A Practical Verification Framework
for Preemptive OS Kernels

Fengwei Xu'2, Ming Fu'2®™) Xinyu Feng!?, Xiaoran Zhang?, Hui Zhang"2,
and Zhaohui Lil+?

! School of Computer Science and Technology,
University of Science and Technology of China,
Hefei, China
fuming@ustc.edu.cn
2 Suzhou Institute for Advanced Study,
University of Science and Technology of China,

Suzhou, China

Abstract. We propose a practical verification framework for preemptive
OS kernels. The framework models the correctness of API implementa-
tions in OS kernels as contextual refinement of their abstract specifi-
cations. It provides a specification language for defining the high-level
abstract model of OS kernels, a program logic for refinement verifica-
tion of concurrent kernel code with multi-level hardware interrupts, and
automated tactics for developing mechanized proofs. The whole frame-
work is developed for a practical subset of the C language. We have
successfully applied it to verify key modules of a commercial preemptive
OS uC/OS-II [2], including the scheduler, interrupt handlers, message
queues, and mutexes etc. We also verify the priority-inversion-freedom
(PIF) in uC/OS-IL. All the proofs are mechanized in Coq. To our knowl-
edge, our work is the first to verify the functional correctness of a prac-
tical preemptive OS kernel with machine-checkable proofs.

1 Introduction

Verifying OS kernels has long been recognized as an important but also extremely
challenging task. There have been exciting efforts for OS kernel verification
[4,13,16,27] in recent years, but most of them have no or limited support of
kernel-level preemption, which allows tasks to be preempted even in kernel mode.
This limitation restricts their applicability to real-time systems, where preemp-
tive multitasking is indispensable to achieve real-time guarantees.

Preemptive kernels require explicit invocation of schedulers inside interrupt
handlers and careful interrupt management in the kernel code, which make the
kernel highly concurrent and complex. In this paper we propose a verification
framework for preemptive OS kernels, and show its application in verifying key
modules of 4C/OS-1I [2], a commercial preemptive real-time multitasking kernel
for microprocessors and microcontrollers. The verification is fully mechanized

This work is supported in part by grants from National Natural Science Foundation
of China (NSFC) under Grant Nos. 61103023, 61229201, 61379039 and 91318301.
© Springer International Publishing Switzerland 2016

S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 59-79, 2016.
DOI: 10.1007/978-3-319-41540-6 4

60 F. Xu et al.

in Coq [1]. To our knowledge, it is the first verification of (key modules of) a
preemptive OS kernel with machine-checkable proofs. The key contribution of
the work is to adapt existing theories on interrupt verification [11] and contex-
tual refinement of concurrent programs [17,19,24,25], and integrate them into
a framework for real-world preemptive OS kernel verification. Specifically, our
work makes the following new contributions:

First, we formulate and verify the correctness of the APIs of OS ker-
nels as contextual refinement between their implementations and specifications.
Although refinement approaches have been applied in earlier work on OS kernel
verification [4,13,16], we believe our work is the first to explicitly specify and
prove contextual refinement for APIs of a preemptive OS kernel, following recent
progress on refinement verification of concurrent programs [17,19,24,25]. As we
explain in Sect. 2.2, contextual refinement not only serves as a very strong notion
of functional correctness of system APIs, but also allows us to prove properties
based on the more abstract API specifications and then carry it down to the
level of concrete implementations, which makes the verification much simpler
than doing proofs directly at the concrete level.

Second, we provide a simple modeling language for specifying kernel prim-
itives. The language strives for balance between abstraction and expressiveness
for scheduling. On the one hand, we want the specification to abstract away
implementation details. On the other hand, it should provide enough details so
that many important properties can be specified at the abstract specification
level. Our modeling language provides an abstract sched command, allowing
us to specify explicitly when the scheduler is invoked in synchronization primi-
tives or interrupt handlers. Semantics of sched is parameterized over abstract
scheduling policies (e.g., priority-based or round-robin). Expressiveness about
these details are necessary to specify system-wide scheduling properties.

Third, we propose a program logic for refinement verification of concurrent
kernel programs. The logic supports multi-level nested hardware interrupts and
configurable schedulers. It extends concurrent separation logic [21] (CSL) with
relational assertions that relate program states at the implementation and the
specification levels, as in Liang et al. [17,19]. It also assigns ownership-transfer
semantics to interrupt management operations and verify multi-level hardware
interrupts in a realistic setting. Different from traditional Hoare-style program
logics, whose soundness ensures the semantic interpretation of Hoare-triples,
our logic explicitly establishes contextual refinement, which is more useful for
establishing abstractions for system APIs, as explained above.

Fourth, our framework is developed for a practical subset of C. It has been
successfully applied to verify key APIs of C/OS-II [2], including the timer inter-
rupt handler (and a pseudo interrupt handler to demonstrate the support of
multi-level interrupts), the scheduler, the time management, and four synchro-
nization mechanisms: message queues, mail boxes, semaphores, and mutexes.
It is worth noting that, unlike existing works [4,13,16,27] that are focused on
kernels newly developed with verification in mind, we take a commercial system
developed by an independent third-party and verify the code with minimum mod-
ification, which demonstrates the generality and applicability of our framework.

A Practical Verification Framework for Preemptive OS Kernels 61

Fifth, we also specify and verify priority inversion freedom (PIF) of
puC/OS-II. PIF is a crucial property for real-time systems and is worth veri-
fying in its own right. Moreover, since the specification and verification are done
at the level of the abstract model (i.e., specifications) of the kernel, they also
help validate our model of system APIs. As we explain above, many important
properties cannot be specified if the model is too weak or overly abstract.

Coq proofs and a companion technical report are available at http://staff.
ustc.edu.cn/~fuming/research/certiucos.

2 Background and Overview of Our Work

2.1 Preemptive OS Kernels and Interrupts

In a preemptive OS kernel, execution of a task inside the kernel can be inter-
rupted at any program point (unless interrupts are disabled). Then the control is
switched to the interrupt handler. When the handler finishes, it may invoke the
scheduler and switch the execution context to a different task, instead of return-
ing to the original interrupted task. For instance, with priority-based scheduling,
the interrupt handler always switches to the highest priority task at its end.

The 286 Interrupt Mechanism. Interrupt handling and management are indis-
pensable in preemptive OS kernels. We give an overview of the interrupt mech-
anism in x86 systems (based on the Intel 8259 A interrupt controller).

The CPU has a flag bit IF indicating whether interrupts are enabled or not.
The cli/sti instruction clears/sets the bit to disable/enable interrupts. In 8259 A
there is a register isr, each bit of which corresponds to a hardware interrupt
and records if the interrupt is being served or not. Different priority levels are
assigned to different sources of interrupts, with level-0 being the highest. When
an interrupt request comes, we check IF and isr. If the interrupts are enabled
and there is currently no interrupt with higher or the same priority being served,
the request will be served. The corresponding bit in isr is set to 1 and the control
jumps to the corresponding interrupt handler.

On the invocations of an interrupt handler, the CPU flags (including IF) are
saved on the stack, and interrupts are disabled automatically. If interrupts are
enabled again inside the handler, the handler could be further interrupted by
requests with higher priorities, causing nested interrupts.

