
Local Rely-Guarantee Reasoning

Xinyu Feng
Toyota Technological Institute at Chicago

Chicago, IL 60637, U.S.A.
feng@tti-c.org

Abstract
Rely-Guarantee reasoning is a well-known method for verification
of shared-variable concurrent programs. However, it is difficult for
users to define rely/guarantee conditions, which specify threads’
behaviors over the whole program state. Recent efforts to combine
Separation Logic with Rely-Guarantee reasoning have made it pos-
sible to hide thread-local resources, but the shared resources still
need to be globally known and specified. This greatly limits the
reuse of verified program modules.

In this paper, we propose LRG, a new Rely-Guarantee-based
logic that brings local reasoning and information hiding to concur-
rency verification. Our logic, for the first time, supports a frame
rule over rely/guarantee conditions so that specifications of pro-
gram modules only need to talk about the resources used locally,
and the verified modules can be reused in different threads with-
out redoing the proof. Moreover, we introduce a new hiding rule to
hide the resources shared by a subset of threads from the rest in the
system. The support of information hiding not only improves the
modularity of Rely-Guarantee reasoning, but also enables the shar-
ing of dynamically allocated resources, which requires adjustment
of rely/guarantee conditions.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification — Correctness proofs, Formal
methods; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Concurrency, Rely-Guarantee Reasoning, Separation
Logic, Local Reasoning, Information Hiding

1. Introduction
With the development and wide use of multi-core processors, con-
currency has become a crucial element in software systems. How-
ever, the correctness of concurrent programs is notoriously difficult
to verify because of the non-deterministic interleaving of running
threads and the exponential size of state spaces. Compositionality
is of particular importance for scalable concurrency verification.

Rely-Guarantee reasoning (Jones 1983) is a well-known method
for verification of shared-variable concurrent programs. It lets each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

thread specify its expectation (the rely condition) of state transi-
tions made by its environment, and its guarantee to the environment
about transitions made by itself. Since the rely condition specifies
all possible behaviors that might interfere with the thread, we do
not need to consider the exponential size of possible interleavings
during the verifications. However, the rely/guarantee conditions are
difficult to formulate in practice, because they need to specify the
global program state and these global conditions need to be checked
during the execution of the whole thread. Specifically, the compo-
sionality and applicability of Rely-Guarantee reasoning are greatly
limited by the following problems:
• The whole program state is viewed as shared resource and need

to be specified in the rely/guarantee conditions, even if a part
of the state might be privately owned by a single thread. The
thread-private resource has to be exposed in the specifications.
• As part of the specifications of program modules, the rely and

guarantee conditions need to specify all the shared resources,
even if the module accesses only part of them locally. This lim-
its the reuse of verified program modules in different applica-
tions with different shared resources.
• Since the shared resources need to be globally known, it is dif-

ficult to support the sharing of dynamically allocated resources,
which are not known until they are allocated.
• Some resources might be shared only by a subset of threads,

but there is no way to hide them from the rest of threads in the
system.

These problems are part of the reasons why Jones (2003) calls for
a more compositional approach to concurrency.

Recent works on SAGL (Feng et al. 2007) and RGSep (Vafeiadis
and Parkinson 2007) have tried to combine the Rely-Guarantee rea-
soning with Separation Logic (Ishtiaq and O’Hearn 2001; Reynolds
2002) for better composionality. They split the whole state into
thread-private and shared parts. The partition of resources enforced
by Separation Logic ensures that each thread cannot touch the pri-
vate parts of others. The rely and guarantee conditions now only
need to specify the part that is indeed shared. These combinations,
however, only address the first problem mentioned above. Since
they also require the shared resources to be globally known, the
last three problems remain unsolved.

In this paper, we propose a new program logic, LRG, for Local
Rely-Guarantee reasoning. By addressing all these open problems,
our logic makes local reasoning and information hiding a reality
in concurrency verification. Our work is based on previous works
on Rely-Guarantee reasoning and Separation Logic, and SAGL and
RGSep in particular, but makes the following new contributions:
• As an extension of Separation Logic, we introduce the sepa-

rating conjunction of rely/guarantee conditions. Unlike asser-
tions in Separation Logic, rely/guarantee conditions are binary
relations of program states and they specify state transitions.

The new separating conjunction allows us to formalize two sub-
transitions conducted over disjoint resources, which is the basis
to bring in all the nice ideas developed in Separation Logic for
local reasoning and modularity.
• Our logic, for the first time, supports a frame rule over rely and

guarantee conditions so that the sharing of resources no longer
needs to be globally known. Specifications of program modules
only need to talk about the resource used locally, therefore the
verified modules can be reused in different contexts without
redoing the proof.
• We propose a new rule for hiding the shared resources from

the environment. It allows the local sharing of resources among
a subset of threads without exposing them to others in the
system. In particular, using the hiding rule we can derive a
more general rule for parallel composition such that a thread’s
private resource can be shared by its children without being
visible by its siblings. The hiding rule also gives us a way to
change the rely and guarantee conditions, so that the sharing of
dynamically allocated resources can be supported.
• In addition to these extensions, our work also greatly simplifies

SAGL and RGSep. We split program states conceptually into
thread-private and shared parts, but do not need explicit distinc-
tion of them either syntactically in assertions (as in SAGL and
RGSep) or semantically in program states and operational se-
mantics (as in RGSep). This gives us a simpler semantic model
and makes the logic more flexible to use.
• Treating variables as resources (Parkinson et al. 2006), our

work is very general and the same ideas work for traditional
Rely-Guarantee-based logics where only variables are used and
heaps are not dealt with.
• Our logic can also be viewed as an extension of the Concurrent

Separation Logic (O’Hearn 2007) with the more expressive
Rely-Guarantee-based specifications, but without sacrificing its
compositionality.

In the rest of this paper, we first give an overview of the tech-
nical background, and use an example to explain the problems and
challenges in Sec. 2. Then, before diving into the formal technical
development, we explain informally our approaches in Sec. 3. We
present the programming language in Sec. 4, the assertion language
in Sec. 5 and the LRG logic in Sec. 6. As an example, in Sec. 7 we
show how the program presented in Sec. 2 can be verified in our
logic. We discuss related work and conclude in Sec. 8.

2. Background and Challenges
In this section, we give an overview of Rely-Guarantee reason-
ing, Concurrent Separation Logic, and recent works on combining
them (Feng et al. 2007; Vafeiadis and Parkinson 2007). Then we
use an example to show the problems with existing approaches.

2.1 Rely-Guarantee Reasoning

In Rely-Guarantee reasoning, each thread views the set of all other
threads in the system as its environment. The interface between the
thread and its environment is specified using a pair of rely and guar-
antee conditions. The rely condition R specifies the thread’s expec-
tations of state transitions made by its environment. The guarantee
G specifies the state transitions made by the thread itself. R and G
are predicates over a pair of states, i.e., the initial one before the
transition and the resulting one after the transition. The specifica-
tion of a thread is a quadruple (p,R,G,q), where p and q are pre-
and post-conditions. A thread satisfies its specification if, given an
initial state satisfying p and an environment whose behaviors sat-

isfy R, each atomic transition made by the thread satisfies G and
the state at the end satisfies q.

Parallel Composition. To ensure two parallel threads can collab-
orate without interference, we need to check that their interfaces
are compatible in the sense that the rely condition of each thread
is implied by the guarantee of the other. Below is the rule for the
parallel composition C1 ‖ C2:

C1 sat (p,R∨G2,G1,q1) C2 sat (p,R∨G1,G2,q2)
C1 ‖ C2 sat (p,R,G1∨G2,q1∧q2)

It shows that, to verify C1 ‖ C2, we can verify the children C1
and C2 separately. The rely condition of each child captures the
behavior of both its parent’s environment (R) and its sibling (G1 or
G2). It is easy to check that the rely and guarantee conditions for
C1 and C2 are compatible, i.e., G1⇒ (R∨G1) and G2⇒ (R∨G2).

Stability. Each thread is verified with respect to its specification
in a similar way as the verification of sequential programs in Hoare
Logic, except that we also need to ensure the behavior of every
atomic operation satisfies the guarantee, and the precondition at
each step is stable with respect to the rely condition.

The stability means, if the current state satisfies the precondi-
tion p and the current thread is preempted by its environment, p
still holds when the current thread resumes its execution in a new
state as long as the transition made by the environment satisfies
its rely condition R. The stability check is essential to ensure the
non-interference between the thread and its environment, but it re-
quires R to capture all possible behaviors of the environment, which
makes R (and G) difficult to define and limits the compositionality
of the Rely-Guarantee reasoning.

2.2 Separation Logic and Concurrency Verification

Separation Logic (Ishtiaq and O’Hearn 2001; Reynolds 2002) is an
extension of Hoare Logic with effective reasoning about memory
aliasing. The separating conjunction p∗ p′ in the assertion language
specifies program states that can be split into two disjoint parts
satisfying p and p′ respectively. Because of the separation, update
of the part satisfying p does not affect the validity of p′ over
the other part. The frame rule, as shown below (with some side
conditions elided), supports local reasoning of program modules:

{p}C{q}
{p∗ r}C{q∗ r}

The specifications p and q for C need to only talk about states
accessed locally by C. When C is composed with other modules
in different contexts, different r can be added in the specification
by applying the frame rule, without redoing the proof.

O’Hearn has proposed Concurrent Separation Logic (CSL),
which applies Separation Logic to reason about concurrent pro-
grams (O’Hearn 2007). Unlike Rely-Guarantee reasoning, CSL
ensures non-interference by enforcing the separation of resources
accessible by different threads. The parallel composition rule in
CSL is as follows:

{p1}C1{q1} {p2}C2{q2}
{p1 ∗ p2}C1 ‖C2{q1 ∗q2}

Verification of each sequential thread in CSL is the same as in
Separation Logic. The frame rule is also sound in CSL. CSL also
allows threads to share resources, but only in conditional critical
regions that can be entered by only one thread at a time. The well-
formedness of shared resources is specified using invariants, which
need to be satisfied when threads exit critical regions.

