
Deny-Guarantee Reasoning

Mike Dodds1, Xinyu Feng2, Matthew Parkinson1, and Viktor Vafeiadis3

1 University of Cambridge, UK
2 Toyota Technological Institute at Chicago, USA

3 Microsoft Research Cambridge, UK

Abstract. Rely-guarantee is a well-established approach to reasoning about con-
current programs that use parallel composition. However, parallel composition is
not how concurrency is structured in real systems. Instead,threads are started by
‘fork’ and collected with ‘join’ commands. This style of concurrency cannot be
reasoned about using rely-guarantee, as the life-time of a thread can be scoped
dynamically. With parallel composition the scope is static.
In this paper, we introduce deny-guarantee reasoning, a reformulation of rely-
guarantee that enables reasoning about dynamically scopedconcurrency. We build
on ideas from separation logic to allow interference to be dynamically split and
recombined, in a similar way that separation logic splits and joins heaps. To allow
this splitting, we usedenyandguaranteepermissions: a deny permission spec-
ifies that the environment cannot do an action, and guaranteepermission allow
us to do an action. We illustrate the use of our proof system with examples, and
show that it can encode all the original rely-guarantee proofs. We also present the
semantics and soundness of the deny-guarantee method.

1 Introduction

Rely-guarantee [10] is a well-established compositional proof method for reasoning
about concurrent programs that use parallel composition. Parallel composition provides
a structured form of concurrency: the lifetime of each thread is statically scoped, and
therefore interference between threads is also staticallyknown. In real systems, how-
ever, concurrency is not structured like this. Instead, threads are started by a ‘fork’ and
collected with ‘join’ commands. The lifetime of such a thread is dynamically scoped in
a similar way to the lifetime of heap-allocated data.

In this paper, we introducedeny-guaranteereasoning, a reformulation of rely-guar-
antee that enables reasoning about such dynamically scopedconcurrency. We build on
ideas from separation logic to allow interference to be dynamically split and recom-
bined, in a similar way that separation logic splits and joins heaps.

In rely-guarantee, interference is described using two binary relations: therely, R,
and theguarantee, G. Specifications of programs consist of a precondition, a post-
condition and an interference specification. This setup is sufficient to reason about
lexically-scoped parallel composition, but not about dynamically-scoped threads. With
dynamically-scoped threads, the interference at the end ofthe program may be quite
different from the interference at the beginning of the program,because during execu-
tion other threads may have been forked or joined. Therefore, just as in Hoare logic



a program’s precondition and postcondition may differ from each other, so in deny-
guarantee logic a thread’s pre-interference and post-interference specification may dif-
fer from each other.

Main results The main contributions of this paper are summarized below:

– We introduce deny-guarantee logic and apply it to an example(see§3 and§4).
– We present an encoding of rely-guarantee into deny-guarantee, and show that every

rely-guarantee proof can be translated into a deny-guarantee proof (see§5).
– We prove that our proof rules are sound (see§6).
– We have formalized our logic and all the proofs in Isabelle [4].

For clarity of exposition, we shall present deny-guaranteein a very simple setting where
the memory consists only of a pre-allocated set of global variables. Our solution extends
easily to a setting including memory allocation and deallocation (see§7).

Related workOther work on concurrency verification has generally ignored fork/join,
preferring to concentrate on the simpler case of parallel composition. This is true of all
of the work on traditional rely-guarantee reasoning [10, 11]. This is unsurprising, as the
development of deny-guarantee depends closely on the abstract characterization of sep-
aration logic [3]. However, even approaches such as SAGL [5]and RGSep [12] which
combine rely-guarantee with separation logic omit fork/join from their languages.

There exist already some approaches to concurrency that handle fork. Fenget al.[6]
and Hoboret al. [9] both handle fork. However, both omit join with the justification
that it can be handled by synchronization between threads. However, this approach
is not compositional: it forces us to specify interference globally. Gotsmanet al. [7]
propose an approach to locks in the heap which includes both fork and join. However,
this is achieved by defining an invariant over protected sections of the heap, which
makes compositional reasoning about inter-thread interference impossible (see the next
section for an example of this). Haack and Hurlin [8] have extended Gotsmanet al.’s
work to reason about fork and join in Java, where a thread can be joined multiple times.

2 Towards deny-guarantee logic

L0: x := 0;

L1: t1 := fork(if(x==1) error;

x := 1);

L2: t2 := fork(x := 2;

if (x==3) error);

L3: join t1;

L4: x := 2;

L5: join t2;

Fig. 1. Illustration of fork/join

Consider the very simple program given in
Fig. 1. If we run the program in an empty en-
vironment, then at the end, we will getx = 2.
This happens because the main thread will
block at lineL3 until threadt1 terminates.
Hence, the last assignment tox will either be
that of threadt2 or of the main thread, both of
which write the value 2 intox. We also know
that theerror in the forked code onL1 and
L2 will never be reached.

Now, suppose we want to prove that this program indeed satisfies the postcondition
x = 2. Unfortunately, this is not possible with existing compositional proof methods.



Invariant-based techniques (such as Gotsmanet al.[7]) cannot handle this case, because
they cannot describe interference. Unless we introduce auxiliary state to specify a more
complex invariant, we cannot prove the postcondition, as itdoes not hold throughout
the execution of the program.

