lowner;
int lnext;
int[] ticket; //initially all -1
int data;
struct Node *next;

}

struct List {
struct Node *Head;

}

initialize(){
Head := cons(0, 0, MIN, null);
Head.next := cons(0, 0, MAX, null);

}

add(e) {
1 local p, c, x, pi, po, ci, co, u, r, aux;
2 <p := Head; toaddcid := true>;
3 <pi := getAndInc(p.lnext); p.ticketpi := cid>;

4 <po := p.lowner>;
5 while (pi <> po) {
6 <po := p.lowner>;
7 }
8 c := p.next;
9 <u := c.data; aux := metric(p)>;

10 while (u < e) {
11 <ci := getAndInc(c.lnext); c.ticketci := cid>;
12 <co := c.lowner>;
13 while (ci <> co) {
14 <co := c.lowner>;
15 }
16 <p.lowner++>;
17 p := c;
18 c := p.next;
19 <u := c.data; aux := metric(p)>;
20 }
21 if (u != e) {
22 x := cons(0, 0, e, c);
23 <p.next := x; toaddcid := false>;
24 r := true;
25 } else {
26 <r := false; toaddcid := false>;
27 }
28 <p.lowner++>;
29 return r;
}

rmv(e) {
1 local p, c, n, pi, po, ci, co, u, r, aux;
2 p := Head;
3 <pi := getAndInc(p.lnext); p.ticketpi := cid>;

4 <po := p.lowner>;
5 while (pi <> po) {
6 <po := p.lowner>;
7 }
8 c := p.next;
9 <u := c.data; aux := metric(p)>;

10 while (u < e) {
11 <ci := getAndInc(c.lnext); c.ticketci := cid>;
12 <co := c.lowner>;
13 while (ci <> co) {
14 <co := c.lowner>;
15 }
16 <p.lowner++>;
17 p := c;
18 c := p.next;
19 <u := c.data; aux := metric(p)>;
20 }
21 if (u = e) {
22 <ci := getAndInc(c.lnext); c.ticketci := cid>;
23 <co := c.lowner>;
24 while (ci <> co) {
25 <co := c.lowner>;
26 }
27 n := c.next;
28 p.next := n;
29 <p.lowner++>;
30 dispose(c);
31 r := true;
32 } else {
33 <p.lowner++>;
34 r := false;
35 }
36 return r;
}

(b) Concrete implementations.

Figure 52. Lock-coupling list.

86

int metric(p){
1 local n, l, s, o, t;
2 n := p.next; l := 0; s := ∅;
3 while (n <> null) {
4 l++;
5 o := n.lowner;
6 while (o < n.lnext) {
7 t := n.ticketo;
8 if (toaddt = true) s := s ∪ {t};
9 }

10 n := n.next;
11 }
12 l := l + |s|;
13 return l;
}

|∅| def
= 0

|S ∪ {x}| def
= |S|+ 1

len(ε)
def
= 0

len(v ::A)
def
= len(A) + 1

toaddThrds(S)
def
= {t | (t ∈ S) ∧ (toaddt = true)}

Figure 53. Auxiliary code to compute the metric for the list traversal.

87

A ::= ε | v ::A tl ::= ε | t :: tl L ::= ε | tl++L B ∈ ThrdID ⇀ Bool

I
def
= ∃A, L. toadds ∗ lsL(Head, A, null) ∗ ss(A)

Pt
def
= ∃A, L. toaddt(false) ∗ ls irrt,L(Head, A, null) ∗ ss(A)

toadds
def
= ∃B. toadds(B) toadds(B)

def
= (~ttoaddt = B(t))

toaddt(b)
def
= ∃B. toaddt(b, B) toaddt(b, B)

def
= (toaddt = b) ∗ (~t′ 6=ttoaddt′ = B(t′))

lsL(x,A, y)
def
=

(x = y ∧A = ε ∧ L = ε ∧ emp)
∨ (x 6= y ∧ ∃z, v, A′, tl, L′. A = v ::A′ ∧ L = tl++L′ ∧ Ntl(x, v, z) ∗ lsL′ (z,A

′, y))

ls irrt,L(x,A, y)
def
=

(x = y ∧A = ε ∧ L = ε ∧ emp)
∨ (x 6= y ∧ ∃z, v, A′, tl, L′. A = v ::A′ ∧ L = tl++L′ ∧ N irrt,tl(x, v, z) ∗ ls irrt,L′ (z,A

′, y))

ls unlocked(x,A, y)
def
=

(x = y ∧A = ε ∧ emp) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ U(x, v, z) ∗ ls unlocked(z,A′, y))

Ntl(p, v, y)
def
= locktl(p) ∗ (p.data = v) ∗ (p.next = y)

N irrt,tl(p, v, y)
def
= ∃n. N irrt,tl;n(p, v, y) Ltl(p, v, y)

def
= ∃n. Ltl;n(p, v, y)

N irrt,tl;n(p, v, y)
def
= lock irrt,tl;n(p) ∗ (p.data = v) ∗ (p.next = y)

Ltl;n1
(p, v, y)

def
= lockedtl;n1

(p) ∗ (p.data = v) ∗ (p.next = y)

U(p, v, y)
def
= unlocked(p) ∗ (p.data = v) ∗ (p.next = y)

locktl(p)
def
= ∃n. locktl;n(p) locktl;n(p)

def
= lockedtl;n(p) ∨ (tl = ε ∧ unlockedn(p))

lock irrt,tl(p)
def
= ∃n. lock irrt,tl;n(p) lock irrt,tl;n(p)

def
= locktl;n(p) ∧ (t 6∈ tl)

lockedtl(p)
def
= ∃n. lockedtl;n(p) unlocked(p)

def
= ∃n. unlockedn(p)

lockedtl;n1
(p)

def
=

∃t, tl′, n2. (tl = t :: tl′) ∧ (t 6∈ tl′) ∧ ((p.lowner = n1) ∗ (p.lnext = n2) ∧ (n1 < n2))
∗ tickets(p, 0, n1) ∗ ticketstl(p, n1, n2) ∗ tickets new(p, n2)

unlockedn(p)
def
= (p.lowner = n) ∗ (p.lnext = n) ∗ tickets(p, 0, n) ∗ tickets new(p, n)

tickets(p, n1, n2)
def
= ∃tl. ticketstl(p, n1, n2)

ticketstl(p, n1, n2)
def
=

{
(n1 = n2) ∧ emp if tl = ε
(p.ticketn1 = t) ∗ ticketstl′ (p, n1 + 1, n2) if tl = t :: tl′

tickets new(p, n2)
def
= (~i≥n2

p.ticketi = −1)

s(A)
def
= ∃A′. (A = MIN ::A′ ::MAX) ∧ sorted(A)

ss(A)
def
= ∃A′. (A = MIN ::A′ ::MAX) ∧ sorted(A) ∧ (S = A′)

sorted(A)
def
=

{
true if A = ε ∨A = v ::ε
(v1 < v2) ∧ sorted(v2 ::A′) if A = v1 ::v2 ::A′

t ∈ tl iff ∃t′, tl′. (tl = t′ :: tl′) ∧ (t = t′ ∨ t ∈ tl′)

Figure 54. Invariant and precondition of the lock-coupling list.

88

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= (ToAdd t ∨ Add t ∨ FailedAdd t ∨ Rmv t ∨ ReqLockHt ∨ ReqLock2 t ∨ Unlockt ∨ Id) ∗ Id ∧ (I n I)

ToAdd t
def
= ∃A, L. [ls irrt,L(Head, A, null)] ∗ ((toaddt = false) n (toaddt = true))

Add t
def
=
∃x, y, z, n, v, w, u, tl, tl′, n1, S.
((Lt::tl;n1

(x, v, z) ∗ (toaddt = true) ∗ (S = S)) n (Lt::tl;n1
(x, v, y) ∗ U(y, w, z) ∗ (toaddt = false) ∗ (S = S ∪ {w})))

∗ [N irrt,tl′ (z, u, n) ∧ (v < w < u)]

FailedAdd t
def
= (toaddt = true) n (toaddt = false)

Rmv t
def
=
∃x, y, z, v, u, tl, tl′, n1, S. (Lt::tl;n1

(x, v, y) ∗ Lt::tl′ (y, u, z) ∗ (S = S] {u}) ∧ (u < MAX)) n (Lt::tl;n1
(x, v, z) ∗ (S = S))

ReqLockHt
def
=

∃x,A, tl, L, n1. (N irrt,tl;n1
(Head, MIN, x) n Ltl::t;n1

(Head, MIN, x))
∗ [ls irrt,L(x,A, null)]

ReqLock2 t
def
=

∃x, y, z, A, v, u,A′, L, tl, tl′, L′, n1. [ls irrt,L(Head, A, x) ∗ Lt::tl(x, v, y)]
∗ (N irrt,tl′;n1

(y, u, z) n Ltl′::t;n1
(y, u, z)) ∗ [(u < MAX) ∧ ls irrt,L′ (z,A

′, null)]

Unlockt
def
=

∃x, y,A, v, L, tl, n1. [ls irrt,L(Head, A, x)] ∗ (Lt::tl;n1
(x, v, y) n N irrt,tl;n1+1(x, v, y))

Dt
def
= ∀x, n1. dpt(x, n1) ; dqt(x, n1)

dpt(x, n1)
def
=

∃y, z, A, v, u,A′, tl, tl′, L. toadds ∗ ls irrt,L(Head, A, x) ∗ Lt::tl;n1
(x, v, y)

∗ (U(y, u, z) ∨ Lt::tl′ (y, u, z)) ∗ ls unlocked(z,A′, null) ∗ ss(A ::v ::u ::A′)

dqt(x, n1)
def
=

∃y, z, A, v, u,A′, tl, tl′, L. toadds ∗ ls irrt,L(Head, A, x) ∗ N irrt,tl;n1+1(x, v, y)
∗ (U(y, u, z) ∨ Lt::tl′ (y, u, z)) ∗ ls unlocked(z,A′, null) ∗ ss(A ::v ::u ::A′)

Figure 55. Rely, guarantee and definite actions of the lock-coupling list.

89

(toadd, L) < (toadd′, L′) iff one of the following holds:

(1) tidset(L) ⊂ tidset(L′) , or

(2) ∃S. (tidset(L) = tidset(L′) = S) ∧
(toaddThrds(S, toadd) ⊂ toaddThrds(S, toadd′)) , or

(3) ∃S. (tidset(L) = tidset(L′) = S) ∧
(∀t ∈ S. (toadd(t) = toadd′(t))) ∧
(
∑

t∈S backpos(t, L) <
∑

t∈S backpos(t, L′))

(toadd, L) ≤ (toadd′, L′) iff
∃S. (tidset(L) = tidset(L′) = S) ∧
(∀t ∈ S. (toadd(t) = toadd′(t))) ∧
(
∑

t∈S backpos(t, L) =
∑

t∈S backpos(t, L′))

tidset(ε)
def
= ∅ tidset(tl++L)

def
= list2set(tl) ∪ tidset(L)

list2set(ε)
def
= ∅ list2set(t :: tl) def

= {t} ∪ list2set(tl)

toaddThrds(S, toadd)
def
= {t | (t ∈ S) ∧ (toadd(t) = true)}

backpos(t, ε)
def
= 0 backpos(t, tl++L)

def
=

{
len(L) if t ∈ tl
backpos(t, L) if t 6∈ tl

len(ε)
def
= 0 len(tl++L)

def
= 1 + len(L)

f1(S) = (toadd, L) iff S |= J1(toadd, L)

J1(toadd, L)
def
= ∃z,A, tl, tl′, L′. (L = tl++L′)

∧ toadds(toadd) ∗ Ltl::cid::tl′ (Head, MIN, z) ∗ ls irrcid,L′ (z,A, null) ∗ ss(MIN ::A)

J1
def
= ∃B, L0. J1(B, L0)

Q1
def
= Enabled(Dcid)

f2(S) = (toadd, L) iff S |= J2(toadd, L)

J2(toadd, L)
def
= ∃p, c, z, A1, v, u,A2, L1, tl1, tl, tl′, L2. (L = tl++L2)

∧ toadds(toadd) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl1 (p, v, c)
∗ Ltl::cid::tl′ (c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2)

J2
def
= ∃B, L0. J2(B, L0)

Q2
def
= Enabled(Dcid)

f3(S) = (toadd, L) iff S |= J3(toadd, L)

J3(toadd, L)
def
= ∃p, c, z, A1, v, u,A2, L1, tl1, tl, tl′, L2. (L = tl++L2)

∧ toadds(toadd) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl1 (p, v, c)
∗ (N irrcid,tl(c, u, z) ∨ Ltl::cid::tl′ (c, u, z)) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2)

J3
def
= ∃B, L0. J2(B, L0)

Q3
def
= Enabled(Dcid)

G3
def
= (ReqLock2cid ∨ Unlock2cid ∨ Id) ∗ Id ∧ (I n I)

Unlock2 t
def
=

∃x, y, z, A, v, u, L, tl, tl′, n1. [ls irrt,L(Head, A, x)]
∗ (Lt::tl;n1

(x, v, y) n N irrt,tl;n1+1(x, v, y)) ∗ [Lt::tl′ (y, u, z) ∧ (u < MAX)]

We can prove:

J1 ⇒ (Rcid, [I] : Dcid
f1−−→Q1)

J2 ⇒ (Rcid, [I] : Dcid
f2−−→Q2)

J3 ⇒ (Rcid, G3 : Dcid
f3−−→Q3)

Figure 56. The well-founded order and the metrics for the loops.

