
3462 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 7, SEPTEMBER 2011

Neither Shortest Path Nor Dominating Set:
Aggregation Scheduling by Greedy Growing Tree

in Multihop Wireless Sensor Networks
Chen Tian, Member, IEEE, Hongbo Jiang, Member, IEEE, Chonggang Wang, Senior Member, IEEE,

Zuodong Wu, Jinhua Chen, and Wenyu Liu, Member, IEEE

Abstract—Data aggregation is a fundamental task in multihop
wireless sensor networks. Minimum-latency aggregation schedul-
ing (MLAS) seeks to minimize the number of scheduled time
slots to perform an aggregation. In this paper, we present the
first work on a solvable mathematical formulation of the MLAS
problem. The optimal solution of small example networks sug-
gests that an optimal scheduling can be neither shortest path nor
dominating set based. Instead of yet another theoretical analysis
with provable bounds, our work focuses on reducing the av-
erage latency of general random topologies. Inspired by back-
ward induction theory, we propose to schedule the aggregation
in a reverse order, and the tree construction of Greedy Growing
Tree (GGT) is directly guided by the scheduling algorithm in a
step-by-step way. By following priority rules when we schedule
candidate 〈sender, receiver〉 pairs, the opportunity of parallel
transmission is maximized. As a result, the aggregation latency
can be minimized. Our extensive evaluation results demonstrate
the superiority of the GGT algorithm: For sparse networks, the
resultant latency is comparable with the best practice, whereas
for high-degree networks, the latency is only half of that using
state-of-art competitors.

Index Terms—Greedy algorithm, scheduling, wireless sensor
networks.

I. INTRODUCTION

IN MULTIHOP wireless sensor networks, a fundamental
task is to gather data from all sensors to a distinguished

sink node [1]. In general, each intermediate node merges its
received data with its own record according to some aggrega-
tion functions (e.g., taking the maximum or minimum of them)

Manuscript received January 22, 2011; revised May 11, 2011; accepted
July 5, 2011. Date of publication July 18, 2011; date of current version
September 19, 2011. This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 60803115, Grant 60873127,
and Grant 61073147; by the National Natural Science Foundation of China-
Microsoft Research Asia under Grant 60933012; by the Youth Chenguang
Project of Wuhan City under Grant 201050231080; by the Scientific Research
Foundation for the Returned Overseas Chinese Scholars (State Education
Ministry); and by the Program for New Century Excellent Talents in University
(State Education Ministry) under Grant NCET-10-408. The review of this paper
was coordinated by Prof. V. W. S. Wong.

C. Tian, H. Jiang (Corresponding author), Z. Wu, J. Chen, and W. Liu
are with the Department of Electronics and Information Engineering, Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and
Technology, Wuhan 430074, China (e-mail: hongbojiang2004@gmail.com).

C. Wang is with InterDigital Communications, King of Prussia, PA 19406
USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2011.2162086

into a single packet with fixed size. This type of application
is called data aggregation; its communication pattern is called
convergecast [2]. The goal of our study is to minimize the
average data aggregation latency of the convergecast process.

Naive aggregation approaches, which purely rely on
medium-access-control layer mechanisms (e.g., carrier-sense
multiple access), could result in latency that is too high to
be practical due to the existence of mutual transmission inter-
ference [2]–[4]. Synchronized aggregation scheduling is nec-
essary, where all transmissions proceed in synchronous time
slots. Such an aggregation scheduling includes both a spanning
inward tree rooted at the sink and an edge scheduling of this
spanning routing tree under three conditions.

1) Each node transmits at most one packet of a fixed size in
its allocated time slot.

2) A node cannot transmit until all its children complete the
transmissions to itself.

3) All transmissions assigned in the same time slot should
be interference free.

The latency is the required number of time slots of the whole
aggregation convergecast process. To minimize the latency, this
problem is often named minimum-latency aggregation schedul-
ing (MLAS) [5].

Previous works can construct feasible interference-free
schedules for the MLAS problem. Mostly, they solve the prob-
lem in two consecutive yet independent phases, i.e., a tree con-
struction phase followed by an edge-scheduling phase [3]–[5].
Specifically, a spanning tree rooted at a sink is constructed first
from the adjacency graph. In the second phase, the scheduling
algorithm iteratively constructs smaller and smaller residual
trees, which span all residual nodes possessing data of interest.
In each round, all nodes in the residual tree are divided into
two groups, i.e., the leaf nodes and the nonleaf nodes. The
interference-free scheduling is separately applied to leaf nodes
and nonleaf nodes. The selected nodes become senders of the
corresponding aggregation step. They are then removed from
the residual tree before entering the next round.

The assumption behind these two-phase approaches is that a
“well-chosen” tree would consequently lead to “good” schedul-
ing. Chen et al.’s approach [3] is based on the shortest path
tree (SPT), whereas the work of Huang et al. and Wan et al.
[4], [5] is based on the dominating set tree (DST). Hereby,
we emphasize the problems of two-phase approaches: First,

0018-9545/$26.00 © 2011 IEEE



TIAN et al.: NEITHER SHORTEST PATH NOR DOMINATING SET: AGGREGATION SCHEDULING BY GGT 3463

the performance of the same specific algorithm could vary
greatly, depending on the tree initially constructed. Second,
separated scheduling to predivided leaf nodes and nonleaf
nodes is suboptimal: the opportunity of parallel transmission
among nodes, particularly among nodes of different layers of
the predefined tree, is decreased. There is less competition in a
sparse network; hence, the SPT approaches could perform fairly
well. Unfortunately, for a high-degree network, the aggregation
latency is undesirably large.