Rely-guarantee can describe interference, but still cannot handle this program. Con-
sider the parallel rule:

R1,G1 ⊢ {P1}C1 {Q1} G1 ⊆ R2 R2,G2 ⊢ {P2}C2 {Q2} G2 ⊆ R1

R1∩R2,G1∪G2 ⊢ {P1∧P2}C1‖C2 {Q1∧Q2}

In this rule, the interference is described by the rely,R, which describes what the en-
vironment can do, and the guarantee,G, which describes what the code is allowed to
do. The rely and guarantee do not change throughout the execution of the code, they
are ‘statically scoped’ interference, whereas the scope ofthe interference introduced by
fork andjoin commands is dynamic.

Separation logic solves this kind of problem for dynamically allocated memory,
also known as the heap. It uses the star operator to partitionthe heap into heap portions
and to pass the portions around dynamically. The star operator on heaps is then lifted
to assertions about heaps. In this work, we shall use the staroperator to partition the
interferencebetween threads, and then lift it to assertions about the interference.

Let us assume we have an assertion language which can describe interference. It
has a separation-logic-like star operation. We would like to use this star to split and join
interference, so that we can use simple rules to deal withfork andjoin:

{P1}C {P2} . . .

{P∗P1} x := fork C {P∗Thread(x,P2)}
()

. . .

{P∗Thread(E,P′)} join E {P∗P′}
()

The rule simply removes the interference,P1, required by the forked code,C, and
returns a token Thread(x,P2) describing the final state of the thread.

{T1∗G2 ∗D3 ∗L ∗x , 1}
t1 := fork (if(x==1) error;

x := 1);

{G2 ∗D3 ∗L ∗Thread(t1,T1)}
t2 := fork (x := 2;

if(x==3) error );

{L ∗Thread(t1,T1)∗Thread(t2,G2 ∗D3)}
join t1;

{T1∗L ∗Thread(t2,G2 ∗D3)}
x := 2;

{T1∗L ∗Thread(t2,G2 ∗D3)∗x = 2}
join t2

{T1∗G2 ∗D3 ∗L ∗x = 2}

Fig. 2. Proof outline

The  rule, knowing the threadE is dead,
simply takes over its final state1.

Now, we will consider how we might
prove our motivating example. Let us imagine
we have some assertions that both allow us to
do updates to the state, and forbid the envi-
ronment from doing certain updates. We pro-
vide the full details in§4, and simply present
the outline (Fig. 2) and an informal explana-
tion of the permissions here. The first thread
we fork can be verified using theT1 andx, 1,
whereT1 allows us to updatex to be1, and
prevents any other thread updatingx to be
1. Next, we useG2 which allows us to up-
datex to be 2; and D3 which prevents the

1 As in the pthread library, we allow a thread to be joined only once. We could also adapt the
work of Haack and Hurlin [8] to our deny-guarantee setting tohandle Java-style join.



environment from updatingx to be 3. These two permissions are sufficient to ver-
ify the second thread. Finally,L is a leftover permission which prevents any other
thread updatingx to be any value other than1 or 2. When we get to the assign-
ment, we haveT1 ∗ L which forbids the environment performing any update except
assigningx with 2. Hence, we know that the program will terminate withx = 2.

1

0

(me,¬env)

(¬me,¬env)

(¬me, env)

(me, env)
guar deny

Fig. 3. Possible interference

Now, we consider how to build a logic to
represent the permission on interference used in
the proof outline. Let us consider the information
contained in a rely-guarantee pair. For each state
change it has one of four possibilities presented
in Fig. 3: guar permission, allowed by both the
thread and the environment (me,env); 1 permis-
sion, allowed by the thread, and not allowed for
the environment (me,¬env); 0 permission, not al-
lowed by the thread, but allowed by the environment (¬me,env); anddenypermission,
not allowed by the thread or the environment (¬me,¬env).

To allow inter-thread reasoning about interference, we want to split full permissions
1 into eitherdenypermissions orguar permissions. We also want to further splitdeny,
or guar, permissions into smallerdenyor guar permissions respectively. The arrows
of Fig. 3 show the order of permission strength captured by splitting. If a thread has
a denyon a state change, it can give another thread adenyand keep one itself while
preserving the fact that the state change is prohibited for itself and the environment. The
same holds forguar.

To preserve soundness, we cannot allow unrestricted copying of permissions – we
must treat them asresources. Following Boyland [2] and Bornatet al. [1] we attach
weights to splittable resources. In particular we use fractions in the interval (0,1). For
example, we can split an (a+b)denyinto an (a)denyand a (b)deny, and similarly for
guar permissions. We can also split a full permission 1 into (a)denyand (b)deny, or
(a)guarand (b)guar, wherea+b= 1.

In the following sections we will show how these permissionscan be used to build
deny-guarantee, a separation logic for interference.

Aside Starting with the parallel composition rules of rely-guarantee and of separation
logic, you might wonder if we can define our star as (R1,G1)∗ (R2,G2) = (R1∩R2,G1∪

G2) providedG1 ⊆ R2 andG2 ⊆ R1, and otherwise it is undefined. Here we have taken
the way rely-guarantee combines the relations, and added itto the definition of∗.