The handler returns to the program being interrupted using the iret instruc-
tion, which also restores the flags (including IF). Before the handler returns,
it needs to execute eoi to send an “end of interrupt” signal to the interrupt
controller, which clears the corresponding bit in isr. Note that after eoi but
before iret, if interrupts are enabled (IF = 1), the handler could be interrupted
by interrupts at a lower or the same level.

Overview of pC/OS-II. uC/OS-11 is a commercial preemptive real-time multi-
tasking OS kernel developed by Micrium [2]. The kernel has 6000+ lines of C
code and 300+ lines of assembly. It allows a fixed number of tasks, multi-level

http://staff.ustc.edu.cn/~fuming/research/certiucos
http://staff.ustc.edu.cn/~fuming/research/certiucos

62 F. Xu et al.

interrupts, and preemptive priority-based scheduling. The system APIs include
“semaphores; event flags; mutual-exclusion semaphores that eliminate unbounded
priority inversions; mailboxes; message queues; task, time and timer manage-
ment; and fized sized memory block management” [2]. uC/OS-1I is developed for
microprocessors and microcontrollers, and it does not support virtual memory.
It has been deployed in many real-world safety critical applications, including
avionics (e.g., the Mars Curiosity Rover) and medical equipments.

2.2 Overview of the Verification Framework

An OS kernel hides details of the underlying hardware and provides an abstract
programming model for application-level programmers. The implementation of
the kernel must ensure that behaviors of user applications in the real machine
are consistent with their behaviors under the abstract model [14]. Thus the OS
verification can be reduced to verifying refinement between the concrete and
abstract programming models.

Contextual Refinement as Correctness. We consider three entities, the applica-
tion A, the abstract specifications of the system APIs and interrupt handlers
O, and their concrete implementations O. When system calls are made or inter-
rupts are handled, routines in O are invoked in the real execution, while in the
programmers’ mind those in O are invoked instead at the abstract level. Then
the correctness of OS kernels requires O refines O under all contexts A:

vA.[A[0]] € [A[O]]

where [_] maps a program P to the set of its observable behaviors. It says that,
for all applications, executing the concrete code O does not have more observ-
able behaviors than executing the abstract version Q. In this paper, observable
behaviors are defined as finite prefixes of execution traces consisting of observable
events, following Liang et al. [17].

Contextual refinement is a very strong notion of functional correctness of
system APIs since it quantifies over all applications. Moreover, it makes verifica-
tion of system-wide properties simpler. For instance, if we want to verify certain
property @ about a whole system A[O], i.e., @ holds over every trace in [A[O]],
we could prove that it holds over every trace in the superset [A[OQ]] instead.
Proofs at the abstract level could be much simpler than the concrete level.

The Whole Verification Framework. Figure1l shows the structure of our verifi-
cation framework. To model OS kernels and applications, we introduce two lan-
guages (in block A), the low-level language for the concrete code implementation
and the high-level language for the abstract specification. Above them we have
a program logic (in block B) that allows us to prove the low-level kernel imple-
mentation contextually refines the high-level specifications. The framework also
provides a set of Coq tactics (in block C) to automatically generate and prove
verification conditions. The pC/OS-IT modules certified in this framework are
shown in block D. Below we give details of some of the building blocks.

A Practical Verification Framework for Preemptive OS Kernels 63

Multi-Level -

Inlierlru;‘t/: Priority-Based ‘Message Queue‘ ‘Mutex‘ ‘Semaphore‘ ‘Mail Box‘
hedul - : -

(Timer & ...) Scheduler Synchronization Mechanisms

D.Verifying uC/0S-II

t t |

Relational Assertions Refinement-Based Program Logic M Contextual Refinement ‘

Entailment B.Refinement-Based Verification

| |

Forward Reasoning -
The High-L 1L
for Refinement-Based . ¢ “ign-heve .anguage - System-Wide
Judgements ngh—Leyel Smal.l—Step Operational Semantics| s Properties
with Configurable Schedulers
Domain-Specific High-Level Abstract C Subset Low-Lgvgl .Assembly
Solvers Statements Primitives
Low-Level Small-Step Operational Semantics
...... with Context Switch and Interrupts
The Low-Level Language
C.Coq Tactics A.Modeling of 0OS Kernels

Verification Framework

Fig. 1. Structure of the verification framework and pC/OS-II verification

3 Modeling of OS Kernels

As explained above, the correctness of OS kernels is formalized based on three
entities — user applications A, the concrete implementation O, and the abstract
specification Q. In this section we introduce the programming (or modeling)
languages for the three entities (see block A in Fig.1). Due to space limit, we
only show the main language features with simplifications for clear presentation.
The details are available at TR and the Coq code [26].

3.1 The Low-Level Language

The low-level language consists of two parts for implementations of user appli-
cations and OS kernels, respectively.

Application Language. The application language is shown at the top of Fig. 2.
It is a subset of the C language consisting of function calls, pointer operations
(except pointer arithmetics), arrays, structs, bit operations, etc. The application
code A maps function names to their function bodies. The command f(é) calls
the function f, which could be either an application function in A or an OS API
(in O at the low-level or in @ at the high-level, as we explain below).

64 F. Xu et al.

(AEzpr) e == nlx| xe|&el|eid|ele]] ...

(AppStmts) d = e=e| f(€)|d;d|while (e) d|if () d else d|return e ...
(AppCode) A = {fi~di, ..., [n~dn}

(LPrim) v = switch z|encrt|excrt|eoi k|iext| ...

(LStmts) s u= d]|¢]s;s|while (e) s] ... (ItrpCode) 6 = [so,...,SN—1]
(ProgUnit) n == {f1~> S1,...,fn~ Sn} (LOSCode) O ::= (Na,ni,0)
(LProg) P = (A,0)

(BitVal) b,ie € {0,1} (ISRReg) isr ::= [bo,...,bn—_1]

(CrtStk) cs == nil|ie:cs (ItrpStk) is = nil | k::is

(ItrpTaskSt) & == (ie,1s, cs) (ItrpSt) 7w = {t1 ~ b61,...,tn ~ 6n}

Fig. 2. The language for applications and kernel implementation

Note that the correctness of OS kernels are independent of the implemen-
tation language of A. Here we pick the C language for A to simplify the for-
malization because the applications and the kernel are now implemented in the
same language and we do not have to consider the interaction between different
languages when defining the whole system (A[O]) behaviors.

Low-Level Language for OS Kernels. The middle of Fig.2 shows the low-level
language for the concrete implementation of OS kernels. Usually the kernels are
implemented in C with inline assembly. However, giving semantics directly to C
with inline assembly requires us to expose stacks and registers, which make the
semantics overly complex. To avoid this problem, we extend the C statements
with assembly primitives ¢ to encapsulate the assembly code. Semantics of these
primitives will be given below.

switch x switches to the target task x. encrt enters a critical region by
disabling interrupts. It also saves the old IF onto the stack to allow nested
critical regions. Note we use ie to model the IF flag and abstract away other
bits in the hardware EFLAGS register. excrt exits the current critical region by
popping the stack to recover ie. Since we hide stacks in our state model, we use
an abstract stack cs to save the historical ie bits (see Fig. 2, which is explained
below). eoi k clears the k-th bit in isr, indicating that the k-th interrupt is no
longer in service. iext enables interrupts and returns to the interrupted program.

