Deny-Guarantee Reasoning

Mike Dodds, Xinyu Fend, Matthew Parkinsoh and Viktor Vafeiadis

1 University of Cambridge, UK
2 Toyota Technological Institute at Chicago, USA
3 Microsoft Research Cambridge, UK

Abstract. Rely-guarantee is a well-established approach to reag@atiout con-
current programs that use parallel composition. Howe\aalfel composition is
not how concurrency is structured in real systems. Instisaelads are started by
‘fork’ and collected with ‘join’ commands. This style of comrrency cannot be
reasoned about using rely-guarantee, as the life-time bfeadl can be scoped
dynamically. With parallel composition the scope is static

In this paper, we introduce deny-guarantee reasoning,camefation of rely-
guarantee that enables reasoning about dynamically scopedrrency. We build
on ideas from separation logic to allow interference to beadyically split and
recombined, in a similar way that separation logic splitjains heaps. To allow
this splitting, we uselenyandguaranteepermissions: a deny permission spec-
ifies that the environment cannot do an action, and guargegeaission allow
us to do an action. We illustrate the use of our proof systeth @tamples, and
show that it can encode all the original rely-guarantee fstdtve also present the
semantics and soundness of the deny-guarantee method.

1 Introduction

Rely-guarantee [10] is a well-established compositiomabpmethod for reasoning
about concurrent programs that use parallel compositiarallel composition provides
a structured form of concurrency: the lifetime of each tdreastatically scoped, and
therefore interference between threads is also statikatbyvn. In real systems, how-
ever, concurrency is not structured like this. Insteadkdts are started by a ‘fork’ and
collected with ‘join’ commands. The lifetime of such a thdéa dynamically scoped in
a similar way to the lifetime of heap-allocated data.

In this paper, we introduageny-guaranteesasoning, a reformulation of rely-guar-
antee that enables reasoning about such dynamically scopedrrency. We build on
ideas from separation logic to allow interference to be dyically split and recom-
bined, in a similar way that separation logic splits andgdieaps.

In rely-guarantee, interference is described using twaryinelations: theely, R,
and theguarantee G. Specifications of programs consist of a precondition, &-pos
condition and an interference specification. This setupuficgent to reason about
lexically-scoped parallel composition, but not about dyially-scoped threads. With
dynamically-scoped threads, the interference at the ertdeoprogram may be quite
different from the interference at the beginning of the progtzenause during execu-
tion other threads may have been forked or joined. Thergfost as in Hoare logic

a program’s precondition and postcondition maffetifrom each other, so in deny-
guarantee logic a thread’s pre-interference and posttamnce specification may dif-
fer from each other.

Main results The main contributions of this paper are summarized below:

— We introduce deny-guarantee logic and apply it to an exalisele$3 and§4).

— We present an encoding of rely-guarantee into deny-guegaand show that every
rely-guarantee proof can be translated into a deny-gueggrbof (se€5).

— We prove that our proof rules are sound (§6%

— We have formalized our logic and all the proofs in Isabelle [4

For clarity of exposition, we shall present deny-guaraint@every simple setting where
the memory consists only of a pre-allocated set of globaatées. Our solution extends
easily to a setting including memory allocation and dealtmn (se€7).

Related workOther work on concurrency verification has generally igddoek/join,
preferring to concentrate on the simpler case of parallelgusition. This is true of all
of the work on traditional rely-guarantee reasoning [1Q, This is unsurprising, as the
development of deny-guarantee depends closely on theaabslraracterization of sep-
aration logic [3]. However, even approaches such as SAGRfE]|RGSep [12] which
combine rely-guarantee with separation logic omit fimik from their languages.
There exist already some approaches to concurrency thdtehank. Fenget al. [6]
and Hoboret al. [9] both handle fork. However, both omit join with the justiition
that it can be handled by synchronization between threadsieler, this approach
is not compositional: it forces us to specify interferentabglly. Gotsmaret al. [7]
propose an approach to locks in the heap which includes botreihd join. However,
this is achieved by defining an invariant over protectedisestof the heap, which
makes compositional reasoning about inter-thread imenfze impossible (see the next
section for an example of this). Haack and Hurlin [8] haveeagied Gotsmaet al.'s
work to reason about fork and join in Java, where a thread egoibed multiple times.

2 Towards deny-guarantee logic

Consider the very simple program given inLO_

Fig. 1. If we run the program in an empty en- . il':=0%ork(if (x==1) error;
vironment, then at the end, we will get= 2. x = 1);

This happens because the main thread willo. 2 .= fork(x := 2;

block at lineL3 until threadt1 terminates. if (x==3) error);

Hence, the last assignmenttavill either be L3: join ti1;
that of thread 2 or of the main thread, both of L4: x := 2;
which write the value 2 inta. We also know L5: join t2;
that theerror in the forked code om.1 and
L2 will never be reached.

