
Compositional Verification of

Termination-Preserving Refinement of Concurrent Programs

(Technical Report)

Hongjin Liang1, Xinyu Feng1, and Zhong Shao2

1University of Science and Technology of China
2Yale University

May 8, 2016

NOTES: This TR is a supplement to our CSL-LICS’14 paper. It includes full formulations of the
technical settings (Section 1), our RGSim-T definitions (Section 2), the full program logic (Section 3), all
the examples we have verified (Section 4) and the full formal soundness proofs (Section 5).

Moreover, we introduce a new interesting assertion p 7 q which allows local reasoning about the
number of tokens that is conditional upon the shared state in runtime. See Section 2 for its semantics,
Section 3 for the related local reasoning rule and Section 4 for its use in practical examples.

We also provide a transitivity rule on the binary judgments. We introduce new assertions to specify
the compositions of two relational assertions and of two actions (see Section 2).

For more informal explanations and the high-level picture, please see our CSL-LICS’14 paper. Both
the paper and this companion TR can be found at the following url:

http://kyhcs.ustcsz.edu.cn/relconcur/rgsimt

1

http://kyhcs.ustcsz.edu.cn/relconcur/rgsimt

1 Basic Technical Settings and Termination-Preserving Refine-
ment

1.1 The Language

We show the language in Figure 1. We assume the program variables used in the target code are different
from the ones used in the source (e.g., we use x and X for target and source level variables respectively).

(Event) e ::= . . . (Label) ι ::= e | τ
(Store) s, s ∈ PVar ⇀ Val (Heap) h,h ∈ Addr ⇀ Val

(State) σ,Σ ::= (s, h)

(Instr) c, c ∈ State ⇀ P((Label× State) ∪ {abort})
(Expr) E,E ::= x | n | E + E | . . .

(BExp) B,B ::= true | false | E = E | !B | . . .
(Stmt) C,C ::= skip | c | 〈C〉 | C1;C2 | if (B) C1 else C2

| while (B) C | C1‖C2

Figure 1: Generic language at target and source levels.

We show the operational semantics in Figure 2. The semantics of E and B are defined by JEK
and JBK respectively. JEK is a partial function of type Store ⇀ Val. JBK is a partial function of type
Store ⇀ {true, false}. They are undefined if variables in E and B are not assigned values in the store
s. Their definitions are omitted here.

Conventions. We usually write blackboard bold or capital letters (s, h, Σ, c, E, B and C) for the
notations at the source level to distinguish from the target-level ones (s, h, σ, c, E, B and C). When we
discuss the transitivity, we use θ and CM for the state and the code at the middle level.

Below we use −→ ∗ for zero or multiple-step transitions with no events generated, −→ + for
multiple-step transitions without events,

e−→ + for multiple-step transitions with only one event e
generated, and −→ω · for an infinite execution without events.

2

(ι, σ′) ∈ c σ

(c, σ)
ι−→ (skip, σ′)

abort ∈ c σ
(c, σ) −→ abort

σ 6∈ dom(c)

(c, σ) −→ (c, σ)

(C, σ) −→∗ (skip, σ′)

(〈C〉, σ) −→ (skip, σ′)

(C, σ) −→∗ abort
(〈C〉, σ) −→ abort

(C, σ) −→ω ·
(〈C〉, σ) −→ (〈C〉, σ)

(C, σ) −→ (C′, σ′)

(C;C′′, σ) −→ (C′;C′′, σ′)

(C, σ)
e−→ (C′, σ′)

(C;C′′, σ)
e−→ (C′;C′′, σ′)

(skip;C′, σ) −→ (C′, σ)

(C, σ) −→ abort

(C;C′, σ) −→ abort

JBKs = true

(while (B) C, (s, h)) −→ (C;while (B) C, (s, h))

JBKs = false

(while (B) C, (s, h)) −→ (skip, (s, h))

JBKs undefined

(while (B) C, (s, h)) −→ abort

JBKs = true

(if (B) C1 else C2, (s, h)) −→ (C1, (s, h))

JBKs = false

(if (B) C1 else C2, (s, h)) −→ (C2, (s, h))

JBKs undefined

(if (B) C1 else C2, (s, h)) −→ abort

(C1, σ)
ι−→ (C′1, σ

′)

(C1‖C2, σ)
ι−→ (C′1‖C2, σ

′)

(C2, σ)
ι−→ (C′2, σ

′)

(C1‖C2, σ)
ι−→ (C1‖C′2, σ′)

(skip‖skip, σ) −→ (skip, σ)

(C1, σ) −→ abort or (C2, σ) −→ abort

(C1‖C2, σ) −→ abort

Figure 2: Operational semantics.

3

1.2 Termination-Preserving Event Trace Refinement

(EvtTrace) E ::= ⇓ | | ε | e ::E (co-inductive interpretation)

We define ETr(C, σ, E) in Figure 3.1

(C, σ) −→∗ (skip, σ′)

ETr(C, σ,⇓)

(C, σ) −→+ abort

ETr(C, σ,)

(C, σ) −→+ (C′, σ′) ETr(C′, σ′, ε)

ETr(C, σ, ε)

(C, σ)
e−→+ (C′, σ′) ETr(C′, σ′, E)

ETr(C, σ, e ::E)

Figure 3: Co-inductive definition of ETr(C, σ, E).

Definition 1 (Termination-Preserving Refinement).
(C, σ) v (C,Σ) iff ∀E . ETr(C, σ, E) =⇒ ETr(C,Σ, E).

1We made a typo in the definition of ETr in our published paper. In the paper, the third rule is as follows.

(C, σ) −→+ (C′, σ′) ETr(C′, σ′, E)

ETr(C, σ, E)

Such a definition is incorrect because it allows any event trace to be an acceptable trace of while (true){skip}. We
corrected it by restricting the trace of an infinite loop to be empty, as shown in Figure 3.

4

2 RGSim-T

2.1 Assertion Language

We first define the assertions used in our simulation RGSim-T and our program logic. Their syntax is
shown in Figure 4, and their semantics is shown in Figures 5 and 6.

(RelAssn) P,Q, I ::= B | own(x) | emp | emp | E 7→ E | E Z⇒ E
| TpU | P ∗Q | P ∨Q | P ∧Q | P #Q | . . .

(FullAssn) p, q ::= P | arem(C) | wf(E) | bpca | bpcw
| p ∗ q | p ∨ q | p ∧ q | p7 q | . . .

(RelAct) R,G ::= P ∝ Q | P nQ | [P] | R ∗R | R+

| R ∨R | R ∧R | R #̂R | R #̌R | . . .

Figure 4: Assertion language.

The above assertion language extends the one in our CSL-LICS paper with the following new asser-
tions.

1. p 7 q, which is like a conjunction over the concrete and the abstract states and like a separating
conjunction over the number of tokens and the abstract code. It would be useful to simplify the
verification of some specific examples (see Section 4).

2. P #Q, R #̂R and R #̌R, which are compositions of two relational assertions and of two actions. They
are used in the transitivity of the binary judgments (the trans rule in Figure 7). We use θ and
CM to represent the middle-level state and the middle-level code respectively. We also define a
predicate MPrecise(P,Q) in Figure 5, which specifies the precise property about the middle-level
states. Here P and Q are relational assertions between low-level and middle-level states and between
middle-level and high-level states respectively.

Note that our logic is already very useful without the above extensions. All the examples that we
mentioned in our CSL-LICS’14 paper can be verified without these extensions.

5

f1⊥f2 iff (dom(f1) ∩ dom(f2) = ∅)
(s1, h1)⊥(s2, h2) iff (s1⊥s2) ∧ (h1⊥h2)

(s1, h1)] (s2, h2)
def
=

{
(s1 ∪ s2, h1 ∪ h2) if (s1, h1)⊥(s2, h2)
undefined otherwise

((s, h), (s,h)) |= B iff JBKs]s = true

((s, h), (s,h)) |= own(x) iff dom(s] s) = {x}
((s, h), (s,h)) |= emp iff (dom(s) = ∅) ∧ (dom(h) = ∅)
((s, h), (s,h)) |= emp iff (dom(s) = ∅) ∧ (dom(h) = ∅)
((s, h), (s,h)) |= E1 7→ E2 iff ∃l, n. JE1Ks]s = l ∧ JE2Ks]s = n ∧ dom(h) = {l} ∧ h(l) = n

((s, h), (s,h)) |= E1 Z⇒ E2 iff ∃l, n. JE1Ks]s = l ∧ JE2Ks]s = n ∧ dom(h) = {l} ∧ h(l) = n

emp
def
= emp ∧ emp

(σ,Σ) |= P #Q iff ∃θ. (σ, θ) |= P ∧ (θ,Σ) |= Q

((σ,Σ), (σ′,Σ′), b) |= P ∝ Q iff (σ,Σ) |= P ∧ (σ′,Σ′) |= Q ∧ (b = true)

((σ,Σ), (σ′,Σ′), b) |= P nQ iff (σ,Σ) |= P ∧ (σ′,Σ′) |= Q

((σ,Σ), (σ′,Σ′), b) |= [P] iff (σ,Σ) |= P ∧ (σ = σ′) ∧ (Σ = Σ′)

((σ,Σ), (σ′,Σ′), b) |= R1 ∗R2 iff
∃σ1,Σ1, σ2,Σ2, σ

′
1,Σ

′
1, σ
′
2,Σ

′
2. ((σ1,Σ1), (σ′1,Σ

′
1), b) |= R1 ∧ ((σ2,Σ2), (σ′2,Σ

′
2), b) |= R2

∧ (σ = σ1] σ2) ∧ (σ′ = σ′1] σ′2) ∧ (Σ = Σ1] Σ2) ∧ (Σ′ = Σ′1] Σ′2)

((σ,Σ), (σ′,Σ′), b) |= R+ iff
(((σ,Σ), (σ′,Σ′), b) |= R)
∨ (∃σ′′,Σ′′, b′, b′′. (((σ,Σ), (σ′′,Σ′′), b′) |= R) ∧ (((σ′′,Σ′′), (σ′,Σ′), b′′) |= R+) ∧ (b = b′ ∨ b′′))

Id
def
= [true] Emp

def
= empn emp True

def
= truen true

((σ,Σ), (σ′,Σ′), b) |= R1 #̂R2 iff
∃θ, θ′, b1, b2. ((σ, θ), (σ′, θ′), b1) |= R1 ∧ ((θ,Σ), (θ′,Σ′), b2) |= R2 ∧ (b = b1 ∧ b2)

((σ,Σ), (σ′,Σ′), b) |= R1 #̌R2 iff
∃θ, θ′, b1, b2. ((σ, θ), (σ′, θ′), b1) |= R1 ∧ ((θ,Σ), (θ′,Σ′), b2) |= R2 ∧ (b = b1 ∨ b2)

Sta(P,R) iff ∀σ,Σ, σ′,Σ′, b. ((σ,Σ) |= P) ∧ (((σ,Σ), (σ′,Σ′), b) |= R) =⇒ ((σ′,Σ′) |= P)

Precise(P) iff ∀σ1,Σ1, σ2,Σ2, σ
′
1,Σ

′
1, σ
′
2,Σ

′
2.

((σ1] σ2 = σ′1] σ′2) ∧ ((σ1,) |= P) ∧ ((σ′1,) |= P) =⇒ (σ1 = σ′1))
∧ ((Σ1] Σ2 = Σ′1] Σ′2) ∧ ((,Σ1) |= P) ∧ ((,Σ′1) |= P) =⇒ (Σ1 = Σ′1))

I . R iff ([I]⇒ R) ∧ (R⇒ I n I) ∧ Precise(I)

MPrecise(P,Q) iff
∀θ1, θ′1, θ2, θ′2. (θ1] θ2 = θ′1] θ′2) ∧ ((, θ1) |= P) ∧ ((θ′1,) |= Q) =⇒ (θ1 = θ′1)

Figure 5: Semantics of assertions (part I).

6

(HCState) D ::= C | •
(FullState) S ::= (σ,w,D,Σ) where w ∈ Nat

(σ,w,D,Σ) |= P iff (σ,Σ) |= P

(σ,w,D,Σ) |= arem(C′) iff D = C′

((s, h), w,D,Σ) |= wf(E) iff ∃n. (JEKs = n) ∧ (n ≤ w)

(σ,w,D,Σ) |= bpca iff ∃D′. (σ,w,D′,Σ) |= p

(σ,w,D,Σ) |= bpcw iff ∃w′. (σ,w′,D,Σ) |= p

(σ,w,D,Σ) |= p7 q iff ∃w1, w2,D1,D2. (σ,w1,D1,Σ) |= p ∧ (σ,w2,D2,Σ) |= q
∧ (w = w1 + w2) ∧ (D = D1] D2)

(σ,Σ) |= TpU iff ∃w,D. (σ,w,D,Σ) |= p

D1⊥D2 iff (D1 = •) ∨ (D2 = •)

D1] D2
def
=


D2 if D1 = •
D1 if D2 = •
undefined otherwise

(σ1, w1,D1,Σ1)] (σ2, w2,D2,Σ2)

def
=

{
(σ1] σ2, w1 + w2,D1] D2,Σ1] Σ1) if σ1⊥σ2,D1⊥D2 and Σ1⊥Σ2

undefined otherwise

S |= p ∗ q iff ∃S1,S2. (S = S1] S2) ∧ (S1 |= p) ∧ (S2 |= q)

Sta(p,R) iff
∀σ,w,D,Σ, σ′,Σ′, b. ((σ,w,D,Σ) |= p) ∧ (((σ,Σ), (σ′,Σ′), b) |= R)
=⇒ ∃w′. (σ′, w′,D,Σ′) |= p ∧ (b = false =⇒ w′ = w)

Figure 6: Semantics of assertions (part II).

7

2.2 Definition of RGSim-T

Definition 2 (RGSim-T).
R,G, I |= {P}C�C{Q} iff
for all σ and Σ, if (σ,Σ) |= P , then there exists M such that R,G, I |= (C, σ,M)�Q (C,Σ).

Whenever R,G, I |= (C, σ,M)�Q (C,Σ), then (σ,Σ) |= I ∗ true and the following are true:

1. for any σF , ΣF , C ′ and σ′′, if (C, σ] σF) −→ (C ′, σ′′) and Σ⊥ΣF , then there exists σ′ such that
σ′′ = σ′] σF and one of the following holds:

(a) either, there exist M ′, C′ and Σ′ such that (C,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′);

(b) or, there exists M ′ such that M ′ < M ,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C,Σ);

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ] σF)
e−→ (C ′, σ′′) and Σ⊥ΣF , then

there exist σ′, M ′, C′ and Σ′ such that σ′′ = σ′] σF , (C,Σ] ΣF)
e−→+ (C′,Σ′] ΣF),

((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′);

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id, then
there exists M ′ such that R,G, I |= (C, σ′,M ′)�Q (C,Σ′);

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id, then
R,G, I |= (C, σ′,M)�Q (C,Σ′);

5. if C = skip, then for any ΣF , if Σ⊥ΣF , one of the following holds:

(a) either, there exists Σ′ such that (C,Σ] ΣF) −→+ (skip,Σ′] ΣF),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,Σ′) |= Q;

(b) or, C = skip and (σ,Σ) |= Q;

6. for any σF and ΣF , if (C, σ] σF) −→ abort and Σ⊥ΣF , then (C,Σ] ΣF) −→+ abort.

Inspired by Vafeiadis [13], we directly embed the framing aspect of separation logic in Def. 2. At
each condition, we introduce the frame states σF and ΣF at the target and source levels to represent the
remaining parts of the states owned by other threads in the system. The commands C and C must not
change the frame states during their executions.

Technically, we introduce theses σF and ΣF quantifications to admit the frame rules (e.g., the b-frame
rule in Fig. 7) and the parallel compositionality. Suppose we remove the frame states in Definition 2.
Then consider the following example. We can prove

Emp,Emp, emp |= {emp} ([100] := 1)�([100] := 2) {emp} (2.1)

since both programs would abort at empty states. If the frame rule holds, we would get the following by
framing [100] 7→ 0 ∧ [100] Z⇒ 0 to (2.1):

Emp,Emp, emp |= {[100] 7→ 0 ∧ [100] Z⇒ 0} ([100] := 1)�([100] := 2) {[100] 7→ 0 ∧ [100] Z⇒ 0}

which obviously does not hold! (In our previous work RGSim [7], the frame rule we provided is more like
an invariance rule in Hoare logic. We do not have a real frame rule due to the above reason.) Similar issue
also shows up in admitting the parallel compositionality (the b-par rule in Fig. 7). The thread t would
abort if it accesses the local state of another thread t′, while the whole program may not abort with t
and t′ running in parallel. So we can construct a similar counterexample as (2.1) where the simulation
holds for each single thread but fails for the whole program.

Here we address the above issue by embedding the framing aspect directly in the simulation definition,
inspired by Vafeiadis [13]. For the simulation in Definition 2 with the σF and ΣF quantifications, the
above example (2.1) is no longer satisfied.

8

3 Logic

Inference rules are shown in Figures 7 and 8.

R,G, I ` {P}C1�C1{P ′} R,G, I ` {P ′}C2�C2{Q}
R,G, I ` {P}C1;C2�C1;C2{Q}

(b-seq)

P ⇒ (B ⇔ B) ∗ I R,G, I ` {P ∧B}C1�C1{Q} R,G, I ` {P ∧ ¬B}C2�C2{Q}
R,G, I ` {P}if (B) C1 else C2� if (B) C1 else C2{Q}

(b-if)

P ⇒ (B ⇔ B) ∗ I R,G, I ` {P ∧B}C�C{P}
R,G, I ` {P}while (B) C�while (B) C{P ∧ ¬B}

(b-while)

R ∨G2, G1, I ` {P1 ∗ P}C1�C1{Q1 ∗Q′1} R ∨G1, G2, I ` {P2 ∗ P}C2�C2{Q2 ∗Q′2}
P ∨Q′1 ∨Q′2 ⇒ I I . R

R,G1 ∨G2, I ` {P1 ∗ P2 ∗ P}C1‖C2�C1‖C2{Q1 ∗Q2 ∗ (Q′1 ∧Q′2)}
(b-par)

Emp,Emp, emp ` {P}skip�skip{P}
(b-skip)

P ⇒ (E = E)

Emp,Emp, emp ` {P}print(E)�print(E){P}
(b-prt)

R,G, I ` {P}C�C{Q} G+ ⇒ G Sta(P ′, (R′)
+ ∗ Id) I ′ . {R′, G′} P ′ ⇒ I ′ ∗ true

R ∗R′, G ∗G′, I ∗ I ′ ` {P ∗ P ′}C�C{Q ∗ P ′}
(b-frame)

R1, G1, I1 ` {P1}C�CM{Q1} R2, G2, I2 ` {P2}CM�C{Q2}
MPrecise(I1, I2) ((G1)+ #̂ (G2)+) ⇒ (G1 #̂G2)

+
(R1 #̌R2)+ ⇒ ((R1)+ #̌ (R2)+)

(R1 #̌R2), (G1 #̂G2), (I1 # I2) ` {P1 # P2}C�C{Q1 #Q2}
(trans)

R,G, I ` {P ∧ arem(C)}C{Q ∧ arem(skip)}
R,G, I ` {P}C�C{Q}

(u2b)

Figure 7: Selected binary inference rules.

Definition 3 (Abstract Step “Implication”).

p
G
=⇒+ q iff,

for any σ, w, D, Σ and ΣF , if (σ,w,D,Σ) |= p and Σ⊥ΣF , then
there exist w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= q.

We also define the following syntactic sugars:

pV+ q iff p
Emp
==⇒+ q p

G
=⇒0 q iff p⇒ q pV0 q iff p⇒ q

p
G
=⇒∗ q iff p

G
=⇒+ q ∨ p G

=⇒0 q pV∗ q iff pV+ q ∨ pV0 q

Note that here we introduce the ΣF quantification similar to Definition 2 for RGSim-T. In our CSL-
LICS’14 paper, we simplified the above definition and only defined p V+ q to save space. The more

general case p
G
=⇒+ q defined here is useful in the a-conseq rule, which is omitted in our CSL-LICS’14

paper.

We prove a few properties of p
G
=⇒+ q, as shown in Figure 9. For instance, the first rule says, we can

derive (P ∧arem(C)) V+ (Q∧arem(skip)∧wf(E)) by executing the source code C. And since the source

9

Emp,Emp, emp ` {p}skip{p}
(skip)

`sl [p]c[q] c is silent

Emp,Emp, emp ` {p}c{q}
(env)

`sl [p]C[q] (TpUn TqU)⇒ G ∗ True I . G p ∨ q ⇒ I ∗ true

[I], G, I ` {p}〈C〉{q}
(atom)

pVa p′ `sl [p′]C[q′] q′ Vb q + ∈ {a, b}
(TpU ∝ TqU)⇒ G ∗ True I . G p ∨ q ⇒ I ∗ true

[I], G, I ` {p}〈C〉{q}
(atom+)

[I], G, I ` {p}〈C〉{q} Sta({p, q}, R ∗ Id) I . R

R,G, I ` {p}〈C〉{q}
(atom-r)

R,G, I ` {p}C1{p′} R,G, I ` {p′}C2{q}

R,G, I ` {p}C1;C2{q}
(seq)

p⇒ (B = B) ∗ I p ∧B ⇒ p′ ∗ (wf(1) ∧ emp) R,G, I ` {p′}C{p}
R,G, I ` {p}while (B) C{p ∧ ¬B}

(while)

R,G, I ` {p}C{q}
R,G, I ` {bpcw}C{bqcw}

(hide-w)

R,G, I ` {p}C{q} Sta(p′, (R′)
+ ∗ Id) I ′ . {R′, G′} p′ ⇒ I ′ ∗ true G+ ⇒ G

R ∗R′, G ∗G′, I ∗ I ′ ` {p ∗ p′}C{q ∗ p′}
(frame)

R,G, I ` {p}C{q} Sta(p′, {R+ ∗ Id, G ∗ True})
R,G, I ` {p7 p′}C{q 7 p′}

(fr-conj)

R,G, I ` {bpca ∧ arem(C1)}C{bqca ∧ arem(C2)}
R,G, I ` {bpca ∧ arem(C1;C3)}C{bqca ∧ arem(C2;C3)}

(arem)

R,G, I ` {p1}C{q1} R,G, I ` {p2}C{q2}
R,G, I ` {p1 ∨ p2}C{q1 ∨ q2}

(disj)

p
G
=⇒∗ p′ R,G, I ` {p′}C{q′} q′

G
=⇒∗ q Sta({p, q}, R ∗ Id) p ∨ q ⇒ I ∗ true

R,G, I ` {p}C{q}
(a-conseq)

Figure 8: Selected unary inference rules.

10

code makes multiple steps, we are allowed to increase the number of tokens (wf(E)). We can also execute
the source code in trivial cases, for example, when the source code is skip;C, or it is a while loop but we
know for sure the value of the loop condition. In those cases, the step of the source code is an identity

transition. Moreover, p
G
=⇒+ q is transitive and we can also have “frame rule” (i.e., local reasoning) over

it.

C 6= skip `sl [P]C[Q]

(P ∧ arem(C)) V+ (Q ∧ arem(skip) ∧ wf(E))

P ⇒ I ∗ true

(P ∧ arem(skip;C))
[I]
=⇒+ (P ∧ arem(C) ∧ wf(E))

P ⇒ B ∗ I

(P ∧ arem(if (B) C1 else C2))
[I]
=⇒+ (P ∧ arem(C1) ∧ wf(E))

P ⇒ (¬B) ∗ I

(P ∧ arem(if (B) C1 else C2))
[I]
=⇒+ (P ∧ arem(C2) ∧ wf(E))

P ⇒ B ∗ I

(P ∧ arem(while (B) C))
[I]
=⇒+ (P ∧ arem(C;while (B) C) ∧ wf(E))

P ⇒ (¬B) ∗ I

(P ∧ arem(while (B) C))
[I]
=⇒+ (P ∧ arem(skip) ∧ wf(E))

(P ∧ arem(C1))
G
=⇒+ (Q ∧ arem(C2) ∧ wf(E))

(P ∧ arem(C1;C3))
G
=⇒+ (Q ∧ arem(C2;C3) ∧ wf(E))

p
G
=⇒+ p′ p′

G
=⇒+ q I . G

p
G
=⇒+ q

p⇒ p′ p′
G′
=⇒+ q′ q′ ⇒ q G′ ⇒ G

p
G
=⇒+ q

p1
G
=⇒+ q1 p2

G
=⇒+ q2

(p1 ∨ p2)
G
=⇒+ (q1 ∨ q2)

p
G
=⇒+ q

(p ∗ p′) G
=⇒+ (q ∗ p′)

Figure 9: Properties of p
G
=⇒ q.

Below we discuss some interesting rules which are not shown in our CSL-LICS’14 paper due to the
space limit. The binary rules are very similar to those in our previous work RGSim [7]. The trans rule
shows the transitivity of our RGSim-T relation.

For the unary rules in Figure 8, in addition to rules for atomic blocks, we have skip and env rules
to reason about skip and primitive instructions. Here we assume the unary logic handles only programs
which do not produce external events (e.g., the env rule has a side condition saying that “c is silent”).
For commands producing events, such as the print command, we require lockstep at the target and source
levels and prove such refinement using the binary inference rules (e.g., the b-prt rule in Figure 7). It is
also possible to extend the current unary logic with assertions for event traces and provide unary rules to
reason about commands with events. Note that although the shared resource is empty in the skip and
env rules, we can derive rules allowing resource sharing from them and the frame rule in Figure 8.

11

In addition to the rules for while loops as in the CSL-LICS’14 paper, we also have unary rules for
sequential composition (the seq rule in Figure 8) and for if-then-else composition (omitted here), both
of which are in the same forms as in LRG [2]. The unary frame rule is similar to the binary one in
Figure 7. It is also in the same form as in LRG [2].

The fr-conj rule is like the frame rule in RGSep [12]. The frame p′ may specify the number of tokens
used by the context of the code C, i.e., the code C does not consume these tokens in p′. The frame p′

may also specify the shared concrete and abstract states (and the case usually occurs when the number
of tokens depends on the concrete and abstract states). So we use the new operator 7 to ensure that the
concrete and abstract states specified in p and p′ coincide.

The arem rule is like a frame rule over source code. It allows us to reason about refinement using
“local” source code, i.e., source code which is really refined by the target.

The a-conseq rule allows us to execute the source code outside of an atomic block. It requires that
the transitions of the source code over the shared states satisfy G+, but it is usually used when the steps
are simply identity transitions. For instance, we can use the rule to unfold a while loop at the source
at any time in a refinement proof (we do not have to be in an atomic block of the target code). When

p
G
=⇒∗ p′ and q′

G
=⇒∗ q are p⇒ p′ and q′ ⇒ q respectively, this rule becomes the normal conseq rule (see

RGSep [12] and LRG [2]).
We can also derive the following while-term rule from the while rule. The derivation is shown in

Section 5.