Instead of yet another theoretical analysis with provable
bounds, our work focuses on reducing the average latency
of general random topologies. The main contributions of this
paper are summarized here.

1) For the first time, we present a solvable mathematical
formulation for the MLAS problem (see Section IV).
By solving the optimal solutions of some small example
networks, we get the insight that an optimal scheduling
could be neither shortest path nor dominating set based.

2) Inspired by backward induction theory1 [6], we pro-
pose the Greedy Growing Tree (GGT) algorithm. GGT
schedules the aggregation process in a reverse or-
der: The last aggregation step is scheduled first to
choose the last sender to the sink and then choose the
〈sender, receiver〉 set of the next-to-last step, and so on,
until all nodes are scheduled. As its name suggests, GGT
constructs larger and larger spanning trees rooted at the
sink: The temporary spanning tree contains only the sink
node at the beginning. In each round, all nonleaf nodes are
candidate receivers, and all leaf nodes of the temporary
tree are candidate senders. The 〈sender, receiver〉 set
is selected in a manner so that the opportunity of par-
allel transmissions can be maximized. As a result, the
whole aggregation latency could be minimized. The new
senders are added into the tree before the next round. In
contrast to previous works, GGT has only one phase, and
the tree construction is directly guided by the scheduling
algorithm step by step.

3) We conduct extensive evaluations to compare the perfor-
mance of different approaches. The results show that, for
the sparse networks, the latency using the GGT algorithm
is comparable with the state-of-art algorithm. The main
achievement is that, for high-degree networks, the latency
is only half of that using the other existing methods.

The rest of this paper is organized as follows: We first
introduce the necessary background and formally define the
aggregation scheduling model in Section II. In Section III,
we review the existing literature and argue that neither SPT
nor DST could guarantee a satisfactory solution to the MLAS
problem. We present the first solvable mathematical MLAS for-
mulation in Section IV. The main idea and design of GGT are
presented in Section V. We evaluate the proposed scheduling

1Backward induction is the process of reasoning backward in time, from
the end, to determine a sequence of appropriate actions. It proceeds by first
considering the last time a decision might be made and choosing what to do
in any situation. Using this information, one can then determine what to do at
the second-to-last time of decision. This process continues backward until the
actions at every point in time have been determined.

Fig. 1. Protocol interference model: Each node has a unit transmission radius
and an interference radius ρ ≥ 1.

algorithm by simulations in Section VI. Finally, we present our
conclusion in Section VII.

II. BACKGROUND

A. System Model

In this paper, we study the MLAS problem under the protocol
interference model in multihop wireless networks. All nodes
are located in an Euclidean plane and are equipped with omni-
directional antenna. Each node has a fixed transmission radius,
which is normalized to 1 and an interference radius ρ ≥ 1. The
communication range and the interference range of a node v are
the two disks centered at v of radius 1 and ρ, respectively (see
node S1 in Fig. 1).

Let V denote the set of sensor nodes and G = (V,E) be
the unit-disk graph (UDG) on V with a sink node b ∈ V .
The communication graph of the network is a digraph

−→
G

obtained from G by replacing each link (e.g., (u, v)) in G
with two oppositely directed edges u→ v and v → u. A pair
of communication edges S1 → D1 and S2 → D2 is said to
be interference free if the two line segments (S1,D2) and
(S2,D1) are both longer than ρ, as shown in Fig. 1. Otherwise,
they belong to the exclusive interference edges set of each
other and cannot be scheduled in the same time slot (e.g.,
S1 → D1 and S2 → D4). A subset of edges scheduled in the
same time slot is said to be an interference-free set if they
are pairwise interference free. Such an interference model is
referred to as the protocol interference model [7] and is widely
used because of its generality and tractability. What’s more, we
assume that a node works in half-duplex mode: It can either
send or receive data at one time slot, or it can receive data
correctly only if exactly one of its neighbors is transmitting at
that moment. For example, when S3 is transmitting to D3, it
cannot simultaneously receive the packet from S4.

B. Data Aggregation Model

We consider a wireless network consisting of N sensor
nodes. Throughout this paper, we always use 0 as the index of
the sink node b; nodes 1 . . . (N − 1) process data of interest. A
small example network is shown in Fig. 2(a); the dash lines
among nodes denote the communication neighborhood rela-
tionship. Recall that the main task of sensor nodes is to collect
data and transmit them back to sink b by convergecast; data can
be “aggregated” by intermediate nodes along the path to sink b.
In other words, if packets are received from its neighbors before
its scheduled transmission time slot, a node aggregates the data



3464 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 7, SEPTEMBER 2011

Fig. 2. Two example networks.

with its own data and only sends the aggregated packet to its
parent.

We consider two subsets C1, C2 ⊂ V with C1 ⊃ C2. If all
nodes in C1 \ C2 can transmit packets to nodes in C2 within
one time slot and these transmissions are interference free,
the packets from the nodes of C1 \ C2 can be simultaneously
received by C2. In this case, we say that data can be aggregated
from C1 to C2 in one step. The data aggregation property
means that, after C1 \ C2 transmissions, the data packets can
be aggregated from C1 to C2 without interference.

A data aggregation, which is completed within K steps, can
be considered as a sequence of subsets C1, C2, . . . , CK , CK+1

(Ck ⊂ V , where 1 ≤ k ≤ K + 1) satisfying the data aggrega-
tion property. This sequence requires that the nodes of C1 \ C2

transmit to some nodes in C2 in the first time slot, followed
by the nodes of C2 \ C3 transmitting to some nodes in C3 in
the second time slot, and so on. If we iteratively continue this
process, finally, all data packets are aggregated to a single sink
node b = 0.

