
A Windows Support Framework for the NetFPGA 2
Platform

Chen Tian1,2, Danfeng Zhang1, Guohan Lu1, Yunfeng Shi1, Chuanxiong Guo1, Yongguang Zhang1

1Mircosoft Research Asia
2Huazhong University of Science and Technology

{v-tic, v-daz, lguohan, v-yush, chguo, ygz}@microsoft.com

ABSTRACT
The NetFPGA 2 platform is widely used by the network-
ing research and education communities. But the current
software package supports only Linux. This paper describes
the development of a Windows Support Framework for the
NetFPGA 2 platform. We present the Windows Support
Framework design after we briefly introduce the Windows
Network Driver Interface Specification (NDIS). We then de-
scribe the implementation details such as drivers structure,
the packet send/receive procedures, and the user-mode tool
kit. Experiments show that our implementation achieves
160Mb/s sending rate and 230Mb/s receiving rate, respec-
tively. We hope the Windows Support Framework brings
NetFPGA to those researchers and students who are familiar
with the Windows operating system.

1. INTRODUCTION
The NetFPGA 2 platform enables researchers and

students to prototype high-performance networking sys-
tems using field-programmable gate array (FPGA) hard-
ware [5]. As a line-rate, flexible, and open platform,
it is widely accepted by the networking community:
over 1,000 NetFPGA systems have been shipped and
many innovative networking designs have been imple-
mented [1, 3]. But currently the platform only supports
Linux, and the developments of NetFPGA projects are
limited to the Linux environments. Given the dominant
market share of the Windows operating system, adding
support for Windows will help those researchers and
students who are familiar with the Windows system.

In this paper, we describe the design and implemen-
tation of our Windows Support Framework(WSF) for
NetFPGA 2. The WSF is driven by both the require-
ments of our Windows-based testbed in Microsoft Re-
search Asia and the community benefits. Windows Sup-
port Framework has two components:

• Kernel Drivers. A suit of kernel mode device drivers
that enable the deployment of NetFPGA 2 plat-
form in the Windows operating system.

• User-Mode Tool Kit. Common development func-

Figure 1: NDIS architecture

tions such as registers reading/writing, FPGA bit-
file downloading, and packet injecting/intercepting,
are implemented as user mode tools.

The rest of the paper is organized as follows. In Sec-
tion 2, we first briefly introduce the Windows network
driver architecture, and then present the support frame-
work design. We describe the implementation details
such as important routines of kernel drivers and the
packet send/receive procedures in Section 3. We present
experimental results in Section 4. Section 5 concludes
the paper and discusses future work.

2. DESIGN

2.1 Windows Network Driver Architecture
The Windows operating system use Network Driver

Interface Specification (NDIS) architecture to support
network devices and protocols. Based on the OSI seven-

1



layer networking model, the NDIS library abstracts the
network hardware from network drivers. NDIS also
specifies the standard interfaces between the layered
network drivers, thereby abstracting lower-level drivers
that manage hardware for upper-level drivers. To sup-
port the majority of Windows users, we design WSF
drivers to conform with NDIS version 5.1, which is Win-
dows 2000 backward compatible. Most drivers are writ-
ten in Kernel-Mode Driver Framework(KMDF) style,
which provides object-based interfaces for Windows dri-
vers [4].

As we show in Fig. 1, there are three primary network
driver types [4]:

• Miniport Drivers. A Network Interface Card(NIC)
is normally supported by a miniport driver. An
NDIS miniport driver has two basic functions: man-
aging the NIC hardware, including transmiting and
receiving data; interfacing with higher-level drivers,
such as protocol drivers through the NDIS library.
The NDIS library encapsulates all operating sys-
tem routines, that a miniport driver must call, to a
set of functions (NdisMXxx() and NdisXxx() func-
tions). The miniport driver, in turn, exports a
set of entry points (MiniportXxx() routines) that
NDIS calls for its own purposes or on behalf of
higher-level drivers to send down packets.

• Protocol Drivers. Transport protocols, e.g. TCP-
/IP stack, are implemented as protocol drivers.
At its upper edge, a protocol driver usually ex-
ports a private interface to its higher-level drivers
in the protocol stack. At its lower edge, a protocol
driver interfaces with miniport drivers or interme-
diate network drivers. A protocol driver initial-
izes packets, copies sending data from the applica-
tion into the packets, and sends the packets to its
lower-level drivers by calling NdisXxx() functions.
It must also exports a set of entry points (Pro-
tocolXxx() routines) that NDIS calls for its own
purposes or on behalf of lower-level drivers to in-
dicate up received packets.

• Intermediate Drivers. Intermediate drivers are lay-
ered between miniport drivers and transport pro-
tocol drivers. They are used to translate between
different network media or map virtual miniports
to physical NICs. An intermediate driver exports
one or more virtual miniports at its upper edge.
To a protocol driver, a virtual miniport that was
exported by an intermediate driver appears to be
a real NIC; when a protocol driver sends pack-
ets to a virtual miniport, the intermediate driver
propagates these packets to an underlying mini-
port driver. At its lower edge, the intermediate
driver appears to be a protocol driver to an under-
lying miniport driver; when the underlying mini-

Figure 2: The structure of the kernel mode
drivers.

port driver indicates received packets, the inter-
mediate driver propagates the packets up to the
protocol drivers that are bound to its virtual mini-
port.

2.2 The NDIS Kernel Drivers
As a PCI board, NetFPGA card has a memory space

for PCI configuration information. The information de-
scribes the hardware parameters of the devices on the
board. The configuration of the NetFPGA reference
design contains only one PCI device. All four Ether-
net ports share the same interrupt number, and tran-
mit/receive over their own DMA channels.

Supporting four NetFPGA Ethernet Ports in Linux
is relatively simple. During the initialization phase, the
Linux driver calls system routine register netdev() four
times to register NetFPGA ports as four distinct logical
Ethernet devices.

Network driver support in NDIS 5.1 context is more
sophisticated, mainly due to Plug-and-Play (PnP) and
power management. The initialization process of a net-
work device is managed by the Plug-and-Play(PnP)
manager, hence one NetFPGA card can register only
one logical Ethernet device. Apparently, one miniport
driver alone is not enough to support four ports of NetF-
PGA in NDIS 5.1 context. We need an additional inter-
mediate driver to map one single NetFPGA PCI card
to four virtual Ethernet miniports.

As shown in Fig 2, the NDIS Kernel Driver of NetF-
PGA has three driver modules. From bottom-up, the
PCI Device Driver (PDD) directly interfaces with the
hardware and provides I/O services, such as DMA op-
erations and access of registers; the Ethernet Interface
Driver (EID) registers the NetFPGA card as a logical

2



Figure 3: User mode/kernel mode Communica-
tion.

Ethernet device in response to PnP manager; these two
drivers can be regarded as two submodules of a sin-
gle NDIS miniport driver. The Mapping Service Driver
(MSD) is an intermediate driver, which maps the un-
derlying NetFPGA device to four virtual miniports and
exports them to upper layer protocols.

The physical ports and virtual miniports maintain
an exact match relationship. Every packet received by
PDD is associated with its network port number; EID
indicates the packet up together with the port; the MSD
then indicates the packet to the corresponding virtual
miniports. For the packet sending procedure, the order
is reversed.

2.3 User-Mode Tool Kit
Besides kernel mode drivers, developers need to down-

load FPGA bitfiles, or read/write registers for their own
purpose. Basically, the main operations of bitfile down-
load are also registers reading and writing. Communica-
tions between user mode tools and kernel mode drivers
are needed to pass values up and down. As shown in
Fig 3, each driver exports an associated symbolic de-
vice name: applications can open a driver handle by
calling a CreateFile() routine; the communications can
then be performed by calling DeviceIoControl() func-
tion and passing the I/O control commands down and
reading the reported data back to applications.

To facilitate packet analysis of user derived protocols,
packet injecting/intercepting functions are also imple-
mented. All these implementation details will be given
in the next section.

3. IMPLEMENTATION
This section gives implementation details. First the

important routines of the three drivers are presented;
then the complete packet send/receive procedures are
illustrated to help understanding the asynchronous in-
teractions among drivers; finally the implementation
details of the development tool kit are also presented.

3.1 PCI Device Driver

The PCI Device Driver takes KMDF PCI9x5x exam-
ple of Windows Driver Kit [4] as its template. PDD
provides asynchronous hardware access interfaces to its
upper layer EID module. The important routines are
listed below:

• During device initialization, callback routine PCIE-
EvtDeviceAdd() is called in response to Windows’
PnP manager. The routine registers all the call-
backs and allocates software resources required by
the device; the most important resources are Write-
Queue and PendingReadQueue, which will serve
write/read requests later.

• After the PnP manager has assigned hardware re-
sources to the device and after the device has en-
tered its uninitialized working (D0) state, callback
routine PCIEEvtDevicePrepareHardware() is called
to set up the DMA channels and map memory re-
sources, make the device accessible to the driver.

• Each time the device enters its D0 state, callback
routine PCIEEvtDeviceD0Entry() is called just be-
fore the enable of hardware interrupt; the Net-
FPGA card registers are initialized here.

• When NetFPGA generates a hardware interrupt,
the driver’s Interrupt Service Routine (ISR) PCIE-
EvtInterruptIsr() quickly save interrupt informa-
tion, such as the interrupt status register’s content,
and schedules a Deferred Procedure Call (DPC) to
process the saved information later at a lower In-
terrupt Request Level(IRQL).

• DPC routine PCIEEvtInterruptDpc() is scheduled
by ISR. This routine finishes the servicing of an
I/O operation.

• In response to a write request, callback routine
PCIEEvtProgramWriteDma() programs the Net-
FPGA device to perform a DMA transmit transfer
operation.

3.2 Ethernet Interface Driver
The Ethernet Interface Driver takes KMDF ndisedge

example as its template. To its lower edge, it interfaces
with PDD by I/O request packets (IRPs) operations;
to its upper edge, it acts as a standard Ethernet device.
The important routines are listed below:

• The driver’s entry routine DriverEntry() calls NDIS
function NdisMRegisterMiniport() to register the
miniport driver’s entry points with NDIS.

• Callback routine MPInitialize() is the entry point
of Initialize Handler. Called as part of a system
PnP operation, it sets up a NIC for network I/O
operations, and allocates resources the driver needs
to carry out network I/O operations.

3



• Callback routine MPSendPackets() is the entry
point of Send Packets Handler. An upper layer
protocol sends packets by calling NDIS function
NdisSendPackets(). NDIS then calls this routine
on behalf of the higher-level driver. This routine
prepares write resources and initiates a write re-
quest. The port number is associated with the re-
quest by WdfRequestSetInformation() operations.

• NICReadRequestCompletion() is the completion ro-
utine for the read request. This routine calls NDIS
function NdisMIndicateReceivePacket() to indicate
the received packet to NDIS. The receive port num-
ber is associated with the packet by saving it in
the MiniportReserved field of the NDIS PACKET
structure.

3.3 Mapping Service Driver
The Mapping Service Driver takes the famous MUX

intermediate driver as its template. A MUX interme-
diate driver can expose virtual miniports in a one-to-n,
n-to-one, or even an m-to-n relationship with underly-
ing physical devices. One challenge is how to configure
the protocol binding relationships: only a NetFPGA
card is legal to be bound to this intermediate driver
and to export four virtual miniports. We achieve this
goal by modifying the accompanying installation DLL
component.

The important routines are listed below:

• Callback routine MPInitialize() is the entry point
of virtual miniport Initialize Handler. The MAC
addresses of virtual miniports are read from the
corresponding registers during the initialization ph-
ase.

• Similar to its counterpart of EID, callback routine
MPSendPackets() is the entry point of Send Pack-
ets Handler. The send port number is associated
with the packet by saving it in the MiniportRe-
served field of NDIS PACKET structure.

• Callback routine PtReceivePacket() is the entry
point of Receive Packet Handler. This routine
associates each packet with its corresponding vir-
tual miniport and call NDIS function NdisMIndi-
cateReceivePacket() to indicate it up.

3.4 Packet Sending Procedure
Fig 4 gives the life cycle of a sending packet.

1. When an application wants to send data, the up-
per layer transport protocol prepares packets and
calls NDIS function NdisSendPackets(); a packet
is passed by NDIS to a corresponding virtual mini-
port interface of MSD.

2. NDIS calls MSD’s callback routine MPSendPack-
ets() with the packet; this routine associates the

corresponding send port with the packet, then call
NdisSendPackets() to pass the packet down to EID.

3. The NIC write request can be initiated asynchrono-
us when a packet is ready. NDIS calls MSD’s call-
back routine MPSendPackets() with the packet.
This routine prepares write resources and initiates
an asynchronous write request to PDD.

4. Upon receiving a write request, the PDD callback
routine PCIEEvtProgramWriteDma() acquires a
transmit spinlock to obtain DMA control; after
that, a new DMA transmit transfer can be started.

5. After the completion of the DMA transmit trans-
fer, the INT DMA TX COMPLETE bit is set in
a physical interrupt; the ISR reads the status and
schedules a DPC; the DPC routine informs EID
of the write request completion and releases the
spinlock.

6. The EID’s completion routine for the write request
NICWriteRequestCompletion() is called; it frees
write resources and calls NDIS function NdisM-
SendComplete() to inform the upper layer MSD.

7. Consequently the MSD’s send completion callback
routine PtSendComplete() is triggered by NDIS,
and it also calls NdisMSendComplete() to inform
its upper layer transport protocol.

8. On behalf of MSD, NDIS calls the upper layer pro-
tocol’s callback routine ProtocolSendComplete(),
the packet send process is finally completed.

3.5 Packet Receiving Procedure
For packet receiving, Fig 5 gives the life cycle of a

packet.

1. After initialization, EID posts a sequence of NIC
read requests to PDD in advance.

2. When a packet arrives, the INT PKT AVAIL bit
is set in a physical interrupt; the ISR reads the
status and schedules a DPC; the PDD DPC rou-
tine dequeues a read request, acquires a receive
spinlock to obtain DMA control; after that, a new
DMA receive transfer can be started.

3. After the packet is received, the INT DMA RX
COMPLETE bit is set in a physical interrupt;
the ISR reads the status and schedules a DPC;
the PDD DPC routine informs EID of the read
request completion and releases the spinlock.

4. The EID’s completion routine for the read request
NICReadRequestCompletion() is called; the rou-
tine associates the corresponding receive port with
the packet, then calls NDIS function NdisMIndi-
cateReceivePacket() to inform its upper layer driver
MSD.

4



Figure 4: Packet sending procedure.

Figure 5: Packet receiving procedure.

5. The MSD’s callback routine PtReceivePacket() is
called by NDIS; the routine matches the packet to
its corresponding virtual miniport and also indi-
cates the packet up by NDIS function NdisMIndi-
cateReceivePacket();

6. After the packet data is received, the upper layer
protocol calls NDIS function NdisReturnPacket().

7. Consequently the MSD’s receive completion call-
back routine MPReturnPacket() is triggered by
NDIS, and it also calls NdisReturnPacket() to in-
form its lower layer driver EID.

8. The EID’s callback routine MPReturnPacket() is
called by NDIS, and the packet receive process is
finally completed.

3.6 Implementation Details of the Tool Kit
The registers read and write operations are shown in

Fig 6(a): an I/O control command is issued to EID first;
the EID then builds an internal IRP and recursively
calls the lower PDD to complete the request.

The packet injecting/intercepting functions are im-
plemented in the MSD, as shown in Fig 6(b). After re-
ception of a packet from the application level tool, the
routine PtSend() routine injects the packet into outgo-
ing packet flow path. A boolean value is associated
with each packet send request to distinguish the in-
jected packets from normal packets; in step (7) of Fig 4
when callback routine PtSendComplete() is called, only
the completion of normal packets are required to be re-
ported to upper layer protocols.

The packet interception logic is embedded in step (5)

5



Figure 6: (a) Register Read/Write. (b) Packet Intercept/Inject.

of Fig 5. The interception kit posts a sequence of read
IRPs to MSD in advance. In routine PtReceivePacket(),
every incoming packet is checked first; the decision can
be drop, modify, copy up to user mode kit, or continue
without intervention.

4. FOR USERS OF WSF

4.1 Package
The package of WSF can be downloaded from our

group web site [2]. The source code of both NDIS kernel
drivers and user mode tool kits are included. Users
who want to write a Windows program that interfaces
with the NetFPGA can take the source code as their
template.

An installation manual is included [6] in the pack-
age to guide the preparation of users and illustrate the
use of the WSF from a users perspective. Some usage
examples are also given for tool kits in the manual .

4.2 Performance
We build the source code using Microsoft Windows

Device Driver Kit (DDK) Release 6001.18001 version.
The experiment servers are DELL optiplex 755 with
Windows Server 2003 Enterprize Edition with service
pack 2. Each server has a 2.33G E6550 Intel Core 2
Duo CPU and 2 GB memory. The iperf software [7] is
selected to perform the test with the 1500 bytes packets.

The forwarding performance is not affected by oper-
ating systems. So we only test the send/receive through-
put of NetFPGA equipped host. In our experiment, the
two servers connect to a gigabit switch using one NetF-
PGA port. Both 32-bit/64-bit performance are evalu-
ated. The results are shown in Table. 1.

The host throughput achievable by Windows drivers
are lower than that in Linux environment. The rea-

Throughput Send (Mb/s) Receive (Mb/s)
Win2003 x86 158 234
Win2003 x64 156 233
Linux 186 353

Table 1: Throughput of experiments.

son is that we implement the NetFPGA roles(PCI de-
vice/Network device/Port Mapping) to three separate
drivers: each send/receive packet must pass through
three drivers. A future version(Discussed in Section 5)
may compact all functions to a single driver to improve
host throughput. However the NetFPGA community
is focused on hardware forwarding engine, which may
make this throughput performance still acceptable.

5. CONCLUSION
We have presented the design and implementation

of a Windows Support Framework for the NetFPGA 2
Platform. We hope the Windows Support Framework
brings NetFPGA to those researchers and students who
are familiar with the Windows operating system.

The Windows Support Framework for NetFPGA 2
Platform is still in active development. Our future
works may include but not limit to:

• Migrate to NDIS 6.0. Many new features are pro-
vided in NDIS 6.0 version, and we have a chance
to compact all functions to a single driver and at
the same time improve performance.

• Support new NetFPGA hardware. We plan to port
our implementation to support the upcoming 10G
NetFPGA once it becomes available.

6. REFERENCES

6



[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A
Scalable, Commodity Data Center Network
Architecture. In Proc. SIGCOMM, 2008.

[2] Data Center Networking at MSRA.
http://research.microsoft.com/en-
us/projects/msradcn/default.aspx.

[3] Dilip Antony Joseph, Arsalan Tavakoli, Ion Stoica,
Dilip Joseph, Arsalan Tavakoli, and Ion Stoica. A
policy-aware switching layer for data centers, 2008.

[4] MSDN. Microsoft windows driver kit (wdk)
documentation, 2008.

[5] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
NetFPGA: Reusable Router Architecture for
Experimental Research. In PRESTO, 2008.

[6] Chen Tian. Netfpga windows driver suite
installation.

[7] Ajay Tirumala, Les Cottrell, and Tom Dunigan.
Measuring end-to-end bandwidth with iperf using
web100. In Proc. of Passive and Active
Measurement Workshop, page 2003, 2003.

7