90

tLtl1,t,tl2;n1,n(p, v, y)
def
= tlockedtl1,t,tl2;n1,n(p) ∗ (p.data = v) ∗ (p.next = y)

tlockedtl1,t,tl2;n1,n(p)
def
=

∃n2. (t 6∈ tl1) ∧ (t 6∈ tl2) ∧ ((p.lowner = n1) ∗ (p.lnext = n2) ∧ (n1 ≤ n < n2))
∗ tickets(p, 0, n1) ∗ ticketstl1 (p, n1, n) ∗ ticketst::tl2 (p, n, n2) ∗ tickets new(p, n2)

P1
def
=
∃z,A, tl, tl′, L, n1, n. toaddcid(true) ∗ tLtl,cid,tl′;n1,n(Head, MIN, z) ∗ ls irrcid,L(z,A, null) ∗ ss(MIN ::A)
∧ (MIN < e < MAX) ∧ (p = Head) ∧ (po ≤ n1) ∧ (pi = n)

P ′1
def
= ∃z. P ′1(z)

P ′1(z)
def
=

∃A, tl, L. toaddcid(true) ∗ Lcid::tl(Head, MIN, z) ∗ ls irrcid,L(z,A, null) ∗ ss(MIN ::A)
∧ (MIN < e < MAX) ∧ (p = Head)

P ′′1
def
=
∃z,A, tl, n1. toaddcid(true) ∗ Lcid::tl;n1

(Head, MIN, z) ∗ ls unlocked(z,A, null) ∗ ss(MIN ::A)
∧ (MIN < e < MAX) ∧ (p = Head) ∧ (po ≤ n1) ∧ (pi = n1)

p′1
def
= (P1 ∧ ♦(pi− po) ∨ P ′′1 ∧ ♦(pi− (po + 1))) ∧ (pi 6= po) ∧ arem(ADD) ∧ (e = E)

add(e) {
1 local p, c, x, pi, po, ci, co, u, r, aux;{

P ∧ (MIN < e < MAX) ∧ arem(ADD) ∧ (e = E)
}

2 <p := Head; toaddcid := true>;{
∃z,A, tl, L. toaddcid(true) ∗ N irrcid,tl(Head, MIN, z) ∗ ls irrcid,L(z,A, null) ∗ ss(MIN ::A)
∧ (p = Head) ∧ (MIN < e < MAX) ∧ arem(ADD) ∧ (e = E)

}
3 <pi := getAndInc(p.lnext); p.ticketpi := cid>;{

∃z,A, tl, tl′, L, n1, n. toaddcid(true) ∗ tLtl,cid,tl′;n1,n(Head, MIN, z) ∗ ls irrcid,L(z,A, null) ∗ ss(MIN ::A)
∧ (MIN < e < MAX) ∧ (p = Head) ∧ (pi = n) ∧ arem(ADD) ∧ (e = E)

}
4 <po := p.lowner>;{

P1 ∧ arem(ADD) ∧ (e = E)
}{

P1 ∧ arem(ADD) ∧ (e = E) ∧ ♦(pi− po)
}

5 while (pi <> po) {{
p′1
}

6 <po := p.lowner>;{
P1 ∧ arem(ADD) ∧ (e = E) ∧ ♦(pi− po)

}
7 }{

P ′1 ∧ arem(ADD) ∧ (e = E)
}

8 c := p.next;{
P ′1(c) ∧ arem(ADD) ∧ (e = E)

}
9 ...

Figure 57. Proof outline for add (1).

91

p2
def
=
∃z,A1, v, A2, L1, tl, tl′, L2, n1, n. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c) ∗ ss(A1 ::v ::u ::A2)
∗ tLtl′,cid,ε;n1,n(c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∧ (1 + len(A2) + |toaddThrds(tidset(tl′++L2))| ≤ aux)
∧ ♦(aux− 1) ∧ (co ≤ n1) ∧ (ci = n) ∧ (u < e < MAX) ∧ arem(ADD) ∧ (e = E)

p′2
def
=
∃z,A1, v, A2, L1, tl, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c) ∗ ss(A1 ::v ::u ::A2)
∗ Lcid(c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∧ (1 + len(A2) + |toaddThrds(tidset(L2))| ≤ aux)
∧ ♦(aux− 1) ∧ (u < e < MAX) ∧ arem(ADD) ∧ (e = E)

P3
def
=
∃z,A1, v, A2, L1, tl, tl′, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ N irrcid,tl′ (c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (v < e < MAX)
∧ (1 + len(A2) + |toaddThrds(tidset(tl′++L2))| ≤ aux)

p′3(c, z)
def
=

∃A1, A2, L1, tl, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, c) ∗ Lcid::tl(c, u, z) ∗ ss(A1 ::u ::A2) ∗ ls irrcid,L2 (z,A2, null)
∧ (1 + len(A2) + |toaddThrds(tidset(L2))| ≤ aux) ∧ ♦(aux− 1) ∧ (u < e < MAX) ∧ arem(ADD) ∧ (e = E)

8 ...{
P ′1(c) ∧ arem(ADD) ∧ (e = E)

}
9 <u := c.data; aux := metric(p)>;{

P3 ∧ arem(ADD) ∧ (e = E)
}{

P3 ∧ arem(ADD) ∧ (e = E) ∧ ♦(aux)
}

10 while (u < e) {{
P3 ∧ ♦(aux− 1) ∧ (u < e) ∧ arem(ADD) ∧ (e = E)

}
11 <ci := getAndInc(c.lnext); c.ticketci := cid>;∃z,A1, v, A2, L1, tl, tl′, L2, n1, n. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c) ∗ ss(A1 ::v ::u ::A2)

∗ tLtl′,cid,ε;n1,n(c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∧ (1 + len(A2) + |toaddThrds(tidset(tl′++L2))| ≤ aux)
∧ ♦(aux− 1) ∧ (ci = n) ∧ (u < e < MAX) ∧ arem(ADD) ∧ (e = E)


12 <co := c.lowner>;{

p2
}

13 while (ci <> co) {
14 <co := c.lowner>;
15 }{

p′2
}

16 <p.lowner++>;{
∃z. p′3(c, z)

}
17 p := c;
18 c := p.next;{

p′3(p, c)
}

19 <u := c.data; aux := metric(p)>;{
P3 ∧ arem(ADD) ∧ (e = E) ∧ ♦(aux)

}
20 }{

P3 ∧ (e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

21 ...

Figure 58. Proof outline for add (2).

92

P2
def
=
∃z,A1, v, A2, L1, tl, tl′, L2, n1, n. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ tLtl′,cid,ε;n1,n(c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (u < e < MAX)
∧ (co ≤ n1) ∧ (ci = n) ∧ (1 + len(A2) + |toaddThrds(tidset(tl′++L2))| ≤ aux)

P ′2
def
=
∃z,A1, v, A2, L1, tl, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ Lcid(c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (u < e < MAX)
∧ (1 + len(A2) + |toaddThrds(tidset(L2))| ≤ aux)

P ′′2
def
=
∃z,A1, v, A2, L1, tl, n1. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ Lcid;n1 (c, u, z) ∗ ls unlocked(z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (u < e < MAX)
∧ (co ≤ n1) ∧ (ci = n1) ∧ (1 + len(A2) ≤ aux)

{
p2
}{

P2 ∧ arem(ADD) ∧ (e = E) ∧ ♦(ci− co)
}

13 while (ci <> co) {{
(P2 ∧ ♦(ci− co) ∨ P ′′2 ∧ ♦(ci− (co + 1))) ∧ (ci 6= co) ∧ arem(ADD) ∧ (e = E)

}
14 <co := c.lowner>;{

P2 ∧ arem(ADD) ∧ (e = E) ∧ ♦(ci− co)
}

15 }{
P ′2 ∧ arem(ADD) ∧ (e = E)

}{
p′2
}

Figure 59. Proof outline for add (2) – the loop at lines 13-15.

{
P3 ∧ (e ≤ u) ∧ arem(ADD) ∧ (e = E)

}{
∃z,A1, v, A2, L1, tl, tl′, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ N irrcid,tl′ (c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (v < e ≤ u) ∧ (e < MAX) ∧ arem(ADD) ∧ (e = E)

}
21 if (u != e) {{

∃z,A1, v, A2, L1, tl, tl′, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ N irrcid,tl′ (c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (v < e < u) ∧ arem(ADD) ∧ (e = E)

}
22 x := cons(0, 0, e, c);{

∃z,A1, v, A2, L1, tl, tl′, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c) ∗ U(x, e, c)
∗ N irrcid,tl′ (c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (v < e < u) ∧ arem(ADD) ∧ (e = E)

}
23 <p.next := x; toaddcid := false>;{

∃z,A1, v, A2, L1, tl, tl′, tl′′, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, x)
∗ N irrcid,tl′ (x, e, c) ∗ N irrcid,tl′′ (c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::u ::A2) ∧ arem(skip) ∧ (R = true)

}
24 r := true;
25 } else {
26 <r := false; toaddcid := false>;
27 }{

∃z,A1, v, A2, L1, tl, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::A2) ∧ arem(skip) ∧ (r = R)

}
28 <p.lowner++>;{

∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ ss(A) ∧ arem(skip) ∧ (r = R)
}{

P ∧ arem(skip) ∧ (r = R)
}

29 return r;
}

Figure 60. Proof outline for add (3).

93

rmv(e) {
1 local p, c, n, pi, po, ci, co, u, r, aux;{

P ∧ (MIN < e < MAX) ∧ arem(RMV) ∧ (e = E)
}

2 p := Head;
. ...
9 <u := c.data; aux := metric(p)>;

10 while (u < e) {
11 <ci := getAndInc(c.lnext); c.ticketci := cid>;
.. ...
19 <u := c.data; aux := metric(p)>;
20 }{

∃z,A1, v, A2, L1, tl, tl′, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ N irrcid,tl′ (c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (v < e ≤ u) ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)

}
21 if (u = e) {{

∃z,A1, v, A2, L1, tl, tl′, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ N irrcid,tl′ (c, e, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::A2) ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)

}
22 <ci := getAndInc(c.lnext); c.ticketci := cid>;{

∃z,A1, v, A2, L1, tl, tl′, L2, n1, n. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ tLtl′,cid,ε;n1,n(c, e, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::A2) ∧ (e < MAX) ∧ (ci = n) ∧ arem(RMV) ∧ (e = E)

}
23 <co := c.lowner>;{

P4 ∧ arem(RMV) ∧ (e = E)
}

24 while (ci <> co) {
25 <co := c.lowner>;
26 }{

P ′4 ∧ arem(RMV) ∧ (e = E)
}

27 n := c.next;{
∃A1, v, A2, L1, tl, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ Lcid(c, e, n) ∗ ls irrcid,L2 (n, A2, null) ∗ ss(A1 ::v ::e ::A2) ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)

}
28 p.next := n;{

∃A1, v, A2, L1, tl, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, n)
∗ Lcid(c, e, n) ∗ ls irrcid,L2 (n, A2, null) ∗ ss(A1 ::v ::A2) ∧ arem(skip) ∧ (R = true)

}
29 <p.lowner++>;{

∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ Lcid(c, e, n) ∗ ss(A) ∧ arem(skip) ∧ (R = true)
}

30 dispose(c);{
∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ ss(A) ∧ arem(skip) ∧ (R = true)

}
31 r := true;
32 } else {{

∃z,A1, v, A2, L1, tl, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::A2) ∧ arem(skip) ∧ (R = false)

}
33 <p.lowner++>;{

∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ ss(A) ∧ arem(skip) ∧ (R = false)
}

34 r := false;
35 }{

∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ ss(A) ∧ arem(skip) ∧ (r = R)
}{

P ∧ arem(skip) ∧ (r = R)
}

36 return r;
}

Figure 61. Proof outline for rmv.