1 nd := 0;
2 while (nd = 0) do {
3 lk := 0;
4 while (lk � 1) do { // acquire lock
5 〈lk := [lhead]; if (lk = 1) then [lhead] := 0;〉
6 }
7 nd := [lhead+1]; // first node
8 if (nd � 0) then {
9 tmp := [nd+2]; [lhead+1] := tmp // remove node

10 }
11 〈[lhead] := 1〉; // release lock
12 }
13 tmp := [nd]; tmp′ := [nd+1]; x := cons(tmp,tmp′);
14 Cgcd

Figure 1. GCD of Nodes on List

2.3 Combinations of the Two Approaches

The rely and guarantee conditions in Rely-Guarantee reasoning
specify state transitions, which are expressive and are suitable to
reason about fine-grained concurrent programs. On the other hand,
the method views the whole state as a shared resource among
threads, which makes it less compositional. CSL has very nice
compositionality, but the limited expressiveness of invariants for
shared resources makes it unsuitable for fine-grained concurrency.

SAGL (Feng et al. 2007) and RGSep (Vafeiadis and Parkinson
2007) have tried to combine merits of both approaches. They split
the whole state into thread-private and shared parts. Specifications
of threads are in the form of ((p,r),R,G, (q,r′)), where p and q
are pre- and post-conditions specifying the private resources of the
thread, while r and r′ for the shared part.1 Their rules for parallel
composition are as follows:

C1 sat ((p1,r),R∨G2,G1, (q1,r1))
C2 sat ((p2,r),R∨G1,G2, (q2,r2))

C1 ‖C2 sat ((p1 ∗ p2,r),R,G1∨G2, (q1 ∗q2,r1 ∧ r2)

The partition of resources enforced by the separating conjunction
ensures that each thread cannot touch the private parts of others.
The rely and guarantee conditions now only need to specify the
part that is indeed shared.

2.4 Problems and Challenges

To see the problems with all these approaches, we first look at a
simple program shown in Figs. 1 and 2. The program removes
a node from a shared linked list and then computes the greatest
common divisor (GCD) of the two numbers stored in the node.

...

lhead

list nxt nxt0/1

The shared data structure is shown above. The global constant
lhead points to two memory cells. The first one contains a binary
mutex, which enforces mutual exclusive accesses to the linked list
pointed to by the pointer stored in the second memory cell.

We use “〈C〉” to mean C is executed atomically. “x := [E]”
(“[E] := E′”) loads values from (stores values into) memory at the
location E. “cons(E1, . . . ,En)” allocates n memory cells with initial
values E1 , . . . ,En. The thread shown in Fig. 1 can be viewed as a
consumer of a producer-consumer style program, where the pro-
ducer (not shown here) generates random numbers and puts them
onto the list. Code from line 1 to line 12 acquires the lock, removes

1 RGSep uses p∗ r instead of (p,r).

1 〈t11 := [x]〉; 〈t21 := [x+1]〉;
2 〈t12 := [x+1]〉; 〈t22 := [x]〉;
3 while (t11 � t12) do{ while (t21 � t22) do{
4 if(t11 > t12) then { if(t21 > t22) then {
5 t11 := t11−t12; t21 := t21−t22;
6 〈[x] := t11〉; 〈[x+1] := t21〉;
7 } }
8 〈t12 := [x+1]〉; 〈t22 := [x]〉;
9 } }

Figure 2. Concurrent GCD

a node from the list and then releases the lock. Line 13 copies num-
bers in the node to newly allocated memory cells. The code Cgcd in
Line 14 refers to the program in Fig. 2, where two threads collabo-
rate to compute the GCD of numbers pointed to by x.

This is a very simple program, but there is no clean and modular
way to verify it using existing logics described in the previous
sections for the following reasons:

1. Cgcd shown in Fig. 2 is a fine-grained concurrent program – two
threads share the memory without using locks. The correctness
of the code is based on the fact that each thread preserves the
value at the memory location where the other may update; and
that all updates decreases the values and preserves the GCD.
It is difficult to verify the code using CSL because the invariant
of shared resources cannot express preservation and decrease of
values without heavy use of auxiliary variables.

2. The functionality of Cgcd is self-contained. We want to verify it
once and reuse it in different contexts. However, both original
Rely-Guarantee reasoning and recent extensions described in
Sec. 2.3 require the shared resource be globally known. As a
result, when Cgcd is verified, the rely and guarantee conditions
have to specify the shared list even if it is not accessed by Cgcd ,
negating the very advantage of sequential Separation Logic.

3. The memory block pointed to by x is shared locally by the two
threads in Cgcd, but not used elsewhere. We should be able to
hide it and make it invisible outside when we specify the rely
and guarantee conditions for the thread in Fig. 1. This is not
supported by existing work on Rely-Guarantee reasoning.

4. Even if we give up the third requirement and are willing to
expose the local sharing inside Cgcd in the global rely and
guarantee conditions, we cannot do so because the memory
block pointed to by x is dynamically allocated, whose location
is unknown at the beginning.

Among these problems, the first one is with CSL, while the rest are
with Rely-Guarantee reasoning, including SAGL and RGSep.

Polymorphic Interpretations of Rely/Guarantee Conditions? It
is important to note that using a polymorphic interpretation of
rely and guarantee conditions does not automatically solve these
problems. For instance, we may want to interpret the validity of the
rely condition R over state transitions from σ to σ′ in a way such
that the following property holds:

If (σ,σ′) |= R, σ⊥σ′′, and σ′⊥σ′′, then (σ�σ′′,σ′ �σ′′) |= R.

Here we use σ⊥σ′′ to mean σ and σ′′ are disjoint, and use σ�σ′′
to mean the merge of disjoint states. Their formal definitions are
shown in Sec. 5. Although this interpretation takes care of the part
of state that is not explicitly specified in R, it does not support local
specification and cannot address the second problem mentioned
above. Suppose we have verified Cgcd with a local specification of
R that does not mention the shared list, the interpretation requires
that the list be preserved by the environment, which is too strong

an assumption and cannot be matched with the actual rely condition
for the first 13 lines of code (and the consequence rule cannot be
applied, which only allows strengthening of the rely condition).

As a second try, let’s consider a very weak interpretation that
satisfies the following property:

If (σ,σ′) |= R, σ⊥σ′′, and σ′⊥σ′′′, then (σ�σ′′,σ′ �σ′′′) |= R.

It says the part of the state unspecified in R might be changed arbi-
trarily. This interpretation, however, is too weak for the guarantee
condition G. So we probably need a different interpretation for G,
e.g., the first one. Using different interpretations for R and G makes
the logic complicated. A more serious problem with this approach
is that it does not allow the hiding of locally shared resources. In the
parallel composition rule shown in Sec. 2.1, if we do not specify in
R the resource locally shared by C1 and C2, the new rely condition
R∨G2 for C1 is then too weak to be useful. The variation of the
rule in Sec. 2.3 has the same problem.

3. Our Approach
As in SAGL and RGSep, we also split program states into thread-
private and shared parts. Each thread has exclusive access of its
own private resources. Rely/guarantee conditions only specify the
shared part. But we try to borrow more ideas from Separation Logic
to address the remaining compositionality problems.

We first introduce the separating conjunction over actions, i.e.,
binary relations of states specifying state transitions. Rely and guar-
antee conditions are all actions. Similar to the separating conjunc-
tion p ∗ p′ in Separation Logic, R ∗R′ (or G ∗G′) means the two
sub-actions R and R′ (or G and G′) occur over disjoint parts of
states. A formal definition will be given in Sec. 5.

We can now extend the frame rule in Separation Logic to sup-
port local rely and guarantee conditions:

R,G
 {(p,r)}C{(q,r′)} m stable with respect to R′ . . .
R∗R′,G ∗G′
 {(p,r ∗m)}C{(q,r′ ∗m)}

Following SAGL and RGSep, here we specify private and shared
resources separately in pre- and post-conditions (but not in our
formal development). We use R,G
 {(p,r)}C{(q,r′)} to represent
the old judgment C sat ((p,r),R,G, (q,r′)) described in Sec. 2.3.
The frame rule says we can verify C with the local specification
((p,r),R,G, (q,r′)). When C is executed in different contexts with
the extra shared resource specified by m, we know C satisfies
the “bigger” specification without redoing the proof. The stability
check that causes compositionality problems in Rely-Guarantee
reasoning, as explained in Sec. 2.1, is no longer an issue here
because we can prove r ∗m is stable with respect to R ∗ R′ if r
is stable with respect to R and m is stable with respect to R′ (we
actually need some subtle constraints to prove this, which will be
explained in Sec. 5).

The simpler frame rule for private resources, as shown below, is
supported in SAGL and RGSep and is sound in our logic too.

R,G
 {(p,r)}C{(q,r′)}
R,G
 {(p∗m,r)}C{(q∗m,r′)}

Since the rely/guarantee conditions specify only the shared re-
sources, they do not need to be changed with the extension of the
private predicates.

To allow the hiding of the local sharing of resources by a subset
of threads, we introduce a new hiding rule:

R∗R′,G ∗G′
 {(p,r ∗m)}C{(q,r′ ∗m′)} [side-conditions omitted]
R,G
 {(p∗m,r)}C{(q∗m′,r′)}

(Expr) E ::= x | X | n | E + E | E - E | . . .
(Bexp) B ::= true | false | E = E | E � E | . . .
(Stmts) C ::= x := E | x := [E] | [E] := E | skip

| x := cons(E, . . . ,E) | dispose(E) | C;C
| if B then C else C | while B do C | C1 ‖ C2
| atomic(B){C}

Figure 3. The Language

(Store) s ∈ PVar⇀fin Int

(LvMap) i ∈ LVar⇀fin Int

(Heap) h ∈ Nat⇀fin Int

(State) σ ∈ Store×LvMap×Heap

(Trans) R,G ∈ P(State×State)

Figure 4. Program States

This rule says if the resource specified by m and m′ is shared locally
inside C, and transitions over the resource is specified by R′ and G′,
we can treat it as private and hide R′ and G′ in the rely/guarantee
conditions so that it is invisible from the outside world. Although
this rule only converts part of the shared resource into private
and does not hide its existence in the pre- and post-conditions, it
does hide the resource from other threads because rely/guarantee
conditions are the interface between threads.

At first glance, this rule seems to allow a thread to arbitrarily
hide any shared resources so that it can cheat its environment. The
thread, however, cannot abuse this freedom because the inappropri-
ate hiding will be detected at the point of parallel composition. We
will explain this in detail in Sec. 6.