R,G, I ` {p ∧B ∧ (E = α)}C{p ∧ (E < α)} p ∧B ⇒ E > 0
p⇒ ((B = B) ∧ (E = E)) ∗ I G+ ⇒ G α is a fresh logical variable

R,G, I ` {bpcw}while (B) C{bpcw ∧ ¬B}
(while-term)

The while-term rule is similar to a total correctness while rule (e.g., see [10]). In every round of
the loop, the loop variant E decreases (but should always be positive). We can verify refinement for
such a locally-terminating loop (a loop that always terminates regardless of environment steps) without
specifying tokens. To derive this rule, we actually need to introduce the number of tokens as an auxiliary
state for the loop iterations and relate it to the loop variant E in the real state.

Soundness of the logic is proved in Section 5 (where we also define the unary judgment semantics).

12

4 Examples

In this section, we verify the examples claimed in our CSL-LICS’14 paper (see Figure 10). To simplify
the presentation of the proofs, assume we always have the ownerships of program variables.

Linearizability & Lock-Freedom

Counter and its variants
Treiber stack
Michael-Scott lock-free queue [8]
DGLM lock-free queue [1]

Non-Atomic Object Correctness Synchronous queue [9]

Correctness of Optimized Algo Counter vs. its variants
(Equivalence) TAS lock vs. TTAS lock [3]

Figure 10: Verified examples using our logic.

4.1 Counter and Its Variants

In Figure 11, we show four possible implementations of the counter. Though they are quite simple, they
illustrate different choices that programmers may make to implement a concurrent object. The abstract
atomic INC operation is shown below:

INC() { X := X + 1; }

1 inc() {

2 local t, b;

3 b := false;

4 while (!b) {

5 < t := x; >

6 b := cas(&x, t, t+1);

7 }

8 }

1 inc’() {

2 local t, b;

3 b := false;

4 < t := x; >

5 while (!b) {

6 b := cas(&x, t, t+1);

7 < t := x; >

8 }

9 }

1 incOpt() {

2 local t, b, b’;

3 b := false;

4 while (!b) {

5 b’ := false;

6 while (!b’) {

7 < t := x; >

8 < b’ := (t = x); >

9 }

10 b := cas(&x, t, t+1);

11 }

12 }

1 incOpt’() {

2 local t, b, b’;

3 b := false;

4 while (!b) {

5 < t := x; >

6 < b’ := (t = x); >

7 while (!b’) {

8 < t := x; >

9 < b’ := (t = x); >

10 }

11 b := cas(&x, t, t+1);

12 }

13 }

Figure 11: Various implementations of counter.

Below we first verify that each implementation C of the counter is correct w.r.t. to INC. Here cor-
rectness refer to linearizability and lock-freedom together. As explained in the submitted paper, we only
need to prove the following in our logic:

R,G, I ` {I} C � INC {I}

where R and G specify the possible actions (i.e., increments) on the well-formed shared data structure
(i.e., counter) fenced by I. In all these examples, they share the same R, G and I as follows:

13

I
def
= (x = X) R = G

def
= (I ∝ I) ∨ [I]

By the u2b rule, the above is reduced to proving the following unary judgment:

R,G, I ` {I ∧ arem(X := X + 1)}C{I ∧ arem(skip)}

The proofs are shown in Figures 12, 13, 14 and 15.
We can also prove the equivalence between incOpt and inc. That is, we prove:

R,G, I ` {I} incOpt � inc {I} and R,G, I ` {I} inc � incOpt {I}

Here we use the same R, G and I as above (always use x at the left side and X at the right side). The
proofs are shown in Figures 17 and 18. The equivalence between incOpt’ and inc is similar.

1 inc() {

2 local t, b;{
I ∧ arem(X := X + 1)

}
3 b := false;{

(¬b ∧ I ∧ arem(X := X + 1)) ∨ (b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(X := X + 1) ∧ wf(0)
}{

x = X
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)) //Applying the frame rule

5 < t := x; >{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)){

(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(1))

}
6 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1))
}

7 }{
I ∧ arem(skip)

}
8 }

Figure 12: Proving inc refines INC.

1 inc’() {

2 local t, b;{
I ∧ arem(X := X + 1)

}
3 b := false;{
¬b ∧ I ∧ arem(X := X + 1)

}
4 < t := x; >

(¬b ∧ (x = X = t) ∧ arem(X := X + 1))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1))
∨ (b ∧ I ∧ arem(skip))

 //Applying the while rule and the hide-w rule

5 while (!b) {{
(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0)) ∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(1))

}
6 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1))
}

7 < t := x; >
(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(1))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(2))
∨ (b ∧ I ∧ arem(skip) ∧ wf(1))


8 }{

I ∧ arem(skip)
}

9 }

Figure 13: Proving inc’ refines INC.

14

1 incOpt() {

2 local t, b, b’;{
I ∧ arem(X := X + 1)

}
3 b := false;{

(¬b ∧ I ∧ arem(X := X + 1)) ∨ (b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1)
}{

(x = X) ∧ wf(1)
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1)) //Applying the frame rule

5 b’ := false;{
(¬b’ ∧ (x = X) ∧ wf(1)) ∨ (b’ ∧ (x = X = t)) ∨ (b’ ∧ (x = X 6= t) ∧ wf(2))

}
//Applying the while rule

6 while (!b’) {{
(x = X) ∧ wf(0)

}
7 < t := x; >{

(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))
}

8 < b’ := (t = x); >{
(b’ ∧ (x = X = t)) ∨ (b’ ∧ (x = X 6= t) ∧ wf(2)) ∨ (¬b’ ∧ (x = X 6= t) ∧ wf(1))

}
9 }{

(x = X = t) ∨ ((x = X 6= t) ∧ wf(2))
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1)){

(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(2))

}
10 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(2))
}

11 }{
I ∧ arem(skip)

}
12 }

Figure 14: Proving incOpt refines INC.

1 incOpt’() {

2 local t, b, b’;{
I ∧ arem(X := X + 1)

}
3 b := false;{

(¬b ∧ I ∧ arem(X := X + 1)) ∨ (b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(X := X + 1) ∧ wf(0)
}{

x = X
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)) //Applying the frame rule

5 < t := x; >{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
6 < b’ := (t = x); >{

(b’ ∧ (x = X = t)) ∨ ((x = X 6= t) ∧ wf(1))
}

//Applying the while rule
7 while (!b’) {{

(x = X) ∧ wf(0)
}

8 < t := x; >{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
9 < b’ := (t = x); >{

(b’ ∧ (x = X = t)) ∨ ((x = X 6= t) ∧ wf(1))
}

10 }{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)){

(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(1))

}
11 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1))
}

12 }{
I ∧ arem(skip)

}
13 }

Figure 15: Proving incOpt’ refines INC.

15

I
def
= (x = X)

R = G
def
= (∃n. (x = X = n) ∝ (x = X > n)) ∨ [I]

1 incOpt’() {

2 local t, b;{
I ∧ arem(X := X + 1)

}
3 b := false;{

(¬b ∧ I ∧ arem(X := X + 1)) ∨ (b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(X := X + 1) ∧ wf(0)
}{

x = X
}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)) //Applying the frame rule

5 < t := x; >{
(x = X = t = α) ∨ ((x = X > α) ∧ (t = α) ∧ wf(1))

}
6 < b’ := (t = x); >{

(b’ ∧ (x = X = t = α)) ∨ ((x = X > α) ∧ (t = α) ∧ wf(1))
}{

(b’ ∧ (x = X = t = α)) ∨ (x = X > α)
}

7 ((x = X = α) ∨ (x = X > α) ∧ wf(1))
//Applying the fr-conj rule //Applying the while rule and the hide-w rule

7 while (!b’) {{
(x = X > α) ∧ wf(0)

}
8 < t := x; >{

(x = X = t > α) ∨ ((x = X > t > α) ∧ wf(1))
}

9 < b’ := (t = x); >{
(b’ ∧ (x = X = t > α)) ∨ ((x = X > t > α) ∧ wf(1))

}{
(b’ ∧ (x = X = t ≥ α)) ∨ ((x = X > α) ∧ wf(1))

}
10 }{

(x = X = t = α) ∨ (x = X > α)
}

7 ((x = X = α) ∨ (x = X > α) ∧ wf(1)){
(x = X = t = α) ∨ ((x = X > α) ∧ wf(1))

}{
(x = X = t) ∨ ((x = X 6= t) ∧ wf(1))

}
∗ (emp ∧ ¬b ∧ arem(X := X + 1) ∧ wf(0)){

(¬b ∧ (x = X = t) ∧ arem(X := X + 1) ∧ wf(0))
∨ (¬b ∧ (x = X 6= t) ∧ arem(X := X + 1) ∧ wf(1))

}
11 b := cas(&x, t, t+1);{

(b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(X := X + 1) ∧ wf(1))
}

12 }{
I ∧ arem(skip)

}
13 }

Figure 16: Proving incOpt’ refines INC (an alternative approach by using the fr-conj rule). α is a
logical variable.

16

inc
def
= (B := false; incLoop;)

incLoop
def
= (while(!B) { <T:=X>; incCas; })

incCas
def
= (B := cas(&X, T, T+1);)

1 incOpt() {

2 local t, b, b’;{
I ∧ arem(inc)

}
3 b := false;{

(¬b ∧ ¬B ∧ I ∧ arem(incLoop)) ∨ (b ∧ B ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ ¬B ∧ I ∧ arem(incLoop) ∧ wf(0)
}

5 b’ := false;{
(¬b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ arem(incLoop) ∧ wf(0))
∨ (b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ (t = T) ∧ arem(incCas;incLoop) ∧ wf(0))

}
//Applying the while rule and the hide-w rule

6 while (!b’) {{
¬b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ arem(incLoop) ∧ wf(0)

}{
¬b ∧ ¬B ∧ (x = X) ∧ arem(<T:=X>; incCas; incLoop) ∧ wf(1)

}
7 < t := x; >{

¬b ∧ ¬B ∧ (x = X) ∧ (t = T) ∧ arem(incCas; incLoop) ∧ wf(1)
}

8 < b’ := (t = x); >{
(¬b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ arem(incLoop) ∧ wf(1))
∨ (b’ ∧ ¬b ∧ ¬B ∧ (x = X) ∧ (t = T) ∧ arem(incCas;incLoop) ∧ wf(1))

}
9 }{

b’ ∧ (x = X) ∧ (t = T) ∧ arem(incCas;incLoop) ∧ wf(0)
}

10 b := cas(&x, t, t+1);{
(b = B) ∧ I ∧ arem(incLoop) ∧ wf(1)

}{
(b ∧ B ∧ I ∧ arem(skip)) ∨ (¬b ∧ ¬B ∧ I ∧ arem(incLoop) ∧ wf(1))

}
11 }{

I ∧ arem(skip)
}

12 }

Figure 17: Proving incOpt refines inc.

17

incOpt
def
= (B := false; incOptLoop;)

incOptLoop
def
= (while(!B) { incOptInner; incCas; })

incOptInner
def
= (B’:=false; while(!B’) { <T:=X>; <B’:=(T=X)>; })

incCas
def
= (B := cas(&X, T, T+1);)

1 inc() {

2 local t, b;{
I ∧ arem(incOpt)

}
3 b := false;{

(¬b ∧ ¬B ∧ I ∧ arem(incOptLoop)) ∨ (b ∧ B ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ ¬B ∧ I ∧ arem(incOptLoop) ∧ wf(0)
}

5 < t := x; >{
¬b ∧ ¬B ∧ (x = X) ∧ (t = T) ∧ arem(incCas; incOptLoop) ∧ wf(1)

}
6 b := cas(&x, t, t+1);{

(b = B) ∧ I ∧ arem(incOptLoop) ∧ wf(1)
}

7 }{
I ∧ arem(skip)

}
8 }

Figure 18: Proving inc refines incOpt.

18

4.2 TAS Lock and TTAS Lock

1 lock() {

2 local b, b’;

3 b := true;

4 while (b) {

5 < b’ := l; >

6 while (b’) {

7 < b’ := l; >

8 }

9 b := getAndSet(&l, true);

10 }

11 }

1 unlock() {

2 < l := false; >

3 }

1 LOCK() {

2 local B;

3 B := getAndSet(&L, true);

4 while (B) {

5 B := getAndSet(&L, true);

6 }

7 }

1 UNLOCK() {

2 < L := false; >

3 }

Figure 19: TTASLock (the left) and TASLock (the right).

In Figure 19, we show the implementations of TTAS lock and TAS lock [3]. We can prove the
equivalence between these two implementations. That is, we prove:

R,G, I ` {I} lock � LOCK {I} and R,G, I ` {I} LOCK � lock {I}
R,G, I ` {I} unlock � UNLOCK {I} and R,G, I ` {I} UNLOCK � unlock {I}

As in the example of counters, R and G specify the possible actions on the well-formed shared data
structure fenced by I. Here R, G and I can be defined as follows:

I
def
= (l = L) R = G

def
= (I ∝ I) ∨ [I]

The proofs for the refinements between unlock and UNLOCK are straightforward since their code is the
same. We show the proofs for the refinements between lock and LOCK in Figures 20 and 21.

19

GAS
def
= (B := getAndSet(&L, true))

LoopGAS
def
= (while(B) GAS;)

1 lock() {

2 local b, b’;{
I ∧ arem(LOCK)

}
3 b := true;{

(b ∧ I ∧ arem(GAS; LoopGAS)) ∨ (¬b ∧ I ∧ arem(skip))
}

//Applying the while rule and the hide-w rule
4 while (b) {{

b ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0)
}

5 < b’ := l; >{
(b ∧ b’ ∧ B ∧ I ∧ arem(LoopGAS) ∧ wf(1)) ∨ (b ∧ ¬b’ ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0))

}{
b ∧ I ∧ arem(GAS; LoopGAS)

}
//Applying the while rule and the hide-w rule

6 while (b’) {{
b ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0)

}
7 < b’ := l; >{

(b ∧ b’ ∧ B ∧ I ∧ arem(LoopGAS) ∧ wf(1)) ∨ (b ∧ ¬b’ ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0))
}{

(b ∧ b’ ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(1)) ∨ (b ∧ ¬b’ ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0))
}

8 }{
b ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(0)

}
9 b := getAndSet(&l, true);{

(b = B) ∧ I ∧ arem(LoopGAS) ∧ wf(1)
}{

(¬b ∧ I ∧ arem(skip) ∧ wf(1)) ∨ (b ∧ I ∧ arem(GAS; LoopGAS) ∧ wf(1))
}

10 }{
I ∧ arem(skip)

}
11 }

Figure 20: Proving TTASLock refines TASLock.

loopTTAS
def
= (while(b) {...})

1 LOCK() {

2 local B;{
I ∧ arem(lock)

}
3 B := getAndSet(&L, true);{

(b = B) ∧ I ∧ arem(loopTTAS) ∧ wf(1)
}{

(b = B) ∧ I ∧ arem(loopTTAS)
}

//Applying the while rule and the hide-w rule
4 while (B) {{

b ∧ B ∧ I ∧ arem(loopTTAS) ∧ wf(0)
}

5 B := getAndSet(&L, true);{
(b = B) ∧ I ∧ arem(loopTTAS) ∧ wf(1)

}
6 }{
¬b ∧ ¬B ∧ I ∧ arem(loopTTAS)

}{
I ∧ arem(skip)

}
7 }

Figure 21: Proving TASLock refines TTASLock.

20

4.3 Treiber Stack

1 push(v) {

2 local x, t, b;

3 b := false;

4 x := cons(v, null);

5 while (!b) {

6 < t := S; >

7 x.next := t;

8 b := cas(&S, t, x);

9 }

10 }

1 pop() {

2 local v, x, t, b;

3 b := false;

4 while (!b) {

5 < t := S; >

6 if (t = null) {

7 v := EMPTY;

8 b := true;

9 } else {

10 v := t.data;

11 x := t.next;

12 b := cas(&S, t, x);

13 }

14 }

15 return v;

16 }

1 PUSH(V) {

2 < Stk := V :: Stk; >

3 }

1 POP() {

2 local V;

3 < if (Stk = ε) {

4 V := EMPTY;

5 } else {

6 V := head(Stk);

7 Stk := tail(Stk);

8 }

9 >

10 return V;

11 }

Figure 22: Treiber stack.

In Figure 22, we show the implementation of Treiber stack (at the left of the figure), and the ab-
stract atomic operations (at the right). The abstract PUSH and POP operations manipulate an abstract
mathematical list Stk, and when popping from an empty stack, POP returns EMPTY.

Below we use our logic to prove the linearizability and lock-freedom together of Treiber stack. As
explained in the submitted paper, we only need to prove the following in our logic:

R,G, I ` {I ∧ (v = V)} push(v) � PUSH(V) {I} and R,G, I ` {I} pop � POP {I ∧ (v = V)}

By the u2b rule, the above is reduced to proving the following unary judgment:

R,G, I ` {I ∧ arem(PUSH(V)) ∧ (v = V)} push(v) {I ∧ arem(skip)}
and R,G, I ` {I ∧ arem(POP)} pop {I ∧ arem(skip) ∧ (v = V)}

We define the precise invariant I, the rely R and the guarantee G in Figure 23. The invariant I
in Figure 23 maps the value sequence A of the concrete list pointed to by S (denoted by (S = x) ∗
ls(x,A, null)) to the abstract stack Stk. To ensure there is no “ABA” problem [3], we follow Turon and
Wand [11] and introduce a write-only auxiliary variable GN to remember the nodes which used to be on
the stack but no longer are. The precise invariant for shared states should include those garbage nodes
(garb). GN does not affect the behaviors of the implementation and is introduced for verification only.

I
def
= ∃x,A. (Stk = A) ∧ (S = x) ∗ ls(x,A, null) ∗ garb

node(x, v, y)
def
= x 7→ (v, y) node(x)

def
= node(x, ,)

ls(x,A, y)
def
= (x = y ∧A = ε ∧ emp) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ node(x, v, z) ∗ ls(z,A′, y))

ls(x, y)
def
= ∃A. ls(x,A, y)

garb
def
= ∃Sg. (GN = Sg) ∗ (~x∈Sg .node(x))

R = G
def
= (Push ∨ Pop ∨ Id) ∗ Id ∧ (I n I)

Push
def
= ∃x, y, v, A. ((Stk = A) ∧ (S = y)) ∝ ((Stk = v ::A) ∧ (S = x) ∗ node(x, v, y))

Pop
def
= ∃x, y, v, A, Sg. ((Stk = v ::A) ∧ (S = x) ∗ node(x, v, y) ∗ (GN = Sg))

∝ ((Stk = A) ∧ (S = y) ∗ node(x, v, y) ∗ (GN = Sg ∪ {x}))

Figure 23: Precise invariant, rely and guarantee of Treiber stack.

21

The guarantee includes the push and the pop actions. At the concrete side, the steps at line 8 for
push and line 12 for pop in Figure 22 are the linearization points, i.e., they correspond to the abstract
atomic PUSH and POP operations (thus the effect bits of the actions are true!). Note that when popping
a node, we also add the node to GN. The rely of a thread is the same as its guarantee.

We show the proof in Figure 24. For linearizability, we let the abstract operations be executed
simultaneously with the concrete code at linearization points. Note that when popping from an empty
stack, the linearization point is at line 5 (see pop in Figure 22), where the thread reads the stack pointer.

On lock-freedom, we know the failure of the cases at line 8 for push and line 12 for pop must be
caused by the successful progress of other threads. In the proof, we can increase the number of tokens
when the environment updates the S pointer (i.e., the environment does Push or Pop), thus are allowed
to do more loop iterations.

22

1 push(v) {

2 local x, t, b;{
I ∧ arem(PUSH(V)) ∧ v = V

}
3 b := false;

4 x := cons(v, null);{
(¬b ∧ I ∗ node(x, v,) ∧ arem(PUSH(V)) ∧ (v = V))
∨ (b ∧ I ∧ arem(skip))

}
//Applying the while rule and the hide-w rule

5 while (!b) {{
¬b ∧ I ∗ node(x, v,) ∧ arem(PUSH(V)) ∧ (v = V) ∧ wf(0)

}
6 < t := S; >

7 x.next := t;{
¬b ∧ I ∗ node(x, v, t) ∧ arem(PUSH(V)) ∧ (v = V)
∧∃a. (S = a) ∗ true ∧ (t = a ∧ wf(0) ∨ t 6= a ∧ wf(1))

}
8 b := cas(&S, t, x);{

(b ∧ I ∧ arem(skip) ∧ wf(1))
∨ (¬b ∧ I ∗ node(x, v,) ∧ arem(PUSH(V)) ∧ (v = V) ∧ wf(1))

}
9 }{

I ∧ arem(skip)
}

10 }

IntSet GN;

//Auxiliary global variable for verification: popped garbage nodes

1 pop() {

2 local v, x, t, b;{
I ∧ arem(POP)

}
3 b := false;{

(¬b ∧ I ∧ arem(POP)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(POP) ∧ wf(0)
}

5 < t := S; >{
(t = null ∧ ¬b ∧ I ∧ arem(skip) ∧ (V = EMPTY) ∧ wf(1))
∨ (¬b ∧ I ∧ arem(POP) ∧ ∃a. (S = a) ∗ node(t) ∗ true ∧ (t = a ∧ wf(0) ∨ t 6= a ∧ wf(1)))

}
6 if (t = null) {{

t = null ∧ ¬b ∧ I ∧ arem(skip) ∧ (V = EMPTY)
}

7 v := EMPTY;

8 b := true;{
b ∧ I ∧ arem(skip) ∧ (v = V = EMPTY)

}
9 } else {{

¬b ∧ I ∧ arem(POP) ∧ ∃a. (S = a) ∗ node(t) ∗ true ∧ (t = a ∧ wf(0) ∨ t 6= a ∧ wf(1))
}

10 v := t.data;

11 x := t.next;{
¬b ∧ I ∧ arem(POP) ∧ ∃a. (S = a) ∗ node(t, v, x) ∗ true ∧ (t = a ∧ wf(0) ∨ t 6= a ∧ wf(1))

}
12 < b := cas(&S, t, x); GN := GN ∪ {t}; >{

(b ∧ I ∧ arem(skip) ∧ (v = V) ∧ wf(1)) ∨ (¬b ∧ I ∧ arem(POP) ∧ wf(1))
}

13 }

14 }{
I ∧ arem(skip) ∧ (v = V)

}
15 return v;

16 }

Figure 24: Proof outline for Treiber stack.

23

4.4 MS Lock-Free Queue

1 enq(v) {

2 local x, t, s, b;

3 b := false;

4 x := cons(v, null);

5 while (!b) {

6 < t := Tail; >

7 s := t.next;

8 if (t = Tail) {

9 if (s = null) {

10 b := cas(&(t.next), s, x);

11 if (b) {

12 cas(&Tail, t, x);

13 }

14 } else {

15 cas(&Tail, t, s);

16 }

17 }

18 }

19 }

1 deq() {

2 local v, s, h, t, b;

3 b := false;

4 while (!b) {

5 < h := Head; >

6 < t := Tail; >

7 s := h.next;

8 if (h = t) {

9 if (s = null) {

10 v := EMPTY;

11 b := true;

12 } else {

13 cas(&Tail, t, s);

14 }

15 } else {

16 v := s.val;

17 b := cas(&Head, h, s);

18 }

19 }

20 return v;

21 }

1 ENQ(V) {

2 < Q := Q :: V; >

3 }

1 DEQ() {

2 local V;

3 < if (Q = ε) {

4 V := EMPTY;

5 } else {

6 V := head(Q);

7 Q := tail(Q);

8 }

9 >

10 return V;

11 }

Figure 25: Variant of MS lock-free queue.

In Figure 25, we show a variant2 of Michael-Scott lock-free queue [8] (at the left of the figure) and the
abstract atomic operations (at the right). We use our logic to prove the linearizability and lock-freedom
together of the MS queue. By similar arguments as for Treiber stack in Section 4.3, here we only need
to prove the following:

R,G, I ` {I ∧ arem(ENQ(V)) ∧ (v = V)} enq(v) {I ∧ arem(skip)}
and R,G, I ` {I ∧ arem(DEQ)} deq {I ∧ arem(skip) ∧ (v = V)}

We define the precise invariant I, the rely R and the guarantee G in Figure 26, and show the proof in
Figures 27 and 28, The invariant I for the well-formed shared data structure is defined in the same way
as in linearizability proofs (e.g., [6]). Here we introduce an auxiliary variable GH to collect those nodes
which were dequeued from the list. Initially it is set to Head, and would not change any more. Then the
list segment from GH to Head includes all the dequeued nodes.

The rely R and the guarantee G contain three actions in addition to identity transitions: Enq, Deq and
Swing . The actions Enq and Deq insert and remove a node from the queue, and correspond to abstract
steps (the effect bits are true). The action Swing moves the Tail pointer, which does not correspond to
any abstract steps.

The proofs in Figures 27 and 28 are based on the linearizability proofs (e.g., [6]) but also take into
account the lock-freedom property.3 We need to specify in the loop invariants (in both Figures 27 and 28)

2We removed in deq the double check on the read of the Head pointer. As explained in our previous work [6], this double
check introduces a non-fixed linearization point in this queue algorithm, but removing it would not affect the correctness
of the algorithm. Currently we use a simplified setting and do not support non-fixed linearization points (since they are
orthogonal to our main focus in this paper on termination preservation). We can further extend the logic in this paper
with the techniques for verifying linearizability with non-fixed linearization points [6], then we would be able to verify the
original MS queue implementation. Due to the same reason, we remove the double check in DGLM queue implementation
as well.

3We actually found that the lock-freedom proofs in Hoffmann et al’s work [5] has bugs on computing the number of
tokens. The authors confirmed our finding in our private communications.