94

P4
def
= ∃z,A1, v, A2, L1, tl, tl′, L2, n1, n. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)

∗ tLtl′,cid,ε;n1,n(c, e, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::A2) ∧ (e < MAX) ∧ (co ≤ n1) ∧ (ci = n)

P ′4
def
= ∃z,A1, v, A2, L1, tl, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)

∗ Lcid(c, e, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::A2) ∧ (e < MAX)

P ′′4
def
= ∃z,A1, v, A2, L1, tl, n1. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid::tl(p, v, c)
∗ Lcid;n1 (c, e, z) ∗ ls unlocked(z,A2, null) ∗ ss(A1 ::v ::e ::A2) ∧ (e < MAX) ∧ (co ≤ n1) ∧ (ci = n1)

(P4 ∧ arem(RMV) ∧ (e = E) ∧ ♦(ci− co) ∧ (ci 6= co) ∧Q2 ∗ true)
=⇒ (P ′′4 ∧ (ci 6= co) ∧ arem(RMV) ∧ (e = E) ∧ ♦(ci− (co + 1))) ∗ (♦(1) ∧ emp)

Also remember J2 ⇒ (Rcid, [I] : Dcid
f2−−→Q2)

{
P4 ∧ arem(RMV) ∧ (e = E)

}{
P4 ∧ arem(RMV) ∧ (e = E) ∧ ♦(ci− co)

}
24 while (ci <> co) {{

(P4 ∧ ♦(ci− co) ∨ P ′′4 ∧ ♦(ci− (co + 1))) ∧ (ci 6= co) ∧ arem(RMV) ∧ (e = E)
}

25 <co := c.lowner>;{
P4 ∧ arem(RMV) ∧ (e = E) ∧ ♦(ci− co)

}
26 }{

P ′4 ∧ arem(RMV) ∧ (e = E)
}

Figure 62. Proof outline for rmv – the loop at lines 24-26.

95

D. Deadlock-free examples
In this section, we apply LiLi to verify objects implemented with test-and-set (TAS) locks.

D.1 Counter with TAS lock
The implementation dfInc is given in Fig. 1(b). Below we prove that it is linearizable with respect to the atomic operation INC and is also
starvation-free.

At the left of Fig. 63, we give the specification of the code; and at the right of the figure we show the proof outline. The proofs are similar
to the proof of the TAS lock in Sec. 4.3.2, though now we also take into account the resource of the counters x and X being protected.

I
def
= unlocked ∗ resource ∨ locked

resource
def
= (x = X)

unlocked
def
= (L = 0)

locked
def
= ∃t. locked(t)

locked(t)
def
= (L = t) ∧ (t ∈ TIDS)

envLocked(t)
def
= ∃t′. locked(t′) ∧ (t′ 6= t)

Pcid
def
= unlocked ∗ resource ∨ envLocked(cid)

Gcid
def
= (Lockcid ∨ Unlockcid ∨ Id) ∗ Id ∧ (I n I)

Lockcid
def
= (unlocked ∗ resource) n1 locked(cid)

Unlockcid
def
= locked(cid) n0 (unlocked ∗ resource)

Dcid
def
= locked(cid) ; (unlocked ∗ resource)

p
def
= (locked(cid) ∗ resource ∧ b) ∨ (P ∧ (¬b) ∧ �(1) ∧ ♦(1))

p′
def
= (unlocked ∗ resource ∧ �(1) ∧ ♦(0)) ∨ (envLocked(cid) ∧ �(1) ∧ ♦(1))

Q
def
= locked(cid) ∨ unlocked ∗ resource

J
def
= locked(cid) ∨ P

inc():
1 local b, r;{

P ∧ �(1) ∧ arem(INC)
}

2 b := false;{
p ∧ arem(INC)

}
3 while (!b) {{

p′ ∧ arem(INC)
}

4 b := cas(&L, 0, cid);{
p ∧ arem(INC)

}
5 }{

locked(cid) ∗ resource ∧ arem(INC)
}

6 r := x; x := r + 1;{
locked(cid) ∗ (x = X + 1) ∧ arem(INC)

}
7 L := 0;{

P ∧ arem(skip)
}

Figure 63. Proof outline of the counter with TAS lock.

96

D.2 Two-lock queue with TAS lock
Below we prove that the two-lock queue implemented with TAS locks is deadlock-free. The implementation is shown in Fig. 64.

The proofs are similar to the proofs in Sec. C.5 where the locks are implemented using ticket locks. Fig. 65 defines the precise invariant,
the precondition, the rely and guarantee conditions and the definite action. Fig. 66 and Fig. 67 show the proof outlines. Note that the proofs for
the loops of acquiring the locks follow the proofs for the counter with TAS locks (see Sec. D.1).

enq(v) {
1 local x, b;
2 x := cons(v, null);
3 b := false;
4 while (!b) {
5 b := cas(&Tlock, 0, cid);
6 }
7 Tail.next := x;
8 Tail := x;
9 Tlock := 0;

}

int deq() {
1 local h, s, v, b;
2 b := false;
3 while (!b) {
4 b := cas(&Hlock, 0, cid);
5 }
6 h := Head;
7 s := h.next;
8 if (s = null) {
9 Hlock := 0;

10 v := EMPTY;
11 } else {
12 v := s.data;
13 Head := s;
14 Hlock := 0;
15 dispose(h);
16 }
17 return v;
}

Figure 64. Two-lock queue implementation with TAS lock.

97

I
def
= ∃h, z, s. (Head = h) ∗ (Tail = z) ∗ queue(s, h, z) ∗ lock(Hlock) ∗ locks(Tlock)

queue(s, h, z)
def
= ∃vd, A. (Q = A) ∗ (unlag(h, z, vd ::A) ∨ (lag(h, z, , vd ::A) ∧ (s 6= 0)) ∨ (cross(h, vd ::A) ∧ (s 6= 0)))

unlag(h, z,A)
def
= ∃v,A′. (A = A′ ::v) ∧ ls(h,A′, z) ∗ N(z, v, null)

lag(h, z, x,A)
def
= ∃v, v′, A′. (A = A′ ::v ::v′) ∧ ls(h,A′, z) ∗ N2(z, v, x, v′, null)

cross(h,A)
def
= ∃v. (A = v ::ε) ∧ N(h, v, null)

ls(x,A, y)
def
= (x = y ∧A = ε) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ N(x, v, z) ∗ ls(z,A′, y))

N(p, v, y)
def
= (p.data = v) ∗ (p.next = y) N2(p, v, y, v′, z)

def
= N(p, v, y) ∗ N(y, v′, z)

lock(l)
def
= ∃s. locks(l) locks(l)

def
= (l = s) lock irrt(l)

def
= ∃s. lock irrt,s(l) lock irrt,s(l)

def
= locks(l) ∧ (s 6= t)

unlocked(l)
def
= lock0(l) locked(l)

def
= ∃t. lockedt(l) lockedt(l)

def
= lockt(l) ∧ (t ∈ TIDS)

Pt
def
= ∃h, z, s. (Head = h) ∗ (Tail = z) ∗ queue(s, h, z) ∗ lock irrt(Hlock) ∗ lock irrt,s(Tlock)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= (Enqt ∨ Swing t ∨ Deqt ∨ LockHt ∨ UnlockHt ∨ LockT t ∨ UnlockT t ∨ Id) ∗ Id ∧ (I n I)

Enqt
def
=
∃x, y,A, v, v′. [lockedt(Tlock) ∗ (Tail = x)] ∗ ((N(x, v, null) ∗ (Q = A)) n0 (N2(x, v, y, v′, null) ∗ (Q = A ::v′))

Swing t
def
=

∃x, v. [lockedt(Tlock) ∗ N(x, v, null)] ∗ ((Tail =) n0 (Tail = x))

Deqt
def
=
∃x, y, z, v, v′, A. [lockedt(Hlock)] ∗ (((Head = x) ∗ N2(x, v, y, v′, z) ∗ (Q = v′ ::A)) n0 ((Head = y) ∗ N(y, v′, z) ∗ (Q = A)))

LockHt
def
=

[lock irrt(Tlock)] ∗ (unlocked(Hlock) n1 lockedt(Hlock))

UnlockHt
def
=

[lock irrt(Tlock)] ∗ (lockedt(Hlock) n0 unlocked(Hlock))

LockT t
def
=

[lock irrt(Hlock)] ∗ (unlocked(Tlock) n1 lockedt(Tlock))

UnlockT t
def
=

∃z, v. [lock irrt(Hlock) ∗ (Tail = z) ∗ N(z, v, null)] ∗ (lockedt(Tlock) n0 unlocked(Tlock))

Dt
def
= (dpHt ; dqHt) ∧ (dpTt ; dqTt)

dpHt
def
= lockedt(Hlock) ∗ true ∧ I dqHt

def
= unlocked(Hlock) ∗ true ∧ I

dpTt
def
= lockedt(Tlock) ∗ true ∧ I dqTt

def
= unlocked(Tlock) ∗ true ∧ I

Figure 65. Invariant, precondition, rely/guarantee and definite actions of the two-lock queue with TAS locks.

98

P1
def
=
∃h, z, vd, A. (Head = h) ∗ (Tail = z) ∗ (Q = A) ∗ unlag(h, z, vd ::A) ∗ lock irrt(Hlock) ∗ lockedt(Tlock)

P2(x)
def
=

∃h, z, vd, A. (Head = h) ∗ (Tail = z) ∗ (Q = A) ∗ (lag(h, z, x, vd ::A) ∨ (cross(h, vd ::A) ∧ (h = x))) ∗ lock irrt(Hlock) ∗ lockedt(Tlock)

enq(v) {
1 local x, b;{

P ∧ arem(ENQ) ∧ (v = V) ∧ �(1)
}

2 x := cons(v, null);{
P ∗ N(x, v, null) ∧ arem(ENQ) ∧ (v = V) ∧ �(1)

}
3 b := false;{

((¬b ∧ P ∧ �(1) ∧ ♦(1)) ∨ (b ∧ P1)) ∗ N(x, v, null) ∧ arem(ENQ) ∧ (v = V)
}

4 while (!b) {
5 b := cas(&Tlock, 0, cid);
6 }{

P1 ∗ N(x, v, null) ∧ arem(ENQ) ∧ (v = V)
}

7 Tail.next := x;{
P2(x) ∧ arem(skip)

}
8 Tail := x;{

P1 ∧ arem(skip)
}

9 Tlock := 0;{
P ∧ arem(skip)

}
}

Figure 66. Proof outline for enq.

P ′1(h)
def
=

∃z, s. (Head = h) ∗ (Tail = z) ∗ queue(s, h, z) ∗ lockedt(Hlock) ∗ lock irrt,s(Tlock)

P ′2(h, x)
def
=

∃z,A, s. (Head = h) ∗ (Tail = z) ∗ (Q = A) ∗ N(h, , x) ∗ (unlag(x, z, A) ∨ lag(x, z, , A) ∧ (s 6= 0)) ∗ lockedt(Hlock) ∗ lock irrt,s(Tlock)

P ′3(h, x, v)
def
=

∃s. (Head = h) ∗ (Tail = h) ∗ (Q = v ::ε) ∗ N2(h, , x, v, null) ∗ lockedt(Hlock) ∗ lock irrt,s(Tlock) ∧ (s 6= 0)

P ′4(h, x, v)
def
=

∃y, z, v, A, s. (Head = h) ∗ (Tail = z) ∗ (Q = v ::A) ∗ N2(h, , x, v, y) ∗ lockedt(Hlock) ∗ lock irrt,s(Tlock)
∗ ((x = z) ∧ (y = null) ∧ (A = ε) ∨ unlag(y, z, A) ∨ (x = z) ∧ N(y, v′, null) ∧ (A = v′ ::ε) ∧ (s 6= 0) ∨ lag(y, z, , A) ∧ (s 6= 0))

int deq() {
1 local h, s, v, b;{

P ∧ arem(DEQ) ∧ �(1)
}

2 b := false;{
((¬b ∧ P ∧ �(1) ∧ ♦(1)) ∨ (∃h. b ∧ P ′1(h))) ∧ arem(DEQ)

}
3 while (!b) {
4 b := cas(&Hlock, 0, cid);
5 }{
∃h. P ′1(h) ∧ arem(DEQ)

}
6 h := Head;{

P ′1(h) ∧ arem(DEQ)
}

7 s := h.next;{
((s = null) ∧ P ′1(h) ∧ arem(skip) ∧ (V = EMPTY)) ∨ (P ′2(h, s) ∨ P ′3(h, s,)) ∧ arem(DEQ)

}
8 if (s = null) {{

P ′1(h) ∧ arem(skip) ∧ (V = EMPTY)
}

9 Hlock := 0;{
P ∧ arem(skip) ∧ (V = EMPTY)

}
10 v := EMPTY;
11 } else {{

(P ′2(h, s) ∨ P ′3(h, s,)) ∧ arem(DEQ)
}

12 v := s.data;{
(P ′4(h, s, v) ∨ P ′3(h, s, v)) ∧ arem(DEQ)

}
13 Head := s;{

P ′1(s) ∗ N(h, , s) ∧ arem(skip) ∧ (v = V)
}

14 Hlock := 0;{
P ∗ N(h, , s) ∧ arem(skip) ∧ (v = V)

}
15 dispose(h);
16 }{

P ∧ arem(skip) ∧ (v = V)
}

17 return v;
}

Figure 67. Proof outline for deq.