The kernel implementation O consists of the system API implementation 7,
the internal functions 7; and the interrupt handlers 8. The internal functions are
called only by code in 7, or 6. 6 is a sequence of N interrupt handlers, where N
is the maximum number of interrupts we support. The handler with the lower
identifier has the higher priority. Then a complete low-level program P is defined
as a pair of the application code A and the kernel code O.

Operational Semantics. The language is concurrent, with multiple continuations
(i.e., control stacks) in the state, each corresponding to a task. All tasks share

A Practical Verification Framework for Preemptive OS Kernels 65

memory, but each has its own local variables and local interrupt states (see ¢ in
Fig. 2, which is explained below). We also separate the program state (including
memory and variables) into two disjoint parts, one for the application code A
and the other for the kernel code O. The only way for A to access kernel states
is to call system APIs in O, and O cannot access application states.

We give small-step operational semantics to the language. For each step, the
processor picks the continuation of the current task and executes its current
command or expression. To model concurrency and interrupts, both commands
and expressions could be executed in multiple steps, where each step corresponds
to the granularity of a single machine instruction (as in CompCertTSO [22], but
we use the sequential consistent model instead of the x86-TSO memory model).

The assembly implementation of the context switch routine is abstracted into
the primitive switch z. It switches the execution from the current task to the
target task x, where = stores the task identifier.

The other assembly primitives ¢ are all related to interrupts management and
handling. To model their semantics, we introduce interrupt states in the state
model, as shown at the bottom of Fig. 2. The global register isr is shared by all
tasks. It models the isr register in the 8259 A interrupt controller, as explained in
Sect. 2.1. In addition, there are local interrupt states § for each task. It contains
a local copy ie of the IF flag in the EFLAGS register (see Sect.2.1) recording
whether interrupts are enabled, a stack cs consisting of the historical values of
ie to support nested critical regions, and another stack is recording the sequence
of interrupts that interrupt the execution of the task. The stack is is auxiliary
data introduced mainly for verification purposes. 7 records the § of each task.

encrt enters a critical region by disabling interrupts (i.e., clearing the e bit
using cli). It also saves the old ie onto the cs stack. excrt exits the critical region
by popping off the top value on c¢s and using it to restore ie (executing sti if the
value is 1).

Interrupt requests may arrive non-deterministically after each step if ie = 1.
A level-k request is served only if there is no request at higher or the same
level being served (i.e., VK'.k' < k — isr(k’) = 0). Then the processor clears
ie, sets isr(k) to 1, pushes the number k onto the logical stack is, saves the
execution context and the local variables onto the abstract control stack (i.e.,
the continuation), and finally jumps to the interrupt handler 6(k).

eoi k clears the k-th bit in ¢sr, indicating that the k-th interrupt is no longer
in service. iext is an abstraction of the iret instruction. It resets the ie bit to
1 to enable interrupts, pops out the topmost interrupt number on the s stack,
and returns to the interrupted program.

3.2 The High-Level Specification Language

Viewing from the aspect of application programmers, we model the OS kernel
as an extended C language with multi-tasking and system calls. As explained
above, the C language is used to implement user applications A, and the system
calls invoke an abstract version of system routines in @, which are implemented
using a simple specification language. Correspondingly, the low-level concrete

66 F. Xu et al.

(HStmts) s ::= sched|~(?v)|assert b|end |s1;82|%1+82

(HAPISet) @ == {f1~S1,..., fn ~ $n} (HEwtSet) € := [$0,...,8N—1]
(HSched) x € HAbsSt— Taskld — Prop (TaskId) t € Nat
(HOSCode) O == (p,e,x) (HProg) P := (A,Q0)
(HAbsSt) X = {a1~,...,8an~ 2} (HDataNm) a ::= tcbls|ctid | ...
(HData) 2 :=alt]| ... (HStatus) ts:=rdy| ...
(HTCBLS) a = {t1~(pri,ts1,..)y« oyt~ (Drn, tsn, .. .)}

Fig. 3. High-level spec. language and abstract states

representation of kernel states is modeled as algebraic abstract states at the
high level. This section presents the high-level language and its semantics.

As shown in Fig. 3, the whole high-level program P consists of the application
code A and the abstract specification of the kernel Q. The application code A is
the same as in the low-level language (see Fig.2). O contains the specifications
 for kernel APIs, € for interrupt handlers, and y for the scheduler.

Programmers at this level have no control over interrupts (e.g., enabling
or disabling interrupts). Always enabled, interrupts are modeled implicitly as
abstract external events that may occur non-deterministically at any program
points. At the high level an incoming level-k event is always handled by executing
e(k), i.e. the k-th handler specified in e.

The system APIs and interrupt handlers are specified as an abstract state-
ment s, which forms a simple but expressive specification language. sched does
scheduling. Its semantics is determined by the abstract scheduler specification
X- As defined in Fig. 3, x is a binary relation between abstract states and task
identifiers. That is, given an abstract state X (defined at the bottom of Fig. 3), x
finds a related task identifier as the next task to execute. Note that x is a relation
instead of a function, therefore the abstract scheduler could be non-deterministic.
Since x is provided as part of the kernel specification, the semantics of sched in
our language is configurable. Specifying details of the scheduling policies (instead
of using a more abstract non-deterministic scheduler that may pick any task)
allows us to specify and verify scheduling properties such as PIF at the high
level.

~(?) is a meta-level relation (defined in Coq) that takes ¥ as arguments and
maps an abstract state to another. It can be instantiated to specify any atomic
transitions over abstract states. assert b asserts that the predicate b holds over
the current abstract state. end represents the end of abstract APIs or interrupt
handlers. s1; %9 and s1 4%, are statements for sequential composition and non-
deterministic choices respectively.

Abstract States. The kernel state is represented as the abstract state 3 at the
high level. As defined at the bottom of Fig.3, X' is a mapping from names a
to the abstract data 2. Here tcbls is the name for the high-level abstract TCB
list o, which maps task identifiers to abstract tasks, including the priority pr

A Practical Verification Framework for Preemptive OS Kernels 67

(a natural number), the task status (ready, waiting, etc.) and so on, depending
on the low-level implementations. ctid is the name for the current task identifier ¢.
FEzample of High-Level Specifications. We use sgy = (Yerr(ticks) +
(vary (ticks); sched)) to specify the system API “void OSTimeDly(Int16u ticks)”,
which delays the current task for the specified number of system ticks. The
atomic operation 7er(ticks) specifies the error case when ticks = 0. yqiy(ticks)
defines the atomic behavior of updating the status of the current task from
“ready” to “waiting” with the duration set to ticks when ticks > 0, and the
following sched switches to another ready task, following the scheduling policy
specified by the abstract scheduler x. Note that the exclusive conditions over
ticks in 7err(ticks) and ~vqiy(ticks) make the non-deterministic choice statement
deterministic. We omit the definitions of e (ticks) and ~auy (ticks) here.