24

I
def
= ∃h, t, A. (Q = A) ∧ (Head = h) ∗ (Tail = t) ∗ lsq(h, t, A) ∗ garb(h)

node(x, v, y)
def
= x 7→ (v, y) node(x, y)

def
= node(x, , y) garb(h)

def
= ∃g. (GH = g) ∗ ls(g, h)

lsq(h, t, A)
def
= ∃v,A′, A′′. (v ::A = A′ ::A′′) ∧ ls(h,A′, t) ∗ tls(t, , A′′)

ls(x,A, y)
def
= (x = y ∧A = ε ∧ emp) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ node(x, v, z) ∗ ls(z,A′, y))

ls(x, y)
def
= ∃A. ls(x,A, y)

last2(t, v, x, v′)
def
= node(t, v, x) ∗ node(x, v′, null) last2(t, x)

def
= last2(t, , x,) last2(t)

def
= last2(t,)

tls(t, x, A)
def
= ∃v, v′. (A = v ∧ node(t, v, x) ∧ x = null) ∨ (A = v ::v′ ∧ last2(t, v, x, v′)) tls(t, x)

def
= ∃A. tls(t, x, A)

R = G
def
= (Enq ∨ Deq ∨ Swing ∨ Id) ∗ Id ∧ (I n I)

Enq
def
= ∃v, v′, A, t, x. ((Q = A) ∧ (Tail = t) ∗ node(t, v, null)) ∝ ((Q = A ::v′) ∧ (Tail = t) ∗ last2(t, v, x, v′))

Deq
def
= ∃v,A, h, t, x, y. ((Q = v ::A) ∧ (Head = h) ∗ node(h, x) ∗ node(x, v, y) ∗ (Tail = t) ∧ h 6= t)

∝ ((Q = A) ∧ (Head = x) ∗ node(h, x) ∗ node(x, v, y) ∗ (Tail = t))

Swing
def
= ∃v, v′, t, x. (emp ∧ (Tail = t) ∗ last2(t, v, x, v′)) n (emp ∧ (Tail = x) ∗ last2(t, v, x, v′))

Figure 26: Precise invariant, rely and guarantee of MS lock-free queue. The auxiliary global variable GH

is set to Head in the initialization method.

the least number n of tokens to execute the loops (i.e., the thread can only run the loop for no more
than n rounds before it or its environment fulfills some source steps). For instance, in the proof for enq

(Figure 27), when the Tail pointer lags behind the last node, we need to have at least two tokens to first
advance the Tail pointer in one iteration and then enqueue a node in another iteration. Thus we define
tw (in Figure 27) saying that we have at least two tokens if Tail lags behind and one token otherwise.
It is part of our loop invariants in both the proofs for enq and deq. Moreover, to maintain this loop
invariant, we should get two more tokens whenever the environment enqueues a node (such that the Tail

pointer lags behind the last node) and makes the cas of the current thread fail.

25

tw(t)
def
= (Tail = t) ∗ ((last2(t) ∧ wf(2)) ∨ (node(t, null) ∧ wf(1))) tw

def
= ∃t. tw(t)

tw’(t, n)
def
= (Tail = t) ∗ ((last2(t, n) ∧ wf(1)) ∨ (node(t, n) ∧ n = null ∧ wf(0)))

tw’(t)
def
= tw’(t,) tw’

def
= ∃t. tw’(t)

newTail(n)
def
= (node(n, null) ∗ (Tail = n) ∧ wf(1)) ∨ (last2(n) ∗ (Tail = n) ∧ wf(2))
∨ (∃x, y. node(n, x) ∗ ls(x, y) ∗ tw(y) ∧ wf(2))

readTailEnvAdv(t, n)
def
= node(t, n) ∗ newTail(n) readTailEnvAdv(t)

def
= readTailEnvAdv(t,)

readTail(t)
def
= tw’(t) ∨ readTailEnvAdv(t)

readTailNextNullEnv(t, n)
def
= (n = null) ∧ ((Tail = t) ∗ last2(t) ∧ wf(2)) ∨ readTailEnvAdv(t))

readTailNext(t, n)
def
= tw’(t, n) ∨ readTailEnvAdv(t, n) ∨ readTailNextNullEnv(t, n)

readTailNextNull(t, n)
def
= ((Tail = t) ∗ node(t, n) ∧ n = null ∧ wf(0)) ∨ readTailNextNullEnv(t, n)

readTailNextNonnull(t, n)
def
= ((Tail = t) ∗ last2(t, n) ∧ wf(1)) ∨ readTailEnvAdv(t, n)

1 enq(v) {

2 local x, t, s, b;{
I ∧ arem(ENQ(V)) ∧ v = V

}
3 b := false;

4 x := cons(v, null);{
(¬b ∧ I ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V))
∨ (b ∧ I ∧ arem(skip))

}
//Applying the while rule and the hide-w rule

5 while (!b) {{
¬b ∧ (I ∧ tw’ ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)

}
6 < t := Tail; >{

¬b ∧ (I ∧ readTail(t) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)
}

7 s := t.next;{
¬b ∧ (I ∧ readTailNext(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)

}
8 if (t = Tail) {{

¬b ∧ (I ∧ readTailNext(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)
}

9 if (s = null) {{
¬b ∧ (I ∧ readTailNextNull(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)

}
10 b := cas(&(t.next), s, x);{

(b ∧ I ∧ readTailNextNonnull(t, x) ∗ true ∧ arem(skip))
∨ (¬b ∧ (I ∧ readTailNextNullEnv(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V))

}
11 if (b) {{

b ∧ I ∧ readTailNextNonnull(t, x) ∗ true ∧ arem(skip)
}

12 cas(&Tail, t, x);{
b ∧ I ∧ arem(skip)

}
13 }{

(b ∧ I ∧ arem(skip))
∨ (¬b ∧ (I ∧ tw ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V))

}
14 } else {{

¬b ∧ (I ∧ readTailNextNonnull(t, s) ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)
}

15 cas(&Tail, t, s);{
¬b ∧ (I ∧ tw ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V)

}
16 }

17 }{
(¬b ∧ (I ∧ tw ∗ true) ∗ node(x, v, null) ∧ arem(ENQ(V)) ∧ (v = V))
∨ (b ∧ I ∧ arem(skip))

}
18 }{

I ∧ arem(skip)
}

19 }

Figure 27: Proof outline for enq of MS lock-free queue.

26

readHeadEnv(h, n, x)
def
= (h 6= x) ∧ node(h, n) ∗ ls(n, x) ∗ (Head = x)

readHead(h, x)
def
= ((h = x) ∧ (Head = x)) ∨ (readHeadEnv(h, , x) ∗ wf(1)) readHead(h)

def
= readHead(h,)

readTailAfterHead(h, t)
def
= ∃x. readHead(h, x) ∗ ls(x, t) ∗ readTail(t)

readHeadNextAfterTail(h, n, t)
def
= (((Head = h) ∧ (h = t)) ∗ readTailNext(t, n))
∨ ((Head = h) ∗ node(h, n) ∗ ls(n, t) ∗ readTail(t))
∨ (∃x. readHeadEnv(h, n, x) ∗ wf(1) ∗ ls(x, t) ∗ readTail(t))

readHeadNextVal(h, n, v)
def
= ((Head = h) ∗ node(h, n) ∗ node(n, v,) ∗ (Tail = n))
∨ (∃x, t. (Head = h) ∗ node(h, n) ∗ node(n, v, x) ∗ ls(x, t) ∗ (Tail = t))
∨ (readHeadEnv(h, n,) ∗ tw)

1 deq() {

2 local v, s, h, t, b;{
I ∧ arem(DEQ)

}
3 b := false;{

(¬b ∧ I ∧ arem(DEQ)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ tw’ ∗ true ∧ arem(DEQ)
}

5 < h := Head; >{
¬b ∧ I ∧ tw’ ∗ readHead(h) ∗ true ∧ arem(DEQ)

}
6 < t := Tail; >{

¬b ∧ I ∧ readTailAfterHead(h, t) ∗ true ∧ arem(DEQ)
}

7 s := h.next;{
¬b ∧ I ∧ readHeadNextAfterTail(h, s, t) ∗ true
∧ ((h = t ∧ s = null ∧ arem(skip) ∧ V = EMPTY) ∨ ((h 6= t ∨ s 6= null) ∧ arem(DEQ)))

}
8 if (h = t) {

9 if (s = null) {{
¬b ∧ I ∧ h = t ∧ s = null ∧ arem(skip) ∧ V = EMPTY

}
10 v := EMPTY;

11 b := true;{
b ∧ I ∧ arem(skip) ∧ (v = V = EMPTY)

}
12 } else {{

¬b ∧ I ∧ readHeadNextAfterTail(h, s, t) ∗ true ∧ h = t ∧ s 6= null ∧ arem(DEQ)
}{

¬b ∧ I ∧ readTailNextNonnull(t, s) ∗ true ∧ arem(DEQ)
}

13 cas(&Tail, t, s);{
¬b ∧ I ∧ tw ∗ true ∧ arem(DEQ)

}
14 }

15 } else {{
¬b ∧ I ∧ readHeadNextAfterTail(h, s, t) ∗ true ∧ h 6= t ∧ arem(DEQ)

}
16 v := s.val;{

¬b ∧ I ∧ readHeadNextAfterTail(h, s, t) ∗ true ∧ node(s, v,) ∗ true ∧ h 6= t ∧ arem(DEQ)
}{

¬b ∧ I ∧ readHeadNextVal(h, s, v) ∗ true ∧ arem(DEQ)
}

17 < b := cas(&Head, h, s); >{
(¬b ∧ I ∧ tw ∗ true ∧ arem(DEQ)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))

}
18 }{

(¬b ∧ I ∧ tw ∗ true ∧ arem(DEQ)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))
}

19 }{
I ∧ arem(skip) ∧ (v = V)

}
20 return v;

21 }

Figure 28: Proof outline for a variant of deq in MS lock-free queue.

27

4.5 DGLM Lock-Free Queue

1 enq(v) {

2 local x, t, s, b;

3 b := false;

4 x := cons(v, null);

5 while (!b) {

6 < t := Tail; >

7 s := t.next;

8 if (t = Tail) {

9 if (s = null) {

10 b := cas(&(t.next), s, x);

11 if (b) {

12 cas(&Tail, t, x);

13 }

14 } else {

15 cas(&Tail, t, s);

16 }

17 }

18 }

19 }

1 deq() {

2 local v, s, h, t, b;

3 b := false;

4 while (!b) {

5 < h := Head; >

6 s := h.next;

7 if (s = null) {

8 v := EMPTY;

9 b := true;

10 } else {

11 v := s.val;

12 b := cas(&Head, h, s);

13 if (b) {

14 < t := Tail; >

15 if (h = t) {

16 cas(&Tail, t, s);

17 }

18 }

19 }

20 }

21 return v;

22 }

Figure 29: Variant of DGLM lock-free queue.

Doherty et al. [1] present an optimized version of the deq method in MS lock-free queue, and verify
linearizability of the algorithm by constructing a forward and a backward simulations. Here we prove its
linearizability and lock-freedom together. We show a variant4 of the code in Figure 29. Its enq method
is the same as the MS lock-free queue. For deq, it tests whether Tail points to the sentinel node (line 15

in Figure 29) only after Head has been updated (line 12), while in Michael and Scott’s version, the test
(line 8 in the deq of Figure 25) is performed before knowing the queue is not empty.

The precise invariant I and the rely/guarantee conditions R and G are almost the same as MS lock-
free queue, as shown in Figure 30. The proof for enq is the same as that of MS lock-free queue. In
Figure 31, we show the proof of the deq method for the DGLM queue using our logic. Different from
the deq method of MS queue, here we would not first use one iteration to advance the Tail pointer
before dequeuing nodes (instead, only after we have dequeued nodes, we may advance the Tail pointer,
as shown at line 16 of the deq method in Figure 29). Thus in the loop invariant, we no longer need to
have at least two tokens when Tail lags behind the last node. We can just use wf(1) as the loop invariant
on the number of tokens, for all cases.

I
def
= ∃h, t, A. (&Q Z⇒ A) ∧ (&Head 7→ h) ∗ (&Tail 7→ t) ∗ (lsq(h, t, A) ∨ cross(h, t, A)) ∗ garb(h)

cross(h, t, A)
def
= (A = ε) ∧ node(t, h) ∗ node(h, null)

R = G
def
= (Enq ∨ Deq ∨ Swing ∨ Id) ∗ Id ∧ (I n I)

Deq
def
= ∃v,A, h, x, y. ((&Q Z⇒ v ::A) ∧ (&Head 7→ h) ∗ node(h, x) ∗ node(x, v, y))

∝ ((&Q Z⇒ A) ∧ (&Head 7→ x) ∗ node(h, x) ∗ node(x, v, y))

Figure 30: Precise invariant, rely and guarantee of DGLM lock-free queue. Here lsq, garb, Enq and Swing
are the same as those for MS queue.

4As for MS lock-free queue, we also remove the double check on the read of Head in the deq method of DGLM queue.

28

readHeadNextNullEnv(h, n)
def
= (n = null) ∧ ∃x, y. node(h, x) ∗ ((node(x, y) ∗ (&Head 7→ h)) ∨ (ls(x, y) ∗ (&Head 7→ y)))

readHeadNext(h, n)
def
= (node(h, n) ∗ (&Head 7→ h)) ∨ (readHeadEnv(h, n, x) ∗ wf(1)) ∨ readHeadNextNullEnv(h, n)

readHeadNextVal(h, n, v)
def
= ((&Head 7→ h) ∗ node(h, n) ∗ node(n, v,)) ∨ (readHeadEnv(h, n, x) ∗ wf(1))

readTailEnvAdv(t, n)
def
= ∃x. (x 6= t) ∧ node(t, n) ∗ ls(n, x) ∗ (&Tail 7→ x)

readTail(t)
def
= ((&Tail 7→ t) ∗ tls(t,)) ∨ readTailEnvAdv(t,)

readLagTail(t, n)
def
= ((&Tail 7→ t) ∗ last2(t, n)) ∨ readTailEnvAdv(t, n)

1 deq() {

2 local v, s, h, t, b;{
I ∧ arem(DEQ)

}
3 b := false;{

(¬b ∧ I ∧ arem(DEQ)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))
}

//Applying the while rule and the hide-w rule
4 while (!b) {{

¬b ∧ I ∧ arem(DEQ) ∧ wf(0)
}

5 < h := Head; >{
¬b ∧ I ∧ readHead(h) ∗ true ∧ arem(DEQ)

}
6 s := h.next;{

¬b ∧ I ∧ readHeadNext(h, s) ∗ true
∧ ((s = null ∧ arem(skip) ∧ V = EMPTY) ∨ (s 6= null ∧ arem(DEQ)))

}
7 if (s = null) {{

¬b ∧ I ∧ s = null ∧ arem(skip) ∧ V = EMPTY
}

8 v := EMPTY;

9 b := true;{
b ∧ I ∧ arem(skip) ∧ (v = V = EMPTY)

}
10 } else {{

¬b ∧ I ∧ readHeadNext(h, s) ∗ true ∧ (s 6= null) ∧ arem(DEQ))
}

11 v := s.val;{
¬b ∧ I ∧ readHeadNextVal(h, s, v) ∗ true ∧ arem(DEQ))

}
12 b := cas(&Head, h, s);{

(b ∧ I ∧ node(h, s) ∗ node(s,) ∗ true ∧ arem(skip) ∧ (v = V)) ∨ (¬b ∧ I ∧ arem(DEQ) ∧ wf(1))
}

13 if (b) {{
b ∧ I ∧ node(h, s) ∗ node(s,) ∗ true ∧ arem(skip) ∧ (v = V)

}
14 < t := Tail; >{

b ∧ I ∧ node(h, s) ∗ node(s,) ∗ true ∧ readTail(t) ∗ true ∧ arem(skip) ∧ (v = V)
}

15 if (h = t) {{
b ∧ I ∧ readLagTail(t, s) ∗ true ∧ arem(skip) ∧ (v = V)

}
16 cas(&Tail, t, s);

17 }{
b ∧ I ∧ arem(skip) ∧ (v = V)

}
18 }

19 }{
(¬b ∧ I ∧ arem(DEQ) ∧ wf(1)) ∨ (b ∧ I ∧ arem(skip) ∧ (v = V))

}
20 }{

I ∧ arem(skip) ∧ (v = V)
}

21 return v;

22 }

Figure 31: Proof outline for a variant of deq in DGLM lock-free queue. Here readHead and readHeadEnv
are the same as those for MS queue.

29

4.6 Synchronous Queue

1 initialize() {

2 local sentinel;

3 sentinel := new Node(null, DATA, null);

4 GH := Head := Tail := sentinel;

5 }

1 enq(v) {

2 local t, h, n, offer, b, v’;

3 b := false;

4 offer := new Node(v, DATA, null);

5 while (!b) {

6 t := Tail;

7 h := Head;

8 if (h = t || t.type = DATA) {

9 n := t.next;

10 if (t = Tail) {

11 if (n != null) {

12 cas(&Tail, t, n);

13 } else if (cas(&(t.next), n, offer)){

14 cas(&Tail, t, offer);

15 v’ := offer.data;

16 while (v’ = v) { v’ := offer.data; }

17 h := Head;

18 if (offer = h.next)

19 cas(&Head, h, offer);

20 b := true;

21 }

22 }

23 } else {

24 n := h.next;

25 if (t = Tail && h = Head && n != null) {

26 b := cas(&(n.data), null, v);

27 cas(Head, h, n);

28 if (b) free(offer);

29 }

30 }

31 }

32 }

1 deq() {

2 local t, h, n, req, b, v;

3 b := false;

4 req := new Node(null, REQ, null);

5 while (!b) {

6 t := Tail;

7 h := Head;

8 if (h = t || t.type = REQ) {

9 n := t.next;

10 if (t = Tail) {

11 if (n != null) {

12 cas(&Tail, t, n);

13 } else if (cas(&(t.next), n, req)){

14 cas(&Tail, t, req);

15 v := req.data;

16 while (v = null) { v := req.data; }

17 h := Head;

18 if (req = h.next)

19 cas(&Head, h, req);

20 b := true;

21 }

22 }

23 } else {

24 n := h.next;

25 if (t = Tail && h = Head && n != null) {

26 v := n.data;

27 if (v != null) {

28 b := cas(&(n.data), v, null);

29 }

30 cas(Head, h, n);

31 if (b) free(offer);

32 }

33 }

34 }

35 return v;

36 }

Figure 32: Synchronous dual queue. Here GH is an auxiliary variable.

A synchronous queue is a concurrent transfer channel in which each producer presenting an item must
wait for a consumer to take this item, and vice versa. We show the implementation of synchronous queue
(used in Java 6 [9]) in Figure 32. It is based on the Michael-Scott queue. At any time, the queue contains
either enq reservations (nodes whose type fields are DATA), deq reservations (nodes whose type fields
are REQ), or it is empty. In the enq method (also known as put), a thread first checks if the queue is
empty or contains DATA-type reservations (line 8 in enq in Figure 32). If so, it enqueues (puts in) its new
DATA-type reservation (lines 13 and 14 in enq), and waits at the item for a deq thread to take it (lines 15
and 16 in enq). When a deq thread finds this reservation, it will take away the data contained in the
item (line 26 in deq), set the data field to null (line 28 in deq) and remove this item (line 30 in deq).
Also when the waiting enq thread finds that the item has been taken, it can try to remove the item as
well (lines 18 and 19 in enq). Symmetrically, a deq thread first checks if the queue is empty or contains

30

REQ-type reservations (line 8 in deq), and if so, it enqueues (puts in) its new REQ-type reservation (lines 13
and 14 in deq), and waits for a enq thread to fulfill it (lines 15 and 16 in deq).

The synchronous queue does not satisfy the traditional linearizability definition [4]. But we can see
that the steps for a thread to put in its reservation (which are actually like the enq method in MS queue
in Figure 25) are “linearizable” and “lock-free” (in that the multiple steps can be abstracted as an atomic
operation), and the steps for taking away the data or fulfilling the reservation (which are like the deq

method in MS queue) are also “linearizable” and “lock-free”. The waiting steps are certainly not “lock-
free” which require interactions from other threads to progress. We can define non-atomic abstract code
and prove that the synchronous queue implementation refines it.

1 ENQ(V) {

2 local nd, mustWait, va;

3 < nd := dequeue(D);

4 mustWait := (nd = null);

5 if (mustWait) { nd := enqueue(E, V); }

6 >

7 if (mustWait) {

8 va := nd.data;

9 while(va = V) { va := nd.data; }

10 }

11 else {

12 nd.data := V;

13 }

14 }

1 DEQ() {

2 local nd, mustWait, V;

3 < nd := dequeue(E);

4 mustWait := (nd = null);

5 if (mustWait) { nd := enqueue(D, null); }

6 >

7 if (mustWait) {

8 V := nd.data;

9 while(V = null) { V := nd.data; }

10 }

11 else {

12 V := nd.data;

13 nd.data := null;

14 }

15 return V;

16 }

Figure 33: Abstract synchronous queue.

As shown in Figure 33, the abstract code follows Java SE 5.0 SynchronousQueue class [9]. We maintain
two abstract queues: D for waiting dequeuers and E for waiting enqueuers. Each queue is a mathematical
list of node addresses (as an abstraction/simplification of a linked list). The command enqueue(E, v)

allocates a new abstract node with data v and inserts its address at the tail of the queue E, and returns
the address. The command dequeue(E) removes the first item (a node address) from the queue E and
returns it if E is not empty (E 6= ε), and returns null otherwise.

In the ENQ method, a thread first checks if D is empty (line 4 of ENQ in Figure 33), and if so, it
atomically puts in its reservation to E (line 5). Then it waits for a deq thread to take away the data in
the reservation (lines 8 and 9). If D is not empty, then it dequeues a reservation from D and writes its
enqueued value V to the data field of the reservation (line 12). The DEQ method is symmetric.

To simplify the proof, we assume the abstract state always contain a dummy node whose data is
null. The node is never accessed by the code. It is used to correspond to the initial sentinel node of the
concrete list.

To prove the concrete implementation in Figure 32 refines the abstract operations in Figure 33 using
our logic, we first define the invariant I and the rely and guarantee conditions R and G in Figure 34.

The invariant I says, the shared memory contains the queue Q and some garbage nodes Garb which
were removed from the queue by either enq or deq. As usual we introduce an auxiliary variable GH to
collect those nodes which were removed from the list. Initially it is set to Head, and would not change any
more. Then the list segment (Gls) from GH to Head includes all the removed nodes. Also these removed
nodes must have been sentinel nodes (stnl), i.e., those DATA-type nodes whose data has been taken and
those REQ-type nodes whose data has been fulfilled. The queue Q is either a DATA-type queue (and the
abstract D must be empty) or a REQ-type queue (and the abstract E must be empty). And it always
contains one or two sentinel nodes (the two-sentinel case occurs since the Head pointer may lag behind

31

the new sentinel node). Also as in MS queue, the Tail pointer may lag behind the last node. But if Head
lags behind the new sentinel node, Tail would not be equal to Head, as indicated by the implementation
in Figure 32.

The rely and guarantee conditions contain six possible actions in addition to the identity transitions.
AdvHead and AdvTail are to swing the Head and Tail pointers when they lag behind. These two actions
do not correspond to any abstract step. ResvE and ResvD each inserts a new node at the tail of the
queue. Put fulfills the data field of a REQ-type node at the head of the queue, and Take takes away the
data of a DATA-type node. They both make a normal node into a sentinel node. The four actions ResvE ,
ResvD, Put and Take correspond to abstract steps and thus their effect bits must be true.

We show the proofs of enq in Figures 37 and 38, with some auxiliary predicates defined in Figures 35
and 36. Proofs for deq is symmetric and omitted here. Similar to the proofs for MS queue, we need to
specify in the loop invariants the least number n of tokens to execute the loops (i.e., the thread can only
run the loop for no more than n rounds before it or its environment fulfills some source steps). In the
proof for enq (Figure 37), when either the Head or the Tail pointer lags behind, we need to have at least
two tokens (as defined by loopInv in Figure 35). To maintain this loop invariant, we should get two more
tokens whenever the environment inserts a node at the tail (such that the Tail pointer lags behind the
last node), and whenever the environment makes a normal node becomes a sentinel node (such that the
Head pointer lags behind the new sentinel).

32

I
def
= ∃h, t. (Head

.
= h) ∗ (Tail

.
= t) ∗ Q(h, t) ∗ Garb(h)

Q(h, t)
def
= ∃b. Qb(h, t)

Qb(h, t)
def
= ∃L. Qb(h, t, L) ∗ ((b = DATA ∧ (E

.
= L) ∗ (D

.
= ε)) ∨ (b = REQ ∧ (D

.
= L) ∗ (E

.
= ε)))

Qb(h, t, L)
def
= Ssb(h, t, null) ∧ L = ε
∨∃x,X. Ssb(h, t, x) ∗ Qnb(x, null, X) ∧ L = X ::ε
∨∃x, L′, L′′. Ssb(h, , x) ∗ Qlsb(x, t, L

′) ∗ Qtlb(t, , L
′′) ∧ L = L′ ::L′′

Garb(h)
def
= ∃g. (GH

.
= g) ∗ Gls(g, h)

Ss(x, y, z)
def
= ∃b. Ssb(x, y, z) Ssb(x, y, z)

def
= (Stnl(x, z) ∧ (x = y)) ∨ (Stnl(x, y) ∗ Stnlb(y, z))

Gls(x, y)
def
= (x = y) ∨ (x 6= y ∧ ∃z. Stnl(x, z) ∗ Gls(z, y))

Qlsb(x, y, L)
def
= (x = y ∧ L = ε) ∨ (x 6= y ∧ ∃z,X,L′. L = X ::L′ ∧ Qnb(x, z,X) ∗ Qlsb(z, y, L

′))

Qtlb(x, y, L)
def
= (∃X. Qnb(x, y,X) ∧ y = null ∧ L = X ::ε)
∨ (∃X,Y. Qnb(x, y,X) ∗ Qnb(y, null, Y) ∧ L = X ::Y ::ε)

Stnl(x, y)
def
= ∃b. Stnlb(x, , y,) Stnlb(x, v, y,X)

def
= stnlb(x, v, y) ∧ NODE(X, v)

Qnb(x, y,X)
def
= Qnb(x, , y,X) Qnb(x, v, y,X)

def
= qnb(x, v, y) ∧ NODE(X, v)

stnlb(x, v, y)
def
= nodeb(x, v, y) ∧ ((b = DATA ∧ v = null) ∨ (b = REQ ∧ v 6= null))

qnb(x, v, y)
def
= nodeb(x, v, y) ∧ ((b = DATA ∧ v 6= null) ∨ (b = REQ ∧ v = null))

nodeb(x, v, y)
def
= x 7→ (v, b, y) NODE(X,V)

def
= X Z⇒ (V)

stnl(x, y)
def
= ∃b. stnlb(x, , y) qn(x, y)

def
= ∃b. qnb(x, , y) node(x, y)

def
= ∃b. nodeb(x, , y)

stnlb(x, y)
def
= stnlb(x, , y) nodeb(x, y)

def
= nodeb(x, , y) node(x, v, y)

def
= ∃b. nodeb(x, v, y)

R = G
def
= (AdvHead ∨ AdvTail ∨ ResvE ∨ ResvD ∨ Put ∨ Take ∨ Id) ∗ Id ∧ (I n I)

AdvHead
def
= ∃x, y, z, s. [stnl(x, y) ∗ stnl(y, z) ∧ emp] ∗ ((Head

.
= x) n (Head

.
= y))

AdvTail
def
= ∃x, y. [node(x, y) ∗ node(y, null) ∧ emp] ∗ ((Tail

.
= x) n (Tail

.
= y))

ResvE
def
= ∃v, v′, b, t, x, L,X. ((Tail = t) ∗ nodeb(t, v, null) ∧ (E = L) ∗ (D = ε))

∝ ((Tail = t) ∗ nodeb(t, v, x) ∗ qnDATA(x, v′, null) ∧ (NODE(X, v′) ∗ (E = L ::X) ∗ (D = ε)))

ResvD
def
= ∃v, v′, b, t, x, L,X. ((Tail = t) ∗ nodeb(t, v, null) ∧ (E = ε) ∗ (D = L))

∝ ((Tail = t) ∗ nodeb(t, v, x) ∗ qnREQ(x, v′, null) ∧ (NODE(X, v′) ∗ (E = ε) ∗ (D = L ::X)))

Put
def
= ∃h, t, x, y,X,L. [(Head

.
= h) ∗ (Tail

.
= t) ∗ Stnl(h, x) ∗ (E

.
= ε) ∧ (h 6= t)]

∗ ((QnREQ(x, y,X) ∗ (D
.
= X ::L)) ∝ (StnlREQ(x, y,X) ∗ (D

.
= L))

Take
def
= ∃h, t, x, y,X,L. [(Head

.
= h) ∗ (Tail

.
= t) ∗ Stnl(h, x) ∗ (D

.
= ε) ∧ (h 6= t)]

∗ ((QnDATA(x, y,X) ∗ (E
.
= X ::L)) ∝ (StnlDATA(x, y,X) ∗ (E

.
= L))

Figure 34: Precise invariant, rely and guarantee of synchronous queue. Here we use E1
.
= E2 and E1

.
= E2

short for (E1 = E2) ∧ emp and (E1 = E2) ∧ emp respectively.