The formal definition of the data aggregation process is given
as follows: A data aggregation schedule is a sequence of subsets
C1, C2, . . . , CK , CK+1 that satisfy three conditions.

1) Ck1 ⊃ Ck2,∀1 ≤ k1 < k2 ≤ K + 1.
2) C1 = V , and CK+1 = b.
3) Data packets are aggregated from Ck to Ck+1 for all k =

1, 2, . . . ,K − 1; finally, data packets are aggregated from
CK to CK+1 = b in time slot K.

The value of K is considered to be the data aggregation
latency, which we want to minimize. Unfortunately, this prob-
lem is nondeterministic polynomial-time hard (NP-hard), even
with the UDG model [3]. Since the ρ value only affects the
calculation of exclusive edges, we focus on the case where
ρ = 1 in this paper for the simplicity of presentation.

III. RELATED WORK

A. SPT Based

The minimum data aggregation time problem was proven to
be NP-hard [3]. All existing heuristics perform in two inde-
pendent phases. A (Δ− 1)R approximation algorithm Shortest
Data Aggregation (SDA) was proposed by Chen [3], where Δ

is the maximum degree, and R is the radius of the network.
SDA constructs an SPT in the first phase. After that, the
scheduling is iteratively implemented: Each round introduces
a schedule of the corresponding aggregation step. In round r,
SDA picks senders only from the leaf nodes guided by the
interference-free principal. Subsequently, SDA eliminates the
senders from the tree and enters the (r + 1)th iteration. Thus,
the algorithm SDA proceeds by incrementally constructing
smaller and smaller SPTs rooted at b that span nodes possessing
all data of interest.

The performance of SDA varies greatly, depending on the
SPT initially supplied. We take the example network in Fig. 2(a)
as an illustration. Two distinct SPTs are given in Fig. 3(a)
and (b). The SDA scheduling is then performed to them,
respectively, and the results are shown in Fig. 3(c) and (d). It
is observed that SPT 1 can be aggregated in nine time slots,
whereas SPT 2 takes ten. The reason is that there are more
dependency constraints in SPT 2. It is obvious that the child
tree of node 5 always needs six slots to be aggregated; as the
distance of node 5 from sink is 2, the total aggregation time
cannot be less than eight slots for SPT 2. Obviously, an SPT
generated in a careless way is very likely to be suboptimal.

B. DST Based

The First-Fit algorithm is proposed by Huang et al. [4].
In the tree construction phase, breadth-first search is used to
divide all nodes into layers. Dominators are then marked layer
by layer. After adding some connectors, a connected dominat-
ing set (CDS) tree is formed; the rest nodes are dominatees
(i.e., leaves). In the scheduling phase, the first-fit principal is
adopted for a given set of edges: Edges are added into parallel
transmission set one by one according to the interference-free
principal; the process is repeated to find the maximal possible
interference-free set for the next time slot; the procedure is
iteratively applied to a set of edges until all edges are scheduled
this way. All leaves are applied first; then, the scheduling is
applied to nonleaf nodes layer by layer from bottom up.

Unfortunately, the interference-free judgment implementa-
tion in First-Fit is problematic, which is also found by other re-
searchers [8]. Let Sr denote the set of senders already selected
in round r. For a new candidate z, First-Fit’s implementation
only tests if the candidate’s transmission interference with the
parents of Sr’s nodes, whereas already scheduled transmissions
could also interference with the candidate’s parent, which is
neglected in [4]. (Such a correct interference judgment proce-
dure is presented later in Algorithm 2 in the Appendix.) For this
reason, we focus on the work of Wan et al. [5] in this part.

As a successor, Wan et al. [5] developed a 15R + Δ− 4
approximation algorithm SAS. The basic framework of SAS
is similar to that of First-Fit; the main difference is that
the parents of leaves are no longer prefixed. Based on their
proposed minimum cover concept, the leaf nodes’ parents are
dynamically determined during the scheduling process. Re-
cently, Xu et al. [9] developed an approximation algorithm
improved data aggregation scheduling (IAS) with bound 16R +
Δ− 14. Similar to the work of Huang et al. and Wan et al.,
it also divided the aggregation process into the tree construction



TIAN et al.: NEITHER SHORTEST PATH NOR DOMINATING SET: AGGREGATION SCHEDULING BY GGT 3465

Fig. 3. (a) and (b) Two SPTs. (c) and (d) Respective SDA results for two SPTs. (e) Optimal solution. (f) and (g) Two CDS trees. (h) and (i) Respective SAS
results for two CDS trees.

phase and the scheduling phase; it just confirmed a more strict
bound by deleting the redundant collectors.

The performance of SAS also varies, depending on the con-
struction of the CDS tree. We again take the example network
in Fig. 2(a) for illustration. Two DSTs are given in Fig. 3(f)
and (g). We deliberately use the same set of dominators and
different sets of connectors for them. The results are shown in
Fig. 3(h) and (i). It is observed that DST 1 can be aggregated in
ten time slots, whereas DST 2 takes only eight slots. Similar
to SPT, a DST generated in a careless way is likely to be
suboptimal. Again, the role of each node is dominated by the
pre-given tree, and the opportunity of parallel transmissions
among nodes, particularly among nodes of different layers of
the predefined tree, is greatly reduced.

C. Others

Yu et al. [8] proposed a distributed version of MLAS
scheduling; Xu et al. [9] also presented a decentralized algo-
rithm based on the centralized version. Pipelined approaches
are presented in Wan et al.’s work [5]. In this paper, we limit
ourselves to the primary topic of centralized simple-round-
based scheduling. Possible pipelined or distributed versions of
our algorithm can be extended and are left for future work.