As another example, below we show the abstract scheduler specification
Xpcyos-11 for pC/OS-IL. It requires that the selected task be ready and have
the highest priority among all the ready tasks.

X uC/OS-IT LAx, t.3a, pr.X(tcbls) = a A a(t) = (pr, rdy)A
v’ pr'. (t#£E Aa(t’) = (pr’, rdy)) —pr’ <pr

3.3 OS Correctness

As we explain in Sect. 2.2, the correctness of OS kernels can be defined in terms
of contextual refinement. Below we give its formal definition.

Definition 3.1 (OS Correctness). O C, O iff
VA, W, W.Match(yp, W, W) = ((4,0), W) < ((4,0),W)
where ¢ € LOSFullSt — HAbsSt — Prop and
Match (v, (T, A, A1), (T, A, 5)) =
(t € dom(T)) N (¢ A X)A(t=2(ctid)) A (dom(T) =dom (X (tcbls)))

The low-level kernel code O refines its high-level abstract specifications O
with constraints 7 over initial kernel states, denoted as O Ty O, if and only
if for any client code A, low-level state W and high-level state W, if W and
W satisfy certain consistency constraint (w.r.t.), then the set of observable
behaviors of the low-level configuration ((A,O), W) is a subset of ((4,0Q), W)
(i.e., (P,W) = (P, W), following the event trace refinement in [17]).

Due to space limit, we elide the definitions of W and W in Sects. 3.1 and
3.2. The low-level whole program state W is in the form of (7, A, A,t), where
the task pool T maps task identifiers to their continuations, A is the client state,
A is the low-level kernel state, and ¢ is the identifier of the current task. The
high-level program state W is in the form of (T, A,), where X is an abstraction
of the low-level kernel state A and the current task id ¢.

The constraint Match requires that: (1) initially W and W have the same
task pool T' and client state A; (2) the current task ¢ is in T (3) the low-level

68 F. Xu et al.

incO{

int done=0, tmp; {cnt = N} {3N.cnt = N} {cnt = CNT A [|[(CNT++)|]}
while(!done){ incQ; inc(); inc();

tmp=cnt; 2 _ —
done=cas (&cnt , tmp, tmp+1) } {cnt = N+1} {3IN.cnt = N} {cnt = CNT A [|end|]}

}
(a) Implementation of inc (b) Wrong spec. (c) Weak spec. (d) Refinement spec.

Fig. 4. Specification of concurrent programs

kernel state A and the high-level abstract state satisfy ¥; (4) the current task
at the low level and the high level are the same; and (5) the set of tasks in the
abstract TCB list should be the same as those in the low-level task pool.

4 Relational Program Logic for Refinement Verification

In this section, we present a CSL-style relational program logic for refinement
verification. The logic uses relational assertions to prove refinement between
an implementation and its specification. It also follows the ownership-transfer
semantics in CSL to reason about multi-level hardware interrupts.

Refinement of Concurrent Programs, and Relational Reasoning. For concurrent
programs, refinement establishes stronger functional correctness than traditional
Hoare triples. As an example, the function inc shown in Fig. 4(a) increments the
counter cnt. It may be called simultaneously by concurrent tasks. Figure4(b)
gives pre-/post-conditions to specify inc, which would be valid in a sequen-
tial setting and is sufficient to describe the functionality. However, they cannot
be used in a concurrent setting because they are not stable with respect to
concurrent behaviors of other tasks. To make them stable, we may need the
specifications in Fig.4(c), which is too weak to capture the functionality.

Figure4(d) gives a relational specifications to show that inc refines an
abstract operation (CNT++) [19], where (C) represents an atomic operation C.
The relational assertions specify three important entities, the concrete state
(cnt), the abstract state (CNT) and the abstract operation ((CNT++)) that the
program refines (which could be non-atomic in general [19]). The precondition
requires that initially cnt has the consistent value with its abstract counterpart
CNT, and the abstract operation that inc needs to refine is (CNT++). The post-
condition ensures cnt and CNT remain consistent and the remaining abstract
operation that needs to be refined is end (i.e., (CNT++) has been accomplished).

Our refinement proofs for OS kernels follow the same kind of relational rea-
soning, where the assertions now relate the concrete kernel state, the abstract
kernel state (X) and the abstract statement (s).

Assertions. Below is the assertion language, and its semantics is given in Fig. 5.

(Asrt) p,q,r :: = emp |empE | z+— v | ISR(isr) | IE(ie) | IS(is) | CS(cs) | Lka| x>t
| a—Q2|[s[|pxplpAp]...
(Inw) I :=[po,...,pN]

A Practical Verification Framework for Preemptive OS Kernels 69

(RelState) © ::= (0,X,s) (LTaskCfg) o ::= (m,isr,8§) (LTaskSt) m == (G,E,M)

(0,2,8) =emp iff omM=0AN2=10

(0,2, 8) = empE iff om.E=0A(0,X,s) |Eemp

(0,2,8) Fa—v iff Ja.(e.m.G)(z) =ahomM={a~v}ANX=10
(0, %,8) = ISR(isr’) iff o.isr = isr' A (0, 2,8) = emp

(0,2,8) E Lk iff (k=N Ads=nil) Vv Jis’.(0.6.is=k::is')) A (0, X,) |= emp
(0,2,8) E xpt iff x Xt
(0.Z,8) = [Is'l] iff s=5'A(0,5,5) = emp
(0, 2,8) Fa—0 if YX={a~2}Aom.M=1
def o dﬁf{zluzg iff X7 L X

flg = dom(f)ndom(g) =0 F1w iy = undef otherwise

c ((G,E,Ml U Mz),iS’l‘, 5) iff My L My Aoyp = ((G,E,Ml),isn 5)
1oy = Aoy = ((G, B, M2), isr, §)

undef otherwise

O, WO, def (o1 Woo, X1 W Yo, 8) where @1 = (01, X1,8) A Oz = (02, X2, %)
O = p1 % p2 iff 301,020 =01WO02AN01 =p1 AOs = po

Fig. 5. Semantics of relational assertions

As explained above, the assertions are interpreted over relational states @, which
consist of the low-level task-local states o, the high-level abstract states X, and
the abstract statements s that the low-level code needs to refine. X' and s are
defined in Fig. 3. 0, as shown in Fig. 5, consists of a task-local view m of program
variables and memory, and also the global isrregister and the task-local interrupt
states § (see Fig.2). Here m contains the global and local variables (G and FE
respectively) and the memory M, whose definitions are omitted.