33

node2p(t, n, x)
def
= nodep(t, n) ∗ node(n, x) node2(t, n, x)

def
= ∃p. node2p(t, n, x)

stnl2p(h, n, v)
def
= stnl(h, n) ∗ stnlp(n, v,) stnl2p(h)

def
= stnl2p(h, ,) stnl2(h)

def
= ∃p. stnl2p(h)

stnl1p(h, n, v)
def
= stnl(h, n) ∗ qnp(n, v,) stnl1p(h)

def
= stnl1p(h, ,) stnl1(h)

def
= ∃p. stnl1p(h)

gls(x, y)
def
= (x = y) ∨ (x 6= y ∧ ∃z. stnl(x, z) ∗ gls(z, y))

ls(x, y)
def
= (x = y) ∨ (x 6= y ∧ ∃z. node(x, z) ∗ ls(z, y))

lagTail
def
= node2(Tail, , null) nonlagTail

def
= node(Tail, null) tail

def
= lagTail ∨ nonlagTail

lagHead
def
= stnl2(Head) nonlagHead

def
= stnl(Head, null) ∨ stnl1(Head) head

def
= lagHead ∨ nonlagHead

loopInv
def
= ((lagTail ∨ lagHead) ∧ wf(2)) ∨ (nonlagTail ∧ nonlagHead ∧ wf(1))

loopBody
def
= ((lagTail ∨ lagHead) ∧ wf(1)) ∨ (nonlagTail ∧ nonlagHead ∧ wf(0))

newTailp(n, v)
def
= (nodep(n, v, null) ∧ (n = Tail) ∧ wf(1))
∨ (∃x. nodep(n, v, x) ∗ node(x, null) ∧ (n = Tail) ∧ wf(2))
∨ (∃x. nodep(n, v, x) ∗ ls(x, Tail) ∗ tail ∧ wf(2))

newTail(n)
def
= ∃p, v. newTailp(n, v) NewTailp(n, v,N)

def
= newTailp(n, v) ∗ NODE(N, v)

readTailEnvAdvp,q(t, n, v)
def
= nodep(t, n) ∗ newTailq(n, v)

readTailEnvAdvp(t)
def
= ∃q. readTailEnvAdvp,q(t, ,) readTailEnvAdvp(t, n)

def
= ∃q. readTailEnvAdvp,q(t, n,)

readTailp(t)
def
= (t = Tail ∧ (node2p(t, , null) ∨ nodep(t, null))) ∨ readTailEnvAdvp(t)

readTailNextNullEnvp(t, n)
def
= (n = null) ∧ ((t = Tail ∧ node2p(t, , null) ∧ wf(2)) ∨ readTailEnvAdvp(t))

readTailNextp(t, n)
def
= (t = Tail ∧ (node2p(t, n, null) ∨ (nodep(t, n) ∧ n = null)))
∨ readTailEnvAdvp(t, n) ∨ readTailNextNullEnvp(t, n)

readTailNextNonnullp(t, n)
def
= (t = Tail ∧ node2p(t, n, null) ∧ wf(1)) ∨ readTailEnvAdvp(t, n)

readTailNextNullp(t, n)
def
= (t = Tail ∧ nodep(t, n) ∧ n = null ∧ wf(0)) ∨ readTailNextNullEnvp(t, n)

EnvXchgq(n, v,N)
def
= ∃x. Stnlq(n, v, x,N) ∗ ls(x, Tail) ∗ tail ∧ (stnl(Head, n) ∨ gls(n, Head))

EnvXchgReadHeadq(n, v,N, h)
def
= ∃x. Stnlq(n, v, x,N) ∗ ls(x, Tail) ∗ tail ∧ (stnl(h, n) ∨ gls(n, h)) ∧ gls(h, Head)

EnvXchgLagHeadq(n, v,N, h)
def
= ∃x. Stnlq(n, v, x,N) ∗ ls(x, Tail) ∗ tail ∧ stnl(h, n) ∧ gls(h, Head)

EnvXchgNonlagHeadq(n, v,N)
def
= ∃x. Stnlq(n, v, x,N) ∗ ls(x, Tail) ∗ tail ∧ gls(n, Head)

Resvq(t, n, v, v
′, N)

def
= (t = Tail ∧ node(t, n) ∗ Qnq(n, v, null, N))
∨ node(t, n) ∗ NewTailq(n, v,N) ∨ node(t, n) ∗ EnvXchgq(n, v′, N)

ResvAdvq(n, v, v
′, N)

def
= NewTailq(n, v,N) ∨ EnvXchgq(n, v

′, N)

ResvAdvReadDataq(n, v, v
′, vr, N)

def
= NewTailq(n, v,N) ∧ (vr = v) ∨ EnvXchgq(n, v

′, N) ∧ (vr = v′ ∨ vr = v)

ENQWait
def
= (va := nd.data; ENQWhile)

ENQWhile
def
= (while(va=V){ va := nd.data; })

Figure 35: Auxiliary definition - I.

34

newHeadp(n, v)
def
= (stnlp(n, v, null) ∧ (n = Head) ∧ wf(1))
∨ (∃x. stnlp(n, v, x) ∗ qn(x,) ∧ (n = Head) ∧ wf(1))
∨ (∃x. stnlp(n, v, x) ∗ stnl(x,) ∧ (n = Head) ∧ wf(2))
∨ (∃x. stnlp(n, v, x) ∗ gls(x, Head) ∗ head ∧ wf(2))

newHead(n)
def
= ∃p, v. newHeadp(n, v)

readHeadEnvAdvp(h, n, v)
def
= stnl(h, n) ∗ newHeadp(n, v)

readHeadEnvAdvp(h)
def
= readHeadEnvAdvp(h, ,) readHeadEnvAdvp(h, n)

def
= readHeadEnvAdvp(h, n,)

readHeadp(h)
def
= (h = Head ∧ (stnlp(h, null) ∨ stnl1p(h) ∨ stnl2p(h))) ∨ readHeadEnvAdvp(h)

readHeadNextNullEnvp(h, n)
def
= (n = null) ∧ ((h = Head ∧ stnlp(h, x) ∗ node(x,) ∧ wf(2)) ∨ readHeadEnvAdvp(h))

readHeadNextp(h, n)
def
= (h = Head ∧ ((stnlp(h, n) ∧ n = null) ∨ stnl1p(h, n,) ∨ stnl2p(h, n,)))
∨ readHeadEnvAdvp(h, n) ∨ readHeadNextNullEnvp(h, n)

readHeadNextNonnullp(h, n)
def
= (h = Head ∧ (stnl1p(h, n,) ∨ stnl2p(h, n,))) ∨ readHeadEnvAdvp(h, n)

readHeadNextNullp(h, n)
def
= (h = Head ∧ stnlp(h, n) ∧ n = null) ∨ readHeadNextNullEnvp(h, n)

Xchgp(h, n, v)
def
= (h = Head ∧ stnl2p(h, n, v)) ∨ readHeadEnvAdvp(h, n, v)

Xchgp(h, n)
def
= Xchgp(h, n,)

Figure 36: Auxiliary definition - II.

35

1 enq(v) {

2 local t, h, n, offer, b, v’;{
I ∧ loopInv ∗ true ∧ arem(ENQ)

}
3 b := false;

4 offer := new Node(v, DATA, null);{
(¬b ∧ (I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ)) ∨ (b ∧ I ∧ arem(skip))

}
5 while (!b) {{

(I ∧ loopBody ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b
}

6 t := tail;{
∃p. (Qp ∗ Garb ∧ loopBody ∗ true ∧ readTailp(t) ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b

}
7 h := head;{

∃p. (Qp ∗ Garb ∧ loopBody ∗ true ∧ readTailp(t) ∗ true ∧ readHeadp(h) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b

}
8 if (h = t || t.type = DATA) {{

∃p. (I ∧ loopBody ∗ true ∧ readTailp(t) ∗ true ∧ gls(h, Head) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h = t ∨ p = DATA) ∧ ¬b

}
9 n := t.next;{

∃p. (I ∧ loopBody ∗ true ∧ readTailNextp(t, n) ∗ true ∧ gls(h, Head) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h = t ∨ p = DATA) ∧ ¬b

}
10 if (t = tail) {{

∃p. (I ∧ loopBody ∗ true ∧ readTailNextp(t, n) ∗ true ∧ gls(h, Head) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h = t ∨ p = DATA) ∧ ¬b

}
11 if (n != null) {{

∃p. (I ∧ loopBody ∗ true ∧ readTailNextNonnullp(t, n) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b

}
12 cas(&tail, t, n);{

(I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b
}

13 } else {{
∃p. (I ∧ loopBody ∗ true ∧ readTailNextNullp(t, n) ∗ true ∧ gls(h, Head) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h = t ∨ p = DATA) ∧ ¬b

}
14 if (cas(&(t.next), n, offer)){{

(I ∧ ResvDATA(t, offer, v, null, nd) ∗ true) ∧ arem(ENQWait) ∧ ¬b
}

15 cas(&tail, t, offer);{
(I ∧ ResvAdvDATA(offer, v, null, nd) ∗ true) ∧ arem(ENQWait) ∧ ¬b

}
16 v’ := offer.data;{

(I ∧ ResvAdvReadDataDATA(offer, v, null, v’, nd) ∗ true) ∧ (v’ = va) ∧ arem(ENQWhile) ∧ ¬b
}

17 while (v’ = v) { v’ := offer.data; }{
(I ∧ EnvXchgDATA(offer, null, nd) ∗ true) ∧ (v’ = va = null) ∧ arem(skip) ∧ ¬b

}
18 h := head;{

(I ∧ EnvXchgReadHeadDATA(offer, null, nd, h) ∗ true) ∧ arem(skip) ∧ ¬b
}

19 if (offer = h.next){
(I ∧ EnvXchgLagHeadDATA(offer, null, nd, h) ∗ true) ∧ arem(skip) ∧ ¬b

}
20 cas(&head, h, offer);{

(I ∧ EnvXchgNonlagHeadDATA(offer, null, nd) ∗ true) ∧ arem(skip) ∧ ¬b
}

21 b := true;{
b ∧ I ∧ arem(skip)

}
22 }

23 }

24 }

25 }

Figure 37: Proof outline - I.

36

26 else {{
∃p. (I ∧ loopBody ∗ true ∧ readTailp(t) ∗ true ∧ readHeadp(h) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h 6= t ∧ p = REQ) ∧ ¬b

}
27 n := h.next;{

∃p. (I ∧ loopBody ∗ true ∧ readTailp(t) ∗ true ∧ readHeadNextp(h, n) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ (h 6= t ∧ p = REQ) ∧ ¬b

}
28 if (t = tail && h = head && n != null) {{

(I ∧ loopBody ∗ true ∧ readHeadNextNonnullREQ(h, n) ∗ true)
∗ nodeDATA(offer, v, null) ∧ arem(ENQ) ∧ ¬b

}
29 b := cas(&(n.data), null, v);{

b ∧ (I ∧ loopBody ∗ true ∧ XchgREQ(h, n, v) ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(skip)
∨¬b ∧ (I ∧ loopBody ∗ true ∧ XchgREQ(h, n) ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ)

}
30 cas(head, h, n);{

(b ∧ I ∗ nodeDATA(offer, v, null) ∧ arem(skip))
∨ (¬b ∧ (I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ))

}
31 if (b) free(offer);{

(¬b ∧ (I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ)) ∨ (b ∧ I ∧ arem(skip))
}

32 } else {{
(I ∧ loopBody ∗ true ∧ (readTailEnvAdvREQ(t) ∨ readHeadEnvAdvREQ(h) ∨ readHeadNextNullEnvREQ(h, n)) ∗ true)
∗ nodeDATA(offer, v, null) ∧ (h 6= t) ∧ arem(ENQ) ∧ ¬b

}
{
¬b ∧ (I ∧ loopInv ∗ true) ∗ nodeDATA(offer, v, null) ∧ arem(ENQ)

}
33 }

34 }

35 }{
I ∧ arem(skip)

}
36 }

Figure 38: Proof outline - II.

37

5 Soundness Proofs

Below we first prove the adequacy of RGSim-T w.r.t. the termination-sensitive refinement (Section 5.1).
Then we define the unary judgment semantics (Section 5.2), and we prove the soundness of the binary
inference rules of Figure 7 (Section 5.3), where the binary judgment semantics is just RGSim-T in
Definition 2, and also prove the soundness of the unary rules of Figure 8 (Section 5.4). Finally we show
the derivation of the while-term rule (Section 5.5).

5.1 Adequacy of RGSim-T

RGSim-T in Definition 2 (which is also the binary judgment semantics) implies the termination-sensitive
refinement in Definition 1.

Theorem 4 (Adequacy of RGSim-T). If there exist R, G, I, Q and a metric M such that R,G, I |=
(C, σ,M)�Q (C,Σ), then (C, σ) v (C,Σ).

Proof: We want to prove the following: for any R, G, I, Q,

∀C,Σ, E .
(∃C, σ,M. R,G, I |= (C, σ,M)�Q (C,Σ) ∧ ETr(C, σ, E)) =⇒ ETr(C,Σ, E)

By co-induction.

Co-induction Principle: ∀x. (∃S. S ⊆ F (S) ∧ x ∈ S) =⇒ x ∈ gfp F

Figure 3 defines F and gfp F (i.e., ETr). Let

S
def
= {(C,Σ, E) | ∃C, σ,M. R,G, I |= (C, σ,M)�Q (C,Σ) ∧ ETr(C, σ, E)}.

So from the co-induction principle, we only need to prove:

S ⊆ F (S), i.e., ∀C,Σ, E . (C,Σ, E) ∈ S =⇒ (C,Σ, E) ∈ F (S) .

After unfolding S, we only need to prove:

∀M,C,Σ, E , C, σ. R,G, I |= (C, σ,M)�Q (C,Σ) ∧ ETr(C, σ, E) =⇒ (C,Σ, E) ∈ F (S) . (5.1)

By transfinite induction over M .

Transfinite Induction Principle: (∀M. (∀M ′. M ′ < M =⇒ P (M ′)) =⇒ P (M)) =⇒ ∀M.P (M)

We view (5.1) as ∀M.P (M). So we only need to prove:

∀M.
(∀M ′. M ′ < M

=⇒ (∀C′,Σ′, E ′, C ′, σ′. R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′) ∧ ETr(C ′, σ′, E ′)
=⇒ (C′,Σ′, E ′) ∈ F (S)))

=⇒
(∀C,Σ, E , C, σ. R,G, I |= (C, σ,M)�Q (C,Σ) ∧ ETr(C, σ, E)
=⇒ (C,Σ, E) ∈ F (S))

By inversion over ETr(C, σ, E),

1. (C, σ) −→∗ (skip, σ′) and E =⇓:

From R,G, I |= (C, σ,M)�Q (C,Σ), we know there exists Σ′ such that (C,Σ) −→∗ (skip,Σ′).

Thus from the definition of F (Figure 3), we know (C,Σ, E) ∈ F (S).

38

2. (C, σ) −→+ abort and E = :

From R,G, I |= (C, σ,M)�Q (C,Σ), we know (C,Σ) −→+ abort.

Thus from the definition of F (Figure 3), we know (C,Σ, E) ∈ F (S).

3. (C, σ) −→+ (C ′, σ′) and ETr(C ′, σ′, E) and E = ε:

From R,G, I |= (C, σ,M)�Q (C,Σ), we know one of the following two cases holds:

(a) there exist M ′, C′ and Σ′ such that (C,Σ) −→+ (C′,Σ′) and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′).
Thus (C′,Σ′, E) ∈ S. Then from the definition of F (Figure 3), we know (C,Σ, E) ∈ F (S).

(b) there exists M ′ such that M ′ < M and R,G, I |= (C ′, σ′,M ′)�Q (C,Σ).

Then from the induction hypothesis, we know ETr(C,Σ, E).

4. (C, σ)
e−→+ (C ′, σ′), ETr(C ′, σ′, E ′) and E = e ::E ′:

From R,G, I |= (C, σ,M)�Q (C,Σ), we know:

there exist C′, Σ′ and M ′ such that (C,Σ)
e−→+ (C′,Σ′) and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′).

Thus (C′,Σ′, E ′) ∈ S. Then from the definition of F (Figure 3), we know (C,Σ, E) ∈ F (S).

Then we are done. 2

39

5.2 Unary Judgment Semantics

The unary judgment semantics R,G, I |= {p}C{q} follows RGSim-T (Definition 2). The initial abstract
code in the simulation comes from the precondition p, and the postcondition q specifies the final abstract
code that corresponds to the concrete final code skip. The assertions p and q also specify the while-
specific metric w (the numbers of tokens), which must be related to the metric M used in the simulation
RGSim-T.

Below we first show how we instantiate the abstract metric M in RGSim-T based on w.

5.2.1 Instantiation of the Abstract Metric M

For each single thread, its metric ws (defined below) is a list of (w, n) pairs, where w is the while-specific
metric and n is “code size” which will be explained later. We let the threaded metric ws be a list (a stack
actually) to allow different while-specific metrics for nested loops. That is, when entering a loop, we can
push a (w, n) pair to the ws stack; and when exiting the loop, we pop the pair out of ws.

The threaded metric ws uses the dictionary order. However, the usual dictionary order over lists is
not well-founded (consider B > AB > AAB > AAAB > . . . in a dictionary). To address this issue, we
introduce a bound of the list length (stack height), H, and define the well-founded order <H by requiring
the lists should be not longer than H. Intuitively, the stack height H represents the maximal depth of
nested loops, so it can be determined for any given program.

To get the whole-program metric, we compose threaded metrics by pairing them. Thus the abstract
metric M in RGSim-T is instantiated as follows:

M ::= (ws,H) | (M,M)

and we define the well-founded oder < and the composition operation + (see Lemma 16) as follows:

ws ′ <H ws H′ = H
(ws ′,H′) < (ws,H)

M ′1 < M1 M ′2 = M2

(M ′1,M
′
2) < (M1,M2)

M ′1 = M1 M ′2 < M2

(M ′1,M
′
2) < (M1,M2)

M1 +M2
def
= (M1,M2)

The threaded metric ws and the well-founded order <H are defined below. Note that we allow
“A < AB < B” in a dictionary.

(WfStack) ws ::= (w, n) | (w, n) ::ws

(StkHeight) H ∈ Nat

ws ′ <H ws iff (ws ′ � ws) ∧ (|ws ′| ≤ H) ∧ (|ws| ≤ H)

(w′, n′) < (w, n)

(w′, n′)� (w, n)

(w′, n′) ≤ (w, n)

(w′, n′)� (w, n) ::ws1

(w′, n′) < (w, n)

(w′, n′) ::ws ′1 � (w, n)

(w′, n′) < (w, n)

(w′, n′) ::ws ′1 � (w, n) ::ws1

(w′, n′) = (w, n) ws ′1 � ws1

(w′, n′) ::ws ′1 � (w, n) ::ws1

Here |ws| is the length of ws, which is defined as follows:

|(w, n)| = 1
|(w, n) ::ws| = 1 + |ws|

The well-founded order over the (w, n) pairs is a usual dictionary order:

(w′, n′) < (w, n) iff (w′ < w) ∨ (w′ = w ∧ n′ < n)

(w′, n′) = (w, n) iff (w′ = w) ∧ (n′ = n)

(w′, n′) ≤ (w, n) iff (w′, n′) < (w, n) ∨ (w′, n′) = (w, n)

40

Lemma 5 (Well-foundedness). The relation M ′ < M defined above is a well-founded relation.

Proof: Easy to prove from Lemma 6. 2

Lemma 6. The relation ws ′ <H ws defined above is a well-founded relation.

Proof: Suppose there is an infinite descending chain:

ws0 > ws1 > ws2 > . . . (5.2)

Thus we know
ws0 � ws1 � ws2 � . . . (5.3)

and
∀k. |wsk| ≤ H (5.4)

We prove the following property which generalizes (5.4) over the maximum size H:

∀ws0,ws1,ws2, (∀k. wsk � wsk+1) =⇒ (∀m ≥ 1. ∃j. |wsj | > m) (5.5)

By induction over m.

• Base Case: m = 1. Suppose ∀k. |wsk| = 1. Thus we have an infinite descending chain:

(w0, n0) > (w1, n1) > (w2, n2) > . . . (5.6)

It violates the definition of (w′, n′) < (w, n) (which is a well-founded relation).

• Inductive Step: m = m′ + 1. Since (w′, n′) < (w, n) is a well-founded relation, we know there
must exists k such that

∀j ≥ k. root(wsj) = root(wsj+1) (5.7)

and there exist ws ′k, ws ′k+1, ws ′k+2, . . . such that ∀j ≥ k. wsj = root(wsj) ::ws ′j and

∀j ≥ k. ws ′j � ws ′j+1 (5.8)

Here root(ws) takes the first element of ws if ws has the first element and undefined otherwise.
From the induction hypothesis, we know there exists j ≥ k such that

|ws ′j | > m′. (5.9)

Thus |wsj | > m′ + 1.

So we are done. 2

5.2.2 Intuitions of H and the Second Dimension of ws

Below we give more informal explanations (and examples) about the stack height H and the second
dimension (“code size” n in each pair) of the threaded metric ws.

As we said, the stack height H represents the maximal depth of nested loops. For any given program
C, we can determine the stack height using a function height defined in Figure 39.

The threaded metric ws as a stack requires us to distinguish the executions of the loop body from the
executions of the code out of the loop. When entering a loop (for the first time), we can push a (w, n)
pair onto the ws stack. But when we repeatedly execute the loop body (not for the first time), we do not
want to push a new pair onto the stack.

Thus we introduce the runtime command while (B){C} to represent the while-loop continuation when
we have unfolded the loop while (B) C. And we revised the low-level operational semantics as follows:

41

height(skip) = 1

height(c) = 1

height(〈C〉) = 1

height(C1;C2) = max{height(C1), height(C2)}
height(if (B) C1 else C2) = max{height(C1), height(C2)}

height(while (B) C) = height(C) + 1

Figure 39: Definition of height.

JBKs = true

(while (B) C, (s, h)) −→ (C;while (B){C}, (s, h))

JBKs = false

(while (B) C, (s, h)) −→ (skip, (s, h))

JBKs = true

(while (B){C}, (s, h)) −→ (C;while (B){C}, (s, h))

JBKs = false

(while (B){C}, (s, h)) −→ (skip, (s, h))

We can see that the new operational semantics for while loops is equivalent to the original one (see
Figure 2). Below we will assume the new semantics and use it to prove the logic soundness. However,
we want the readers to note that without the new operational semantics, we can still define the unary
judgment semantics and prove the soundness of all the inference rules, based on the original operational
semantics. The new operational semantics for while loops just makes the proofs (and the intuition)
clearer, in particular, for the hide-w rule, the rule for “locally” reasoning about nested while loops.

With the runtime while (B){C}, we can calculate the code size n in each (w, n) pair of ws. We first
label the code such that different layers of a nested while loop are assigned different labels.

Labeling the Code The syntax of the labeled code is defined below. Its operational semantics is
straightforward, as shown in Figure 40.

(Label) l ∈ Nat

(LabStmt) Ĉ ::= skipl | cl | 〈C〉l | Ĉ1; Ĉ2 | if l(B) Ĉ1 else Ĉ2

| whilel(B) Ĉ | whilel(B) Ĉ

We label the low-level code in the following way. Note that we do not need to label the runtime
command while (B){C}, whose label is known during the runtime execution.

labeling(skip, l) = skipl

labeling(c, l) = cl

labeling(〈C〉, l) = 〈C〉l

labeling(C1;C2, l) = labeling(C1, l); labeling(C2, l)

labeling(if (B) C1 else C2, l) = if l(B) labeling(C1, l) else labeling(C2, l)

labeling(while (B) C, l) = whilel(B) labeling(C, l + 1)

We define the functions label, toplabel, minlabel and maxlabel in Figure 41. Then the stack height H
of C is actually the maximum label of Ĉ, which is obtained by labeling C with 1. That is, the following
holds:

height(C) = maxlabel(labeling(C, 1))

We can prove the following property.

Lemma 7. For any C, Ĉ, Ĉ ′, σ, σ′ and R, if labeling(C, 1) = Ĉ and (Ĉ, σ)
R7−→ ∗ (Ĉ ′, σ′), then there

exist l, Ĉ1, . . . , Ĉl such that Ĉ ′ = (Ĉl; . . . ; Ĉ1) and ∀i ∈ [1..l]. label(Ĉi) = i.

42

JBKs = true

(whilel(B) Ĉ, (s, h)) −→ (Ĉ;whilel(B) Ĉ, (s, h))

JBKs = false

(whilel(B) Ĉ, (s, h)) −→ (skipl, (s, h))

JBKs = true

(whilel(B) Ĉ, (s, h)) −→ (Ĉ;whilel(B) Ĉ, (s, h))

JBKs = false

(whilel(B) Ĉ, (s, h)) −→ (skipl, (s, h))

(Ĉ, σ) −→ (Ĉ′, σ′)

(Ĉ; Ĉ′′, σ) −→ (Ĉ′; Ĉ′′, σ′) (skipl; Ĉ′, σ) −→ (Ĉ′, σ)

(Ĉ, σ) −→ (Ĉ′, σ′)

(Ĉ, σ)
R7−→ (Ĉ′, σ′)

((σ,Σ), (σ′,Σ′), b) |= R

(Ĉ, σ)
R7−→ (Ĉ, σ′)

Figure 40: Selected operational semantics rules of the labeled language.

label(skipl) = l

label(cl) = l

label(〈C〉l) = l

label(Ĉ1; Ĉ2) =

{
label(Ĉ1) if label(Ĉ1) = label(Ĉ2)
undefined otherwise

label(if l(B) Ĉ1 else Ĉ2) = l

label(whilel(B) Ĉ) = l

label(whilel(B) Ĉ) = l

minlabel(skipl) = l

minlabel(cl) = l

minlabel(〈C〉l) = l

minlabel(Ĉ1; Ĉ2) = minlabel(Ĉ2)

minlabel(if l(B) Ĉ1 else Ĉ2) = l

minlabel(whilel(B) Ĉ) = l

minlabel(whilel(B) Ĉ) = l

maxlabel(skipl) = l

maxlabel(cl) = l

maxlabel(〈C〉l) = l

maxlabel(Ĉ1; Ĉ2) = max{maxlabel(Ĉ1),maxlabel(Ĉ2)}
maxlabel(if l(B) Ĉ1 else Ĉ2) = max{maxlabel(Ĉ1),maxlabel(Ĉ2)}

maxlabel(whilel(B) Ĉ) = maxlabel(Ĉ)

Figure 41: Functions on labeled code.