Zhu and Hu presented a heuristic that surpassed SDA; how-
ever, geographical location of each node is required, which
is a much stronger assumption than in other works and this
paper [10]. Li et al. analyzed the problem in the context of
a physical model [11]; in this paper, we still focus on the

protocol model and consider the physical model as our future
work.

Jia et al. [12] proposed the algorithm GIST for constructing
an optimal data aggregation tree; this paper focused on a
subgraph of the original network. In [13], the authors aimed
to minimize the sum delay of sensed data rather than the
maximum delay. In [14], the authors considered the problem
of maximizing the lifetime of aggregation. All of these works
are only loosely related to the topic of this paper.

IV. SOLVABLE MATHEMATICAL FORMULATION

A. Auxiliary Graph

To the best of our knowledge, a solvable mathematical for-
mulation for the MLAS problem is still an open question. In
this part, we fill this gap by modifying the original digraph

−→
G

to a new digraph
−→
G
′
. As mentioned in Section II,

−→
G is obtained

from G by replacing a link with two oppositely directed edges.
For
−→
G
′
, all edges starting from sink b are removed: there is no

need to send data from the sink. Hence, only incidental edges
are necessary. An auxiliary node b′ (with index N ) is added; a
directional edge b→ b′ (eK′) is also added, as shown in Fig. 4.

Let b′ be the sink of
−→
G
′
, and let K ′ be the time slots in which

edge b→ b′ is activated of an aggregation scheduling of
−→
G
′
.

The intuition of adding auxiliary node b′ is that, usually, sink
b has multiple links, and each link could become the last sched-
uled send link; this situation makes the mathematical denotation
of the optimizing objective extremely hard. By adding a virtual



3466 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 7, SEPTEMBER 2011

Fig. 4. New digraph of the example network. (a) With an auxiliary sink node.

TABLE I
SYMBOLS USED IN THIS PAPER

sink b′, the link b→ b′ is definitely the last scheduled active
link: If b→ b′ is activated, then all data must be available in b.
In that sense, the digraph

−→
G
′
is more convenient for the formu-

lation of the optimizing objective function. A scheduling of
−→
G
′

can directly produce a scheduling of
−→
G , with K = K ′ − 1.

B. Formal Formulation

Table I lists the symbols used in this paper.
Obviously, a naive solution for

−→
G
′

with K ′ = N could be
that all nodes, except b′, send data packets (in one-by-one
fashion) along an arbitrary inward tree. That is, K ′ should be
less than N after the optimization. The objective function of
MLAS becomes

Min: K ′ = 1 ∗ xeK′ ,1 + 2 ∗ xeK′ ,2 + · · ·+ N ∗ xeK′ ,N (1)

subject to the following constraints:

(a)
∑

e∈S(i)

N∑

t=1

xe,t = 1 ∀i ∈ −→G ′ \ b′

(b)
N∑

t′=t+1

xe′,t′ ≤ 1−
∑

e∈S(i)

xe,t, ∀i ∈ −→G ′ ∀e′ ∈ D(i) ∀t

(c) xe′,t ≤ 1− xe,t ∀e ∀e′ ∈W (e) ∀t
(d)

∑

e∈S(i)

xe,t +
∑

e′∈D(i)

xe′,t ≤ 1 ∀i ∈ −→G ′ ∀t. (2)

Constraint (a) guarantees only transmission per node (except
for the auxiliary node b′) throughout the whole aggregation.
With t′ = t + 1, . . . , N , constraint (b) ensures that, once a
node transmits, it can no longer be the destination for any
transmission (since its transmission implies the completion of
the aggregation performed by that node and all its children).
Constraint (c) captures the interference-free requirement. Con-

straint (d) ensures half-duplex operation that a sender cannot
receive simultaneously when it has been assigned to transmit in
a time slot.

C. Optimal Solution for the Example Network

One contribution of this paper is that we present the first
solvable mathematical formulation of the problem. Thus, for
small-scale networks (less than ten nodes), we can directly
derive the optimal solution by existing optimization software,
such as the Gnu linear programming kit (GLPK) tool [15].

We solve the mathematical formulation of the example graph
by the GLPK tool [15]: It takes three days for the GLPK tool
to find the optimal solution. The optimal scheduling, which
takes only six time slots, is shown in Fig. 3(e). There is an
apparent gap between the latency of the SPT/DST approach and
the optimal scheduling. Based on these observations, we claim
that doing convergecast in an SPT is neither a necessary nor a
sufficient condition. A similar claim can be proposed for DST
as well.

The optimal solutions of small networks give us insight of
the MLAS scheduling. While for larger scale networks, it is
still computationally infeasible, even if we have a solvable
formulation, since MLAS is NP-complete. That is why we need
polynomial-time approximation algorithms such as SPT/DST-
based approaches or GGT, which is the main contribution of
this paper.

V. GREEDY GROWING TREE

A. Basic Idea

Maximizing parallel transmissions is the key for an MLAS
solution. Motivated by backward induction, we propose the
GGT algorithm to schedule the aggregation process in a reverse
order: The last aggregation step is scheduled first by selecting
the last sender to the sink, then the 〈sender, receiver〉 pairs of
the next-to-last step, and so on, until all nodes are scheduled to
send once.

