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Abstract—Many sensor network applications are tightly coupled with the geometric environment where the sensor nodes are

deployed. The topological skeleton extraction for the topology has shown great impact on the performance of such services as

location, routing, and path planning in wireless sensor networks. Nonetheless, current studies focus on using skeleton extraction for

various applications in wireless sensor networks. How to achieve a better skeleton extraction has not been thoroughly investigated.

There are studies on skeleton extraction from the computer vision community; their centralized algorithms for continuous space,

however, are not immediately applicable for the discrete and distributed wireless sensor networks. In this paper, we present a novel

Connectivity-bAsed Skeleton Extraction (CASE) algorithm to compute skeleton graph that is robust to noise, and accurate in

preservation of the original topology. In addition, CASE is distributed as no centralized operation is required, and is scalable as both its

time complexity and its message complexity are linearly proportional to the network size. The skeleton graph is extracted by

partitioning the boundary of the sensor network to identify the skeleton points, then generating the skeleton arcs, connecting these

arcs, and finally refining the coarse skeleton graph. We believe that CASE has broad applications and present a skeleton-assisted

segmentation algorithm as an example. Our evaluation shows that CASE is able to extract a well-connected skeleton graph in the

presence of significant noise and shape variations, and outperforms the state-of-the-art algorithms.

Index Terms—Sensor networks, algorithm/protocol design, skeleton extraction.

Ç

1 INTRODUCTION

SENSOR networks today are widely used as they are able to
capture the phenomena of the physical world that were

originally difficult or impossible to obtain by traditional
techniques. Existing examples include disaster relief [6],
habitat monitoring [23], battlefield surveillance [12], etc. For
these applications, however, the sensor networks cannot be
deployed well-planned in advance as conventional net-
works. The geographical locations and deployment meth-
ods may vary greatly, and the topology of the sensor
networks is affected by such factors as obstacles, deploy-
ment randomness, holes, etc. The shape of the sensor
network hardly conforms to simple shapes such as a square
or a disk; which are mainly used in research studies [13],
[21]. As a concrete example, a butterfly-shape sensor

network (e.g., Fig. 1a) is representative for airport terminals
or train maps shown in Fig. 2.

The performance of the sensor network, e.g., the efficiency
of data routing, localization, and path planning, heavily
depends on the distribution of the sensors and the overall
network topology. Some previous studies have shown that
the topological skeleton (or so-called medial axis) information
of the sensor network can greatly improve routing perfor-
mance [3]. In this paper [3], the routing efficiency is
compared with GPSR, another wireless routing scheme
where only local neighbor information is available; and great
improvement is observed. Follow-ups have used skeleton
information for landmark selection to provide location
service [18], segmentation [25], and navigation algorithms
[5]. We argue that geometric skeleton information can be
useful far more than routing, location, segmentation, and
path design. For instance, for a mobility-assisted sensor
network for field coverage, the skeleton can be used for path
planning since the nodes in the skeleton represent a medial
axis, and thus, cover most area where all nodes are
observing. Thus, to understand the characteristics of the
sensor topology and extract some important geometric
information are essential to the sensor networks.

The previous works focus on the application of the
skeleton information for various purposes in the sensor
networks. The performance of the skeleton extraction,
however, is not the focus of these studies. In this paper,
we present a novel distributed Connectivity-bAsed Skeleton
Extraction (CASE) algorithm which can better represent the
topological shape of the sensor network than previous
studies while incurring comparable communication cost.
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We illustrate the comparison by a simple example in Fig. 1.
We see that Fig. 1c shows the medial axis graph computed
by [3], [4] and Fig. 1d is the skeleton graph computed by
CASE. Clearly, CASE grasps the geometric information
better, and avoids possible loops.

Skeleton or medial axis extraction schemes have been
studied in computer vision [8] and graphics [22] commu-
nities. While our proposed algorithm carries some of their
advantages, there are some intrinsic differences due to the
unique characteristics of the wireless sensor networks; for
example, the sensor networks are discrete and the skeleton
should be computed given only local connectivity informa-
tion. Thus, we face numerical challenges in designing an
efficient skeleton extraction algorithm. First, sensor nodes
randomly deployed often have no location information or
distance information. This makes topology recognition
difficult as various techniques widely used in computer
vision fields for skeleton extraction that request centralized
computation are not suitable for a sensor network. Second, in
a discrete network, the definition of the distance between
skeleton nodes has to use hop-count distance instead of
euclidean distance. This will result in noise, e.g., incorrect
estimation of boundaries. It has been shown that a little noise
or deformation at the boundary often seriously disturbs the
topology of the skeleton graph [3]. As a result, many well-
known algorithms [8], [1], [14] applied in other fields to
extract skeleton cannot be used directly. Effective elimina-
tion of the unstable segments in skeleton to keep the genuine
geometric features is challenging. Third, even after the
skeleton nodes are identified, connecting all nodes in a
proper way is not as straightforward as that in the
continuous case. In many cases, there are not enough
skeleton nodes that can be extracted to construct a connected

skeleton. In addition, the paths generated to connect skeleton
nodes may either not be the shortest paths or introduce a
cycle as shown in Fig. 1c.

Toward taming these challenges, in this paper, we
propose a novel skeleton extraction approach—CASE, and
make the following contributions:

. We present the design and implementation of a
practical and distributed skeleton extraction algo-
rithm which requests only connectivity information
and preserves the topology well.