Assertion emp says the low-level memory and the high-level abstract state
are both empty. empE further requires that the local variable environment be
empty too. x+— v specifies a singleton memory cell with v stored in the global
program variable x. ISR(isr), 1S(is), IE(ie) and CS(cs) specify the value of the
corresponding interrupt status (see Fig. 2). LkJ means that the currently running
interrupt handler is at level k (or kK = N, meaning no running handlers).

x>t says that, based on the high-level abstract state, the abstract sched-
uler y picks t as the target task. a — {2 specifies a singleton high-
level abstract state mapping the data name a to the abstract data f2.
[||]] means the current abstract
statement remaining to be refined
is s. The separating conjunction I

Io
p1 * po means p; and ps hold over ci_, i
&

disjoint parts of a relational state.
I | il

. . Region
Ownership-Transfer Semantics for &

<
Multi-level Interrupts. CSL [21] — (—= q
prevents data races by enforc- 1'0 * M
ing disjoint ownership of resources

among tasks. Synchronization is Fig. 6. Memory partition for handler and non-
modeled in terms of ownership handler (Figure taken from [11])

70 F. Xu et al.

transfer. Feng et al. [11] extend CSL and assign ownership-transfer semantics
to interrupt operations. The idea is demonstrated in Fig.6, which shows the
logical memory model when there are only one task and single-level interrupt.
Since the interrupt handler can preempt the task, we let the handler to reserve
its required memory first (represented as block B). B must remain publicly avail-
able if the interrupt is enabled. Then the task can only access the remaining part
(block T'). We use grey boxes to represent local resources of the task. Disabling
interrupts (cli) by the task essentially transfers the ownership of B from public
to task-local. Correspondingly, sti converts the block from task-local to public,
therefore the task cannot access it anymore. Similarly, invocation of the inter-
rupt handler (not shown in the figure) automatically transfers B from public to
the local resource of the handler, while iret transfers it back to public.

Since block B is shared between the interrupt handler and the task, it must
be well-formed when it is public. We use the resource invariant Iy to specify the
well-formedness. Then the above ownership transfer semantics of cli and sti can
be formalized in the following (simplified) program logic rules:

Io = {pt}cli{p: x lo} Io & {pe * In} sti{p:}

Note that the partition between B and T is enforced logically using the sepa-
rating conjunction in separation logic (see Fig.5). It does not require physical
separation in the program state model.

In this paper we extend this idea to support multi-level nested interrupts,
where the ownership transfer of interrupt primitives is determined not only by
the ie flag, but also by the isr register. Figure 7 shows the memory model (where
the number N of interrupts is set to 6). Interrupt handlers at levels 0 to N—1
are assigned with resource blocks By, ..., By respectively. By represents the
resource shared only among tasks, i.e., the non-handler code. We omit task-local
resources, therefore there are no counterparts to block 7" in Fig.6. Handlers’
priorities to reserve their required resources are consistent with their interrupt
priority levels. That is, By satisfies all the need of the level-0 (highest priority)
handler, while the level-k£ handler may need to access By, ..., Bi_1, in addition
to By. The non-handler has the lowest priority. Each block By is specified by
the resource invariant I(k), where I is defined as a sequence of N+1 assertions
(see the assertion syntax defined above).

isr: [T 01 0 1 0] [T O1 0 0 0] [T 0O 00 O 0]
je=1 W e T P

Be6 B5 B4 B3 B2 Bl B0 Be6 B5 B4 B3 B2 Bl Bo

y clil @ Tsti c"l st¢ @ Tiret
| Z T o 7 T

Be6 B5s B4 B3 B2 Bl Bo Be6 B5 B4 B3 B2 Bl BO Be6 B5s B4 B3 B2 Bl Bo

Fig. 7. Ownership-transfer for multi-level interrupts

A Practical Verification Framework for Preemptive OS Kernels 71

Figure 7 demonstrates the ownership transfer of resource caused by inter-
rupt operations under different conditions. The grey or dotted blocks represent
resources exclusively owned in interrupt handlers, different textures for differ-
ent interrupts. The white ones represent resources available for share. Suppose
initially we are at state (1), where the level-3 handler is being executed, as the
value of isr indicates. Since interrupts are disabled, the handler owns By — Bs,
knowing no requests of levels 0 to 3 could be served. Enabling interrupts (sti)
loses By — Ba, as shown by state (2), but Bs is remained because isr(3) = 1
and requests of the same (or lower) level are not handled. However, if isr(3) = 0
instead (as in state (5)), executing sti loses Bs as well. Ownership transfer by
cli is the dual of sti.

Executing eoi at state (1) leads to state (5), but it causes no ownership
transfer because interrupts are disabled anyway. If interrupts are enabled instead,
as in state (2), eoi loses the ownership of B3 because another level-3 request may
be handled in state (4). iret can be executed only after eoi. If interrupts are
disabled (as in state (5)), it transfers By — Bs from local resources to shared
resources. Otherwise (as in state (4)) there is no ownership transfer because the
handler has lost the ownership of By — Bs already.

At state (2), interrupts with higher priority can be served. The “irq 1” step
sets the bit isr(1), disables interrupts, and transfers By and B; from shared
resources to local resources of the level-1 handler, as in state (3).

The Top Rule. We show some selected program logic rules in Fig.8. The
ToPRULE establishes the judgment F; O : O, ensuring the correctness of O
w.r.t. @ if the initial concrete and abstract kernel states satisfy ¥ (explained in
Sect. 3.3).

To verify the kernel, we need to come up with a specification I" for the
internal functions 7; in the low-level code, and a sequence of invariants I for
kernel states. I" assigns a pair of pre-/post-conditions to each internal function.
We omit the formal definition here.

Then we prove that the internal functions, the API implementations and the
interrupt handlers in the low-level kernel satisfy their specifications, respectively
(the last three premises in the first line of the TOPRULE rule). The proof of each
component carries the abstract scheduler specification x and the invariant I.

The rule also requires that i) ensures the initial states satisfy the invariant
1[0, N], the interrupt-related states are properly initialized, and the initial local
variable environment is empty. I[n,m| defined in Fig. 8 is the separating con-
junction of invariants from level n to m. OS|[isr, ie, is, cs] specifies the status of
interrupts, and requires that the currently executing handler (on top of is) have
the highest priority among those in service (as recorded in isr). |t] lifts ¢ to
relational assertions (definition omitted). We also omit some more detailed side
conditions about the initial states in the rule.

Verifying Interrupt Handlers. We omit the rules of proving x;I F n; : I and
I';x; I F n, : @ for internal functions and APIs respectively, which are similar
to the rules for interrupt handlers. The ITRP rule proves the correctness of

72 F. Xu et al.

O="a,n:,0) O=(p,e,x) xsIkmni:T Iix;IEmne e Iix;I-0:¢e
l¢] = 1[0, N]* OS[0, 1, nil, nil] * empE other side conditions
(TorPRULE)
Fy O:0

p = BldItrpPre(k, €, isr, is, I) p; = BldltrpRet(k, isr, is, I)
dom(0)=dom(e) I';x;I;false;p; - {p}0(k){false} forallke{0,...,N—1}