This definition, however, does not work. The star we have defined is notcancella-
tive, a condition that is required for proving that separation issound [3]. Cancellativity
says that for allx, y andz, if x∗y is defined andx∗y= x∗z, theny= z. Intuitively, the
problem is that∩ and∪ lose information about the overlap.

3 The Logic

Language The language is defined in Fig. 4. This is a standard language with two
additional commands for forking a new thread and for joiningwith an existing thread.



(Expr) E ::= x | n | E + E | E - E | . . .

(BExp) B ::= true | false | E = E | E , E | . . .

(Stmts) C ::= x := E | skip | C;C | if B thenC elseC | while B do C | x := fork C | join E

Fig. 4.The Language

Informally, thex := fork C command allocates an unused thread identifiert, creates a
new thread with thread identifiert and bodyC, and makes it run in parallel with the rest
of the program. Finally, it returns the thread identifiert by storing it inx. The command
join E blocks until threadE terminates; it fails ifE is not a valid thread identifier.
For simplicity, we assume each primitive operation is atomic. The formal operational
semantics is presented in§6.

Deny-Guarantee PermissionsThe main component of our logic is the set of deny-
guarantee permissions,PermDG. A deny-guarantee permission is a function that maps
each action altering a single variable2 to a certain deny-guarantee fraction:

Vars
def
= {x,y,z, . . . }

n ∈ Vals
def
= Z

σ ∈ States
def
= Vars→ Vals

a ∈ Actions
def
= {σ[x 7→ n],σ[x 7→ n′] | σ ∈ States ∧ n, n′}

f ∈ FractionDG
def
= {(deny,π) | π ∈ (0,1)} ∪ {(guar,π) | π ∈ (0,1)} ∪ {0,1}

pr ∈ PermDG
def
= Actions→ FractionDG

We sometimes write deny-guarantee fractions inFractionDG in shorthand, withπd for
(deny,π), andπg for (guar,π).

The fractions represent a permission or a prohibition to perform a certain action.
The first two kinds of fractions are symmetric: (deny,π) says that nobody can do the
action; (guar,π) says that everybody can do the action. The last two are not: 1represents
full control over the action (only I can do the action), whereas 0 represents no control
over an action (others can do it, but I cannot).

From a deny-guarantee permission,pr, we can extract a pair of rely-guarantee con-
ditions. The rely contains those actions permitted to the environment, while the guaran-
tee contains those permitted to the thread (see Fig. 3).

~ � ∈ PermDG→P(Actions)×P(Actions)

~pr�
def
= ({a | pr(a) = (guar, )∨ pr(a) = 0},
{a | pr(a) = (guar, )∨ pr(a) = 1})

As shorthand notations, we will usepr.R andpr.G to represent the first and the second
element in~pr� respectively.

2 We do not consider updates to simultaneous locations as it complicates the presentation.



σ, pr,γ |= B ⇐⇒ ([[ B]]σ = tt)∧ (∀a. pr(a) = 0)∧ (γ = ∅)

σ, pr,γ |= pr′ ⇐⇒ (γ = ∅)∧ (pr = pr′)

σ, pr,γ |= full ⇐⇒ (γ = ∅)∧ (∀a. pr(a) = 1)

σ, pr,γ |= Thread(E,P) ⇐⇒ γ = [[[ E]]σ 7→ P]

σ, pr,γ |= P1 ∗P2 ⇐⇒ ∃pr1, pr2,γ1,γ2. pr = pr1⊕ pr2∧γ = γ1⊎γ2
∧ (σ, pr1,γ1 |= P1)∧ (σ, pr2,γ2 |= P2)

where⊎ means the union of disjoint sets.

σ, pr,γ |= P1−∗P2 ⇐⇒ ∀pr1, pr2,γ1,γ2. pr2 = pr⊕ pr1∧γ2 = γ⊎γ1
∧ (σ, pr1,γ1 |= P1) implies (σ, pr2,γ2 |= P2)

Fig. 5. Semantics of Assertions

Note that thedeny andguar labels come with a fractional coefficient. These coeffi-
cients are used in defining the addition of two deny-guarantee fractions.

0⊕ x
def
= x⊕0

def
= x

(deny,π)⊕ (deny,π′)
def
= if π+π′ < 1 then (deny,π+π′)

else if π+π′ = 1 then 1 else undef

(guar,π)⊕ (guar,π′)
def
= if π+π′ < 1 then (guar,π+π′)

else if π+π′ = 1 then 1 else undef

1⊕ x
def
= x⊕1

def
= if x= 0 then 1 else undef

The addition of two deny-guarantee permissions,pr= pr1⊕ pr2, is defined so that for all
a∈ Actions, pr(a)= pr1(a)⊕ pr2(a). The permission inverseinv is defined soinv(1)= 0,
inv(0)= 1, inv(guar,π) = (guar,1−π), andinv(deny,π) = (deny,1−π).

It is easy to show that addition is commutative, associative, cancellative, and has 0
as a unit element. This allows us to define a separation logic overPermDG.

Assertions and JudgementsThe assertions are defined below.

