
Draft – April 16, 2013

Observing Progress Properties via
Contextual Refinements

(Extended Version)

Hongjin Liang1, Jan Hoffmann2, Xinyu Feng1, and Zhong Shao2

1 University of Science and Technology of China
2 Yale University

NOTE: Compared to the submitted version, we include the full semantics and
the formal definitions of linearizability in Section 3; the full definitions of progress
properties in Section 4; and proofs of all the theorems in the appendix. Besides,
we give alternative formulations of these progress properties in Section 4, which
are simpler and more constructive (although may not be close to the natural
language interpretations). From them, we could clearly see the relationships
between progress properties. To support the new formulations, we add a new
event to represent thread spawning and slightly change the generation of event
traces. The changes are independent from our contextual refinement framework.

Abstract. Implementations of concurrent objects should guarantee lin-
earizability and a progress property such as wait-freedom, lock-freedom,
obstruction-freedom, starvation-freedom, or deadlock-freedom. Conven-
tional informal or semi-formal definitions of these progress properties
describe conditions under which a method call is guaranteed to com-
plete, but it is unclear how these definitions can be utilized to formally
verify system software in a layered and modular way.
In this paper, we propose a unified framework based on contextual re-
finements to show exactly how progress properties affect the behaviors
of client programs. We give formal operational definitions of all common
progress properties and prove that for linearizable objects, each progress
property is equivalent to a specific type of contextual refinement that
preserves termination. The equivalence ensures that verification of such
a contextual refinement for a concurrent object guarantees both lineariz-
ability and the corresponding progress property. Contextual refinement
also enables us to verify safety and liveness properties of client programs
at a high abstraction level by soundly replacing concrete method imple-
mentations with abstract atomic operations.

1 Introduction

A concurrent object consists of shared data and a set of methods that provide
an interface for client threads to manipulate and access the shared data. The
synchronization of simultaneous data access within the object affects the progress
of the execution of the client threads in the system.

Draft – April 16, 2013

Various progress properties have been proposed for concurrent objects. The
most important ones are wait-freedom, lock-freedom and obstruction-freedom for
non-blocking implementations, and starvation-freedom and deadlock-freedom for
lock-based implementations. These properties describe conditions under which
method calls are guaranteed to successfully complete in an execution. For exam-
ple, lock-freedom guarantees that “infinitely often some method call finishes in
a finite number of steps” [10].

Nevertheless, the common informal or semi-formal definitions of the progress
properties are difficult to use in a modular and layered program verification be-
cause they fail to describe how the progress properties affect clients. In a modular
verification of client threads, the concrete implementation Π of the object meth-
ods should be replaced by an abstraction (or specification) ΠA that consists of
equivalent atomic methods. The progress properties should then characterize
whether and how the behaviors of a client program will be affected if a client
uses Π instead of ΠA. In particular, we are interested in systematically study-
ing whether the termination of a client using the abstract methods ΠA will be
preserved when using an implementation Π with some progress guarantee.

To prove the soundness of such a layered and modular verification of con-
current systems, previous work on verifying the safety of concurrent objects
(e.g., [4, 5]) has shown that linearizability—a standard safety criterion for con-
current objects—and contextual refinement are equivalent. Informally, an im-
plementation Π is a contextual refinement of a (more abstract) implementation
ΠA, if every observable behavior of any client program using Π can also be
observed when the client uses ΠA instead. To obtain equivalence to linearizabil-
ity, the observable behaviors include I/O events but not divergence. Recently,
Gotsman and Yang [6] showed that a client program that diverges using a lin-
earizable and lock-free object implementation must also diverge when using the
abstract atomic operations instead. Their work reveals a connection between
lock-freedom and a form of contextual refinement which preserves termination
as well as safety properties. It is unclear how other progress guarantees affect
termination of client programs, how they are related to contextual refinements,
and how we can prove liveness properties of client programs in a modular way.

This paper studies all five commonly-used progress properties and their re-
lationships to contextual refinements. We propose a unified framework in which
a certain type of termination-sensitive contextual refinement is equivalent to
linearizability together with one of the progress properties. The idea is to iden-
tify different observable behaviors for different progress properties. For example,
for the contextual refinement for lock-freedom we observe the divergence of the
whole program, while for wait-freedom we also need to observe which threads in
the program diverge. For the lock-based progress properties starvation-freedom
and deadlock-freedom, we have to take fair schedulers into account.

To formally develop the framework, we first have to formalize the progress
properties. However, most existing definitions of these progress properties are
informal and sometimes ambiguous (e.g., [8, 10]). Some formal or semi-formal
definitions are difficult to apply in Hoare-style verification (e.g., [3]) or even

2

Draft – April 16, 2013

Wait-freedom

Lock-freedom Starvation-freedom

Obstruction-freedom Deadlock-freedom

Sequential termination

Fig. 1: Relationships between Progress Properties

flawed. (See Appendix A for an example program demonstrating that the recent
formulation of obstruction-freedom given by Herlihy and Shavit [9] is inconsistent
with the common intuition.)

In this paper, we give formal operational definitions of these progress prop-
erties which follow their intuitions, and unify them in our contextual refinement
framework. In summary, we make the following contributions:

– We formalize the definitions of the most common progress properties wait-
freedom, lock-freedom, obstruction freedom, starvation-freedom, and deadlock-
freedom. Our formulation is based on possibly infinite event traces that are
operationally generated by any client using the object implementation.

– Based on our formalization, we prove relationships between the progress
properties. For example, wait-freedom implies lock-freedom and starvation-
freedom implies deadlock-freedom. These relationships form a lattice shown
in Figure 1 (where the arrows represent implications). We close the lattice
with a bottom element that we call sequential termination, a progress prop-
erty in the sequential setting. It is weaker than any other progress property.

– We develop a unified framework to observe progress properties via contextual
refinements. With linearizability, each progress property is proved equivalent
to a contextual refinement which takes into account divergence of programs.
The formal proofs of our results can be found in Appendix B.

Our contextual refinement framework provides another point of view to under-
stand progress properties. The contextual refinement implied by linearizability
and a progress guarantee precisely characterizes the properties at the abstract
level that are preserved by the object implementation. When proving these prop-
erties of a client of the object, we can soundly replace the concrete method imple-
mentations by its abstract operations. On the other hand, since the contextual
refinement also implies linearizability and the progress property, we can borrow
ideas from existing proof methods for contextual refinements, such as simula-
tions (e.g., [13]) and logical relations (e.g., [2]), to verify linearizability and the
progress guarantee together.

In the remainder of this paper, we first informally explain the progress prop-
erties and our framework in Section 2. We then introduce the formal setting
in Section 3; including the definition of linearizability as the safety criterion
of objects. We formulate the progress properties and the contextual refinement
framework in Section 4. We discuss related work and conclude in Section 5.

3

Draft – April 16, 2013

2 Informal Account

In this section, we informally describe our results. We first give an overview of
linearizability and its equivalence to the basic contextual refinement. Then we
explain the progress properties and summarize our new equivalence results.

Linearizability and Contextual Refinement Linearizability is the standard
correctness criterion for concurrent objects [10]. Intuitively, linearizability de-
scribes atomic behaviors of object implementations. It requires that each method
call should appear to take effect instantaneously at some moment between its
invocation and return.

Linearizability intuitively establishes a correspondence between the object
implementation Π and the intended atomic operations ΠA. This correspondence
can also be understood as a contextual refinement. Informally, we say that Π is a
contextual refinement of ΠA, Π v ΠA, if substituting ΠA for Π in any context
(i.e., in a client program) does not add observable behaviors. Human beings as
external observers cannot tell that ΠA has been replaced by Π from monitoring
the behaviors of the client program.

It has been proved [4, 5, 12] that linearizability is equivalent to a contextual
refinement in which the observable behaviors are finite traces of I/O events. Thus
this basic contextual refinement can be used to distinguish linearizable objects
from non–linearizable ones. But it cannot identify progress properties of objects.

Progress Properties Figure 2 shows several implementations of a counter with
different progress guarantees that we study in this paper. A counter object pro-
vides the two methods inc and dec for incrementing and decrementing a shared
variable x. The implementations given here are not intended to be practical but
merely to demonstrate the meanings of the progress properties.

Informally, an object implementation is wait-free, if it guarantees that every
thread can complete any started operation of the data structure in a finite num-
ber of steps [7]. Figure 2(a) shows an ideal wait-free implementation in which
the increment and the decrement are done atomically. This unrealistic imple-
mentation is obviously wait-free since it guarantees termination of every method
call regardless of interference from other threads. Note that realistic implemen-
tations of wait-free counters are more complex and involve arrays and atomic
snapshots [1].

Lock-freedom is similar to wait-freedom but only guarantees that some thread
will complete an operation in a finite number of steps [7]. Typical lock-free imple-
mentations (such as the well-known Treiber stack, HSY elimination-backoff stack
and Harris-Michael lock-free list) use the atomic compare-and-swap instruction
cas in a loop to repeatedly attempt an update until it succeeds. Figure 2(b)
shows such an implementation of the counter object. It is lock-free, because
whenever inc and dec operations are executed concurrently, there always exists
some successful update. Note that this object is not wait-free. For the following

4

Draft – April 16, 2013

1 inc() { x := x + 1; }

2 dec() { x := x - 1; }

(a) Wait-Free (Ideal) Impl.

1 inc() {

2 local t, b;

3 do {

4 t := x;

5 b := cas(&x,t,t+1);

6 } while(!b);

7 }

(b) Lock-Free Impl.

1 inc() {

2 while (i < 10) {

3 i := i + 1;

4 }

5 x := x + 1;

6 }

7 dec() {

8 while (i > 0) {

9 i := i - 1;

10 }

11 x := x - 1;

12 }

(c) Obstruction-Free Impl.

1 inc() {

2 TestAndSet_lock();

3 x := x + 1;

4 TestAndSet_unlock();

5 }

(d) Deadlock-Free Impl.

1 inc() {

2 Bakery_lock();

3 x := x + 1;

4 Bakery_unlock();

5 }

(e) Starvation-Free Impl.

Fig. 2: Counter Objects with Methods inc and dec

program (2.1), the cas instruction in the method called by the left thread may
continuously fail due to the continuous updates of x made by the right thread.

inc(); ‖ while(true) inc(); (2.1)

Herlihy et al. [8] propose obstruction-freedom which “guarantees progress
for any thread that eventually executes in isolation” (i.e., without other active
threads in the system). They present two double-ended queues as examples. In
Figure 2(c) we show an obstruction-free counter that may look contrived but
nevertheless illustrates the idea of the progress property.

The implementation introduces a variable i, and lets inc perform the atomic
increment after increasing i to 10 and dec do the atomic decrement after decreas-
ing i to 0. Whenever a method is executed in isolation (i.e., without interference
from other threads), it will complete. Thus the object is obstruction-free. It is
not lock-free, because for the client

inc(); ‖ dec(); (2.2)

which executes an increment and a decrement concurrently, it is possible that
neither of the method calls returns. For instance, under a specific schedule, every
increment over i made by the left thread is immediately followed by a decrement
from the right thread.

Wait-freedom, lock-freedom, and starvation-freedom are progress properties
for non-blocking implementations, where a delay of a thread cannot prevent other
threads from making progress. In contrast, deadlock-freedom and starvation-
freedom are progress properties for lock-based implementations. A delay of a
thread holding a lock will block other threads which request the lock.

Deadlock-freedom and starvation-freedom are often defined in terms of locks
and critical sections. Deadlock-freedom guarantees that some thread will succeed
in acquiring the lock, and starvation-freedom states that every thread attempting
to acquire the lock will eventually succeed [10]. For example, a test-and-set spin
lock is deadlock-free but not starvation-free. In a concurrent access, some thread

5

Draft – April 16, 2013

Wait-Free Lock-Free Obstruction-Free Deadlock-Free Starvation-Free

ΠA (t, Div.) Div. Div. Div. Div. if Fair

Π (t, Div.) Div. Div. if Isolating Div. if Fair Div. if Fair

Table 1: Observing Progress Properties via Contextual Refinements Π v ΠA

will successfully set the bit and get the lock, but there might be a thread that
is continuously failing to get the lock. Lamport’s bakery lock is starvation-free.
It ensures that threads can acquire locks in the order of their requests.

However, as noted by Herlihy and Shavit [9], the above definitions based on
locks are unsatisfactory, because it is often difficult to identify a particular field
in the object as a lock. Instead, they suggest to define them in terms of method
calls. They also notice that the above definitions implicitly assume that every
thread acquiring the lock will eventually release it. This assumption requires fair
scheduling, i.e., every thread gets eventually executed.

Following Herlihy and Shavit [9], we say an object is deadlock-free, if in each
fair execution there always exists some method call that can finish. As an exam-
ple in Figure 2(d), we use a test-and-set lock to synchronize the increments of
the counter. Since some thread is guaranteed to acquire the test-and-set lock, the
method call of that thread is guaranteed to finish. Thus the object is deadlock-
free. Similarly, a starvation-free object guarantees that every method call can
finish in fair executions. Figure 2(e) shows a counter implemented with Lam-
port’s bakery lock. It is starvation-free since the bakery lock ensures that every
thread can acquire the lock and hence every method call can eventually return.

Our Results None of the above definitions of the five progress properties de-
scribes their guarantees regarding the behaviors of client code. In this paper, we
define a series of contextual refinements to characterize the effects over client
behaviors when the client uses objects with some progress properties. We show
that linearizability together with a progress property is equivalent to a certain
termination-sensitive contextual refinement. Table 1 summarizes our results.

For each progress property, the new contextual refinement Π v ΠA cares
about various divergence behaviors and/or fairness at the implementation level
(the third row in Table 1) and at the abstract side (the second row), in addition
to the I/O events in the basic contextual refinement for linearizability.

– For wait-freedom, we need to observe the divergence of each individual thread
t, represented by “(t, Div.)” in Table 1, at both the concrete and the abstract
levels. We show that, if the thread t of a client program diverges when the
client uses a linearizable and wait-free object Π, then thread t must also
diverge when using ΠA instead.

– The case for lock-freedom is similar, except that we now consider the diver-
gence behaviors of the whole client program rather than individual threads
(denoted by “Div.” in Table 1). If a client diverges when using a linearizable
and lock-free object Π, it must also diverge when it uses ΠA instead.

6

Draft – April 16, 2013

– For obstruction-freedom, we focus on the behaviors of isolating executions
at the concrete side (denoted by “Div. if Isolating” in Table 1). In those
executions, eventually only one thread is running. We show that, if a client
diverges in isolating executions when it uses a linearizable and obstruction-
free object Π, it must also diverge in some abstract executions.

– For deadlock-freedom, we only care about fair executions at the concrete
level (denoted by “Div. if Fair” in Table 1).

– Starvation-freedom restricts our considerations to fair executions at both
the concrete and the abstract levels. A client using Π could diverge in fair
executions, only if it can also diverge in fair executions when using ΠA

instead.

These new contextual refinements allow us to identify linearizable objects with
progress properties. We will formalize the results and give examples in Section 4.

3 Formal Setting and Linearizability

In this section, we formalize linearizability and show its equivalence to a contex-
tual refinement that preserves safety properties. This equivalence is the basis of
our new results that relate contextual refinement and progress properties.

Language and Semantics We use a similar language as in previous work of
Liang and Feng [12]. As shown in Figure 3, a program W consists of several
client threads that run in parallel. Each thread could call the methods declared
in the object Π. A method f is defined as a pair (x,C), where x is the formal
argument and C is the method body. We write f ; (x,C). The object Π could
be either concrete with fine-grained code that we want to verify, or abstract
(usually denoted as ΠA in the following) that we consider as the specification.
For the latter case, each method body should be an atomic operation of the form
〈C〉 and it should be always safe to execute it. For simplicity, we assume there
is only one object in the program W and each method takes one argument only.
However, it is easy to extend our work to multiple objects and arguments.

We use the command noret at the end of methods that terminate but do
not execute return E. It is automatically appended to the method code and
is not supposed to be used by programmers. The command return E will first
calculate the return value n and reduce to fret(n), another runtime command
automatically generated during executions. We separate the evaluation of E from
returning its value n to the client, to allow interference between the two steps.
Note that the atomic block 〈C〉 may contain the command return E. In that
case, 〈C〉 would also reduce to fret(n).

To discuss progress properties later, we introduce an auxiliary command end.
It is a special marker that can be added at the end of a thread, but should not
be used directly by programmers. Other commands are mostly standard. Clients
can use print(E) to produce observable external events. We do not allow the

7

Draft – April 16, 2013

(Expr) E ::= x | n | E + E | . . .
(BExp) B ::= true | false | E = E | !B | . . .
(Instr) c ::= x := E | x := [E] | [E] := E | print(E)

| x := cons(E, . . . , E) | dispose(E) | . . .
(Stmt) C ::= skip | c | x := f(E) | return E | fret(n) | noret

| end | 〈C〉 | C;C | if (B) C else C | while (B){C}
(Prog) W ::= skip | let Π in C ‖ . . .‖C

(ODecl) Π ::= {f1 ; (x1, C1), . . . , fn ; (xn, Cn)}

Fig. 3: Syntax of the Programming Language

(ThrdID) t ∈ Nat

(Mem) σ ∈ (PVar ∪Nat) ⇀ Int

(CallStk) κ ::= (σl, x, C) | ◦
(ThrdPool) K ::= {t1;κ1, . . . , tn;κn}

(PState) S ::= (σc, σo,K)

(LState) s ::= (σc, σo, κ)

(Evt) e ::= (t, f, n) | (t, ret, n)
| (t,obj) | (t,obj,abort)
| (t,out, n) | (t, clt)
| (t, clt,abort) | (t, term)
| (spawn, n)

(ETrace) T ::= ε | e ::T (co-inductive)

Fig. 4: States and Event Traces

object’s methods to produce external events. To simplify the semantics, we also
assume there are no nested method calls.

Figure 4 defines program states and event traces. We partition a global state
S into the client memory σc, the object σo, and a thread pool K. A client can
only access the client memory σc, unless it calls object methods. The thread pool
maps each thread ID t to its local call stack frame. A call stack κ could be either
empty (◦) when the thread is not executing a method, or a triple (σl, x, C), where
σl maps the method’s formal argument and local variables to their values, x is
the caller’s variable to receive the return value, and C is the caller’s remaining
code to be executed after the method returns. To give a thread-local semantics,
we also define the thread local view s of the state that only includes one call
stack.

Figure 5 contains selected rules of the operational semantics. To describe
the operational semantics for threads, we use an execution context E, where
E ::= [] | E;C. The execution of code occurs in the hole []. The context E[C]
results from placing C into the hole.

We have three kinds of transitions. We write (W,S)
e7−→ (W ′,S ′) for the top-

level program transitions and (C, s)
e−→ t,Π (C ′, s′) for the transitions of thread t

with the object Π. We also introduce the local transition (C, σ) −_ t (C ′, σ′) to
describe a step inside or outside method calls of concurrent objects. It accesses
only object memory and method local variables (for the case inside method calls),
or only client memory (for the other case). We then lift a local transition to a
thread transition that produces an event (t,obj) or (t, clt). All three transitions
also include steps that lead to the error state abort.