43

It says, at any time in the execution of Ĉ, the runtime code must be in the form of Ĉl; Ĉl−1 . . . ; Ĉ1, where

each Ĉi has a fixed label i.

Code Sizes for Labeled Code For each pair (w, n) in any ws, n can be statically determined by the
code. We use proj2(ws) to project each pair (w, n) in ws to n. proj1(ws) is defined similarly.

ns ::= n | n ::ns

proj2(w, n) = n
proj2((w, n) ::ws) = n ::proj2(ws)

We use JĈK to compute a list of code sizes for Ĉ. Then

proj2(ws) = JĈK, where Ĉ is some run-time labeled code and ws is the metric for Ĉ.

We define JĈK as follows.

JskiplK = 0

JclK = 1

J〈C〉lK = 1

JĈ1; Ĉ2K =

{
JĈ1K⊕ |Ĉ2| ⊕ 1 if minlabel(Ĉ1) = label(Ĉ2)

|Ĉ2| :: (JĈ1K⊕ 1) if minlabel(Ĉ1) > label(Ĉ2)

Jif l(B) Ĉ1 else Ĉ2K = max{|Ĉ1|, |Ĉ2|}+ 1

Jwhilel(B) ĈK = 1

Jwhilel(B) ĈK = 0::0

Here the static size of commands |Ĉ| is defined as follows.

|skipl| = 0

|cl| = 1

|〈C〉l| = 1

|Ĉ1; Ĉ2| = |Ĉ1|+ |Ĉ2|+ 1

|if l(B) Ĉ1 else Ĉ2| = max{|Ĉ1|, |Ĉ2|}+ 1

|whilel(B) Ĉ| = 1

|whilel(B) Ĉ| = 0

And ns ⊕ n is defined as follows:

ns ⊕ n def
=


n1 + n if ns = n1

(n1 + n) ::ns ′ if ns = n1 ::ns ′

undefined otherwise

Examples of ws Below we use a few simple examples to show how ws changes during an execution.
The second dimension of the ws for the runtime labeled code Ĉ coincides with the above definition JĈK.

C σ ws

1 while1(i > 0) i--2; i = 2 (0, 1)

2 → i--2; while1(i > 0) i--2; i = 2 (0, 0) :: (1, 2)

3 → skip2; while1(i > 0) i--2; i = 1 (0, 0) :: (1, 1)

4 → while1(i > 0) i--2; i = 1 (0, 0) :: (1, 0)

5 → i--2; while1(i > 0) i--2; i = 1 (0, 0) :: (0, 2)

6 → skip2; while1(i > 0) i--2; i = 0 (0, 0) :: (0, 1)

7 → while1(i > 0) i--2; i = 0 (0, 0) :: (0, 0)

8 → skip1; i = 0 (0, 0)

44

C σ ws

1 i:=21; while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 0, j = 0 (0, 3)

2 → skip1; while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 2, j = 0 (0, 2)

3 → while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 2, j = 0 (0, 1)

4 → j:=12; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 6)

5 → skip2; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 1 (0, 0) :: (1, 5)

6 → while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 1 (0, 0) :: (1, 4)

7 → j--3; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 1 (0, 0) :: (1, 3) :: (0, 2)

8 → skip3; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 3) :: (0, 1)

9 → while2(j>0){j--3; }; i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 3) :: (0, 0)

10 → skip2; i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 3)

11 → i--2; while1(i>0){...} i = 2, j = 0 (0, 0) :: (1, 2)

12 → skip2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (1, 1)

13 → while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 1, j = 0 (0, 0) :: (1, 0)

14 → j:=12; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 6)

15 → skip2; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 1 (0, 0) :: (0, 5)

16 → while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 1 (0, 0) :: (0, 4)

17 → j--3; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 1 (0, 0) :: (0, 3) :: (0, 2)

18 → skip3; while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 3) :: (0, 1)

19 → while2(j>0){j--3; }; i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 3) :: (0, 0)

20 → skip2; i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 3)

21 → i--2; while1(i>0){...} i = 1, j = 0 (0, 0) :: (0, 2)

22 → skip2; while1(i>0){...} i = 0, j = 0 (0, 0) :: (0, 1)

23 → while1(i>0){ j:=12; while2(j>0){j--3; }; i--2; } i = 0, j = 0 (0, 0) :: (0, 0)

24 → skip1 i = 0, j = 0 (0, 0)

45

The next example is a loop that uses the counter. It involves environment steps, denoted by R, and
defined in Section 4.1. When the environment updates x (see line 7), we increase the number of tokens
by 1, i.e., w at the outermost pair of the stack ws is increased from 0 to 1.

C σ ws

1

while1(i > 0){
b:=false2;
while2(!b){ t:=x3; b:=cas(&x,t,t+1)3; if3(b) i--3; };
}

x = 5
i = 1
b = false
t = 0

(0, 1)

2 → b:=false2; while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 4)

3 → skip2; while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 3)

4 → while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 2)

5 → t:=x3; b:=cas(&x,t,t+1)3; if3(b) i--3;
while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 1) :: (0, 7)

6 → skip3; b:=cas(&x,t,t+1)3; if3(b) i--3;
while2(!b){...}; while1(i > 0){...}

x = 5
. . .
t = 5

(0, 0) :: (0, 1) :: (0, 6)

7 R x = 8, . . . (0, 0) :: (0, 1) :: (1, 6)

8 →∗ while2(!b){...}; while1(i > 0){...}

x = 8
i = 1
b = false
t = 5

(0, 0) :: (0, 1) :: (1, 0)

9 → t:=x3; b:=cas(&x,t,t+1)3; if3(b) i--3;
while2(!b){...}; while1(i > 0){...} . . . (0, 0) :: (0, 1) :: (0, 7)

10 →∗ while2(!b){...}; while1(i > 0){...}

x = 8
i = 0
b = true
t = 8

(0, 0) :: (0, 1) :: (0, 0)

11 → skip2; while1(i > 0){...} . . . (0, 0) :: (0, 1)

12 → while1(i > 0){...} . . . (0, 0) :: (0, 0)

13 → skip1; . . . (0, 0)

Note that in this section we assume that the outer loop and the inner loop each uses a “local” while-
specific metric w. The intuition explained here actually shows how we prove the soundness of the while-l
rule. For the while rule, we use a “global” while-specific metric, and hence the depth of ws could be
just 1 and we do not need to push a new (w, n) pair whenever entering a loop. In this case, the second
dimension of ws, i.e., the size of the code, will count in the runtime while command while (B){C} too.
We show a simple example below, where the stack ws is always of depth 1.

C σ ws

1 while1(i > 0) i--2; i = 2 (2, 1)

2 → i--2; while1(i > 0) i--2; i = 2 (1, 3)

3 → skip2; while1(i > 0) i--2; i = 1 (1, 2)

4 → while1(i > 0) i--2; i = 1 (1, 0)

5 → i--2; while1(i > 0) i--2; i = 1 (0, 3)

6 → skip2; while1(i > 0) i--2; i = 0 (0, 2)

7 → while1(i > 0) i--2; i = 0 (0, 1)

8 → skip1; i = 0 (0, 0)

46

5.2.3 Unary Judgment Semantics

Definition 8. R,G, I |= {p}C{q} iff
for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then R,G, I |= (C, σ, (0, |C|))�height(C);w;q (D,Σ).

Whenever R,G, I |= (C, σ,ws)�H;w;q (D,Σ), then (σ,Σ) |= I ∗ true and the following are true:

1. for any σF , ΣF , C ′ and σ′′, if (C, σ] σF) −→ (C ′, σ′′) and Σ⊥ΣF , then there exists σ′ such that
σ′′ = σ′] σF and one of the following holds:

(a) either, there exist ws ′, w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q (C′,Σ′);

(b) or, there exists ws ′ such that ws ′ <H ws,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;q (D,Σ);

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ] σF)
e−→ (C ′, σ′′) and Σ⊥ΣF , then

there exist σ′, ws ′, w′, C′ and Σ′ such that σ′′ = σ′] σF , (D,Σ] ΣF)
e−→+ (C′,Σ′] ΣF),

((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q (C′,Σ′);

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id, then
there exist ws ′ and w′ such that R,G, I |= (C, σ′,ws ′)�H;w′;q (D,Σ′);

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id, then
R,G, I |= (C, σ′,ws)�H;w;q (D,Σ′);

5. if C = skip, then for any ΣF , if Σ⊥ΣF , one of the following holds:

(a) either, there exist w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= q;

(b) or, there exists w′ such that ws = (w′, 0) and (σ,w + w′,D,Σ) |= q;

6. for any σF and ΣF , if (C, σ] σF) −→ abort and Σ⊥ΣF , then (D,Σ] ΣF) −→+ abort.

Definition 9 (SL Judgment Semantics).
|=sl [p]C[q] iff, for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, the following are true:

1. for any σ′, if (C, σ) −→∗ (skip, σ′), then (σ′, w,D,Σ) |= q;

2. (C, σ) 6−→∗ abort;

3. (C, σ) 6−→ω ·.

|=sl [P]C[Q] iff, for any σ and Σ, if (σ,Σ) |= P , the following are true:

1. for any Σ′, if (C,Σ) −→∗ (skip,Σ′), then (σ,Σ′) |= Q;

2. (C,Σ) 6−→∗ abort;

3. (C,Σ) 6−→ω ·.

Definition 10 (Locality).
Locality(C) iff, for any σ1 and σ2, let σ = σ1] σ2, then the following hold:

1. (Safety monotonicity) If (C, σ1) 6−→∗ abort, then (C, σ) 6−→∗ abort.

2. (Termination monotonicity) If (C, σ1) 6−→∗ abort and (C, σ1) 6−→ω ·, then (C, σ) 6−→ω ·.

3. (Frame property) For any n and σ′, if (C, σ1) 6−→∗ abort and (C, σ) −→n (C ′, σ′), then there exists
σ′1 such that σ′ = σ′1] σ2 and (C, σ1) −→n (C ′, σ′1).

Locality(C) is defined similarly.

47

5.3 Soundness of Binary Rules

Lemma 11. If R,G, I ` {P}C�C{Q}, then I . {R,G}, P ∨Q⇒ I ∗ true and Sta({P,Q}, R ∗ Id).

Proof: By induction over the derivation of R,G, I ` {P}C�C{Q}, and by Lemma 27. For the stability,
we need Lemmas 12, 13 and 14. 2

Lemma 12. If Sta(p ∧B,R ∗ Id), Sta(p ∧ ¬B,R ∗ Id) and p⇒ (B = B), then Sta(p,R ∗ Id).

Lemma 13. If Sta(p,R ∗ Id), p⇒ (B = B) ∗ I and I . R, then Sta(p ∧B,R ∗ Id).

Lemma 14. If Sta(p1, R1 ∗ Id), Sta(p2, R2 ∗ Id), I1 . R1, I2 . R2, p1 ⇒ I1 ∗ true, p2 ⇒ I2 ∗ true, then
Sta(p1 ∗ p2, R1 ∗R2 ∗ Id).

The B-PAR rule. We define M1 + M2 as a pair (M1,M2). The corresponding well-founded order
satisfies the following:

(M1 < M2) =⇒ (M1 +M3 < M2 +M3) (5.10)

(M1 < M2) =⇒ (M3 +M1 < M3 +M2) (5.11)

Lemma 15 (Parallel Compositioinality). If

1. R ∨G2, G1, I |= {P1 ∗ P}C1�C1{Q1 ∗Q′1};

2. R ∨G1, G2, I |= {P2 ∗ P}C2�C2{Q2 ∗Q′2};

3. P ∨Q′1 ∨Q′2 ⇒ I; I . {R,G1, G2}; Sta(Q1 ∗Q′1, (R ∨G2) ∗ Id); Sta(Q2 ∗Q′2, (R ∨G1) ∗ Id);

then R,G1 ∨G2, I |= {P1 ∗ P2 ∗ P}C1‖C2�C19C2{Q1 ∗Q2 ∗ (Q′1 ∧Q′2)}.

Proof: We need to prove: for all σ and Σ, if (σ,Σ) |= P1 ∗ P2 ∗ P , then there exists M such that
R,G1 ∨G2, I |= (C1‖C2, σ,M)�Q1∗Q2∗(Q′

1∧Q′
2)

(C19C2,Σ).
From (σ,Σ) |= P1 ∗ P2 ∗ P , we know there exist σ1, σ2, σr Σ1, Σ2 and Σr such that

(σ1,Σ1) |= P1, (σ2,Σ2) |= P2, (σr,Σr) |= P , σ = σ1] σ2] σr, Σ = Σ1] Σ2] Σr

From the premises, we know there exist M1 and M2 such that

R ∨G2, G1, I |= (C1, σ1] σr,M1)�Q1∗Q′
1
(C1,Σ1] Σr)

R ∨G1, G2, I |= (C2, σ2] σr,M2)�Q2∗Q′
2
(C2,Σ2] Σr)

By Lemma 16, we are done. 2

Lemma 16. If

1. R ∨G2, G1, I |= (C1, σ1] σr,M1)�Q1∗Q′
1
(C1,Σ1] Σr);

2. R ∨G1, G2, I |= (C2, σ2] σr,M2)�Q2∗Q′
2
(C2,Σ2] Σr);

3. (σr,Σr) |= I; Q′1 ∨Q′2 ⇒ I; I . {R,G1, G2}; Sta(Q1 ∗Q′1, (R∨G2) ∗ Id); Sta(Q2 ∗Q′2, (R∨G1) ∗ Id);

then R,G1 ∨G2, I |= (C1‖C2, σ1] σ2] σr,M1 +M2)�Q1∗Q2∗(Q′
1∧Q′

2)
(C19C2,Σ1] Σ2] Σr).

Proof: By co-induction. We know (σ1] σ2] σr,Σ1] Σ2] Σr) |= I ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C1 ‖C2, σ1] σ2] σr] σF) −→ (C ′, σ′′), then one of the following
three cases holds:

48

(a) C ′ = C ′1‖C2 and (C1, σ1] σ2] σr] σF) −→ (C ′1, σ
′′):

from the premise 1, we know: there exists σ′ such that

σ′′ = σ′] σ2] σF (5.12)

and one of the following holds:

i. there exist M ′1, C′1 and Σ′ such that

(C1,Σ1] Σ2] Σr] ΣF) −→+ (C′1,Σ′] Σ2] ΣF) (5.13)

((σ1] σr,Σ1] Σr), (σ
′,Σ′), true) |= G1

+ ∗ True (5.14)

R ∨G2, G1, I |= (C ′1, σ
′,M ′1)�Q1∗Q′

1
(C′1,Σ′) (5.15)

Below we prove 1(a) of Definition 2 holds.
From I . G1, (σr,Σr) |= I and (5.14), we know: there exist σ′1, Σ′1, σ′r and Σ′r such that

σ′ = σ′1] σ′r , Σ′ = Σ′1] Σ′r , (σ′r,Σ
′
r) |= I (5.16)

((σr,Σr), (σ
′
r,Σ

′
r), true) |= G1

+ (5.17)

From (5.12) and (5.16), we know

σ′′ = σ′1] σ2] σ′r] σF (5.18)

From (5.13) and (5.16), we know

(C19C2,Σ1] Σ2] Σr] ΣF) −→+ (C′19C2,Σ
′
1] Σ2] Σ′r] ΣF) (5.19)

From (5.17), we know:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ
′
1]σ2]σ′r,Σ′1]Σ2]Σ′r), true) |= (G1 ∨G2)

+ ∗True (5.20)

and ((σ2] σr,Σ2] Σr), (σ2] σ′r,Σ2] Σ′r), true) |= (G1 ∨R)
+ ∗ Id.

Then from the premise 2, we know: there exists M ′2 such that

R ∨G1, G2, I |= (C2, σ2] σ′r,M ′2)�Q2∗Q′
2
(C2,Σ2] Σ′r) (5.21)

From (5.15), (5.16), (5.21) and the co-induction hypothesis, we know:

R,G1 ∨G2, I |= (C ′1‖C2, σ
′
1] σ2] σ′r,M ′1 +M ′2)�Q1∗Q2∗(Q′

1∧Q′
2)

(C′19C2,Σ
′
1] Σ2] Σ′r)

(5.22)
From (5.18), (5.19), (5.20) and (5.22), we are done.

ii. there exists M ′1 such that
M ′1 < M1 (5.23)

((σ1] σr,Σ1] Σr), (σ
′,Σ1] Σr), false) |= G1

+ ∗ True (5.24)

R ∨G2, G1, I |= (C ′1, σ
′,M ′1)�Q1∗Q′

1
(C1,Σ1] Σr) (5.25)

Below we prove 1(b) of Definition 2 holds.
From I . G1, (σr,Σr) |= I and (5.24), we know: there exist σ′1 and σ′r such that

σ′ = σ′1] σ′r , (σ′r,Σr) |= I (5.26)

((σr,Σr), (σ
′
r,Σr), false) |= G1

+ (5.27)

From (5.12) and (5.26), we know

σ′′ = σ′1] σ2] σ′r] σF (5.28)

49

From (5.27), we know:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ
′
1]σ2]σ′r,Σ1]Σ2]Σr), false) |= (G1 ∨G2)

+∗True (5.29)

and ((σ2] σr,Σ2] Σr), (σ2] σ′r,Σ2] Σr), false) |= (G1 ∨R)
+ ∗ Id.

Then from the premise 2, we know:

R ∨G1, G2, I |= (C2, σ2] σ′r,M2)�Q2∗Q′
2
(C2,Σ2] Σr) (5.30)

From (5.25), (5.26), (5.30) and the co-induction hypothesis, we know:

R,G1 ∨G2, I |= (C ′1‖C2, σ
′
1] σ2] σ′r,M ′1 +M2)�Q1∗Q2∗(Q′

1∧Q′
2)

(C19C2,Σ1] Σ2] Σr)
(5.31)

From (5.23), we get:
M ′1 +M2 < M1 +M2 (5.32)

From (5.28), (5.29), (5.31) and (5.32), we are done.

(b) C ′ = C1‖C ′2 and (C2, σ1] σ2] σr] σF) −→ (C ′2, σ
′′): similar to the first case.

(c) C ′ = skip, C1 = skip and C2 = skip, thus we know

σ′′ = σ1] σ2] σr] σF (5.33)

Below we prove 1(a) of Definition 2 holds.

From the premise 1, we know one of the following holds:

i. there exists Σ′ such that

(C1,Σ1] Σ2] Σr] ΣF) −→+ (skip,Σ′] Σ2] ΣF) (5.34)

((σ1] σr,Σ1] Σr), (σ1] σr,Σ′), true) |= G1
+ ∗ True (5.35)

(σ1] σr,Σ′) |= Q1 ∗Q′1 (5.36)

From I . G1, (σr,Σr) |= I and (5.35), we know: there exist Σ′1 and Σ′r such that

Σ′ = Σ′1] Σ′r , (σr,Σ
′
r) |= I (5.37)

((σr,Σr), (σr,Σ
′
r), true) |= G1

+ (5.38)

Since Q′1 ⇒ I and (5.36), we get:

(σ1,Σ
′
1) |= Q1 , (σr,Σ

′
r) |= Q′1 (5.39)

From (5.34) and (5.37), we know

(C19C2,Σ1] Σ2] Σr] ΣF) −→+ (skip9C2,Σ
′
1] Σ2] Σ′r] ΣF) (5.40)

From (5.38), we know: ((σ2] σr,Σ2] Σr), (σ2] σr,Σ2] Σ′r), true) |= (G1 ∨R)
+ ∗ Id.

Then from the premise 2, we know: there exists M ′2 such that

R ∨G1, G2, I |= (C2, σ2] σr,M ′2)�Q2∗Q′
2
(C2,Σ2] Σ′r) (5.41)

Since C2 = skip, we know one of the following holds:

50

A. there exists Σ′′ such that

(C2,Σ
′
1] Σ2] Σ′r] ΣF) −→+ (skip,Σ′′] Σ′1] ΣF) (5.42)

((σ2] σr,Σ2] Σ′r), (σ2] σr,Σ′′), true) |= G2
+ ∗ True (5.43)

(σ2] σr,Σ′′) |= Q2 ∗Q′2 (5.44)

From I . G2, (σr,Σ
′
r) |= I and (5.43), we know: there exist Σ′2 and Σ′′r such that

Σ′′ = Σ′2] Σ′′r , (σr,Σ
′′
r) |= I (5.45)

((σr,Σ
′
r), (σr,Σ

′′
r), true) |= G2

+ (5.46)

Since Q′2 ⇒ I and (5.44), we get:

(σ2,Σ
′
2) |= Q2 , (σr,Σ

′′
r) |= Q′2 (5.47)

From (5.40) and (5.42), we know

(C19C2,Σ1] Σ2] Σr] ΣF) −→+ (skip,Σ′1] Σ′2] Σ′′r] ΣF) (5.48)

From (5.38) and (5.46), we know:

((σr,Σr), (σr,Σ
′′
r), true) |= (G1 ∨G2)

+
(5.49)

Thus we get:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ1]σ2]σr,Σ′1]Σ′2]Σ′′r), true) |= (G1 ∨G2)
+∗True (5.50)

From (5.46), we get: ((σr,Σ
′
r), (σr,Σ

′′
r), true) |= (R ∨G2)

+
. Since (σ1,Σ

′
1) |= Q1,

(σr,Σ
′
r) |= Q′1, Sta(Q1 ∗Q′1, (R ∨G2) ∗ Id), I . (R ∨G2) and Q′1 ⇒ I, we know:

(σr,Σ
′′
r) |= Q′1 (5.51)

From (σ1,Σ
′
1) |= Q1 and (5.47), we get:

(σ1] σ2] σr,Σ′1] Σ′2] Σ′′r) |= Q1 ∗Q2 ∗ (Q′1 ∧Q′2) (5.52)

By the b-skip and b-frame rules, we get: there exists M ′ such that

R,G1 ∨G2, I |= (skip, σ1] σ2] σr,M ′)�Q1∗Q2∗(Q′
1∧Q′

2)
(skip,Σ′1] Σ′2] Σ′′r) (5.53)

From (5.48), (5.50) and (5.53), we are done.

B. C2 = skip and (σ2] σr,Σ2] Σ′r) |= Q2 ∗Q′2.
From Q′2 ⇒ I and (σr,Σ

′
r) |= I, we know:

(σ2,Σ2) |= Q2 , (σr,Σ
′
r) |= Q′2 (5.54)

From (5.40), we know

(C19C2,Σ1] Σ2] Σr] ΣF) −→+ (skip,Σ′1] Σ2] Σ′r] ΣF) (5.55)

From (5.38), we know:

((σr,Σr), (σr,Σ
′
r), true) |= (G1 ∨G2)

+
(5.56)

Thus we get:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ1]σ2]σr,Σ′1]Σ2]Σ′r), true) |= (G1 ∨G2)
+∗True (5.57)

51

From (5.39) and (5.54), we get:

(σ1] σ2] σr,Σ′1] Σ2] Σ′r) |= Q1 ∗Q2 ∗ (Q′1 ∧Q′2) (5.58)

By the b-skip and b-frame rules, we get: there exists M ′ such that

R,G1 ∨G2, I |= (skip, σ1] σ2] σr,M ′)�Q1∗Q2∗(Q′
1∧Q′

2)
(skip,Σ′1] Σ2] Σ′r) (5.59)

From (5.55), (5.57) and (5.59), we are done.

ii. C1 = skip and (σ1] σr,Σ1] Σr) |= Q1 ∗Q′1.
From Q′1 ⇒ I and (σr,Σr) |= I, we know:

(σ1,Σ1) |= Q1 , (σr,Σr) |= Q′1 (5.60)

From the premise 2, we know one of the following holds:

A. there exists Σ′ such that

(C2,Σ1] Σ2] Σr] ΣF) −→+ (skip,Σ′] Σ1] ΣF) (5.61)

((σ2] σr,Σ2] Σr), (σ2] σr,Σ′), true) |= G2
+ ∗ True (5.62)

(σ2] σr,Σ′) |= Q2 ∗Q′2 (5.63)

From I . G2, (σr,Σr) |= I and (5.62), we know: there exist Σ′2 and Σ′r such that

Σ′ = Σ′2] Σ′r , (σr,Σ
′
r) |= I (5.64)

((σr,Σr), (σr,Σ
′
r), true) |= G2

+ (5.65)

Since Q′2 ⇒ I and (5.63), we get:

(σ2,Σ
′
2) |= Q2 , (σr,Σ

′
r) |= Q′2 (5.66)

From (5.61), we know

(C19C2,Σ1] Σ2] Σr] ΣF) −→+ (skip,Σ1] Σ′2] Σ′r] ΣF) (5.67)

From (5.65), we know:

((σr,Σr), (σr,Σ
′
r), true) |= (G1 ∨G2)

+
(5.68)

Thus we get:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ1]σ2]σr,Σ1]Σ′2]Σ′r), true) |= (G1 ∨G2)
+∗True (5.69)

From (5.65), we get: ((σr,Σr), (σr,Σ
′
r), true) |= (R ∨G2)

+
. Since (σ1,Σ1) |= Q1,

(σr,Σr) |= Q′1, Sta(Q1 ∗Q′1, (R ∨G2) ∗ Id), I . (R ∨G2) and Q′1 ⇒ I, we know:

(σr,Σ
′
r) |= Q′1 (5.70)

From (σ1,Σ1) |= Q1 and (5.66), we get:

(σ1] σ2] σr,Σ1] Σ′2] Σ′r) |= Q1 ∗Q2 ∗ (Q′1 ∧Q′2) (5.71)

By the b-skip and b-frame rules, we get: there exists M ′ such that

R,G1 ∨G2, I |= (skip, σ1] σ2] σr,M ′)�Q1∗Q2∗(Q′
1∧Q′

2)
(skip,Σ1] Σ′2] Σ′r) (5.72)

From (5.67), (5.69) and (5.72), we are done.