Now, suppose we want to prove that this program indeed sife postcondition
x = 2. Unfortunately, this is not possible with existing comitiosal proof methods.

Fig. 1. lllustration of forkjoin

Invariant-based techniques (such as Gotsetah [7]) cannot handle this case, because
they cannot describe interference. Unless we introduciliaystate to specify a more
complex invariant, we cannot prove the postcondition, a®és not hold throughout
the execution of the program.

Rely-guarantee can describe interference, but still ceimaradle this program. Con-
sider the parallel rule:

Ri,G1F{P1}C1{Q1} G1SCRy Ry,Gor{P2}Co{Q2} GaCR:
R1NR2,G1UG, - {P1AP2} C1]| C2 {Q1AQ2})

In this rule, the interference is described by the r®ywhich describes what the en-
vironment can do, and the guarant€e,which describes what the code is allowed to
do. The rely and guarantee do not change throughout the #xeaf the code, they
are ‘statically scoped’ interference, whereas the scoplesoihterference introduced by
fork andjoin commands is dynamic.

Separation logic solves this kind of problem for dynamigalllocated memory,
also known as the heap. It uses the star operator to paititeoneap into heap portions
and to pass the portions around dynamically. The star opreoatheaps is then lifted
to assertions about heaps. In this work, we shall use theopenator to partition the
interferencebetween threads, and then lift it to assertions about tleeference.

Let us assume we have an assertion language which can agesugbference. It
has a separation-logic-like star operation. We would likege this star to split and join
interference, so that we can use simple rules to dealfuittk and join:

{P1} C (P2}
{P«P1} x:=fork C{P«Thread(x, P2)}

(FORK) } (yov)

{P«Thread(E, P")} join E {P«P’

Therork rule simply removes the interferend®,, required by the forked cod€, and
returns a token Thread(x,P»;) describing the final state of the thread.
T'heJOIN rule, knov_vmg the threaé is dead, (T1#GyxDaxLrx # 1)
simply takes over its final state :

. . . tl := fork (if(x==1) error;

Now, we will consider how we might x = 1):
prove our motivating example. Let us imagingg, « Dy « L « Thread(t 1, T1)}
we have some assertions that both allow ustot2 .= fork (x := 2;
do updates to the state, and forbid the envi- if (x==3) error);
ronment from doing certain updates. We protL = Thread(t1,T1) * Thread(t2,Gy = D3)}
vide the full details ir§4, and simply present join ti1;
the outline (Fig. 2) and an informal explanaiT1 L * Thread(t2,G2* D3)}
tion of the permissions here. The first thread * := 2;
we fork can be verified using thig andx # 1, {T1* F*Tgread(tz’GZ *Dg)*x =2}
whereT; allows us to update to be1, and I *®
. {T1%GoxD3xLxx =2}

prevents any other thread updatingo be
1. Next, we useG, which allows us to up- Fig. 2. Proof outline
datex to be 2; and D3 which prevents the

1 As in the pthread library, we allow a thread to be joined omtge We could also adapt the
work of Haack and Hurlin [8] to our deny-guarantee settingaadle Java-style join.

environment from updating to be 3. These two permissions arefBaient to ver-

ify the second thread. Finally, is a leftover permission which prevents any other

thread updating to be any value other thah or 2. When we get to the assign-

ment, we haverly =« L which forbids the environment performing any update except

assigningx with 2. Hence, we know that the program will terminate with= 2.
Now, we consider how to build a logic to

represent the permission on interference used in l(me’ﬁem’)
the proof outline. Let us consider the information \
contained in a rely-guarantee pair. For each state guar deny

change it has one of four possibilities presentédée: env \ / —me, ~env)
in Fig. 3: guar permission, allowed by both the
thread and the environment (me,env); 1 permis-
sion, allowed by the thread, and not allowed for rjg 3 possible interference

the environment (meenv); 0 permission, not al-

lowed by the thread, but allowed by the environme#hg,env); anadlenypermission,
not allowed by the thread or the environmenie ,-env).

To allow inter-thread reasoning about interference, wetwasplit full permissions
1 into eitherdenypermissions oguar permissions. We also want to further sglény
or guar, permissions into smalledenyor guar permissions respectively. The arrows
of Fig. 3 show the order of permission strength captured Histisg. If a thread has
a denyon a state change, it can give another threa@ayand keep one itself while
preserving the fact that the state change is prohibitedgelfiand the environment. The
same holds foguar.

To preserve soundness, we cannot allow unrestricted cgpfipermissions — we
must treat them agesourcesFollowing Boyland [2] and Bornagt al. [1] we attach
weights to splittable resources. In particular we use ioastin the interval (0,1). For
example, we can split ara¢ b)denyinto an @)denyand a b)deny and similarly for
guar permissions. We can also split a full permission 1 irdidényand @)deny or
(a)guarand p)guar, wherea+b=1.