99

D.3 Lock-coupling list with TAS lock
Fig. 68 shows the code of the lock-coupling list implemented with TAS locks (where the auxiliary code for computing the metric of the list
traversal is shown in Fig. 69). We prove its deadlock-freedom.

Fig. 70 defines the precise invariant and the precondition. Fig. 71 defines the rely/guarantee conditions and the definite actions. These
definitions are similar to the ones for verifying the lock-coupling list with ticket locks (Appendix C.6). Other figures in this section give the
proof outlines.

In the proofs, the only delaying action of a thread t is that t acquires the lock of the head node in the list. Thus each method is given one
�-token only. After acquiring the lock of the head node, the threads doing the operations stand in line. As a result, the list implementation will
become starvation-free so long as the lock of the head node is implemented using a ticket lock or a queue lock (even if the locks of other nodes
are implemented using TAS locks).

bool[] toadd; //initially all false

struct Node {
int lock;
int data;
struct Node *next;

}

struct List {
struct Node *Head;

}

initialize(){
Head := cons(0, MIN, null);
Head.next := cons(0, MAX, null);

}

add(e) {
1 local p, c, x, b, u, r, aux;
2 <p := Head; toaddcid := true>;
3 b := false;
4 while (!b) {
5 b := cas(p.lock, 0, cid);
6 }
7 c := p.next;
8 <u := c.data; aux := metricTAS(p)>;
9 while (u < e) {

10 b := false;
11 while (!b) {
12 b := cas(c.lock, 0, cid);
13 }
14 p.lock := 0;
15 p := c;
16 c := p.next;
17 <u := c.data; aux := metricTAS(p)>;
18 }
19 if (u != e) {
20 x := cons(0, e, c);
21 <p.next := x; toaddcid := false>;
22 r := true;
23 } else {
24 <r := false; toaddcid := false>;
25 }
26 p.lock := 0;
27 return r;
}

rmv(e) {
1 local p, c, n, b, u, r, aux;
2 p := Head;
3 b := false;
4 while (!b) {
5 b := cas(p.lock, 0, cid);
6 }
7 c := p.next;
8 <u := c.data; aux := metricTAS(p)>;
9 while (u < e) {

10 b := false;
11 while (!b) {
12 b := cas(c.lock, 0, cid);
13 }
14 p.lock := 0;
15 p := c;
16 c := p.next;
17 <u := c.data; aux := metricTAS(p)>;
18 }
19 if (u = e) {
20 b := false;
21 while (!b) {
22 b := cas(c.lock, 0, cid);
23 }
24 n := c.next;
25 p.next := n;
26 p.lock := 0;
27 dispose(c);
28 r := true;
29 } else {
30 p.lock := 0;
31 r := false;
32 }
33 return r;
}

Figure 68. Lock-coupling list with TAS lock.

100

int metricTAS(p){
1 local n, l, ts, o, t;
2 n := p.next; l := 0; ts := ∅;
3 while (n <> null) {
4 l++;
5 t := n.lock;
6 if (t != 0) {
7 if (toaddt = true) ts := ts ∪ {t};
8 }
9 n := n.next;

10 }
11 l := l + |ts|;
12 return l;
}

|∅| def
= 0 |S ∪ {x}| def

= |S|+ 1

len(ε)
def
= 0 len(v ::A)

def
= len(A) + 1

toaddThrds(S)
def
= {t | (t ∈ S) ∧ (toaddt = true)}

Figure 69. Auxiliary code to compute the metric for the list traversal.

A ::= ε | v ::A s ::= 0 | t L ::= ε | s ::L B ∈ ThrdID ⇀ Bool

I
def
= ∃A, L. toadds ∗ lsL(Head, A, null) ∗ ss(A)

Pcid
def
= ∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ ss(A)

toadds
def
= ∃B. toadds(B) toadds(B)

def
= (~ttoaddt = B(t))

toaddt(b)
def
= ∃B. toaddt(b, B) toaddt(b, B)

def
= (toaddt = b) ∗ (~t′ 6=ttoaddt′ = B(t′))

lsL(x,A, y)
def
=

(x = y ∧A = ε ∧ L = ε ∧ emp)
∨ (x 6= y ∧ ∃z, v, A′, s, L′. A = v ::A′ ∧ L = s ::L′ ∧ Ns(x, v, z) ∗ lsL′ (z,A

′, y))

ls irrt,L(x,A, y)
def
=

(x = y ∧A = ε ∧ L = ε ∧ emp)
∨ (x 6= y ∧ ∃z, v, A′, s, L′. A = v ::A′ ∧ L = s ::L′ ∧ N irrt,s(x, v, z) ∗ ls irrt,L′ (z,A

′, y))

ls unlocked(x,A, y)
def
=

(x = y ∧A = ε ∧ emp) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ U(x, v, z) ∗ ls unlocked(z,A′, y))

Ns(p, v, y)
def
= locks(p) ∗ (p.data = v) ∗ (p.next = y)

N irrt,s(p, v, y)
def
= lock irrt,s(p) ∗ (p.data = v) ∗ (p.next = y)

Ls(p, v, y)
def
= lockeds(p) ∗ (p.data = v) ∗ (p.next = y)

L irrt,s(p, v, y)
def
= (s 6= t) ∧ Ls(p, v, y)

U(p, v, y)
def
= unlocked(p) ∗ (p.data = v) ∗ (p.next = y)

locks(p)
def
= lockeds(p) ∨ (s = 0 ∧ unlocked(p)) lock irrt,s(p)

def
= locks(p) ∧ (t 6= s)

lockedt(p)
def
= (p.lock = t) ∧ (t ∈ TIDS) unlocked(p)

def
= (p.lock = 0)

s(A)
def
= ∃A′. (A = MIN ::A′ ::MAX) ∧ sorted(A)

ss(A)
def
= ∃A′. (A = MIN ::A′ ::MAX) ∧ sorted(A) ∧ (S = A′)

sorted(A)
def
=

{
true if A = ε ∨A = v ::ε
(v1 < v2) ∧ sorted(v2 ::A′) if A = v1 ::v2 ::A′

Figure 70. Invariant and precondition of the lock-coupling list with TAS lock.

101

Gcid
def
= (ToAddcid ∨ Addcid ∨ FailedAddcid ∨ Rmvcid ∨ LockHcid ∨ Lock2cid ∨ Unlockcid ∨ Id) ∗ Id ∧ (I n I)

ToAdd t
def
= ∃A, L. [ls irrt,L(Head, A, null)] ∗ ((toaddt = false) n (toaddt = true))

Add t
def
=
∃x, y, z, n, v, w, u, s, S.
((Lt(x, v, z) ∗ (toaddt = true) ∗ (S = S)) n (Lt(x, v, y) ∗ U(y, w, z) ∗ (toaddt = false) ∗ (S = S ∪ {w})))
∗ [N irrt,s(z, u, n) ∧ (v < w < u)]

FailedAdd t
def
= (toaddt = true) n (toaddt = false)

Rmv t
def
=
∃x, y, z, v, u, S. (Lt(x, v, y) ∗ Lt(y, u, z) ∗ (S = S] {u}) ∧ (u < MAX)) n (Lt(x, v, z) ∗ (S = S))

LockHt
def
=

∃x,A, L. (U(Head, MIN, x) n1 Lt(Head, MIN, x)) ∗ [ls irrt,L(x,A, null)]

Lock2 t
def
=

∃x, y, z, A, v, u,A′, L, L′. [ls irrt,L(Head, A, x) ∗ Lt(x, v, y)] ∗ (U(y, u, z) n Lt(y, u, z))
∗ [(u < MAX) ∧ ls irrt,L′ (z,A

′, null)]

Unlockt
def
=

∃x, y,A, v, L. [ls irrt,L(Head, A, x)] ∗ (Lt(x, v, y) n U(x, v, y))

Dcid
def
= ∀x. dpcid(x) ; dqcid(x)

dpt(x)
def
=

∃y, z, A, v, u,A′, L. toadds ∗ ls irrt,L(Head, A, x) ∗ Lt(x, v, y)
∗ (U(y, u, z) ∨ Lt(y, u, z)) ∗ ls unlocked(z,A′, null) ∗ ss(A ::v ::u ::A′)

dqt(x)
def
=

∃y, z, A, v, u,A′, L. toadds ∗ ls irrt,L(Head, A, x) ∗ U(x, v, y)
∗ (U(y, u, z) ∨ Lt(y, u, z)) ∗ ls unlocked(z,A′, null) ∗ ss(A ::v ::u ::A′)

Figure 71. Rely, guarantee and definite actions of the lock-coupling list with TAS lock.

(toadd, L) < (toadd′, L′) iff one of the following holds:

(1) tidset(L) ⊂ tidset(L′) , or

(2) ∃S. (tidset(L) = tidset(L′) = S) ∧
(toaddThrds(S, toadd) ⊂ toaddThrds(S, toadd′)) , or

(3) ∃S. (tidset(L) = tidset(L′) = S) ∧
(∀t ∈ S. (toadd(t) = toadd′(t))) ∧
(
∑

t∈S backpos(t, L) <
∑

t∈S backpos(t, L′))

(toadd, L) ≤ (toadd′, L′) iff
∃S. (tidset(L) = tidset(L′) = S) ∧
(∀t ∈ S. (toadd(t) = toadd′(t))) ∧
(
∑

t∈S backpos(t, L) =
∑

t∈S backpos(t, L′))

tidset(ε)
def
= ∅

tidset(t ::L)
def
= {t} ∪ tidset(L)

tidset((0) ::L)
def
= tidset(L)

toaddThrds(S, toadd)
def
= {t | (t ∈ S) ∧ (toadd(t) = true)}

backpos(t, ε)
def
= 0

backpos(t, s ::L)
def
=

{
len(L) if t = s
backpos(t, L) if t 6= s

len(ε)
def
= 0

len(s ::L)
def
= 1 + len(L)

Figure 72. The well-founded order.

102

f1(S) = (toadd, L) iff S |= J1(toadd, L)

J1(toadd, L)
def
= ∃z,A, s, L′. (L = s ::L′)

∧ toadds(toadd) ∗ Ns(Head, MIN, z) ∗ ls irrcid,L′ (z,A, null) ∗ ss(MIN ::A)

J1
def
= ∃B, L0. J1(B, L0)

Q1
def
= ∃z,A. toadds ∗ (Lcid(Head, MIN, z) ∨ U(Head, MIN, z)) ∗ ls unlocked(z,A, null) ∗ ss(MIN ::A)

f2(S) = (toadd, L) iff S |= J2(toadd, L)

J2(toadd, L)
def
= ∃p, c, z, A1, v, u,A2, L1, s, L2. (L = s ::L2)

∧ toadds(toadd) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c)
∗ Ns(c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2)

J2
def
= ∃B, L0. J2(B, L0)

Q2
def
= ∃p, c, z, A1, v, u,A2, L1. toadds ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c)
∗ (U(c, u, z) ∨ Lcid(c, u, z)) ∗ ls unlocked(z,A2, null) ∗ ss(A1 ::v ::u ::A2)

G3
def
= (Lock2cid ∨ Unlock2cid ∨ Id) ∗ Id ∧ (I n I)

Unlock2 t
def
=

∃x, y, z, A, v, u, L. [ls irrt,L(Head, A, x)] ∗ (Lt(x, v, y) n U(x, v, y)) ∗ [Lt(y, u, z) ∧ (u < MAX)]

We can prove:

J1 ⇒ (Rcid, [I] : Dcid
f1−−→Q1)

J2 ⇒ (Rcid, [I] : Dcid
f2−−→Q2)

J2 ⇒ (Rcid, G3 : Dcid
f2−−→Q2)

Figure 73. The metrics.

p1
def
= ∃z,A, L. toaddcid(true) ∗ U(Head, MIN, z) ∗ ls irrcid,L(z,A, null) ∗ ss(MIN ::A) ∧ (p = Head)

p′1
def
= ∃z,A, s, L. toaddcid(true) ∗ L irrcid,s(Head, MIN, z) ∗ ls irrcid,L(z,A, null) ∗ ss(MIN ::A) ∧ (p = Head)

p′′1
def
= ∃z. p′1(z)

p′′1 (z)
def
= ∃A, s, L. toaddcid(true) ∗ Lcid(Head, MIN, z) ∗ ls irrcid,L(z,A, null) ∗ ss(MIN ::A) ∧ (p = Head)

add(e) {
1 local p, c, x, b, u, r, aux;{

P ∧ �(1) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)
}

2 <p := Head; toaddcid := true>;{
(p1 ∨ p′1) ∧ �(1) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)

}
3 b := false;{

((p′′1 ∧ b) ∨ (p1 ∨ p′1) ∧ ¬b ∧ �(1) ∧ ♦(1)) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)
}

4 while (!b) {{
((p1 ∧ �(1) ∧ ♦(0)) ∨ (p′1 ∧ �(1) ∧ ♦(1))) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)

}
5 b := cas(p.lock, 0, cid);{

((p′′1 ∧ b) ∨ (p1 ∨ p′1) ∧ ¬b ∧ �(1) ∧ ♦(1)) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)
}

6 }{
p′′1 ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)

}
7 c := p.next;{

p′′1 (c) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)
}

8 ...