The hiding rule is particularly interesting when C is a parallel
composition (C1 ‖ C2). It allows us to derive a more general rule
for parallel composition such that the children threads may share
resources that appear to the outside world as private resources
of the parent thread. This also solves the last problem described
in Sec. 2.4. Sharing of dynamically allocated resources usually
follows the pattern of C0; (C1 ‖ C2), like the example in Sec. 2.4.
New resources are allocated by C0 and then shared by C1 and C2.
Since they are unknown at the beginning of C0, we cannot specify
them in the global R and G. Our new rule allows us to leave them
unspecified in the R and G outside of C1 ‖ C2.

Note that the rules shown in this section are used to illustrate our
basic ideas in a semi-formal way. The actual ones in the LRG logic
are presented in Sec. 6 and are in different forms. In particular, we
do not need the pairs (p,r) as pre- and post-conditions.

4. The Language
The syntax of the language is defined in Fig. 3. We use x and X
to represent program variables (PVar) and logical variables (LVar)
respectively. The expressions E and B are pure. The statement
x := [E] ([E] := E′) loads values from (stores the value E′ into)
memory at the location E. x := cons(E1, . . . ,En) allocates n consec-
utive fresh memory cells and initializes them with E1, . . . , En . The
starting address is picked nondeterministically and assigned to x.
dispose(E) frees the memory cell at the location E.

The atomic block atomic(B){C} executes C atomically if B
holds. Otherwise the current process is blocked until B becomes
true. As pointed out by Vafeiadis and Parkinson (2007), it can be

{�, . . . , �+k−1}∩dom(h) = ∅ [[E1]](s,i) = n1 [[Ek]](s,i) = nk x ∈ dom(s)
(x := cons(E1 , . . . ,Ek), (s, i,h))� (skip, (s{x� �}, i,h�{�� n1, . . . , �+k−1� nk}))

[[E j]](s,i) undefined (1 ≤ j ≤ k) or x � dom(s)
(x := cons(E1 , . . . ,Ek), (s, i,h))� abort

[[E]](s,i) = � � ∈ dom(h)
(dispose(E), (s, i,h))� (skip, (s, i,h\ {�}))

[[E]](s,i) undefined or [[E]](s,i) � dom(h)
(dispose(E), (s, i,h))� abort

(C1,σ)� (C′1,σ
′)

(C1;C2,σ)� (C′1;C2,σ
′)

(C1,σ)� abort
(C1;C2,σ)� abort (skip;C,σ)� (C,σ)

(C1,σ)� (C′1,σ
′)

(C1 ‖C2,σ)� (C′1 ‖C2,σ
′)

(C2,σ)� (C′2,σ
′)

(C1 ‖C2,σ)� (C1 ‖C′2,σ
′)

(C1,σ)� abort or (C2,σ)� abort
(C1 ‖ C2,σ)� abort

(skip ‖ skip,σ)� (skip,σ)
[[B]]σ = tt (C,σ)�∗ (skip,σ′)
(atomic(B){C},σ)� (skip,σ′)

[[B]]σ = tt (C,σ)�∗ abort
(atomic(B){C},σ)� abort

(σ,σ′) ∈ R
(C,σ)

R�−→ (C,σ′)

(C,σ)� (C′,σ′)

(C,σ)
R�−→ (C′,σ′)

(C,σ)� abort

(C,σ)
R�−→ abort

Figure 5. Operational Semantics

used to model synchronizations at different levels, such as a system-
wide lock or atomicity guaranteed by transactional memory. The
use of atomic(true){C} can also be viewed as annotations of atomic
machine instructions for fine-grained concurrency (Parkinson et al.
2007). The other statements in Fig. 3 have standard meanings.

Figure 4 presents the model of program states. The store s is
a finite partial mapping from program variables to integers; the
logical variable mapping i maps logical variables to integers; and
the heap h maps memory locations (natural numbers) to integers.
The program state σ is a triple of (s, i,h). State transitions R and G
are binary relations of states.

The semantics of E and B are defined by [[E]] and [[B]] respec-
tively. [[E]] is a partial function of type

Store×LvMap⇀ Int .

[[B]] is a partial function of type

Store×LvMap⇀ {tt, ff} .
Their definitions are straightforward and are omitted here. We treat
program variables as resources, following Parkinson et al. (2006).
The semantic functions are undefined if variables in E and B are
not assigned values in s and i.

The single step execution of a process is modeled as a binary
relation:

� ∈ P((Stmts×State)× ((Stmts×State)∪{abort}))
It is defined formally in Fig. 5. Given a statement C and a state
σ, we have three cases. First, C can execute one step. We have a
new state σ′ and a remaining statement C′. In this case, we have
(C,σ)� (C′,σ′). If it is not safe to execute the next statement in the
state σ, we have (C,σ)� abort. In the third case, the program gets
stuck, although σ satisfies the safety requirements. Then (C,σ)�
is undefined. The third case occurs when C is skip, or it begins with
an atomic statement atomic(B){C′} such that B does not hold over
σ or C′ does not terminate. The skip statement plays two roles here:
a statement that has no computation effects or a flag to show the end
of execution. �∗ is the transitive-reflexive closure of the single
step transition relation. Semantics of the most common statements
are elided and are presented in the extended version (Feng 2008).

(PVarList) O ::= • | x,O

(Assertion) p,q,r, I ::= B | emph | emps | Own(x)
| E �→ E | p∗q | p−�q | . . .

(Action) a,R,G ::= p� q | [p] | a∗a | ∃X.a | a⇒ a′
| a∨a | . . .

Figure 6. The Assertion Language

We use R to represent the possible transitions made by the

environment. Then the binary relation
R�−→ , as defined in Fig. 5,

represents one step of state transitions made either by the current
process or by its environment characterized by R. Our treatment
of the atomic block atomic(B){C} follows Vafeiadis and Parkinson
(2007): execution of the statement C appears to finish in one step
and cannot be interrupted by the environment.

5. The Assertion Language
The assertion language is shown in Fig. 6. We use the Separation
Logic assertions to specify program states. Following Parkinson
et al. (2006), we treat program variables as resources, but do not
use fractional permissions, which are orthogonal to our technical
development.

Semantics of some assertions are shown in Fig. 7. The boolean
expression B holds over a state only if it evaluates to true. It
is important to note that, with program variables as resources,
the boolean expression E = E does not always hold. It holds if
and only if the store contains the variables needed to evaluate E.
The assertions emph and emps specify empty heaps and stores
respectively. Own(x) means the ownership of the variable x. E1 �→
E2 specifies a singleton heap with E2 stored at the location E1.
It also requires that the store contain variables used to evaluate
E1 and E2. The separating conjunction p ∗ q means p and q hold
over disjoint part of state. Here we use f⊥g to mean the two finite
partial mappings f and g have disjoint domains. The union of two
disjoint states σ1 and σ2 is defined as σ1 �σ2. The septraction
p−�q, introduced by Vafeiadis and Parkinson (2007), means the
state can be extended with a state satisfying p and the extended
state satisfies q. The assertions O � p and emp are syntactic sugars,

(s, i,h) |=sl B iff [[B]](s,i) = tt

(s, i,h) |=sl emps iff s = ∅
(s, i,h) |=sl emph iff h = ∅
(s, i,h) |=sl Own(x) iff dom(s) = {x}
(s, i,h) |=sl E1 �→ E2 iff

there exist � and n such that [[E1]](s,i) = �, [[E2]](s,i) = n,
dom(h) = {�} and h(�) = n

f⊥g def
= dom(f)∩dom(g) = ∅

(s, i,h)� (s′, i′,h′) def
={

(s∪ s′, i,h∪h′) if s⊥s′, h⊥h′, i = i′
undefined otherwise

σ |=sl p1 ∗ p2 iff there exist σ1 and σ2 such that
σ1�σ2 = σ,σ1 |=sl p1 and σ2 |=sl p2

σ |=sl p−�q iff there exist σ′ and σ′′ such that
σ′′ = σ�σ′,σ′ |=sl p and σ′′ |=sl q

x1, . . . , xn,• � p def
= (Own(x1)∗ · · · ∗Own(xn))∧ p

emp def
= emps∧emph

Figure 7. Semantics of Selected Separation Logic Assertions

(σ,σ′) |= p� q iff σ.i = σ′.i, σ |=sl p and σ′ |=sl q

(σ,σ′) |= [p] iff σ = σ′ and σ |=sl p

(σ,σ′) |= a∗a′ iff
there exist σ1, σ2, σ′1 and σ′2 such that σ1�σ2 = σ,
σ′1�σ′2 = σ′, (σ1,σ

′
1) |= a, and (σ2,σ

′
2) |= a′

((s, i,h), (s′, i,h′)) |= ∃X.a iff
there exist n and i′ such that i′ = i{X� n},

and ((s, i′,h), (s′, i′,h′)) |= a

(σ,σ′) |= a⇒ a′ iff if (σ,σ′) |= a, then (σ,σ′) |= a′

. . .

Emp def
= emp � emp True def

= true � true Id def
= [true]

[[a]] def
= {(σ,σ′) | (σ,σ′) |= a}

Figure 8. Semantics of Actions

whose definitions are also shown in Fig. 7. O contains a set of
program variables, as defined in Fig. 6. We omit other assertions
here, which are standard separation logic assertions.

As in Separation Logic, the precision of assertions is defined
below. Informally, a predicate p is precise if and only if for any
state there is at most one sub-state satisfying p.

Definition 5.1 (Precise Assertions) An assertion p is precise, i.e.,
precise(p) holds, if and only if for all s, i, h, s1, s2, h1, h2, if s1 ⊆ s,
s2 ⊆ s, h1 ⊆ h, h2 ⊆ h, (s1, i,h1) |=sl p and (s2, i,h2) |=sl p, then
s1 = s2 and h1 = h2.