In the following sections we will show how these permissioas be used to build
deny-guarantee, a separation logic for interference.

(ﬂme env)

Aside Starting with the parallel composition rules of rely-guaese and of separation
logic, you might wonder if we can define our star B$,G1) * (Rz,G2) = (RiN R, G U

G2) providedG; € Ry, andG» C Ry, and otherwise it is undefined. Here we have taken
the way rely-guarantee combines the relations, and addedhe definition of«.

This definition, however, does not work. The star we have ddfia notcancella-
tive, a condition that is required for proving that separatiosognd [3]. Cancellativity
says that for alk, y andz, if xxy is defined and=y = xx z, theny = z Intuitively, the
problem is thath andu lose information about the overlap.

3 The Logic

Language The language is defined in Fig. 4. This is a standard languaiipetwo
additional commands for forking a new thread and for joinvith an existing thread.

(Expr) E := xX|n|E+E|E-E]...
(BExp) B = true |false |[E=E|E#E]...
(Stmts) C = x:=E | skip | C;C | if BthenC elseC | while BdoC | x:=fork C | join E

Fig. 4. The Language

Informally, thex := fork C command allocates an unused thread identifiereates a
new thread with thread identifieend bodyC, and makes it run in parallel with the rest
of the program. Finally, it returns the thread identifiby storing it inx. The command
join E blocks until threadE terminates; it fails ifE is not a valid thread identifier.
For simplicity, we assume each primitive operation is atorthe formal operational
semantics is presented §6.

Deny-Guarantee PermissionsThe main component of our logic is the set of deny-
guarantee permissiorBermDG. A deny-guarantee permission is a function that maps
each action altering a single variabte a certain deny-guarantee fraction:

def

Vars {xy,z...}
ne vas %z
o € States def Vars — Vals
ac Actions © (o[x n],o[xi>n]|ocStates A n#n)
f € FractionDG def {(deny,x) | 7 € (0,1)} U {(guar,n)| 7 e (0,1)} U {0,1}

def

pre PermDG Actions — FractionDG

We sometimes write deny-guarantee fractionbractionDG in shorthand, withrd for
(deny, x), andng for (guar, n).

The fractions represent a permission or a prohibition tdgper a certain action.
The first two kinds of fractions are symmetrictefiy, 7) says that nobody can do the
action; guar,) says that everybody can do the action. The last two are meprésents
full control over the action (only | can do the action), whes® represents no control
over an action (others can do it, but | cannot).

From a deny-guarantee permissipn, we can extract a pair of rely-guarantee con-
ditions. The rely contains those actions permitted to ttvirenment, while the guaran-
tee contains those permitted to the thread (see Fig. 3).

[.1 € PermDG — P(Actions) x P(Actions)

[pr1 €' (fa | pr(a) = (guar,) v pr(a) = 0},

{a | pr(@) = (guar,) v pr(a) = 1})

As shorthand notations, we will uge.R andpr.G to represent the first and the second
element in[pr] respectively.

2 We do not consider updates to simultaneous locations asiplicates the presentation.

o, pr,yEB = ([Blo=t)A(Vapr(@) =0)A(y=0)
o, pry Epr = (y=0)A(pr=pr)
o, pr,y E full — (y=0ANMapr(@=1)
o,pr,y E Thread(E,P) &= vy =[[E]s+~ P]
o, pry E P1xP; & dpry,pra,ys.y2- Pr=pri®praAy=y1¥yz
A (o, pri,y1 E P1) Ao, pra,y2 P2)
wherew means the union of disjoint sets.
o, pry EP1—=P3 & VPpry,pra,y1,y2. Pr2=préopriAyz=ydys

A (o, pri,y1 | Py) implies (o, pra,y2 E P2)

Fig. 5. Semantics of Assertions

Note that thedeny andguar labels come with a fractional cicient. These cd@é-
cients are used in defining the addition of two deny-guarafngetions.
Oeaxdéaf xeaOd:Ef X
(deny,n) @ (deny,n’) it r + 7/ < Lthen (deny, 7+)

else if 7+’ = 1then 1 else undef

(guar,)@ (quar,) it 7+ 7’ < Lthen (guar, 7 +7)

else if 7+’ = 1then 1 else undef

1ox % xe1 L if x = 0then 1 else undef

The addition of two deny-guarantee permissiqiss pri® pre, is defined so that for all
a€ Actions, pr(a) = pri(a)® pra(a). The permission inversav is defined sanv(1) = 0,
inv(0) = 1, inv(guar,n) = (guar,1—), andinv(deny,r) = (deny, 1 —).

It is easy to show that addition is commutative, associat@ecellative, and has 0
as a unit element. This allows us to define a separation logicRermDG.