P,Q ::= B | pr | full | false | Thread(E,P) | P⇒ Q | P∗Q | P−∗Q | ∃x.P

An assertionP is interpreted as a predicate over a program stateσ, a permission
token pr, and a thread queueγ. A thread queue, as defined below, is a finite partial
function mapping thread identifiers to the postcondition established by the thread when
it terminates.

t ∈ ThreadIDs
def
= N γ ∈ ThreadQueues

def
= ThreadIDs⇀fin Assertions

Semantics of assertions is defined in Fig. 5.
The judgments for commands are in the form of{P} C {Q}. As in Hoare Logic,

a command is specified by a precondition (P) and a postcondition (Q). Informally, it
means that if the precondition,P, holds in the initial configuration and the environment



P1 precise {P1} C {P2} x < fv(P1 ∗ P3)
Thread(x,P2)∗P3⇒ P4 allowed([[ x := ∗]] ,P3)

{P1 ∗P3} x := fork [P1,P2] C {P4}
()

{P∗Thread(E,P′)} join E {P∗P′}
()

P1⇒ P′1 {P′1}C {P
′
2} P′2⇒ P2

{P1}C {P2}
()

{P}C {P′} stable(P0)
{P∗P0}C {P′ ∗P0}

()
P⇒ [E/x]P′ allowed([[ x := E]] ,P)

{P} x := E {P′}
()

Fig. 6. Proof Rules

adheres to its specification, then the commandC is safe to execute; moreover every
forked thread will fulfil its specification and ifC terminates, the final configuration will
satisfyQ. A formal definition of the semantics is presented in§6.

The main proof rules are shown in Fig. 6. The proof rules are covered by a general
side-condition requiring that any assertion we write in a triple is stable. Intuitively this
means that the assertion still holds under any interferencefrom the environment, as
expressed in the deny. Requiring stability for every assertion in a triple removes the need
for including explicit stability checks in the proof rules,simplifying the presentation.

Definition 1 (Stability). An assertion P isstable(written stable(P)) if and only if, for
all σ, σ′, pr andγ, if σ, pr,γ |= P and(σ,σ′) ∈ pr.R, thenσ′, pr,γ |= P.

The fork and assign rules includeallowed-statements, which assert that particular
rewrites are permitted by deny-guarantee assertions. Rewrites are given as relations over
states. In the rules, we write~x := E� for the relation over states denoted by assigning
E to x, whereE can be∗ for non-deterministic assignment.

Definition 2 (Allowed). Let K be a relation over states. Thenallowed(K,P) holds if
and only if, for allσ, σ′, pr andγ, if σ, pr,γ |= P and(σ,σ′) ∈ K, then(σ,σ′) ∈ pr.G.

The assignment rule is an adaptation of Hoare’s assignment axiom for sequential
programs. In order to deal with concurrency, it checks that the command has enough
permission (pr) to update the shared state.

The fork and join rules modify the rules given in [7]. The forkrule takes a pre-
condition and converts it into aThread-predicate recording the thread’s expected post-
condition. The rule checks that anypr satisfying the contextP3 is sufficient to allow
assignment to the thread variablex. It requires that the variablex used to store the thread
identifier is not infv(P1 ∗P3), the free variables for the precondition. As with Gotsman
et al. [7], the rule also requires that the preconditionP1 is precise.

The join rule takes a thread predicate and replaces it with the corresponding post-
condition. The frame and consequence rules are modified fromstandard separation-
logic rules. Other rules are identical to the standard Hoarelogic rules.



1 {T1 ∗G2 ∗G2 ∗D3 ∗D3 ∗L′ ∗x , 1}
2 t1 := fork[T1∗(x,1),T1] (if(x==1) error; x := 1)

3 {G2 ∗G2 ∗D3 ∗D3 ∗L′ ∗Thread(t1,T1)}
4 t2 := fork[G2∗D3,G2∗D3] (x := 2; if(x==3) error)

5 {G2 ∗D3 ∗L′ ∗Thread(t1,T1)∗Thread(t2,G2 ∗D3)}
6 join t1;

7 {T1 ∗G2 ∗D3 ∗L′ ∗Thread(t2,G2 ∗D3)}
8 x := 2;

9 {T1 ∗G2 ∗D3 ∗L′ ∗Thread(t2,G2 ∗D3)∗x = 2}
10 join t2;

11 {T1 ∗G2 ∗G2 ∗D3 ∗D3 ∗L′ ∗x = 2}

whereT1
def
= [x : Z 1]1, G2

def
= [x : Z 2] 1

2 g, D3
def
= [x : Z 3] 1

2 d,

and L′
def
= [x : Z {1,2,3}]1−∗ full

Fig. 7. Proof outline of the fork/ join example

4 Two-thread example

In §2 we said that the program shown in Fig. 1 cannot be verified in conventional
rely-guarantee reasoning. We now show that deny-guaranteeallows us to verify this
example. The proof outline is given in Fig. 7.

We use the following notation to represent permissions. Here x ∈ Vars, A,B⊆ Vals
and f ∈ FractionDG.

x: A B
def
= {(σ[x 7→ v],σ[x 7→ v′]) | σ ∈ State∧v ∈ A∧v′ ∈ B∧v, v′}

[X] f
def
= λa.















f if a ∈ X

0 otherwise

Lemma 3 (Permission splitting).