Actions. We use actions a to specify state transitions. As shown in
Fig. 6, rely/guarantee conditions of threads are actions. Semantics
of actions are defined in Fig. 8. The action p � q means the initial
state of the transition satisfies p and the resulting state satisfies
q. [p] specifies an identity transition with the states satisfying p.
a ∗ a′ means the actions a and a′ start from disjoint states and

[p]⇒ p� p [p]⇒ Id [emp]⇔ Emp a⇒ True

a∗Emp⇔ a (p∗ p′) � (q∗q′)⇔ (p � q)∗ (p′ � q′)

a∗a′ ⇔ a′ ∗a
a1⇒ a′1 a2⇒ a′2
a1 ∗a2 ⇒ a′1 ∗a′2

p⇒ p′ q⇒ q′

p� q⇒ p′ � q′

Figure 9. Selected Proof Rules for Actions

the resulting states are also disjoint. Emp, True and Id are defined
using these primitive actions, which represent empty transitions,
arbitrary transitions and arbitrary identity transitions respectively.
We use [[a]] to represent the set of transitions satisfying a, and use
(σ,σ′) |= a and (σ,σ′) ∈ [[a]] interchangeably in this paper.

In Fig. 9, we show some selected proof rules for actions, which
are sound with respect to the semantics of actions. Many proof
rules for Separation Logic assertions can also be ported here for
actions. They are omitted due to space limits. Examples of actions
are shown below. The following lemma shows the monotonicity of
the action a∗ Id:

Lemma 5.2 If (σ1,σ2) |= a ∗ Id, σ′1 = σ1 �σ′, and σ′2 = σ2 �σ′,
then (σ′1,σ

′
2) |= a∗ Id.

Stability. Next we introduce the concept of stability of an asser-
tion p with respect to an action a.

Definition 5.3 (Stability) We say p is stable with respect to the
action a, i.e., Sta(p,a) holds, if and only if for all σ and σ′, if
σ |=sl p and (σ,σ′) |= a, then σ′ |=sl p.

Informally, Sta(p,a) means the validity of p is preserved by
transitions in [[a]]. Examples of Sta(p,a) are shown below. Follow-
ing RGSep (Vafeiadis and Parkinson 2007), the following lemma
shows the encoding of stability using the septraction p−�q.

Lemma 5.4 The following are true:

• Sta(r, p� q) if and only if ((p−�r)∧emp)∗q⇒ r;

• If (p−�r)∗q⇒ r, then Sta(r, p� q);

• Sta(r, (p� q)∗ Id) if and only if (p−�r)∗q⇒ r.

The separating conjunction a∗a′ over actions allows us to com-
pose disjoint transitions into one. Naturally, we want the following
property about stability to hold:

If Sta(p,a) and Sta(p′,a′), then Sta(p∗ p′,a∗a′).
As explained in Sec. 3, this property is important to support local
reasoning. Unfortunately, it is not true in general, as shown in the
following example. The example also shows that we cannot get this
property even with precise p and p′.

Example 5.5 Let a def
= ([�1 �→ n1])∨ ((�2 �→ n2) � (�2 �→ n2+1)),

p def
= �1 �→ n1, a′ def

= ([�2 �→ n2])∨ ((�1 �→ n1)� (�1 �→ n1+1)), and
p′ def
= �2 �→ n2, and suppose �1 � �2, we can prove Sta(p,a) and

Sta(p′,a′), but Sta(p∗ p′,a∗a′) does not hold.

Here is a counterexample. Let the heap h be {�1� n1, �2� n2},
and h′ be {�1 � n1+1, �2 � n2+1}. Then, for any s, s′ and i,
we have (s, i,h) |=sl p ∗ p′ and ((s, i,h), (s′, i,h′)) |= a ∗ a′, but
(s′, i,h′) |=sl p∗ p′ does not hold. �

I� [I] I� (I � I)
I�a I�a′

I�a∨a′
I�a I′�a′
I ∗ I′ �a∗a′

Figure 10. Selected Rules for Fence (Assuming precise(I))

To establish the property, we seem to need some concept of
“precise actions”, similar to the requirement of precise assertions
in Separation Logic. However, precision alone cannot address
our problem. The following example shows that even if we have
Sta(p1, (r1 � r′1)) and Sta(p2, (r2 � r′2)) for precise p1,r1,r′1, p2,r2
and r′2, we do not necessarily have Sta(p1 ∗ p2, (r1 � r′1)∗ (r2 � r′2)).

Example 5.6 Let p1
def
= �1 �→ n1, r1

def
= �2 �→ n2, r′1

def
= �2 �→ n2+1,

p2
def
= r1, r2

def
= p1, r′2

def
= �1 �→ n1+1, and suppose �1 � �2. We

know Sta(p1, (r1 � r′1)) and Sta(p2, (r2 � r′2)) are vacuously true,
but Sta(p1 ∗ p2, (r1 � r′1)∗ (r2 � r′2)) is false. �

The problem is, p and a may specify different resources even if
Sta(p,a) holds. To address this issue, we introduce invariant-fenced
actions and use an invariant to identify the specified resource.

Invariant-Fenced Actions. The following definition says an ac-
tion a is fenced by a precise invariant I (represented as I�a) if and
only if a holds over identity transitions satisfying [I], and I holds
over the beginning and end states of transitions satisfying a.

Definition 5.7 (Fence) I � a holds iff [I] ⇒ a, a ⇒ (I � I) and
precise(I).

It is natural to ask a to hold over identity transitions so that stutter-
ing steps of processes would also satisfy it. The second requirement
is important to determine the boundary of transitions a and a′ in
a∗a′: the boundary can be uniquely determined if a or a′ is fenced
by a precise invariant I.

Lemma 5.8 If (σ1�σ2,σ
′) |= a ∗a′, σ1 |=sl I and I� a, then there

exist unique σ′1 and σ′2 such that σ′ = σ′1 �σ′2, (σ1,σ
′
1) |= a and

(σ2,σ
′
2) |= a′.

From Lemma 5.8 we can derive the following frame property of
the action a∗ Id.

Corollary 5.9 If (σ1�σ2,σ
′) |= a∗ Id,σ1 |=sl I and I�a, then there

exists σ′1 such that σ′ = σ′1�σ2 and (σ1,σ
′
1) ∈ [[a]].

Figure 10 shows some selected proof rules for the fencing rela-
tion. The following lemma shows that the property about stability
discussed in the previous section holds given an action fenced by a
precise invariant.

Lemma 5.10 If Sta(p,a), Sta(p′,a′), p ⇒ I and I � a, we have
Sta(p∗ p′,a∗a′).

Below we give two examples to show invariant fenced actions.
In particular, Example 5.12 shows that asking I in I�a to be precise
does not prevent the action a from changing the size of the resource.

Example 5.11 Let I = �1 �→ ∗ �2 �→ , a1 = [�1 �→ X ∗ �2 �→ Y],
a2 = ((�1 �→ X ∗ �2 �→ Y)∧X > Y)� (�1 �→ X−Y ∗ �2 �→ Y), and
a3 = ((�1 �→ X ∗ �2 �→ Y)∧X < Y) � (�1 �→ X ∗ �2 �→ Y −X). We
have I � a1, I � (a1 ∨a2), I � (a1 ∨a3), and I � (a1 ∨a2 ∨a3), but
not I�a2 or I�a3. �

Example 5.12 We define List(�,n) as a linked list pointed to by �
with length n:

List(�,0) def
= � = 0∧emp

List(�,n+1) def
= (emps∧ � � 0∧ (� �→ ∗ �+1 �→ �′))∗List(�′,n)

Let I = ∃n. List(�,n), and a = (List(�,m)∧m ≤ n) � (List(�,n)). We
can prove that I�a holds. �

6. The LRG Logic
As in SAGL/RGSep, we also split program states into private and
shared parts, but the partition is logical and we do not change our
model of states defined in Fig. 4. Our logic ensures that each thread
has exclusive access to its private resource. The rely/guarantee
conditions only specify transitions over shared resources.

If a statement C only accesses the private resource, it can be
verified as sequential programs using a set of sequential rules. The
judgment for well-formed sequential programs is in the form of
{p} C {q}. The rules are mostly standard Separation Logic rules
except that program variables are treated as resources, follow-
ing Parkinson et al. (2006). They are omitted due to space limits
and can be found in the extended version of the paper (Feng 2008).
Note that, to prove {p} C {q}, C cannot contain atomic statements
and parallel compositions.

6.1 Rules for Concurrency Verification

If the statement C shares resources with its environment, we need
to consider its interaction with the environment and verify it using
the set of rules for concurrency, shown in Fig. 11. The judgment
for well-formed statements C in a concurrent setting is in the form
of R; G; I
 {p} C {q}. R and G are rely/guarantee conditions.
They are fenced by the invariant I. p and q are pre- and post-
conditions. R, G and I only specify shared resources, but p and
q here specify the whole state. Unlike SAGL/RGSep, we do not
distinguish private and shared resources syntactically in assertions.
Instead, their boundary can be determined by the invariant I.

The env rule allows us to convert the judgment {p} C {q} into
the concurrent form. If C only accesses the private resources and
is “well-behaved” sequentially, it is well-behaved in a concurrent
setting where there is no resource sharing. Here the rely/guarantee
conditions are Emp and the invariant is emp, showing the shared
resource is empty. This rule itself is not very useful since it does not
allow resource sharing, but a more interesting rule can be derived
from this rule and the frame rule shown below.

The atomic rule first requires that the state contain the resource
used to evaluate B (as explained in Sec. 5, B = B is no longer
a tautology when variables are treated as resources). Since the
execution of C cannot be interrupted by the environment, we can
treat the whole state as a private resource and verify C using the
sequential rules. Outside of the atomic block, p and q need to be
stable with respect to R∗ Id, R for the shared resource and Id for the
private (i.e., the environment does not touch the private resource).
The transition p � q consists of sub-transitions over shared and
private resources. The one over shared needs to satisfy G, and the
private one can be arbitrary (i.e., True). The rule also requires that
the shared resource be well-formed with respect to the invariant
(i.e., p ∨ q ⇒ I ∗ true), and that R/G be fenced by I. To have
a concise presentation, we use Sta({r,r′},R) as a short hand for
Sta(r,R)∧Sta(r′,R), and I � {R,G} for (I � R)∧ (I �G). Similar
representations are used in the remaining part of the paper.