Figure 74. Proof outline for add (1).

103

p2
def
=
∃z,A1, v, A2, L1, s, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ N irrcid,s(c, u, z) ∗ ls irrcid,L2 (z,A2, null)
∗ ss(A1 ::v ::u ::A2) ∧ (1 + len(A2) + |toaddThrds(tidset(s ::L2))| ≤ aux) ∧ (v < e < MAX)

p′′′2
def
=
∃z,A1, v, A2, L1, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ Lcid(c, u, z) ∗ ls irrcid,L2 (z,A2, null)
∗ ss(A1 ::v ::u ::A2) ∧ (1 + len(A2) + |toaddThrds(tidset(L2))| ≤ aux) ∧ (u < e < MAX)

p′′′3 (c, z)
def
=

∃A1, A2, L1, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, c) ∗ Lcid(c, u, z) ∗ ls irrcid,L2 (z,A2, null)
∗ ss(A1 ::u ::A2) ∧ (1 + len(A2) + |toaddThrds(tidset(L2))| ≤ aux) ∧ (u < e < MAX)

7 ...{
p′′1 (c) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)

}
8 <u := c.data; aux := metricTAS(p)>;{

p2 ∧ ♦(aux) ∧ arem(ADD) ∧ (e = E)
}

9 while (u < e) {{
p2 ∧ ♦(aux− 1) ∧ (u < e) ∧ arem(ADD) ∧ (e = E)

}
10 b := false;{

(p′′′2 ∧ b ∨ p2 ∧ (u < e) ∧ ¬b) ∧ ♦(aux− 1) ∧ arem(ADD) ∧ (e = E)
}

11 while (!b) {
12 b := cas(c.lock, 0, cid);
13 }{

p′′′2 ∧ ♦(aux− 1) ∧ arem(ADD) ∧ (e = E)
}

14 p.lock := 0;{
∃z. p′′′3 (c, z) ∧ ♦(aux− 1) ∧ arem(ADD) ∧ (e = E)

}
15 p := c;
16 c := p.next;{

p′′′3 (p, c) ∧ ♦(aux− 1) ∧ arem(ADD) ∧ (e = E)
}

17 <u := c.data; aux := metricTAS(p)>;{
p2 ∧ ♦(aux) ∧ arem(ADD) ∧ (e = E)

}
18 }{

p2 ∧ (e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

19 ...

Figure 75. Proof outline for add (2).

p′2
def
=
∃z,A1, v, A2, L1, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ U(c, u, z) ∗ ls irrcid,L2 (z,A2, null)
∗ ss(A1 ::v ::u ::A2) ∧ (1 + len(A2) + |toaddThrds(tidset(s ::L2))| ≤ aux) ∧ (u < e < MAX)

p′′2
def
=
∃z,A1, v, A2, L1, s, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ L irrcid,s(c, u, z) ∗ ls irrcid,L2 (z,A2, null)
∗ ss(A1 ::v ::u ::A2) ∧ (1 + len(A2) + |toaddThrds(tidset(s ::L2))| ≤ aux) ∧ (u < e < MAX)

{
(p′′′2 ∧ b) ∨ (p2 ∧ (u < e) ∧ ¬b)

}{
(p′′′2 ∧ b) ∨ (p2 ∧ (u < e) ∧ ¬b ∧ ♦(1))

}
11 while (!b) {{

(p′2 ∧ ♦(0)) ∨ (p′′2 ∧ ♦(1))
}

12 b := cas(c.lock, 0, cid);{
(p′′′2 ∧ b) ∨ (p2 ∧ (u < e) ∧ ¬b ∧ ♦(1))

}
13 }{

p′′′2
}

Figure 76. Proof outline for add (2) – the loop at lines 11-13.

104

{
p2 ∧ (e ≤ u) ∧ arem(ADD) ∧ (e = E)

}{
∃z,A1, v, A2, L1, s, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ N irrcid,s(c, u, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (v < e ≤ u) ∧ (e < MAX) ∧ arem(ADD) ∧ (e = E)

}
19 if (u != e) {{

∃z,A1, v, A2, L1, s, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ N irrcid,s(c, u, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (v < e < u) ∧ arem(ADD) ∧ (e = E)

}
20 x := cons(0, e, c);{

∃z,A1, v, A2, L1, s, L2. toaddcid(true) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ U(x, e, c) ∗ N irrcid,s(c, u, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (v < e < u) ∧ arem(ADD) ∧ (e = E)

}
21 <p.next := x; toaddcid := false>;{

∃z,A1, v, A2, L1, s, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, x) ∗ U(x, e, c) ∗ N irrcid,s(c, u, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::u ::A2) ∧ arem(skip) ∧ (R = true)

}
22 r := true;
23 } else {
24 <r := false; toaddcid := false>;
25 }{

∃z,A1, v, A2, L1, s, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::A2) ∧ arem(skip) ∧ (r = R)

}
26 p.lock := 0;{

∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ ss(A) ∧ arem(skip) ∧ (r = R)
}{

P ∧ arem(skip) ∧ (r = R)
}

27 return r;
}

Figure 77. Proof outline for add (3).

105

p4
def
=
∃z,A1, v, A2, L1, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ U(c, e, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::A2)

p′4
def
=
∃z,A1, v, A2, L1, s, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ L irrcid,s(c, e, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::A2)

p′′4
def
=
∃z,A1, v, A2, L1, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ Lcid(c, e, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::A2)

rmv(e) {
1 local p, c, n, pi, po, ci, co, u, r, aux;{

P ∧ �(1) ∧ (MIN < e < MAX) ∧ arem(RMV) ∧ (e = E)
}

2 p := Head;
. ...
8 <u := c.data; aux := metricTAS(p)>;
9 while (u < e) {

.. ...
18 }{

∃z,A1, v, A2, L1, s, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ N irrcid,s(c, u, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∧ (v < e ≤ u) ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)

}
19 if (u = e) {{

∃z,A1, v, A2, L1, s, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ N irrcid,s(c, e, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::e ::A2) ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)

}
20 b := false;{

((p′′4 ∧ b) ∨ (p4 ∨ p′4) ∧ ¬b ∧ ♦(1)) ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)
}

21 while (!b) {{
((p4 ∧ ♦(0)) ∨ (p′4 ∧ ♦(1))) ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)

}
22 b := cas(c.lock, 0, cid);{

((p′′4 ∧ b) ∨ (p4 ∨ p′4) ∧ ¬b ∧ ♦(1)) ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)
}

23 }{
p′′4 ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)

}
24 n := c.next;{

∃A1, v, A2, L1, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, c) ∗ Lcid(c, e, n)
∗ ls irrcid,L2 (n, A2, null) ∗ ss(A1 ::v ::e ::A2) ∧ (e < MAX) ∧ arem(RMV) ∧ (e = E)

}
25 p.next := n;{

∃A1, v, A2, L1, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, n) ∗ Lcid(c, e, n)
∗ ls irrcid,L2 (n, A2, null) ∗ ss(A1 ::v ::A2) ∧ arem(skip) ∧ (R = true)

}
26 p.lock := 0;{

∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ Lcid(c, e, n) ∗ ss(A) ∧ arem(skip) ∧ (R = true)
}

27 dispose(c);{
∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ ss(A) ∧ arem(skip) ∧ (R = true)

}
28 r := true;
29 } else {{

∃z,A1, v, A2, L1, L2. toaddcid(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Lcid(p, v, z)
∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::A2) ∧ arem(skip) ∧ (R = false)

}
30 p.lock := 0;{

∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ ss(A) ∧ arem(skip) ∧ (R = false)
}

31 r := false;
32 }{

∃A, L. toaddcid(false) ∗ ls irrcid,L(Head, A, null) ∗ ss(A) ∧ arem(skip) ∧ (r = R)
}{

P ∧ arem(skip) ∧ (r = R)
}

33 return r;
}

Figure 78. Proof outline for rmv.

106

D.4 Optimistic list with TAS lock
Fig. 79 shows the code of the optimistic list implemented with TAS locks (where the auxiliary code is in red). In the optimistic list, a thread
traverses the list without taking any locks, and when finding the candidate nodes, it locks the nodes and validates that they are still in the list
and adjacent. If the validation fails, the nodes are unlocked and the operation is restarted. The code we show here is an optimized version of
the code we discussed in Sec. 7. In Fig. 79, the thread locks only one node p before validation. It does not lock c until the thread is going to
remove c at line 35. We prove it is deadlock-free.

Fig. 80 defines the precise invariant and the precondition. Fig. 81 defines the rely/guarantee conditions and the definite actions. Other
figures in this section give the proof outlines.

intSet gn; //initially empty

struct Node {
int lock;
int data;
struct Node *next;

}

struct List {
struct Node *Head;

}

initialize(){
Head := cons(0, MIN, null);
Head.next := cons(0, MAX, null);

}

add(e) {
1 local p, c, x, s, done, b, w, v, u, r;
2 done := false;
3 while (!done) {
4 p := Head;
5 c := p.next;
6 u := c.data;
7 while (u < e) {
8 p := c;
9 c := c.next;

10 u := c.data;
11 }
12 b := false;
13 while (!b) {
14 b := cas(p.lock, 0, cid);
15 }
16 v := p.data;
17 s := Head;
18 w := s.data;
19 while (w < v) {
20 s := s.next;
21 w := s.data;
22 }
23 if (s = p && p.next = c) {
24 done := true;
25 } else {
26 p.lock := 0;
27 }
28 }
29 if (u != e) {
30 x := cons(0, e, c);
31 p.next := x;
32 r := true;
33 } else {
34 r := false;
35 }
36 p.lock := 0;
37 return r;
}

rmv(e) {
1 local p, c, n, s, done, b, w, v, u, r;
2 done := false;
3 while (!done) {
4 p := Head;
5 c := p.next;
6 u := c.data;
7 while (u < e) {
8 p := c;
9 c := c.next;

10 u := c.data;
11 }
12 b := false;
13 while (!b) {
14 b := cas(p.lock, 0, cid);
15 }
16 v := p.data;
17 s := Head;
18 w := s.data;
19 while (w < v) {
20 s := s.next;
21 w := s.data;
22 }
23 if (s = p && p.next = c) {
24 done := true;
25 } else {
26 p.lock := 0;
27 }
28 }
29 if (u = e) {
30 b := false;
31 while (!b) {
32 b := cas(c.lock, 0, cid);
33 }
34 n := c.next;
35 <p.next := n; gn := gn ∪ {c}>;
36 c.lock := 0;
37 r := true;
38 } else {
39 r := false;
40 }
41 p.lock := 0;
42 return r;
}

Figure 79. Optimistic list with TAS lock.

107

A ::= ε | v ::A s ::= 0 | t L ::= ε | s ::L B ∈ ThrdID ⇀ Bool

|∅| def
= 0 |S ∪ {x}| def

= |S|+ 1 len(ε)
def
= 0 len(v ::A)

def
= len(A) + 1

I
def
= ∃A, L. lsL(Head, A, null) ∗ ss(A) ∗ garb

Pt
def
= ∃A, L. ls irrt,L(Head, A, null) ∗ ss(A) ∗ garb

garb
def
= ~x∈gnN (x, ,)

lsL(x,A, y)
def
=

(x = y ∧A = ε ∧ L = ε ∧ emp)
∨ (x 6= y ∧ ∃z, v, A′, s, L′. A = v ::A′ ∧ L = s ::L′ ∧ Ns(x, v, z) ∗ lsL′ (z,A

′, y))

ls irrt,L(x,A, y)
def
=

(x = y ∧A = ε ∧ L = ε ∧ emp)
∨ (x 6= y ∧ ∃z, v, A′, s, L′. A = v ::A′ ∧ L = s ::L′ ∧ N irrt,s(x, v, z) ∗ ls irrt,L′ (z,A

′, y))

ls unlocked(x,A, y)
def
=

(x = y ∧A = ε ∧ emp) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ U(x, v, z) ∗ ls unlocked(z,A′, y))

Ns(p, v, y)
def
= locks(p) ∗ (p.data = v) ∗ (p.next = y)

N irrt,s(p, v, y)
def
= lock irrt,s(p) ∗ (p.data = v) ∗ (p.next = y)

Ls(p, v, y)
def
= lockeds(p) ∗ (p.data = v) ∗ (p.next = y)

L irrt,s(p, v, y)
def
= (s 6= t) ∧ Ls(p, v, y)

U(p, v, y)
def
= unlocked(p) ∗ (p.data = v) ∗ (p.next = y)

locks(p)
def
= lockeds(p) ∨ (s = 0 ∧ unlocked(p)) lock irrt,s(p)

def
= locks(p) ∧ (t 6= s)

lockedt(p)
def
= (p.lock = t) ∧ (t ∈ TIDS) unlocked(p)

def
= (p.lock = 0)

s(A)
def
= ∃A′. (A = MIN ::A′ ::MAX) ∧ sorted(A)

ss(A)
def
= ∃A′. (A = MIN ::A′ ::MAX) ∧ sorted(A) ∧ (S = A′)

sorted(A)
def
=

{
true if A = ε ∨A = v ::ε
(v1 < v2) ∧ sorted(v2 ::A′) if A = v1 ::v2 ::A′

Figure 80. Invariant and precondition of the optimistic list with TAS lock.