(ITRP)
I'ix;IFEO:e
(ENCRT)
I'sx; Iy rspi b {OS[isr, 1, is, cs]xLko * [|8]] } encrt { OS[isr, 0, is, 1:: cs]*INV(I, k)« I[0, k — 1]«[|s[] }
(ENCRT-0)
I';x:I;rspi B { OS[isr, 0, is, cs]*[|s]] } encrt { OS[isr, 0, s, 0:: cs] = [|s]] }
(EXCRT)
Ty x; Iy ps = {OS[isr, 0, is, 1:: cs] Lk axINV(I, k) 1[0, k—1]*[|s|] } excrt { OS[isr, 1, is, cs]*[|s]] }
EOI
Isx; Iyrspi B { OSlisr, 1, ks, cs]+I(k)*[|s]] } eoi k { OS[isr{k ~ 0}, 1, k::is, cs]*[|s[] } (eor)
p < SWINV(I) * 1S(is) * CS(cs)
(SWITCH)
Iix; Iirypi = { (p * [|sched;s|]) A x>z } switch z {p * [|8]] }
p = pi p=>p DixsLimpib{p' }s{d} d>q
(1EXT) (ABSCSQ)
I x; I; false; p; = { p } iext { false } Iix;Iimspi - {p}s{aqa}

I, m] def {I(n)*[(n-&-l)*”.*l(m) if 0<n<m<N

emp otherwise
OS[isr, ie, is, cs] T ISR(isr) * IE(ie) * 1S(is) xCS(cs) * Lk * (VK. 0<k' <k — isr(k’)=0)
INV(Z, k) L Jisr ISR (ist) * ((isr(k) = 1 A emp) V ((isr(k) = 0V k = N) A I(k)))

SWINV(T) ISR(D) % IE(0) % (3 k. Lku * I]0, k])
BldltrpPre(k, ¢, isr, is, I) def OS[isr{k ~> 1},0, k::4s, nil] * I0, k] * [|e(k)|] * empE
BldltrpRet(k, ist, is, I) < Jie. OS[isr{k~ 0}, ie, k::is, nil] # ((ie = 1 Aemp)V (ie = OAI[0, k])) * [|lend]]

def

Fig. 8. Selected inference rules

interrupt handlers. It requires that each individual interrupt handler is correct
with respect to its specification. The judgment for statements is in the form of
Iix; Lirsp; F {p} s { q } We follow the CSL-style reasoning, where I specifies
shared resource blocks, and the pre-/post-conditions specify local resources that
are accessed exclusively by the current task. The precondition is p, while ¢, r and
p; are all post-conditions for different exits, i.e., sequential composition, return
from functions, and return from interrupts, respectively. For the whole body of
interrupt handlers, we disable the other two exits by setting r and ¢ to false.

We build the pre-/post-conditions of handlers with the auxiliary definitions
BldltrpPre and BldltrpRet given in Fig. 8. The precondition says that, when enter-
ing the level-k handler, isr(k) is set to 1, the interrupt is disabled and k is pushed
onto the interrupt stack is (therefore OS[isr{k ~> 1}, 0, k::is, nil]). Since there is
no handler of higher-priority in service, the handler has exclusive access to the
resource I[0,k] (see Fig.7). It also needs to refine the high-level specification
code e(k). empE requires there are no local variables at the beginning,.

The built post-condition requires that: (1) the corresponding isr bit has been
cleared; (2) if interrupts are enabled (ie = 1), the handler has no access to the
shared resources; otherwise it needs to ensure that its owned resources are well
formed w.r.t. I]0, k] (see the two iret steps in Fig.7); and (3) there is no high-
level specification code remaining to be refined (i.e., the abstract specification
code e(k) specified in the precondition has been fulfilled).

A Practical Verification Framework for Preemptive OS Kernels 73

Rules for Commands. The 1IEXT rule simply requires that the post-condition p;
holds when we reach the end of the interrupt handler. The ENCRT rule shows the
ownership transfer when interrupts are disabled. Suppose we are at the level-
k handler (k = N means we are executing the non-handler code). Disabling
interrupts prevents interrupt requests from level 0 to k — 1, therefore the current
task gains the ownership of I[0, & — 1]. The transfer of the k-th block is specified
by INV(I, k) in Fig.8. If the bit isr(k) is 0 (or k = N), the task also gains the
ownership of I(k), otherwise it already owns the k-th block and there is no extra
ownership transfer. The two scenarios are also demonstrated by the two cli steps
in Fig. 7. If interrupts are already disabled when encrt is executed, there is no
ownership transfer, as shown by the ENCRT-0 rule.

The EXCRT rule is the dual of the ENCRT rule (see the two sti steps in Fig. 7).
Correspondingly there is a EXCRT-0 rule, which is omitted here. The EOI rule
says, if interrupts are enabled, the task loses the ownership of I(k) after eoi k.
Otherwise there is no ownership transfer and the corresponding rule is omitted
(see the two eoi steps in Fig. 7).

The SWITCH rule requires that the invariant SWINV(I) holds before switching
away and it is preserved after switching back. SWINV(T), defined in Fig. 8, says
that interrupts must be disabled, and all the bits of isr are 0 (i.e., either we are
running non-handler code or we are in the outmost layer of nested invocation
of interrupt handlers and have already executed eoi). Also if we are running
level-k code (either handler or non-handler if k = N), the resource blocks 0 to k
acquired before should satisfy I]0, k], so that the target task could access them.
The rule also says that the task-local states is and cs are not changed by switch.

To establish refinement, the precondition also requires that the high-level
abstract scheduler y picks the same task with the one in z, and switch = at
the low level correspond to the sched step at the high level. Therefore in the
post-condition sched is no longer in the remaining abstract operations.

Following [19], the ABSCsQ rule looks like a regular consequence rule but
allows us to ezecute the abstract code. The implication p = p’ is defined below.

Vo, 5,5 (0, 5,8) | p) = 35,8, ((S,) et (8, 2')) A(o, 2,8 =)

That is, given a related state (o, X, s) satisfying p, the abstract code s could
execute zero or multiple steps starting from X and reach (X’,s'), so that the
resulting related state (o, X', ') satisfies p’. This rule allows us to establish sim-
ulation between the concrete and the abstract code, which then ensures refine-
ment.

We can look at Fig. 4 to see the use of this rule. Suppose we want to verify
inc() using the specification in Fig. 4(d). When we reach the cas command (see
Fig.4(a)), we have the precondition (tmp=cnt A cnt =CNT A [|[<CNT++>|] V ...)
(the case for tmp # cnt omitted). Right after cas, we have (done A cnt =
CNTHLA[|<CNT++>|] V ~doneA. ..). We have cnt = CNT+1 because cnt increments
if cas succeeds. To establish the simulation, we apply the ABSCSQ rule to execute
the abstract code, because (cnt =CNT+1 A [|[<CNT++>|]) = (cnt =CNT A [|end|]),
following the above definition of p = p’.

74 F. Xu et al.

Theorem 4.1 gives the soundness of the framework. The proofs are based on a
compositional simulation following [18], and have been formalized in Coq. More
details about the logic can be seen in TR [26].

Theorem 4.1 (Soundness). k4, O:0 = 0 C, O.

5 Proving Priority-Inversion-Freedom

Formalization of PIF. Earlier work [6] defines priority inversions in terms of
whether there is a higher priority task waiting directly or indirectly for a lower
priority task. Since the definition refers to the current priority of tasks, its mean-
ing is affected by algorithms that dynamically change the priority of tasks, such
as the classic priority ceiling and priority inheritance algorithms [23]. We give a
new formalization of PIF, which is based on the original priorities assigned by
the programmers, reflecting the actual degree of urgency.