The p-seq rule for sequential composition is the same as in
standard Rely-Guarantee reasoning and does not need explanation.
In the rules p-while and p-if, we require that the resource needed to

{p}C {q}
Emp; Emp; emp
 {p}C {q} (env)

R; G; I
 {p}C1 {q} R; G; I
 {q}C2 {r}
R; G; I
 {p}C1;C2 {r} (p-seq)

p⇒ B = B {p∧B}C {q} Sta({p,q},R∗ Id) p � q⇒G ∗True p∨q⇒ I ∗ true I� {R,G}
R; G; I
 {p} atomic(B){C} {q} (atomic)

p⇒ (B = B)∗ I R; G; I
 {p∧B}C {p}
R; G; I
 {p}while B do C {p∧¬B} (p-while)

p⇒ (B = B)∗ I R; G; I
 {p∧B}C1 {q} R; G; I
 {p∧¬B} C2 {q}
R; G; I
 {p} if B then C1 else C2 {q} (p-if)

R∨G2; G1; I
 {p1 ∗ r}C1 {q1 ∗ r1} R∨G1; G2; I
 {p2 ∗ r}C2 {q2 ∗ r2} r∨ r1 ∨ r2⇒ I I�R
R; G1∨G2; I
 {p1 ∗ p2 ∗ r}C1 ‖ C2 {q1 ∗q2 ∗ (r1 ∧ r2)} (par)

R; G; I
 {p}C {q} Sta(r,R′ ∗ Id) I′� {R′,G′} r⇒ I′ ∗ true
R∗R′; G ∗G′; I ∗ I′
 {p∗ r}C {q∗ r} (frame)

R∗R′; G ∗G′; I ∗ I′
 {p}C {q} I� {R,G}
R; G; I
 {p}C {q} (hide)

R; G; I
 {p}C {q}
X not free in R,G, and I

R; G; I
 {∃X. p}C {∃X. q} (p-ex)

R; G; I
 {p}C {q}
R; G; I
 {p′}C {q′}

R; G; I
 {p∧ p′}C {q∧q′} (p-conj)

R; G; I
 {p}C {q}
R; G; I
 {p′}C {q′}

R; G; I
 {p∨ p′}C {q∨q′} (p-disj)

p′ ⇒ p R′ ⇒ R G⇒G′ q⇒ q′ R; G; I
 {p}C {q} p′ ∨q′ ⇒ I′ ∗ true I′� {R′,G′}
R′; G′; I′
 {p′}C {q′} (csq)

Figure 11. Inference Rules for Concurrency

evaluate B be available in p but disjoint with the shared resource in
I, i.e., it is in the private part. Therefore, the validity of B would not
be affected by the environment.

The par rule is similar to the one in RGSep shown in Sec. 2.3.
The parent thread distribute p1 and p2 to the children C1 and C2
respectively as their private resources. The resource r is shared by
them. We require that r, r1 and r2 imply I, i.e., the shared resource
is well-formed. Also R needs to be fenced by I.

The frame rule allows us to verify C with local specifications,
and reuse it in contexts where some extra resource r (i.e., the frame)
is used. The frame r contains both private and shared parts. Since C
does not access it, the validity of r is preserved at the end as long as
r is stable with respect to R′ ∗ Id, R′ for the shared part and Id for the
private. We also require that R′ and G′ be fenced by the (precise)
invariant I′, and that the shared part in the frame satisfy I′. Here
G′ is the thread’s guaranteed transition over the extra shared part.
Since G′ is fenced by I′, we know the identity transition made by
C over r indeed satisfies G′. This frame rule is more general than
the two frame rules in Sec. 3 for shared and private resources. As
we will explain later, they can be derived from this rule.

If C knows that the part of the shared resources specified by R′,
G′ and I′ is actually not accessed by the outside world, it can leave
this part unspecified by applying the hide rule. The hide rule is sim-
ilar to its prototype shown in Sec. 3. Note that we do not use two
assertions for private and shared resources respectively and use the
invariant to determine their boundary instead, therefore changing
the invariant from I ∗ I′ to I introduces an implicit conversion of
resources from shared to private. This conversion is explicit in the
prototyping rule in Sec. 3. The advantage of not using two asser-
tions is that we can easily share information in the specifications for
private and shared resources. As usual, the hiding rule also requires
R and G be fenced by the precise invariant I.

As mentioned in Sec. 3, a thread cannot abuse the freedom
provided by the hide rule by hiding the resources that are indeed
shared. The inappropriate hiding can be detected at the time of
the parallel composition. From the par rule we can see that the

private resource p1 of C1 needs to be composed linearly using the
separating conjunction with both the private (p2) and the shared
(r) resources used by C2. If C1 cheats by converting part of r
into p1 using the hide rule, the linearity would be broken and the
precondition after parallel composition would be unsatisfiable.

The p-ex rule introduces existential quantification over specifi-
cations. The conjunction rule (p-conj) is sound in LRG. The p-disj
rule is a standard disjunction rule. The consequence rule (csq) al-
lows adaptations of different part of the specifications.

It is important to note that, like RGSep, we do not have concur-
rency rules for primitive statements, therefore they either only ac-
cess the private resource or access the shared part inside the atomic
block (where the shared resource has been converted into private).

Derived Rules. In Fig. 12, we show several useful rules that can
be derived from the basic set of rules. The env-share rule is similar
to the env rule in Fig. 11, but allows resource sharing with the
environment. It is derived from the env rule and the frame rule.

The rules fr-private and fr-share are frame rules for private
and shared resources respectively, similar to those shown in Sec. 3.
They are derived from the frame rule. To get fr-private, we simply
instantiate R′ and G′ with Emp and I′ with emp in the frame rule.
The fr-share rule is similar to the frame rule, except r contains
only shared resource.

The par-hide rule is a generalization of the par rule. The parent
thread has private resource p1 ∗ p2 ∗m and shares the resource r
with its environments. p1 and p2 are distributed to C1 and C2
respectively as their private resources. m and r are shared by them.
The guarantees about the use of m by the two processes are G′1 and
G′2 respectively, which are fenced by I′. Since m is private resource
of the parent thread, the sharing between children threads does not
need to be exposed to the environments. Thus R, G1 and G2 only
specify transitions over the resource specified by r. They are fenced
by I. Here we also require that r, r′ and r′′ all imply I; and that m,
m′ and m′′ all imply I′. To derive the par-hide rule, we first apply
the par rule, and then apply the hide rule to convert m to private

{p}C {q} Sta(r,R∗ Id) I� {R,G} r⇒ I ∗ true
R; G; I
 {p∗ r} C {q∗ r} (env-share)

R; G; I
 {p}C {q}
R; G; I
 {p∗ r}C {q∗ r} (fr-private)

R; G; I
 {p}C {q} Sta(r,R′) I′� {R′,G′} r⇒ I′

R∗R′; G ∗G′; I ∗ I′
 {p∗ r}C {q∗ r} (fr-share)

(R∨G2)∗G′2; G1 ∗G′1; I ∗ I′
 {p1 ∗m∗ r}C1 {q1 ∗m′1 ∗ r′1}
(R∨G1)∗G′1; G2 ∗G′2; I ∗ I′
 {p2 ∗m∗ r}C2 {q2 ∗m′2 ∗ r′2}

I� {R,G1,G2} I′� {G′1,G′2} r∨ r′1 ∨ r′2⇒ I m∨m′1 ∨m′2⇒ I′

R; G1∨G2; I
 {p1 ∗ p2 ∗m∗ r}C1 ‖ C2 {q1 ∗q2 ∗ (m′1 ∧m′2)∗ (r′1 ∧ r′2)} (par-hide)

Figure 12. Useful Derived Rules

and to hide G′1 and G′2. The derivation is shown in the extended
version (Feng 2008).

6.2 Semantics and Soundness

The semantics for the judgment {p} C {q} is standard, and the
soundness of sequential rules is formalized and proved following
the standard way established in previous works on sequential Sep-
aration Logic (Yang and O’Hearn 2002).

Definition 6.1 |= {p}C {q} iff, for anyσ such thatσ |=sl p, (C,σ) ��∗
abort, and, if (C,σ)�∗ (skip,σ′), then σ′ |=sl q.

Lemma 6.2 (Seq-Soundness) If {p}C {q}, then |= {p}C {q}.

Before we define the semantics for the judgment R; G; I

{p}C {q}, we introduce the non-interference property.

Definition 6.3 (Non-Interference) (C,σ,R) =⇒0 G always holds;
(C,σ,R) =⇒n+1 G holds iff (C,σ) �� abort, and,

(1) for all σ′, if (σ,σ′) ∈ R, then for all k ≤ n, (C,σ′,R) =⇒k G;

(2) for all σ′, if (C,σ)� (C′,σ′), then (σ,σ′) ∈ G and
(C′,σ′,R) =⇒k G holds for all k ≤ n.

So (C,σ,R) =⇒n Gmeans, starting from the state σ, C does not
interfere with the environment’s transitions in R up to n steps, and
transitions made by C are inG. It also implies the parallel execution
of C does not abort within n steps, as the following lemma shows.

Lemma 6.4 If (C,σ,R) =⇒n G, there does not exist j such that

j < n and (C,σ)
R�−→ jabort.

The semantics of R; G; I
 {p} C {q} is defined below. Theo-
rem 6.6 shows the soundness of the logic.

Definition 6.5 R; G; I |= {p} C {q} iff, for all σ such that σ |=sl p,
the following are true (where R = [[R∗ Id]] and G = [[G ∗True]]):

(1) if (C,σ)
R�−→∗(skip,σ′), then σ′ |=sl q;

(2) for all n, (C,σ,R) =⇒n G.

Theorem 6.6 (Soundness)
If R; G; I
 {p}C {q}, then R; G; I |= {p}C {q}.

To prove the soundness, we first prove the following properties
about the syntactic judgment.

O � (x = X)∧ (x �→ M,N)

1 〈t11 := [x]〉; 〈t21 := [x+1]〉;
2 〈t12 := [x+1]〉; 〈t22 := [x]〉;
3 while (t11 � t12) do{ while (t21 � t22) do{
4 if(t11 > t12) then { if(t21 > t22) then {
5 t11 := t11−t12; t21 := t21−t22;
6 〈[x] := t11〉; 〈[x+1] := t21〉;
7 } }
8 〈t12 := [x+1]〉; 〈t22 := [x]〉;
9 } }

O � ∃U. (x = X)∧ (x �→ U,U)∧ (U = gcd(M,N))

where O = x,t11,t12,t21,t22,•
R def
= Emp G def

= Emp I def
= emp

Figure 13. Example: Verification of Concurrent GCD

Lemma 6.7 If R; G; I
 {p} C {q}, then I � {R,G} and p∨ q ⇒
I ∗ true.
Proof. By induction over the derivation of R; G; I
 {p}C {q}. �

As in sequential Separation Logic, the locality property (Yang
and O’Hearn 2002; Calcagno et al. 2007a) of primitive statements
is essential to prove the soundness. In addition, in the concurrent
setting, we need similar properties about the environment’s behav-
ior. Lemma 5.2 and Corollary 5.9 show the monotonic property and
the frame property of R∗ Id.