52

B. C2 = skip and (σ2] σr,Σ2] Σr) |= Q2 ∗Q′2.
From Q′2 ⇒ I and (σr,Σr) |= I, we know:

(σ2,Σ2) |= Q2 , (σr,Σr) |= Q′2 (5.73)

We know

(C19C2,Σ1] Σ2] Σr] ΣF) −→+ (skip,Σ1] Σ2] Σr] ΣF) (5.74)

Also we have:

((σ1]σ2]σr,Σ1]Σ2]Σr), (σ1]σ2]σr,Σ1]Σ2]Σr), true) |= (G1 ∨G2)
+∗True (5.75)

From (5.60) and (5.73), we get:

(σ1] σ2] σr,Σ1] Σ2] Σr) |= Q1 ∗Q2 ∗ (Q′1 ∧Q′2) (5.76)

By the b-skip and b-frame rules, we get: there exists M ′ such that

R,G1 ∨G2, I |= (skip, σ1] σ2] σr,M ′)�Q1∗Q2∗(Q′
1∧Q′

2)
(skip,Σ1] Σ2] Σr) (5.77)

From (5.74), (5.75) and (5.77), we are done.

2. for any σF , ΣF , e, C ′ and σ′′, if (C1‖C2, σ1]σ2]σr]σF)
e−→ (C ′, σ′′), the proof is similar to the

first case.

3. for any σ′ and Σ′, if ((σ1] σ2] σr,Σ1] Σ2] Σr), (σ
′,Σ′), true) |= R+ ∗ Id,

from I . R and (σr,Σr) |= I, we know: there exist σ′r and Σ′r such that

σ′ = σ1] σ2] σ′r , Σ′ = Σ1] Σ2] Σ′r , (σ′r,Σ
′
r) |= I (5.78)

((σr,Σr), (σ
′
r,Σ

′
r), true) |= R+ (5.79)

Thus we get:
((σ1] σr,Σ1] Σr), (σ1] σ′r,Σ1] Σ′r), true) |= (R ∨G2)

+ ∗ Id (5.80)

((σ2] σr,Σ2] Σr), (σ2] σ′r,Σ2] Σ′r), true) |= (R ∨G1)
+ ∗ Id (5.81)

From the premises, we know: there exist M ′1 and M ′2 such that

R ∨G2, G1, I |= (C1, σ1] σ′r,M ′1)�Q1∗Q′
1
(C1,Σ1] Σ′r) (5.82)

R ∨G1, G2, I |= (C2, σ2] σ′r,M ′2)�Q2∗Q′
2
(C2,Σ2] Σ′r) (5.83)

By the co-induction hypothesis, we get:

R,G1 ∨G2, I |= (C1‖C2, σ1] σ2] σ′r,M ′1 +M ′2)�Q1∗Q2∗(Q′
1∧Q′

2)
(C19C2,Σ1] Σ2] Σ′r) (5.84)

4. for any σ′ and Σ′, if ((σ1] σ2] σr,Σ1] Σ2] Σr), (σ
′,Σ′), false) |= R+ ∗ Id,

from I . R and (σr,Σr) |= I, we know: there exist σ′r and Σ′r such that

σ′ = σ1] σ2] σ′r , Σ′ = Σ1] Σ2] Σ′r , (σ′r,Σ
′
r) |= I (5.85)

((σr,Σr), (σ
′
r,Σ

′
r), false) |= R+ (5.86)

Thus we get:
((σ1] σr,Σ1] Σr), (σ1] σ′r,Σ1] Σ′r), false) |= (R ∨G2)

+ ∗ Id (5.87)

((σ2] σr,Σ2] Σr), (σ2] σ′r,Σ2] Σ′r), false) |= (R ∨G1)
+ ∗ Id (5.88)

53

From the premises, we know:

R ∨G2, G1, I |= (C1, σ1] σ′r,M1)�Q1∗Q′
1
(C1,Σ1] Σ′r) (5.89)

R ∨G1, G2, I |= (C2, σ2] σ′r,M2)�Q2∗Q′
2
(C2,Σ2] Σ′r) (5.90)

By the co-induction hypothesis, we get:

R,G1 ∨G2, I |= (C1‖C2, σ1] σ2] σ′r,M1 +M2)�Q1∗Q2∗(Q′
1∧Q′

2)
(C19C2,Σ1] Σ2] Σ′r) (5.91)

5. for any σF and ΣF , if (C1‖C2, σ1] σ2] σr] σF) −→ abort, by the operational semantics and the
premises, we know (C19C2,Σ1] Σ2] Σr] ΣF) −→+ abort.

Thus we are done. 2

54

The U2B rule.

Lemma 17 (U2B). If R,G, I |= {P ∧ arem(C)}C{Q ∧ arem(skip)}, then R,G, I |= {P}C�C{Q}.

Proof: We need to prove: for all σ and Σ, if (σ,Σ) |= P , then there exists M such that R,G, I |=
(C, σ,M)�Q (C,Σ).

From (σ,Σ) |= P , we know: (σ, 0,C,Σ) |= P ∧ arem(C).
From the premise, we know: R,G, I |= (C, σ, (0, |C|))�height(C);0;Q∧arem(skip) (C,Σ).
By Lemma 18, we are done. 2

Lemma 18. If R,G, I |= (C, σ,ws)�H;w;Q∧arem(skip) (C,Σ), then R,G, I |= (C, σ, (ws,H))�Q (C,Σ).

Proof: By co-induction. From the premise, we know (σ,Σ) |= I ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C, σ] σF) −→ (C ′, σ′′) and Σ⊥ΣF ,

from the premise, we know: there exists σ′ such that σ′′ = σ′] σF and one of the following holds:

(a) there exist ws ′, w′, C′ and Σ′ such that (C,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;Q∧arem(skip) (C′,Σ′).
By the co-induction hypothesis, we know: R,G, I |= (C ′, σ′, (ws ′,H))�Q (C′,Σ′).

(b) there exists ws ′ such that ws ′ <H ws,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;Q∧arem(skip) (C,Σ).

By the co-induction hypothesis, we know: R,G, I |= (C ′, σ′, (ws ′,H))�Q (C,Σ).

By the instantiation of the abstract metric, we know: (ws ′,H) < (ws,H).

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ] σF)
e−→ (C ′, σ′′), the proof is similar to the previous case.

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

from the premise, we know: there exist ws ′ and w′ such that
R,G, I |= (C, σ′,ws ′)�H;w′;Q∧arem(skip) (C,Σ′).
By the co-induction hypothesis, we know: R,G, I |= (C, σ′, (ws ′,H))�Q (C,Σ′).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

from the premise, we know: R,G, I |= (C, σ′,ws)�H;w;Q∧arem(skip) (C,Σ′).
By the co-induction hypothesis, we know: R,G, I |= (C, σ′, (ws,H))�Q (C,Σ′).

5. if C = skip, then for any ΣF , from the premise, we know one of the following holds:

(a) there exist w′, C′ and Σ′ such that (C,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= Q ∧ arem(skip).

Thus we know C′ = skip and (σ,Σ′) |= Q.

(b) there exists w′ such that ws = (w′, 0) and (σ,w + w′,C,Σ) |= Q ∧ arem(skip).

Thus we know C = skip and (σ,Σ) |= Q.

6. for any σF and ΣF , if (C, σ] σF) −→ abort, from the premise, we know (C,Σ]ΣF) −→+ abort.

Thus we are done. 2

55

The TRANS rule. We define M2 ◦M1 as a pair (M2,M1) and the corresponding well-founded order
as the lexical order. That is, the following hold:

(M2 < M ′2) =⇒ (M2 ◦M1 < M ′2 ◦M ′1) (5.92)

(M1 < M ′1) =⇒ (M2 ◦M1 < M2 ◦M ′1) (5.93)

Lemma 19 (TRANS). If

1. R1, G1, I1 ` {P1}C�CM{Q1};

2. R2, G2, I2 ` {P2}CM�C{Q2};

3. MPrecise(I1, I2); I1 . {R1, G1}; I2 . {R2, G2};

4. ((G1)
I1 #̂ (G2)

I2) ⇒ (G1 #̂G2)
I1#I2 ; (R1 #̌R2)

I1#I2 ⇒ ((R1)
I1 #̌ (R2)

I2);

then (R1 #̌R2), (G1 #̂G2), (I1 # I2) ` {P1 # P2}C�C{Q1 #Q2}.

Proof: For all σ and Σ, if (σ,Σ) |= P1 #P2, we know there exists θ such that (σ, θ) |= P1 and (θ,Σ) |= P2.
From the premise, we know:

1. there exists M1 such that R1, G1, I1 |= (C, σ,M1)�Q1 (CM, θ).

2. there exists M2 such that R2, G2, I2 |= (CM, θ,M2)�Q2
(C,Σ).

By Lemma 20, we know (R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C, σ, (M2 ◦M1))�Q1#Q2 (C,Σ). Thus we are
done. 2

Lemma 20. If

1. R1, G1, I1 |= (C, σ,M1)�Q1
(CM, θ);

2. R2, G2, I2 |= (CM, θ,M2)�Q2
(C,Σ);

3. MPrecise(I1, I2); I1 . {R1, G1}; I2 . {R2, G2};

4. ((G1)
+ #̂ (G2)

+
) ⇒ (G1 #̂G2)

+
; (R1 #̌R2)

+ ⇒ ((R1)
+ #̌ (R2)

+
);

then (R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C, σ, (M2 ◦M1))�Q1#Q2
(C,Σ).

Proof: By co-induction. By the premises, we know (σ, θ) |= I1 ∗ true and (θ,Σ) |= I2 ∗ true. Since
MPrecise(I1, I2), we know (σ,Σ) |= (I1 # I2) ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C, σ] σF) −→ (C ′, σ′′), then by the premise 1, we know:

there exists σ′ such that σ′′ = σ′] σF and for any θF , one of the following holds:

(a) either, there exist M ′1, C′M and θ′ such that (CM, θ] θF) −→+ (C′M, θ
′] θF),

((σ, θ), (σ′, θ′), true) |= (G1)
+ ∗ True and R1, G1, I1 |= (C ′, σ′,M ′1)�Q1

(C′M, θ
′).

By the premise 2 and Lemma 21, we know: one of the following holds:

i. either, there exist M ′2, C′ and Σ′ such that (C,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((θ,Σ), (θ′,Σ′), true) |= (G2)

+ ∗ True and R2, G2, I2 |= (C′M, θ
′,M ′2)�Q2

(C′,Σ′).
Thus we know

((σ,Σ), (σ′,Σ′), true) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.94)

Since I1 . G1 and I2 . G2, we know I1 . (G1)
+

and I2 . (G2)
+

. Since MPrecise(I1, I2), by
Lemma 25, we know

((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) ⇒ ((G1)
+ #̂ (G2)

+
) ∗ True (5.95)

56

Thus we get:

((σ,Σ), (σ′,Σ′), true) |= (G1 #̂G2)
+ ∗ True (5.96)

Besides, by the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C ′, σ′, (M ′2 ◦M ′1))�Q1#Q2 (C′,Σ′) (5.97)

ii. or, there exists M ′2 such that M ′2 < M2,
((θ,Σ), (θ′,Σ), false) |= (G2)

+ ∗ True and R2, G2, I2 |= (C′M, θ
′,M ′2)�Q2 (C,Σ).

Thus we know

((σ,Σ), (σ′,Σ), false) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.98)

Thus we get:

((σ,Σ), (σ′,Σ), false) |= (G1 #̂G2)
+ ∗ True (5.99)

Besides, by the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C ′, σ′, (M ′2 ◦M ′1))�Q1#Q2 (C,Σ) (5.100)

Moreover, we know
(M ′2 ◦M ′1) < (M2 ◦M1) (5.101)

(b) or, there exists M ′1 such that M ′1 < M1,
((σ, θ), (σ′, θ), false) |= (G1)

+ ∗ True and R1, G1, I1 |= (C ′, σ′,M ′1)�Q1 (CM, θ).

Since (θ,Σ) |= I2 ∗ true, we know ((θ,Σ), (θ,Σ), false) |= (G2)
+ ∗ True. Thus

((σ,Σ), (σ′,Σ), false) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.102)

Thus we get:

((σ,Σ), (σ′,Σ), false) |= (G1 #̂G2)
+ ∗ True (5.103)

Besides, by the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C ′, σ′, (M2 ◦M ′1))�Q1#Q2
(C,Σ) (5.104)

Moreover, we know
(M2 ◦M ′1) < (M2 ◦M1) (5.105)

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ] σF)
e−→ (C ′, σ′′), then by the premise 1, we know: for any

θF , there exist σ′, M ′1, C′M and θ′ such that σ′′ = σ′] σF , (CM, θ] θF)
e−→+ (C′M, θ

′] θF),
((σ, θ), (σ′, θ′), true) |= (G1)

+ ∗ True and R1, G1, I1 |= (C ′, σ′,M ′1)�Q1
(C′M, θ

′).

By the premise 2 and Lemma 22, we know:

there exist M ′2, C′ and Σ′ such that (C,Σ] ΣF)
e−→+ (C′,Σ′] ΣF),

((θ,Σ), (θ′,Σ′), true) |= (G2)
+ ∗ True and R2, G2, I2 |= (C′M, θ

′,M ′2)�Q2 (C′,Σ′).
Thus we know

((σ,Σ), (σ′,Σ′), true) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.106)

Thus we get:

((σ,Σ), (σ′,Σ′), true) |= (G1 #̂G2)
+ ∗ True (5.107)

Besides, by the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C ′, σ′, (M ′2 ◦M ′1))�Q1#Q2
(C′,Σ′) (5.108)

57

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= (R1 #̌R2)
+ ∗ Id, then we know

((σ,Σ), (σ′,Σ′), true) |= ((R1)
+ #̌ (R2)

+
) ∗ Id (5.109)

By Lemma 26, we know

((R1)
+ #̌ (R2)

+
) ∗ Id ⇒ ((R1)

+ ∗ Id) #̌ ((R2)
+ ∗ Id) (5.110)

Thus we get: there exist θ, θ′, b1 and b2 such that b = b1 ∨ b2,

((σ, θ), (σ′, θ′), b1) |= (R1)
+ ∗ Id and ((θ,Σ), (θ′,Σ′), b2) |= (R2)

+ ∗ Id (5.111)

From the premises, we know: there exist M ′1 and M ′2 such that

(a) R1, G1, I1 |= (C, σ′,M ′1)�Q1
(CM, θ

′);

(b) R2, G2, I2 |= (CM, θ
′,M ′2)�Q2 (C,Σ′).

By the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C, σ′, (M ′2 ◦M ′1))�Q1#Q2 (C,Σ′) (5.112)

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= (R1 #̌R2)
+ ∗ Id, then we know

((σ,Σ), (σ′,Σ′), false) |= ((R1)
+ ∗ Id) #̌ ((R2)

+ ∗ Id) (5.113)

Thus we get: there exist θ and θ′ such that

((σ, θ), (σ′, θ′), false) |= (R1)
+ ∗ Id and ((θ,Σ), (θ′,Σ′), false) |= (R2)

+ ∗ Id (5.114)

From the premises, we know:

(a) R1, G1, I1 |= (C, σ′,M1)�Q1 (CM, θ
′);

(b) R2, G2, I2 |= (CM, θ
′,M2)�Q2 (C,Σ′).

By the co-induction hypothesis, we get:

(R1 #̌R2), (G1 #̂G2), (I1 # I2) |= (C, σ′, (M2 ◦M1))�Q1#Q2
(C,Σ′) (5.115)

5. if C = skip, then by the premise 1, we know: for any θF , one of the following holds:

(a) either, there exists θ′ such that (CM, θ] θF) −→+ (skip, θ′] θF),
((σ, θ), (σ, θ′), true) |= (G1)

+ ∗ True and (σ, θ′) |= Q1.

By the premise 2 and Lemma 23, we know: for any ΣF , one of the following holds:

i. there exists Σ′ such that (C,Σ] ΣF) −→+ (skip,Σ′] ΣF),
((θ,Σ), (θ′,Σ′), true) |= (G2)

+ ∗ True and (θ′,Σ′) |= Q2.
Thus we know

((σ,Σ), (σ,Σ′), true) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.116)

Thus we get:

((σ,Σ), (σ,Σ′), true) |= (G1 #̂G2)
+ ∗ True (5.117)

Besides, we get:
(σ,Σ′) |= (Q1 #Q2) (5.118)

58

ii. or, C = skip, ((θ,Σ), (θ′,Σ), false) |= (G2)
+ ∗ True and (θ′,Σ) |= Q2.

We get:
(σ,Σ) |= (Q1 #Q2) (5.119)

(b) or, CM = skip and (σ, θ) |= Q1.

By the premise 2, we know one of the following holds:

i. there exists Σ′ such that (C,Σ] ΣF) −→+ (skip,Σ′] ΣF),
((θ,Σ), (θ,Σ′), true) |= (G2)

+ ∗ True and (θ,Σ′) |= Q2.
Since (σ, θ) |= I1 ∗ true, we know: ((σ, θ), (σ, θ), true) |= (G1)

+ ∗ True.
Thus we know

((σ,Σ), (σ,Σ′), true) |= ((G1)
+ ∗ True) #̂ ((G2)

+ ∗ True) (5.120)

Thus we get:

((σ,Σ), (σ,Σ′), true) |= (G1 #̂G2)
+ ∗ True (5.121)

Besides, we get:
(σ,Σ′) |= (Q1 #Q2) (5.122)

ii. or, C = skip and (θ,Σ) |= Q2.
We get:

(σ,Σ) |= (Q1 #Q2) (5.123)

6. for any σF and ΣF , if (C, σ] σF) −→ abort, then by the premise 1, we know: for any θF ,
(CM, θ] θF) −→+ abort. By the premise 2 and Lemma 24, we know: (C,Σ] ΣF) −→+ abort.

Thus we are done. 2

Lemma 21. If I . G, R,G, I |= (C, σ,M)�Q (C,Σ), (C, σ] σF) −→n+1 (C ′, σ′′) and Σ⊥ΣF , then there
exists σ′ such that σ′′ = σ′] σF and one of the following holds:

(1) either, there exist M ′, C′ and Σ′ such that (C,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′);

(2) or, there exists M ′ such that M ′ < M ,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C,Σ).

Proof: By induction over n.
Base Case: n = 0. By Definition 2.
Inductive Step: n = k + 1. Thus there exist C1 and σ′1 such that

(C, σ] σF) −→1 (C1, σ
′
1) and (C1, σ

′
1) −→n (C ′, σ′′)

By Definition 2, we know there exists σ1 such that σ′1 = σ1] σF and one of the following holds:

(i) either, there exist M1, C1 and Σ1 such that (C,Σ] ΣF) −→+ (C1,Σ1] ΣF),
((σ,Σ), (σ1,Σ1), true) |= G+ ∗ True and R,G, I |= (C1, σ1,M1)�Q (C1,Σ1).

By the induction hypothesis, we know: there exists σ′ such that σ′′ = σ′] σF and one of the
following holds:

(a) either, there exist M ′, C′ and Σ′ such that (C1,Σ1] ΣF) −→+ (C′,Σ′] ΣF),
((σ1,Σ1), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′).
Then

(C,Σ] ΣF) −→+ (C′,Σ′] ΣF).

Since I . G, we know

59

((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True.

(b) or, there exists M ′ such that M ′ < M1,
((σ1,Σ1), (σ′,Σ1), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C1,Σ1).

Since I . G, we know

((σ,Σ), (σ′,Σ1), true) |= G+ ∗ True.

(ii) or, there exists M1 such that M1 < M ,
((σ,Σ), (σ1,Σ), false) |= G+ ∗ True and R,G, I |= (C1, σ1,M1)�Q (C,Σ).

The case is similar.

Thus we are done. 2

Lemma 22. If I . G, R,G, I |= (C, σ,M)�Q (C,Σ), (C, σ] σF)
e−→n+1 (C ′, σ′′) and Σ⊥ΣF , then there

exist σ′, M ′, C′ and Σ′ such that σ′′ = σ′] σF , (C,Σ]ΣF)
e−→+ (C′,Σ′]ΣF), ((σ,Σ), (σ′,Σ′), true) |=

G+ ∗ True and R,G, I |= (C ′, σ′,M ′)�Q (C′,Σ′).

Proof: By induction over n. Similar to Lemma 21. 2

Lemma 23. If I . G, R,G, I |= (C, σ,M)�Q (C,Σ), (C, σ] σF) −→n (skip, σ′′) and Σ⊥ΣF , then there
exists σ′ such that σ′′ = σ′] σF and one of the following holds:

(1) either, there exists Σ′ such that (C,Σ] ΣF) −→+ (skip,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and (σ′,Σ′) |= Q;

(2) or, C = skip, ((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and (σ′,Σ) |= Q.

Proof: By induction over n. Similar to Lemma 21. 2

Lemma 24. If R,G, I |= (C, σ,M)�Q (C,Σ) and (C, σ] σF) −→n+1 abort and Σ⊥ΣF ,
then (C,Σ] ΣF) −→+ abort.

Proof: By induction over n. Similar to Lemma 21. 2

Lemma 25. If I1 . G1, I2 . G2 and MPrecise(I1, I2), then (G1 ∗ True) #̂ (G2 ∗ True)⇒ (G1 #̂G2) ∗ True.

Proof: For any σ, Σ, σ′, Σ′ and b, if ((σ,Σ), (σ′,Σ′), b) |= (G1 ∗ True) #̂ (G2 ∗ True), we know there exist
θ, θ′, b1 and b2 such that

((σ, θ), (σ′, θ′), b1) |= (G1 ∗ True), ((θ,Σ), (θ′,Σ′), b2) |= (G2 ∗ True), b = b1 ∧ b2.

Then we know there exist σ1, θ1, σ′1, θ′1, θ2, Σ2, θ′2 and Σ′2 such that

((σ1, θ1), (σ′1, θ
′
1), b1) |= G1, ((θ2,Σ2), (θ′2,Σ

′
2), b2) |= G2,

σ1 ⊆ σ, θ1 ⊆ θ, σ′1 ⊆ σ′, θ′1 ⊆ θ′, θ2 ⊆ θ, Σ2 ⊆ Σ, θ′2 ⊆ θ′, Σ′2 ⊆ Σ′

Since I1 . G1 and I2 . G2, we know

(σ1, θ1) |= I1, (σ′1, θ
′
1) |= I1, (θ2,Σ2) |= I2, (θ′2,Σ

′
2) |= I2.

Since MPrecise(I1, I2), we know

θ1 = θ2, θ′1 = θ′2.

Thus we know

((σ1,Σ2), (σ′1,Σ
′
2), b) |= G1 #̂G2

Thus

60

((σ,Σ), (σ′,Σ′), b) |= (G1 #̂G2) ∗ True.

Then we are done. 2

Lemma 26. (R1 #̌R2) ∗ Id ⇒ (R1 ∗ Id) #̌ (R2 ∗ Id).

Proof: For any σ, Σ, σ′, Σ′ and b, if ((σ,Σ), (σ′,Σ′), b) |= (R1 #̌R2) ∗ Id, we know there exist σ1, Σ1, σ′1,
Σ′1, σ2 and Σ2 such that

((σ1,Σ1), (σ′1,Σ
′
1), b) |= R1 #̌R2,

σ = σ1] σ2, Σ = Σ1] Σ2, σ′ = σ′1] σ2, Σ′ = Σ′1] Σ2

Then we know there exist θ, θ′, b1 and b2 such that

((σ1, θ), (σ
′
1, θ
′), b1) |= R1, ((θ,Σ1), (θ′,Σ′1), b2) |= R2, b = b1 ∨ b2.

Thus we know

((σ, θ), (σ′, θ′), b1) |= R1 ∗ Id, ((θ,Σ), (θ′,Σ′), b2) |= R2 ∗ Id.

Thus

((σ,Σ), (σ′,Σ′), b) |= (R1 ∗ Id) #̌ (R2 ∗ Id).

Then we are done. 2

61

5.4 Soundness of Unary Rules

Lemma 27. If R,G, I ` {p}C{q}, then I . {R,G}, p ∨ q ⇒ I ∗ true and Sta({p, q}, R ∗ Id).

Proof: By induction over the derivation of R,G, I ` {p}C{q}. For the stability, we need Lemma 28. 2

Lemma 28. If Sta(p,R ∗ Id), then Sta(bpcw, R ∗ Id).

Lemma 29. If R,G, I |= (C, σ,ws)�H;w;q (D,Σ) and H ≤ H′, then R,G, I |= (C, σ,ws)�H′;w;q (D,Σ).

Proof: We know: if ws ′ <H ws and H ≤ H′, then ws ′ <H′ ws. 2

We define:

inchead(ws, (k1, k2))
def
=

{
(w + k1, n+ k2) if ws = (w, n)
(w + k1, n+ k2) ::ws ′ if ws = (w, n) ::ws ′

Lemma 30. If R,G, I |= (C, σ,ws)�H;w;q (D,Σ), w1 ≤ w and ws1 = inchead(ws, (w1, 0)), then
R,G, I |= (C, σ,ws1)�H;w−w1;q (D,Σ).

Proof: By co-induction. From the premise, we know: (σ,Σ) |= I ∗ true.

1. For any σF , ΣF , C ′ and σ′′, if (C, σ] σF) −→ (C ′, σ′′) and Σ⊥ΣF , from the premise, we know
there exists σ′ such that σ′′ = σ′] σF and one of the following holds:

(a) there exist ws ′, w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q (C′,Σ′).
By the co-induction hypothesis, let ws ′1 = inchead(ws ′, (w1, 0)), we know
R,G, I |= (C ′, σ′,ws ′1)�H;w′−w1;q (C′,Σ′).

(b) there exists ws ′ such that ws ′ <H ws,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;q (D,Σ).

By the co-induction hypothesis, let ws ′1 = inchead(ws ′, (w1, 0)), we know
R,G, I |= (C ′, σ′,ws ′1)�H;w−w1;q (D,Σ).

Since ws ′ <H ws, we know ws ′1 <H ws1.

2. For any σF , ΣF , e, C ′ and σ′′, if (C, σ] σF)
e−→ (C ′, σ′′) and Σ⊥ΣF , the proof is similar to the

previous case.

3. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id, from the premise, we know: there exist ws ′

and w′ such that R,G, I |= (C, σ′,ws ′)�H;w′;q (D,Σ′).
By the co-induction hypothesis, let ws ′1 = inchead(ws ′, (w1, 0)), we know
R,G, I |= (C, σ′,ws ′1)�H;w′−w1;q (D,Σ′).

4. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id, from the premise, we know:
R,G, I |= (C, σ′,ws)�H;w;q (D,Σ′).
By the co-induction hypothesis, we know R,G, I |= (C, σ′,ws1)�H;w−w1;q (D,Σ′).

5. If C = skip, then for any ΣF , if Σ⊥ΣF , from the premise we know one of the following holds:

(a) there exist w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= q.

(b) there exists w′ such that ws = (w′, 0) and (σ,w + w′,D,Σ) |= q.

Thus ws1 = (w′ + w1, 0) and (σ, (w − w1) + (w′ + w1),D,Σ) |= q.

6. For any σF and ΣF , if (C, σ] σF) −→ abort and Σ⊥ΣF , from the premise we know:
(D,Σ] ΣF) −→+ abort.

Thus we are done. 2

62

The HIDE-w rule.

Lemma 31 (HIDE-w). If R,G, I |= {p}C{q}, then R,G, I |= {bpcw}C{bqcw}.