. Based on boundary partition techniques, our pro-
posed algorithm is robust against noise, and thus,
capable of keeping the genuine geometric features of
the sensor network.

. We have proved that CASE is a scalable algorithm as
its time and message complexity are linearly
proportional to the network size.

. Our work has implications for topology recognition
in general. The results suggest that the user should
keep track of the importation points such as skeleton
joints and corner points in order to better under-
stand the topology.

The remaining part of this paper proceeds as follows:
Section 2 presents related work. Section 3 outlines the
background of skeleton extraction and the motivation of
the work. Section 4 is devoted to the skeleton extraction
algorithm. Issues related to overhead and refinement are
discussed in Section 5. We evaluate our scheme in
Section 6. Finally, Section 7 summarizes the paper and
future plans.

2 RELATED WORK

Topology recognition is crucial to many sensor network
applications. Boundary detection and skeleton extraction
are by far the most widely used methods for topology
recognition in sensor networks. These two categories of
methods have been explored in recent years. The first
category, boundary detection, focuses on detecting nodes
on the inner or outer boundaries. Fang et al. [10] proposed a
simple algorithm built on the idea that a packet can only get
stuck at a node on hold boundaries, while assuming the
nodes know their geographical location information. Fekete
et al. [11] proposed an algorithm based on the observation
that the boundary nodes often have much lower degree
than inner nodes. Without the assumption of location
geographical information, Ghrist and Muhammad [13]
proposed a centralized algorithm to detect holes via
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Fig. 1. An example network. (a) Boundary by the approach in [24]. (b) Medial axis points according to the definition in [3], [4]. (c) Medial axis graph
computed by MAP in [3], [4]. (d) Skeleton graph computed by CASE.

Fig. 2. (a) Chicago airport terminal 2. (b) A part of Los Angeles train
map.



homology. Wang et al. [24] developed a practical distrib-
uted algorithm also only using connectivity information.
Motivated by the observation that holes create irregularities
in hop count distances, they identify those nodes where
shortest paths of distinct homotopy types terminate and
touch each other, trapping the holes between them. Saukh
et al. [21] proposed to determine the inner nodes using
geometric constructions based on the d-quasi unit disk
graph model for radio propagation. Their algorithm works
well even if there is no hole in the network.

For the second category, little has been done on skeleton
extraction even though it is considered to be an important
step for many other sensor applications. Lin and Lee [19]
proposed a dynamic medial axis model that represents
shapes and changes of shapes in a geometric space. One
work that is close to our work is MAP [3], [4]. They
considered to define skeleton points using hop count such
that nodes with equal distances to two closest boundary
nodes can be identified to skeleton points. In addition,
connecting these skeleton points provides a construction of
the skeleton graph. However, we emphasize the differences
from their work. First, and most importantly, motivated by
the process of Discrete Curve Evolution, we partition the
boundary according to the corner points, and thus, the
global information, instead of local, significant of the shape
is maintained. Our algorithm is more stable under small
deformations. Second, MAP does not guarantee that the
skeleton points it identifies form a connected component,
and thus, incurs the problem that the shortest path between
two nodes may not represent the shape of the geometric
environment. Instead, our algorithm preserves the shape via
constructing a connected component using skeleton points,
and thus, the path in this component is able to represent the
exact shape of the environment. Third, we refine the coarse
skeleton graph using local flooding on it and achieve better
results. Fourth, we have proven the skeleton extraction
algorithm’s time and message complexity. Although we
have a higher message overhead than [3], [4], it is noted that
our experiments in Section 6 show that the number of
average messages needed per node is only three to eight. We
believe it is acceptable for most applications. Therefore, this
sacrifice for a better skeleton extraction is justifiable.

3 BACKGROUND AND MOTIVATION

Before introducing the proposed approach, we give a
description of some definitions which will be used in the rest
of this paper. According to Blum’s definition of the medial
axis [2], the skeleton S of a set P is the locus of the centers of
the maximal disks. A maximal disk of P (see Fig. 3a for the
disks centered at A-F ) is a closed disk contained in P that is
interiorly tangent to the boundary @P and that is not
contained in any other disk in P . Each maximal disk BðsÞ
with a center s must be tangent to the boundary at two (or
more) different points which are called generated points. By
Theorem 8.2 in [7], the skeleton S is a geometric graph, which
means that S can be decomposed into a finite number of
connected arcs, called skeleton arcs, composed of points of
degree two, e.g., all the points onAD,ED,BA,DF , andCA in
Fig. 3a. These points are called connection points. The arcs meet
at skeleton joints (or bifurcation points [14]) that are points of

degree three or higher (A, D in Fig. 3a). The skeleton point
having, for example, B, C, E, F in Fig. 3a.

In computer vision [14], [1] studies have obtained good
skeletons with the aid of the boundary corner points. We
purposely delay the definition of corner points. Intuitively,
it is one kind of critical points and using them as the
endpoints of the skeleton allows explicit preservation of
the topological information of the shape. As shown in
Fig. 3b, the boundary of the maple leaf is partitioned by
five corner points A;B;C;D;E; which leads to five
boundary segment points having their generated points
on these segments. As such, via boundary partition, the
topology can be fixed and redundant arcs of skeletons can
be disregarded [1]; leading to good skeletons.