Assertions and JudgementsThe assertions are defined below.
P,Q::=B| pr|full | false | Thread(E,P) | P= Q| PxQ | P—=Q | AX.P

An assertionP is interpreted as a predicate over a program state permission
token pr, and a thread queug A thread queue, as defined below, is a finite partial
function mapping thread identifiers to the postconditidalelsshed by the thread when
it terminates.

t € ThreadlDs def N v € ThreadQueues def ThreadlDs —¢n, Assertions
Semantics of assertions is defined in Fig. 5.

The judgments for commands are in the form{Bf C {Q}. As in Hoare Logic,

a command is specified by a preconditi®) @nd a postconditiond). Informally, it
means that if the preconditioR, holds in the initial configuration and the environment

P1 precise {P1} C {P5} X ¢ fv(Pq1 * P3)
Thread(x, P2)« P3 = P4 allowed([x := %] P3)
{P1%P3} x:= fork [P1.P5] C {Py}

(FORK)

PL= P, (PCIPy Py=P,
{P+Thread(E, P} join E (PP} “O™ P11 C (Py) (cons)
{P}C{P"} stable(Pp) () P=[E/X]P" allowed([x:= E] P) (assn)
(PPolC{P sPg] {PIX:=E (P] AN

Fig. 6. Proof Rules

adheres to its specification, then the commeéni$ safe to execute; moreover every
forked thread will fulfil its specification and @ terminates, the final configuration will
satisfy Q. A formal definition of the semantics is presente@t

The main proof rules are shown in Fig. 6. The proof rules axe@d by a general
side-condition requiring that any assertion we write inipléris stable Intuitively this
means that the assertion still holds under any interferémee the environment, as
expressed in the deny. Requiring stability for every agsem a triple removes the need
for including explicit stability checks in the proof rulesmplifying the presentation.

Definition 1 (Stability). An assertion P istable(written stable(P)) if and only if, for
all o, o7, prandy, if o, pr,y E P and(o,0”) € pr.R, theno’, pr,y E P.

The fork and assign rules inclu@ddowed-statements, which assert that particular
rewrites are permitted by deny-guarantee assertions.iiReware given as relations over
states. In the rules, we wrifex := E] for the relation over states denoted by assigning
E to x, whereE can bex for non-deterministic assignment.

Definition 2 (Allowed). Let K be a relation over states. Theflowed(K, P) holds if
and only if, for allo-, o, pr andy, if o, pr,y E P and(o,0”) € K, then(o,0”) € pr.G.

The assignment rule is an adaptation of Hoare’s assignmémmaor sequential
programs. In order to deal with concurrency, it checks thatdommand has enough
permission pr) to update the shared state.

The fork and join rules modify the rules given in [7]. The falde takes a pre-
condition and converts it into Bhread-predicate recording the thread’s expected post-
condition. The rule checks that apy satisfying the contexiPs is suficient to allow
assignment to the thread variabldt requires that the variabbkeused to store the thread
identifier is not infv(Py = P3), the free variables for the precondition. As with Gotsman
et al. [7], the rule also requires that the precondiffaris precise.

The join rule takes a thread predicate and replaces it wetctiresponding post-
condition. The frame and consequence rules are modified $tamdard separation-
logic rules. Other rules are identical to the standard Htagie rules.

1 {T1%GyxGoxD3gxDgxL xx # 1}

2 tl = fork[T.(x#1)T, (if(x==1) error; x := 1)
3 {GoxGrxD3xD3xL «Thread(t1,T1)}

4 t2 = fork[G,«D;G,«Ds] (X := 2; if(x==3) error)
5 {GyxDg3xL’«Thread(tl,T1)*«Thread(t2,G>* D3)}

6 join t1;

7 {T1xGpxDgxL’«Thread(t2,Gy* D3)}

8 X 1= 2;

9 (T1%GyxD3«*L’«Thread(t2,G2+D3)*x =2}

10 join t2;

11 {T1#Go+GoxDg#Dgx*L *xx =2}

whereT; def [x: Z 1]y, Gy def [x: ZWZ]%Q, D3 def [x: Z~ 3]%d,

and L’ ®'[x: Z s (1,2,3)]1 = ful

Fig. 7. Proof outline of the forl join example

4 Two-thread example

In §2 we said that the program shown in Fig. 1 cannot be verifiedomventional
rely-guarantee reasoning. We now show that deny-guarafitees us to verify this
example. The proof outline is given in Fig. 7.

We use the following notation to represent permissionseierVars, A, B C Vals
andf e FractionDG.

x: Aw B E ((ox V], o[x > V]) | o € State Ave AAV € BAVZ V)

f if X
Xy € aall "2¢7
0 otherwise

Lemma 3 (Permission splitting).
[X: A BwB]t < [x: A~ B]¢=[X: A~ B¢
[X: A Blfgr < [X: A~ B]i=[X: A~ B

Lemma 4 (Permission subtraction).If P is precise and satisfiable, thép — full) =
P < full.