[x: A B⊎B′] f ⇐⇒ [x: A B] f ∗ [x: A B′] f

[x: A B] f ⊕ f ′ ⇐⇒ [x: A B] f ∗ [x: A B] f ′

Lemma 4 (Permission subtraction).If P is precise and satisfiable, then(P−∗ full) ∗
P ⇐⇒ full.

Proof. Holds because (P−∗Q) ∗P ⇐⇒ Q∧ (P∗ true) andfull⇒ P∗ true hold for any
precise and satisfiableP and anyQ. �

The fork/ join program has precondition{full∗x , 1}, giving the full permission, 1,
on every action. The permission [x : Z {1,2,3}]1 permits any rewrite of the variable
x to the value 1, 2 or 3, and prohibits all other rewrites. By Lemma 4,

full ⇐⇒ ([x : Z {1,2,3}]1−∗ full) ∗ [x : Z {1,2,3}]1

By Lemma 3 can split [x : Z {1,2,3}]1 as follows

[x : Z {1,2,3}]1 ⇐⇒ [x : Z 1]1 ∗ [x : Z 2]1∗ [x : Z 3]1
⇐⇒ T1 ∗G2 ∗G2 ∗D3 ∗D3



whereT1, G2 andD3 are defined in Fig. 7. We defineL′ as ([x : Z {1,2,3}]1−∗ full)
(the L used in the proof sketch in Fig. 2 isL′ ∗G2 ∗D3). Consequently, we can derive
the precondition{T1 ∗G2 ∗G2 ∗D3 ∗D3 ∗ L′ ∗x , 1}

The specification for threadt1 is shown below. Note thatx , 1 is stable because
T1 prevents the environment from writing 1 intox. The post-condition does not include
x = 1, becauseT1 does not prohibit the environment from writing other valuesinto x.

{ T1 ∗x , 1} if(x==1) error; x := 1; { T1}

The specification for threadt2 is shown below. The assertionx, 3 is stable because
the permissionD3 is a deny prohibiting the environment from writing 3 inx. Note that
a deny is used rather than full permission because another instance ofD3 is needed to
ensure stability of the assertion on line 9, before the main thread joinst2.

{G2 ∗D3} x := 2; {G2 ∗D3 ∗ x, 3} if(x==3) error {G2 ∗D3}

The specifications fort1 andt2 allow us to apply the fork rule (lines 2 and 4).
We then join the threadt1 and recover the permissionT1 (line 6). Then we apply the
assignment rule for the assignmentx := 2 (line 8).

The post-conditionx = 2 on line 9 is stable becauseT1 ∗ L′ gives the exclusive
permission, 1, on every rewrite except rewrites ofx with value 2 or 3, and the denyD3

prohibits rewrites ofx with value 3. Consequently the only permitted interferencefrom
the environment is to write 2 intox, sox = 2 is stable.

Finally we apply the join rule, collect the permissions heldby the threadt2, and
complete the proof.

5 Encoding rely-guarantee reasoning

In this section, we show that the traditional rely-guarantee reasoning can be embedded
into our deny-guarantee reasoning. First, we present an encoding of parallel composi-
tion using the fork and join commands, and derive a proof rule. Then, we prove that
every rely-guarantee proof for programs using parallel composition can be translated
into a corresponding deny-guarantee proof.

5.1 Adding parallel composition

We encode parallel composition into our language by the following translation:

C1 ‖(x,P1,Q1) C2
def
= x := fork [P1,Q1] C1; C2; join x

Here the annotationsP1,Q1 are required to provide the translation onto thefork , which
requires annotations.x is an intermediate variable used to hold the identifier for thread
C1. We assume thatx is a fresh variable that is not used inC1 or C2. The parallel
composition rule for deny-guarantee is as follows:

{P1}C1 {Q1} {P2}C2 {Q2} x < fv(P1,P2,C1,C2,Q1,Q2) P1 precise
{P1 ∗P2 ∗ full(x)}C1 ‖(x,P1,Q1) C2 {Q1 ∗Q2 ∗ full(x)}

()



Modulo the side-conditions aboutx and precision, and thefull(x) star-conjunct, this is
the same rule as in separation logic. The assertionfull(x) stands for the full permission
on the variablex; that is, we have full permission to assign any value tox.

full(x)(σ,σ′)
def
= if σ[x 7→ v] = σ′∧v, σ(x) then 1, else 0

We extend this notation to sets of variables:full({x1, . . . ,xn})
def
= full(x1)⊕ . . .⊕ full(xn).

Precision is required as the underlyingfork rule requires it. This makes this rule
weaker than if we directly represented the parallel composition in the semantics.

Lemma 5. The parallel composition rule can be derived from the rules given in Fig. 6.

Proof. The proof has the following outline.

{P1 ∗P2 ∗ full(x)}
x := fork [P1,Q1] C1

{Thread(x,Q1) ∗P2∗ full(x)}
C2

{Thread(x,Q1) ∗Q2∗ full(x)}
join x

{Q1 ∗Q2 ∗ full(x)}

The first step uses the first premise, and the frame and fork rules. The second step uses
the second premise and the frame rule. The final step uses the frame and join rules.