Unfortunately, the aforementioned methods are very
sensitive to boundary noise and deformation [8], [1]; thus,
they cannot be directly applied to the discrete case. In the
discrete case, skeleton points are usually referred to the nodes
that have equal hops to two closest boundary nodes [4].
Unlike the continuous case, the boundary can have serious
noise and deformation as the hop count is only an approx-
imation of euclidean distance [4]. In other words, extracting
skeleton in a sensor network is not stable due to the
undesirable nodes that have equal distance to two close-by
nodes on the boundary [4]. The solutions proposed in [3], [4]
remove the unnecessary nodes in the skeleton, see Fig. 1b, via
setting a global threshold. This leads to problems when the
removed skeleton arcs represent important geometric pat-
terns or deformation exists on the boundary.

Motivated by Discrete Curve Evolution (DCE) [16],
which results in a fine-grained boundary partition, our
skeleton extraction algorithm is based on associating a
boundary partition with skeleton graph generation. As
such, the main idea behind our algorithm is to remove all
skeleton points whose nearest boundary nodes lie on the
same boundary segment. We emphasize the difficulties of
the design and implementation on boundary partition using
DCE in the wireless sensor networks. These are as follows:

1. we have to extend the definition of corner points and
the definition of joint points;

2. we need to deal with the case where multiple joint
points emerge;

3. we need to find a path between two joint points to
approximate the skeleton arcs, and

4. we need to refine the coarse results based on
connectivity information, etc.

We will detail our proposed algorithm in the next section.
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Fig. 3. (a) A skeleton with different types of skeleton points.
(b) Boundary partitioned by five corner points on the boundary.



4 SKELETON EXTRACTION ALGORITHM

As we mentioned in Section 3, to determine whether a node
is a skeleton point, the corresponding nearest boundary
point should be determined. To that end, the first step is to
detect boundary points. While our skeleton extraction
algorithm is derived from the boundary, the boundary
construction is out of the scope of this work. Numerous
recent studies, for instance, [9], [21], [24], have provided
boundary detection and recognition algorithms. We bear
this in mind and state that many of these algorithms can be
used in conjunction with our approach. That is, we assume
the boundary points are given as a system input in our
algorithms. Overall, the CASE algorithm includes five main
building blocks:

1. Find corner points on the boundary such that the
whole boundary can be decomposed into a finite
number of boundary segments.

2. Identify the skeleton points such that they form a
connected component.

3. Generate a set of skeleton arcs by connecting the
skeleton points.

4. Generate a coarse skeleton result by connecting
skeleton arcs and corner points.

5. Refine the coarse result to obtain the final skeleton.

4.1 Boundary Segments

The first step of CASE is to decompose the boundary @P by
corner points into a finite number of open boundary
segments. To that end, we need to identify the corner
points on the boundary at first, as mentioned in Section 3.

While the corner point can be defined in terms of the
curvature of the local shape in a continuous case, it is not
straightforward to use it in discrete networks. We formalize
here the discrete curvature as a simplification criterion,
which is able to represent geometric shape well. For any
boundary point p, we refer to its h-hop neighbors as NhðpÞ.
Let the maximal hop count between two nodes in NhðpÞ be
denoted by MhðpÞ. Intuitively, for an inner point or some
boundary points, MhðpÞ is often 2h. Thus, we define the
discrete curvature by �p ¼ maxh¼1;...;HMhðpÞ=2h (in experi-
ments, we found that h ¼ 3 or 4 provides good results in
most cases). For a point p 2 @P , if �p is less than a given
threshold ��, say 0.5 in our implementation (later, we will
show different thresholds that allow to generate multi-
resolution skeleton results), the point p is defined to be a
corner point. With a set of corner points, marked with thick

black circles in Fig. 4a, the boundary @P can be decomposed
into four open boundary segments p1p2, p2p3, p3p4, and p1p4,
as shown in Fig. 4a.

4.2 Skeleton Points Identification

As mentioned in Section 3, skeleton S can be decomposed
into skeleton arcs which are composed of skeleton points.
To that end, we turn to identifying the skeleton points each
of which is associated with at least two boundary segments.

The definition that the nodes that have the exactly equal
distances to at least two boundary segments are skeleton
points [4] is not suitable in many applications, especially for
a sparse sensor network where few nodes are identified to
be skeleton points. We observed that the skeleton points
based on this definition will be quite few in sensor networks
with a moderate average degree (see Fig. 12a in Section 6). It
is noted that, as opposed to the continuous case [1], [8], [14],
in a discrete network, there is no guarantee that all skeleton
points constitute a connected component. Thus, we refer to
skeleton points associated with two boundary segments, say
Ci and Cj, as those nodes such that: 1) the difference of the
absolute distances to two nearest boundary segments is less
than a given threshold, denoted by �p � 0; and 2) the
component composed of those nodes, denoted by SðCi; CjÞ,
is a connected component. It is noted that we do not claim
these two boundary segments are neighbors to each other.
Instead, two nearest boundary segments to the node are
considered; for example, those nodes marked with green
color in Fig. 4b (that is, the center part of skeleton points)
are associated with two nonneighbor boundary segments
p1p4 and p2p3. Via this definition, parts of skeleton points
can be well connected into skeleton arcs which will be
described in the next section. Our process to identify
skeleton points works as follows: First, every node in the
network initiates a flooding to obtain its distances to
boundary segments. Those nodes having equal distance to
Ci and Cj (that is, �p ¼ 0) definitely belong to SðCi; CjÞ.
Then, any p 2 S initiates a flooding to check whether S is a
connected component or not. If not, we iteratively increase
�p value by one to include more nodes into the set S until
SðCi; CjÞ is a connected component. It is noted that different
points have different thresholds. For instance, in Fig. 4b, the
�p value of the component composed of blue points is 0, but
for other components, this value is 1.