Theorem 6.6 is proved by induction over the derivation of
R; G; I
 {p} C {q}. We show some main lemmas used in the proof
in Appendix A. More details can be found in the extended version
of the paper (Feng 2008).

7. Examples
In this section we show how the programs in Figs. 1 and 2 can be
verified modularly using the LRG logic. Although the example is
very simple and may be a bit contrived, it is very representative in
that it involves both fine-grained concurrency and lock-based pro-
tection of resources, it creates children threads that share dynami-
cally allocated resources, and it requires both local reasoning and
information hiding.

7.1 Concurrent GCD

We first show the verification of the concurrent GCD program using
local specifications. We show the program and the specifications in
Fig. 13. The program is the same as in Fig. 2.

In the example, the parent thread forks two threads. The first
one (the one on the left) reads the values [x] and [x+1], but only

p1
def
= x � x = X∧ (x �→ Y,Z)

p2
def
= x � x = X∧ (x �→ Y,Z)∧Y < Z

p′2
def
= ∃Z′. x � x = X∧ (x �→ Y,Z′)∧Z′ < Z ∧gcd(Y,Z) = gcd(Y,Z′)

p3
def
= x � x = X∧ (x �→ Y,Z)∧Y > Z

p′3
def
= ∃Y′. x � x = X∧ (x �→ Y′,Z)∧Y′ < Y ∧gcd(Y,Z) = gcd(Y′,Z)

R1
def
= (p1 � p1)∨ (p2 � p′2) G1

def
= (p1 � p1)∨ (p3 � p′3)

R2
def
= G1 G2

def
= R1

I′ def
= x � x �→ ∗ x+1 �→

r10
def
= ∃Z. x � x = X∧ (x �→ M,Z)∧gcd(M,Z) = gcd(M,N)

p10
def
= (t11,t12 � emph)∗ r10

p11
def
= (t11,t12 � t11 = M)∗ r10

r12
def
= ∃Z′. x � x = X∧ (x �→ Y,Z′)∧ (Z ≥ Z′)

∧(Y ≥ Z⇒ Z = Z′)∧gcd(Y,Z′) = gcd(M,N)

p12
def
= ∃Y,Z. (t11,t12 � t11 = Y ∧t12 = Z)∗ r12

p13
def
= p12

p14
def
= ∃Y,Z. (t11,t12 � t11 = Y ∧t12 = Z∧Y > Z)∗ r12

p15
def
= ∃Y,Z. (t11,t12 � t11 = (Y −Z)∧t12 = Z∧Y > Z)∗ r12

p16
def
= p12 p17

def
= p12 p18

def
= p12

p19
def
= ∃Y,Z. (t11,t12 � t11 = Y ∧t12 = Z∧Y = Z)∗ r12

Figure 14. Spec. and Intermediate Assertions for the First Thread

updates [x] if [x] > [x+1]. The second one (the one on the right)
does the reverse. The variable x is shared by both threads. t11, t12,
t21 and t22 are temporary variables used exclusively in one of the
threads. We use 〈C〉 as the syntactic sugar for atomic(true){C}. In
this fine-grained concurrent program, we only put basic memory
loads and stores into atomic blocks.

Figure 13 shows in boxes the pre-condition before forking the
two threads and the post-condition after their join. Recall that
the assertion O � p is defined in Fig. 7. The parent thread owns
the variables and the memory cells at locations x and x+1 as
private resources. Here we use x �→ M,N as a short hand for x �→
M ∗ x+1 �→ N. At the end, we know the value of x is preserved, and
values of [x] and [x+1] are the GCD of their initial values. Recall
that capital variables are auxiliary logical variables. The shared
resource of the parent thread is empty. Its R and G are simply Emp.
The invariant fencing them is emp.

To verify the parent thread, we need to first apply the par-
hide rule shown in Fig. 12. Temporaries (t11, t12, t21, t22) are
distributed to the children as their private resources. The variable
x and the memory cells pointed to by x are shared by them. The
precondition p10 for the first thread is specified in Fig. 14, where
r10 specifies the shared resource. Because of the symmetry between
the first and the second threads, we elide specifications for the
second thread.

The rely and guarantee conditions of children threads are shown
in Fig. 14. R1 is the first thread’s assumption about the behavior of
its environment containing the second thread. It says the environ-
ment preserves the value of the shared variable x, and it either pre-
serves the value stored at x and x+1, or decrease the value at x+1
if its original value is bigger than the value at x, but the GCD of
new values is the same as the GCD of original values. The guaran-
tee G1 is similar. Because of the symmetry, we use G2 and R2 are
simply R1 and G1. We use I′ to fence them. It is easy to see that I′
is precise and I′ � {R1,R2,G1,G2} holds.

In Fig. 14, we present all the intermediate assertions as a proof
sketch for the first thread. The assertion p1k is the post-condition

I def
= emps ∧∃X. (lhead �→ X)∗ (X = 1∧ r∨X = 0∧emph)

r def
= ∃�. (lheap+1 �→ �)∗List(�)

List(�) def
= (� = 0∧emph)∨ (� � 0∧∃�′. (� �→ , , �′)∗List(�′))

R def
= I � I G def

= I � I

(O � emph)∗ I
1 nd := 0;

(O � nd = 0∧emph ∨ (nd �→ , ,))∗ I
2 while (nd = 0) do {
3 lk := 0;

(O � lk = 0∧emph ∨lk = 1∧ r)∗ I
4 while (lk � 1) do {
5 〈lk := [lhead]; if (lk = 1) then [lhead] := 0;〉
6 }

(O � r)∗ I
7 nd := [lhead+1];
8 if (nd � 0) then {
9 tmp := [nd+2]; [lhead+1] := tmp
10 }

(O � (nd = 0∧emph ∨ (nd �→ , ,))∗ r)∗ I
11 〈[lhead] := 1〉;

(O � nd = 0∧emph ∨ (nd �→ , ,))∗ I
12 }

(O � (nd �→ , ,))∗ I
13 tmp := [nd]; tmp′ := [nd+1]; x := cons(tmp,tmp′);

(O � ∃M,N. (nd �→ M,N,)∗ (x �→ M,N))∗ I
14 Cgcd

(O � ∃M,N,U. (nd �→ M,N,)∗ (x �→ U,U)∧gcd(M,N) = U)∗ I

Figure 15. Example: GCD of Nodes on List

following the k-th line. The sub-assertion r1j specifies the shared
resource. It is important to note that R1 and G1 specify the change
and preservation of values in memory, which are crucial to verify
the partial correctness. For instance, in p11 we know the value of
t11 is consistent with the value at the memory location x because
R1 ensures the environment does not update [x]. Similarly, we can
derive the relationship between the value of t12 and the value at
the memory location x+1 in p12.

We omit details of the verification of the child thread, which
have been shown several times before to illustrate Rely-Guarantee
reasoning (Yu and Shao 2004; Feng and Shao 2005; Feng et al.
2007). What is new here is our specification for the parent thread,
where the local sharing of memory cells at x and x+1 is hidden
from the environment since R, G and I are simply empty.

7.2 Verification of the Thread in Fig. 1

We show the program again in Fig. 15 with specifications and in-
termediate assertions. The invariant I specifies the well-formedness
of the shared resource (recall its structure is illustrated in Sec. 2.4).
The rely and guarantee conditions are simply I � I.

The verification of lines 1–13 simply applies the technique for
ownership transfer in CSL (O’Hearn 2007). Similar examples have
been shown in Feng et al. (2007) and Vafeiadis and Parkinson
(2007). Here we show some important intermediate assertions to
demonstrate the sketch of the proof and do not explain the details.
In each assertion, O specifies the ownership of variables used in the
thread and its definition is omitted. The shared resource is always
specified by I.

The assertion following Line 13 shows that the allocated mem-
ory block at the location x is treated as private resource, so it does
not affect our specification of R and G. The pre- and post-conditions
for Line 14 (Cgcd) are different from the local specifications given
in Fig. 13. To reuse our proof for Cgcd in the previous section, we
can prove it also satisfies the new specification by applying the
frame rule.

8. Related Work and Conclusions
Rely-Guarantee reasoning has been a well-studied method since it
was proposed by Jones (Jones 1983). A comprehensive survey of
related works can be found in the book by de Roever et al. (2001).
Most of the works, however, have the same compositionality prob-
lems explained in the beginning of this paper.

Reynolds et al. (Reynolds 2002; Ishtiaq and O’Hearn 2001) pro-
posed Separation Logic for modular verification of sequential pro-
grams. O’Hearn has applied the ideas of local reasoning and own-
ership transfers in Concurrent Separation Logic (CSL) for concur-
rency verification (O’Hearn 2007). CSL is modular, but the limited
expressiveness of the program invariants I makes it difficult to rea-
son about fine-grained concurrency.

This paper extends recent works on SAGL (Feng et al. 2007)
and RGSep (Vafeiadis and Parkinson 2007) that have tried to
combine merits of both Rely-Guarantee reasoning and Separation
Logic. Many technical details are borrowed directly from RGSep,
such as the use of the global atomic block and the combination of
small-step and big-step operational semantics to model atomicity,
but the differences between our work and SAGL/RGSep are also
substantial. We define the separating conjunction of rely/guarantee
conditions, and introduce a frame rule and hiding rule in the
logic. These extensions allow us to support local specifications
of rely/guarantee conditions, to hide locally shared resources from
global specifications, and to support sharing of dynamically created
resources, which are all open problems unsolved in SAGL/RGSep.

One more important improvement over SAGL/RGSep is our
assertion language for pre- and post-conditions. SAGL uses two
Separation Logic assertions to specify private and shared resources
respectively. It is difficult for them to share information. RGSep
uses two level logics to address this problem. Shared resources are
specified using boxed assertions in a new logic built over Separa-
tion Logic assertions. In LRG, all we need is just Separation Logic
assertions. We do not need to specify private and shared resources
separately. The boundary is interpreted logically by the asserter and
is fenced by I. On the other hand, SAGL and RGSep do not need I.