Proof: We want to prove: for all σ, w1, D and Σ, if (σ,w1,D,Σ) |= bpcw, then

R,G, I |= (C, σ, (0, |C|))�height(C);w1;bqcw (D,Σ).

We know there exists w such that

(σ,w,D,Σ) |= p

From the premise, we know:

R,G, I |= (C, σ, (0, |C|))�height(C);w;q (D,Σ).

By Lemma 32, we are done. 2

Lemma 32. If R,G, I |= (C, σ,ws)�H;w;q (D,Σ), then R,G, I |= (C, σ,ws)�H;w1;bqcw (D,Σ).

Proof: By co-induction. From the premise, we know: (σ,Σ) |= I ∗ true.

1. For any σF , ΣF , C ′ and σ′′, if (C, σ] σF) −→ (C ′, σ′′) and Σ⊥ΣF , from the premise, we know
there exists σ′ such that σ′′ = σ′] σF and one of the following holds:

(a) there exist ws ′, w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q (C′,Σ′).
By the co-induction hypothesis, we know R,G, I |= (C ′, σ′,ws ′)�H;w1;bqcw (C′,Σ′).

(b) there exists ws ′ such that ws ′ <H ws,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;q (D,Σ).

By the co-induction hypothesis, we know R,G, I |= (C ′, σ′,ws ′)�H;w1;bqcw (D,Σ).

2. For any σF , ΣF , e, C ′ and σ′′, if (C, σ] σF)
e−→ (C ′, σ′′) and Σ⊥ΣF , the proof is similar to the

previous case.

3. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id, from the premise, we know: there exist ws ′

and w′ such that R,G, I |= (C, σ′,ws ′)�H;w′;q (D,Σ′).
By the co-induction hypothesis, we know R,G, I |= (C, σ′,ws ′)�H;w1;bqcw (D,Σ′).

4. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id, from the premise, we know:
R,G, I |= (C, σ′,ws)�H;w;q (D,Σ′).
By the co-induction hypothesis, we know R,G, I |= (C, σ′,ws)�H;w1;bqcw (D,Σ′).

5. If C = skip, then for any ΣF , if Σ⊥ΣF , from the premise we know one of the following holds:

(a) there exist w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= q.

Thus (σ,w′,C′,Σ′) |= bqcw.

(b) there exists w′ such that ws = (w′, 0) and (σ,w + w′,D,Σ) |= q.

Thus (σ,w1 + w′,D,Σ) |= bqcw.

6. For any σF and ΣF , if (C, σ] σF) −→ abort and Σ⊥ΣF , from the premise we know:
(D,Σ] ΣF) −→+ abort.

Thus we are done. 2

63

The WHILE rule.

Lemma 33 (WHILE). If

1. R,G, I |= {p′}C{p};

2. p ∧B ⇒ p′ ∗ (wf(1) ∧ emp);

3. Sta(p,R ∗ Id); I . {R,G}; p⇒ (B = B) ∗ I;

then R,G, I |= {p}while (B) C{p ∧ ¬B}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

R,G, I |= (while (B) C, σ, (0, |while (B) C|))�height(while (B) C);w;p∧¬B (D,Σ).

We know |while (B) C| = 1 and can prove height(while (B) C) = height(C) + 1.
By co-induction. From (σ,w,D,Σ) |= p, since p⇒ I ∗ (B = B), we know:

(σ,Σ) |= I ∗ true (5.124)

1. For any σF and ΣF , if (while (B) C, σ] σF) −→ (C; while (B){C}, σ] σF) and JBKσ]σF
= true,

below we prove 1(b) of Definition 8 holds.

Since (σ,Σ) |= (B = B), we know JBKσ = true. Then we know

(σ,w,D,Σ) |= p ∧B (5.125)

Since p ∧B ⇒ p′ ∗ (wf(1) ∧ emp), we know there exists w′ such that w′ < w and

(σ,w′,D,Σ) |= p′ (5.126)

From the premise 1, we know R,G, I |= (C, σ, (0, |C|))�height(C);w′;p (D,Σ).

By Lemma 34, we know: let
ws ′ = (0, 0) :: (w′, |C|+ 1) (5.127)

then
R,G, I |= (C; while (B){C}, σ,ws ′)�height(C)+1;w;p∧¬B (D,Σ) (5.128)

We know ws ′ <height(C)+1 (0, 1).

Also, since I . G and (σ,Σ) |= I ∗ true, we know ((σ,Σ), (σ,Σ), false) |= G+ ∗ True.

2. For any σF and ΣF , if (while (B) C, σ] σF) −→ (skip, σ] σF) and JBKσ]σF
= false, below we

prove 1(b) of Definition 8 holds.

since (σ,Σ) |= (B = B), we know JBKσ = false. Then we know

(σ,w,D,Σ) |= p ∧ ¬B (5.129)

By the skip and frame rules, we know:

R,G, I |= (skip, σ, (0, 0))�height(C)+1;w;p∧¬B (D,Σ) (5.130)

We know (0, 0) <height(C)+1 (0, 1) and ((σ,Σ), (σ,Σ), false) |= G+ ∗ True.

3. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

since Sta(p,R ∗ Id), we know Sta(p,R+ ∗ Id), thus there exists w′ such that

(σ′, w′,D,Σ′) |= p (5.131)

By the co-induction hypothesis, we get:

R,G, I |= (while (B) C, σ′, (0, 1))�height(C)+1;w′;p∧¬B (D,Σ′) (5.132)

64

4. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

since Sta(p,R ∗ Id), we know Sta(p,R+ ∗ Id), thus

(σ′, w,D,Σ′) |= p (5.133)

By the co-induction hypothesis, we get:

R,G, I |= (while (B) C, σ′, (0, 1))�height(C)+1;w;p∧¬B (D,Σ′) (5.134)

Thus we are done. 2

Lemma 34. If

1. R,G, I |= (C1, σ,ws1)�H;w′
0;p

(D,Σ);

2. for all σ, w, D and Σ, if (σ,w,D,Σ) |= p′, then R,G, I |= (C, σ, (0, |C|))�H;w;p (D,Σ);

3. p ∧B ⇒ p′ ∗ (wf(1) ∧ emp);

4. Sta(p,R ∗ Id); I . {R,G}; p⇒ (B = B) ∗ I;

5. ws = (0, 0) :: inchead(ws1, (w
′
0, 1));

6. root(ws1) = (w1,); w′0 + w1 ≤ w0;

then R,G, I |= (C1; while (B){C}, σ,ws)�H+1;w0;p∧¬B (D,Σ).

Proof: By co-induction. From the first premise, we know (σ,Σ) |= I ∗ true.

1. For any σF , ΣF , C ′1 and σ′′, if (C1; while (B){C}, σ] σF) −→ (C ′1; while (B){C}, σ′′), i.e.,

(C1, σ]σF) −→ (C ′1, σ
′′), from the premise 1, we know: there exists σ′ such that σ′′ = σ′]σF and

one of the following holds:

(a) there exist ws ′1, w′′0 , C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′1, σ

′,ws ′1)�H;w′′
0 ;p (C′,Σ′).

Suppose root(ws ′1) = (w′1,).

By the co-induction hypothesis, let ws ′ = (0, 0) :: inchead(ws ′1, (w
′′
0 , 1)), we know:

R,G, I |= (C ′1; while (B){C}, σ′,ws ′)�H+1;w′′
0 +w′

1;p∧¬B (C′,Σ′).
(b) there exists ws ′1 such that ws ′1 <H ws1,

((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′1, σ
′,ws ′1)�H;w′

0;p
(D,Σ).

Suppose root(ws ′1) = (w′1,). Since ws ′1 <H ws1, we know w′1 ≤ w1. Thus w′0 + w′1 ≤ w0.

By the co-induction hypothesis, let ws ′ = (0, 0) :: inchead(ws ′1, (w
′
0, 1)), we know:

R,G, I |= (C ′1; while (B){C}, σ′,ws ′)�H+1;w0;p∧¬B (D,Σ).

Since ws ′1 <H ws1, we know: ws ′ <H+1 ws.

2. For any σF , ΣF , e, C ′1 and σ′′, if (C1; while (B){C}, σ] σF)
e−→ (C ′1; while (B){C}, σ′′), the proof

is similar to the previous case.

3. For any σF and ΣF , if (C1; while (B){C}, σ] σF) −→ (while (B){C}, σ] σF), i.e., C1 = skip,

from the premise 1, we know one of the following holds:

(a) there exists w1 such that ws1 = (w1, 0) and (σ,w1 + w′0,D,Σ) |= p.

Thus ws = (0, 0) :: (w1 + w′0, 1). We know (0, 0) :: (w1 + w′0, 0) <H+1 ws.

Also we know ((σ,Σ), (σ,Σ), false) |= G+ ∗ True.

Below we prove:

R,G, I |= (while (B){C}, σ, (0, 0) :: (w1 + w′0, 0))�H+1;w0;p∧¬B (C′,Σ′) (5.135)

By co-induction. Since p⇒ I ∗ (B = B), we know (σ,Σ′) |= I ∗ true.

65

i. For any σF and ΣF , if (while (B){C}, σ]σF) −→ (C; while (B){C}, σ]σF) and JBKσ]σF
=

true, below we prove 1(b) of Definition 8 holds.
Since (σ,Σ′) |= (B = B), we know JBKσ = true. Then we know

(σ,w1 + w′0,C′,Σ′) |= p ∧B (5.136)

Since p ∧B ⇒ p′ ∗ (wf(1) ∧ emp), we know there exists w′1 such that w′1 < w1 + w′0 and

(σ,w′1,C′,Σ′) |= p′ (5.137)

From the premise 2, we know R,G, I |= (C, σ, (0, |C|))�H;w′
1;p

(C′,Σ′).
By the co-induction hypothesis, we know:

R,G, I |= (C; while (B){C}, σ, (0, 0) :: (w′1, |C|+ 1))�H+1;w0;p∧¬B (C′,Σ′) (5.138)

We know (0, 0) :: (w′1, |C|+ 1) <H+1 (0, 0) :: (w1 + w′0, 0).
Also we know ((σ,Σ′), (σ,Σ′), false) |= G+ ∗ True.

ii. For any σF and ΣF , if (while (B){C}, σ] σF) −→ (skip, σ] σF) and JBKσ]σF
= false,

below we prove 1(b) of Definition 8 holds.
Since (σ,Σ′) |= (B = B), we know JBKσ = false. Since (σ,w1 +w′0,C′,Σ′) |= p, we know:

(σ,w1 + w′0,C′,Σ′) |= p ∧ ¬B (5.139)

Since w1 + w′0 ≤ w0, we know:

(σ,w0,C′,Σ′) |= p ∧ ¬B (5.140)

By the skip and frame rules, we know:

R,G, I |= (skip, σ, (0, 0))�H+1;w0;p∧¬B (C′,Σ′) (5.141)

We know (0, 0) <H+1 (0, 0) :: (w1 + w′0, 0) and ((σ,Σ′), (σ,Σ′), false) |= G+ ∗ True.

iii. For any σ′ and Σ′′, if ((σ,Σ′), (σ′,Σ′′), true) |= R+ ∗ Id,
since Sta(p,R ∗ Id), we know Sta(p,R+ ∗ Id), thus there exists w′1 such that

(σ′, w′1 + w′0,C′,Σ′′) |= p (5.142)

By the co-induction hypothesis, we get:

R,G, I |= (while (B){C}, σ′, (0, 0) :: (w′1 + w′0, 0))�H+1;w′
1+w

′
0;p∧¬B (C′,Σ′′) (5.143)

iv. For any σ′ and Σ′′, if ((σ,Σ′), (σ′,Σ′′), false) |= R+ ∗ Id,
since Sta(p,R ∗ Id), we know Sta(p,R+ ∗ Id), thus

(σ′, w1 + w′0,C′,Σ′′) |= p (5.144)

By the co-induction hypothesis, we get:

R,G, I |= (while (B){C}, σ′, (0, 0) :: (w1 + w′0, 0))�H+1;w0;p∧¬B (C′,Σ′′) (5.145)

Thus we have proved (5.135).

(b) there exist w′1, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′1,C′,Σ′) |= p.

We can prove:

R,G, I |= (while (B){C}, σ, (0, 0) :: (w′1, 0))�H+1;w′
1;p∧¬B (C′,Σ′) (5.146)

in the similar way as the previous case.

66

4. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

from the premise, we know there exist ws ′1 and w′′0 such that R,G, I |= (C1, σ
′,ws ′1)�H;w′′

0 ;p (D,Σ′).
Suppose root(ws ′1) = (w′1,).

By the co-induction hypothesis, we know: let ws ′ = (0, 0) :: inchead(ws ′1, (w
′′
0 , 1)), then

R,G, I |= (C1; while (B){C}, σ′,ws ′)�H+1;w′′
0 +w′

1;p∧¬B (D,Σ′).

5. For any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

from the premise, we know: R,G, I |= (C1, σ
′,ws1)�H;w′

0;p
(D,Σ′).

By the co-induction hypothesis, we know:
R,G, I |= (C1; while (B){C}, σ′,ws)�H+1;w0;p∧¬B (D,Σ′).

6. For any σF and ΣF , if (C1; while (B){C}, σ]σF) −→ abort, we know (C1, σ]σF) −→ abort. By
the premise 1, we know: (D,Σ] ΣF) −→+ abort.

Thus we are done. 2

The SEQ rule.

Lemma 35 (SEQ). If

1. R,G, I |= {p}C1{p′};

2. R,G, I |= {p′}C2{q};

3. I . G;

then R,G, I |= {p}C1;C2{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

R,G, I |= (C1;C2, σ, (0, |C1;C2|))�height(C1;C2);w;q (D,Σ).

We know |C1;C2| = |C1|+ |C2|+ 1 and can prove height(C1;C2) = max{height(C1), height(C2)}.
Since (σ,w,D,Σ) |= p, by the premise 1, we know:

R,G, I |= (C1, σ, (0, |C1|))�height(C1);w;p′ (D,Σ).

By Lemma 29, we know: R,G, I |= (C1, σ, (0, |C1|))�height(C1;C2);w;p′ (D,Σ).
From the premise 2, by Lemma 29, we know: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p′, then

R,G, I |= (C2, σ, (0, |C2|))�height(C1;C2);w;q (D,Σ).
By Lemma 36, we are done. 2

Lemma 36. If

1. R,G, I |= (C1, σ,ws1)�H;w;p′ (D,Σ);

2. for all σ, w, D and Σ, if (σ,w,D,Σ) |= p′, then R,G, I |= (C2, σ, (0, |C2|))�H;w;q (D,Σ);

3. I . G;

4. ws = inchead(ws1, (0, |C2|+ 1));

then R,G, I |= (C1;C2, σ,ws)�H;w;q (D,Σ).

Proof: By co-induction. From the premise 1, we know: (σ,Σ) |= I ∗ true.

1. for any σF , ΣF , C ′1 and σ′′, if (C1;C2, σ] σF) −→ (C ′1;C2, σ
′′), i.e., (C1, σ] σF) −→ (C ′1, σ

′′),

from the premise 1, we know: there exists σ′ such that σ′′ = σ′]σF and one of the following holds:

67

(a) there exist ws ′1, w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′1, σ

′,ws ′1)�H;w′;p′ (C′,Σ′).
By the co-induction hypothesis, we know: let ws ′ = inchead(ws ′1, (0, |C2|+ 1)), then R,G, I |=
(C ′1;C2, σ

′,ws ′)�H;w′;q (C′,Σ′).
(b) there exists ws ′1 such that ws ′1 <H ws1,

((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′1, σ
′,ws ′1)�H;w;p′ (D,Σ).

By the co-induction hypothesis, we know: let ws ′ = inchead(ws ′1, (0, |C2| + 1)), R,G, I |=
(C ′1;C2, σ

′,ws ′)�H;w;q (D,Σ).

Since ws ′1 <H ws1, we know: ws ′ <H ws.

2. for any σF , ΣF , e, C ′1 and σ′′, if (C1;C2, σ]σF)
e−→ (C ′1;C2, σ

′′), the proof is similar to the previous
case.

3. for any σF and ΣF , if (C1;C2, σ] σF) −→ (C2, σ] σF) and C1 = skip,

from the premise 1, we know one of the following holds:

(a) there exist w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,C′,Σ′) |= p′.

From the premise 2, we know: R,G, I |= (C2, σ, (0, |C2|))�H;w′;q (C′,Σ′).
(b) there exists w1 such that ws1 = (w1, 0) and (σ,w + w1,D,Σ) |= p′.

Thus we know ws = (w1, |C2|+ 1).

We know (w1, |C2|) <H ws.

Since (σ,Σ) |= I ∗ true and I . G, we know ((σ,Σ), (σ,Σ), false) |= G+ ∗ True.

From the premise 2, we know: R,G, I |= (C2, σ, (0, |C2|))�H;w+w1;q (D,Σ).

By Lemma 30, we get: R,G, I |= (C2, σ, (w1, |C2|))�H;w;q (D,Σ).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

from the premise, we know: there exists ws ′1 and w′ such that
R,G, I |= (C1, σ

′,ws ′1)�H;w′;p′ (D,Σ′).
By the co-induction hypothesis, we know: let ws ′ = inchead(ws ′1, (0, |C2| + 1)), then R,G, I |=
(C1;C2, σ

′,ws ′)�H;w′;q (D,Σ′).

5. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

from the premise, we know: R,G, I |= (C1, σ
′,ws1)�H;w;p′ (D,Σ′).

By the co-induction hypothesis, we know: R,G, I |= (C1;C2, σ
′,ws)�H;w;q (D,Σ′).

6. for any σF and ΣF , if (C1;C2, σ] σF) −→ abort, we know: (C1, σ] σF) −→ abort. By the
premise 1, we know: (D,Σ] ΣF) −→+ abort.

Thus we are done. 2

The ATOM rule.

Lemma 37 (ATOM). If

1. |=sl [p]C[q];

2. (TpUn TqU)⇒ G ∗ True;

3. p ∨ q ⇒ I ∗ true;

4. Locality(C);

68

then [I], G, I |= {p}〈C〉{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

[I], G, I |= (〈C〉, σ, (0, |〈C〉|))�height(〈C〉);w;q (D,Σ).

We know |〈C〉| = 1 and can prove height(〈C〉) = 1.
By co-induction. Since p⇒ I ∗ true, we know (σ,Σ) |= I ∗ true. From the premises 1 and 2, we can

prove:
(C, σ) 6−→∗ abort , (C, σ) 6−→ω · (5.147)

By Locality(C), we know: for any σF ,

(C, σ] σF) 6−→∗ abort , (C, σ] σF) 6−→ω · (5.148)

1. for any σF , ΣF , C ′ and σ′′, if (〈C〉, σ] σF) −→ (C ′, σ′′),

by the operational semantics, we know C ′ = skip and

(C, σ] σF) −→∗ (skip, σ′′) (5.149)

by Locality(C), we know: there exists σ′ such that σ′′ = σ′] σF and (C, σ) −→∗ (skip, σ′).

From |=sl [p]C[q] and (C, σ) −→∗ (skip, σ′), we know:

(σ′, w,D,Σ) |= q (5.150)

Thus we know:
((σ,Σ), (σ′,Σ), false) |= TpUn TqU (5.151)

Since (TpUn TqU)⇒ G ∗ True, we know ((σ,Σ), (σ′,Σ), false) |= G+ ∗ True.

Since q ⇒ I ∗ true and Sta(q, [I] ∗ Id), by the skip and frame rules, we know:

[I], G, I |= (skip, σ′, (0, 0))�1;w;q (D,Σ) (5.152)

Also, we know: (0, 0) <1 (0, 1).

2. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= ([I])
+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: [I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= ([I])
+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: [I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

Thus we are done. 2

The ATOM+ rule.

Lemma 38 (ATOM+). If

1. |=sl [p′]C[q′];

2. pVa p′; q′ Vb q; + ∈ {a, b};

3. (TpU ∝ TqU)⇒ G ∗ True;

4. p ∨ q ⇒ I ∗ true;

5. Locality(C);

69

then [I], G, I |= {p}〈C〉{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

[I], G, I |= (〈C〉, σ, (0, |〈C〉|))�height(〈C〉);w;q (D,Σ).

We know |〈C〉| = 1 and can prove height(〈C〉) = 1.
By co-induction. Since p⇒ I ∗ true, we know (σ,Σ) |= I ∗ true. From the premises 1 and 2, we can

prove:
(C, σ) 6−→∗ abort , (C, σ) 6−→ω · (5.153)

By Locality(C), we know: for any σF ,

(C, σ] σF) 6−→∗ abort , (C, σ] σF) 6−→ω · (5.154)

1. for any σF , ΣF , C ′ and σ′′, if (〈C〉, σ] σF) −→ (C ′, σ′′),

by the operational semantics, we know C ′ = skip and

(C, σ] σF) −→∗ (skip, σ′′) (5.155)

by Locality(C), we know: there exists σ′ such that σ′′ = σ′] σF and (C, σ) −→∗ (skip, σ′).

From pVa p′, we know one of the following holds:

(a) either, a is +, and there exist w′, D′ and Σ′ such that (D,Σ] ΣF) −→+ (D′,Σ′] ΣF)
and (σ,w′,D′,Σ′) |= p′;

(b) or, a is 0, and there exist w′, D′ and Σ′ such that (σ,w′,D′,Σ′) |= p′, w′ = w, D′ = D and
Σ′ = Σ.

For either case, from |=sl [p′]C[q′] and (C, σ) −→∗ (skip, σ′), we know:

(σ′, w′,D′,Σ′) |= q′ (5.156)

From q′ Vb q, we know one of the following holds:

(a) either, b is +, and there exist w′′, D′′ and Σ′′ such that (D′,Σ′] ΣF) −→+ (D′′,Σ′′] ΣF)
and (σ′, w′′,D′′,Σ′′) |= q;

(b) or, b is 0, and there exist w′′, D′′ and Σ′′ such that (σ′, w′′,D′′,Σ′′) |= q, w′′ = w′, D′′ = D′
and Σ′′ = Σ′.

Since + ∈ {a, b}, we know the following must hold:

there exist w′′, C′′ and Σ′′ such that (C,Σ] ΣF) −→+ (C′′,Σ′′] ΣF) and (σ′, w′′,C′′,Σ′′) |= q.

We know:
((σ,Σ), (σ′,Σ′′), true) |= TpU ∝ TqU (5.157)

Since (TpU ∝ TqU)⇒ G ∗ True, we know ((σ,Σ), (σ′,Σ′′), true) |= G+ ∗ True.

Since q ⇒ I ∗ true and Sta(q, [I] ∗ Id), by the skip and frame rules, we know:

[I], G, I |= (skip, σ′, (0, 0))�1;w′′;q (C′′,Σ′′) (5.158)

2. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= ([I])
+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: [I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= ([I])
+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: [I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

70

Thus we are done. 2

Lemma 39. If

1. R,G, I ` {p}〈C〉{q};

2. `sl is sound w.r.t. |=sl;

3. Locality(C);

4. (σ,w,D,Σ) |= p,

then for any σF , (C, σ] σF) 6−→∗ abort and (C, σ] σF) 6−→ω ·.

Proof: By induction over the derivation of R,G, I ` {p}〈C〉{q}. 2

The ATOM-R rule.

Lemma 40 (ATOM-R). If

1. [I], G, I |= {p}〈C〉{q};

2. Sta({p, q}, R ∗ Id); I . {R,G}; p ∨ q ⇒ I ∗ true;

3. for all σ and σF , if (σ, , , ,) |= p, (C, σ] σF) 6−→∗ abort and (C, σ] σF) 6−→ω ·;

then R,G, I |= {p}〈C〉{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

R,G, I |= (〈C〉, σ, (0, |〈C〉|))�height(〈C〉);w;q (D,Σ).

We know |〈C〉| = 1 and can prove height(〈C〉) = 1.
By co-induction. Since p⇒ I ∗ true, we know (σ,Σ) |= I ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (〈C〉, σ] σF) −→ (C ′, σ′′),

by the operational semantics, we know C ′ = skip and

(C, σ] σF) −→∗ (skip, σ′′) (5.159)

From the first premise, we know:

[I], G, I |= (〈C〉, σ, (0, 1))�1;w;q (D,Σ).

Thus there exists σ′ such that σ′′ = σ′] σF and one of the following holds:

(a) there exist ws ′, w′, C′ and Σ′ such that (D,Σ]ΣF) −→+ (C′,Σ′]ΣF), ((σ,Σ), (σ′,Σ′), true) |=
G+ ∗ True and

[I], G, I |= (skip, σ′,ws ′)�1;w′;q (C′,Σ′) (5.160)

From (5.160), we know one of the following holds:

i. there exist w′′, C′′ and Σ′′ such that (C′,Σ′] ΣF) −→+ (C′′,Σ′′] ΣF),
((σ′,Σ′), (σ′,Σ′′), true) |= G+ ∗ True and (σ′, w′′,C′′,Σ′′) |= q.
Thus we know:

(C,Σ] ΣF) −→+ (C′′,Σ′′] ΣF) (5.161)

((σ,Σ), (σ′,Σ′′), true) |= G+ ∗ True (5.162)

Since q ⇒ I ∗ true and Sta(q,R ∗ Id), by the skip and frame rules, we know:

R,G, I |= (skip, σ′, (0, 0))�1;w′′;q (C′′,Σ′′) (5.163)

71

ii. there exists w′′ such that ws ′ = (w′′, 0) and (σ′, w′ + w′′,C′,Σ′) |= q.
Since q ⇒ I ∗ true and Sta(q,R ∗ Id), by the skip and frame rules, we know:

R,G, I |= (skip, σ′, (0, 0))�1;w′+w′′;q (C′,Σ′) (5.164)

(b) there exists ws ′ such that ws ′ <1 (0, 1), ((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and

[I], G, I |= (skip, σ′,ws ′)�1;w;q (D,Σ) (5.165)

From (5.165), we know one of the following holds:

i. there exist w′, C′ and Σ′ such that (D,Σ] ΣF) −→+ (C′,Σ′] ΣF),
((σ′,Σ), (σ′,Σ′), true) |= G+ ∗ True and (σ′, w′,C′,Σ′) |= q.
Thus we know:

((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True (5.166)

Since q ⇒ I ∗ true and Sta(q,R ∗ Id), by the skip and frame rules, we know:

R,G, I |= (skip, σ′, (0, 0))�1;w′;q (C′,Σ′) (5.167)

ii. there exists w′ such that ws ′ = (w′, 0) and (σ′, w + w′,D,Σ) |= q.
Since ws ′ <1 (0, 1), we know w′ = 0.
Since q ⇒ I ∗ true and Sta(q,R ∗ Id), by the skip and frame rules, we know:

R,G, I |= (skip, σ′, (0, 0))�1;w;q (D,Σ) (5.168)

2. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

Since (σ,w,D,Σ) |= p and Sta(p,R ∗ Id), we know there exists w′ such that (σ′, w′,D,Σ′) |= p.