5.2 Translation

Now let us consider the translation of rely-guarantee proofs into the deny-guarantee
framework. The encoding of parallel composition intofork and join introduces extra
variables, so we partition variables in constructed fork-join programs into two kinds:
Vars, the original program variables, andTVars, variables introduced to carry thread
identifiers. We will assume that the relies and guarantees from the original proof assume
that theTVars are unchanged.

In §3, we showed how to extract a pair of rely-guarantee conditions from per-
missionspr ∈ PermDG. Conversely, we can encode rely-guarantee pairs into sets of
PermDG permissions as follows:

~ � ∈ P(Actions)×P(Actions)→P(PermDG)

~R,G�
def
= {〈R,G〉F | F ∈ Actions→ (0,1)}

〈R,G〉F
def
= λa.































(guar,F(a)) a ∈ R∧a∈G
0 a ∈ R∧a<G
1 a < R∧a∈G
(deny,F(a)) a < R∧a<G

First, we show that our translation is non-empty: each pair maps to something:

Lemma 6 (Non-empty translation).∀R,G. ~R,G� , ∅



By algebraic manipulation, we can show that the definition above corresponds to the
following more declarative definition:

Lemma 7. ~R,G� = {pr | ~pr� = (R,G)}

Moreover, asRandG assume that theTVars are unchanged, the following lemma holds:

Lemma 8. If pr ∈ ~R,G�, and X⊆ TVars, thenfull(X)⊕ pr is defined.

Now, we can translate rely-guarantee judgements into a non-empty set of equivalent
triples in deny-guarantee. Non-emptiness follows from Lemmas 6 and 8.

Definition 9 (Triple translation).

~R,G ⊢ {P}C {Q}�X
def
= ∀pr ∈ ~R,G�.∃C′. ⊢ {P∗ pr ∗ full(X)} C′ {Q∗ pr ∗ full(X)}

∧ C = erase(C′)

where the set X⊆ TVars carries the set of identifiers used in the parallel compositions,
and erase(C′) is C′ with all annotations removed from parallel compositions.

Note that the judgementR,G ⊢ {P}C {Q} in traditional rely-guarantee reasoning does
not need annotations inC. TheC is a cleaned-up version of some annotated statement
C′. We elide the standard rely-guarantee rules here. This translation allows us to state
the following theorem:

Theorem 10 (Complete embedding).If R,G ⊢ {P} C {Q} is derivable according to
the rely-guarantee proof rules, then~R,G ⊢ {P} C {Q}�X holds.

In other words, given a proof in rely-guarantee, we can construct an equivalent proof
using deny-guarantee. We prove this theorem by consideringeach rely-guarantee proof
rule separately, and showing that the translated versions of the rely-guarantee proof
rules are sound in deny-guarantee. Below we give proofs of the two most interesting
rules: the rule of parallel composition and of weakening. For each of these, we first
need a corresponding helper lemma for the translation of therely-guarantee conditions.
These helper lemmas follow from the definitions ofPermDG and~R,G�.

Lemma 11 (Composition).If G1 ⊆ R2, G2 ⊆ R1, and pr∈ ~R1∩R2,G1∪G2�, then
there exist pr1, pr2 such that pr= pr1⊕ pr2 and pr1 ∈ ~R1,G1� and pr2 ∈ ~R2,G2�.

Lemma 12 (Soundness of translated parallel rule).
If G2 ⊆ R1, G1 ⊆ R2, ~R1,G1 ⊢ {P1}C1{Q1}�X and~R2,G2 ⊢ {P2}C2{Q2}�Y,
then~R1∩R2,G1∪G2 ⊢ {P1∧P2}C1 ‖C2{Q1∧Q2}�{x}⊎X⊎Y

Lemma 13 (Weakening).If R2 ⊆ R1, G1 ⊆G2, and pr∈ ~R2,G2� then there exist per-
missions pr1, pr2 such that pr= pr1⊕ pr2 and pr1 ∈ ~R1,G1�.

Lemma 14 (Soundness of translated weakening rule).If R2 ⊆ R1, G1 ⊆ G2, and
~R1,G1 ⊢ {P}C{Q}�X, then~R2,G2 ⊢ {P}C{Q}�X.



6 Semantics and soundness

The operational semantics of the language is defined in Fig. 8. The semantics is di-
vided into two parts: the local semantics and the global semantics. The local semantics
is closely related to the interpretation of the logical judgements, while the global se-
mantics can easily be erased to a machine semantics. This erasure and other additional
definitions and proofs can be found in the associated technical report [4].

Local semantics The local semantics represents the view of execution from a single
thread. It is defined using the constructs described in§3. The commands all work with
an abstraction of the environment:γ abstracts the other threads, and carries their final
states; andpr abstracts the interference from other threads and the interference that
it is allowed to generate. The semantics will result inabort if it does not respect the
abstraction.

The first two rules, in Fig. 8, deal with assignment. If the assignment is allowed by
pr, then it executes successfully, otherwise the program aborts signalling an error. The
next two rules handle the joining of threads. If the thread being joined with is inγ, then
that thread’s terminalpr′ andγ′ are added to the current thread before the current thread
continues executing. We annotate the transition withjoin (t, pr′,γ′), so the semantics
can be reused in the global semantics. If the thread identifier is not inγ, we signal an
error as we are joining on a thread that we do not have permission to join. The next two
rules deal with forking new threads. If part of the state satisfiesP then we remove that
part of the state, and extend our environment with a new thread that will terminate in a
state satisfyingQ. If there is no part of the state satisfyingP, then we will raise an error
as we do not have the permission to give to the new thread. The remaining local rules
deal with sequential composition.