Proof. Holds becauseR— Q) xP <= QA (P =true) andfull = Pxtrue hold for any
precise and satisfiabRand anyQ. O

The fork/ join program has preconditidfull = x # 1}, giving the full permission, 1,
on every action. The permissior:[Z ~» {1, 2, 3}]1 permits any rewrite of the variable
x to the value 1, 2 or 3, and prohibits all other rewrites. By lheard,

full &= ([x: Z~ {1,2,3}]1—full) «[x: Z ~ {1,2,3}]1
By Lemma 3 can split: Z ~» {1, 2,3}]1 as follows

[x: Z~{1,2,3)]1 &= [x: Z~ 1]1*[x: Z~> 2]1%[x: Z ~> 3]1
— T1%GoxGox D3 D3

whereT1, G2 andD3 are defined in Fig. 7. We defirg as (k: Z ~» {1, 2,3}]1 —«full)
(the L used in the proof sketch in Fig. 2 is « G, * D3). Consequently, we can derive
the preconditiodTy « G« Gy« D3+ D3* L' «x # 1}

The specification for threatll is shown below. Note that # 1 is stable because
T1 prevents the environment from writing 1 into The post-condition does not include
x =1, becausd; does not prohibit the environment from writing other valugs x.

{Tixx#1} if(x==1) error; x := 1; (T3}

The specification for threaitk is shown below. The assertior 3 is stable because
the permissioDs is a deny prohibiting the environment from writing 3:inNote that
a deny is used rather than full permission because anotsianice ofD3 is needed to
ensure stability of the assertion on line 9, before the nfaiead joinst2.

{G2xD3} x := 2; {GpxD3z*x#3} if(x==3) error {GzxD3}

The specifications fot1 andt2 allow us to apply the fork rule (lines 2 and 4).
We then join the thread1 and recover the permissidn (line 6). Then we apply the
assignment rule for the assignment:= 2 (line 8).

The post-conditiork = 2 on line 9 is stable becauda =L’ gives the exclusive
permission, 1, on every rewrite except rewritesavith value 2 or 3, and the derys
prohibits rewrites ok with value 3. Consequently the only permitted interfereinom
the environment is to write 2 intg, sox = 2 is stable.

Finally we apply the join rule, collect the permissions hbkjdthe thread:2, and
complete the proof.

5 Encoding rely-guarantee reasoning

In this section, we show that the traditional rely-guaramgasoning can be embedded
into our deny-guarantee reasoning. First, we present andang of parallel composi-
tion using the fork and join commands, and derive a proof. rlifeen, we prove that
every rely-guarantee proof for programs using parallel gagition can be translated
into a corresponding deny-guarantee proof.

5.1 Adding parallel composition

We encode parallel composition into our language by theatig translation:

def ..
C1 llx,Py,0) C2 2 xi= forkp,.q,1 C1; Co; join x

Here the annotatiori®;, Q1 are required to provide the translation ontofiid , which
requires annotations.is an intermediate variable used to hold the identifier foeald
C1. We assume that is a fresh variable that is not used @ or C,. The parallel
composition rule for deny-guarantee is as follows:

{P1}C1{Q1} (P2} C2{Q2} x¢fv(P1,P2,C1,C2,Q1,Q2) Py precise
{P1 % P2 full(x)} C1 ll(x,p;,0,) C2 {Q1 * Q2 * full(x)}

(PAR)

Modulo the side-conditions abowtand precision, and thfell(x) star-conjunct, this is
the same rule as in separation logic. The asseftilifx) stands for the full permission
on the variable; that is, we have full permission to assign any value.to

full(x)(o,) " if x> V] = o/ AV o(X) then 1, else O

We extend this notation to sets of variablesi({x1,...,xn}) def full(x1) &®...@full(xp).
Precision is required as the underlyifugk rule requires it. This makes this rule
weaker than if we directly represented the parallel contjprsin the semantics.

Lemma 5. The parallel composition rule can be derived from the rule®gin Fig. 6.

Proof. The proof has the following outline.

{Pl * P2 * fuII(x)}
x :=fork(p,.0,] C1
{Thread(x, Q1) * P2 full(x)}
C
{Thread(x, Q1) * Q2 = full(x)}
join x
{Ql * Q2 * fU”(X)}
The first step uses the first premise, and the frame and fogk.rllhe second step uses
the second premise and the frame rule. The final step usesathe find join rules.

5.2 Translation

Now let us consider the translation of rely-guarantee manto the deny-guarantee
framework. The encoding of parallel composition ifidok andjoin introduces extra
variables, so we partition variables in constructed fark-programs into two kinds:
Vars, the original program variables, af®/ars, variables introduced to carry thread
identifiers. We will assume that the relies and guaranteas the original proof assume
that theTVars are unchanged.

In §3, we showed how to extract a pair of rely-guarantee condtivom per-
missionspr € PermDG. Conversely, we can encode rely-guarantee pairs into $ets o
PermDG permissions as follows:

[-1 € P(Actions) x P(Actions) — P(PermDG)

RG] € ((RG)r | F € Actions — (0,1)}

(guar,F(a)) a<RAaeG

def 0 acRnagG
(RGF =1a 4, a¢RAacG
(deny,F(a)) a¢RAa¢G

First, we show that our translation is non-empty: each paijp$rto something:

Lemma 6 (Non-empty translation).YR G. [R,G] # 0

By algebraic manipulation, we can show that the definitioavabcorresponds to the
following more declarative definition:

Lemma 7. [RG] ={pr|[pr] = (RG)}
Moreover, aiRkandG assume that thEVars are unchanged, the following lemma holds:
Lemma 8. If pr € [R,G], and X TVars, thenfull(X) @ pr is defined.

Now, we can translate rely-guarantee judgements into aemapty set of equivalent
triples in deny-guarantee. Non-emptiness follows from bream 6 and 8.

Definition 9 (Triple translation).

[R.G Fe (P} C {QNx € Vpre [RGI.AC'. + (P prfull(X)} C' {Qx pr+ full(X))
A C=eras€C’)

where the set X TVars carries the set of identifiers used in the parallel composgi
and eras€C’) is C’ with all annotations removed from parallel compositions.

Note that the judgemeiR G +,; {P} C {Q} in traditional rely-guarantee reasoning does
not need annotations @. TheC is a cleaned-up version of some annotated statement
C’. We elide the standard rely-guarantee rules here. Thislaton allows us to state
the following theorem:

Theorem 10 (Complete embedding)lf R,G +y; {P} C {Q} is derivable according to
the rely-guarantee proof rules, thgfR, G r¢ {P} C {Q}]x holds.

In other words, given a proof in rely-guarantee, we can cansen equivalent proof
using deny-guarantee. We prove this theorem by considednl rely-guarantee proof
rule separately, and showing that the translated versibtiseorely-guarantee proof
rules are sound in deny-guarantee. Below we give proofsetwlo most interesting
rules: the rule of parallel composition and of weakening. &ch of these, we first
need a corresponding helper lemma for the translation aktlyeguarantee conditions.
These helper lemmas follow from the definitiondReifmDG and[R,G].

Lemma 11 (Composition).If G1 € Ry, G2 C Ry, and pre [Ry N Ry, Gy U G2]|, then
there exist pf, prz such that pr= pr1® prz and pn € [R1,G1] and pr € [Rz, G2

Lemma 12 (Soundness of translated parallel rule).
If G2 C Ry, G1 € Ry, [R1,G1 Fre {P1}C1{Q1}Ix @and[[Rz, G2 g {P2}C2{Q2} 1y,
then[Ry N Ry, G1 UG kgg {P1 A P2JCy || C2{Q1 A Q2}Tl{apwxwy

Lemma 13 (Weakening)If Rz € Ry, G1 € Go, and pre [Ry, G2] then there exist per-
missions pf, pr2 such that pr= pri @ pro and pn € [Ry, G1].

Lemma 14 (Soundness of translated weakening rule)lf R € Ry, G1 € G, and
[R1,G1 Fre {PIC{Q}Ix, then[Rz, G2 e {P}C{Q}Ix.

6 Semantics and soundness

The operational semantics of the language is defined in Figh8 semantics is di-
vided into two parts: the local semantics and the global sgicg The local semantics
is closely related to the interpretation of the logical jadgents, while the global se-
mantics can easily be erased to a machine semantics. Thige@nd other additional
definitions and proofs can be found in the associated teahrgport [4].

Local semantics The local semantics represents the view of execution fromgles
thread. It is defined using the constructs describegBinThe commands all work with
an abstraction of the environmentabstracts the other threads, and carries their final
states; andpr abstracts the interference from other threads and thefénégice that

it is allowed to generate. The semantics will resulort if it does not respect the
abstraction.

The first two rules, in Fig. 8, deal with assignment. If theigmsent is allowed by
pr, then it executes successfully, otherwise the programsbmnalling an error. The
next two rules handle the joining of threads. If the threadd@ined with is iny, then
that thread’s termingdr’ andy’ are added to the current thread before the current thread
continues executing. We annotate the transition yath (t, pr’,7’), so the semantics
can be reused in the global semantics. If the thread idanisfieot iny, we signal an
error as we are joining on a thread that we do not have pemnissijoin. The next two
rules deal with forking new threads. If part of the states$i@tsP then we remove that
part of the state, and extend our environment with a new thitea will terminate in a
state satisfyin@. If there is no part of the state satisfyiRgthen we will raise an error
as we do not have the permission to give to the new thread. &rhaining local rules
deal with sequential composition.

In the next section of Fig. 8, we define , which represents the environment per-
forming an action. We also define»* as the transitive and reflexive closure of the
operational semantics extended with the environmentmctio

Given this semantics, we say a local thread is safe if it vatlnreach an error state.

Definition 15. + (C, o, pr,y) safe < —((C, o, pr,y) ~* abort)
We can give the semantics of the judgements from earlieringef this local opera-
tional semantics.
Definition 16 (Semantics of a triple).E {P}C{Q} asserts that, itr, pr,y E P, then

- (1)~ (C, 0, pr,y) safe; and

— (2)if (C, o, pr,y) ~* (skip,o”, pr’,y’), theno’, pr',v" E Q.
As the programs carry annotations for edatk , we need to define programs that are
well-annotated, that is, the code for each fork satisfiesgeification.
Definition 17 (Well-annotated command).We define a command as well-annotated,
+ C wa, as follows

Fforkipg Cwa < E{PJC{Q} A -Cwa
Fskipwa < always
FC1;Cowa — +Ciwa A +rCrwa

Local semantics

[El- =n (o,0[x—n]) € pr.G [El- =n (o,0[x—n]) ¢ pr.G
(x:=E, o, pr,y) ~ (skip,a[x+ n], pr,y) (x:=E, o, pr,y) ~ abort

join (t,pr’,y’)

(join E, o, pr,y) ~ (skip,o, prepr’,(y\t)wy’) (join E,o, pr,y) ~ abort

tgdomy) o,pr',y EP pr=prepr” y=y'wy”’ (o,0[x—1t])eprG

fork (t,C,pr',y .
ol (tvpr y)(sklp,O'[X'—) t, pr’,y"[t— QI

(x:=fork pq C,o, pr.y)

o, pr,y = Pxtrue (o,0[x— 1)) ¢ pr.G
(x:=fork(pq C,0. pr,y) ~ abort (x:=fork[pq C,o, pr,y) ~ abort

(C7(77 prv’y) ~ (C/’O_/’ pr',)/')
(C;C",0,pr,y)~ (C";,C",0",pr',y") (skip;C,o, pr,y)~ (C,o, pr,y)

(C, 0, pr,y) ~ abort
(C;C’, o, pr,y) ~ abort

Interference

(o,0’) e pr.R Yt C, pr,y)€d. (o,0') € pr.R

(C.0pr,y) 5 (C,0”, pr,y) (,6) = (0”,0)

Global semantics

(C.o,pr,y)~ (C,0,pr'y) (0,0) = (07,5
(oo [t=C,pr,y]wo) = (o’,[t = C', pr',y'Twd’)

fork (t5,C,,pr»,
Coopry) T CBPE (o o) (0.6) s (0.6

(.[ta > Cpr.y]wo) = (o, [t C', pr',y’] W[tz = Ca, pra, y2] w6')

join (tz,prz,y2)
~>

(C.opr.y) (C0,pr.y) (0.6) = (¢,&)
(.[tz ~ C, pr,y] W[tz > SKip, pra, y2] W0) — (07, [t C', pr',y] 6 &)

(.0, pr,y) ~ abort (C.0,pr,y)~ (C.o”,pry) =35 (0,6) = (o”,8")
(o[t > C, pr,y] w6) = abort (o[t = C, pr,y] W) = abort

join (t2,pra,ys) join (tz,prz,y2)
~ ~

(Cl’(rl7 prl’ 7’) _|((C’ (r’ pr77) (CI’O-I’ pr,”yl))
(o[t — C, pr,y] W[t skip, pra,y2] W) = abort

(C7 o, pr, 7)

Fig. 8. Operational Semantics

Given these definitions we can now state soundness of our\ati respect to the
local semantics.

Theorem 18 (Local soundness)f + {P}C{Q}, thenE {P}C{Q} and+ C wa.

Global semantics Now we will consider the operational semantics of the whote m
chine, that is, for all the threads. This semantics is desigrs a stepping stone between
the local semantics and the concrete machine semanticse®dam additional abstrac-
tion of the global thread-queue.

6 € GThrdQ def ThreadIDs —f, Stmts x PermDG x ThreadQueues

In the third part of Fig. 8, we present the global operatig®hantics. The first rule
progresses one thread, and advances the rest with a cardésg@nvironment action.
The second rule deals with removing a thread from a machireiths successfully
joined. Here the label ensures that the local semanticstheesame final state for the
thread as it actually has. The third rule creates a new thAsgain the label carries the
information required to ensure the local thread semantisdliiie same operation as the
global machine.