The idea behind our proposed GGT algorithm is to construct
larger and larger spanning trees rooted at the sink: the temporary
spanning tree contains only the sink node at the beginning; in
each round, all nonleaf nodes of the temporary spanning tree
are the candidates of receivers; and all leaf nodes are the can-
didates of senders. Here, the 〈sender, receiver〉 set is selected
in a manner such that the opportunity of parallel transmissions
can be maximized; the new senders are then added to generate
an expanded temporary tree before entering the next iteration.
It is noted that, in contrast to previous works, tree construction
of GGT is directly guided by the scheduling algorithm step
by step. For each temporary tree, all neighbored nodes are
the candidates of 〈sender, receiver〉 pairs of the next step, to
maximize the opportunity of parallel communications in each
step. As a result, the problem is how to select the pairs in each
round. Here, we present a Principal for the scheduling design:

The selection of 〈sender, receiver〉 pairs should consider
how to maximize the opportunity of parallel transmission of
both current and later rounds, and the choices that benefit later
rounds should have priority.



TIAN et al.: NEITHER SHORTEST PATH NOR DOMINATING SET: AGGREGATION SCHEDULING BY GGT 3467

TABLE II
SUBROUTINES USED

Due to the reverse scheduling nature of GGT, the selection of
senders in the current round would become nonleaf nodes of
the temporary trees in all subsequent rounds. Merely focusing
on maximizing the opportunity of parallelization of the current
scheduling round is somehow shortsighted and very likely to
impair scheduling in later rounds; the Principal, in fact, artic-
ulates that the chosen senders should also serve as a “better”
tree node for subsequent scheduling.2

Let r denote round index and Tr be the temporary tree.
Table II lists the subroutines used in the algorithm. For can-
didate senders, we present three sorting rules to order them in
a selection sequence.

1) Priority Rule 1: First, sort them based on the increasing
order of NumNeighbor(i, Tr).

2) Priority Rule 2: For nodes with the same order by Pri-
ority Rule 1, sort them based on the increasing order of
NumNeighbor(i, V \ Tr).

3) Priority Rule 3: For nodes with the same order by Priority
Rules 1 and 2, sort them based on lexicographic order.

The intuition behind Priority Rule 1 is that the less the number
of neighbors of a node in Tr, the less the opportunity that the se-
lected node’s transmission would interference with subsequent
candidates of senders, hence maximizing the opportunity of
parallelization. The intuition behind Priority Rule 2 is that, if a
node with lower NumNeighbor(i, V \ Tr) value is selected,
then, in the next round, it would interface to a lower number of
new leaves; hence, its opportunity of transmission interference
as a receiver is reduced. Priority Rule 3 is used to finally break
the ties.

B. Avoiding Local Optimization

An intuitive example is shown in Fig. 2(b), where, appar-
ently, node 4 should be preferred, during the scheduling, from
the global point of view: All nodes in its subtree cannot be
scheduled until node 4 is scheduled. To prevent the GGT
algorithm from falling into the pit of local optimization, we
also identify special nodes in the topology that might have
great impact over later rounds; those nodes should have priority
during the scheduling process. Three types of such nodes are
defined and listed by their priority.

1) Articulation node: If G becomes disconnected when we
remove node i from G, then i is called an articulation

2Obviously, “better” here means it might improve parallelization.

node; its weight can be calculated as how many nodes are
isolated from b because of its removal. This name comes
from an articulation point in graph theory; one example
is node 4 in Fig. 2(b) with a weight value of 5.

2) Pilot node: if a node i is on the shortest path from sink
b to an articulation node, then i is called a pilot node;
its weight can be calculated as the summation of the arti-
culation node weight and its hops to the articulation node.

3) Critical node: the distance from sink b to all nodes can be
summed up; if the summation increases when we remove
node i from G, then i is called a critical node; its weight
can be calculated as the gap between the old summation
and the new summation. Two examples are nodes 6 and 7
in Fig. 2(b), each with a weight value of 2.

C. Algorithm

We present our approximation algorithm in this section. The
pseudocode of the GGT algorithm is shown in Algorithm 1.

Algorithm 1 GGT

Require:: MLAS instance (G, b)
1:r ← 1, T1 ← b;
2:while Tr �= V do
3: Zr = leaves of Tr;
4: Zr = SortZr(G,Tr, Zr);
5: Sr ← ∅,Dr ← ∅;
6: while Zr \ Sr �= ∅ do
7: z ← next node in Zr \ Sr;
8: Sort nodes d ∈ Neighbor(z, Tr) based on increasing

value of NumNeighbor(d, Zr);
9: for d ∈ Neighbor(z, Tr) do
10: if InterferenceJudge(Sr, z, d) then
11: Neighbor(z, Tr)← Neighbor(z, Tr) \ d;
12: Continue;
13: else
14: Sr ← Sr ∪ z, Dr ← Dr ∪ d;
15: Break;
16: end if
17: end for
18: Zr ← Zr \ z;
19: end while
20: Tr+1 ← Tr ∪ Sr;
21: r ← r + 1;
22:end while
23:Output Sk = Sr+1−k, Dk = Dr+1−k;

GGT initially sets T1 to be b (line 1) and then conducts a
number of iterations. Each iteration performs a schedule of a
round. In the rth iteration, Tr is a temporary tree rooted at b
spanning all nodes scheduled until round r − 1. From the nodes
in Z Tr, GGT picks the leaves of Tr as candidate senders for
round r. Zr is initially set to be the set of leaves of Tr (line 3);
all nodes in Zr are then sorted into a priority list by Algorithm 3
(line 4). The sender set Sr and receiver set Dr are empty at first
(line 5).