Next, we turn to investigating the complexity of the
connected component generation procedure. Let dðp; CjÞ ¼
minq2Cjdistðp; qÞ be the distance between a sensor node p
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Fig. 4. Skeleton extraction algorithm of an example sensor network with the average degree of 20.9. The final refined skeleton is shown in Fig. 1d.
(a) Boundary segments. (b) Skeleton points. (c) Skeleton arcs. (d) Coarse skeleton.



and a boundary segment Ci. We refer to d̂ðCi; CjÞ ¼
maxfmaxp2Cidðp; CjÞ;maxq2CjdðCi; qÞg as the maximum
distance between two segments. The following theorem
shows that the above-mentioned procedure, i.e., resetting
�p, is limited by a threshold: As a concrete example, in
Fig. 4, the maximal value of �p is only 1. Besides, in all
our test scenarios in Section 6, the maximal values of this
parameter are less than 3.

Lemma 1. For each point p 2 SðCi; CjÞ, we have dðp; CjÞ �
d̂ðCi; CjÞ. That is, for any skeleton point, its distance to the
segment is less than the maximum distance between two
segments.

Theorem 1. The times of resetting �p are limited by a value of
d̂ðCi; CjÞ.

Proof. We prove it by contradiction. Assume that when
�p ¼ d̂ðCi; CjÞ, SðCi; CjÞ is still not connected. That is,
there exists at least one point p and one of its neighbor
q 62 SðCi; CjÞ. On the other hand, the absolute value of
the difference of the distances jdðq; CiÞ � dðq; cjÞj should
be less than d̂ðCi; CjÞ. This is a contradiction with the fact
that q 62 SðCi; CjÞ since �p ¼ d̂ðCi; CjÞ. tu

As a result, by resetting �p, we obtain the set of skeleton
points, denoted by SðP Þ and shown in Fig. 4b, where the
skeleton points associated with different boundary seg-
ments are marked with different color thick circles. This
result shown in Fig. 4b, obviously, is much better than that
using the method in [3], [4], shown in Fig. 1b. Here, the
better results are obtained as: 1) the set of our skeleton
points is connected; and 2) by identifying skeleton points
that are coupled with two boundary segments, CASE is able
to remove many undesirable nodes introduced by MAP [3],
[4] (see Fig. 10a in Section 6). Unlike the continuous case, we
refer to the joint points as the nodes that belong to at least
two components SðCi; CjÞ and SðCi; CkÞ in a discrete
network, that is, SðCi; CjÞ \ SðCi; CkÞ. The joint points are
marked with thick black circle in Fig. 4b.

4.3 Skeleton Arcs Generation

Since skeleton S can be decomposed into a set of skeleton
arcs, an important step in the construction of the skeleton is
to generate skeleton arcs by connecting the skeleton points
SðP Þ in a correct way.

Unlike previous work [4], we do not claim to include all
skeleton points into our skeleton arcs. Instead, we construct
the skeleton arcs based on the fact that parts of skeleton
points are enough to construct a good approximation of the
theoretical skeleton in a discrete network.

We select two such nodes x0 and y0 that have the longest
length path in the component corresponding to two segments
Ci and Cj, that is, ðx0; y0Þ ¼ argmaxx;y2SðCi;CjÞdîstðx; yÞ. We
emphasize that dîstðx; yÞ is different from distðx; yÞ in
Section 4.1 since dîst represents the length of the shortest
path that is limited within the component SðCi; CjÞ (it is easy
to show that dîstðx; yÞ � distðx; yÞÞ. We refer to the path
(called diametral path [8]) from x0 to y0 as the longest path in
SðCi; CjÞ. Here, we shed light on the means to calculate the
distance idîstð�; �Þ. Each node p 2 SðCi; CjÞ initiates a flooding
with its own ID and a counter to indicate how many hops the
message has traveled, as well as each node ID across this path.

This flooding process is limited within the connected
component SðCi; CjÞ. For p’s all neighbors, those nodes
having exactly equal distances to Ci and Cj begin with
forwarding the message and incrementing the counter. For
those nodes whose distances to Ci and Cj are unequal, they
then forward the flooding message. By doing so, we allow to
calculate the distance between two nodes. Meanwhile, the
path between two nodes is recorded and this path is almost
traveling through those nodes having equal distances to Ci
andCj. The following theorems show that one endpoint of the
longest path should be the joint point if there exist joint points:

Lemma 2. For the connected component SðCi; CjÞ, if there exist
joint points, not all joint points are inner points of SðCi; CjÞ.
That is, there exists joint point p0 2 SðCi; CjÞ and p0 is on the
boundary of SðCi; CjÞ.