We define all the generated events e in Figure 4. A method invocation
event (t, f, n) is produced when thread t executes x := f(E), where the ar-
gument E’s value is n. A return (t, ret, n) is produced with the return value

8

Draft – April 16, 2013

(Ci, (σc, σo,K(i)))
e−→ i,Π (C′i, (σ

′
c, σ
′
o, κ
′)))

(letΠ in C1‖ . . . Ci . . .‖Cn, (σc, σo,K))
e7−→ (letΠ in C1‖ . . . C′i . . .‖Cn, (σ′c, σ′o,K{i; κ′}))

(a) Program Transitions

Π(f) = (y, C) JEKσc = n x ∈ dom(σc) κ = ({y ; n}, x,E[skip])

(E[x := f(E)], (σc, σo, ◦))
(t,f,n)−−−−→ t,Π (C;noret, (σc, σo, κ))

f 6∈ dom(Π) or JEKσc undefined or x 6∈ dom(σc)

(E[x := f(E)], (σc, σo, ◦))
(t,clt,abort)−−−−−−−−→ t,Π abort

κ = (σl, x, C) σ′c = σc{x; n}

(fret(n), (σc, σo, κ))
(t,ret,n)−−−−−→ t,Π (C, (σ′c, σo, ◦)) (end, s)

(t,term)−−−−−→ t,Π (skip, s)

JEKσc = n

(E[print(E)], (σc, σo, ◦))
(t,out,n)−−−−−−→ t,Π (E[skip], (σc, σo, ◦))

(C, σo] σl) −_ t (C′, σ′o] σ′l) dom(σl) = dom(σ′l)

(C, (σc, σo, (σl, x, Cc)))
(t,obj)−−−−→ t,Π (C′, (σc, σ

′
o, (σ

′
l, x, Cc)))

(C, σo] σl) −_ t abort

(C, (σc, σo, (σl, x, Cc)))
(t,obj,abort)−−−−−−−−→ t,Π abort

(C, σc) −_ t (C′, σ′c)

(C, (σc, σo, ◦))
(t,clt)−−−−→ t,Π (C′, (σ′c, σo, ◦))

(b) Thread Transitions

JEKσ = n

(E[return E], σ) −_ t (fret(n), σ) (noret, σ) −_ t abort

(C, σ) −_∗
t (skip, σ′)

(E[〈C〉], σ) −_ t (E[skip], σ′)

(C, σ) −_∗
t (fret(n), σ′)

(E[〈C〉], σ) −_ t (fret(n), σ′)

(C, σ) −_∗
t abort

(E[〈C〉], σ) −_ t abort

(c) Local Thread Transitions

Fig. 5: Selected Rules of Operational Semantics

9

Draft – April 16, 2013

n. print(E) generates an output (t,out, n), and end generates a termination
marker (t, term). Other steps generate either normal object actions (t,obj) (for
steps inside method calls) or silent client actions (t, clt) (for client steps other
than print(E)). For transitions leading to the error state abort, fault events
are produced: (t,obj,abort) by the object method code and (t, clt,abort) by
the client code. We also introduce an auxiliary event (spawn, n) to represent
spawning n threads. It is automatically inserted at the beginning of a generated
event trace, according to the total number of threads in the program.3 Note that
in this paper, we follow Herlihy and Wing [11] and model dynamic thread cre-
ation by simply treating each child thread as an additional thread that executes
no operations before being created. Outputs and faults are observable events.
We write tid(e) for the thread ID in the event e. The predicate is clt(e) states
that the event e is either a silent client action, an output, or a client fault. We
write is inv(e) and is ret(e) to denote that the event e is a method invocation
and a return, respectively. The predicate is res(e) denotes a return or an object
fault, and is abt(e) denotes a fault of the object or the client. Other predicates
are similar and summarized below.

– is inv(e) iff there exist t, f and n such that e = (t, f, n);
– is ret(e) iff there exist t and n′ such that e = (t, ret, n′);
– is obj abt(e) iff there exists t such that e = (t,obj,abort);
– is res(e) iff either is ret(e) or is obj abt(e) holds;
– is obj(e) iff either e = (,obj) or is inv(e) or is res(e) holds;
– is clt abt(e) iff there exists t such that e = (t, clt,abort);
– is abt(e) iff either is obj abt(e) or is clt abt(e) holds;
– is clt(e) iff there exists t and n such that either e = (t, clt) or e = (t,out, n)

or e = (t, clt,abort) holds.

An event trace T is a finite or infinite sequence of events. We write T (i)
for the i-th event of T . last(T) is the last event in a finite T . The trace T (1..i)
is the sub-trace T (1), . . . , T (i) of T , and |T | is the length of T (|T | = ω if T
is infinite). The trace T |t represents the sub-trace of T consisting of all events
whose thread ID is t. We generate event traces from executions in Figure 6.
We write T JW, (σc, σo)K for the prefix-closed set of finite traces produced by the
executions of W with the initial client memory σc, the object σo, and empty
call stacks for all threads. Similarly, we write TωJW, (σc, σo)K for the finite or
infinite event traces produced by complete executions. In the definitions, we use

the notation
T7−→∗ for zero or multiple-step program transitions the generate

the trace T . Similarly,
T7−→ ω · denotes the existence of an infinite T -labelled

execution. Note that by using bW c, end is automatically appended at the end
of each thread in W to explicitly mark the termination of a thread. Using bT cW ,
we insert the spawning event (spawn, n) at the beginning of T , where n is the
total number of threads in W . Then we could use tnum(T) to get the number

3 The spawning event (spawn, n) is newly introduced in this TR. It helps to hide the
parameter of the total number of threads in the fairness definition in the submitted
version, and to formulate the alternative definitions of progress properties.

10

Draft – April 16, 2013

T JW, (σc, σo)K
def
= {bT cW | ∃W ′,S ′. (bW c, (σc, σo,}))

T7−→∗ (W ′,S ′)
∨ (bW c, (σc, σo,}))

T7−→∗ abort}

TωJW, (σc, σo)K
def
= {bT cW | (bW c, (σc, σo,}))

T7−→ω · ∨ (bW c, (σc, σo,}))
T7−→∗ (skip,)

∨ (bW c, (σc, σo,}))
T7−→∗ abort}

blet Π in C1‖ . . .‖Cnc
def
= let Π in (C1; end)‖ . . .‖(Cn; end)

bT c(let Π in C1‖...‖Cn)
def
= (spawn, n) ::T tnum((spawn, n) ::T)

def
= n

}
def
= {t1 ; ◦, . . . , tn ; ◦} div tids(T)

def
= {t | (|(T |t)| = ω) }

iso(T) iff |T | = ω =⇒ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t)

fair(T) iff |T | = ω =⇒ ∀t ∈ [1..tnum(T)]. |(T |t)| = ω ∨ last(T |t) = (t, term)

HJW, (σc, σo)K
def
= {get hist(T) | T ∈ T JW, (σc, σo)K }

OJW, (σc, σo)K
def
= {get obsv(T) | T ∈ T JW, (σc, σo)K }

OtωJW, (σc, σo)K
def
= {(get obsv(T), div tids(T)) | T ∈ TωJW, (σc, σo)K }

OωJW, (σc, σo)K
def
= {get obsv(T) | T ∈ TωJW, (σc, σo)K }

OiωJW, (σc, σo)K
def
= {get obsv(T) | T ∈ TωJW, (σc, σo)K ∧ iso(T)}

OfωJW, (σc, σo)K
def
= {get obsv(T) | ∃n. T ∈ TωJW, (σc, σo)K ∧ fair(T)}

Fig. 6: Generation of Event Traces

of threads in the program that generates T . Figure 6 also shows various ways to
get histories and observable behaviors of a program, which we will explain later.

Linearizability and Basic Contextual Refinement Linearizability [11] is
defined using histories. Histories are special event traces only consisting of method
invocation, method return, and object faults.

We say a response e2 matches an invocation e1, denoted as match(e1, e2), iff
they have the same thread ID.

match(e1, e2)
def
= is inv(e1) ∧ is res(e2) ∧ (tid(e1) = tid(e2))

A history T is sequential, i.e., seq(T), iff the first event of T is an invocation, and
each invocation, except possibly the last, is immediately followed by a matching
response. It is inductively defined as follows.

seq(ε)

is inv(e)

seq(e :: ε)

match(e1, e2) seq(T)

seq(e1 :: e2 :: T)

Then T is well-formed iff, for all t, T |t is sequential.

well formed(T)
def
= ∀t. seq(T |t) .

T is complete iff it is well-formed and every invocation has a matching response.
An invocation is pending if no matching response follows it. We write pend inv(T)
for the set of pending invocations in T .

11

Draft – April 16, 2013

pend inv(T)
def
= {e | ∃i. e=T (i) ∧ is inv(e) ∧ (∀j. i<j≤|T | ⇒ ¬match(e, T (j)))}

We handle pending invocations in an incomplete history T following the stan-
dard linearizability definition [11]: We append zero or more return events to T ,
and drop the remaining pending invocations. Then we get a set of complete his-
tories, which is denoted by completions(T). Formally, we define completions(T)
as follows.

Definition 1 (Extensions of a history). extensions(T) is a set of well-formed
histories where we extend T by appending successful return events:

well formed(T)

T ∈ extensions(T)

T ′ ∈ extensions(T) is ret(e) well formed(T ′ ::e)

T ′ ::e ∈ extensions(T)

Or equivalently,

extensions(T)
def
= {T ′ | well formed(T ′)∧ ∃Tok. T ′=T::Tok∧ ∀i. is ret(Tok(i))}.

Definition 2 (Completions of a history). truncate(T) is the maximal com-
plete sub-history of T , which is inductively defined by dropping the pending in-
vocations in T :

truncate(ε)
def
= ε

truncate(e ::T)
def
=

{
e :: truncate(T) if is res(e) or ∃i. match(e, T (i))
truncate(T) otherwise

Then completions(T)
def
= {truncate(T ′) | T ′ ∈ extensions(T)} . It’s a set of

histories without pending invocations.

Then we can formulate the linearizability relation between well-formed his-
tories, which is a core notion used in the linearizability definition of an object.

Definition 3 (Linearizable Histories). T �lin T
′ iff

1. ∀t. T |t = T ′|t;
2. there exists a bijection π : {1, . . . , |T |} → {1, . . . , |T ′|} such that ∀i. T (i) =

T ′(π(i)) and ∀i, j. i < j ∧ is ret(T (i)) ∧ is inv(T (j)) =⇒ π(i) < π(j).

That is, T is linearizable w.r.t. T ′ if the latter is a permutation of the former,
preserving the order of events in the same threads and the order of the non-
overlapping method calls. Then an object is linearizable iff all its concurrent
histories after completions are linearizable w.r.t. some legal sequential histories.
We use ΠA B (σa, T

′) to mean that T ′ is a legal sequential history generated by
any client using the specification ΠA with an initial abstract object σa.

ΠA B (σa, T)
def
=

∃n,C1, . . . , Cn, σc. T ∈ HJ(let ΠA in C1‖ . . .‖Cn), (σc, σa)K ∧ seq(T)

As defined in Figure 6, we use HJW, (σc, σa)K to generate histories from W ,
where get hist(T) projects the event trace T to the sub-history.

12

Draft – April 16, 2013

Definition 4 (Linearizability of Objects). The object’s implementation Π is
linearizable w.r.t. ΠA under a refinement mapping ϕ, denoted by Π �ϕ ΠA iff
∀n,C1, . . . , Cn, σc, σo, σa, T. T ∈ HJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ (ϕ(σo) = σa)

=⇒ ∃Tc, T ′. Tc ∈ completions(T) ∧ΠA B (σa, T
′) ∧ Tc �lin T

′

Here the mapping ϕ relates concrete objects to abstract ones:

(RefMap) ϕ ∈ Mem ⇀ AbsObj

The side condition ϕ(σo) = θ in the above definition requires the initial concrete
object σo to be a well-formed data structure representing a valid object θ.

Next we define a contextual refinement between the concrete object and its
specification, which is equivalent to linearizability. Informally, this contextual
refinement states that for any set of client threads, the program W has no more
observable behaviors than the corresponding abstract program. Below we use
OJW, (σc, σo)K to represent the set of observable event traces generated during
the executions of W with the initial state (σc, σo) (and empty stacks). It is
defined similarly as HJW, (σc, σo)K in Figure 6, but now the traces consist of
observable events only (outputs, client faults or object faults).

Definition 5 (Basic Contextual Refinement). Π vϕ ΠA iff

∀n,C1, . . . , Cn, σc, σo, σa. (ϕ(σo) = σa)
=⇒ OJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ⊆ OJ(let ΠA in C1‖ . . .‖Cn), (σc, σa)K .

Following Filipović et al. [4], we can prove that linearizability is equivalent
to this contextual refinement. We give the proofs in Appendix B.1.

Theorem 6 (Basic Equivalence). Π �ϕ ΠA ⇐⇒ Π vϕ ΠA.

Theorem 6 allows us to use Π vϕ ΠA to identify linearizable objects. However,
we cannot use it to observe progress properties of objects. For the following
example, Π vϕ ΠA holds although no concrete method call of f could finish (we
assume this object contains a method f only).

Π(f) : while(true) skip; ΠA(f) : skip; C : print(1); f(); print(1);

The reason is that Π vϕ ΠA considers a prefix-closed set of event traces at the
abstract side. For the above client C, the observable behaviors of let Π in C
can all be found in the prefix-closed set of behaviors produced by let ΠA in C.

4 Progress Properties and Contextual Refinements

Now we define each progress property and discuss the corresponding termination-
sensitive contextual refinement. We assume that the object specification ΠA is
total, i.e., the abstract operations never block. We provide the full proofs of our
equivalence results in Appendix B.

13

Draft – April 16, 2013

4.1 Wait-Freedom and Observing Threaded Divergence

A wait-free object guarantees that every method call can finish in a finite number
of steps [7]. Below we first define wait-freedom over an event trace T .

Definition 7 (Wait-Free Event Trace).
wait-free(T) iff one of the following holds:
1. for any i and e, if e ∈ pend inv(T (1..i)), then one of the following holds:

(a) there exists j > i such that match(e, T (j)); or
(b) there exists j > i such that ∀k ≥ j. tid(T (k)) 6= tid(e);

2. there exists i such that is abt(T (i)) holds.

We say an event trace T is wait-free, if every pending method call in it eventually
returns (condition 1(a)) unless the thread is no longer scheduled after some
program point (condition 1(b)). Besides, we assume an event trace ending with
a fault is wait-free (condition 2). Remember that pend inv(T (1..i)) is the set of
pending invocations among the first i events of T .

An object is wait-free iff all its event traces are wait-free. Here we use
TωJW, (σc, σo)K, the set of finite or infinite traces produced by complete exe-
cutions, which is defined in Figure 6.

Definition 8 (Wait-Free Object). The object’s implementation Π is wait-
free under the refinement mapping ϕ, denoted by wait-freeϕ(Π), iff

∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ (σo ∈ dom(ϕ))
=⇒ wait-free(T)

We extend the basic contextual refinement to observe wait-freedom as well
as linearizability. The divergence of individual threads as well as I/O events are
treated as observable behaviors. In Figure 6, we define div tids(T) to collect the
set of threads that diverge in the trace T . We write OtωJW, (σc, σo)K for the
corresponding set of observable behaviors generated by complete executions.

Definition 9 (Contextual Refinement for Wait-Freedom).

Π vtωϕ ΠA iff (∀n,C1, . . . , Cn, σc, σo, σa. (ϕ(σo) = σa) =⇒
OtωJ(letΠ in C1‖ . . .‖Cn), (σc, σo)K ⊆ OtωJ(letΠA in C1‖ . . .‖Cn), (σc, σa)K).

We can prove that a linearizable and wait-free object preserves the new con-
textual refinement w.r.t. its specification, as shown below.

Theorem 10. Π �ϕ ΠA ∧ wait-freeϕ(Π) ⇐⇒ Π vtωϕ ΠA .

To see the intuition of this equivalence, consider the client program (2.1).
Intuitively, for any execution in which the client uses the abstract operations,
only the right thread diverges. The client does not produce more observable
behaviors when it uses the wait-free implementation in Figure 2(a) instead. But
if it uses a non–wait-free implementation (such as the one in Figure 2(b)), it is
possible that both the left and right threads diverge. Therefore, a client with
such an implementation produces more observable behaviors than the abstract
client, breaking the contextual refinement.

14

Draft – April 16, 2013

4.2 Lock-Freedom and Divergence of Whole Programs

Lock-freedom is similar to wait-freedom but only guarantees that some thread
can complete an operation in a finite number of steps [7]. We first define lock-
freedom over an event trace T .

Definition 11 (Lock-Free Event Trace).
lock-free(T) iff one of the following holds:
1. for any i, if pend inv(T (1..i)) 6= ∅, then one of the following holds:

(a) there exists j > i such that is ret(T (j)); or
(b) there exists j > i such that ∀k ≥ j. is clt(T (k));

2. there exists i such that is abt(T (i)) holds.

A lock-free event trace T ensures that there always exists some pending method
call that returns (condition 1(a)). When none of the threads with pending calls
are scheduled, T may eventually contain client actions only (condition 1(b)).
Then a lock-free object Π ensures that all its event traces are lock-free.

Definition 12 (Lock-Free Object). lock-freeϕ(Π) iff
∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ (σo ∈ dom(ϕ))
=⇒ lock-free(T)

In the corresponding contextual refinement, we observe the divergence of the
whole client program. We use OωJW, (σc, σo)K, as defined in Figure 6, to get the
observable traces from complete executions.

Definition 13 (Contextual Refinement for Lock-Freedom).
Π vωϕ ΠA iff (∀n,C1, . . . , Cn, σc, σo, σa. (ϕ(σo) = σa) =⇒

OωJ(letΠ in C1‖ . . .‖Cn), (σc, σo)K ⊆ OωJ(letΠA in C1‖ . . .‖Cn), (σc, σa)K).

Theorem 14. Π �ϕ ΠA ∧ lock-freeϕ(Π) ⇐⇒ Π vωϕ ΠA .

To understand this equivalence, consider the client (2.1). The whole client
program diverges in every execution both when it uses the lock-free object in
Figure 2(b) and when it uses the abstract one. In comparison, the following client
must terminate and print out both 1 and 2 in every execution at both levels.

inc(); print(1); ‖ dec(); print(2); (4.1)

4.3 Obstruction-Freedom and Isolating Executions

Obstruction-freedom guarantees progress for any thread that eventually executes
in isolation [8]. We define obstruction-free event traces as follows.

Definition 15 (Obstruction-Free Event Trace).
obstruction-free(T) iff one of the following holds:
1. for any i and e, if e ∈ pend inv(T (1..i)), then one of the following holds:

(a) there exists j > i such that match(e, T (j)); or
(b) ∀j > i. ∃k. k ≥ j ∧ tid(T (k)) 6= tid(e);

2. there exists i such that is abt(T (i)) holds.

15

Draft – April 16, 2013

An obstruction-free event trace guarantees that every pending method call even-
tually finishes unless the thread is not running in isolation for a sufficiently long
time. In other words, either the thread returns (condition 1(a)), or it is infinitely
often interrupted by other threads (condition 1(b)). An object Π is obstruction-
free, denoted as obstruction-freeϕ(Π), iff all its event traces are obstruction-free.

Definition 16 (Obstruction-Free Object). obstruction-freeϕ(Π) iff

∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ (σo ∈ dom(ϕ))
=⇒ obstruction-free(T)

Obstruction-freedom ensures progress for those isolating executions where
eventually only one thread is running. In the corresponding termination-sensitive
contextual refinement, we are also interested in isolating executions only. We
define iso(T) in Figure 6 to mean T is isolating, and use OiωJW, (σc, σo)K to get
the observable behaviors for the generated event traces T which satisfy iso(T).

Definition 17 (Contextual Refinement for Obstruction-Freedom).

Π viω
ϕ ΠA iff (∀n,C1, . . . , Cn, σc, σo, σa. (ϕ(σo) = σa) =⇒
OiωJ(letΠ in C1‖ . . .‖Cn), (σc, σo)K ⊆ OωJ(letΠA in C1‖ . . .‖Cn), (σc, σa)K).

Theorem 18. Π �ϕ ΠA ∧ obstruction-freeϕ(Π) ⇐⇒ Π viω
ϕ ΠA .