3468 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 7, SEPTEMBER 2011

After sorting Zr, we examine nodes from Zr one by one
in a first-fit way (line 7): the new candidate sender is tested
against those nodes already in Sr/Dr based on the interference-
free condition. Note that the interference test is bidirectional:
the candidate sender should have a receiver, which is not
already in Dr. If there are multiple such candidate receiver,
the one with the least NumNeighbor(i, Zr) value is selected
(line 8): intuitively, this parent is the least likely to have
interference with later candidate senders. If d does not pass the
interference-free test, it is removed from the candidate receiver
set, and the next candidate receiver is tested (lines 10–12).
Otherwise, if d passes the test, z/d is added into Sr/Dr,
respectively (line 14).

When the chance of acting as a sender for every leaf in Zr

has been examined (line 18), nodes in Sr/Dr form the set of
the sender/recevier sets in round r. Subsequently, GGT adds
Sr by setting Tr+1 = Tr ∪ Sr and enters the (r + 1)th iteration
(line 20–21).

The interference-free condition is guaranteed by Algorithm 2.

Algorithm 2 InterferenceJudge

Require: : (Sr, z, d)
1:for i = 0 to SizeOf(Sr) do
2: p = Sr[i].destination;
3: if e(p, z) ∈ E then
4: return TRUE;
5: end if
6: if e(Sr[i], d) ∈ E then
7: return TRUE;
8: end if
9: return FALSE;
10:end for

First, InterferenceJudge tests if the candidate sender z would
interference with Sr’s parents (lines 2–5); then, it tests if
the candidate receiver d would be interfered by any already
scheduled sender in this round (lines 6–8). If z and d passes the
check, a (interference) FALSE is returned (line 9); otherwise, a
TRUE is returned (lines 4 and 7). In Algorithm 3, articulation
nodes (lines 6–12), pilot nodes (lines 13–16), and critical nodes
(lines 17–20) in Zr are listed first; normal nodes in Zr are listed
on the order of Priority Rules 1, 2, and 3 (lines 20–26).

Algorithm 3 SortZr

Require: : (G,Tr, Zr)
1:Ztmp ← ∅;
2:ArticulationList← Articulation Nodes of Zr, sort based

on ArticulationWeight(i);
3:PilotList← Critical Nodes of Zr, sort based on

PilotWeight(i);
4:CriticalList← Critical Nodes of Zr, sort based on

CriticalWeight(i);
5:NormalList← Normal Nodes of Zr;
6:for j = 0 to SizeOf(ArticulationList) do
7: i = ArticulationList[j];

8: LowerBound = log2((SizeOf(V \ Tr)−
ArticulationWeight(i))/SizeOf(Tr));

9: if ArticulationWeight(i) > LowerBound then
10: Add i to the tail of Ztmp;
11: end if
12:end for
13:for j = 0 to SizeOf(PilotList) do
14: i = PilotList[j];
15: Add i to tail of Ztmp;
16:end for
17:for j = 0 to SizeOf(CriticalList) do
18: i = CriticalList[j];
19: Add i to tail of Ztmp;
20:end for
21:Priority Rule 1: Sort NormalList based on

NumNeighbor(i, Tr);
22:Priority Rule 2: There always exist nodes that have the

same number of neighbors in Tr, again we sort them
according to NumNeighbor(i, V \ Tr);

23:for j = 0 to SizeOf(NormalList) do
24: i = NormalList[j];
25: Add i to tail of Ztmp;
26:end for
27:Output Zr = Ztmp;

D. GGT for the Example Network

Fig. 2(a) shows the topology of G. Fig. 5(a) shows the initial
state of GGT, as described in Algorithm 1. There is no special
node in the topology. Node 0 is the sole member of the T1

tree. Then, nodes 1, 2, and 3 are leaves. In the first round [see
Fig. 5(b)], nodes 1 and 3 have priority over node 2 based on
Priority Rule 2; based on Priority Rule 3, the sequence is 1–3–2.
Node 1 is first added into S1; both nodes 3 and node 2 would
interfere with node 1 because they share the same parent node 0.
The scheduling result of round 1 is Sr = 1 and Dr = 0.

In the second round [see Fig. 5(c)], T2 = 0, 1, and nodes 2,
3, 4, and 5 become leaves. Nodes 3, 4, and 5 have priority over
2 due to the Priority Rule 1. Sequence 3 > 4 > 5 is determined
by Priority Rule 2. Hence, the examine sequence is {3,4,5,2}.
After scheduling, we get S2 = 3, 4 and D2 = 0, 1. The process
continues in rounds 3–7 [correspondingly, Fig. 5(c)–(g)]. After
seven rounds, all nodes are added into the growing tree. Finally,
we reverse the sequence, and the final scheduling is shown in
Fig. 5(h). An interesting finding is that our result use only seven
slots, which is very close to the optimal scheduling [shown in
Fig. 3(e)] for this network topology.

VI. EVALUATION

A. Experiment Setup

We implemented SDA [3], WIRES [16], First-Fit [4], SAS
[5], and IAS [9] algorithms to compare their performances
with GGT. Note that we redress the interference judge proce-
dure of First-Fit for fair comparison. We randomly deploy N
sensors into a square region with edge length L; the density



TIAN et al.: NEITHER SHORTEST PATH NOR DOMINATING SET: AGGREGATION SCHEDULING BY GGT 3469

Fig. 5. (a) Initial tree. (b)–(h) Scheduling of each step. (i) Final output.

Fig. 6. Sink at the center increases λ from 10 to 30, with L = 50, 100, 150, 200, and 250. (a) Average node degrees. (b) Average network radius. (c) Increase
density with λ = 20 and L = 100.

of nodes is determined by O(N/L2). All sensors have the
same transmission range λ. For a randomly generated topology,
its characteristics can be denoted by average node degree
Φ and network radius R. These values reflect the topology
characteristics.