As for the lock-coupling list, the invariant I defined in Figure 80 requires the concrete list to be sorted and its elements to constitute the
abstract set S. Since the optimistic algorithm ignores the locks when traversing the list, it may access nodes that have been removed from the
list. Thus we cannot dispose removed nodes as in the lock-coupling list. Instead, we need to introduce a write-only auxiliary variable gn to
remember those removed nodes (see line 35 in Fig. 79). The precise invariant I should include those nodes (garb).

As shown in Figure 81, the delaying actions of a thread t are stratified. The Add and Rmv actions which update the list are classified at
level 2. The lock acquirements Lock are at level 1. The Unlock actions are not delaying actions.

The definite actions D describe the various scenarios under which the lock release would definitely happen. Note that it also includes the
lock release actions on removed nodes.

The add method is given �(1, 1) initially, where the 2-level �-token is for doing Add and the 1-level �-token is for doing Lock . Fig. 82
and Fig. 83 show the proof outlines. Note that when the environment threads perform Add or Rmv , the current thread could gain more 1-level
�-tokens (by the stability checking) so that it can rollback and re-do its Lock action. In the proofs, the assertions for inner loops are in cyan
color, to be distinguished from the assertions for the outer loop. As we mentioned, we apply the (HIDE-♦) rule to reuse the proofs of the inner
loop at the outer loop, which allows us to discard the tokens of the inner loop. Following earlier work [23], we also provide the (FR-CONJ) rule
to add back the original tokens of the outer loop.

The rmv method is given �(1, 2) initially, where the 2-level �-token is for doing Rmv and the two 1-level �-tokens are for doing the two
Lock actions respectively. The proof in Fig. 84 is similar to the proof of the add method.

108

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= (Add t ∨ Rmv t ∨ Lockt ∨ Unlockt ∨ Id) ∗ Id ∧ (I n I)

Add t
def
=
∃x, y, z, n, v, w, u, s, S. ((Lt(x, v, z) ∗ (S = S)) n2 (Lt(x, v, y) ∗ U(y, w, z) ∗ (S = S ∪ {w})))
∗ [N irrt,s(z, u, n) ∧ (v < w < u)]

Rmv t
def
=
∃x, y, z, v, u, S, Sg . (Lt(x, v, y) ∗ (gn = Sg) ∗ (S = S] {u}))
n2 (Lt(x, v, z) ∗ (gn = Sg ∪ {y}) ∗ (S = S)) ∗ [Lt(y, u, z) ∧ (u < MAX)]

Lockt
def
=

∃x, y, v. U(x, v, y) n1 Lt(x, v, y)

Unlockt
def
=

∃x, y, v. Lt(x, v, y) n U(x, v, y)

Dcid
def
= (∀x. dp1cid(x) ; dq1cid(x)) ∧ (∀x. dp2cid(x) ; dq2cid(x))

dp1t(x)
def
=

∃y, z, A, v, u,A′, L. ls irrt,L(Head, A, x) ∗ Lt(x, v, y) ∗ (U(y, u, z) ∨ Lt(y, u, z)) ∗ ls unlocked(z,A′, null) ∗ ss(A ::v ::u ::A′) ∗ garb

dq1t(x)
def
=

∃y,A, v,A′, L. ls irrt,L(Head, A, x) ∗ U(x, v, y) ∗ ls unlocked(y,A′, null) ∗ ss(A ::v ::A′) ∗ garb

dp2t(x)
def
=

∃A, L, Sg . lsL(Head, A, null) ∗ ss(A) ∗ (gn = Sg] {x}) ∗ (~y∈Sg N (y, ,)) ∗ Lt(x, ,)

dq2t(x)
def
=

∃A, L, Sg . lsL(Head, A, null) ∗ ss(A) ∗ (gn = Sg] {x}) ∗ (~y∈Sg N (y, ,)) ∗ U(x, ,)

Figure 81. Rely, guarantee and definite actions of the optimistic list with TAS lock.

109

findLocked(x, v, y, u)
def
=

∃z,A,A′, s, L. ls irrcid,L(Head, A, x) ∗ Lcid(x, v, y) ∗ N irrcid,s(y, u, z) ∗ ls irrcid,L(z,A′, null) ∗ ss(A ::v ::u ::A′) ∗ garb

p1(v,A2, s1)
def
=

∃z,A1, L1, s, L2. ls irrcid,L1 (Head, A1, p) ∗ Ns1 (p, v, c) ∗ N irrcid,s(c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ ss(A1 ::v ::u ::A2) ∗ garb

p′1(v,A2, s1)
def
=

∃x, z, s, L2. Ns1 (p, v, x) ∗ N irrcid,s(c, u, z) ∗ ls irrcid,L2 (z,A2, null) ∗ true
∧ (p ∈ gn ∨ c ∈ gn ∨ ∃v′, A′, L′. ls irrcid,L′ (x, v

′ ::A′, c) ∗ true)

p2(v)
def
= ∃A2. p2(v,A2) p2(v,A2)

def
= ∃s1. P ∧ p1(v,A2, s1) ∧ (s1 6= cid) p3(v)

def
= ∃A2. P ′ ∧ p1(v,A2, cid)

p′2(v)
def
= ∃A2. p′2(v,A2) p′2(v,A2)

def
= ∃s1. P ∧ p′1(v,A2, s1) ∧ (s1 6= cid) p′3(v)

def
= ∃A2. P ′ ∧ p′1(v,A2, cid)

p4(A2)
def
=

∃z,A1, L1, s, L2. lsL1 (Head, A1, s) ∗ Ns(s, w, z) ∗ lsL2 (z,A2, null) ∗ ss(A1 ::w ::A2) ∗ garb

p′4(A2)
def
=

∃z, s, L2. N irrcid,s(s, w, z) ∗ ls irrcid,L2 (z,A2, null) ∗ true ∧ (s ∈ gn)

add(e) {
1 local p, c, x, s, done, b, w, v, u, r;{

P ∧ �(1, 1) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)
}

2 done := false;{
(¬done ∧ P ∧ �(1, 1) ∧ ♦(1) ∨ ∃v. done ∧ findLocked(p, v, c, u) ∧ �(1, 0) ∧ (v < e ≤ u)) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)

}
3 while (!done) {{

¬done ∧ P ∧ �(1, 1) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)
}

4 p := Head;
5 c := p.next;
6 u := c.data;{

¬done ∧ ∃v,A2. (p2(v,A2) ∧ �(1, 1) ∨ p′2(v,A2) ∧ �(1, 2) ∧ ♦(1)) ∧ (v < e < MAX) ∧ arem(ADD) ∧ (e = E)
}{

¬done ∧ ∃v,A2. (p2(v,A2) ∧ �(1, 1) ∨ p′2(v,A2) ∧ �(1, 2)) ∧ ♦(1 + len(A2)) ∧ (v < e < MAX) ∧ arem(ADD) ∧ (e = E)
}

7 while (u < e) {{
¬done ∧ ∃v,A2. (p2(v,A2) ∧ �(1, 1) ∨ p′2(v,A2) ∧ �(1, 2)) ∧ ♦(len(A2)) ∧ (u < e < MAX) ∧ arem(ADD) ∧ (e = E)

}
8 p := c;
9 c := c.next;

10 u := c.data;{
¬done ∧ ∃v,A2. (p2(v,A2) ∧ �(1, 1) ∨ p′2(v,A2) ∧ �(1, 2)) ∧ ♦(1 + len(A2)) ∧ (v < e < MAX) ∧ arem(ADD) ∧ (e = E)

}
11 }{

¬done ∧ ∃v. (p2(v) ∧ �(1, 1) ∨ p′2(v) ∧ �(1, 2) ∧ ♦(1)) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

12 b := false;{
¬done ∧ ∃v. (b ∧ (p3(v) ∧ �(1, 0) ∨ p′3(v) ∧ �(1, 1) ∧ ♦(1)) ∨ ¬b ∧ (p2(v) ∧ �(1, 1) ∨ p′2(v) ∧ �(1, 2) ∧ ♦(1)))
∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
{
¬done ∧ ∃v. (b ∧ (p3(v) ∧ �(1, 0) ∨ p′3(v) ∧ �(1, 1)) ∨ ¬b ∧ (p2(v) ∧ �(1, 1) ∨ p′2(v) ∧ �(1, 2)) ∧ ♦(1))
∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
13 while (!b) {
14 b := cas(p.lock, 0, cid);
15 }{

¬done ∧ ∃v. (p3(v) ∧ �(1, 0) ∨ p′3(v) ∧ �(1, 1) ∧ ♦(1)) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

16 v := p.data;
17 s := Head;
18 w := s.data;{

¬done ∧ ∃A2. (p4(A2) ∨ p′4(A2)) ∧ (p3(v) ∧ �(1, 0) ∨ p′3(v) ∧ �(1, 1) ∧ ♦(1)) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}{

¬done ∧ ∃A2. (p4(A2) ∨ p′4(A2)) ∧ ♦(1 + len(A2)) ∧ (p3(v) ∧ �(1, 0) ∨ p′3(v) ∧ �(1, 1)) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

19 while (w < v) {
20 s := s.next;
21 w := s.data;
22 }{

¬done ∧ ∃A2. (p4(A2) ∨ p′4(A2)) ∧ (p3(v) ∧ �(1, 0) ∨ p′3(v) ∧ �(1, 1) ∧ ♦(1)) ∧ (v ≤ w) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

23 if (s = p && p.next = c) {{
¬done ∧ p3(v) ∧ �(1, 0) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
24 done := true;{

done ∧ findLocked(p, v, c, u) ∧ �(1, 0)) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

25 } else {
26 p.lock := 0;{

¬done ∧ P ∧ �(1, 1) ∧ ♦(1) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)
}

27 }
28 }{

∃v. findLocked(p, v, c, u) ∧ �(1, 0) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

29 ...

Figure 82. Proof outline for add (1).

110

p5
def
= ∃v, x, e. findLocked(p, v, x, e)

{
∃v. findLocked(p, v, c, u) ∧ �(1, 0) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
29 if (u != e) {{

∃v. findLocked(p, v, c, u) ∧ �(1, 0) ∧ (v < e < u) ∧ arem(ADD) ∧ (e = E)
}

30 x := cons(0, e, c);
31 p.next := x;
32 r := true;{

p5 ∧ arem(skip) ∧ (r = R)
}

33 } else {{
∃v. findLocked(p, v, c, u) ∧ �(1, 0) ∧ (e = u) ∧ arem(ADD) ∧ (e = E)

}
34 r := false;{

p5 ∧ arem(skip) ∧ (r = R)
}

35 }{
p5 ∧ arem(skip) ∧ (r = R)

}
36 p.lock := 0;{

P ∧ arem(skip) ∧ (r = R)
}

37 return r;
}

Figure 83. Proof outline for add (2).

adjLocked(x, v, y, u, z)
def
=

∃A,A′, L. ls irrcid,L(Head, A, x) ∗ Lcid(x, v, y) ∗ Lcid(y, u, z) ∗ ls irrcid,L(z,A′, null) ∗ ss(A ::v ::u ::A′) ∗ garb

rmv(e) {
1 local p, c, n, s, done, b, v, u, r;{

P ∧ �(1, 2) ∧ arem(RMV) ∧ (MIN < e < MAX) ∧ (e = E)
}

2 done := false;
3 while (!done) {

.. ...
28 }{

∃v. findLocked(p, v, c, u) ∧ �(1, 1) ∧ (v < e ≤ u < MAX) ∧ arem(RMV) ∧ (e = E)
}

29 if (u = e) {{
findLocked(p, , c, e) ∧ �(1, 1) ∧ arem(RMV) ∧ (e = E < MAX)

}
30 b := false;
31 while (!b) {
32 b := cas(c.lock, 0, cid);
33 }{

∃z. adjLocked(p, , c, e, z) ∧ �(1, 0) ∧ arem(RMV) ∧ (e = E < MAX)
}

34 n := c.next;{
adjLocked(p, , c, e, n) ∧ �(1, 0) ∧ arem(RMV) ∧ (e = E < MAX)

}
35 <p.next := n; gn := gn ∪ {c}>;{

p5 ∧ arem(skip) ∧ (R = true)
}

36 c.lock := 0;
37 r := true;{

p5 ∧ arem(skip) ∧ (r = R)
}

38 } else {{
∃v. findLocked(p, v, c, u) ∧ �(1, 1) ∧ (v < e < u) ∧ arem(RMV) ∧ (e = E)

}
39 r := false;{

p5 ∧ arem(skip) ∧ (r = R)
}

40 }{
p5 ∧ arem(skip) ∧ (r = R)

}
41 p.lock := 0;{

P ∧ arem(skip) ∧ (r = R)
}

42 return r;
}

Figure 84. Proof outline for rmv.