By the co-induction hypothesis, we know: R,G, I |= (〈C〉, σ′, (0, 1))�1;w′;q (D,Σ′).

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

Since (σ,w,D,Σ) |= p and Sta(p,R ∗ Id), we know (σ′, w,D,Σ′) |= p.

By the co-induction hypothesis, we know: R,G, I |= (〈C〉, σ′, (0, 1))�1;w;q (D,Σ′).

Thus we are done. 2

The A-CONSEQ rule.

Lemma 41 (A-CONSEQ). If

1. p
G
=⇒ p′;

2. R,G, I |= {p′}C{q′};

3. q′
G
=⇒ q;

4. Sta({p, q}, R ∗ Id); I . {R,G}; p ∨ q ∨ p′ ∨ q′ ⇒ I ∗ true;

then R,G, I |= {p}C{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

R,G, I |= (C, σ, (0, |C|))�height(C);w;q (D,Σ).

Let H = height(C).
By co-induction. Since p⇒ I ∗ true, we know (σ,Σ) |= I ∗ true.

72

1. for any σF , ΣF , C ′ and σ′′, if (C, σ] σF) −→ (C ′, σ′′),

from p
G
=⇒ p′, we know one of the following holds:

(a) either, there exist w′, D′ and Σ′ such that (D,Σ] ΣF) −→+ (D′,Σ′] ΣF)
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,D′,Σ′) |= p′;

(b) or, there exist w′, D′ and Σ′ such that (σ,w′,D′,Σ′) |= p′, w′ = w, D′ = D and Σ′ = Σ.

For either case, from R,G, I |= {p′}C{q′}, we know:

R,G, I |= (C, σ, (0, |C|))�H;w′;q′ (D′,Σ′) (5.169)

Thus there exists σ′ such that σ′′ = σ′] σF and one of the following holds:

(a) either, there exist ws ′, w′′, C′′ and Σ′′ such that (D′,Σ′] ΣF) −→+ (C′′,Σ′′] ΣF),
((σ,Σ′), (σ′,Σ′′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′′;q′ (C′′,Σ′′);

(b) or, there exists ws ′ such that ws ′ <H (0, |C|),
((σ,Σ′), (σ′,Σ′), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′;q′ (D′,Σ′).

Then, we know one of the following holds:

(a) there exist ws ′, w′′, C′′ and Σ′′ such that (D,Σ] ΣF) −→+ (C′′,Σ′′] ΣF),
((σ,Σ), (σ′,Σ′′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w′′;q′ (C′′,Σ′′).
By Lemma 42, we know:

R,G, I |= (C ′, σ′,ws ′)�H;w′′;q (C′′,Σ′′) (5.170)

(b) there exists ws ′ such that ws ′ <H (0, |C|),
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′)�H;w;q′ (D,Σ).

By Lemma 42, we know:

R,G, I |= (C ′, σ′,ws ′)�H;w;q (D,Σ) (5.171)

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ] σF)
e−→ (C ′, σ′′), the proof is similar to the previous case.

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

Since (σ,w,D,Σ) |= p and Sta(p,R ∗ Id), we know there exists w′ such that (σ′, w′,D,Σ′) |= p.

By the co-induction hypothesis, we know: R,G, I |= (C, σ′, (0, |C|))�H;w′;q (D,Σ′).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

Since (σ,w,D,Σ) |= p and Sta(p,R ∗ Id), we know (σ′, w,D,Σ′) |= p.

By the co-induction hypothesis, we know: R,G, I |= (C, σ′, (0, |C|))�H;w;q (D,Σ′).

5. if C = skip, then for any ΣF ,

from p
G
=⇒ p′, we know one of the following holds:

(a) either, there exist w′, D′ and Σ′ such that (D,Σ] ΣF) −→+ (D′,Σ′] ΣF)
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,D′,Σ′) |= p′;

(b) or, there exist w′, D′ and Σ′ such that (σ,w′,D′,Σ′) |= p′, w′ = w, D′ = D and Σ′ = Σ.

For either case, from R,G, I |= {p′}C{q′}, we know:

R,G, I |= (skip, σ, (0, 0))�H;w′;q′ (D′,Σ′) (5.172)

Then one of the following holds:

73

(a) either, there exist w′′, D′′ and Σ′′ such that (D′,Σ′] ΣF) −→+ (D′′,Σ′′] ΣF),
((σ,Σ′), (σ,Σ′′), true) |= G+ ∗ True and (σ,w′′,D′′,Σ′′) |= q′;

(b) or, there exist w′′, D′′ and Σ′′ such that w′′ = w′, D′′ = D′, Σ′′ = Σ′ and (σ,w′′,D′′,Σ′′) |= q′.

From q′
G
=⇒ q, we know one of the following holds:

(a) either, there exist w′′′, D′′′ and Σ′′′ such that (D′′,Σ′′] ΣF) −→+ (D′′′,Σ′′′] ΣF)
((σ,Σ′′), (σ,Σ′′′), true) |= G+ ∗ True and (σ,w′′′,D′′′,Σ′′′) |= q;

(b) or, there exist w′′′, D′′′ and Σ′′′ such that (σ,w′′′,D′′′,Σ′′′) |= q, w′′′ = w′′, D′′′ = D′′ and
Σ′′′ = Σ′′.

Thus we get one of the following holds:

(a) either, there exist w′′′, C′′′ and Σ′′′ such that (D,Σ] ΣF) −→+ (C′′′,Σ′′′] ΣF)
((σ,Σ), (σ,Σ′′′), true) |= G+ ∗ True and (σ,w′′′,C′′′,Σ′′′) |= q;

(b) or, (σ,w,D,Σ) |= q.

6. for any σF and ΣF , if (C, σ] σF) −→ abort,

from p
G
=⇒ p′, we know one of the following holds:

(a) either, there exist w′, D′ and Σ′ such that (D,Σ] ΣF) −→+ (D′,Σ′] ΣF)
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′,D′,Σ′) |= p′;

(b) or, there exist w′, D′ and Σ′ such that (σ,w′,D′,Σ′) |= p′, w′ = w, D′ = D and Σ′ = Σ.

For either case, from R,G, I |= {p′}C{q′}, we know:

R,G, I |= (C, σ, (0, |C|))�H;w′;q′ (D′,Σ′) (5.173)

Then we know: (D′,Σ′] ΣF) −→+ abort. Thus (D,Σ] ΣF) −→+ abort.

Thus we are done. 2

Lemma 42. If

1. R,G, I |= (C, σ,ws)�H;w;q′ (D,Σ);

2. q′
G
=⇒ q;

3. Sta(q,R ∗ Id); I . {R,G}; q ⇒ I ∗ true;

then R,G, I |= (C, σ,ws)�H;w;q (D,Σ).

Proof: By co-induction. 2

The ENV rule.

Lemma 43 (ENV). If |=sl [p]c[q], c is silent and Locality(c), then Emp,Emp, emp |= {p}c{q}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p, then

Emp,Emp, emp |= (c, σ, (0, |c|))�height(c);w;q (D,Σ).

74

We know |c| = 1 and can prove height(c) = 1.
By co-induction. We know (σ,Σ) |= emp ∗ true. From |=sl [p]c[q], we know:

(c, σ) 6−→∗ abort , (c, σ) 6−→ω · (5.174)

By Locality(c), we know: for any σF ,

(c, σ] σF) 6−→∗ abort , (c, σ] σF) 6−→ω · (5.175)

1. for any σF , ΣF , C ′ and σ′′, if (c, σ] σF) −→ (C ′, σ′′),

by the operational semantics, we know C ′ = skip.

By Locality(c), we know: there exists σ′ such that σ′′ = σ′] σF and (c, σ) −→ (skip, σ′).

From |=sl [p]c[q], we know:
(σ′, w,D,Σ) |= q (5.176)

By the skip rule, we know:

Emp,Emp, emp |= (skip, σ′, (0, 0))�1;w;q (D,Σ) (5.177)

We know ((σ,Σ), (σ′,Σ), false) |= Emp+ ∗ True.

Also, we know: (0, 0) <1 (0, 1).

2. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= Emp+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: Emp,Emp, emp |= (c, σ′, (0, 1))�1;w;q (D,Σ′).

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= Emp+ ∗ Id, we know σ′ = σ and Σ′ = Σ.

By the co-induction hypothesis, we know: Emp,Emp, emp |= (c, σ′, (0, 1))�1;w;q (D,Σ′).

Thus we are done. 2

The FRAME rule.

Lemma 44 (FRAME). If

1. R,G, I |= {p}C{q};

2. Sta({p, q}, R ∗ Id); Sta(p′, (R′)
+ ∗ Id); I . {R,G}; I ′ . {R′, G′}; p ∨ q ⇒ I ∗ true; p′ ⇒ I ′ ∗ true;

G+ ⇒ G;

then R ∗R′, G ∗G′, I ∗ I ′ |= {p ∗ p′}C{q ∗ p′}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p ∗ p′, then

R ∗R′, G ∗G′, I ∗ I ′ |= (C, σ, (0, |C|))�height(C);w;q∗p′ (D,Σ).

Since (σ,w,D,Σ) |= p ∗ p′, we know: there exist σ1, σ2, w1, w2, D1, D2, Σ1 and Σ2 such that

(σ1, w1,D1,Σ1) |= p, (σ2, w2,D2,Σ2) |= p′, σ = σ1] σ2, w = w1 + w2, D = D1] D2, Σ = Σ1] Σ2

From the premise, we know: R,G, I |= (C, σ1, (0, |C|))�height(C);w1;q (D1,Σ1).
By Lemma 45, we are done. 2

Lemma 45. If

1. R,G, I |= (C, σ1,ws)�H;w1;q (D1,Σ1);

75

2. Sta(q,R ∗ Id); Sta(p′, (R′)
+ ∗ Id); I . {R,G}; I ′ . {R′, G′}; q ⇒ I ∗ true; p′ ⇒ I ′ ∗ true; G+ ⇒ G;

3. (σ2, w2,D2,Σ2) |= p′; σ = σ1] σ2; D = D1] D2; Σ = Σ1] Σ2;

then R ∗R′, G ∗G′, I ∗ I ′ |= (C, σ,ws)�H;w1+w2;q∗p′ (D,Σ).

Proof: By co-induction. From the premises, we know: (σ1,Σ1) |= I ∗ true and (σ2,Σ2) |= I ′ ∗ true.
Thus we know: (σ,Σ) |= I ∗ I ′ ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C, σ] σF) −→ (C ′, σ′′),

from the first premise, we know: there exists σ′1 such that σ′′ = σ′1] σ2] σF , and one of the
following holds:

(a) there exist ws ′, w′1, C′1 and Σ′1 such that (D1,Σ1] Σ2] ΣF) −→+ (C′1,Σ′1] Σ2] ΣF),
((σ1,Σ1), (σ′1,Σ

′
1), true) |= G+ ∗ True and R,G, I |= (C ′, σ′1,ws

′)�H;w′
1;q

(C′1,Σ′1).

Since (σ2,Σ2) |= I ′ ∗ true and I ′ . G′, we know:

((σ2,Σ2), (σ2,Σ2), true) |= G′ ∗ True.

Since G+ ⇒ G, we know:

((σ1] σ2,Σ1] Σ2), (σ′1] σ2,Σ′1] Σ2), true) |= (G ∗G′)+ ∗ True.

Since D = D1] D2, we know D2 = • and D = D1. Let D′ = C′1] D2 = C′1.

By the co-induction hypothesis, we know

R ∗R′, G ∗G′, I ∗ I ′ |= (C ′, σ′1] σ2,ws ′)�H;w′
1+w2;q∗p′ (D′,Σ′1] Σ2).

(b) there exists ws ′ such that ws ′ <H ws,
((σ1,Σ1), (σ′1,Σ1), false) |= G+ ∗ True and R,G, I |= (C ′, σ′1,ws

′)�H;w1;q (D1,Σ1).

Since (σ2,Σ2) |= I ′ ∗ true and I ′ . G′, we know:

((σ2,Σ2), (σ2,Σ2), false) |= G′ ∗ True.

Since G+ ⇒ G, we know:

((σ1] σ2,Σ1] Σ2), (σ′1] σ2,Σ1] Σ2), false) |= (G ∗G′)+ ∗ True.

By the co-induction hypothesis, we know

R ∗R′, G ∗G′, I ∗ I ′ |= (C ′, σ′1] σ2,ws ′)�H;w1+w2;q∗p′ (D,Σ1] Σ2).

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ] σF)
e−→ (C ′, σ′′), the proof is similar to the previous case.

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= (R ∗R′)+ ∗ Id,

since I . R, I ′ . R′, (σ1,Σ1) |= I ∗ true and (σ2,Σ2) |= I ′ ∗ true, we know: there exist σ′1, σ′2, Σ′1
and Σ′2 such that σ′ = σ′1] σ′2, Σ′ = Σ′1] Σ′2,

((σ1,Σ1), (σ′1,Σ
′
1), true) |= R+ ∗ Id, ((σ2,Σ2), (σ′2,Σ

′
2), true) |= (R′)

+ ∗ Id

From the first premise, we know there exist ws ′ and w′1 such that

R,G, I |= (C, σ′1,ws
′)�H;w′

1;q
(D1,Σ

′
1).

Since (σ2, w2,D2,Σ2) |= p′ and Sta(p′, (R′)
+ ∗ Id), we know: there exists w′2 such that

(σ′2, w
′
2,D2,Σ

′
2) |= p′.

By the co-induction hypothesis, we know:

76

R ∗R′, G ∗G′, I ∗ I ′ |= (C, σ′,ws ′)�H;w′
1+w

′
2;q∗p′ (D,Σ′).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= (R ∗R′)+ ∗ Id,

since I . R, I ′ . R′, (σ1,Σ1) |= I ∗ true and (σ2,Σ2) |= I ′ ∗ true, we know: there exist σ′1, σ′2, Σ′1
and Σ′2 such that σ′ = σ′1] σ′2, Σ′ = Σ′1] Σ′2,

((σ1,Σ1), (σ′1,Σ
′
1), false) |= R+ ∗ Id, ((σ2,Σ2), (σ′2,Σ

′
2), false) |= (R′)

+ ∗ Id

From the first premise, we know

R,G, I |= (C, σ′1,ws)�H;w1;q (D1,Σ
′
1).

Since (σ2, w2,D2,Σ2) |= p′ and Sta(p′, (R′)
+ ∗ Id), we know:

(σ′2, w2,D2,Σ
′
2) |= p′.

By the co-induction hypothesis, we know:

R ∗R′, G ∗G′, I ∗ I ′ |= (C, σ′,ws)�H;w1+w2;q∗p′ (D,Σ′).

5. if C = skip, then for any ΣF , from the first premise we know one of the following holds:

(a) there exist w′1, C′1 and Σ′1 such that (D1,Σ1] Σ2] ΣF) −→+ (C′1,Σ′1] Σ2] ΣF),
((σ1,Σ1), (σ1,Σ

′
1), true) |= G+ ∗ True and (σ1, w

′
1,C′1,Σ′1) |= q.

Since (σ2,Σ2) |= I ′ ∗ true and I ′ . G′, we know:

((σ2,Σ2), (σ2,Σ2), true) |= G′ ∗ True.

Since G+ ⇒ G, we know:

((σ1] σ2,Σ1] Σ2), (σ1] σ2,Σ′1] Σ2), true) |= (G ∗G′)+ ∗ True.

Since D = D1] D2, we know D2 = • and D = D1. Thus C′1] D2 = C′1.

Since (σ1, w
′
1,C′1,Σ′1) |= q, we get:

(σ,w′1 + w2,C′1] D2,Σ
′
1] Σ2) |= q ∗ p′.

(b) there exists w′1 such that ws = (w′1, 0) and (σ1, w1 + w′1,D1,Σ1) |= q.

Since (σ2, w2,D2,Σ2) |= p′, we have

(σ,w1 + w2 + w′1,D,Σ) |= q ∗ p′.

6. for any σF and ΣF , if (C, σ] σF) −→ abort,

from the first premise, we know: (D1,Σ1]Σ2]ΣF) −→+ abort. Thus D2 = • and D = D1. Thus
(D,Σ] ΣF) −→+ abort.

Thus we are done. 2

77

The FR-CONJ rule.

Lemma 46 (FR-CONJ). If

1. R,G, I |= {p}C{q};

2. Sta({p, q}, R ∗ Id); Sta(p′, R+ ∗ Id); Sta(p′, G ∗ True); I . {R,G}; p ∨ q ⇒ I ∗ true;

then R,G, I |= {p7 p′}C{q 7 p′}.

Proof: We want to prove: for all σ, w, D and Σ, if (σ,w,D,Σ) |= p7 p′, then

R,G, I |= (C, σ, (0, |C|))�height(C);w;q7p′ (D,Σ).

Since (σ,w,D,Σ) |= p7 p′, we know: there exist w1, w2, D1 and D2 such that

(σ,w1,D1,Σ) |= p, (σ,w2,D2,Σ) |= p′, w = w1 + w2, D = D1] D2

From the premise, we know: R,G, I |= (C, σ, (0, |C|))�height(C);w1;q (D1,Σ).
By Lemma 47, we are done. 2

Lemma 47. If

1. R,G, I |= (C, σ,ws1)�H;w1;q (D1,Σ);

2. Sta(q,R ∗ Id); Sta(p′, R+ ∗ Id); Sta(p′, G ∗ True); I . {R,G}; q ⇒ I ∗ true;

3. (σ,w2,D2,Σ) |= p′; w = w1 + w2; D = D1] D2;

then R,G, I |= (C, σ,ws1)�H;w;q7p′ (D,Σ).

Proof: By co-induction. From the premises, we know: (σ,Σ) |= I ∗ true.

1. for any σF , ΣF , C ′ and σ′′, if (C, σ] σF) −→ (C ′, σ′′),

from the first premise, we know: there exists σ′ such that σ′′ = σ′] σF , and one of the following
holds:

(a) there exist ws ′1, C′1 and Σ′ such that (D1,Σ] ΣF) −→+ (C′1,Σ′] ΣF),
((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′1)�H;w1;q (C′1,Σ′).
Since Sta(p′, G ∗ True), we know

Sta(p′, G+ ∗ True)

Since (σ,w2,D2,Σ) |= p′, we know there exists w′2 such that

(σ′, w′2,D2,Σ
′) |= p′

Since D = D1] D2, we know D2 = • and D = D1. Let D′ = C′1] D2 = C′1 and w′ = w1 + w′2.

By the co-induction hypothesis, we know

R,G, I |= (C ′, σ′,ws ′1)�H;w′;q7p′ (D′,Σ′).

(b) there exists ws ′1 such that ws ′1 <H ws1,
((σ,Σ), (σ′,Σ), false) |= G+ ∗ True and R,G, I |= (C ′, σ′,ws ′1)�H;w1;q (D1,Σ).

Since (σ,w2,D2,Σ) |= p′ and Sta(p′, G ∗ True), we know

(σ′, w2,D2,Σ) |= p′

By the co-induction hypothesis, we know

R,G, I |= (C ′, σ′,ws ′1)�H;w;q7p′ (D,Σ).

78

2. for any σF , ΣF , e, C ′ and σ′′, if (C, σ] σF)
e−→ (C ′, σ′′), the proof is similar to the previous case.

3. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), true) |= R+ ∗ Id,

from the first premise, we know there exists ws ′1 such that

R,G, I |= (C, σ′,ws ′1)�H;w1;q (D1,Σ
′).

Since (σ,w2,D2,Σ) |= p′ and Sta(p′, R+ ∗ Id), we know: there exists w′2 such that

(σ′, w′2,D2,Σ
′) |= p′.

By the co-induction hypothesis, we know: let w′ = w1 + w′2,

R,G, I |= (C, σ′,ws ′1)�H;w′;q7p′ (D,Σ′).

4. for any σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), false) |= R+ ∗ Id,

from the first premise, we know

R,G, I |= (C, σ′,ws1)�H;w1;q (D1,Σ
′).

Since (σ,w2,D2,Σ) |= p′ and Sta(p′, R+ ∗ Id), we know:

(σ′, w2,D2,Σ
′) |= p′.

By the co-induction hypothesis, we know:

R,G, I |= (C, σ′,ws1)�H;w;q7p′ (D,Σ′).

5. if C = skip, then for any ΣF , from the first premise we know one of the following holds:

(a) there exist w′1, C′1 and Σ′ such that (D1,Σ] ΣF) −→+ (C′1,Σ′] ΣF),
((σ,Σ), (σ,Σ′), true) |= G+ ∗ True and (σ,w′1,C′1,Σ′) |= q.

Since (σ,w2,D2,Σ) |= p′ and Sta(p′, G ∗ True), we know there exists w′2 such that

(σ,w′2,D2,Σ
′) |= p′

Since D = D1] D2, we know D2 = • and D = D1. Thus C′1] D2 = C′1. Thus we get:

(σ,w′1 + w′2,C′1] D2,Σ
′) |= q 7 p′.

(b) there exists w′1 such that ws1 = (w′1, 0) and (σ,w1 + w′1,D1,Σ) |= q.

Since (σ,w2,D2,Σ) |= p′, we have

(σ,w1 + w2 + w′1,D,Σ) |= q 7 p′.

6. for any σF and ΣF , if (C, σ] σF) −→ abort,

from the first premise, we know: (D1,Σ] ΣF) −→ + abort. Thus D2 = • and D = D1. Thus
(D,Σ] ΣF) −→+ abort.

Thus we are done. 2

79

5.5 Derivation of WHILE-TERM Rule

Lemma 48 (WHILE-TERM Derivable). If

1. R,G, I ` {p ∧B ∧ (E = α)}C{p ∧ (E < α)};

2. p ∧B ⇒ E > 0;

3. p⇒ ((B = B) ∧ (E = E)) ∗ I;

4. G+ ⇒ G;

5. α is a fresh logical variable;

then R,G, I ` {bpcw}while (B) C{bpcw ∧ ¬B}.

Proof: Take a fresh logical variable β and by applying the conseq rule to the premise 1, we get:

R,G, I ` {∃β. p ∧ (E = β) ∧B ∧ (E = α)}C{∃β. p ∧ (E = β) ∧ (E < α)} (5.178)

From p ∧B ⇒ E > 0, we know
p ∧B ∧ (E = α) ⇒ α > 0 (5.179)

Since G+ ⇒ G, Sta(wf(α) ∧ emp,Emp ∗ Id), emp . Emp and (wf(α) ∧ emp) ⇒ emp ∗ true, we can apply
the frame rule to (5.178) and get

R,G, I ` {(∃β. p∧(E = β)∧B∧(E = α))∗(wf(α)∧emp)}C{(∃β. p∧(E = β)∧(E < α))∗(wf(α)∧emp)}
(5.180)

We reduce (5.180) as follows:

R,G, I ` {∃β. (p∧(E = β))∗(wf(α)∧emp)∧B∧(E = α)}C{∃β. (p∧(E = β))∗(wf(α)∧emp)∧(E < α)}
(5.181)

R,G, I ` {∃β. (p∧(E = β))∗(wf(β)∧emp))∧B∧(E = α)}C{∃β. (p∧(E = β))∗(wf(β+1)∧emp))∧(E < α)}
(5.182)

Since (wf(β + 1) ∧ emp)⇒ (wf(β) ∧ emp) ∗ (wf(1) ∧ emp), we let

p0
def
= (∃β. (p ∧ (E = β)) ∗ (wf(β) ∧ emp)) (5.183)

then (5.182) can be written as:

R,G, I ` {p0 ∧B ∧ (E = α)}C{(p0 ∗ (wf(1) ∧ emp)) ∧ (E < α)} (5.184)

By the exists rule and α is not free in R, G and I, we get:

R,G, I ` {∃α. p0 ∧B ∧ (E = α)}C{∃α. (p0 ∗ (wf(1) ∧ emp)) ∧ (E < α)} (5.185)

Since α is not free in p, B and E, we know

(p0 ∧B) ⇒ (∃α. p0 ∧B ∧ (E = α)) (5.186)

and
(∃α. (p0 ∗ (wf(1) ∧ emp)) ∧ (E < α)) ⇒ (p0 ∗ (wf(1) ∧ emp)) (5.187)

Thus by applying conseq rule to (5.185), we get:

R,G, I ` {p0 ∧B}C{p0 ∗ (wf(1) ∧ emp)} (5.188)

From p ⇒ (B = B) ∗ I and p0 ∗ (wf(1) ∧ emp) ∧ B ⇒ (p0 ∧ B) ∗ (wf(1) ∧ emp), by applying the while
rule and the hide-w rule, we get:

R,G, I ` {bp0 ∗ (wf(1) ∧ emp)cw}while (B) C{bp0 ∗ (wf(1) ∧ emp)cw ∧ ¬B} (5.189)

80

It can be reduced to:

R,G, I ` {∃β. bpcw ∧ (E = β)}while (B) C{∃β. bpcw ∧ (E = β) ∧ ¬B} (5.190)

Since p⇒ (E = E) ∗ I, we know

R,G, I ` {bpcw}while (B) C{bpcw ∧ ¬B} (5.191)

Thus we are done. 2

81

References

[1] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal verification of a practical
lock-free queue algorithm. In FORTE’04.

[2] Xinyu Feng. Local rely-guarantee reasoning. In POPL’09.

[3] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.

[4] Maurice Herlihy and Jeannette Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[5] Jan Hoffmann, Michael Marmar, and Zhong Shao. Quantitative reasoning for proving lock-freedom.
In LICS, pages 124–133, 2013.

[6] Hongjin Liang and Xinyu Feng. Modular verification of linearizability with non-fixed linearization
points. In PLDI, pages 459–470, 2013.

[7] Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-based simulation for verifying concurrent
program transformations. In POPL, 2012.

[8] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In PODC’96.

[9] William N. Scherer III, Doug Lea, and Michael L. Scott. Scalable synchronous queues. In PPoPP,
pages 147–156, 2006.

[10] Ketil Stølen. A method for the development of totally correct shared-state parallel programs. In
CONCUR, pages 510–525, 1991.

[11] Aaron Turon and Mitchell Wand. A separation logic for refining concurrent objects. In POPL’11.

[12] Viktor Vafeiadis. Modular fine-grained concurrency verification. Thesis.

[13] Viktor Vafeiadis. Concurrent separation logic and operational semantics. In MFPS, 2011.

82

	Basic Technical Settings and Termination-Preserving Refinement
	The Language
	Termination-Preserving Event Trace Refinement

	RGSim-T
	Assertion Language
	Definition of RGSim-T

	Logic
	Examples
	Counter and Its Variants
	TAS Lock and TTAS Lock
	Treiber Stack
	MS Lock-Free Queue
	DGLM Lock-Free Queue
	Synchronous Queue

	Soundness Proofs
	Adequacy of RGSim-T
	Unary Judgment Semantics
	Instantiation of the Abstract Metric M
	Intuitions of H and the Second Dimension of ws
	Unary Judgment Semantics

	Soundness of Binary Rules
	Soundness of Unary Rules
	Derivation of WHILE-TERM Rule