In the next section of Fig. 8, we define
r
{ , which represents the environment per-

forming an action. We also define{∗ as the transitive and reflexive closure of the
operational semantics extended with the environment action.

Given this semantics, we say a local thread is safe if it will not reach an error state.

Definition 15. ⊢ (C,σ, pr,γ) safe ⇐⇒ ¬((C,σ, pr,γ){∗ abort)

We can give the semantics of the judgements from earlier in terms of this local opera-
tional semantics.

Definition 16 (Semantics of a triple).|= {P}C{Q} asserts that, ifσ, pr,γ |= P, then

– (1) ⊢ (C,σ, pr,γ) safe; and
– (2) if (C,σ, pr,γ){∗ (skip,σ′, pr′,γ′), thenσ′, pr′,γ′ |= Q.

As the programs carry annotations for eachfork , we need to define programs that are
well-annotated, that is, the code for each fork satisfies itsspecification.

Definition 17 (Well-annotated command).We define a command as well-annotated,
⊢C wa, as follows

⊢ fork [P,Q] C wa ⇐⇒ |= {P}C{Q} ∧ ⊢C wa
⊢ skip wa ⇐⇒ always
⊢C1;C2 wa ⇐⇒ ⊢C1 wa ∧ ⊢C2 wa

. . .



Local semantics

[[E]]σ = n (σ,σ[x 7→ n]) ∈ pr.G

(x := E,σ, pr,γ){ (skip,σ[x 7→ n], pr,γ)
[[E]]σ = n (σ,σ[x 7→ n]) < pr.G

(x := E,σ, pr,γ){ abort

[[E]]σ = t γ(t) = Q σ, pr′,γ′ |= Q

(join E,σ, pr,γ)
join (t,pr′ ,γ′)
{ (skip,σ, pr⊕ pr′, (γ \ t)⊎γ′)

[[E]]σ = t t < dom(γ)
(join E,σ, pr,γ){ abort

t < dom(γ) σ, pr′,γ′ |= P pr= pr′⊕ pr′′ γ = γ′⊎γ′′ (σ,σ[x 7→ t]) ∈ pr.G

(x := fork [P,Q] C,σ, pr,γ)
fork (t,C,pr′ ,γ′)

{ (skip,σ[x 7→ t], pr′′,γ′′[t 7→ Q])

σ, pr,γ 6|= P∗ true

(x := fork [P,Q] C,σ, pr,γ){ abort
(σ,σ[x 7→ t]) < pr.G

(x := fork [P,Q] C,σ, pr,γ){ abort

(C,σ, pr,γ){ (C′,σ′, pr′,γ′)

(C;C′′,σ, pr,γ){ (C′;C′′,σ′, pr′,γ′) (skip;C,σ, pr,γ){ (C,σ, pr,γ)

(C,σ, pr,γ){ abort
(C;C′,σ, pr,γ){ abort

Interference

(σ,σ′) ∈ pr.R

(C,σ, pr,γ)
r
{ (C,σ′, pr,γ)

∀(t 7→C, pr,γ) ∈ δ. (σ,σ′) ∈ pr.R

(σ,δ)
r
�=⇒ (σ′, δ)

Global semantics

(C,σ, pr,γ){ (C′,σ′, pr′,γ′) (σ,δ)
r
�=⇒ (σ′, δ′)

(σ, [t 7→C, pr,γ]⊎δ) �=⇒ (σ′, [t 7→C′, pr′,γ′]⊎δ′)

(C,σ, pr,γ)
fork (t2,C2,pr2,γ2)

{ (C′,σ′, pr′,γ′) (σ,δ)
r
�=⇒ (σ′, δ′)

(σ, [t1 7→C, pr,γ]⊎δ) �=⇒ (σ′, [t 7→C′, pr′,γ′]⊎ [t2 7→C2, pr2,γ2]⊎δ′)

(C,σ, pr,γ)
join (t2,pr2,γ2)
{ (C′,σ′, pr′,γ′) (σ,δ)

r
�=⇒ (σ′, δ′)

(σ, [t1 7→C, pr,γ]⊎ [t2 7→ skip, pr2,γ2]⊎δ) �=⇒ (σ′, [t 7→C′, pr′,γ′]⊎δ′)

(C,σ, pr,γ){ abort
(σ, [t 7→C, pr,γ]⊎δ) �=⇒ abort

(C,σ, pr,γ)
−
{ (C,σ′, pr′,γ′) ¬(∃δ′. (σ,δ)

r
�=⇒ (σ′, δ′))

(σ, [t 7→C, pr,γ]⊎δ) �=⇒ abort

(C,σ, pr,γ)
join (t2,pr3,γ3)
{ (C′,σ′, pr′,γ′) ¬((C,σ, pr,γ)

join (t2,pr2,γ2)
{ (C′,σ′, pr′,γ′) )

(σ, [t1 7→C, pr,γ]⊎ [t2 7→ skip, pr2,γ2]⊎δ) �=⇒ abort

Fig. 8. Operational Semantics



Given these definitions we can now state soundness of our logic with respect to the
local semantics.

Theorem 18 (Local soundness).If ⊢ {P}C{Q}, then|= {P}C{Q} and⊢C wa.

Global semantics Now we will consider the operational semantics of the whole ma-
chine, that is, for all the threads. This semantics is designed as a stepping stone between
the local semantics and the concrete machine semantics. We need an additional abstrac-
tion of the global thread-queue.

δ ∈ GThrdQ
def
= ThreadIDs⇀fin Stmts×PermDG×ThreadQueues

In the third part of Fig. 8, we present the global operationalsemantics. The first rule
progresses one thread, and advances the rest with a corresponding environment action.
The second rule deals with removing a thread from a machine when it is successfully
joined. Here the label ensures that the local semantics usesthe same final state for the
thread as it actually has. The third rule creates a new thread. Again the label carries the
information required to ensure the local thread semantics has the same operation as the
global machine.

The three remaining rules deal with the cases when somethinggoes wrong. The
first rule says that if the local semantics can fault, then theglobal semantics can also.
The second raises an error if a thread performs an action thatcannot be accepted as a
legal environment action by other threads. The final rule raises an error if a thread has
terminated and another thread tries to join on it, but cannotjoin with the right final state.

We can prove the soundness of our logic with respect to this global semantics.

Theorem 19 (Global soundness).If ⊢ {P}C{Q} andσ,1,∅ |= P, then

– ¬((σ, [t 7→C,1,∅]) �=⇒∗ abort); and
– if (σ, [t 7→C,1,∅]) �=⇒∗ (σ′, [t 7→ skip, pr,γ]) thenσ′, pr,γ |= Q.

This says, if we have proved a program and it does not initially require any other threads,
then we can execute it without reachingabort, and if it terminates the final state will
satisfy the postcondition.

7 Conclusions and future developments

In this paper we have demonstrated that deny-guarantee enables reasoning about pro-
grams using dynamically scoped threads, that is, programs using fork to create new
threads and join to wait for their termination. Rely-guarantee cannot reason about this
form of concurrency. Our extension borrows ideas from separation logic to enable an
interference to be split dynamically with a logical operation,∗.

We have applied the deny-guarantee method to a setting with only a pre-allocated
set of global variables. However, deny-guarantee extends naturally to a setting with
memory allocation and deallocation.

Deny-guarantee can be applied to separation logic in much the same way as rely-
guarantee, because the deny-guarantee approach is largelyorthogonal to the presence of



the heap. Deny-guarantee permissions can be made intoheap permissionsby defining
actions as binary relations over heaps, rather than over states with fixed global variables.
The SAGL [5] and RGSep [12] approaches can be easily extendedto a setting with fork
and join by using heap permissions in place of relies and guarantees.

Finally, deny-guarantee may allow progress on the problem of reasoning about
dynamically-allocated locks in the heap. Previous work in this area, such as [7] and
[9], has associated locks with invariants. With deny-guarantee we can associate locks
with heap permissions, and make use of compositional deny-guarantee reasoning. How-
ever, considerable challenges remain, in particular the problems of recursive stability
checking and of locks which refer to themselves (Landin’s ‘knots in the store’). We will
address these challenges in future work.

AcknowledgementsWe should like to thank Alexey Gotsman, Tony Hoare, Tom Ridge,
Kristin Rozier, Sam Staton, John Wickerson and the anonymous referees for comments
on this paper. We acknowledge funding from EPSRC grant EP/F019394/1 (Parkinson
and Dodds) and a Royal Academy of Engineering/ EPSRC fellowship (Parkinson).

References

[1] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation
logic. In POPL’05, pages 259–270. ACM Press, 2005.

[2] J. Boyland. Checking interference with fractional permissions. InProc. of SAS’03, volume
2694 ofLNCS, pages 55–72. Springer, 2003.

[3] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In
LICS’07, pages 366–378. IEEE Computer Society, 2007.

[4] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning (ex-
tended version and formalization in Isabelle). Technical Report UCAM-CL-TR-736, Uni-
versity of Cambridge, 2009. Available athttp://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-736.html.

[5] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic
and assume-guarantee reasoning. InProc. ESOP’07, volume 4421 ofLNCS, pages 173–
188. Springer, 2007.

[6] X. Feng and Z. Shao. Modular verification of concurrent assembly code with dynamic
thread creation and termination. InProc. ICFP’05, pages 254–267. ACM Press, 2005.

[7] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local reasoning for storable
locks and threads. InProc. APLAS’07, volume 4807 ofLNCS, pages 19–37. Springer,
2007.

[8] C. Haack and C. Hurlin. Separation logic contracts for a java-like language with fork/join.
In Proc. AMAST’08, volume 5140 ofLNCS, pages 199–215. Springer, 2008.

[9] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semantics for concurrent separation
logic. In Proc. ESOP’08, volume 4960 ofLNCS, pages 353–367. Springer, 2008.

[10] C. B. Jones. Tentative steps toward a development method for interfering programs.ACM
Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[11] C. B. Jones. Annoted bibliography on rely/guarantee conditions.http://homepages.
cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf, 2007.

[12] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic. InProc.
CONCUR’07, volume 4703 ofLNCS, pages 256–271. Springer, 2007.