111

D.5 Lazy list with TAS lock
Fig. 85 shows the code of the lazy list implemented with TAS locks (where the auxiliary code is in red). We prove it is deadlock-free.

Similar to the optimistic list, in lazy list, a thread traverses the list without taking any locks, and when finding the candidate nodes, it locks
the nodes and validates that they are still in the list and adjacent. But now every node in the concrete list has an additional mark field. The
rmv(e) method first logically removes the node by setting its mark field before the physical removal (unlinking it from the list). Since we
mainly focus on progress properties, here we only show the proofs for the add and rmv methods, which involve blocking operations (i.e.,
lock acquirements). The contain method of the lazy list does not acquire locks. It can be verified using earlier technique for linearizability
verification (e.g., [21, 30]), and we omit its proofs here.

Fig. 86 defines the precise invariant and the precondition. Fig. 87 defines the rely/guarantee conditions and the definite actions. Other
figures in this section give the proof outlines.

As for the optimistic list, we introduce a write-only auxiliary variable gn to remember the removed nodes. We also introduce the auxiliary
variable tmark for each thread to indicate whether the thread has performed marking but has not perform the physical removal.

bool[] tmark; //initially all false

intSet gn; //initially empty

struct Node {
int lock;
int data;
struct Node *next;
bool mark;

}

struct List {
struct Node *Head;

}

initialize(){
Head := cons(0, MIN, null, false);
Head.next := cons(0, MAX, null, false);

}

add(e) {
1 local p, c, x, done, b, u, r;
2 done := false;
3 while (!done) {
4 p := Head;
5 c := p.next;
6 u := c.data;
7 while (u < e) {
8 p := c;
9 c := c.next;

10 u := c.data;
11 }
12 b := false;
13 while (!b) {
14 b := cas(p.lock, 0, cid);
15 }
16 b := false;
17 while (!b) {
18 b := cas(c.lock, 0, cid);
19 }
20 if (!p.mark && !c.mark && p.next = c)
21 done := true;
22 else {
23 p.lock := 0;
24 c.lock := 0;
25 }
26 }
27 c.lock := 0;
28 if (u != e) {
29 x := cons(0, e, c, false);
30 p.next := x;
31 r := true;
32 } else {
33 r := false;
34 }
35 p.lock := 0;
36 return r;
}

rmv(e) {
1 local p, c, n, done, b, u, r;
2 done := false;
3 while (!done) {
4 p := Head;
5 c := p.next;
6 u := c.data;
7 while (u < e) {
8 p := c;
9 c := c.next;

10 u := c.data;
11 }
12 b := false;
13 while (!b) {
14 b := cas(p.lock, 0, cid);
15 }
16 b := false;
17 while (!b) {
18 b := cas(c.lock, 0, cid);
19 }
20 if (!p.mark && !c.mark && p.next = c)
21 done := true;
22 else {
23 p.lock := 0;
24 c.lock := 0;
25 }
26 }
27 if (u = e) {
28 <c.mark := true; tmarkcid := true>;
29 n := c.next;
30 <p.next := n; gn := gn ∪ {c}; tmarkcid := false>;
31 r := true;
32 } else {
33 r := false;
34 }
35 p.lock := 0;
36 c.lock := 0;
37 return r;
}

Figure 85. Lazy list with TAS lock.

112

A ::= ε | v ::A s ::= 0 | t L ::= ε | s ::L M ::= ε | b ::M B ∈ ThrdID ⇀ Bool

|∅| def
= 0 |S ∪ {x}| def

= |S|+ 1 len(ε)
def
= 0 len(v ::A)

def
= len(A) + 1

I
def
= ∃A, L. tmarks ∗ lsL(Head, A, null) ∗ ss(A) ∗ garb

Pt
def
= Pt(false) Pt(b)

def
= ∃A, L. tmarkst(b) ∗ ls irrt,L(Head, A, null) ∗ ss(A) ∗ garb

tmarks
def
= ∃B. tmarks(B) tmarks(B)

def
= (~ttmarkt = B(t))

tmarkst(b)
def
= ∃B. tmarkt(b, B) tmarkst(b, B)

def
= (tmarkt = b) ∗ (~t′ 6=ttmarkt′ = B(t′))

garb
def
= ~x∈gnN (x, , ,)

lsL(x,A, y)
def
= ∃M. lsL(x,A, y,M) ls irrt,L(x,A, y)

def
= ∃M. ls irrt,L(x,A, y,M)

lsL(x,A, y,M)
def
=

(x = y ∧A = ε ∧ L = ε ∧M = ε ∧ emp)
∨ (x 6= y ∧ ∃z, v, A′, s, L′, b,M ′. A = (v, b) ::A′ ∧ L = s ::L′ ∧M = b ::M ′ ∧ Ns(x, v, z, b) ∗ lsL′ (z,A

′, y,M ′))

ls irrt,L(x,A, y,M)
def
=

(x = y ∧A = ε ∧ L = ε ∧M = ε ∧ emp)
∨ (x 6= y ∧ ∃z, v, A′, s, L′, b,M ′. A = (v, b) ::A′ ∧ L = s ::L′ ∧M = b ::M ′ ∧ N irrt,s(x, v, z, b) ∗ ls irrt,L′ (z,A

′, y,M ′))

ls unlocked unmarked(x,A, y)
def
=

(x = y ∧A = ε ∧ emp)
∨ (x 6= y ∧ ∃z, v, A′. A = (v, false) ::A′ ∧ U(x, v, z, false) ∗ ls unlocked unmarked(z,A′, y))

Ns(p, v, y, b)
def
= locks(p) ∗ (p.data = v) ∗ (p.next = y) ∗ (p.mark = b)

N irrt,s(p, v, y, b)
def
= lock irrt,s(p) ∗ (p.data = v) ∗ (p.next = y) ∗ (p.mark = b)

Ls(p, v, y, b)
def
= lockeds(p) ∗ (p.data = v) ∗ (p.next = y) ∗ (p.mark = b)

L irrt,s(p, v, y, b)
def
= (s 6= t) ∧ Ls(p, v, y, b)

U(p, v, y, b)
def
= unlocked(p) ∗ (p.data = v) ∗ (p.next = y) ∗ (p.mark = b)

locks(p)
def
= lockeds(p) ∨ (s = 0 ∧ unlocked(p)) lock irrt,s(p)

def
= locks(p) ∧ (t 6= s)

lockedt(p)
def
= (p.lock = t) ∧ (t ∈ TIDS) unlocked(p)

def
= (p.lock = 0)

s(A)
def
= ∃A′. (A = (MIN, false) ::A′ :: (MAX, false)) ∧ sorted(A)

ss(A)
def
= ∃A′. (A = (MIN, false) ::A′ :: (MAX, false)) ∧ sorted(A) ∧ (S = elems(A′))

sorted(A)
def
=

{
true if A = ε ∨A = (v, b) ::ε
(v1 < v2) ∧ sorted((v2, b2) ::A′) if A = (v1, b1) :: (v2, b2) ::A′

elems(A)
def
=

 ∅ if A = ε
{v} ∪ elems(A′) if A = (v, true) ::A′

elems(A′) if A = (v, false) ::A′

Figure 86. Invariant and precondition of the lazy list with TAS lock.

As shown in Figure 87, the delaying actions of a thread t are stratified. The Add , Rmv and Mark actions which update the list are classified
at level 2. The lock acquiring action Lock11 with certain constraints is at level 1. When a thread does Lock11 , it must locks a node x which is
really on the list and other nodes behind x (i.e., the nodes which are closer to the tail of the list) must be neither locked nor marked. Lock21
acquires the lock of the successor node with similar constraints. It is also at level 1. Other lock acquirements Lock1 and Lock2 are at level 0,
which we do not viewed as delaying actions.

The add method is given �(1, 2) initially, where the 2-level �-token is for doing Add and the two 1-level �-tokens are for doing Lock11
and Lock21 . Fig. 88 and Fig. 89 show the proof outlines. Note that the thread does not need to lose level-1 �-tokens when the node it attempts
to lock has been marked by an environment thread. It consumes level-1 �-tokens for only Lock11 and Lock21 actions. Thus for Lock1 and
Lock2 actions, the thread still keeps the level-1 �-tokens so that it can roll back and do Lock11 and Lock21 in the future. Similar to the
proofs for the optimistic list, the assertions for inner loops here are also in cyan color, to be distinguished from the assertions for the outer loop.
We apply the (HIDE-♦) rule to reuse the proofs of the inner loop at the outer loop, which allows us to discard the tokens of the inner loop.
Following earlier work [23], we also provide the (FR-CONJ) rule to add back the original tokens of the outer loop.

The rmv method is given �(2, 2) initially, where the two 2-level �-token are for doing Mark and Rmv . The proof in Fig. 90 is similar to
the proof of the add method.

113

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= (Add t ∨Markt ∨ Rmv t ∨ Lock11 t ∨ Lock21 t ∨ Lock1 t ∨ Lock2 t ∨ Unlockt ∨ Id) ∗ Id ∧ (I n I)

Add t
def
=
∃x, y, z, n, v, w, u, s, S. ((Lt(x, v, z, false) ∗ (S = S)) n2 (Lt(x, v, y, false) ∗ U(y, w, z, false) ∗ (S = S ∪ {w})))
∗ [N irrt,s(z, u, n, false) ∧ (v < w < u)]

Markt
def
=

∃x, y, z, v, u, S. [Lt(x, v, y, false)] ∗ ((Lt(y, u, z, false) ∗ (tmarkt = false) ∗ (S = S] {u}) ∧ (u < MAX))
n2 (Lt(y, u, z, true) ∗ (tmarkt = true) ∗ (S = S)))

Rmv t
def
=
∃x, y, z, v, u, Sg . (Lt(x, v, y, false) ∗ (tmarkt = true) ∗ (gn = Sg))
n2 (Lt(x, v, z, false) ∗ (tmarkt = false) ∗ (gn = Sg ∪ {y})) ∗ [Lt(y, u, z, true) ∧ (u < MAX)]

Lock11 t
def
=

∃x, y,A1, v, A2. [ls irrt,L1 (Head, A1, x) ∧ (v < MAX)] ∗ (U(x, v, y, false) n1 Lt(x, v, y, false))
∗ [ls unlocked unmarked(y,A2, null)]

Lock1 t
def
=

∃x, y, z, z′, v, A2, A′2, b, b
′, L2, s, L′2. (U(x, v, y, b) n Lt(x, v, y, b))

∗ [ls irrt,L2 (y,A2, z) ∗ N irrt,s(z, , z′, b′) ∗ ls irrt,L′2
(z′, A′2, null) ∧ (b = true ∨ b′ = true ∨ s 6= 0)]

Lock21 t
def
=

∃x, y, z, A1, v, u,A2, L1, L2,M2. [ls irrt,L1 (Head, A1, x) ∗ Lt(x, v, y, false) ∧ (v < MAX)] ∗ (U(y, u, z, false) n1 Lt(y, u, z, false))
∗ [ls irrt,L2 (z,A2, null,M2) ∧ (∀b ∈M2. b = false)]

Lock2 t
def
=

∃x, y, y′, z, v, u,A2, b1, b2, L2,M2. [Lt(x, v, y, b1) ∧ (v < MAX)] ∗ (U(y′, u, z, b2) n Lt(y′, u, z, b2))
∗ [ls irrt,L2 (z,A2, null,M2) ∗ true ∧ (b1 = true ∨ b2 = true ∨ true ∈M2 ∨ ∃v′, A′, L′. ls irrcid,L′ (y, (v

′,) ::A′, y′) ∗ true)]

Unlockt
def
=

∃x, y, v, b. [tmarkst(false)] ∗ (Lt(x, v, y, b) n U(x, v, y, b))

Dcid
def
= (∀x. dpcid(x) ; dqcid(x)) ∧ (∀x. dp′cid(x) ; dq′cid(x)) ∧ (∀x. dp′′cid(x) ; dq′′cid(x))

dpt(x)
def
=

∃y, z, A, v, u,A′, L. tmarkst(false) ∗ ls irrt,L(Head, A, x) ∗ Lt(x, v, y, false) ∗ (U(y, u, z, false) ∨ Lt(y, u, z, false))
∗ ls unlocked unmarked(z,A′, null) ∗ ss(A :: (v, false) :: (u, false) ::A′) ∗ garb

dqt(x)
def
=

∃y, z, A, v, u,A′, L. tmarkst(false) ∗ ls irrt,L(Head, A, x) ∗ U(x, v, y, false) ∗ (U(y, u, z, false) ∨ Lt(y, u, z, false))
∗ ls unlocked unmarked(z,A′, null) ∗ ss(A :: (v, false) :: (u, false) ::A′) ∗ garb

dp′t(x)
def
=

∃A, L, Sg . tmarkst(false) ∗ ls irrt,L(Head, A, null) ∗ ss(A) ∗ (gn = Sg] {x}) ∗ (~a∈Sg N (a, , ,)) ∗ Lt(x, , ,)

dq′t(x)
def
=

∃A, L, Sg . tmarkst(false) ∗ ls irrt,L(Head, A, null) ∗ ss(A) ∗ (gn = Sg] {x}) ∗ (~a∈Sg N (a, , ,)) ∗ U(x, , ,)

dp′′t (x)
def
=

∃y, z, A, v, u,A′, L. tmarkst(true) ∗ ls irrt,L(Head, A, x) ∗ Lt(x, v, y, false) ∗ Lt(y, u, z, true)
∗ ls unlocked unmarked(z,A′, null) ∗ ss(A :: (v, false) :: (u, true) ::A′) ∗ garb

dq′′t (x)
def
=

∃y, z, A, v, u,A′, L. tmarkst(true) ∗ ls irrt,L(Head, A, x) ∗ Lt(x, v, y, false)
∗ ls unlocked unmarked(y,A′, null) ∗ ss(A :: (v, false) ::A′) ∗ garb

Figure 87. Rely, guarantee and definite actions of the lazy list with TAS lock.