All comparisons are fairly conducted on the same graph, and
on each graph, the data are aggregated from the same set of
nodes to the same sink. For each set of parameter configuration,
we perform comparisons with ten random graphs and present
the averaged result. For the MLAS problem, a well-known
lower bound of the optimal solution is max{log2(N), R},
where N is the number of sensors, and R is the radius of
the network [9]. However, this bound is too loose. We use the

SPT lower bound value provided in Malhotra’s work [16] as an
approximation of the overall lower bound and compare it with
our simulation results.

B. Fixed Node Density

In this set of experiments, we keep node density fixed as
N/L2 = 0.02. For L = 50, 100, 150, 200, and 250, we have
N = 50, 200, 450, 800, and 1250, respectively. The sink is lo-
cated at the center. By varying λ for the same graph, the average
degree Φ increases [as shown in Fig. 6(a)], and the network
radius R decreases [as shown in Fig. 6(b)]. For the same λ
value, degree Φ maintains stable with the increase of network



3470 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 7, SEPTEMBER 2011

Fig. 7. With the sink at the center, the performance comparison with fixed node density and (a) λ = 10 (Φ ≈ 5), (b) λ = 20 (Φ ≈ 20), and (c) λ =
30 (Φ ≈ 40).

Fig. 8. With the sink at the corner, the performance comparison with fixed node density and (a) λ = 10 (Φ ≈ 5), (b) λ = 20 (Φ ≈ 20), and (c) λ =
30 (Φ ≈ 40).

[as shown in Fig. 6(a)], and the network radius R increases
proportionally to network size [as shown in Fig. 6(b)].

Fig. 7 shows the number of time slots needed when the
number of nodes N varies from 50 to 1250 (i.e., L from 50
to 250), with the λ value of 10, 20, and 30. Generally speak-
ing, the average latencies of two DST approaches are similar:
Although their theoretical upper bounds are better, their realis-
tic performances are much inferior to the two SPT approaches
and GGT.

In low-degree scenarios [see Fig. 7(a)], there is almost neg-
ligible performance gap between SPT and GGT; their perfor-
mance are close to the SPT lower bound. After analyzing the
results, we found that the reason is that randomly generated
low-degree topologies have many Articulation and Critical
nodes; SPT is also suitable for such topologies.

While in high-degree scenarios [e.g., λ = 20/30 with Φ ≈
20/40 in Fig. 7(b) and (c)], the average latency of GGT is
much lower than that of the others. The reason is that there
are overwhelming contentions among nodes; the opportunity
of parallel transmission is greatly reduced due to the layered
nature of the predefined trees. As a comparison, GGT achieves
nearly half of latency, compared with its competitors. We can
also see that the SPT lower bound is even higher than the result
of GGT in Fig. 7(c). The reason is that, in such a high-degree
scenario, sink b degree dominates the lower bound value.

To prove the generality of the proposed GGT approach to
a wider range of topology, the sink is moved to one corner of
the region to emulate a skewed node distribution. We will not
consider IAS in the sets of experiments since it always chooses

a node located at the center of the WSN as the aggregation
root. The experiments are repeated, and results are shown in
Fig. 8. Again, the performance of GGT is much better than
others in high-degree networks. In this experiment, the SPT
lower bound is much lower than that in the previous experiment
[e.g., Fig. 8(c)]: Since the sink is moved to a corner, its number
of direct neighbors is greatly reduced; the consequence is that
the sink degree no longer dominates the lower bound.

C. Variable Node Density

In this experiment, we keep λ and L fixed at 20 and 100,
respectively, while varying N to change the node density.
Again, the sink is located at the center. In Fig. 9, we present
the number of time slots needed when the number of nodes
N varies from 100 to 500. As shown in Fig. 6(c), the network
radius R remains stable, and Φ increases proportionally to N .

Similar to previous results, the latency curve using GGT is
significantly lower than that using others. As shown in Fig. 9,
the more nodes in a fixed field, the better the performance gain
of GGT over its competitors. The results show that the trans-
mission parallelization is greatly improved by our approach.
Mostly, the GGT results are close to the values of the SPT lower
bound. This situation implies that GGT is effective and might
be close to the overall optimum.

VII. CONCLUSION

MLAS seeks to minimize the number of scheduled time slots
for data aggregation task in multihop wireless sensor networks.



TIAN et al.: NEITHER SHORTEST PATH NOR DOMINATING SET: AGGREGATION SCHEDULING BY GGT 3471

Fig. 9. Performance comparison with variable node density.

Existing aggregation schedules often utilize the two-phase ap-
proach: a tree construction phase followed by a scheduling
phase. We argue the problem of the existing schedules: the
performance of these algorithms could vary greatly, depending
on the tree initially constructed; the opportunity of parallel
transmission is greatly reduced due to the layered nature of the
predefined tree.

In this paper, we have presented the first solvable mathemat-
ical formulation of the MLAS problem. The insight provided
is that an optimal scheduling can be neither shortest path nor
dominating set based. Inspired by backward induction theory,
we proposed the GGT algorithm. In contrast with previous
works, we gradually construct larger and larger spanning trees
rooted at the sink; the tree construction is directly guided by the
scheduling algorithm. The strictly defined priority rules max-
imize the opportunity of parallelization in each single round;
as a result, the average aggregation time can be significantly
reduced for high-degree networks.

REFERENCES

[1] H. Jiang, S. Jin, and C. Wang, “Parameter-based data aggregation for
statistical information extraction in wireless sensor networks,” IEEE
Trans. Veh. Technol., vol. 59, no. 8, pp. 3992–4001, Oct. 2010.