Proof. We prove by contradiction. Suppose all joint points
are inner points of SðCi; CjÞ. According to the definition
of the joint point, without loss of generality, assume that
the joint points correspond to boundary segments Ci, Cj,
and Ck. There exist a joint point p0 and at least three
boundary points p1, p2, and p3 of SðCi; CjÞ. These three
boundary points are not joint points and form a polygon
such that p0 is an inner point of this polygon [21] as
shown in Fig. 5.

Note that p0 is associated with Ci and Ck and assume
the minimal length path from p0 to Ck is traveling
through p4. Since p0 is an inner point of the polygon
p1p2p3, at least one point, say p2 in Fig. 5, has the same
neighbor p4 as well. In this sense, p2 has equal distance
to Ci and Ck, that is, p2 corresponds to Ck. This is a
contradiction with the fact that the points p1, p2, and p3
only correspond to Ci and Cj; otherwise, they are joint
points as well. Thus, the joint point p0 cannot be an
inner point. tu

Theorem 2. If there exist joint points in the connected component
SðCi; CjÞ, at least one endpoint of the longest path should be a
joint point.

Proof. It is noted that when one skeleton point p is
associated with boundary segment Ci, there exists one
generated point Cp 2 Ci which has the minimal distance
to p. There exists a joint point p0 which is on the
boundary of the component SðCi; CjÞ. Thus, its gener-
ated Cp0 should be the closest one to the corner (that is,
the endpoint of Ci) among all corresponding nodes
associated with other skeleton points fpjp 2 Cig. The
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Fig. 5. The joint point p0 has equal distance to three boundary segments
Ci, Cj, and Ck.



longest path from p0, accordingly, has the other endpoint
p00 whose corresponding node in Ci is the closest one to
the endpoint of Ci. Otherwise, this is not a longest path
since there exists another node which has a longer path
to p0 than p00. tu

One implication of this theorem is that when the
component SðCi; CjÞ contains joint points, we do not have
to ask all skeleton points initiating a flooding to find a pair
of nodes with longest distance. Instead, only a joint point
p0 2 SðCi; CjÞ \ SðCi; CkÞ is required to initiate a flooding to
find the other endpoint with longest distance between
them. That is, when there exists a joint point in the
component, we reduce the traffic cost to a considerable
extent. Unlike the continuous case [14], it is noted that the
joint points SðCi; CjÞ \ SðCi; CkÞ may contain many nodes,
as shown in Fig. 4b where joint points are marked with
thick black circles. In this case, our idea is to select the node
closest to the center of SðCi; CjÞ \ SðCi; CkÞ. Hence, the joint
point with the largest degree in the subgraph SðCi; CjÞ \
SðCi; CkÞ is selected to be the endpoint of the skeleton arc.

So far, we have obtained two endpoints of the longest
path in the subgraph SðCi; CjÞ. One characteristic of this
path is that all nodes on the path are skeleton points. We
call this path to be skeleton arc, denoted by AðCi; CjÞ. For
every pair of boundary segments Ci and Cj, one skeleton
arc can be extracted accordingly, as shown in Fig. 4c. Next,
we discuss how to connect all skeleton arcs in a right way
such that a coarse skeleton graph is obtained.

4.4 Coarse Skeleton: Connecting Skeleton Arcs and
the Corner Points

While in a continuous case, the skeleton S can be seamlessly
decomposed into a set of skeleton arcs which are
intrinsically connected, that is not always the case in a
discrete sensor network. Hence, an additional step of CASE
is to connect all the skeleton arcs and corner points, in order
to generate a coarse skeleton, as shown in Fig. 4d.

For two skeleton arcsA1 andA2, we refer to dîstðA1; A2Þ ¼
min dîstx2A1;y2A2

ðx; yÞ as the distance of these two arcs. In a
discrete network, it is possible that two close skeleton arcsA1

and A2 are not neighbor, that is, dîstðA1; A2Þ > 1. It is known
that each skeleton corresponds to boundary segments. When
these two skeleton arcs correspond to a same boundary
segment, sayCi, these two arcs are supposed to be connected.
In this case, we find two nearest points x0 and y0, where
dîstðx0; y0Þ ¼ dîstðA1; A2Þ. To find a path from x0 to y0, the
approach to flooding is similar to that in Section 4.3. Again,
during flooding, the path is based on the best-effort style to
travel those nodes which have similar distance to different
boundary segments.

Another step is to connect the corner points and skeleton
arcs to extract better skeleton used for topology recognition.
To that end, each corner point initiates a flooding to find a
path to connect its closest arc’s endpoint. By doing so, the
corner points become the endpoints of skeleton S, as
mentioned in Section 3.

4.5 Coarse Skeleton Refinement

A careful investigation of the above connecting method
reveals that this coarse skeleton often cannot be very useful

for topology recognition in practice. First, based on the
flooding process in Sections 4.3 and Section 4.4, the path
from one endpoint to another skeleton arc is not necessarily
the shortest path. Fig. 6a shows the case when p3 is
connected to p4 despite the fact that p3 is a neighbor of p5.
Second, unlike the continuous case, the cycle could be
obtained when we connect two skeleton arcs, as shown in
Fig. 6b. These two problems were also observed in [3], [4].

To overcome these disadvantages, we randomly select
one corner point to initiate a final flooding along the coarse
skeleton graph. We argue that it does not introduce much
traffic since the flooding is limited within the coarse skeleton.
Each node on the coarse skeleton only forwards the message
once. For example, when node p3 in Fig. 6a receives the
message from p2, it forwards it to p4 and p5. In this case,
when p4 tries to forward the message to p5, node p5 will
discard the message but only record its parent to be p3. As a
result, node p4 is removed from the skeleton and the new
path is p1p2p3p5p6. As for the case shown in Fig. 6b, node p3
forwards the message to p5 and p4, but only the first
message, say from p4, will be sent to p6 and p6 records its
parent to be p4 as well. Thus, the new path is p1p2p3p4p6p7p8
(it is noted that the new path could be p1p2p3p4p5p7p8 as
well due to the random fashion of the flooding). Finally, the
refined skeleton is obtained after the last refinement, as
shown in Fig. 1d.

5 DISCUSSION

5.1 Time and Message Complexity

Time and message complexity are important factors for an
efficient skeleton extraction algorithm. Let n be the total
number of nodes in the network, and

ffiffiffi

n
p

represents the
number of nodes on the boundary. Here, we assume that all
nodes are roughly uniformly distributed over the sensor area.
We do not consider some severe cases such as a circle-like
network, where the number of nodes on the boundary could
be n instead of

ffiffiffi

n
p

as the skeleton extraction is not useful and
meaningful in those scenarios. Actually, in all cases where we
conduct experiments, this assumption is not violated. The
following theorem shows the scalability of CASE:

Theorem 3. Both the time and message complexity of CASE are
OðnÞ, where n is the network size.

Proof. Let’s see time complexity at first. First, the boundary
partition based on DCE has a complexity ofOð ffiffiffinp log

ffiffiffi

n
p Þ,

which has been proved in [16], [1]. Second, to find skeleton
points, each boundary node initiates a flooding within
local area to enable each node to calculate its distance to
three nearest boundary segments. This process usually
has a time complexity of Oð1Þ as performed in a
distributed fashion. In worst case, however, when the
node is far away from boundary segments, say Oð

ffiffiffi

n
p
Þ in
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Fig. 6. Some situations where refinement is required.



the case where all nodes are randomly deployed in a

square area, the time complexity becomes Oð
ffiffiffi

n
p
Þ. Third,

to generate the skeleton arcs, we can traverse the skeleton

points and find the path with maximum length. Similar to

Bellman-Ford algorithm [17], the time complexity is

Oð ffiffiffinp � EÞ, where E is the number of edges. Usually, the

number of edges is proportional to that of nodes, and thus,

the time complexity to generate skeleton arcs is OðnÞ.
Fourth, local flooding performed to connect corner points

and skeleton arcs has a time complexity of Oð1Þ in a

distributed way. Finally, we need to traverse the coarse

skeleton for refinement in a linear timeOð
ffiffiffi

n
p
Þ. Overall, the

time complexity of our algorithm is OðnÞ.
Next, let’s see message complexity of CASE, that is,

the traffic cost our algorithm incurs. First, to identify
corner points, each node on the boundary has to initiate a
flooding within local area, limited by a TTL value. Thus,
the traffic cost for local area totally is Oð

ffiffiffi

n
p
Þ. Second, the

flooding by boundary nodes to identify skeleton point
incurs OðnÞ traffic since each node receives at most three
messages from its nearest three boundary branches, as
mentioned in Section 4.2. Third, to find maximum length
path in a connected component SðP Þ composed of a set
of skeleton points, the communication cost is
Oð ffiffiffinp log

ffiffiffi

n
p Þ. Fourth, the message complexity of the

local flooding to connect skeleton arcs and corner points
is also proportional to the number of skeleton points
Oð

ffiffiffi

n
p
Þ. Finally, traveling the coarse skeleton will incur

Oð
ffiffiffi

n
p
Þ traffic cost. Hence, the message complexity of our

proposed algorithm is OðnÞ. tu

Theorem 3 implies that while our proposed algorithm
always uses flooding scheme to collect necessary informa-

tion in each step of CASE to extract skeleton, the
communication cost will not increase too much as we limit
the flooding in a local area. For instance, in the step to refine
coarse result, the flooding is only executed within the

skeleton, containing few nodes compared with the whole
sensor network.

5.2 Multiresolution Skeleton

While acknowledging our skeleton result is based on the
threshold �� for identifying corner points to partition the
boundary described in Section 4.1, the corner points naturally

provide a good partition of the boundary into segments. The
corner points’ identification by providing a threshold can be

considered to be the process of DCE [1], [16]. Briefly
speaking, we assume there exists a subset of sample points
that lie on the boundary that constitutes a polygon result
approximating the underlying geometric environment. The
process of DCE performs by recursively removing polygon
points with the smallest shape contribution [16].

After the process of DCE, a subset of points (corner
points) are accordingly extracted to provide a good
approximation of the shape of a given boundary. This
subset can also be viewed as a partitioning of the original
boundary polygon into boundary segments. A multiresolu-
tion skeleton structure obtained by providing different
thresholds is shown in Fig. 7. One desirable characteristic of
DCE is the boundary partition stability [1], [16].

Multiresolution representations are desirable, as they
provide a flexible tool that fits the user’s needs better than
single-resolution systems [20]. In sensor’s applications, they
can also be useful for location, navigation, and path
planning (here, we do not detail these applications due to
the space limit).

5.3 Special Cases for Boundary Partitioning

While our boundary partitioning is based on the corner
point identification, it is possible that, in some cases, no
corner point exists. Fig. 8 shows an example network
where none of the nodes has a curvature higher than the
threshold 0.5. This example network has many corre-
sponding geometric environments in reality. For instance,
sensors are deployed in an outdoor area, say university
campus, with some buildings inside. It can be seen that it
has three holes, and thus, has a total of four boundary
segments. Joint points are marked with thick black circles
in Fig. 8a. Recall that the basic idea behind our algorithm
is that we associate each connected component (shown in
Fig. 8a with different colors, composed of skeleton points)
with two boundary segments. Hence, skeleton arcs can
still be generated followed by coarse and refined skeleton
graphs, as shown in Fig. 8b.

5.4 Skeleton-Assisted Segmentation

Segmentation algorithm in sensor networks is aimed at
partitioning an irregular sensor field into nicely shaped
parts to allow the assumption of a uniform and dense
sensor distribution in each part [25]. The procedure of our
skeleton extraction algorithm inherently introduces a follow
up of shape segmentation algorithm. Recall that each
skeleton point corresponds to two boundary segments
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Fig. 7. Multiresolution skeletons when we set (a) �� ¼ 0:75 and
(b) �� ¼ 0:86. It is noted that we set �� ¼ 0:5 in Fig. 1d.

Fig. 8. An example network without the existence of corner points.
(a) Skeleton points. (b) Skeleton graph.



marked with different colors in Fig. 4b. Let each skeleton
point initiate a flooding of message which contains the
boundary segments’ IDs it corresponds to. Each node
forwards the message when it receives the first message;
otherwise, the message is discarded. As such, each node in
the sensor network is aware of the boundary segments it
corresponds to. That is, segmentation is obtained, as shown
in Fig. 9. This skeleton-assisted segmentation algorithm, as
opposed to the previous work [25] which requires classify-
ing the medial axis nodes and merging parts of them into a
sink cluster such that each node finally corresponds to a
sink cluster, is quite simple and efficient. Note that the joint
point marked with thick black circles in Fig. 4 corresponds
to at least three boundary segments. In this case, we label
every pair of boundary segments a unique ID and then
assign the joint points corresponding to the pair of segments
with the smallest ID.

6 SIMULATIONS

We have implemented the simulator, conducted a series of
simulations on various simulated communication graph
topologies, and compared with the approach used in [3], [4].
Due to the space limit, we only present some representative
results. As mentioned before, the major difference between
our algorithm and previous work is that, instead of giving a
threshold like [3], [4] to disregard those nodes whose
nearest boundary nodes are too close, we remove all
unstable nodes whose nearest boundary nodes all lie on
the same boundary segment. The effectiveness of the
boundary partition will be illustrated in this section.

Fig. 10 shows results on a network with many small
deformations on the boundary. This network contains
1,714 sensor nodes and the average degree is 5.68. To
identify medial axis nodes using the definition in [3], [4],
we set the threshold to be four hops, in order to disregard
unstable nodes whose two nearest boundary nodes are too
close. Fig. 10a depicts the identified medial axis nodes.

Obviously, due to deformations on the boundary, many
unstable nodes are regarded but have no contribution for
skeleton extraction. That is, the deformations on the
boundary incur significant noise on medial axis nodes.
Besides, the component composed of all medial axis nodes
is not connected, and thus, connecting these nodes
becomes challenging. Fig. 10b shows the identified
skeleton points computed by CASE, where �� ¼ 0:5. These
skeleton points are connected and exhibit the significant
pattern of the shape as we identify them via boundary
segments (one segment is marked with red line and the
other is marked with green line). The skeleton graph is
accordingly well extracted as shown in Fig. 10c.

We further study the case where the deformations are
large enough that they should be considered as an
important part of the shape. We see a serration-like shape
in Fig. 11. Recall that, in Section 4.1, to find the corner
points, we define the discrete curvature with a system input
h. Here, we set h to 3 or 4 in our implementations. That is,
when a deformation spans over an area beyond h hops, it is
assumably important for the pattern recognition.

Fig. 12 shows the comparison on a small-scale scenario
based on JFK Airport Terminal 5 map, where 561 sensor
nodes are deployed with a grid model and with small
perturbation. The average degree of the communication
graph is 6.66. Due to the small scale, the threshold is set to
be two hops while using MAP [3], [4]. Fig. 12a illustrates
that MAP only identifies a few nodes such that it is hard to
connect them. The medial axis graph is shown in Fig. 12b. It
is noted that, when a minimum length path is directly used
to connect two nodes, the geometric features of the
environment are hardly represented (see the middle part
of the graph). Besides, at some parts (see the right-bottom
part of the graph), no medial axis is extracted at all.
However, CASE generates a better skeleton graph in
Fig. 12d since we appropriately identify enough skeleton
nodes shown in Fig. 12c.

We then conducted simulations on additional network
topologies from [18] to further demonstrate CASE’s
effectiveness. Figs. 13a and 13b show two skeleton graphs
using CASE on two networks each of which has more that
2,000 sensor nodes. It is observed that the performance of
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Fig. 9. Segmentation results on the networks in Figs. 1 and 8.

Fig. 11. The skeleton of a sensor network with the serration-like shape.
(a) Skeleton points and segments. (b) Skeleton graph.