Definition 5.1 (Priority Inversion Freedom). PIF(X) holds, iff for any ¢,
te, pr and pre, if t # t., t. = CurTask(X), pr = OrgPr(¢, X)), pr. = OrgPr(t., %),
IsWait(t, X') and —lsOwner(t., '), then pr < pr..

It says, if the current task t. does not own any shared resources, then its original
priority should be higher than (or equal to) any other waiting tasks ¢. Here
OrgPr(t, X)) represents t’s original priority assigned by programmers. IsWait(¢,)
means that ¢ is blocked, waiting for certain shared resource, and —lsOwner(t., X)
means that the task ¢. does not own any shared resource (e.g., mutexes).

If each task eventually releases its shared resource (i.e., there is no deadlock),
the definition ensures that the waiting task with higher priority will be eventually
released and executed. Therefore it prevents unbounded priority inversion [23].

PIF of puC/OS-II. The mutex of uC/OS-II is implemented with a simplified
priority ceiling protocol [23]. When proving it satisfies PIF, we find a counterex-
ample (given in TR [26]) showing that PIF cannot be guaranteed unless there is
no nested use of mutexes. By adding the assumption of no nested mutexes, we
prove that the mutex in C/OS-II ensures our PIF definition.

Theorem 5.2 (PIF without Nested Use of Mutexes).

If lnit(2)7 (Aa@pC/OS»H) F (T7A72) :H$(T/7A/52/); NONCR(AaEaTaA)}
and SchedProp(X"), then PIF(X').

It says, for any application code A, task pool T, client state A and abstract
kernel state X, if initially there are no tasks waiting for mutexes (Init(X)), and
there is no nested use of mutexes (NoNCR(A, X, T, A)), then for any T’, A’
and X’ generated during the execution, if X/ is consistent with the priority-
based scheduling (i.e., the currently running task always has the highest priority
among all the ready tasks, represented as SchedProp(X”)), then it must satisfy
PIF. Here we use a simplified O,,c/0s.11 that contains the PIF mutex as the only
APIs. The proof is formalized in Coq.

A Practical Verification Framework for Preemptive OS Kernels 75
6 Verifying pC/OS-I1

We have applied our framework to verify key modules (around 1300 lines of C
code without counting comments and empty lines) of uC/OS-II V2.52, including
the scheduler, the timer interrupt handler, mutexes, message queues, mail boxes,
semaphores, and the time management. These 1300 lines of C code verified in our
framework correspond to around 3250 lines of code in their original format (with
comments and empty lines) in the source files of pC/OS-11, including “ucos_ii.h”,
“0s_q.c”, “os_sem.c”, “os_mbox.c”, “os_mutex.c”’, “os_time.c”, “os_core.c” and
“os_cpu_a.c”. The verified modules cover 63 % of the frequently used APIs and
internal functions [2]. We ignore some synchronization APIs which have similar
functionality as the verified ones. Verification of task creation/deletion is still
ongoing work based on the presented framework.

Modifications to the Original Code. Our verification is based on the original code
with some minor modifications. For instance, the API OSQPend(S) is used to
receive a message from a queue, and its original code does not check if the input
pointer S points to a valid event control block, because it assumes that the client
code always gets S by calling OSQCreate() (thus S should already be valid). We
drop this assumption about the client code. Correspondingly we insert code that
checks whether S is a valid pointer. If S is invalid a new error code is returned.
Similar modifications are made to some other modules too. The reason for doing
above modifications is that the contextual refinement proved in our verification
framework assumes arbitrary client code, while kernels are usually implemented
with assumptions over client code for efficiency.

Table 1. The Verification Package

Framework Cogq lines ||Verified Modules|lines of C|Coq lines
I?Azsclliiitlebgjiffgic gggg; Global Declarations 187 -
Automated Tactics 21050 Message Queue 240 4537
Total 76206 Semaphore 166 2441

Certified yC/OS-II | Coq lines Mailbox 171 3326
C Code Definitions 1824 Mutex 301 17331
Specifications 6012 Time Management 39 861
Priority Inversion Freedom 9570 Timer Interrupt 17 443
Libraries for ;C/OS-II 62085 Internal Functions 195 5447
Auto. Generated Code 25357 Final Theorems - 501
Total 104848 Total 1316 34887

Proof Efforts. The Coq implementation consists of around 216,000 lines of code
and proofs in Coq8.4pl6. Table 1 gives a break down of the number of lines for
various components. Compiling the entire Coq package takes around 16 h on

76 F. Xu et al.

a machine with 3.6 GHz cpu and 32G memory. The work takes us around 5.5
person years in total, including 4 person years for the framework and 1 person
year for verifying the first uC/OS-II module (Message Queue). With the facilities
(tactics, libraries and invariants etc.) being stabilized, verifying the remaining
modules (around 900 lines of C code) only takes us around 6 person months.
The most challenging part is to verify the timer interrupt handler, which
traverses the entire TCB list and updates task status in each TCB block. It
needs to access all the shared data structures in pC/OS-II. Several different
updates to shared data structures make the loop invariant quite complicated.
Also verifying an existing OS kernel is more difficult than verifying a new
one written for verification purpose. When verifying ¢C/OS-II the major diffi-
culty comes from the gap between the low-level concrete data structure and the
high-level abstract representation. For instance, pC/OS-II uses a smart bitmap
algorithm to record whether a task is in the waiting queue. The implementa-
tion requires us to establish a subtle consistency relation between the low-level
bitmap and the high-level abstract waiting queue. The verification would have
been much simpler if the waiting queue is simply implemented as a linked list.

Coq Tactics. Proof automation is essential to improve the productivity. We
develop tactics for automatically proving relational separation logic assertions
and generating verification conditions based on existing techniques [5,7,20].
They do forward reasoning for statements, including function calls and prim-
itives entering and exiting critical regions, etc. Also some domain-specific tactics
are implemented for individual data structures used in 4C/OS-I1, including ones
for the arithmetic properties of Int32 and bitmaps. Thanks to these tactics, the
ratio of Coq proof scripts to the verified C code is around 26:1. Another advan-
tage of the tactics is that they can extract lemmas independent of program con-
texts for verifying functionality of code. Users can verify code using the tactics
without knowing much about the underlying framework.

7 Related Work and Conclusion

There have been a number of OS verification projects, including sel4 [15,16],
Verisoft [4], VCC/VeriSoftXT [3,9], Verve [27], and CertiKOS [8,13]. Most of
them have no or limited support of preemption and multi-level interrupts.

seL4 [15,16] is one of the milestone OS kernel verification projects. The verifi-
cation is fully mechanized in Isabelle/HOL. The kernel of seL4 does not support
general preemption. Instead, tasks are preemptible only at specific points. There-
fore the code verified is mostly sequential. On the other hand, the selL4 project
has verified rich features and properties such as virtual memory, real-time prop-
erties and security properties, which are not done in our work.