The three remaining rules deal with the cases when sometiueg wrong. The
first rule says that if the local semantics can fault, thenglobal semantics can also.
The second raises an error if a thread performs an actiorcémaiot be accepted as a
legal environment action by other threads. The final rulsasin error if a thread has
terminated and another thread tries to join on it, but cajoietvith the right final state.

We can prove the soundness of our logic with respect to tbisajlsemantics.

Theorem 19 (Global soundness)f + {P}C{Q} ando, 1,0 = P, then

— =((o, [t~ C,1,0]) =" abort); and
— if (o, [t = C,1,0]) =* (¢, [t ~ skip, pr,y]) theno”, pr,y E Q.

This says, if we have proved a program and it does not injtialjuire any other threads,
then we can execute it without reachiabort, and if it terminates the final state will
satisfy the postcondition.

7 Conclusions and future developments

In this paper we have demonstrated that deny-guarante¢esralasoning about pro-
grams using dynamically scoped threads, that is, prograsimg dork to create new
threads and join to wait for their termination. Rely-gudesncannot reason about this
form of concurrency. Our extension borrows ideas from sajar logic to enable an
interference to be split dynamically with a logical opevatj.

We have applied the deny-guarantee method to a setting witheopre-allocated
set of global variables. However, deny-guarantee exteatigrally to a setting with
memory allocation and deallocation.

Deny-guarantee can be applied to separation logic in muelsdime way as rely-
guarantee, because the deny-guarantee approach is larthglgonal to the presence of

the heap. Deny-guarantee permissions can be madéeaio permissionby defining
actions as binary relations over heaps, rather than oviesstath fixed global variables.
The SAGL [5] and RGSep [12] approaches can be easily extaondesetting with fork
and join by using heap permissions in place of relies andagiees.

Finally, deny-guarantee may allow progress on the problémeasoning about
dynamically-allocated locks in the heap. Previous workhis &area, such as [7] and
[9], has associated locks with invariants. With deny-gotga we can associate locks
with heap permissions, and make use of compositional delayagtee reasoning. How-
ever, considerable challenges remain, in particular tbélpms of recursive stability
checking and of locks which refer to themselves (Landin'®fs in the store’). We will
address these challenges in future work.

AcknowledgementsWe should like to thank Alexey Gotsman, Tony Hoare, Tom Rjdge
Kristin Rozier, Sam Staton, John Wickerson and the anongmeferees for comments
on this paper. We acknowledge funding from EPSRC grafE&F93941 (Parkinson
and Dodds) and a Royal Academy of Engineefiid®P SRC fellowship (Parkinson).

References

[1] R.Bornat, C. Calcagno, P. O’'Hearn, and M. Parkinsonnffgsion accounting in separation
logic. INnPOPL’'05, pages 259-270. ACM Press, 2005.

[2] J.Boyland. Checking interference with fractional p&sions. InProc. of SAS’03volume
2694 of LNCS pages 55-72. Springer, 2003.

[3] C. Calcagno, P. W. O’'Hearn, and H. Yang. Local action abstract separation logic. In
LICS’07, pages 366—378. IEEE Computer Society, 2007.

[4] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Demjamantee reasoning (ex-
tended version and formalization in Isabelle). Techniagp&t UCAM-CL-TR-736, Uni-
versity of Cambridge, 2009. Available Bttp://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-736.html.

[5] X.Feng, R. Ferreira, and Z. Shao. On the relationshipzbeh concurrent separation logic
and assume-guarantee reasoningPioc. ESOP’07 volume 4421 olLLNCS pages 173—
188. Springer, 2007.

[6] X. Feng and Z. Shao. Modular verification of concurrerseasbly code with dynamic
thread creation and termination. Bmoc. ICFP’05 pages 254—-267. ACM Press, 2005.

[7]1 A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiocal reasoning for storable
locks and threads. IRroc. APLAS'07 volume 4807 ofLNCS pages 19-37. Springer,
2007.

[8] C. Haack and C. Hurlin. Separation logic contracts foatlike language with foyjoin.

In Proc. AMAST’08volume 5140 o NCS pages 199-215. Springer, 2008.

[9] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semastifor concurrent separation
logic. InProc. ESOP’08volume 4960 of. NCS pages 353—-367. Springer, 2008.

[10] C. B. Jones. Tentative steps toward a development rddtiranterfering programsACM
Trans. Program. Lang. Sysb(4):596-619, 1983.

[11] C. B. Jones. Annoted bibliography on r&jyarantee conditionshttp://homepages.
cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf, 2007.

[12] V. Vafeiadis and M. Parkinson. A marriage of r&yarantee and separation logic.Aroc.
CONCUR’07 volume 4703 oL.NCS pages 256-271. Springer, 2007.