Fig. 10. Comparison on an example network with many small deformations on the boundary. (a) Medial nodes by the method in [4]. (b) Skeleton
points and segments by our algorithm. (c) Skeleton graph by our algorithm.



our algorithm is fairly stable for these two kinds of shapes.
Similar to [3], [4], Figs. 13c and 13d depict the simplified
skeletons stored at each sensor for applications and the
vertex consists of joint points and corner points. Here, we
highlight the difference from [3], [4] since besides joint
points, we involve the corner points into the vertex in the
simplified skeleton stored at each sensor. We observed that,
by doing so, the extracted skeleton graph is better than that
using MAP [4]. These results imply that both the corner
points and joint points are crucial for topology recognition.

We next study the impact of the network density on the

skeleton construction. We conducted experiments on

butterfly network in Fig. 1. Fig. 14 shows the skeleton when

the numbers of nodes are 250 and 500; the average degrees

are 5.65 and 12.64. Compared to the skeleton built out of

1,025 nodes in Fig. 1, we can clearly see that higher node

density often results in a better result. The reason is that the

number of hops in the shortest path in the communication

graph may not accurately approximate the distance of two

sensor nodes [4]. In addition, when the density of nodes is

very low, it is not easy to find a smooth path like Fig. 1 and

there are often long branches in the skeleton.

We next consider the performance of CASE when the
sensor nodes are nonuniformly distributed. In Fig. 15, a total
of 500 nodes are deployed. Half of all nodes are deployed in
the bottom-right region of the butterfly-like network, and
the other half of nodes are deployed in the rest of the area.
Similar to Fig. 14, we found that the skeleton result in low-
density network looks different while CASE maintains
stable performance on the construction of skeleton.

We also compared the communication cost of the
algorithms. Table 1 shows the total communication cost in
terms of the total number of transmitted messages for
skeleton extraction algorithms. While providing much
better skeleton results than MAP in most scenarios, CASE
only introduces a little higher communication cost (around
two to five times compared with MAP despite the network
scale). It is noted that in Butterfly map, the communication
cost using CASE is around five times than that using MAP.
The reason is that, in this case, the number of boundary
nodes is considerable and the average degree is high. Thus,
the total traffic incurred by the identification of corner
points using CASE is significant compared to others.
Besides, noted that in the map of Hexagon, the commu-
nication cost using CASE is close to that using MAP as MAP
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Fig. 12. Comparison on the scenario of JFK airport terminal 5. (a) Medial axis nodes computed by MAP [4]. (b) Medial axis computed by MAP [4].
(c) Skeleton points computed by CASE. (d) Skeleton graph computed by CASE.

Fig. 13. (a) and (b) Skeletons on additional two networks in [18]. (c) and (d) Simplified skeleton graphs stored in each node.

Fig. 14. The skeletons of the butterfly network with different node
densities. (a) 250 nodes. (b) 500 nodes.

Fig. 15. Skeleton result in the presence of nonuniform distribution of
nodes.



identifies much more medial axis nodes due to the noise on
the boundary. Overall, CASE can also be viewed as a
lightweight solution for skeleton extraction.

Finally, we conduct experiments under a different
network model: the Quasi-UDG model [4] to the butterfly
network. We set � ¼ 0:8; that is, a link exists between two
nodes if the distance between the two nodes is smaller than
0.2 times of radio range; a link does not exist between two
nodes when the distance between two nodes is greater than
1.8 times the radio range, and a link between two nodes
exists with a probability of p ¼ 0:3 if the distance of the two
nodes is between 0.2 and 1.8 times of radio range. The
skeleton generated by CASE is shown in Fig. 16. We can see
that though CASE has a different result from that in Fig. 1d,
the skeleton still captures the network topology well.

7 CONCLUSION

We have presented CASE: A novel distributed and scalable
algorithm for skeleton extraction in sensor networks. It is
the first study with the focus on skeleton extraction
algorithm in sensor networks. This algorithm requests the
connectivity information only and it does not make such
assumptions as in advance knowledge of location informa-
tion and distance information, which might not be realistic
in practice. We first identify the skeleton points by
partitioning the boundary. These skeleton points are then
connected to form the skeleton arcs, each of which
corresponds to two boundary segments. We connect all
the skeleton arcs and conduct a refinement to achieve the
final skeleton. We have demonstrated that CASE provides
more accurate skeleton results, and is robust against
boundary variations. It outperforms a state-of-the-art
algorithm under various configurations. We prove the

proposed algorithm is scalable since its traffic complexity
is linearly proportional to the network size. The experi-

mental results also demonstrate its scalability as it only

causes a little higher traffic than previous algorithm while

providing more accurate skeleton results.
We are interested in several directions in the future.

First, we seek more efficient algorithms to reduce the traffic
overhead of our extraction technique. In particular, an

approximation of skeleton graph could be applicable.

Second, we would like to evaluate other boundary

detection techniques for our skeleton extraction algorithm.
We believe improvement is possible when other ap-

proaches are adopted. Third, evaluation of CASE on larger

scale networks will be carried out. Fourth, we find that the

CASE algorithm does not work well with the network (e.g.,

a unit disk-like area where the sensor nodes are uniformly
distributed) where there could be no corner point that can

be identified. Another direction is to further study how to

deal with this kind of severe cases.
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