The Verisoft project also verifies OS microkernels [4] in Isabelle/HOL, but
the CVM model used there does not permit interrupts inside the kernel. Its
successor project, Verisoft XT [3], uses VCC [9] to verify the commercial Hyper-V
hypervisor. VCC supports verification of concurrent C code by inserting auxiliary

A Practical Verification Framework for Preemptive OS Kernels 7

code and ghost states. The proofs have a refinement flavor, but VCC does not
establish contextual refinement as what we do. Also it is unclear how VCC is
applied to verify multi-level nested interrupts in hypervisors.

Verve [27] combines a type-safe kernel with a minimal hardware abstraction
layer. The kernel is concurrent, but the properties verified are mostly about type
safety, much weaker than our contextual refinement property. Also Verve simply
squashes multiple interrupt levels into a single level and does not really handle
multi-level interrupts. VCC/VerisoftX T and Verve use the Z3 SMT solver [10] for
better automation, while we use Coq which generates machine-checkable proofs.
Also the soundness of our program logic is proved in Coq. Therefore the trusted
computing base (TCB) of our approach is smaller.

Gu et al. [13] verify the mCertiKOS hypervisor. Their kernel is sequential.
Recently, Chen et al. [8] propose a framework for building certified interruptible
OS kernels (based on mCertiKOS) with device drivers. Their framework does not
support preemptive concurrency as ours, and it requires that interrupt handlers
for device drivers and non-handler kernel code should not share any state.

Gotsman and Yang [12] developed a program logic based on CSL, which
decomposes the verification of preemptive kernels into verifying the scheduler
and the tasks. Their proofs are on-paper only and not mechanized. The machine
model does not support multi-level interrupts, also their program logic is used
to prove partial correctness, not contextual refinement as we do.

Conclusion. We have developed a practical verification framework for general
verification purpose of preemptive OS kernels with multi-level interrupts. Cor-
rectness of the OS kernel is formalized as a contextual refinement between the
low-level concrete implementations and the high-level specifications. As far as we
know, our work is the first to establish contextual refinement for system APIs of
a preemptive OS kernel. We have applied the framework to verify key modules
and PIF of pC/OS-II, a commercial embedded real-time OS.

It is worth noting that although our verification framework is developed to
verify pC/OS-1I, it is a general verification framework and most of its building
blocks can be reused to verify other OS kernels. As shown in Fig. 1, the small-
step semantics for the C subset, the program logic and the tactics are all general
and mostly independent of the ©C/OS-II verification project. A potential limi-
tation is that the interrupt mechanism in our operational semantics is modeled
specifically based on the Intel 8259 A interrupt controller, and the program logic
rules for interrupts are designed accordingly. However, the logic rules follow the
general ownership transfer idea from CSL. With a different processor and inter-
rupt mechanism, even though we may need to change the current inference rules
for interrupt primitives, we can apply the same ownership transfer idea, and the
required change should be superficial. Another limitation is that our C subset
is chosen based on the ©uC/OS-II code. In particular, it does not allow function
pointers, which requires the support of higher-order functions in the logic.

78

F. Xu et al.

References

=W =

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

The coq development team: The Coq proof assistant. http://coq.inria.fr

The real-time kernel: 4C/OS-II. http://micrium.com/rtos/ucosii/overview

The Verisoft XT Project (2007). http://www.verisoftxt.de

Alkassar, E., Paul, W.J., Starostin, A., Tsyban, A.: Pervasive verification of an OS
microkernel. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010.
LNCS, vol. 6217, pp. 71-85. Springer, Heidelberg (2010)

Appel, A.W.: Tactics for separation logic (2006). http://www.cs.princeton.edu/
~appel/papers/septacs.pdf

Babaoglu, O., Marzullo, K., Schneider, F.B.: A formalization of priority inversion.
Real-Time Syst. 5, 285-303 (1993)

Cao, J., Fu, M., Feng, X.: Practical tactics for verifying C programs in coq. In:
CPP, pp. 97-108 (2015)

Chen, H., Wu, N., Shao, Z., Lockerman, J., Gu, R.: Toward compositional verifi-
cation of interruptible os kernels and device drivers. In: PLDI (2016, to appear)
Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23-42. Springer, Heidelberg (2009)

de Moura, L., Bjgrner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008)

Feng, X., Shao, Z., Dong, Y., Guo, Y.: Certifying low-level programs with hardware
interrupts and preemptive threads. In: PLDI, pp. 170-182 (2008)

Gotsman, A., Yang, H.: Modular verification of preemptive OS kernels. J. Funct.
Program. 23(4), 452-514 (2013)

Gu, R., Koenig, J., Ramananandro, T., Shao, Z., Wu, X.N., Weng, S.-C., Zhang,
H., Guo, Y.: Deep specifications and certified abstraction layers. In: POPL,
pp. 595-608 (2015)

Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood,
S.: seL4: Formal verification of an operating-system kernel. Commun. ACM 53(6),
107-115 (2010)

Klein, G., Andronick, J., Elphinstone, K., Murray, T.C., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), 2 (2014)

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: sel4:
Formal verification of an os kernel. In: SOSP, pp. 207-220 (2009)

Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. In: PLDI, pp. 459-470 (2013)

Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying con-
current program transformations. In: POPL, pp. 455-468 (2012)

Liang, H., Feng, X., Shao, Z.: Compositional verification of termination-preserving
refinement of concurrent programs. In: CSL-LICS, pp. 65: 1-65: 10 (2014)
McCreight, A.: Practical tactics for separation logic. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 343-358.
Springer, Heidelberg (2009)

http://coq.inria.fr
http://micrium.com/rtos/ucosii/overview
http://www.verisoftxt.de
http://www.cs.princeton.edu/~appel/papers/septacs.pdf
http://www.cs.princeton.edu/~appel/papers/septacs.pdf

21.

22.

23.

24.

25.

26.

27.

A Practical Verification Framework for Preemptive OS Kernels 79

O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49-67. Springer, Heidelberg
(2004)

Sevcik, J., Vafeiadis, V., Nardelli, F.Z., Jagannathan, S., Sewell, P.: Compcerttso:
a verified compiler for relaxed-memory concurrency. J. ACM 60(3), 22 (2013)
Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: an approach
to real-time synchronization. IEEE Trans. Comput. 39, 1175-1185 (1990)

Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP, pp. 377-390 (2013)

Turon, A., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations
for fine-grained concurrency. In: POPL, pp. 343-356 (2013)

Xu, F., Fu, M., Feng, X., Zhang, X., Zhang, H., Li, Z.: A practical verification
framework for preemptive OS kernels (technical report and coq implementations),
May 2016. http://staff.ustc.edu.cn/~fuming/research/certiucos

Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. In: PLDI, pp. 99-110 (2010)

http://staff.ustc.edu.cn/~fuming/research/certiucos

	A Practical Verification Framework for Preemptive OS Kernels
	1 Introduction
	2 Background and Overview of Our Work
	2.1 Preemptive OS Kernels and Interrupts
	2.2 Overview of the Verification Framework

	3 Modeling of OS Kernels
	3.1 The Low-Level Language
	3.2 The High-Level Specification Language
	3.3 OS Correctness

	4 Relational Program Logic for Refinement Verification
	5 Proving Priority-Inversion-Freedom
	6 Verifying C/OS-II
	7 Related Work and Conclusion
	References