To understand the above equivalence, consider the client (4.1). When using
the obstruction-free object in Figure 2(c), the client may diverge and nothing is
printed out. But it always terminates and prints out both 1 and 2 for isolating
executions. Then the observable behaviors taken by Oiω at the concrete side do
not include divergence and are thus a subset of those at the abstract level.

4.4 Deadlock-Freedom and Fairness

As we explained in Section 2, deadlock-freedom and starvation-freedom assume
fair scheduling. We define fair(T) in Figure 6. It requires that if T is infinite then
every unterminated thread’s execution is infinite.4 Note that a trace ending with
a fault is fair, too. An object Π is deadlock-free, denoted as deadlock-freeϕ(Π),
if in every fair execution, the system as a whole always makes progress (i.e.,
there always exists some pending method call that finishes). Its formulation is
very similar to the lock-freedom definitions (Definitions 11 and 12).5

4 In the submitted version, we use fairn(T) which takes the number of threads n as a
parameter. Here we could know n from the spawning event at the beginning of T ,
as defined by tnum(T) in Figure 6.

5 The definitions are slightly different from the submitted version, where we rule out
unfair event traces at the generation so that we only need to consider fair ones in the
definition of deadlock-free traces. Here we think an unfair event trace is deadlock-
free, and an object is deadlock-free iff all its event traces are deadlock-free. We can
make this change because we hide the number of threads from fair(T) here. Based on
this change, we can unify the formulations of progress properties (see Section 4.6).

16

Draft – April 16, 2013

Definition 19 (Deadlock-Free Event Trace).
deadlock-free(T) iff one of the following holds:
1. for any i, if pend inv(T (1..i)) 6= ∅, there exists j > i such that is ret(T (j)); or
2. fair(T) does not hold; or
3. there exists i such that is abt(T (i)) holds.

Definition 20 (Deadlock-Free Object). deadlock-freeϕ(Π) iff
∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ (σo ∈ dom(ϕ))
=⇒ deadlock-free(T)

The corresponding contextual refinement considers only fair executions at the
concrete side. As defined in Figure 6, OfωJW, (σc, σo)K picks observable behaviors
for fair event traces only.

Definition 21 (Contextual Refinement for Deadlock-Freedom).
Π vfω

ϕ ΠA iff (∀n,C1, . . . , Cn, σc, σo, σa. (ϕ(σo) = σa) =⇒
OfωJ(letΠ in C1‖ . . .‖Cn), (σc, σo)K ⊆ OωJ(letΠA in C1‖ . . .‖Cn), (σc, σa)K).

Theorem 22. Π �ϕ ΠA ∧ deadlock-freeϕ(Π) ⇐⇒ Π vfω
ϕ ΠA .

Consider the client (4.1) to understand the above equivalence. When the
client uses the deadlock-free object in Figure 2(d), it may diverge and print out
nothing. For instance, the left thread acquires the test-and-set lock and gets
suspended, then the right thread would keep requesting the lock forever. This
undesirable behavior is caused by unfair scheduling. Thus we rule out unfair exe-
cutions at the implementation level in the contextual refinement (Definition 21).

4.5 Starvation-Freedom and Fairness at Both Levels

Starvation-freedom guarantees that in fair executions, every method call even-
tually finishes. We formulate starvation-freeϕ(Π) similarly as the wait-freedom
definitions (Definitions 7 and 8).6 The related contextual refinement must require
both the concrete and abstract executions to be fair.

Definition 23 (Starvation-Free Event Trace).
starvation-free(T) iff one of the following holds:
1. for any i and e, if e ∈ pend inv(T (1..i)), then there exists j > i such that

match(e, T (j)); or
2. fair(T) does not hold; or
3. there exists i such that is abt(T (i)) holds.

Definition 24 (Starvation-Free Object). starvation-freeϕ(Π) iff
∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ (σo ∈ dom(ϕ))
=⇒ starvation-free(T)

6 Like the deadlock-freedom definitions, the starvation-freedom definitions are slightly
different from the submitted version. Here an unfair event trace is starvation-free,
and an object is starvation-free iff all its event traces are starvation-free.

17

Draft – April 16, 2013

prog-t(T) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧match(e, T (j))

prog-s(T) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧ is ret(T (j))

non-sched(T) iff ∀e. e ∈ pend inv(T) =⇒ ∃i. ∀j ≥ i. tid(T (j)) 6= tid(e)

abt(T) iff ∃i. is abt(T (i))

wait-free ⇐⇒ prog-t ∨ non-sched ∨ abt ⇐⇒ non-sched ∨ abt

lock-free ⇐⇒ prog-s ∨ non-sched ∨ abt ⇐⇒ wait-free ∨ prog-s

obstruction-free ⇐⇒ prog-t ∨ non-sched ∨ ¬iso ∨ abt ⇐⇒ lock-free ∨ ¬iso
deadlock-free ⇐⇒ prog-s ∨ ¬fair ∨ abt ⇐⇒ lock-free ∨ ¬fair
starvation-free ⇐⇒ prog-t ∨ ¬fair ∨ abt ⇐⇒ wait-free ∨ ¬fair

Fig. 7: Alternative Formulations of Progress Properties

Definition 25 (Contextual Refinement for Starvation-Freedom).
Π vffω

ϕ ΠA iff (∀n,C1, . . . , Cn, σc, σo, σa. (ϕ(σo) = σa) =⇒
OfωJ(letΠ in C1‖ . . .‖Cn), (σc, σo)K ⊆ OfωJ(letΠA in C1‖ . . .‖Cn), (σc, σa)K).

Theorem 26. Π �ϕ ΠA ∧ starvation-freeϕ(Π) ⇐⇒ Π vffω
ϕ ΠA .

The fairness restriction at the abstract level of the contextual refinement
allows us to distinguish starvation-free objects from deadlock-free objects. Con-
sider the following client program.

inc(); print(1); ‖ while(true) inc(); (4.2)

Under fair scheduling, we know it must print out 1 when using the starvation-free
object in Figure 2(e); and it may or may not print 1 when using the deadlock-free
object of Figure 2(d). Correspondingly at the abstract level, the client program
may not print out 1 in unfair executions.

4.6 Alternative Formulations of Progress Properties

We give simpler and more structural definitions of the five progress properties
in Figure 7.

We first define some properties over event traces T . prog-t(T) means that
every method call in T eventually finishes. prog-s(T) means that there always
exist a pending method call that completes. non-sched(T) represents the case
caused by a “bad” scheduler. It says, every pending thread in T must be no
longer scheduled after some program point. The boundary case abt(T) says that
T ends with a fault.

The bottom half of Figure 7 gives alternative definitions of the five progress
properties over event traces T . For example, an event trace T is wait-free, iff it
satisfies prog-t, non-sched or abt. Since prog-t(T) also means there is no pending
method call in the whole T , it actually implies non-sched(T). We can further
reduce wait-free(T) to non-sched(T) ∨ abt(T). To simplify the presentation, we
omit the parameter T in the formulas at the bottom half of the figure. We give
their proofs in Appendix B.2.

18

Draft – April 16, 2013

Then for a progress property P , we can define that an object Π satisfies P
iff all its event traces satisfy P .

Pϕ(Π) iff
∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ (σo ∈ dom(ϕ))
=⇒ P (T)

The alternative formulations in Figure 7 shows a constructive way to define
progress properties. We pick a main progress condition prog-t or prog-s, and
choose an appropriate scheduler (fair, iso or ¬non-sched, but there might be
more). We take the disjunction of these conditions, with the boundary case abt.
Using this approach, we could define more progress properties.

Moreover, we could clearly see the relationships between progress properties
from Figure 7. The relationships form the lattice in Figure 1. Below we define
sequential termination as the bottom element to close the lattice.

4.7 Sequential Termination and the Relationship Lattice

Besides the above five progress properties for concurrent objects, we also define
a progress property in the sequential setting, as shown below.

Definition 27 (Sequentially Terminating Object). seq-termϕ(Π) iff

∀C1, σc, σo, T. T ∈ TωJ(letΠ in C1), (σc, σo)K ∧ (σo∈dom(ϕ))
=⇒ abt(T) ∨ prog-t(T).

It says, every method call must finish when it is executed sequentially.7 We can
show that seq-termϕ(Π) is implied by a termination-sensitive contextual refine-
ment with sequential contexts, and a linearizable and sequentially terminating
object preserves this contextual refinement.

Definition 28 (Sequential Contextual Refinement). Π v1ω
ϕ ΠA iff

∀C1, σc, σo, σa. (ϕ(σo) = σa)
=⇒ OωJ(let Π in C1), (σc, σo)K ⊆ OωJ(let ΠA in C1), (σc, σa)K .

Theorem 29. 1. Π v1ω
ϕ ΠA =⇒ seq-termϕ(Π) ;

2. Π �ϕ ΠA ∧ seq-termϕ(Π) =⇒ Π v1ω
ϕ ΠA .

Intuitively, seq-termϕ(Π) is weaker than all the five concurrent progress prop-
erties. We can formally prove all the implications in the lattice of Figure 1, show-
ing that the widely believed presumptions about the progress properties are all
true (see Appendix B.2).

7 The submitted version uses “starvation-free(T)” to formulate sequential termination,
which is equivalent to abt(T) ∨ prog-t(T) in this TR.

19

Draft – April 16, 2013

5 Related Work and Conclusion

There is a large body of work discussing the five progress properties and the con-
textual refinements individually. Our work in contrast studies their relationships,
which have not been considered much before.

As we mentioned in Section 1, Gotsman and Yang [6] show that lock-freedom
with linearizability implies termination-sensitive contextual refinement. Here we
also prove the other direction that allows us to verify lock-freedom using proof
methods for contextual refinement. Besides, we generalize this equivalence for
lock-freedom to other progress properties and propose a unified framework to
systematically study the relationships with various contextual refinements.

Herlihy and Shavit [9] informally discuss all five progress properties. Our
formulation mostly follows their explanation but makes two important contribu-
tions. First, we turn their natural language explanation into formal definitions
and close the gap between program semantics and their history-based interpre-
tations. Second, we noticed that their obstruction-freedom is inappropriate for
some examples (see Appendix A), and propose a different definition that is closer
to the usual informal formulations [10]. Besides, for the unified framework, they
focus on the scheduling assumptions made by the progress properties, while we
mainly consider the effects on client behaviors and relate the progress properties
to contextual refinements.

Other formalizations of progress properties usually rely on temporal logics.
For example, Petrank et al. [14] use linear temporal logic to formalize the three
non-blocking properties. Dongol [3] formalizes all the five progress properties
using a logic capable of proving temporal properties. Those formulations may
make it easier to perform model checking on whole programs (e.g., Petrank et
al. [14] also build a tool to model check lock-freedom with a bound on the time
for progress). Here we follow Herlihy and Shavit [9] and choose more operational
formulations to fit into the framework with contextual refinements.

Conclusion. We have introduced a contextual refinement framework to unify
various progress properties. For linearizable objects, each progress property is
equivalent to a specific termination-sensitive contextual refinement, as summa-
rized in Table 1. The framework allows us to verify safety and liveness properties
of client programs at a high abstraction level by replacing concrete method im-
plementations with abstract operations. It also enables us to borrow ideas from
existing proof methods for contextual refinements to verify linearizability and a
progress property together.

References

1. Aspnes, J., Herlihy, M.: Wait-free data structures in the asynchronous PRAM
model. In: SPAA’90

2. Birkedal, L., Sieczkowski, F., Thamsborg, J.: A concurrent logical relation. In:
CSL’12

20

Draft – April 16, 2013

3. Dongol, B.: Formalising progress properties of non-blocking programs. In:
ICFEM’06

4. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent ob-
jects. Theor. Comput. Sci. (2010)

5. Gotsman, A., Yang, H.: Linearizability with ownership transfer. In: CONCUR’12
6. Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: ICALP’11
7. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. (1991)
8. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-

ended queues as an example. In: ICDCS’03
9. Herlihy, M., Shavit, N.: On the nature of progress. In: OPODIS’11

10. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (Apr 2008)

11. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent ob-
jects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

12. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. In: PLDI’13

13. Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying con-
current program transformations. In: POPL’12

14. Petrank, E., Musuvathi, M., Steensgaard, B.: Progress guarantee for parallel pro-
grams via bounded lock-freedom. In: PLDI’11

A Comparisons with Herlihy and Shavit’s
Obstruction-Freedom

Herlihy and Shavit [9] define obstruction-freedom using the notion of uniformly
isolating executions. A trace is uniformly isolating, if “for every k > 0, any thread
that takes an infinite number of steps has an interval where it takes at least k
concrete contiguous steps” [9]. Then, their obstruction-free object guarantees
wait-freedom for every uniformly isolating execution. They also propose a new
progress property, clash-freedom, which guarantees lock-freedom for uniformly-
isolating executions.

Below we give an example showing that their definition is inconsistent with
the common intuition of obstruction-freedom.

Example 30. The object implementation uses three shared variables: x, a and b.
It provides two methods f and g:

f() {

while (a <= x <= b) {

x++;

a--;

}

}

g() {

while (a <= x <= b) {

x--;

b++;

}

}

We can see that, if f() or g() is eventually executed in isolation (i.e., we suspend
all but one threads), it must returns. Thus intuitively this object should be
obstruction-free. It also satisfies our formulation (Definitions 15 and 16).

However, we could construct an execution which is uniformly isolating but
is not lock-free or wait-free. Consider the client program f() ‖ g(). It has an

21

Draft – April 16, 2013

Fig. 8: Execution of f()‖g() in Example 30

execution shown in Figure 8. Starting from x = 0, a = −1 and b = 1, we
alternatively let each thread execute more and more iterations. Then for any k,
we could always find an interval of k iterations for each thread in this execution.
Thus the execution is uniformly isolating. But neither method call finishes. This
execution is not lock-free nor wait-free. Thus the object does not satisfy Herlihy
and Shavit’s obstruction-freedom or clash-freedom definitions.

B Proofs

In the following proofs, we make the call stacks explicit in the generation of
event traces. For example, we use HJW, (σc, σo,})K instead of HJW, (σc, σo)K.
We generalize the definitions to allow nonempty call stacks in the initial state,
e.g., we can use HJW, (σc, σo,K)K.

B.1 Proofs of Theorem 6

To prove the theorem, we utilize the most general client (MGC). Let’s assume
dom(Π) = {f1, . . . , fm}. We could use the expression rand() to get a random
(nondeterministic) integer, and rand(m) to get a random integer r ∈ [1..m].
Then, for any n, MGCn is defined as follows:

MGT
def
= while (true){ frand(m)(rand()); }

MGCn
def
=

f
i∈[1..n] MGT

Here each thread keeps calling a random method with a random argument. We
also define another kind of “most general clients” which print out arguments and
return values for method calls:

MGTpt
def
= while (true){

xt := rand(); yt := rand(m); print(yt, xt);
zt := fyt(xt); print(zt);

}
MGCpn

def
=

f
i∈[1..n] MGTpi

Here xt, yt and zt are all local variables for thread t. Below we define the MGC
versions of “linearizability” and refinements, and prove they are related to the
standard definitions of linearizability and contextual refinement.

22

Draft – April 16, 2013

Definition 31. Π �MGC
ϕ ΠA iff

∀n, σo, σa, T. T ∈ HJ(let Π in MGCn), (∅, σo,})K ∧ (ϕ(σo) = σa)

=⇒ ∃Tc, Ta. Tc ∈ completions(T) ∧ΠABMGC
n (σa, Ta) ∧ Tc �lin Ta

where

ΠABMGC
n (σa, T)

def
= T ∈ HJ(let ΠA in MGCn), (∅, σa,})K ∧ seq(T) .

Π jϕΠA iff

∀n, σo, σa. (ϕ(σo) = σa)
=⇒ HJ(let Π in MGCn), (∅, σo,})K ⊆ HJ(let ΠA in MGCn), (∅, σa,})K .

The following lemma shows that every history of an object Π could be gen-
erated by the MGC.

Lemma 32 (MGC is the Most General). For any n, C1, . . . , Cn, σc, σo and
σa, HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ⊆ HJ(let Π in MGCn), (∅, σo,})K.

Proof. We define the simulation relation -MGC between a program and a MGC
in Figure 9(a), and prove the following (B.1) by case analysis and the operational
semantics:

For any W1, S1, W2, S2 and e1, if (W1,S1) -MGC (W2,S2), then

(1) if (W1,S1)
e17−→ abort and is obj abt(e1), then

there exists T2 such that (W2,S2)
T27−→∗ abort and

e1 = get hist(T2);

(2) if (W1,S1)
e17−→ (W ′1,S ′1), then

there exist T2, W ′2 and S ′2 such that (W2,S2)
T27−→∗ (W ′2,S ′2),

get hist(e1) = get hist(T2) and (W ′1,S ′1) -MGC (W ′2,S ′2).

(B.1)

With (B.1), we can prove the following by induction over the number of steps
generating the event trace of HJW1,S1K.

If (bW1c,S1) -MGC (bW2c,S2), then HJW1,S1K ⊆ HJW2,S2K.

Then, since

(blet Π in C1‖ . . .‖Cnc, (σc, σo,})) -MGC (blet Π in MGCnc, (∅, σo,})) ,

we are done. ut

For linearizability, the MGC-version is equivalent to the original definition.

Lemma 33. Π �ϕ ΠA ⇐⇒ Π �MGC
ϕ ΠA .

Proof. 1. Π �ϕ ΠA =⇒ Π �MGC
ϕ ΠA :

For any n, σo, σa and T such that T ∈ HJ(let Π in MGCn), (∅, σo,})K and
ϕ(σo) = σa, from Π �ϕ ΠA, we know there exist Tc and Ta such that

23

Draft – April 16, 2013

(let Π in C1‖ . . .‖Cn, (σc, σo, {1 ; κ1, . . . , n; κn}))
-MGC (let Π in C′1‖ . . .‖C′n, (∅, σo, {1 ; κ′1, . . . , n; κ′n}))

where ∀i. (Ci, κi) -MGC (C′i, κ
′
i)

(C, ◦) -MGC (MGT; end, ◦) (C, (σl, x, C
′)) -MGC (C, (σl, ·, (skip;MGT; end)))

(a) Program is Simulated by MGC

(let Π in C1‖ . . .‖Cn, (σc, σo, {1 ; κ1, . . . , n; κn}))
-MGCp (let Π in C′1‖ . . .‖C′n, (σ′c, σo, {1 ; κ′1, . . . , n; κ′n}))
where ∀i. (Ci, κi) -iMGCp (C′i, κ

′
i) and σ′c = {xt ; , yt ; , zt ; | 1 ≤ t ≤ n}

(C, ◦) -t
MGCp (MGTpt; end, ◦)

(C, (σl, ·, C′)) -t
MGCp (C, (σl, zt, (skip;print(zt);MGTpt; end)))

(b) Program is Simulated by MGCp

(let Π in C1‖ . . .‖Cn, (σc, σo, {1 ; κ1, . . . , n; κn}))
-MGCp− (let Π in C′1‖ . . .‖C′n, (∅, σo, {1 ; κ′1, . . . , n; κ′n}))
where ∀i. (Ci, σc, κi) -

i,Π
MGCp (C′i, κ

′
i) and σc = {xt ; , yt ; , zt ; | 1 ≤ t ≤ n}

(C, σc, ◦) -t,Π

MGCp−



(Co, ({x; n}, ·, (skip;MGT; end))
if (C = E[zt := fyt(xt)] ∨ C = E[skip; zt := fyt(xt)])
∧ σc(xt) = n ∧ σc(yt) = i ∧Π(fi) = (x,Co)

(fret(n′), (, ·, (skip;MGT; end))
if (C = E[print(zt)] ∨ C = E[skip;print(zt)])
∧ σc(zt) = n′

(MGT; end, ◦) otherwise

(C, σc, (σl, zt, C
′)) -t,Π

MGCp−
(C, (σl, ·, (skip;MGT; end)))

(c) MGCp is Simulated by MGC

(let Π in C1‖ . . .‖Cn, (σc, σo, {1 ; κ1, . . . , n; κn}))
- (let ΠA in C′1‖ . . .‖C′n, (∅, σ′o, {1 ; κ′1, . . . , n; κ′n});

let ΠA in C′′1 ‖ . . .‖C′′n , (σc, σ′o, {1 ; κ′′1 , . . . , n; κ′′n}))
where ∀i. (Ci, κi) - (C′i, κ

′
i;C
′′
i , κ

′′
i)

and HJlet Π in C1‖ . . .‖Cn, (σc, σo, {1 ; κ1, . . . , n; κn})K
⊆ HJlet ΠA in C′1‖ . . .‖C′n, (∅, σ′o, {1 ; κ′1, . . . , n; κ′n})K

(C, ◦) - (C′, ◦;C, ◦) (C, (σl, x, Cc)) - (C′, (σ′l, x
′, C′c);C

′, (σ′l, x, Cc))

(d) Concrete Program is Simulated by Abstract MGC and Abstract Program

Fig. 9: Simulations between Programs and MGC

24

Draft – April 16, 2013

Tc ∈ completions(T) ∧ΠA B (σa, Ta) ∧ Tc �lin Ta .

We only need to show that

ΠA B (σa, Ta) =⇒ ΠABMGC
n (σa, Ta) .

First we know ∀i. tid(Ta(i)) ∈ [1..n]. Second, from ΠA B (σa, Ta), we know
there exist n′, C1, . . . , Cn′ and σc such that seq(Ta) and

Ta ∈ HJ(let ΠA in C1‖ . . .‖Cn′), (σc, σa,})K .

If n′ ≤ n, then we know

Ta ∈ HJ(let ΠA in C1‖ . . .‖Cn′ ‖skip‖ . . .‖skip), (σc, σa,})K .

From Lemma 32, we are done. Otherwise, since Ta only contains events of
threads 1, . . . , n, we know the threads n+1, . . . , n′ do not access the object.
Similar to the proof of Lemma 32, we can construct simulations and prove
Ta ∈ HJ(let ΠA in MGCn), (∅, σa,})K. Thus we are done.

2. Π �MGC
ϕ ΠA =⇒ Π �ϕ ΠA :

For any n, C1, . . . , Cn, σc, σo, σa and T such that ϕ(σo) = σa and T ∈
HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K, from Lemma 32, we know

T ∈ HJ(let Π in MGCn), (∅, σo,})K .

From Π �MGC
ϕ ΠA, we know there exist Tc and Ta such that

Tc ∈ completions(T) ∧ΠABMGC
n (σa, Ta) ∧ Tc �lin Ta .

By definitions, we see

ΠABMGC
n (σa, Ta) =⇒ ΠA B (σa, Ta) .

Thus we are done. ut

Below we prove an important lemma which relates the basic contextual re-
finement to a refinement over MGC which considers histories instead of observ-
able behaviors. The idea behind this lemma will be useful in proving various
equivalence results, including those for progress properties.

Lemma 34. Π vϕ ΠA ⇐⇒ Π jϕΠA .

Proof. 1. Π vϕ ΠA =⇒ Π jϕΠA :
We first prove the following (a) and (b):

(a) For any n, σo, σc, T ,
if σc = {xt ; , yt ; , zt ; | 1 ≤ t ≤ n} and
T ∈ HJ(let Π in MGCn), (∅, σo,})K,
then there exists B such that T ≈ B and
B ∈ OJ(let Π in MGCpn), (σc, σo,})K,
where

25

Draft – April 16, 2013

ε ≈ ε
λ ≈ e T ≈ B
λ ::T ≈ e ::B

(t, fi, n) ≈ (t,out, (i, n)) (t, ret, n) ≈ (t,out, n)

(t,obj,abort) ≈ (t,obj,abort)

Proof. We define the simulation relation -MGCp in Figure 9(b), and prove
the following (B.2) by case analysis and the operational semantics. This
simulation ensures that at the right side (MGCp), each output of the
method argument is immediately followed by invoking the method, and
each method return is immediately followed by printing out the return
value.

For any W1, S1, W2, S2 and e1, if (W1,S1) -MGCp (W2,S2), then

(1) if (W1,S1)
e17−→ abort and is obj abt(e1), then

there exists T2 such that (W2,S2)
T27−→∗ abort and

e1 ≈ get obsv(T2);

(2) if (W1,S1)
e17−→ (W ′1,S ′1), then

there exist T2, W ′2 and S ′2 such that (W2,S2)
T27−→∗ (W ′2,S ′2),

get hist(e1) ≈ get obsv(T2) and (W ′1,S ′1) -MGCp (W ′2,S ′2).
(B.2)

With (B.2), we can prove the following by induction over the number of
steps generating the event trace of HJW1,S1K.

If (bW1c,S1) -MGCp (bW2c,S2) and T ∈ HJW1,S1K, then
there exists B such that T ≈ B and B ∈ OJW2,S2K.

Then, since

(blet Π in MGCnc, (∅, σo,})) -MGCp (blet Π in MGCpnc, (σc, σo,})),

we are done.

(b) For any n, σa, σc, B,
if σc = {xt ; , yt ; , zt ; | 1 ≤ t ≤ n} and
B ∈ OJ(let Π in MGCpn), (σc, σa,})K,
then there exists T such that T ≈ B and
T ∈ HJ(let Π in MGCn), (∅, σa,})K.

Proof. We define the simulation relation -MGCp− in Figure 9(c), and
prove the following (B.3) by case analysis and the operational semantics.
This simulation ensures two things. (i) Whenever the left side (MGCp)
prints out a method argument, the right side (MGC) invokes the method
using that argument. (ii) Whenever the left side prints out a return
value, the right side must return the same value. We can ensure (i) and
(ii) because xt, yt and zt are all thread-local variables.

26

Draft – April 16, 2013

For any W1, S1, W2, S2 and e1, if (W1,S1) -MGCp− (W2,S2), then

(1) if (W1,S1)
e17−→ abort, then

there exists T2 such that (W2,S2)
T27−→∗ abort and

get hist(T2) ≈ e1;

(2) if (W1,S1)
e17−→ (W ′1,S ′1), then

there exist T2, W ′2 and S ′2 such that (W2,S2)
T27−→∗ (W ′2,S ′2),

get hist(T2) ≈ get obsv(e1) and (W ′1,S ′1) -MGCp− (W ′2,S ′2).
(B.3)

With (B.3), we can prove the following by induction over the number of
steps generating the event trace of OJW1,S1K.

If (bW1c,S1) -MGCp− (bW2c,S2) and B ∈ OJW1,S1K, then there
exists T such that T ≈ B and T ∈ HJW2,S2K.

Then, since

(blet Π in MGCpnc, (σc, σa,})) -MGCp− (blet Π in MGCnc, (∅, σa,})),

we are done.

Then, since Π vϕ ΠA, we know

∀n, σc, σo, σa. (ϕ(σo) = σa)
=⇒ OJ(let Π in MGCpn), (σc, σo,})K ⊆ OJ(let ΠA in MGCpn), (σc, σa,})K .

Thus from (a) and (b), we get

∀n, σo, σa. (ϕ(σo) = σa)
=⇒ HJ(let Π in MGCn), (∅, σo,})K ⊆ HJ(let ΠA in MGCn), (∅, σa,})K .

Then we are done.
2. Π jϕΠA =⇒ Π vϕ ΠA :

We define the simulation relation - in Figure 9(d), and prove the following
(B.4) by case analysis and the operational semantics. This simulation relates
one program to two programs. We use the MGC at the abstract level to
help determine the abstract program that corresponds to the concrete one.
Specifically, we require the histories generated by the concrete program can
also be generated by the abstract MGC. Then, when an abstract thread is in
a method call, its code should be the same as the MGC thread. Otherwise,
its code is the same as the concrete thread.

For any W1, S1, W2, S2, W3, S3 and e1,
if (W1,S1) - (W2,S2;W3,S3), then

(1) if (W1,S1)
e17−→ abort, then

there exists T3 such that (W3,S3)
T37−→∗ abort and

e1 = get obsv(T3);

(2) if (W1,S1)
e17−→ (W ′1,S ′1), then

there exist T2, W ′2, S ′2, T3, W ′3 and S ′3 such that

(W2,S2)
T27−→∗ (W ′2,S ′2), (W3,S3)

T37−→∗ (W ′3,S ′3),
get obsv(e1) = get obsv(T3) and (W ′1,S ′1) - (W ′2,S ′2;W ′3,S ′3).

(B.4)

27

Draft – April 16, 2013

With (B.4), we can prove the following by induction over the number of steps
generating the event trace of OJW1,S1K.

If (W1,S1) - (W2,S2;W3,S3), then OJW1,S1K ⊆ OJW3,S3K.
For any n, C1, . . . , Cn, σc, σo and σa, by Lemma 32, we know

HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ⊆ HJ(let Π in MGCn), (∅, σo,})K .

Since Π jϕΠA, we know if ϕ(σo) = σa, then

HJ(let Π in MGCn), (∅, σo,})K ⊆ HJ(let ΠA in MGCn), (∅, σa,})K .

Then we know

(let Π in C1‖ . . .‖Cn, (σc, σo,}))
- (let ΠA in MGCn, (∅, σa,});

let ΠA in C1‖ . . .‖Cn, (σc, σa,})) .

Thus, we get

OJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K
⊆ OJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K .

Thus we are done. ut

Then, we prove the following (B.5) and can get Theorem 6.

Π jϕΠA ⇐⇒ Π �MGC
ϕ ΠA (B.5)

1. Π jϕΠA =⇒ Π �MGC
ϕ ΠA :

We only need to prove the following lemma (remember we assume that each
Ci in ΠA is of the form 〈C〉 and it is always safe to execute ΠA).

Lemma 35 (ΠA is Linearizable). For any n, σa and T ,
if T ∈ HJ(let ΠA in MGCn), (∅, σa,})K,
then there exist Tc and Ta such that Tc ∈ completions(T), Tc �lin Ta,
Ta ∈ HJ(let ΠA in MGCn), (∅, σa,})K and seq(Ta).

Proof. We define a new operational semantics, in which we additionally gen-
erate two events at the single step of the method body. We know the method
body in the execution can only be 〈C〉; noret, and hence the resulting code
after one step (if not block) must be fret(n′) for some n′.

(〈C〉;noret, σo] σl) −_ t (fret(n′), σ′o] σ′l)
dom(σl) = dom(σ′l) σl = {y ; n} Π(f) = (y, 〈C〉)

(〈C〉;noret, (σc, σo, (σl, x, Cc)))
[t,f,n]::[t,ret,n′]−−−−−−−−−−→ t,Π (fret(n′), (σc, σ

′
o, (σ

′
l, x, Cc)))

Here [t, f, n] and [t, ret, n′] are two new events (called atom-invocation event
and atom-return event respectively) generated for the new semantics. We
use T |[] to project the event trace T to the new events, and use bec (and
bT c) to transform the new event (and the event trace) to an old event (and
a trace of old events), where [t, f, n] is transformed to (t, f, n) and [t, ret, n′]
is transformed to (t, ret, n′). Other parts of the semantics are the same as
the operational semantics in Figure 5. We can define T[]JW,SK in a similar
way as T JW,SK, which uses the new semantics instead of the original one
and keeps all the events including the new events.

28

Draft – April 16, 2013

(1) We can prove that there is a lock-step simulation between the original
semantics in Figure 5 and the new semantics. Then, for any T such that

T ∈ HJ(let ΠA in MGCn), (∅, σa,})K,
we have an corresponding execution under the new semantics to generate
TT such that

TT ∈ T[]J(let ΠA in MGCn), (∅, σa,})K,
and get hist(TT) = T .

(2) Below we show:
If TT ∈ T[]J(let ΠA in MGCn), (∅, σa,})K, T = get hist(TT) and
Ta = bTT |[]c,
then seq(Ta) and there exists Tc such that Tc ∈ completions(T)
and Tc �lin Ta.

Proof. By the new operational semantics, we know seq(Ta) holds.

Construct Tc and Prove Linearizability Condition 1: By the new opera-
tional semantics, we know that for any t, T |t and Ta|t must satisfy one
of the following:
(i) T |t = Ta|t ; or
(ii) ∃n. T |t :: (t, ret, n) = Ta|t ; or
(iii) ∃f, n. T |t = Ta|t :: (t, f, n) .
We construct Te as follows. For any t, if it is the above case (ii), we ap-
pend the corresponding return event at the end of T . Since well formed(T)
and well formed(Ta), we could prove well formed(Te). Thus Te ∈ extensions(T).
Also Te satisfies: for any t, one of the following holds:
(i) Te|t = Ta|t ; or
(ii) ∃f, n. Te|t = Ta|t :: (t, f, n) .
Let Tc = truncate(Te). Thus Tc ∈ completions(T).
Since ∀t. is res(last(Ta|t)) ∧ seq(Ta|t), we could prove that for any t,
(i) if Te|t = Ta|t, then Tc|t = Te|t;
(ii) if Te|t = Ta|t :: (t, f, n), then Tc|t = Ta|t.
Thus ∀t. Tc|t = Ta|t.

Prove Linearizability Condition 2: We informally show that the bijection
π implicit in ∀t. Tc|t = Ta|t preserves the response-invocation order.
Let Tc(i) be a response event in Tc and let Tc(j) be an invocation event.
Then π(i) and π(j) are the indices of Tc(i) and Tc(j) in Ta respectively.
Suppose i < j. By the construction of Tc from T , we know the same
response and invocation events are in T , and the response happens before
the invocation. Let i′ and j′ be the indices of these events in T . Then
i′ < j′. By the new operational semantics, we know in TT , the atom-
return event is before the atom-invocation event since the history return
event is before the history invocation event. Thus π(i) < π(j).

(3) Finally, we show the following and finish the proof of the lemma:
If TT ∈ T[]J(let ΠA in MGCn), (∅, σa,})K and Ta = bTT |[]c,
then Ta ∈ HJ(let ΠA in MGCn), (∅, σa,})K.

29

Draft – April 16, 2013

This is proved by constructing the following simulation -new. This sim-
ulation ensures that the right side invokes and returns from a method at
the time when the left side generates the new atomic events.

(let ΠA in C1‖ . . .‖Cn, (∅, σa, {1 ; κ1, . . . , n; κn}))
-new (let ΠA in C′1‖ . . .‖C′n, (∅, σa, {1 ; κ′1, . . . , n; κ′n}))

where ∀i. (Ci, κi) -new (C′i, κ
′
i)

(C, ◦) -new (C, ◦)

((〈C〉;noret), (σl, ·, (skip;MGT))) -new ((frand(m)(rand());MGT), ◦)

(fret(n′), (σl, ·, (skip;MGT))) -new ((skip;MGT), ◦)

We prove the following by case analysis and the operational semantics.
For any W1, S1, W2, S2 and T1,

if (W1,S1) -new (W2,S2) and (W1,S1)
T17−→ (W ′1,S ′1) in the new

semantics,

then there exist T2, W ′2 and S ′2 such that (W2,S2)
T27−→∗ (W ′2,S ′2),

get hist(T2) = bT1|[]c and (W ′1,S ′1) -new (W ′2,S ′2).
Then we can prove the following by induction over the number of steps
generating the event trace of T[]JW1,S1K.

If (W1,S1) -new (W2,S2), TT ∈ T[]JW1,S1K and Ta = bTT |[]c,
then Ta ∈ HJW2,S2K.

Since we know
(let ΠA in MGCn, (∅, σa,})) -new (let ΠA in MGCn, (∅, σa,})) ,

we are done.

The lemma is immediate from the above (1), (2) and (3). ut

2. Π �MGC
ϕ ΠA =⇒ Π jϕΠA :

We only need to prove the following lemma (similar to the Rearrangement
Lemma in [5]):

Lemma 36 (Rearrangement). For any n, σa, T and Ta,
if T �lin Ta, Ta ∈ HJ(let ΠA in MGCn), (∅, σa,})K and seq(Ta),
then T ∈ HJ(let ΠA in MGCn), (∅, σa,})K.

Proof. Suppose |T | = n. We know T must not contain the abort event. From
T �lin Ta, we know
(i) ∀t. T |t = Ta|t;
(ii) there exists a bijection π : {1, . . . , |T |} → {1, . . . , |Ta|} such that ∀i. T (i) =

Ta(π(i)) and ∀i, j. i < j ∧ is res(T (i)) ∧ is inv(T (j)) =⇒ π(i) < π(j) .
We construct the execution under the new semantics (defined in the proof
of Lemma 35) which generates T , and the new events constitute Ta, i.e., we
want to show the following holds:

∃TT . TT ∈ T[]J(let ΠA in MGCn), (∅, σa,})K ∧ T = get hist(TT) . (B.6)

Then we prove that there is a lock-step simulation between the new semantics
and the original semantics in Figure 5, and we can get

30

Draft – April 16, 2013

T ∈ HJ(let ΠA in MGCn), (∅, σa,})K.

Below we prove (B.6). We prove that for any k, there exist TT , W ′, S ′ and
k′ such that

(let ΠA in MGCn, (∅, σa,}))
TT7−→∗ (W ′,S ′)

∧ get hist(TT) = T (1..k) ∧ bTT |[]c = Ta(1..k′)

∧ (∀S ′′. (let ΠA in MGCn, (∅, σa,})) pTa(1..k
′)−−−−−→∗ (,S ′′)

=⇒ S ′′|obj = S ′|obj) ,

where S ′|obj get the object memory in S ′.
By induction over k.
Base Case: If k = 0, trivial.
Inductive Step: Suppose there exist T1, W1, S1 and k1 such that

(let ΠA in MGCn, (∅, σa,}))
T17−→∗ (W1,S1)

∧ get hist(T1) = T (1..k) ∧ bT1|[]c = Ta(1..k1)

∧ (∀S ′1. (let ΠA in MGCn, (∅, σa,})) pTa(1..k1)−−−−−−→∗ (,S ′1)
=⇒ S ′1|obj = S1|obj) ,

we want to show there exist T2, W2, S2 and k2 such that

(W1,S1)
T27−→∗ (W2,S2)

∧ get hist(T2) = T (k + 1) ∧ bT2|[]c = Ta(k1 + 1..k2)

∧ (∀S ′2. (let ΠA in MGCn, (∅, σa,})) pTa(1..k2)−−−−−−→∗ (,S ′2)
=⇒ S ′2|obj = S2|obj) ,

By case analysis.
(a) T (k + 1) = (t, f, n′).

Suppose T (k + 1) = (T |t)(i).
From T |t = Ta|t and Ta ∈ HJ(let ΠA in MGCn), (∅, σa,})K, we know
i = 1 or is ret((T |t)(i− 1)) holds.

i. If i = 1, we just let the code MGT of the thread t executes to calling
the method f using the argument n, and generates the event (t, f, n′).

ii. If is ret((T |t)(i−1)) holds, we know the code of the thread t is in the
client code. Still we can let it execute to the method call of f using
the argument n, generating the event (t, f, n′).

(b) T (k + 1) = (t, ret, n′).
Suppose T (k + 1) = (T |t)(i). Similar to the previous case, we know
is inv((T |t)(i−1)) holds. Suppose (T |t)(i−1) = e = (t, f, n) and ΠA(f) =
(x, 〈C〉). Thus the code of the thread t is either 〈C〉; noret or fret(n′′)
(for some n′′).

i. The code of t is 〈C〉; noret.
Thus last(T1|t) = e. Suppose |T (1..k)|t| = n1. From the operational
semantics and the generation of T1, we know |Ta(1..k1)|t| = n1 − 1.
For the bijection π in (ii) which maps events in T to events of Ta, we
let k2 = π(k+1). Since T |t = Ta|t, we know k2 > k1. Let k′ = k2−k1.
Suppose Ta(k1 + 1..k2) = e1 :: . . . :: ek′ . Since bT1|[]c = Ta(1..k1),

31

Draft – April 16, 2013

by the operational semantics and the generation of T1, we know
is ret(Ta(k1)). Since seq(Ta), we know seq(e1 :: . . . ::ek′) and k′ = 2j.
Suppose the threads of the events e1, . . . , ek′ are t1, . . . , tj respec-
tively where tj = t. Below we prove that for any i such that 1 ≤
i ≤ j, the current code of the thread ti is 〈Ci〉; noret (for some
method body 〈Ci〉), and e2i−1 = last(T (1..k)|ti). The proof is by
contradiction. Suppose e2i−1 = T (i′) and i′ > k. Since T (k + 1) =
(t, ret, n′) and is inv(e2i−1), we know i′ > k + 1. By (ii), we know
π(i′) > π(k + 1) = k2, which contradicts the fact that e2i−1 is an
event in Ta(k1 + 1..k2). Thus, i′ ≤ k, and since bT1|[]c = Ta(1..k1),
by the operational semantics and the generation of T1, we know
e2i−1 = last(T1|ti). Thus we are done.
We let the threads t1, . . . , tj execute one step in order, generating
the event trace T ′2 which only contains the atom-invocation and
atom-return events, and then the thread tj execute one more step
generating ek′ = Ta(k2) = Ta(π(k + 1)) = T (k + 1). Since Ta ∈
HJ(let ΠA in MGCn), (∅, σa,})K, we know this execution is possi-
ble, and moreover we have bT2|[]c = bT ′2c = Ta(k1 + 1..k2).

ii. The code of t is fret(n′′).
Thus last(T1|t) = [t, ret, n′′]. Since bT1|[]c = Ta(1..k1), we know
last(Ta(1..k1)|t) = (t, ret, n′′). Suppose |Ta(1..k1)|t| = n1.
From the operational semantics and the generation of T1, we know
|get hist(T1|t)| = |T (1..k)|t| = n1 − 1. Since T |t = Ta|t, we know
n′ = n′′. The code of t is fret(n′). We let it execute one step and
generate the event (t, ret, n′).

Thus (B.6) holds and we are done. ut

From Π �MGC
ϕ ΠA, we know

∀n, σo, σa, T. T ∈ HJ(let Π in MGCn), (∅, σo,})K ∧ (ϕ(σo) = σa)
=⇒ ∃Tc, Ta. Tc ∈ completions(T) ∧ Ta ∈ HJ(let ΠA in MGCn), (∅, σa,})K

∧ seq(Ta) ∧ Tc �lin Ta

From Lemma 36, we know

∀n, σo, σa, T. T ∈ HJ(let Π in MGCn), (∅, σo,})K ∧ (ϕ(σo) = σa)
=⇒ ∃Tc. Tc ∈ completions(T) ∧ Tc ∈ HJ(let ΠA in MGCn), (∅, σa,})K

Since Tc ∈ completions(T), we know there exists Te such that Tc = truncate(Te)
and Te ∈ extensions(T). By the definition of truncate(Te), we can prove:

Te ∈ HJ(let ΠA in MGCn), (∅, σa,})K

Then, by the definition of Te ∈ extensions(T), we can prove:

T ∈ HJ(let ΠA in MGCn), (∅, σa,})K

Thus we get Π jϕΠA.

32

Draft – April 16, 2013

B.2 Proofs of Figures 1 and 7

Lemma 37 (Figure 7). Assume T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K .

1. wait-free(T) ⇐⇒ prog-t(T) ∨ non-sched(T) ∨ abt(T) ⇐⇒ non-sched(T) ∨
abt(T) ;

2. lock-free(T) ⇐⇒ prog-s(T) ∨ non-sched(T) ∨ abt(T) ⇐⇒ wait-free(T) ∨
prog-s(T) ;

3. obstruction-free(T) ⇐⇒ prog-t(T) ∨ non-sched(T) ∨ ¬iso(T) ∨ abt(T) ⇐⇒
lock-free(T) ∨ ¬iso(T) ;

4. deadlock-free(T) ⇐⇒ prog-s(T) ∨ ¬fair(T) ∨ abt(T) ⇐⇒ lock-free(T) ∨
¬fair(T) ;

5. starvation-free(T) ⇐⇒ prog-t(T) ∨ ¬fair(T) ∨ abt(T) ⇐⇒ wait-free(T) ∨
¬fair(T) .

Proof. 1. By definition.

wait-free(T) ⇐⇒ (∀i, e. e ∈ pend inv(T (1..i))
=⇒ (∃j. j > i ∧match(e, T (j)))

∨(∃j. j > i ∧ (∀k ≥ j. tid(T (k)) 6= tid(e))))
∨ abt(T)

⇐⇒ (∀i, e. e ∈ pend inv(T (1..i)) ∧ ¬(∃j. j > i ∧match(e, T (j)))
=⇒ (∃j. j > i ∧ (∀k ≥ j. tid(T (k)) 6= tid(e))))
∨ abt(T)

⇐⇒ (∀e. e ∈ pend inv(T) =⇒ (∃j. ∀k ≥ j. tid(T (k)) 6= tid(e)))
∨ abt(T)

⇐⇒ non-sched(T) ∨ abt(T)

Also, we can prove prog-t(T) =⇒ non-sched(T) as follows.

prog-t(T) ⇐⇒ (∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧match(e, T (j)))

⇐⇒ (∀i, e. e ∈ pend inv(T (1..i)) =⇒ e 6∈ pend inv(T))

⇐⇒ (pend inv(T) = ∅)

=⇒ non-sched(T)

2. We only need to prove the first equivalence. The second is trivial from the
first one.

lock-free(T) ⇐⇒ (∀i, e. e ∈ pend inv(T (1..i))
=⇒ (∃j. j > i ∧ is ret(T (j)))

∨(∃j. j > i ∧ (∀k ≥ j. is clt(T (k)))))
∨ abt(T)

⇐⇒ prog-s(T)
∨ (∃j. ∀k ≥ j. is clt(T (k)))
∨ abt(T)

From ∃j. ∀k ≥ j. is clt(T (k)) and the operational semantics generating T ,
we know non-sched(T) holds.
If non-sched(T) holds, we know there exists j such that ∀k ≥ j. tid(T (k)) 6∈
tid(pend inv(T)), where tid(pend inv(T)) gets the set of thread IDs of the
pending invocations in T . Then by the operational semantics and the gen-
eration of T , we know either ∃j. ∀k ≥ j. is clt(T (k)) or prog-s(T) holds.

33

Draft – April 16, 2013

3. For obstruction-freedom, we only need to prove the following:
(1) ∀T. iso(T) ∧ obstruction-free(T) =⇒ wait-free(T) ;
(2) ∀T. wait-free(T) =⇒ obstruction-free(T) ;
(3) ∀T. ¬iso(T) =⇒ obstruction-free(T) ;
(4) ∀n,C1, . . . , Cn, σc, σo, T.

T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ∧ prog-s(T)
=⇒ obstruction-free(T) .

For (1) ∀T. iso(T) ∧ obstruction-free(T) =⇒ wait-free(T) :

Proof. By obstruction-free(T), we know one of the following holds:
(a) there exists i such that is abt(T (i)) holds; or
(b) for any i and e, if e ∈ pend inv(T (1..i)), then one of the following holds:

(i) there exists j > i such that match(e, T (j)); or
(ii) ∀j > i. ∃k. k ≥ j ∧ tid(T (k)) 6= tid(e).

For (a), we know wait-free(T).
For (b), for any i and e, where e ∈ pend inv(T (1..i)), we let t = tid(e). Since
iso(T), we know

|T | 6= ω ∨ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t) .

If |T | 6= ω, we know (ii) cannot hold. Thus (i) must hold.
Otherwise, we know there exists t0 and i0 such that

∀j. j ≥ i0 =⇒ tid(T (j)) = t0 .

If t0 = t, we know (ii) does not hold, and hence (i) holds. Otherwise, if t0 6= t,
we know

∀k. k ≥ i0 =⇒ tid(T (k)) 6= tid(e) .

Thus we know wait-free(T).

For (2) ∀T. wait-free(T) =⇒ obstruction-free(T) :

Proof. From wait-free(T), we know one of the following holds:
(i) there exists i such that is abt(T (i)) holds; or
(ii) for any i and e, if e ∈ pend inv(T (1..i)), then one of the following holds:

(1) there exists j > i such that ∀k ≥ j. tid(T (k)) 6= tid(e); or
(2) there exists j > i such that match(e, T (j)).

For (i), we know obstruction-free(T) holds.
For (ii), for any i and e, where e ∈ pend inv(T (1..i)), if (1) holds, we know

∀j > i. ∃k. k ≥ j ∧ tid(T (k)) 6= tid(e).

Thus we know obstruction-free(T).

For (3) ∀T. ¬iso(T) =⇒ obstruction-free(T) :

Proof. From ¬iso(T), we know

|T | = ω ∧ ∀t, i. ∃j. j ≥ i ∧ tid(T (j)) 6= t .

34

Draft – April 16, 2013

Thus, for any i and e, where e ∈ pend inv(T (1..i)), we know

∀j. ∃k. k ≥ j ∧ tid(T (k)) 6= tid(e) .

Thus we have proved obstruction-free(T).

For (4) ∀n,C1, . . . , Cn, σc, σo, T. T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K∧
prog-s(T) =⇒ obstruction-free(T) :

Proof. From prog-s(T), we know: for any i, if pend inv(T (1..i)) 6= ∅, then
there exists j > i such that is ret(T (j)).
If |T | 6= ω, by Lemma 51, we know obstruction-free(T) hold. Otherwise,
|T | = ω. For any i and e such that e ∈ pend inv(T (1..i)), we know one of the
following must hold:
(1) there exists j > i such that match(e, T (j)); or
(2) ∀j. j > i⇒ ¬match(e, T (j)) .
For (2), we know

∀j. j > i ⇒ e ∈ pend inv(T (1..j)) .

Thus we have

∀j. j > i ⇒ ∃k. k > j ∧ is ret(T (k)) .

Then we know

∀j > i. ∃k. k > j ∧ is ret(T (k)) ∧ tid(T (k)) 6= tid(e) .

Thus we know obstruction-free(T).

4. The first equivalence is trivial from definition. For the second equivalence,
we only need to prove the following:

non-sched(T) ∧ ¬prog-s(T) =⇒ ¬fair(T) .

From the proof of the equivalences for wait-freedom, we know

(pend inv(T) = ∅)⇐⇒ prog-t(T).

Thus we only need to prove the following.
(1) non-sched(T) ∧ (pend inv(T) 6= ∅) =⇒ ¬fair(T) ;
(2) prog-t(T) =⇒ prog-s(T) .
For (1), from the premises, we know

∃e, i. e ∈ pend inv(T) ∧ ∀j ≥ i. tid(T (j)) 6= tid(e) .

Thus from the operational semantics and the generation of T , we know

|T | = ω ∧ ∃t ∈ [1..tnum(T)]. |(T |t)| 6= ω ∧ last(T |t) 6= (t, term) .

Thus ¬fair(T) holds.
(2) is trivial from definition.

5. The first equivalence is trivial from definition. For the second equivalence,
we only need to prove the following:

35

Draft – April 16, 2013

non-sched(T) ∧ ¬prog-t(T) =⇒ ¬fair(T) .

It has been proved in the proofs for the equivalences for deadlock-freedom.
ut

From Lemma 37, we can get most of the implications in the lattice of Figure 1.
To prove the remaining implications on sequential termination, we first prove
some equivalences in the sequential setting below.

Lemma 38 (Equivalences in Sequential Setting). For any C1, σc, σo and
T , if T ∈ TωJ(let Π in C1), (σc, σo,})K, then

1. fair(T) and iso(T) holds ;
2. lock-free(T) ⇐⇒ wait-free(T) ⇐⇒ obstruction-free(T) ⇐⇒ deadlock-free(T)
⇐⇒ starvation-free(T) .

Proof. 1. Since T ∈ TωJ(let Π in C1), (σc, σo,})K, by the operational seman-
tics we know T (1) = (spawn, 1) and

∀i. 2 ≤ i ≤ |T | =⇒ tid(T (i)) = 1 .

If |T | = ω, we know |(T |1)| = |T | = ω. Thus fair(T) and iso(T).
2. By Lemma 37 and the above case. ut

From Lemmas 37 and 38, we get the following theorem.

Theorem 39 (Figure 1).

1. wait-freeϕ(Π) =⇒ lock-freeϕ(Π) ;
2. wait-freeϕ(Π) =⇒ starvation-freeϕ(Π) ;
3. lock-freeϕ(Π) =⇒ obstruction-freeϕ(Π) ;
4. lock-freeϕ(Π) =⇒ deadlock-freeϕ(Π) ;
5. starvation-freeϕ(Π) =⇒ deadlock-freeϕ(Π) ;
6. obstruction-freeϕ(Π) =⇒ seq-termϕ(Π) ;
7. deadlock-freeϕ(Π) =⇒ seq-termϕ(Π) .

B.3 Proofs of Theorem 14

Lemma 40 (Finite trace must be lock-free). For any T , if

T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K

and |T | 6= ω, then lock-free(T) must hold.

Proof. Suppose T = (spawn, n) ::T ′. We know one of the following holds:

(i) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′7−→∗ abort; or

(ii) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′7−→∗ (skip,).

For either case, we can prove lock-free(T) by the operational semantics. ut

36

Draft – April 16, 2013

We define the MGC version of lock-freedom.

Definition 41. lock-freeMGC
ϕ (Π), iff

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K ∧ (σo ∈ dom(ϕ))
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j)))

We use get objevt(T) to project T to the sub-trace of object events (including
method invocation, return, object fault, and normal object actions). Thus we
know:

∀T, T ′. (get objevt(T) = get objevt(T ′)) =⇒ (get hist(T) = get hist(T ′)) .

The following lemma is similar to Lemma 32 (MGC is the most general). But
here we take into account infinite traces generated by complete executions.

Lemma 42. For any T , if

T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K,

then one of the following holds:

(1) |T | 6= ω; or
(2) there exists i such that ∀j ≥ i. is clt(T (j)); or
(3) there exists Tm such that

Tm ∈ TωJ(let Π in MGCn), (∅, σo,})K ,

and get objevt(T) = get objevt(Tm).

Proof. By co-induction over T ∈ TωJW,SK, where

(blet Π in C1‖ . . .‖Cnc, (, ,})) 7−→∗ (W,S) ∧ (W 6= skip) .

In other words, (W,S) is a “well-formed” configuration. We only need to prove
the following (B.7):

for any T , W , S, Wm and Sm, if

(a) (W,S) -MGC (Wm,Sm),

(b) (W,S)
T7−→ω ·, and

(c) ∀i. ∃j. j ≥ i ∧ ¬is clt(T (j)) ∧ T (j) 6= (, term),

then there exists Tm such that (Wm,Sm)
Tm7−→ω · and get objevt(T) =

get objevt(Tm).
(B.7)

Here -MGC is defined in Figure 9(a). We first prove -MGC is a simulation:

If (W,S) -MGC (Wm,Sm) and (W,S)
e7−→ (W ′,S ′), then

there exist T,W ′m,S ′m such that (Wm,Sm)
T7−→∗ (W ′m,S ′m) ,

get objevt(e) = get objevt(T) and
(W ′,S ′) -MGC (W ′m,S ′m) .

(B.8)

This is proved by case analysis of e.

37

Draft – April 16, 2013

– If e = (t,out, n) or e = (t, clt) or e = (t, term), we know the call stack
of the current thread t (which makes the step) is ◦, before and after the
step. Then we simply let (Wm,Sm) go zero step, and hence T = ε. Thus
get objevt(e) = get objevt(T) and we can prove (W ′,S ′) -MGC (Wm,Sm).

– If e = (t, fi, n), we know the call stack of the thread t is ◦ before the
step and is (σl, x, C

′) after the step. Then we know the code of t in Wm

must be MGT. We let it go two steps. After the first step, the code of t
becomes frand(m)(rand());MGT. We evaluate rand(m) to i and rand()
to n, and make the second step. Thus the resulting configuration satisfies
(W ′,S ′) -MGC (W ′m,S ′m), and T = e.

– If e = (t, ret, n), we know the call stack of the thread t is (σl, x, C
′) before

the step and is ◦ after the step. Then we let the code of t in Wm go two steps.
After the first step, the code of t becomes skip;MGT. After the second step,
we have (W ′,S ′) -MGC (W ′m,S ′m). Also we know the first step generates the
event e, and thus get objevt(e) = get objevt(T).

– If e = (t,obj), we know the call stack of the thread t is not ◦ before or after
the step. We let the code of t in Wm go one step, and hence T = (t,obj)
and (W ′,S ′) -MGC (W ′m,S ′m).

Thus we have proved (B.8).
From (B.8), we can prove the following by induction over the steps of T :

If (W,S) -MGC (Wm,Sm) , (W,S)
T7−→+ (W ′,S ′) and

(∃i. ¬is clt(T (i)) ∧ T (i) 6= (, term)) , then

there exist Tm,W
′
m,S ′m such that (Wm,Sm)

Tm7−→+ (W ′m,S ′m) ,
get objevt(T) = get objevt(Tm) and (W ′,S ′) -MGC (W ′m,S ′m) .

Then we can get (B.7) by co-induction.
When (W,S) = (blet Π in C1‖ . . .‖Cnc, (σc, σo,})), we know (W,S) -MGC

(blet Π in MGCnc, (∅, σo,})). Thus we are done. ut

We prove that the MGC version is equivalent to the original version of lock-
freedom.

Lemma 43. lock-freeϕ(Π) ⇐⇒ lock-freeMGC
ϕ (Π) .

Proof. 1. lock-freeϕ(Π) =⇒ lock-freeMGC
ϕ (Π) :

We prove the following:

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K ∧ (σo ∈ dom(ϕ)) ∧ lock-free(T)
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j)))

(B.9)

We unfold TωJ(let Π in MGCn), (∅, σo,})K, then we have three cases:

(1) (blet Π in MGCnc, (∅, σo,}))
T7−→ω

(2) (blet Π in MGCnc, (∅, σo,}))
T7−→∗ (skip,)

(3) (blet Π in MGCnc, (∅, σo,}))
T7−→∗ abort

38

Draft – April 16, 2013

We know from the operational semantics that (2) is impossible.
For (3), we know from the operational semantics that last(T) = (,obj,abort).
Thus ∃i. is obj abt(T (i)).
For (1), we prove the following by contradiction:

∀n, σo, T. (blet Π in MGCnc, (∅, σo,}))
T7−→ω

=⇒ ∀i. ∃j. j ≥ i ∧ (is inv(T (j)) ∨ is ret(T (j)) ∨ T (j) = (,obj))
(B.10)

Then, ∀i. ∃j. j ≥ i∧(is ret(T (j))∨pend inv(T (1..j)) 6= ∅). Thus by lock-free(T),
we are done.

2. lock-freeMGC
ϕ (Π) =⇒ lock-freeϕ(Π) :

For any T ∈ TωJ(let Π in C1 ‖ . . . ‖ Cn), (σc, σo,})K, by Lemma 42, we
know one of the following holds:

(1) |T | 6= ω; or

(2) there exists i such that ∀j ≥ i. is clt(T (j)); or

(3) there exists Tm such that

Tm ∈ TωJ(let Π in MGCn), (∅, σo,})K ,

and get objevt(T) = get objevt(Tm).

For (1), by Lemma 40, we know lock-free(T).
For (2), we know lock-free(T) holds immediately by definition.
For (3), from lock-freeMGC

ϕ (Π), we know

(∃i. is obj abt(Tm(i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(Tm(j))).

Thus we have:

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))).

If ∃i. is obj abt(T (i)), we know lock-free(T). Otherwise, we know

∀i. ∃j. j ≥ i ∧ is ret(T (j)).

Thus, for any i, if pend inv(T (1..i)) 6= ∅, then there exists j > i such that
is ret(T (j)). Therefore lock-free(T) and we are done.

ut

Then, we only need to prove the following (B.11), (B.12) and (B.13):

Π vωϕ ΠA =⇒ Π vϕ ΠA (B.11)

Π vωϕ ΠA =⇒ lock-freeMGC
ϕ (Π) (B.12)

Π vϕ ΠA ∧ lock-freeϕ(Π) =⇒ Π vωϕ ΠA (B.13)

39

Draft – April 16, 2013

Proofs of (B.11) For any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa,
for any T if

T ∈ OJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K,

we know there exists T1 such that T = get obsv(T1) and

T1 ∈ T J(let Π in C1‖ . . .‖Cn), (σc, σo,})K .

Thus there exists T ′1 and T ′′1 such that T ′′1 = T1 :: T ′1 and one of the following
holds:

(i) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′′17−→ω ·; or

(ii) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′′17−→∗ (skip,); or

(iii) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′′17−→∗ abort.

That is,

T ′′1 ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K .

Since Π vωϕ ΠA, we know there exists T ′′2 such that

T ′′2 ∈ TωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,

and

get obsv(T ′′2) = get obsv(T ′′1) = T ::get obsv(T ′1) .

Thus there exists T2 such that

T2 ∈ T J(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,

and get obsv(T2) = T . Thus

T ∈ OJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,

and we are done.

Proofs of (B.12) We construct another most general client as follows:

MGTp1
def
= while (true){ frand(m)(rand()); print(1); }

MGCp1n
def
=

f
i∈[1..n] MGTp1

The following lemma describes the relationship between MGCp1 and MGC:

Lemma 44. (1) For any T , if

T ∈ TωJ(let Π in MGCn), (∅, σo,})K,

then there exists Tp such that

Tp ∈ TωJ(let Π in MGCp1n), (∅, σo,})K,

40

Draft – April 16, 2013

Tp\(,out, 1) = T and

∀i, t. Tp(i) = (t, ret,) ⇔ Tp(i+ 1) = (t,out, 1) .

(2) For any Tp, if

Tp ∈ TωJ(let Π in MGCp1n), (∅, σo,})K,

then there exists T such that

T ∈ TωJ(let Π in MGCn), (∅, σo,})K

and Tp\(,out, 1) = T .
Here we use Tp\(,out, 1) to mean a sub-trace of Tp which removes all the

events of the form (,out, 1).

Proof. By constructing simulations between executions of let Π in MGCn and
let Π in MGCp1n. ut

Lemma 45. Suppose ΠA is total.
For any n, σa and T , if T ∈ OωJ(let ΠA in MGCp1n), (∅, σa,})K, then T is an
infinite trace of (,out, 1).

Proof. We need to prove: for any T such that
T ∈ OωJ(let ΠA in MGCp1n), (∅, σa,})K, the following hold:

(1) |T | = ω;
(2) for any i, T (i) = (,out, 1).

For (1): we can prove for any T ′ such that

T ′ ∈ TωJ(let ΠA in MGCp1n), (∅, σa,})K,

we have |T ′| = ω. If |T | 6= ω, we know there exists i such that

∀j ≥ i. is inv(T ′(j)) ∨ is ret(T ′(j)) ∨ T ′(j) = (,obj) ∨ T ′(j) = (, clt).

Since ΠA is total, from the code and the operational semantics, we know this is
impossible.

(2) is easily proved from |T | = ω and that the code can only produce
(,out, 1) as observable events. ut

To prove lock-freeMGC
ϕ (Π), we want to show: for any n, σo, σa and T , if

T ∈ TωJ(let Π in MGCn), (∅, σo,})K and ϕ(σo) = σa, then

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) (B.14)

First, if T ∈ TωJ(let Π in MGCn), (∅, σo,})K, by Lemma 44(1), there exists
Tp such that Tp ∈ TωJ(let Π in MGCp1n), (∅, σo,})K and Tp\(,out, 1) = T .

Since Π vωϕ ΠA, we know

OωJ(let Π in MGCp1n), (∅, σo,})K ⊆ OωJ(let ΠA in MGCp1n), (∅, σa,})K .

41

Draft – April 16, 2013

From Lemma 45, we know for any T , if T ∈ OωJ(let Π in MGCp1n), (∅, σo,})K,
then T is an infinite trace of (,out, 1).

Then we know: get obsv(Tp) is an infinite trace of (,out, 1).
Thus |Tp| = ω and

∀i. ∃j. j ≥ i ∧ Tp(j) = (,out, 1) . (B.15)

We prove the following:

∀i. ∃j. j ≥ i ∧ is ret(Tp(j)) . (B.16)

This is proved as follows. From |Tp| = ω and (B.15), we know for any i, there
exist j1, . . . , jn+1 such that i ≤ j1 < . . . < jn+1 and ∀k ∈ [1..n + 1]. Tp(jk) =
(,out, 1). Then, by the pigeonhole principle, we know there exists a thread t
producing two (t,out, 1)-s. Suppose jk and jl are the indexes of the two events
produced by t and jk < jl. By the operational semantics, we know there exists
j′ such that i ≤ jk < j′ < jl and is ret(Tp(j

′)). Thus we have proved (B.16).

Since Tp\(,out, 1) = T , from (B.16), we know (B.14) holds and we are done.

Proofs of (B.13) We need to prove that if Π vϕ ΠA and lock-freeϕ(Π), then
for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

OωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K
⊆ OωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K .

Thus we only need to prove: for any T ,

(1) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ abort,

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ abort and

get obsv(T) = get obsv(Ta).

(2) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ (skip,),

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ (skip,) and

get obsv(T) = get obsv(Ta).

(3) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω ·,

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω · and

get obsv(T) = get obsv(Ta).

Actually neither (1) or (2) depends on progress properties. We can prove the
following lemma.

Lemma 46. If Π vϕ ΠA, then for any n, C1, . . . , Cn, σc, σo, σa and T such
that ϕ(σo) = σa, we have

42

Draft – April 16, 2013

1. If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ abort,

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ abort and

get obsv(T) = get obsv(Ta).

2. If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ (skip,),

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ (skip,) and

get obsv(T) = get obsv(Ta).

Proof. 1. We know is abt(last(T)). By Π vϕ ΠA, we know there exists Ta such
that

Ta ∈ T J(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K

and get obsv(T) = get obsv(Ta). Thus is abt(last(Ta)), and by the opera-
tional semantics, we know

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ abort,

and we are done.
2. (a) If n = 1, we know

(let Π in {C; end}, (σc, σo,}))
T7−→∗ (skip,).

Thus there exists T ′′ such that T = T ′′ :: (1, term). Let
T ′ = T ′′ :: (1, clt) :: (1,out, “done”) :: (1, clt) :: (1, term),

where we assume (1,out, “done”) is different from all the events in T ,
then

(let Π in {C; print(“done”); end}, (σc, σo,}))
T ′7−→∗ (skip,).

Since Π vϕ ΠA, we know there exists T ′a such that
T ′a ∈ T J(let ΠA in {C; print(“done”); end}), (σc, σa,})K

and get obsv(T ′) = get obsv(T ′a). Thus we know there exists T ′′a such
that

T ′a = T ′′a :: (1,out, “done”) :: (1, clt) :: (1, term),
and by the operational semantics, we know there exists Ta such that
T ′′a = Ta :: (1, clt) and

(let ΠA in {C; end}, (σc, σa,})) pTa::(1,term)−−−−−−−−→∗ (skip,).
Also we have get obsv(T) = get obsv(Ta).

(b) If n > 1, we construct another program let Π in C ′1‖ . . .‖C ′n as follows:
we pick n− 1 fresh variables: d2, . . . , dn,

C ′1 = (C1; if (d2&& . . .&&dn) print(“done”);)
C ′i = (Ci; di := true) ∀i ∈ [2..n]

and also let
σ′c = σc] {d2 ; false, . . . , dn ; false} .

Then, if

(blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ (skip,),

let T ′′ be the result after removing all the termination markers in T , and

43

Draft – April 16, 2013

T ′ = T ′′ :: (2, clt) :: (2, clt) :: . . . :: (n, clt) :: (n, clt)
:: (1, clt) :: (1, clt) :: (1,out, “done”)
:: (1, clt) :: (1, term) :: . . . :: (n, clt) :: (n, term)

where we still assume (1,out, “done”) is different from all the events in
T , we can prove:

(blet Π in C ′1‖ . . .‖C ′nc, (σ′c, σo,}))
T ′7−→∗ (skip,).

Since Π vϕ ΠA, we know there exists T ′a such that
T ′a ∈ T J(let ΠA in C ′1‖ . . .‖C ′n), (σ′c, σa,})K

and get obsv(T ′) = get obsv(T ′a). Thus we know there exists i such that
T ′a(i) = (1,out, “done”). Then we know

(blet ΠA in C ′1‖ . . .‖C ′nc, (σ′c, σa,}))
T ′a7−→∗ (skip,).

We can remove all the actions of the newly added commands, construct
a simulation between the two executions, and prove: there exists Ta such
that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ (skip,),

and get obsv(Ta) = get obsv(T ′′a) = get obsv(T).
Thus we are done. ut

For (3), we define the simulation relation - in Figure 9(d), and prove the
following (B.17) by case analysis and the operational semantics:

For any W1, S1, W2, S2, W3, S3 and e1,
if (W1,S1) - (W2,S2;W3,S3) and (W1,S1)

e17−→ (W ′1,S ′1),
then there exist T2, W ′2, S ′2, T3, W ′3 and S ′3 such that

(W2,S2)
T27−→∗ (W ′2,S ′2), (W3,S3)

T37−→∗ (W ′3,S ′3),
T3\(,obj) = e1\(,obj) and (W ′1,S ′1) - (W ′2,S ′2;W ′3,S ′3).

(B.17)

With (B.17), we can prove the following (B.18) by induction over the length of
T1:

For any W1, S1, W2, S2, W3, S3 and T1,

if (W1,S1) - (W2,S2;W3,S3), (W1,S1)
T17−→+ (W ′1,S ′1) and

last(T1) 6= (,obj),
then there exist T2, W ′2, S ′2, T3, W ′3 and S ′3 such that

(W2,S2)
T27−→∗ (W ′2,S ′2), (W3,S3)

T37−→+ (W ′3,S ′3),
T1\(,obj) = T3\(,obj) and (W ′1,S ′1) - (W ′2,S ′2;W ′3,S ′3).

(B.18)

With (B.18), we can prove the following (B.19):

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T07−→∗ (W1,S1),

(W1,S1) - (W2,S2;W3,S3), (W1,S1)
T17−→ω · and lock-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T37−→ω · and

T1\(,obj) = T3\(,obj).
(B.19)

44

Draft – April 16, 2013

We prove (B.19) as follows. Let T = T0 ::T1. Since lock-free(T), we know one of
the following holds:

(i) there exists i such that ∀j ≥ i. is clt(T (j)); or
(ii) for any i, if pend inv(T (1..i)) 6= ∅, then there exists j > i such that is ret(T (j)).

For (i), we know there exist W ′1, S ′1, T ′1 and T ′′1 such that

(W1,S1) p
T ′1−→+ (W ′1,S ′1) , (W ′1,S ′1)

T ′′17−→ω · ,
T1 = T ′1 ::T ′′1 , T ′1 = T1(1..i) , is clt(last(T ′1)) , ∀j. is clt(T ′′1 (j)) .

By (B.18), we know: there exist T2, W ′2, S ′2, T ′3, W ′3 and S ′3 such that

(W2,S2)
T27−→ ∗ (W ′2,S ′2), (W3,S3)

T ′37−→ + (W ′3,S ′3), T ′1\(,obj) = T ′3\(,obj) and
(W ′1,S ′1) - (W ′2,S ′2;W ′3,S ′3). Then by coinduction over T1 and from (B.18), we
get: there exists T ′′3 such that

(W ′3,S ′3)
T ′′37−→ω · and T ′′1 \(,obj) = T ′′3 \(,obj).

Let T3 = T ′3 ::T ′′3 , and we know

(W3,S3)
T37−→ω · and T1\(,obj) = T3\(,obj).

Suppose (i) does not hold. Thus we know

∀i. ∃j. j ≥ i ∧ is obj(T (j)) .

By the operational semantics, we know

∀i. ∃j. j ≥ i ∧ pend inv(T (1..j)) 6= ∅ .

Since (ii) holds, we know

∀i. ∃j. j > i ∧ is ret(T (j)) .

Then by coinduction and from (B.18), we know there exists T3 such that

(W3,S3)
T37−→ω · and T1\(,obj) = T3\(,obj).

Thus we have proved (B.19). On the other hand, for any n, C1, . . . , Cn, σc, σo
and σa, by Lemma 32, we know

HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ⊆ HJ(let Π in MGCn), (∅, σo,})K .

From Π vϕ ΠA, by Lemma 34, we know Π jϕΠA. Thus, if ϕ(σo) = σa, then

HJ(let Π in MGCn), (∅, σo,})K ⊆ HJ(let ΠA in MGCn), (∅, σa,})K .

Then we know

(let Π in C1‖ . . .‖Cn, (σc, σo,}))
- (let ΠA in MGCn, (∅, σa,});

let ΠA in C1‖ . . .‖Cn, (σc, σa,})),

Thus, if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω ·, by lock-freeϕ(Π), we know

lock-free(T). Then from (B.19) we get: there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω ·

and T\(,obj) = Ta\(,obj). Thus get obsv(T) = get obsv(Ta) and we are done.

45

Draft – April 16, 2013

B.4 Proofs of Theorem 10

Similar to Lemma 40, we can prove the following lemma.

Lemma 47 (Finite trace must be wait-free). For any T , if

T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K

and |T | 6= ω, then wait-free(T) must hold.

We define the MGC version of wait-freedom, and prove it is equivalent to the
original version.

Definition 48. wait-freeMGC
ϕ (Π), iff

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K ∧ (σo ∈ dom(ϕ))
=⇒ wait-free(T)

Lemma 49. wait-freeϕ(Π) ⇐⇒ wait-freeMGC
ϕ (Π) .

Proof. 1. wait-freeϕ(Π) =⇒ wait-freeMGC
ϕ (Π) :

Trivial.
2. wait-freeMGC

ϕ (Π) =⇒ wait-freeϕ(Π) :
For any T ∈ TωJ(let Π in C1 ‖ . . . ‖ Cn), (σc, σo,})K, by Lemma 42, we
know one of the following holds:
(1) |T | 6= ω; or
(2) there exists i such that ∀j ≥ i. is clt(T (j)); or
(3) there exists Tm such that

Tm ∈ TωJ(let Π in MGCn), (∅, σo,})K ,
and get objevt(T) = get objevt(Tm).

For (1), by Lemma 47, we know wait-free(T) holds.
For (2), we know |T | = ω.
For any k and e, if e ∈ pend inv(T (1..k)), we know one of the following must
hold:
(i) ∃j. j > k ∧match(e, T (j)).
(ii) ∀j. j > k ⇒ ¬match(e, T (j)). Thus we can prove:

∀j ≥ k. e ∈ pend inv(T (1..j)).
Let l = max(i, k). Then we know:

∀j ≥ l. is clt(T (j)) ∧ e ∈ pend inv(T (1..j)).
Thus by the operational semantics, we can prove:

∀j > l. tid(T (j)) 6= tid(e).
Thus we know wait-free(T).
For (3), suppose (1) does not hold for T , and we only need to prove the
following:

for any i and e, if e ∈ pend inv(T (1..i)), then there exists j > i such
that either ∀k ≥ j. tid(T (k)) 6= tid(e) or match(e, T (j)).

From get objevt(T) = get objevt(Tm), we know

¬∃i. is obj abt(Tm(i)).

46

Draft – April 16, 2013

Then by the operational semantics and the generation of Tm, we know

¬∃i. is abt(Tm(i)).

From wait-freeMGC
ϕ (Π), we know wait-free(Tm), then we have

for any i and e, if e ∈ pend inv(Tm(1..i)), then there exists j > i such
that either ∀k ≥ j. tid(Tm(k)) 6= tid(e) or match(e, Tm(j)).

For any i and e, if e ∈ pend inv(T (1..i)), since get objevt(T) = get objevt(Tm),
we know there exists im such that

e ∈ pend inv(Tm(1..im)) and get objevt(T (1..i)) = get objevt(Tm(1..im)).

We know there exists jm > im such that one of the following holds:
(i) match(e, Tm(jm)); or
(ii) ∀k ≥ jm. tid(Tm(k)) 6= tid(e).
For (i), since get objevt(T) = get objevt(Tm), we know there exists j > i
such that match(e, T (j)).
For (ii), suppose

∀j > i. ¬match(e, T (j)) and ∀j > i. ∃k ≥ j. tid(T (k)) = tid(e) .

Since e ∈ pend inv(T (1..i)), by the operational semantics, we know

∀j > i. ∃k ≥ j. T (k) = (tid(e),obj) .

Since get objevt(T) = get objevt(Tm), we know

∀j > im. ∃k ≥ j. Tm(k) = (tid(e),obj) ,

which contradicts (ii). Thus we get wait-free(T) and we are done.
ut

Then, we only need to prove the following (B.20), (B.21) and (B.22):

Π vtωϕ ΠA =⇒ Π vωϕ ΠA (B.20)

Π vtωϕ ΠA =⇒ wait-freeMGC
ϕ (Π) (B.21)

Π vϕ ΠA ∧ wait-freeϕ(Π) =⇒ Π vtωϕ ΠA (B.22)

Proofs of (B.20) For any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa,
for any T , suppose

T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K .

Since Π vtωϕ ΠA, we know there exists Ta such that

Ta ∈ TωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,
get obsv(Ta) = get obsv(T) and div tids(Ta) = div tids(T) .

Thus we are done.

47

Draft – April 16, 2013

Proofs of (B.21) Just like the proofs of (B.12), we use the most general client
MGCp1. We first prove the following lemma:

Lemma 50. Suppose ΠA is total.
For any n, σa, T and S, if (T, S) ∈ OtωJ(let ΠA in MGCp1n), (∅, σa,})K, then
div tids(T) = S.

Proof. We know there exists T1 such that

T1 ∈ TωJ(let ΠA in MGCp1n), (∅, σa,})K,
T = get obsv(T1) and S = div tids(T1).

It’s easy to see that div tids(T) ⊆ S.
On the other hand, for all t ∈ S, we know:

∀i. ∃j. j ≥ i ∧ tid(T1(j)) = t .

By the operational semantics and the generation of T1, we know

∀i. ∃j. j ≥ i ∧ T1(j) = (t,out, 1) .

Thus we can prove:

∀i. ∃j. j ≥ i ∧ tid(T (j)) = t .

Thus t ∈ div tids(T), and we are done. ut

For any n, σo, σa and T such that ϕ(σo) = σa, if

T ∈ TωJ(let Π in MGCn), (∅, σo,})K,

by Lemma 44(1), there exists Tp such that

Tp ∈ TωJ(let Π in MGCp1n), (∅, σo,})K and Tp\(,out, 1) = T .

Suppose ¬∃i. is abt(T (i)).
Then for any i and e, if e ∈ pend inv(T (1..i)), we know there exists ip such that

e ∈ pend inv(Tp(1..ip)) and (Tp(1..ip))\(,out, 1) = T (1..i).

Let t = tid(e), we suppose

∀j > i. ∃k ≥ j. tid(T (k)) = tid(e) = t .

Since Tp\(,out, 1) = T , we know:

∀j > ip. ∃k ≥ j. tid(Tp(k)) = t .

Thus we know

t ∈ div tids(Tp) .

On the other hand, since Π vtωϕ ΠA, we know:

OtωJ(let Π in MGCp1n), (∅, σo,})K ⊆ OtωJ(let ΠA in MGCp1n), (∅, σa,})K .

48

Draft – April 16, 2013

Then from Lemma 50, we know

div tids(Tp) = div tids(get obsv(Tp)).

Thus

t ∈ div tids(get obsv(Tp)),

and then we can prove:

∀j. ∃k ≥ j. Tp(k) = (t,out, 1) .

Then since e ∈ pend inv(Tp(1..ip)) and by the operational semantics, we know

there must exist j such that j > ip and match(e, Tp(j)).

Since Tp\(,out, 1) = T , we know:

there exists j such that j > i and match(e, T (j)).

Thus wait-free(T) and we are done.

Proofs of (B.22) We need to prove that if Π vϕ ΠA and wait-freeϕ(Π), then
for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

OtωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K
⊆ OtωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K .

Thus we only need to prove: for any T ,

(1) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ abort,

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ abort and

get obsv(T) = get obsv(Ta).

(2) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ (skip,),

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ (skip,) and

get obsv(T) = get obsv(Ta).

(3) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω ·,

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω ·,

get obsv(T) = get obsv(Ta) and div tids(T) = div tids(Ta).

(1) and (2) are proved in Lemma 46.
For (3), we define the simulation relation - in Figure 9(d), and as in the

proof for (B.13), we can get the following (B.23) from (B.19) and the fact that
wait-free(T0 ::T1) implies lock-free(T0 ::T1):

49

Draft – April 16, 2013

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T07−→∗ (W1,S1),

(W1,S1) - (W2,S2;W3,S3), (W1,S1)
T17−→ω · and wait-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T37−→ω · and

T1\(,obj) = T3\(,obj).
(B.23)

On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 32, we
know

HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ⊆ HJ(let Π in MGCn), (∅, σo,})K .

From Π vϕ ΠA, by Lemma 34, we know Π jϕΠA. Thus, if ϕ(σo) = σa, then

HJ(let Π in MGCn), (∅, σo,})K ⊆ HJ(let ΠA in MGCn), (∅, σa,})K .

Then we know

(let Π in C1‖ . . .‖Cn, (σc, σo,}))
- (let ΠA in MGCn, (∅, σa,});

let ΠA in C1‖ . . .‖Cn, (σc, σa,})),

Thus, if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω ·, by wait-freeϕ(Π), we know

wait-free(T). Then from (B.23) we get: there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω · and T\(,obj) = Ta\(,obj).

Thus we know get obsv(T) = get obsv(Ta).
Below we prove: div tids(T) = div tids(Ta).

(a) div tids(T) ⊆ div tids(Ta):
For any i, since T\(,obj) = Ta\(,obj), we know there exists i′ such that
T (1..i′)\(,obj) = Ta(1..i)\(,obj). For any t ∈ div tids(T), we know

∃j′. j′ ≥ i′ ∧ tid(T (j′)) = t .

If T (j′) 6= (t,obj), since T\(,obj) = Ta\(,obj), we know there exists j ≥ i
such that Ta(j) = T (j′).
Otherwise, T (j′) = (t,obj). By the operational semantics and the generation
of T , we know there exists e such that

e ∈ pend inv(T (1..j′ − 1)) and tid(e) = t .

Since wait-free(T), we know one of the following holds:

(i) there exists l ≥ j′ such that ∀k ≥ l. tid(T (k)) 6= t; or
(ii) there exists j′′ ≥ j′ such that match(e, T (j′′)).

Suppose (i) holds. Since t ∈ div tids(T), we know

∃j′′. j′′ ≥ l ∧ tid(T (j′′)) = t ,

50

Draft – April 16, 2013

which is a contradiction.
Thus (ii) must hold. Thus T (j′′) = (t, ret,) and j′′ ≥ i′. Since T\(,obj) =
Ta\(,obj), we know there exists j ≥ i such that Ta(j) = T (j′′).
Thus we have proved

∃j. j ≥ i ∧ tid(Ta(j)) = t .

Therefore t ∈ div tids(Ta).
(b) div tids(Ta) ⊆ div tids(Ta):

For any i′, since T\(,obj) = Ta\(,obj), we know there exists i such that
T (1..i′)\(,obj) = Ta(1..i)\(,obj). For any t ∈ div tids(Ta), we know

∃j. j ≥ i ∧ tid(Ta(j)) = t .

If Ta(j) 6= (t,obj), since T\(,obj) = Ta\(,obj), we know there exists
j′ ≥ i′ such that Ta(j) = T (j′).
Otherwise, Ta(j) = (t,obj). By the operational semantics and the generation
of Ta, we know one of the following holds:
(i) ∀k > j. tid(Ta(k)) 6= t; or
(ii) there exists j′′ ≥ j such that match(e, Ta(j′′)).
Suppose (i) holds. Since t ∈ div tids(Ta), we know

∃j′′. j′′ > j ∧ tid(Ta(j′′)) = t ,

which is a contradiction.
Thus (ii) must hold. Thus Ta(j′′) = (t, ret,) and j′′ ≥ i. Since T\(,obj) =
Ta\(,obj), we know there exists j′ ≥ i′ such that Ta(j′′) = T (j′).
Thus we have proved

∃j′. j′ ≥ i′ ∧ tid(T (j′)) = t .

Therefore t ∈ div tids(T).

Thus we are done.

B.5 Proofs of Theorem 18

Lemma 51 (Finite trace must be obstruction-free). For any T , if

T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K

and |T | 6= ω, then obstruction-free(T) must hold.

We define the MGC version of obstruction-freedom, and prove it is equivalent
to the original version.

Definition 52. obstruction-freeMGC
ϕ (Π), iff

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K ∧ iso(T) ∧ (σo ∈ dom(ϕ))
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) .

51

Draft – April 16, 2013

Lemma 53. obstruction-freeϕ(Π) ⇐⇒ obstruction-freeMGC
ϕ (Π) .

Proof. From Figure 7, we know obstruction-freeϕ(Π) is equivalent to the follow-
ing:

∀n,C1, . . . , Cn, σc, σo, T.
T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo)K ∧ iso(T) ∧ (σo ∈ dom(ϕ))
=⇒ lock-free(T)

By Lemma 43, we know it is equivalent to the following:

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K ∧ iso(T) ∧ (σo ∈ dom(ϕ))
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) .

Thus we are done. ut
Then, we only need to prove the following (B.24), (B.25) and (B.26):

Π viω
ϕ ΠA =⇒ Π vϕ ΠA (B.24)

Π viω
ϕ ΠA =⇒ obstruction-freeMGC

ϕ (Π) (B.25)

Π vϕ ΠA ∧ obstruction-freeϕ(Π) =⇒ Π viω
ϕ ΠA (B.26)

Proofs of (B.24) For any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa,
for any T if

T ∈ OJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K,

we know there exists T1 such that T = get obsv(T1) and

T1 ∈ T J(let Π in C1‖ . . .‖Cn), (σc, σo,})K .

Thus there exists T ′1 and T ′′1 such that T ′′1 = T1 :: T ′1, where iso(T ′1) holds, and
one of the following holds:

(i) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′′17−→ω ·; or

(ii) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′′17−→∗ (skip,); or

(iii) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′′17−→∗ abort.

Thus,

T ′′1 ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K and iso(T ′′1) .

Since Π viω
ϕ ΠA, we know there exists T ′′2 such that

T ′′2 ∈ TωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,

and

get obsv(T ′′2) = get obsv(T ′′1) = T ::get obsv(T ′1) .

Thus there exists T2 such that

T2 ∈ T J(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,

and get obsv(T2) = T . Thus

T ∈ OJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,

and we are done.

52

Draft – April 16, 2013

Proofs of (B.25) The proof is similar to the proof of (B.12).

To prove obstruction-freeMGC
ϕ (Π), we want to show: for any n, σo, σa and T , if

T ∈ TωJ(let Π in MGCn), (∅, σo,})K, iso(T) and ϕ(σo) = σa, then the following
(B.14) holds:

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) .

First, if T ∈ TωJ(let Π in MGCn), (∅, σo,})K and iso(T), by Lemma 44(1),
there exists Tp such that

Tp ∈ TωJ(let Π in MGCp1n), (∅, σo,})K, Tp\(,out, 1) = T
and ∀i, t. Tp(i) = (t, ret,) ⇔ Tp(i+ 1) = (t,out, 1).

Since iso(T), we know

|T | = ω =⇒ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t) .

If |Tp| = ω, by the generation of Tp and Tp\(,out, 1) = T , we know |T | = ω.
Thus there exist t0 and i such that

∀j. j ≥ i =⇒ tid(T (j)) = t0 .

Since Tp\(,out, 1) = T , we know there exists ip such that

∀j. j ≥ ip =⇒ tid(Tp(j)) = t0 ∨ Tp(j) = (,out, 1) .

By the generation of Tp, we know there exists i′ such that

∀j. j ≥ i′ =⇒ tid(Tp(j)) = t0 .

Thus iso(Tp) holds.

Since Π viω
ϕ ΠA, we know

OiωJ(let Π in MGCp1n), (∅, σo,})K ⊆ OωJ(let ΠA in MGCp1n), (∅, σa,})K .

From Lemma 45, we know for any T , if T ∈ OiωJ(let Π in MGCp1n), (∅, σo,})K,
then T is an infinite trace of (,out, 1).

Then we know: get obsv(Tp) is an infinite trace of (,out, 1). Thus |Tp| = ω
and the following (B.15) holds:

∀i. ∃j. j ≥ i ∧ Tp(j) = (,out, 1) .

As in the proof of (B.12), we prove the following (B.16) from (B.15):

∀i. ∃j. j ≥ i ∧ is ret(Tp(j)) .

Since Tp\(,out, 1) = T , from (B.16), we know (B.14) holds and we are done.

53

Draft – April 16, 2013

Proofs of (B.26) We need to prove that if Π vϕ ΠA and obstruction-freeϕ(Π),
then for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

OiωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K
⊆ OωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K .

Thus we only need to prove: for any T ,

(1) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ abort,

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ abort and

get obsv(T) = get obsv(Ta).

(2) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ (skip,),

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ (skip,) and

get obsv(T) = get obsv(Ta).

(3) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω · and iso(T),

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω · and

get obsv(T) = get obsv(Ta).

(1) and (2) are proved in Lemma 46.
For (3), as in the proofs for (B.13), we define the simulation relation - in

Figure 9(d), and prove the following (B.19):

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T07−→ ∗ (W1,S1),

(W1,S1) - (W2,S2;W3,S3), (W1,S1)
T17−→ω · and lock-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T37−→ω · and

T1\(,obj) = T3\(,obj).

On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 32, we
know

HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ⊆ HJ(let Π in MGCn), (∅, σo,})K .

From Π vϕ ΠA, by Lemma 34, we know Π jϕΠA. Thus, if ϕ(σo) = σa, then

HJ(let Π in MGCn), (∅, σo,})K ⊆ HJ(let ΠA in MGCn), (∅, σa,})K .

Then we know

(let Π in C1‖ . . .‖Cn, (σc, σo,}))
- (let ΠA in MGCn, (∅, σa,});

let ΠA in C1‖ . . .‖Cn, (σc, σa,})),

Thus, if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω · and iso(T),

by obstruction-freeϕ(Π), we know lock-free(T). Then from (B.19) we get: there
exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω ·

and T\(,obj) = Ta\(,obj). Thus get obsv(T) = get obsv(Ta) and we are done.

54

Draft – April 16, 2013

B.6 Proofs of Theorem 22

We define the MGC version of deadlock-freedom, and prove it is equivalent to
the original version.

Definition 54. deadlock-freeMGC
ϕ (Π), iff

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K ∧ objfair(T) ∧ (σo ∈ dom(ϕ))
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) ,

where objfair(T) says object steps are fairly scheduled:

objfair(T)
def
= |T | = ω

=⇒ (∀t ∈ [1..tnum(T)]. ∀n. |(T |t)| = n
=⇒ is ret((T |t)(n)) ∨ is clt((T |t)(n)) ∨ (T |t)(n) = (t, term)) .

It’s easy to see:

∀T. fair(T) =⇒ objfair(T) .

Lemma 55. For any T and Tm, if fair(T), get objevt(T) = get objevt(Tm),
|T | = ω and

T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ,

then objfair(Tm).

Proof. Suppose |(Tm|t)| = n and the index of (Tm|t)(n) in Tm is l. If is ret(Tm(l))
or is clt(Tm(l)) or Tm(l) = (t, term), we are done. Otherwise, we know

is inv(Tm(l)) or Tm(l) = (t,obj) .

Since get objevt(T) = get objevt(Tm), we know there exists i such that

T (i) = Tm(l) and get objevt(T (1..i)) = get objevt(Tm(1..l)) .

Thus tid(T (i)) = t and

is inv(T (i)) or T (i) = (t,obj) .

From fair(T), we know

∃j. j > i ∧ tid(T (j)) = t .

By the generation of T and the operational semantics, we know

∃j. j > i ∧ tid(T (j)) = t ∧ is obj(T (j)) .

Since get objevt(T) = get objevt(Tm), we know

∃j. j > l ∧ tid(Tm(j)) = t ∧ is obj(Tm(j)) ,

which contradicts the assumption that |(Tm|t)| = n and the index of (Tm|t)(n)
in Tm is l. Thus neither is inv(Tm(l)) nor Tm(l) = (t,obj) holds, and we are
done. ut

55

Draft – April 16, 2013

Lemma 56. deadlock-freeϕ(Π) ⇐⇒ deadlock-freeMGC
ϕ (Π) .

Proof. 1. deadlock-freeϕ(Π) =⇒ deadlock-freeMGC
ϕ (Π) :

As in the proof for Lemma 43, we can prove the following (B.9):

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K ∧ (σo ∈ dom(ϕ)) ∧ lock-free(T)
=⇒ (∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j)))

Then we only need to prove the following (B.27):

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K
∧ objfair(T) ∧ (σo ∈ dom(ϕ)) ∧ deadlock-freeϕ(Π)
=⇒ lock-free(T)

(B.27)

For T such that T ∈ TωJ(let Π in MGCn), (∅, σo,})K and objfair(T), if |T | 6=
ω, then we know fair(T). By the definition of deadlock-freeϕ(Π), we know
lock-free(T). Otherwise, we know |T | = ω, and let

S
def
= {t | ∃n. |(T |t)| = n ∧ (T |t)(n) 6= (t, term)}
= {t | |(T |t)| 6= ω} .

Then we construct another program W = let Π in C1 ‖ . . .‖Cn as follows:
for any t ∈ [1..n],

t 6∈ S ⇒ Ct = MGT
t ∈ S
⇒ Ct = local it; it := 0;

while (it < nt){ frand(m)(rand()); it := it + 1 }
where nt = |get hist(T |t)|/2

Let σc = {it ; 0 | t ∈ S}.
We can construct a simulation between let Π in MGCn and W , and show
that there exists T ′ such that

T ′ ∈ TωJW, (σc, σo,})K , fair(T ′) and get objevt(T) = get objevt(T ′) .

From deadlock-freeϕ(Π), we know lock-free(T ′). We can prove the following
(B.28):

If |T | = ω, get objevt(T) = get objevt(T ′) and lock-free(T ′) ,
then lock-free(T) .

(B.28)

Then we know lock-free(T) and hence (B.27) holds.
We prove (B.28) as follows. Since |T | = ω, we know one of the following
must hold:
(i) there exists i such that ∀j ≥ i. is clt(T (j));
(ii) ∀i. ∃j. j ≥ i ∧ is obj(T (j)).
For (i), we know lock-free(T).
For (ii), since get objevt(T) = get objevt(T ′), we know

∀i. ∃j. j ≥ i ∧ is obj(T ′(j)).

56

Draft – April 16, 2013

Since lock-free(T ′), we know
for any i′, if pend inv(T ′(1..i′)) 6= ∅, then there exists j′ > i′ such
that is ret(T ′(j′)).

For T , for any i, we know there exists i′ such that

get objevt(T (1..i)) = get objevt(T ′(1..i′)) .

If pend inv(T (1..i)) 6= ∅, we know

pend inv(T ′(1..i′)) 6= ∅ .

Then we get:

there exists j′ > i′ such that is ret(T ′(j′)).

Thus we know:

there exists j > i such that is ret(T (j)).

Therefore lock-free(T) and we have proved (B.28).
2. deadlock-freeMGC

ϕ (Π) =⇒ deadlock-freeϕ(Π) :
For any T such that

T ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K,

by Lemma 42, we know one of the following holds:
(1) |T | 6= ω; or
(2) there exists i such that ∀j ≥ i. is clt(T (j)); or
(3) there exists Tm such that

Tm ∈ TωJ(let Π in MGCn), (∅, σo,})K ,
and get objevt(T) = get objevt(Tm).

For (1), by Lemma 40, we know lock-free(T).
For (2), we know lock-free(T) holds immediately by definition.
For (3), suppose (1) does not hold. If fair(T), by Lemma 55, we know
objfair(Tm) holds. Then from deadlock-freeMGC

ϕ (Π), we know

(∃i. is obj abt(Tm(i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(Tm(j))).

Thus we have:

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))).

If ∃i. is obj abt(T (i)), we know lock-free(T). Otherwise, we know

∀i. ∃j. j ≥ i ∧ is ret(T (j)).

Thus, for any i, if pend inv(T (1..i)) 6= ∅, then there exists j > i such that
is ret(T (j)). Therefore lock-free(T) and we are done.

ut

Then, we only need to prove the following (B.29), (B.30) and (B.31):

Π vfω
ϕ ΠA =⇒ Π vϕ ΠA (B.29)

Π vfω
ϕ ΠA =⇒ deadlock-freeMGC

ϕ (Π) (B.30)

Π vϕ ΠA ∧ deadlock-freeϕ(Π) =⇒ Π vfω
ϕ ΠA (B.31)

57

Draft – April 16, 2013

Proofs of (B.29) For any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa,
for any T if

T ∈ OJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K,

we know there exists T1 such that T = get obsv(T1) and

T1 ∈ T J(let Π in C1‖ . . .‖Cn), (σc, σo,})K .

Thus there exists T ′1 and T ′′1 such that T ′′1 = T1 ::T ′1, where fair(T ′1) holds, and
one of the following holds:

(i) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′′17−→ω ·; or

(ii) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′′17−→∗ (skip,); or

(iii) (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T ′′17−→∗ abort.

Thus,

T ′′1 ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K and fair(T ′′1) .

Since Π vfω
ϕ ΠA, we know there exists T ′′2 such that

T ′′2 ∈ TωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,

and

get obsv(T ′′2) = get obsv(T ′′1) = T ::get obsv(T ′1) .

Thus there exists T2 such that

T2 ∈ T J(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,

and get obsv(T2) = T . Thus

T ∈ OJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,

and we are done.

Proofs of (B.30) The proof is similar to the proof of (B.12), except that we
need to first prove the following lemma:

Lemma 57. Suppose ΠA is total. If Π vfω
ϕ ΠA, then

OofωJ(let Π in MGCp1n), (∅, σo,})K ⊆ OωJ(let ΠA in MGCp1n), (∅, σa,})K ,

where

OofωJW,SK def
= {get obsv(T) | T ∈ TωJW,SK ∧ objfair(T)

∧∀i, t. T (i) = (t, ret,) ⇔ T (i+ 1) = (t,out, 1)} .

Proof. For any T and To such that

58

Draft – April 16, 2013

T ∈ TωJ(let Π in MGCp1n), (∅, σo,})K, objfair(T),
∀i, t. T (i) = (t, ret,) ⇔ T (i+ 1) = (t,out, 1),

and To = get obsv(T), if |T | 6= ω, we know fair(T) holds, thus

To ∈ OfωJ(let Π in MGCp1n), (∅, σo,})K.

From Π vfω
ϕ ΠA, we know

To ∈ OωJ(let ΠA in MGCp1n), (∅, σa,})K.

Otherwise, we know |T | = ω, and let

S
def
= {t | ∃n. |(T |t)| = n ∧ (T |t)(n) 6= (t, term)}
= {t | |(T |t)| 6= ω} .

Since |T | = ω, we know there exists t such that |(T |t)| = ω and hence t 6∈ S.
Then we construct another program W = let Π in C1 ‖ . . .‖Cn as follows: for
any t ∈ [1..n],

t 6∈ S ⇒ Ct = MGTp1
t ∈ S
⇒ Ct = local it; it := 0;

while (it < nt){
frand(m)(rand()); print(1); it := it + 1;

}
where nt = |get hist(T |t)|/2

Let σc = {it ; 0 | t ∈ S}.
We can construct a simulation between let Π in MGCp1n and W , and show
that there exists T ′ such that

T ′ ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ,
fair(T ′) and get obsv(T) = get obsv(T ′) = To .

Since Π vfω
ϕ ΠA, we know

To ∈ OωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K.

Thus there exists T ′′ such that

T ′′ ∈ TωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K , and get obsv(T ′′) = To .

Since there exists t such that Ct = MGCp1, we can construct a simulation and
show that there exists T ′′′ such that

T ′′′ ∈ TωJ(let ΠA in MGCp1n), (∅, σa,})K ,
and get obsv(T ′′) = get obsv(T ′′′) = To .

Thus we are done. ut

To prove deadlock-freeMGC
ϕ (Π), we want to show: for any n, σo, σa and T ,

if T ∈ TωJ(let Π in MGCn), (∅, σo,})K, objfair(T) and ϕ(σo) = σa, then the
following (B.14) holds:

59

Draft – April 16, 2013

(∃i. is obj abt(T (i))) ∨ (∀i. ∃j. j ≥ i ∧ is ret(T (j))) .

First, if T ∈ TωJ(let Π in MGCn), (∅, σo,})K and objfair(T), by Lemma 44(1),
there exists Tp such that

Tp ∈ TωJ(let Π in MGCp1n), (∅, σo,})K, Tp\(,out, 1) = T
and ∀i, t. Tp(i) = (t, ret,) ⇔ Tp(i+ 1) = (t,out, 1).

Since objfair(T), we know objfair(Tp) also holds.
Since Π vfω

ϕ ΠA, by Lemma 57, we know

OofωJ(let Π in MGCp1n), (∅, σo,})K ⊆ OωJ(let ΠA in MGCp1n), (∅, σa,})K .

From Lemma 45, we know for any T , if T ∈ OofωJ(let Π in MGCp1n), (∅, σo,})K,
then T is an infinite trace of (,out, 1).

Then we know: get obsv(Tp) is an infinite trace of (,out, 1). Thus |Tp| = ω
and the following (B.15) holds:

∀i. ∃j. j ≥ i ∧ Tp(j) = (,out, 1) .

As in the proof of (B.12), we prove the following (B.16) from (B.15):

∀i. ∃j. j ≥ i ∧ is ret(Tp(j)) .

Since Tp\(,out, 1) = T , from (B.16), we get (B.14) and thus we are done.

Proofs of (B.31) We need to prove that if Π vϕ ΠA and deadlock-freeϕ(Π),
then for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

OfωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K
⊆ OωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K .

Thus we only need to prove: for any T ,

(1) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ abort,

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ abort and

get obsv(T) = get obsv(Ta).

(2) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ (skip,),

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ (skip,) and

get obsv(T) = get obsv(Ta).

(3) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω · and fair(T),

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω · and

get obsv(T) = get obsv(Ta).

(1) and (2) are proved in Lemma 46.
For (3), as in the proofs for (B.13), we define the simulation relation - in

Figure 9(d), and prove the following (B.19):

60

Draft – April 16, 2013

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T07−→ ∗ (W1,S1),

(W1,S1) - (W2,S2;W3,S3), (W1,S1)
T17−→ω · and lock-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T37−→ω · and

T1\(,obj) = T3\(,obj).

On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 32, we
know

HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ⊆ HJ(let Π in MGCn), (∅, σo,})K .

From Π vϕ ΠA, by Lemma 34, we know Π jϕΠA. Thus, if ϕ(σo) = σa, then

HJ(let Π in MGCn), (∅, σo,})K ⊆ HJ(let ΠA in MGCn), (∅, σa,})K .

Then we know

(let Π in C1‖ . . .‖Cn, (σc, σo,}))
- (let ΠA in MGCn, (∅, σa,});

let ΠA in C1‖ . . .‖Cn, (σc, σa,})),

Thus, if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω · and fair(T),

by deadlock-freeϕ(Π), we know lock-free(T). Then from (B.19) we get: there
exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω ·

and T\(,obj) = Ta\(,obj). Thus get obsv(T) = get obsv(Ta) and we are done.

B.7 Proofs of Theorem 26

We define the MGC version of starvation-freedom, and prove it is equivalent to
the original version.

Definition 58. starvation-freeMGC
ϕ (Π), iff

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K ∧ objfair(T) ∧ (σo ∈ dom(ϕ))
=⇒ wait-free(T)

Lemma 59. starvation-freeϕ(Π) ⇐⇒ starvation-freeMGC
ϕ (Π) .

Proof. 1. starvation-freeϕ(Π) =⇒ starvation-freeMGC
ϕ (Π) :

We only need to prove the following (B.32):

∀n, σo, T. T ∈ TωJ(let Π in MGCn), (∅, σo,})K
∧ objfair(T) ∧ (σo ∈ dom(ϕ)) ∧ starvation-freeϕ(Π)
=⇒ wait-free(T)

(B.32)

For T such that T ∈ TωJ(let Π in MGCn), (∅, σo,})K and objfair(T), if |T | 6=
ω, then we know fair(T). By the definition of starvation-freeϕ(Π), we know
wait-free(T). Otherwise, we know |T | = ω, and let

61

Draft – April 16, 2013

S
def
= {t | ∃n. |(T |t)| = n ∧ (T |t)(n) 6= (t, term)}
= {t | |(T |t)| 6= ω} .

Then we construct another program W = let Π in C1 ‖ . . .‖Cn as follows:
for any t ∈ [1..n],

t 6∈ S ⇒ Ct = MGT
t ∈ S
⇒ Ct = local it; it := 0;

while (it < nt){ frand(m)(rand()); it := it + 1 }
where nt = |get hist(T |t)|/2

Let σc = {it ; 0 | t ∈ S}.
We can construct a simulation between let Π in MGCn and W , and show
that there exists T ′ such that

T ′ ∈ TωJW, (σc, σo,})K , fair(T ′) and get objevt(T) = get objevt(T ′) .

From starvation-freeϕ(Π), we know wait-free(T ′). We can prove the following
(B.33):

If |T | = ω, get objevt(T) = get objevt(T ′) and wait-free(T ′) ,
then wait-free(T) .

(B.33)

Then we know wait-free(T) and hence (B.32) holds.
We prove (B.33) as follows. Since get objevt(T) = get objevt(T ′), for any i,
we know there exists i′ such that

get objevt(T (1..i)) = get objevt(T ′(1..i′)) .

For any e, if e ∈ pend inv(T (1..i)), we know

e ∈ pend inv(T ′(1..i′)) .

From wait-free(T ′), we know one of the following holds:
(i) there exists j′ > i′ such that match(e, T ′(j′)).
(ii) there exists j′ > i′ such that ∀k′ ≥ j′. tid(T ′(k′)) 6= tid(e).
For (i), since get objevt(T) = get objevt(T ′), we know

there exists j > i such that match(e, T (j)).

For (ii), assume (i) does not hold. Then we know e ∈ pend inv(T ′). Since
get objevt(T) = get objevt(T ′), we can prove

e ∈ pend inv(T) .

Let t = tid(e). Suppose

∀j > i. ∃k ≥ j. tid(T (k)) = t .

Then, by the operational semantics and the generation of T , we know

62

Draft – April 16, 2013

∀j > i. ∃k ≥ j. T (k) = (t,obj) .

Since get objevt(T) = get objevt(T ′), we know

∀j′ > i′. ∃k′ ≥ j′. T ′(k′) = (t,obj) ,

which contradicts (ii). Thus we know

∃j > i. ∀k ≥ j. tid(T (k)) 6= t .

Therefore wait-free(T) and we have proved (B.33).
2. starvation-freeMGC

ϕ (Π) =⇒ starvation-freeϕ(Π) :
Almost the same as the proof for Lemma 49, except that we need to apply
Lemma 55.

ut

Then, we only need to prove the following (B.34), (B.35) and (B.36), where
(B.34) is trivial from definitions:

Π vffω
ϕ ΠA =⇒ Π vfω

ϕ ΠA (B.34)

Π vffω
ϕ ΠA =⇒ starvation-freeMGC

ϕ (Π) (B.35)

Π vϕ ΠA ∧ starvation-freeϕ(Π) =⇒ Π vffω
ϕ ΠA (B.36)

Proofs of (B.35) For any n, σo, σa and T such that ϕ(σo) = σa, if T ∈
TωJ(let Π in MGCn), (∅, σo,})K and objfair(T), suppose

¬∃i. is abt(T (i)),

then by the operational semantics, we only need to prove:

for any i and e, if e ∈ pend inv(T (1..i)), then there exists j > i such that
match(e, T (j)).

Suppose it does not hold. Then we know there exists t0 such that

∃i. ∀j. j ≥ i⇒ (T |t0)(j) = (t0,obj) .

By Lemma 44(1), there exists Tp such that

Tp ∈ TωJ(let Π in MGCp1n), (∅, σo,})K , Tp\(,out, 1) = T
and ∀i, t. Tp(i) = (t, ret,) ⇔ Tp(i+ 1) = (t,out, 1).

By the operational semantics, we know

∃i. ∀j. j ≥ i⇒ (Tp|t0)(j) = (t0,obj) .

Let

S
def
= {t | ∃n. |(Tp|t)| = n ∧ (Tp|t)(n) 6= (t, term)}
= {t | |(Tp|t)| 6= ω} .

63

Draft – April 16, 2013

Thus we know

t0 6∈ S.

We construct another program W = let Π in C1 ‖ . . . ‖Cn as follows: for any
t ∈ [1..n],

t 6∈ S ⇒ Ct = MGTp1
t ∈ S
⇒ Ct = local it; it := 0;

while (it < nt){
frand(m)(rand()); print(1); it := it + 1;

}
where nt = |get hist(T |t)|/2

Let σc = {it ; 0 | t ∈ S}. We can construct a simulation between let Π in MGCp1n
and W , and show that there exists T ′p such that

T ′p ∈ TωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K , fair(T ′p) ,
get objevt(Tp) = get objevt(T ′p) and get obsv(Tp) = get obsv(T ′p) .

Thus we know there exists i such that

∀j. j ≥ i⇒ (T ′p|t0)(j) = (t0,obj) .

Thus we have

|(get obsv(T ′p)|t0)| < i .

On the other hand, since Π vffω
ϕ ΠA, we know:

OfωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K
⊆ OfωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K .

Thus there exists T ′′p such that

T ′′p ∈ TωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K ,
fair(T ′′p) and get obsv(T ′′p) = get obsv(T ′p) .

Since Ct0 = MGTp1 and fair(T ′′p), we know

|(T ′′p |t0)| = ω ,

and also

|(get obsv(T ′p)|t0)| = |(get obsv(T ′′p)|t0)| = ω ,

which contradicts the fact that |(get obsv(T ′p)|t0)| < i. Thus we know wait-free(T)
and we are done.

64

Draft – April 16, 2013

Proofs of (B.36) We need to prove that if Π vϕ ΠA and starvation-freeϕ(Π),
then for any n, C1, . . . , Cn, σc, σo and σa such that ϕ(σo) = σa, we have

OfωJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K
⊆ OfωJ(let ΠA in C1‖ . . .‖Cn), (σc, σa,})K .

Thus we only need to prove: for any T ,

(1) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ abort,

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ abort and

get obsv(T) = get obsv(Ta).

(2) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→∗ (skip,),

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→∗ (skip,) and

get obsv(T) = get obsv(Ta).

(3) If (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω · and fair(T),

then there exists Ta such that

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω ·,

get obsv(T) = get obsv(Ta) and fair(Ta).

(1) and (2) are proved in Lemma 46.
For (3), as in the proofs for (B.22), we define the simulation relation - in

Figure 9(d), and prove the following (B.23):

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T07−→ ∗ (W1,S1),

(W1,S1) - (W2,S2;W3,S3), (W1,S1)
T17−→ω · and wait-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T37−→ω · and

T1\(,obj) = T3\(,obj).

On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 32, we
know

HJ(let Π in C1‖ . . .‖Cn), (σc, σo,})K ⊆ HJ(let Π in MGCn), (∅, σo,})K .

From Π vϕ ΠA, by Lemma 34, we know Π jϕΠA. Thus, if ϕ(σo) = σa, then

HJ(let Π in MGCn), (∅, σo,})K ⊆ HJ(let ΠA in MGCn), (∅, σa,})K .

Then we know

(let Π in C1‖ . . .‖Cn, (σc, σo,}))
- (let ΠA in MGCn, (∅, σa,});

let ΠA in C1‖ . . .‖Cn, (σc, σa,})),

Thus, if (blet Π in C1‖ . . .‖Cnc, (σc, σo,}))
T7−→ω · and fair(T),

by starvation-freeϕ(Π), we know wait-free(T). Then from (B.23) we get: there
exists Ta such that

65

Draft – April 16, 2013

(blet ΠA in C1‖ . . .‖Cnc, (σc, σa,}))
Ta7−→ω · , and T\(,obj) = Ta\(,obj).

Thus we know get obsv(T) = get obsv(Ta).
Below we prove: fair(Ta). Since fair(T) and |T | = ω, we know for any t,

either |(T |t)| = ω, or last(T |t) = (t, term) .

(a) last(T |t) = (t, term):
Since T\(,obj) = Ta\(,obj) and by the operational semantics, we know
last(Ta|t) = (t, term).

(b) |(T |t)| = ω:
Since T\(,obj) = Ta\(,obj), we know

(T |t)\(t,obj) = (Ta|t)\(t,obj) .

Suppose |(Ta|t)| 6= ω. Then we know |(Ta|t)\(t,obj)| 6= ω. Thus

∃i. ∀j. j ≥ i ⇒ (T |t)(j) = (t,obj) .

By the operational semantics, we know there exists i such that

tid(T (i)) = t , is inv(T (i)) , and ∀j. j ≥ i ⇒ ¬match(T (i), T (j)) .

By wait-free(T), we know

∃j. ∀k ≥ j. tid(T (k)) 6= t ,

which contradicts the assumption that |(T |t)| = ω.
Thus we know |(Ta|t)| = ω.

Thus fair(Ta) holds and we are done.

B.8 Proofs of Theorem 29

Proofs of Theorem 29(1) For any σo, σa and T such that ϕ(σo) = σa, if

T ∈ TωJ(let Π in C1), (σc, σo,})K,

by Lemma 42, we know one of the following holds:

(1) |T | 6= ω; or
(2) there exists i such that ∀j ≥ i. is clt(T (j)); or
(3) there exists Tm such that

Tm ∈ TωJ(let Π in MGT), (∅, σo,})K ,

and get objevt(T) = get objevt(Tm).

For (1), by the operational semantics, we can prove prog-t(T) or abt(T) holds.
For (2), for any k and e, if e ∈ pend inv(T (1..k)), since there exists i > k such
that is clt(T (i)), by the operational semantics we know there exists j such that
k < j < i and match(e, T (j)). Thus prog-t(T) holds.
For (3), by Lemma 44(1), there exists Tp such that

66

Draft – April 16, 2013

Tp ∈ TωJ(let Π in MGTp1), (∅, σo,})K and Tp\(,out, 1) = T .

Since Π v1ω
ϕ ΠA, we know

OωJ(let Π in MGTp1), (∅, σo,})K ⊆ OωJ(let ΠA in MGTp1), (∅, σa,})K .

From Lemma 45, we know get obsv(Tp) is an infinite trace of (,out, 1). Thus
|Tp| = ω and the following (B.15) holds:

∀i. ∃j. j ≥ i ∧ Tp(j) = (,out, 1) .

As in the proof of (B.12), we prove the following (B.16) from (B.15):

∀i. ∃j. j ≥ i ∧ is ret(Tp(j)) .

Since Tp\(,out, 1) = T , we know

∀i. ∃j. j ≥ i ∧ is ret(T (j)) .

Thus for any i and e, if e ∈ pend inv(T (1..i)), then there exists j > i such that
is ret(T (j)) holds. By the operational semantics and the generation of T , we
know match(e, T (j)) holds. Thus prog-t(T) holds. Then we are done.

Proofs of Theorem 29(2) We need to prove that ifΠ vϕ ΠA and seq-termϕ(Π),
then for any C1, σc, σo and σa such that ϕ(σo) = σa, we have

OωJ(let Π in C1), (σc, σo,})K ⊆ OωJ(let ΠA in C1), (σc, σa,})K .

Thus we only need to prove: for any T ,

(1) If (blet Π in C1c, (σc, σo,}))
T7−→∗ abort,

then there exists Ta such that

(blet ΠA in C1c, (σc, σa,}))
Ta7−→∗ abort and get obsv(T) = get obsv(Ta).

(2) If (blet Π in C1c, (σc, σo,}))
T7−→∗ (skip,),

then there exists Ta such that

(blet ΠA in C1c, (σc, σa,}))
Ta7−→∗ (skip,) and get obsv(T) = get obsv(Ta).

(3) If (blet Π in C1c, (σc, σo,}))
T7−→ω ·,

then there exists Ta such that

(blet ΠA in C1c, (σc, σa,}))
Ta7−→ω · and get obsv(T) = get obsv(Ta).

(1) and (2) are proved in Lemma 46.
For (3), as in the proofs for (B.13), we define the simulation relation - in

Figure 9(d), and prove the following (B.19):

For any W , S, W1, S1, W2, S2, W3, S3, T0 and T1,

if (W,S) is well-formed and out of method calls, (W,S)
T07−→ ∗ (W1,S1),

(W1,S1) - (W2,S2;W3,S3), (W1,S1)
T17−→ω · and lock-free(T0 ::T1),

then there exists T3 such that (W3,S3)
T37−→ω · and

T1\(,obj) = T3\(,obj).

67

Draft – April 16, 2013

On the other hand, for any n, C1, . . . , Cn, σc, σo and σa, by Lemma 32, we
know

HJ(let Π in C1), (σc, σo,})K ⊆ HJ(let Π in MGC1), (∅, σo,})K .

From Π vϕ ΠA, by Lemma 34, we know Π jϕΠA. Thus, if ϕ(σo) = σa, then

HJ(let Π in MGC1), (∅, σo,})K ⊆ HJ(let ΠA in MGC1), (∅, σa,})K .

Then we know

(let Π in C1, (σc, σo,}))
- (let ΠA in MGC1, (∅, σa,});

let ΠA in C1, (σc, σa,})),

Thus, if (blet Π in C1c, (σc, σo,}))
T7−→ω ·, by seq-termϕ(Π), we know lock-free(T).

Then from (B.19) we get: there exists Ta such that

(blet ΠA in C1c, (σc, σa,}))
Ta7−→ω ·

and get obsv(T) = get obsv(Ta), thus we are done.

68