114

adjLocked(x, v, y, u, b, b′, bm)
def
=

∃z,A,A′, L. tmarks(bm) ∗ ls irrcid,L(Head, A, x) ∗ Lcid(x, v, y, b) ∗ Lcid(y, u, z, b′) ∗ ls irrcid,L(z,A′, null) ∗ ss(A :: (v, b) :: (u, b′) ::A′) ∗ garb

p0(bm)
def
= ∃A, L,M. tmarkst(bm) ∗ ls irrt,L(Head, A, null,M) ∗ ss(A) ∗ garb ∧ (∀b ∈M2. b = false)

p′0(bm)
def
= ∃A, L,M. tmarkst(bm) ∗ ls irrt,L(Head, A, null,M) ∗ ss(A) ∗ garb ∧ (true ∈M2)

p1(v,A2, s1, s2)
def
=

∃z,A1, L1, L2,M2. tmarkst(false) ∗ ls irrcid,L1 (Head, A1, p) ∗ Ns1 (p, v, c, false) ∗ Ns2 (c, u, z, false) ∗ ls irrcid,L2 (z,A2, null,M2) ∗ true
∧ (∀b ∈M2. b = false)

p′1(v,A2, s1, s2)
def
=

∃x, z, L2, b1, b2,M2. tmarkst(false) ∗ Ns1 (p, v, x, b1) ∗ Ns2 (c, u, z, b2) ∗ ls irrcid,L2 (z,A2, null,M2) ∗ true
∧ (b1 = true ∨ b2 = true ∨ true ∈M2 ∨ ∃v′, A′, L′. ls irrcid,L′ (x, (v

′,) ::A′, c) ∗ true)

p2(v)
def
= ∃A2. p2(v,A2) p2(v,A2)

def
= ∃s1, s2. P ∧ p1(v,A2, s1, s2) ∧ (s1 6= cid) ∧ (s2 6= cid)

p′2(v)
def
= ∃A2. p′2(v,A2) p′2(v,A2)

def
= ∃s1, s2. P ∧ p′1(v,A2, s1, s2) ∧ (s1 6= cid) ∧ (s2 6= cid)

p3(v)
def
= ∃A2, s2. P ′ ∧ p1(v,A2, cid, s2) ∧ (s2 6= cid) p′3(v)

def
= ∃A2, s2. P ′ ∧ p′1(v,A2, cid, s2) ∧ (s2 6= cid)

p4(v)
def
= ∃A2. P ′′ ∧ p1(cid, cid) p′4(v)

def
= ∃A2. P ′′ ∧ p′1(cid, cid)

add(e) {
1 local p, c, x, done, b, u, r;{

P ∧ �(1, 2) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)
}

2 done := false;{
(¬done ∧ P ∧ �(1, 2) ∧ ♦(1) ∨ ∃v. done ∧ adjLocked(p, v, c, u, false, false, false) ∧ �(1, 0) ∧ v < e ≤ u)
∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)

}
3 while (!done) {{

¬done ∧ (p0(false) ∨ p′0(false) ∧ ♦(1)) ∧ �(1, 2) ∧ arem(ADD) ∧ (MIN < e < MAX) ∧ (e = E)
}

4 p := Head;
5 c := p.next;
6 u := c.data;{

¬done ∧ ∃v,A2. (p2(v,A2) ∨ p′2(v,A2) ∧ ♦(1)) ∧ �(1, 2) ∧ (v < e < MAX) ∧ arem(ADD) ∧ (e = E)
}{

¬done ∧ ∃v,A2. (p2(v,A2) ∨ p′2(v,A2)) ∧ �(1, 2) ∧ ♦(1 + len(A2)) ∧ (v < e < MAX) ∧ arem(ADD) ∧ (e = E)
}

7 while (u < e) {
8 p := c;
9 c := c.next;

10 u := c.data;
11 }{

¬done ∧ ∃v. (p2(v) ∨ p′2(v) ∧ ♦(1)) ∧ �(1, 2) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

12 b := false;{
¬done ∧ ∃v. (b ∧ (p3(v) ∧ �(1, 1) ∨ p′3(v) ∧ �(1, 2) ∧ ♦(1)) ∨ ¬b ∧ (p2(v) ∧ �(1, 2) ∨ p′2(v) ∧ �(1, 2) ∧ ♦(1)))
∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
{
¬done ∧ ∃v. (b ∧ (p3(v) ∧ �(1, 1) ∨ p′3(v) ∧ �(1, 2)) ∨ ¬b ∧ (p2(v) ∧ �(1, 2) ∨ p′2(v) ∧ �(1, 2)) ∧ ♦(1))
∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
13 while (!b) {
14 b := cas(p.lock, 0, cid);
15 }{

¬done ∧ ∃v. (p3(v) ∧ �(1, 1) ∨ p′3(v) ∧ �(1, 2) ∧ ♦(1)) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

16 b := false;{
¬done ∧ ∃v. (b ∧ (p4(v) ∧ �(1, 0) ∨ p′4(v) ∧ �(1, 2) ∧ ♦(1)) ∨ ¬b ∧ (p3(v) ∧ �(1, 1) ∨ p′3(v) ∧ �(1, 2) ∧ ♦(1)))
∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
{
¬done ∧ ∃v. (b ∧ (p4(v) ∧ �(1, 0) ∨ p′4(v) ∧ �(1, 2)) ∨ ¬b ∧ (p3(v) ∧ �(1, 1) ∨ p′3(v) ∧ �(1, 2)) ∧ ♦(1))
∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
17 while (!b) {
18 b := cas(c.lock, 0, cid);
19 }{

¬done ∧ ∃v. (p4(v) ∧ �(1, 0) ∨ p′4(v) ∧ �(1, 2) ∧ ♦(1)) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

20 if (!p.mark && !c.mark && p.next = c) {
21 done := true;{

done ∧ ∃v. adjLocked(p, v, c, u, false, false, false) ∧ �(1, 0) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

22 } else {{
¬done ∧ ∃v. (p4(v) ∨ p′4(v)) ∧ �(1, 2) ∧ ♦(1) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
23 p.lock := 0;
24 c.lock := 0;{

¬done ∧ ∃v. (p2(v) ∨ p′2(v)) ∧ �(1, 2) ∧ ♦(1) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

25 }
26 }{

∃v. adjLocked(p, v, c, u, false, false, false) ∧ �(1, 0) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

27 ...

Figure 88. Proof outline for add (1).

115

p5(v)
def
=
∃z,A,A′, s, L. tmarks(false) ∗ ls irrcid,L(Head, A, p) ∗ Lcid(p, v, c, false) ∗ N irrcid,s(c, u, z, false)
∗ ls irrcid,L(z,A′, null) ∗ ss(A :: (v, false) :: (u, false) ::A′) ∗ garb

p6
def
=
∃z,A, v, A′, L. tmarks(false) ∗ ls irrcid,L(Head, A, p) ∗ Lcid(p, v, z, false) ∗ ls irrcid,L(z,A′, null) ∗ ss(A :: (v, false) ::::A′) ∗ garb

{
∃v. adjLocked(p, v, c, u, false, false, false) ∧ �(1, 0) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)

}
27 c.lock := 0;{

∃v. p5(v) ∧ �(1, 0) ∧ (v < e ≤ u) ∧ arem(ADD) ∧ (e = E)
}

28 if (u != e) {{
∃v. p5(v) ∧ �(1, 0) ∧ (v < e < u) ∧ arem(ADD) ∧ (e = E)

}
29 x := cons(0, e, c, false);
30 p.next := x;
31 r := true;{

p6 ∧ arem(skip) ∧ (r = R)
}

32 } else {{
∃v. p5(v) ∧ �(1, 0) ∧ (e = u) ∧ arem(ADD) ∧ (e = E)

}
33 r := false;{

p6 ∧ arem(skip) ∧ (r = R)
}

34 }{
p6 ∧ arem(skip) ∧ (r = R)

}
35 p.lock := 0;{

P ∧ arem(skip) ∧ (r = R)
}

36 return r;
}

Figure 89. Proof outline for add (2).

rmv(e) {
1 local p, c, n, done, b, u, r;{

P ∧ �(2, 2) ∧ arem(RMV) ∧ (MIN < e < MAX) ∧ (e = E)
}

2 done := false;
3 while (!done) {

.. ...
26 }{

∃v. adjLocked(p, v, c, u, false, false, false) ∧ �(2, 0) ∧ (v < e ≤ u < MAX) ∧ arem(RMV) ∧ (e = E)
}

27 if (u = e) {{
adjLocked(p, , c, e, false, false, false) ∧ �(2, 0) ∧ arem(RMV) ∧ (e = E < MAX)

}
28 <c.mark := true; tmarkcid := true>;{

adjLocked(p, , c, e, false, true, true) ∧ �(1, 0) ∧ arem(skip) ∧ (e < MAX) ∧ (R = true)
}

29 n := c.next;
30 <p.next := n; gn := gn ∪ {c}; tmarkcid := false>;
31 r := true;{

p6 ∧ arem(skip) ∧ (r = R)
}

32 } else {{
∃v. adjLocked(p, v, c, u, false, false, true) ∧ �(2, 0) ∧ (v < e < u) ∧ arem(RMV) ∧ (e = E)

}
33 r := false;{

p6 ∧ arem(skip) ∧ (r = R)
}

34 }{
p6 ∧ arem(skip) ∧ (r = R)

}
35 p.lock := 0;
36 c.lock := 0;{

P ∧ arem(skip) ∧ (r = R)
}

37 return r;
}

Figure 90. Proof outline for rmv.

116

	Introduction
	Informal Development
	Background
	Challenges of Progress Verification
	Non-Termination Caused by Interference
	Avoid Circular Reasoning
	Ad-Hoc Synchronization and Dynamic Locks

	Our Approaches
	Using Tokens to Prevent Infinite Loops
	Definite Actions and Definite Progress
	Allowing Queue Jumps for Deadlock-Free Objects
	Allowing Rollbacks for Optimistic Locking

	Programming Language
	Program Logic LiLi
	Assertions
	Verifying Starvation-Freedom with Definite Actions
	The obj Rule
	The whl Rule for Loops
	More Inference Rules
	Example: Ticket Locks

	Adding Delay for Deadlock-Free Objects
	Inference Rules Revisited
	Example: Test-and-Set Locks
	Another Example: Nested Locks with Rollback

	Soundness and Abstraction Theorems
	On Lock-Freedom and Wait-Freedom
	More Examples
	Related Work and Conclusion
	The LRG-Style Full Version of LiLi
	LRG-Style Assertions
	Inference Rules

	Logic Soundness Proofs
	Judgment Semantics
	Instantiating Metrics and Well-Founded Orders

	Soundness of the Inference Rules
	The whl Rule
	The atom rule

	Common Simulation and Instantiations
	Instantiating the Common Simulation

	Core Proofs: From Common Simulation to Contextual Refinement
	Lifting to Simulation for Client Threads
	Parallel Compositionality
	Simulation for Whole Programs and Fair Refinement

	Equivalence between Contextual Refinement and Starvation-Freedom/Deadlock-Freedom
	Most general client
	Basic equivalence for linearizability
	Equivalence for starvation-freedom
	Equivalence for deadlock-freedom

	Starvation-free examples
	Counter with ticket lock
	Counter with Anderson array-based queue lock
	Counter with CLH list-based queue lock
	Counter with MCS list-based queue lock
	Two-lock queue with ticket lock
	Lock-coupling list with ticket lock

	Deadlock-free examples
	Counter with TAS lock
	Two-lock queue with TAS lock
	Lock-coupling list with TAS lock
	Optimistic list with TAS lock
	Lazy list with TAS lock