[2] V. Annamalai, S. K. S. Gupta, and L. Schwiebert, “On tree-based
convergecasting in wireless sensor networks,” in Proc. IEEE WCNC,
2003, pp. 1942–1947.

[3] X. Chen, X. Hu, and J. Zhu, “Minimum data aggregation time problem
in wireless sensor networks,” in Proc. MSN, vol. 3794, Lecture Notes
Comput. Sci., 2005, pp. 133–142.

[4] S. C.-H. Huang, P. J. Wan, C. T. Vu, Y. Li, and F. Yao, “Nearly constant ap-
proximation for data aggregation scheduling in wireless sensor networks,”
in Proc. IEEE INFOCOM, 2007, pp. 366–372.

[5] P.-J. Wan, S. C.-H. Huang, L. Wang, Z. Wan, and X. Jia, “Minimum-
latency aggregation scheduling in multihop wireless networks,” in Proc.
ACM MOBIHOC, 2009, pp. 185–194.

[6] R. J. Aumann, Backward Induction and Common Knowledge
of Rationality—Games and Economic Behavior. Amsterdam,
The Netherlands: Elsevier, 1995.

[7] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[8] B. Yu, J. Li, and Y. Li, “Distributed data aggregation scheduling in wire-
less sensor networks,” in Proc. IEEE INFOCOM, 2009, pp. 2159–2167.

[9] X. Xu, X. Li, X. Mao, S. Tang, and S. Wang, “A delay-efficient algorithm
for data aggregation in multihop wireless sensor networks,” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 1, pp. 163–175, Jan. 2011.

[10] J. Zhu and X. Hu, “Improved algorithm for minimum data aggregation
time problem in wireless sensor networks,” Int J. Syst. Sci., vol. 21, no. 4,
pp. 626–636, Dec. 2008.

[11] H. Li, Q. Sheng Hua, C. Wu, and F. C. M. Lau, “Minimum-latency aggre-
gation scheduling in wireless sensor networks under physical interference
model,” in Proc. ACM MSWiM, 2010, pp. 360–367.

[12] L. Jia, G. Noubir, R. Rajaraman, and R. Sundaram, “GIST: Group-
independent spanning tree for data aggregation in dense sensor networks,”
in Proc. DCOSS, 2006, pp. 282–304.

[13] C. Joo, J.-G. Choi, and N. B. Shroff, “Delay performance of schedul-
ing with data aggregation in wireless sensor networks,” in Proc. IEEE
INFOCOM, 2010, pp. 1–9.

[14] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum lifetime data
gathering and aggregation in wireless sensor networks,” in Proc. ICN,
2002, pp. 685–696.

[15] Gnu Linear Programming Kit. [Online]. Available: http://www.gnu.org/
software/glpk/

[16] B. Malhotra, I. Nikolaidis, and M. A. Nascimento, “Aggregation con-
vergecast scheduling in wireless sensor networks,” Wireless Netw.,
vol. 17, no. 2, pp. 319–335, Feb. 2011.

Chen Tian (M’10) received the B.S., M.S., and
Ph.D. degrees from Huazhong University of Science
and Technology, Wuhan, China, in 2000, 2003, and
2008, respectively.

He joined the Department of Electronics and In-
formation Engineering, Wuhan National Laboratory
for Optoelectronics, Huazhong University of Science
and Technology, as a Lecturer. His research interests
include distributed networks, wireless networks, and
network architecture.

Hongbo Jiang (M’08) received the B.S. and M.S.
degrees from Huazhong University of Science and
Technology, Wuhan, China, and the Ph.D. degree
from Case Western Reserve University, Cleveland,
OH, in 2008.

He then joined the Department of Electronics and
Information Engineering, Wuhan National Labora-
tory for Optoelectronics, Huazhong University of
Science and Technology, as an Associate Professor.
His research interests include computer networking,
particularly algorithms and architectures for high-

performance networks and wireless networks.

Chonggang Wang (SM’09) received the Ph.D. de-
gree in computer science from Beijing University of
Posts and Telecommunications, Beijing, China.

He has conducted research with NEC Laboratories
America, AT&T Labs Research, the University of
Arkansas, and Hong Kong University of Science and
Technology. He is currently with InterDigital Com-
munications, King of Prussia, PA. His research in-
terests include future Internet, machine-to-machine
communications, and cognitive and wireless
networks.

Zuodong Wu received the B.S. degree in 2010 from
Huazhong University of Science and Technology,
Wuhan, China, where he is currently working toward
the M.S. degree with the Department of Electronics
and Information Engineering, Wuhan National Lab-
oratory for Optoelectronics.

His research interest is network protocols.



3472 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 7, SEPTEMBER 2011

Jinhua Chen received the M.S. degree from
Huazhong University of Science and Technology,
Wuhan, China, in 2010.

He is currently with the Department of Electronics
and Information Engineering, Wuhan National Lab-
oratory for Optoelectronics, Huazhong University
of Science and Technology. His research interest is
network protocols.

Wenyu Liu (M’06) received the B.S. degree in
computer science from Tsinghua University, Beijing,
China, in 1986 and the M.S. and Ph.D. degrees from
Huazhong University of Science and Technology,
Wuhan, China, in 1991 and 2001, respectively.

He is currently a Professor and Associate Chair-
man with the Department of Electronics and In-
formation Engineering, Wuhan National Laboratory
for Optoelectronics, Huazhong University of Sci-
ence and Technology. His current research interests
include computer graphics, multimedia information

processing, and computer vision.