Our model of program states is also different from RGSep. In
RGSep the partition of private and shared resources is made phys-
ically in the program states. We do not follow this approach for
several reasons. First, it is somewhat inconsistent with the philos-
ophy of “ownership is in the eye of the asserter” (O’Hearn et al.
2004; O’Hearn 2007), that is, the change of the boundary between
resources is purely logical and there should be no operational ef-
fects. Technically, it makes the operational semantics depend on
the assertion language because atomic blocks need to be annotated
with precise post-conditions to decide the new physical boundary
of resources at the exit. In addition, environments that are coop-
erative in this model might be ill-behaved in the traditional thread
model with shared address spaces. Although this would not affect
the soundness over closed programs in both models, the soundness
of RGSep over programs with open environments does not hold in
the traditional thread model.

Vafeiadis (2007) extends RGSep with multiple atomic blocks
for multiple regions of shared resources. He also supports local

rely and guarantee conditions that specify only individual regions.
However, the pre-/post and rely/guarantee conditions for different
regions need to be distinguished syntactically using the names of
regions, so the assertion language is even more complex than in
RGSep. The partition of regions is also done physically in pro-
gram states. This allows him to avoid the problems shown in Exam-
ples 5.5 and 5.6, but has the same limitations as in RGSep explained
above. We use the separating conjunction of actions to model sub-
transitions over disjoint resources. There is no need of multiple
atomic blocks and physical regions. Regions in LRG are implicit,
whose boundaries are determined logically by the resource invari-
ants. The associativity of separating conjunction allows us to flexi-
bly merge and split regions.

Our work can also be viewed as an extension of CSL with
the more expressive rely/guarantee style specifications, but with-
out sacrificing its modularity. Although not proved in this paper,
we believe CSL can be shown as a specialized version of LRG
in the sense that, given a CSL judgment {p}C{q}, we can prove
I′ � I′; I′ � I′; I′
 {p∗ I′} C {q ∗ I′} in LRG. I′ is in the form of
“(in atomic)∧emp∨ (not in atomic)∧I”, and I is the invariant about
the resource protected by the atomic block.

Bornat et al. (2005) extend CSL with permission accounting,
where the fractional permissions less than 1 represent read-only
permissions. For simplicity, we do not support fractional permis-
sions. Rely/guarantee conditions seem to have similar expressive-
ness to say some data is read-only. On the other hand, adding frac-
tional permissions to LRG may further simplify specifications of
rely/guarantee conditions. It would be interesting future work to
study their relationships.

Yang (2007) proposes a relational separation logic to verify
equivalence of programs. He also uses assertions over a pair of
program states and defines separating conjunction over these as-
sertions, but his assertions are used for very different purposes —
instead of specifying state transitions, they are used to relate pro-
gram states in different programs. Benton (2006) has similar defini-
tion of separating conjunction of binary relations, which is used to
reason about program equivalence instead of modeling state tran-
sitions. Benton uses accessibility maps to determine the bound-
aries of regions of heap, similar to our use of invariants to fence
rely/guarantee conditions. Dynamic Frames are also used (Kassios
2006) for similar purposes.

The major limitation of LRG is the requirement of precise
resource invariants, which might be too restrictive to reason about
programs that leak shared resources. In particular, there are simple
lock-free algorithms that intentionally introduce memory leaks to
avoid ABA problems (Herlihy and Shavit 2008). Their correctness
depends on the existence of garbage collectors (GC). We may
not be able to verify them using LRG. On the other hand, these
algorithms can be instrumented using GC-independent techniques,
e.g., hazard pointers (Michael 2004). We believe the instrumented
algorithms can be verified using LRG, and will test our hypothesis
in our future work.

CSL has the similar restriction to precise invariants, but it can
be relaxed by using supported assertions as invariants and using
intuitionistic assertions to specify private resources (O’Hearn et al.
2004; Brookes 2007). It is unclear if we can have the same relax-
ation. The difficulty is caused by the asymmetric extensions of R
(to R∗Id) and G (to G∗True) in Definition 6.5 and in the atomic
rule. Suppose we have threads T1 and T2. The Id in T1’s rely con-
dition R1∗Id specifies the inaccessibility of T1’s private resources
by the environment. The True in T2’s guarantee G2∗True specifies
T2’s exclusive access of its private resources. Therefore, to ensure
the non-interference, G2 and R1 must have a uniform view of the

shared resources, which is enforced by a precise invariant. A sup-
ported invariant is not sufficient for this purpose. The asymmetric
treatment of R and G results from our attempt to eliminate explicit
distinctions between shared and private resources. Since RGSep
and SAGL have the explicit distinctions, they do not need a pre-
cise view of shared resources.

Another limitation of LRG is that it only supports the verifica-
tion of safety properties (including partial correctness). Gotsman
et al. (2009) extend RGSep to reason about certain liveness proper-
ties of non-blocking algorithms. It would be interesting to see if it
is possible to extend LRG following similar approaches. Also, we
do not discuss the issues about automated verification in this pa-
per. Many works have been done to automate the Rely-Guarantee
based verification, e.g., Flanagan et al. (2005) and Calcagno et al.
(2007b). We would like to combine these techniques with the new
LRG logic in the future.

In summary, we propose the LRG logic in this paper for local
Rely-Guarantee reasoning. Introducing separating conjunction of
actions allows us to borrow the techniques developed in Separation
Logic for local reasoning. Our LRG logic, for the first time, sup-
ports a frame rule over rely/guarantee conditions and a hiding rule
for hiding the local sharing of resources from the outside world.
These rules allow us to write local rely/guarantee conditions and
improve the reusability of verified program modules.

Acknowledgments
I would like to thank Matthew Parkinson for the inspiring discus-
sions and suggestions. In particular, Matthew suggested to add the
hide rule and showed that the par-hide rule, which was a built-in
rule in an earlier version of the paper, could be derived from the hide
rule and the par rule. Thanks to Viktor Vafeiadis, Zhong Shao, and
anonymous referees for their suggestions and comments on earlier
versions of this paper.

References
Nick Benton. Abstracting allocation : The new new thing. In Proc.

Computer Science Logic (CSL’06), volume 4207 of Lecture Notes in
Computer Science, pages 182–196. Springer, September 2006.

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J.
Parkinson. Permission accounting in separation logic. In Proc. 32nd
ACM Symp. on Principles of Prog. Lang. (POPL’05), pages 259–270.
ACM Press, January 2005.

Stephen Brookes. A semantics for concurrent separation logic. Theor.
Comput. Sci., 375(1-3):227–270, 2007.

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action
and abstract separation logic. In Proc. 22nd Annual IEEE Symposium on
Logic in Computer Science (LICS’07), pages 366–378. IEEE Computer
Society, July 2007a.

Cristiano Calcagno, Matthew J. Parkinson, and Viktor Vafeiadis. Modular
safety checking for fine-grained concurrency. In Proc. 14th Int’l Sym-
posium on Static Analysis (SAS’07), volume 4634 of Lecture Notes in
Computer Science, pages 233–248. Springer, August 2007b.

Willem-Paul de Roever, Frank de Boer, Ulrich Hanneman, Jozef Hooman,
Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency veri-
fication: introduction to compositional and noncompositional methods.
Cambridge University Press, 2001.

Xinyu Feng. Local rely-guarantee reasoning (extended ver-
sion). Technical Report TTIC-TR-2008-1, Toyota Technolog-
ical Institute at Chicago, Chicago, IL, U.S.A., October 2008.
http://www.tti-c.org/technical reports/ttic-tr-2008-1.pdf.

Xinyu Feng and Zhong Shao. Modular verification of concurrent assembly
code with dynamic thread creation and termination. In Proc. 2005 ACM
Int’l Conf. on Functional Prog. (ICFP’05), pages 254–267. ACM Press,
September 2005.

Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship be-
tween concurrent separation logic and assume-guarantee reasoning. In
Proc. 16th European Symp. on Prog. (ESOP’07), volume 4421 of Lec-
ture Notes in Computer Science, pages 173–188. Springer, March 2007.

Cormac Flanagan, Stephen N. Freund, Shaz Qadeer, and Sanjit A. Seshia.
Modular verification of multithreaded programs. Theor. Comput. Sci.,
338(1-3):153–183, 2005.

Alexey Gotsman, Byron Cook, Matthew J. Parkinson, and Viktor Vafeiadis.
Proving that non-blocking algorithms don’t block. In Proc. 36th ACM
Symp. on Principles of Prog. Lang. (POPL’09), page to appear. ACM
Press, January 2009.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers, March 2008.

Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for
mutable data structures. In Proc. 28th ACM Symp. on Principles of Prog.
Lang. (POPL’01), pages 14–26. ACM Press, January 2001.

Cliff B. Jones. Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

Cliff B. Jones. Wanted: a compositional approach to concurrency. In
Programming Methodology, pages 5–15. Springer-Verlag, 2003.

Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies
and sharing without restrictions. In Proc. 14th International Symposium
on Formal Methods (FM’06), volume 4085 of Lecture Notes in Com-
puter Science, pages 268–283. Springer, August 2006.

Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems, 15
(6):491–504, 2004.

Peter W. O’Hearn. Resources, concurrency and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and
information hiding. In Proc. 31th ACM Symp. on Principles of Prog.
Lang. (POPL’04), pages 268–280. ACM Press, January 2004.

Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno. Variables
as resource in hoare logics. In Proc. 21st Annual IEEE Symposium on
Logic in Computer Science (LICS’06), pages 137–146. IEEE Computer
Society, August 2006.

Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular
verification of a non-blocking stack. In Proc. 34th ACM Symp. on Prin-
ciples of Prog. Lang. (POPL’07), pages 297–302. ACM Press, January
2007.

John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. 17th Annual IEEE Symposium on Logic in Computer
Science (LICS’02), pages 55–74. IEEE Computer Society, July 2002.

Viktor Vafeiadis. Modular Fine-Grained Concurrency Verification. PhD
thesis, University of Cambridge, July 2007.

Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee
and separation logic. In Proc. 18th Int’l Conf. on Concurrency Theory
(CONCUR’07), volume 4703 of Lecture Notes in Computer Science,
pages 256–271, September 2007.

Hongseok Yang. Relational separation logic. Theor. Comput. Sci., 375(1-3):
308–334, 2007.

Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reason-
ing. In Proc. 5th Int’l Conf. on Foundations of Software Science and
Computation Structures (FoSSaCS’02), volume 2303 of Lecture Notes
in Computer Science, pages 402–416. Springer, April 2002.

Dachuan Yu and Zhong Shao. Verification of safety properties for concur-
rent assembly code. In Proc. 2004 ACM Int’l Conf. on Functional Prog.
(ICFP’04), pages 175–188. ACM Press, September 2004.

A. Soundness Proof for LRG
Theorem 6.6 is proved by induction over the derivation of the
judgment R; G; I
 {p} C {q}. The whole proof consists of the
soundness proof for each individual rules. Here we show the main
lemmas used to prove the soundness of frame, hide and par. More
details are shown in the extended version (Feng 2008).

A.1 Soundness of the frame rule

Suppose the frame rule is applied to derive R∗R′; G ∗G′; I ∗ I′

{p∗ r}C {q∗r}. We want to prove R∗R′; G ∗G′; I ∗ I′ |= {p∗ r}C {q∗
r}. By inversion of the frame rule we know R; G; I
 {p} C {q},
Sta(r,R′ ∗ Id), r⇒ I′ ∗ true, and I′� {R′,G′} hold. By the induction
hypothesis (of Theorem 6.6), we know R; G; I |= {p} C {q}. Also,
by Lemma 6.7 we know I� {R,G} and p⇒ I ∗ true.

Let R = [[R∗ Id]], R′ = [[R∗R′ ∗ Id]], G = [[G ∗True]], and G′ =
[[G ∗G′ ∗True]]. We can prove the following Lemmas A.1 and A.2.
Soundness of the frame rule is shown in A.3.

Lemma A.1 For all n, C, σ1, σ2 and σ′, if σ1 |=sl I ∗ true,

σ2 |=sl r, (C,σ1,R) =⇒n G, and (C,σ1�σ2)
R′�−→n(skip,σ′), then

there exist σ′1 and σ′2 such that σ′ = σ′1 � σ′2, σ′2 |=sl r, and

(C,σ1)
R�−→n(skip,σ′1).

Lemma A.2 For all n, σ1, σ2 and C, if (C,σ1,R) =⇒n G, σ1 |=sl
I ∗ true, and σ2 |=sl I′ ∗ true, then (C,σ1�σ2,R′) =⇒n G′.

Lemma A.3 (Frame-Sound)
If R; G; I |= {p}C {q}, then R∗R′; G ∗G′; I ∗ I′ |= {p∗ r} C {q∗ r}.
Proof. By Definition 6.5, we need to prove that, for all σ, if
σ |=sl p∗ r, we have

(1) if (C,σ)
R′�−→∗(skip,σ′), then σ′ |=sl q∗ r;

(2) for all n, (C,σ,R′) =⇒n G′.
By σ |=sl p ∗ r, we know there exist σ1 and σ2 such that σ =

σ1�σ2, σ1 |=sl p, and σ2 |=sl r. By R; G; I |= {p}C {q}, we know:

(a) for all σ′′1 , if (C,σ1)
R�−→∗(skip,σ′′1), then σ′′1 |=sl q; and

(b) for all n, (C,σ1,R) =⇒n G.

To prove (1), suppose (C,σ)
R′�−→∗(skip,σ′). From (b) and Lemma

A.1 we know there exists σ′1 and σ′2 such that σ′ = σ′1 � σ′2,

σ′2 |=sl r, and (C,σ1)
R′�−→∗(skip,σ′1). By (a) we know σ′ |=sl q∗ r.

The proof of (2) follows (b) and Lemma A.2. �

A.2 Soundness of the hide rule

Suppose the hide rule is applied to derive R; G; I
 {p} C {q}. We
want to prove R; G; I |= {p}C {q}. By inversion of the hide rule we
know R∗R′; G ∗G′; I ∗ I′
 {p} C {q} and I� {R,G}. By the induc-
tion hypothesis (of Theorem 6.6), we know R∗R′; G ∗G′; I ∗ I′ |=
{p}C {q}. Also, by Lemma 6.7 we know I ∗ I′ � {R∗R′,G ∗G′} and
p∨q⇒ I ∗ I′ ∗ true.

Let R = [[R∗ Id]], R′ = [[R∗R′ ∗ Id]], G = [[G ∗True]], and G′ =
[[G ∗G′ ∗True]]. We can prove the following Lemmas A.4, A.5 and
A.6. Soundness of the hide rule is shown in A.7.

Lemma A.4 If I � R, (I ∗ I′) � (R∗R′), σ |=sl I ∗ I′ ∗ true, and
(σ,σ′) ∈ [[R∗ Id]], then (σ,σ′) ∈ [[R∗R′ ∗ Id]].

Lemma A.5
For all n, C, σ and σ′, if σ |=sl I ∗ I′ ∗ true, (C,σ,R′) =⇒n G′, and

(C,σ)
R�−→n(skip,σ′), then (C,σ)

R′�−→n(skip,σ′).

Lemma A.6
For all n, C and σ, if σ |=sl I ∗ I′ ∗ true and (C,σ,R′) =⇒n G′, then
(C,σ,R) =⇒n G.

Lemma A.7 (Hide-Sound)
If R∗R′; G ∗G′; I ∗ I′ |= {p}C {q}, then R; G; I |= {p}C {q}.
The proof of Lemma A.7 is similar to the proof of Lemma A.3.

A.3 Soundness of the par rule

Suppose the par rule is applied to derive

R; G1∨G2; I
 {p1 ∗ p2 ∗ r}C1 ‖ C2 {q1 ∗q2 ∗ (r1 ∧ r2)} .
We want to prove

R; G1 ∨G2; I |= {p1 ∗ p2 ∗ r}C1 ‖ C2 {q1 ∗q2 ∗ (r1 ∧ r2)} .
By inversion of the par rule we know R∨G2; G1; I
 {p1 ∗ r}C1 {q1 ∗
r1}, R∨G1; G2; I
 {p2 ∗ r} C2 {q2 ∗ r2}, I �R, and r∨ r1 ∨ r2 ⇒ I
hold. By the induction hypothesis (of Theorem 6.6), we know

R∨G2; G1; I |= {p1 ∗ r}C1 {q1 ∗ r1}
and

R∨G1; G2; I |= {p2 ∗ r}C2 {q2 ∗ r2} .
Also, by Lemma 6.7 we know I� {R∨G2,G1,R∨G1,G2}.

LetR1 = [[(R∨G2)∗ Id]], R2 = [[(R∨G1)∗ Id]],R= [[R∗ Id]],G1 =
[[G1 ∗True]], G2 = [[G2 ∗True]], and G = [[(G1 ∨G2)∗True]]. We can
prove the following Lemmas A.8 and A.9. Soundness of the par
rule is shown in A.10.

Lemma A.8 For all n, C1, C2, σ1, σ2, σr and σ′, if σr |=sl I,
(C1,σ1�σr,R1) =⇒n G1, (C2,σ2�σr,R2) =⇒n G2, and

(C1 ‖ C2,σ1�σ2 �σr)
R�−→n+1(skip,σ′), there exist σ′1, σ′2 and σ′r

such thatσ′ =σ′1�σ′2�σ′r,σ′r |=sl I, (C1,σ1�σr)
R1�−→n(skip,σ′1�σ′r)

and (C2,σ2 �σr)
R2�−→n(skip,σ′2�σ′r).

Lemma A.9 For all n, C1, C2, σ1, σ2, σr and σ, if σ = σ1�σ2�
σr,σr |=sl I, (C1,σ1�σr,R1) =⇒n G1, and (C2,σ2�σr,R2) =⇒n

G2, then (C1 ‖C2,σ,R) =⇒n G.

Lemma A.10 (Par-Sound) If R∨G2; G1; I |= {p1 ∗ r} C1 {q1 ∗ r1}
and R∨G1; G2; I |= {p2 ∗ r} C2 {q2 ∗ r2}, then R; G1 ∨G2; I |=
{p1 ∗ p2 ∗ r}C1 ‖ C2 {q1 ∗q2 ∗ (r1 ∧ r2)}.
Proof. By Definition 6.5, we need to prove that, for all σ, if
σ |=sl p1 ∗ p2 ∗ r, we have

(1) if (C1 ‖C2,σ)
R�−→∗(skip,σ′), then σ′ |=sl q1 ∗q2 ∗ (r1 ∧ r2);

(2) for all n, (C1 ‖ C2,σ,R) =⇒n G.

By σ |=sl p1 ∗ p2 ∗ r we know there exit σ1, σ2 and σr such
that σ = σ1 �σ2 �σr, σr |=sl I, σ1 |=sl p1, and σ2 |=sl p2. By
R∨G2; G1; I |= {p1 ∗ r}C1 {q1 ∗ r1} we have

(a1) for all σ′′, if (C1,σ1�σr)
R1�−→∗(skip,σ′′), then σ′′ |=sl q1 ∗ r1;

(b1) for all n, (C1,σ1�σr,R1) =⇒n G1.

Similarly, we have:

(a2) for all σ′′, if (C2,σ2�σr)
R2�−→∗(skip,σ′′), then σ′′ |=sl q2 ∗ r2;

(b2) for all n, (C2,σ2�σr,R2) =⇒n G2.

By (b1), (b2) and Lemma A.8 we know there exist σ′1, σ′2 and σ′r
such thatσ′ =σ′1�σ′2�σ′r,σ′r |=sl I, (C1,σ1�σr)

R1�−→n(skip,σ′1�σ′r)

and (C2,σ2�σr)
R2�−→n(skip,σ′2�σ′r). By (a1) and (a2) we know

σ′1 �σ′r |=sl q1 ∗ r1 and σ′2 �σ′r |=sl q2 ∗ r2. Since r1 ∨ r2 ⇒ I and
precise(I), we have σ′1 �σ′2�σ′r |=sl q1 ∗q2 ∗ (r1 ∧ r2). Thus (1) is
proved.

The proof of (2) follows (b1), (b2) and Lemma A.9. �

