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ABSTRACT
As live streaming networks grow in scale and complexity, they are
becoming increasingly difficult to evaluate. Existing evaluation
methods including lab/testbed testing, simulation, and theoretical
modeling, lack either scale or realism. The industrial practice of
gradually-rolling-out in a testing channel is lacking in controlla-
bility and protection when experimental algorithms fail, due to its
passive approach. In this paper, we design a novel system called
ShadowStream that introduces evaluation as a built-in capability in
production Internet live streaming networks. ShadowStream intro-
duces a simple, novel, transparent embedding of experimental live
streaming algorithms to achieve safe evaluations of the algorithms
during large-scale, real production live streaming, despite the possi-
bility of large performance failures of the tested algorithms. Shad-
owStream also introduces transparent, scalable, distributed experi-
ment orchestration to resolve the mismatch between desired viewer
behaviors and actual production viewer behaviors, achieving ex-
perimental scenario controllability. We implement ShadowStream
based on a major Internet live streaming network, build additional
evaluation tools such as deterministic replay, and demonstrate the
benefits of ShadowStream through extensive evaluations.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Measurement techniques.
General Terms: Measurement, Experimentation, Design.
Keywords: Performance Evaluation, Live Testing, Streaming.

1. INTRODUCTION
Motivation: Live streaming (e.g., [11, 27, 45]) is a major Inter-
net application that has been used to carry both daily and major
events such as the Obama inauguration address, the 2010 Winter
Olympics, and the 2010 World Cup. As live streaming continues to
permeate into our daily lives [1], it is becoming increasingly impor-
tant that Internet live streaming networks provide reliable perfor-
mance, despite such networks becoming more complex, to operate
in the increasingly more complex Internet.

A key capability to ensure that live streaming networks provide
reliable performance is to subject them to large-scale, realistic per-
formance evaluations. In our recent survey of the developers of
a number of Internet-scale application sites, the ability to conduct
large-scale, realistic performance evaluations is among the most
desired, but the most difficult to achieve abilities to improve site
reliability. In the context of live streaming, without such an ability,
developers have to resort to theoretical modeling (e.g., [8, 25, 46]),
simulation (e.g., [29, 39]), or lab/testbed testing (e.g., [6, 10, 22, 31,
32]). But all of these existing methods are seriously limited either
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in scale or in realism. For example, no existing testbed can scale
easily to tens of thousands of clients but many live streaming events
have reached or even surpassed this scale. Further, it is becoming
increasingly difficult for modeling, simulation, or testbed to capture
the increasingly complex Internet, which includes diverse ISP net-
work management practices and heterogeneous network features
such as PowerBoost [2, 36] in cable networks, large hidden buffers
in access networks [15, 23, 36], and shared bottlenecks at ISP peer-
ing or enterprise ingress/egress links [24].

A practice used by the live streaming industry is to use a testing
channel to roll out new versions. However, the passive approach
of this practice leads to serious limitations on scale and experimen-
tal feasibility. First, due to concerns on the failures of experimental
algorithms, existing usage of testing channels is conservative, limit-
ing tests to a small number of real users. Second, using real viewers
as they naturally arrive and depart, may not provide the target op-
erating conditions that stress the experimental system. A developer
may always want to evaluate whether a modification will change
the effectiveness of the live streaming system to handle a flash-
crowd with 100,000 viewers. Although the testing channel may
currently have more than 100,000 real viewers, the natural arrivals
of the viewers do not conform to a flash-crowd arrival pattern.

Live streaming systems updated without going through realistic,
large-scale evaluations may operate at sub-optimal states, and of-
ten do not achieve performance expectations formed at small-scale
lab settings. For example, PPLive, a major live streaming distribu-
tion network, encountered surprising performance failures when it
moved from an initial deployment in the university-based CERNET
(China Education and Research Network) to the general Internet
with many viewers in ADSL networks. A major category of viewer
complaints in the viewer forum of PPLive [33] is poor performance
after network updates.

The motivation of designing ShadowStream starts with a rela-
tively extreme recognition that a production live streaming network
can be a rarely available foundation for designing a testing system
with both scale and realism, by taking advantage of its large num-
ber of real viewers distributed across the real Internet. Building
on this foundation to introduce protection and controllability, we
develop a novel Internet live streaming system that integrates per-
formance evaluation as an intrinsic capability, a new capability that
complements analysis, simulation, and lab testing. We refer to test-
ing during production streaming as live testing.

Challenges: A live testing platform poses two key challenges that
are not present in traditional testing platforms such as VINI [7],
PlanetLab [12], or Emulab [41]. The objective of ShadowStream is
to address both challenges.

The first is protection. Since real viewers are used, live testing
needs to protect the real viewers’ quality of experience from the
performance failures of experimental systems. Hence, live testing
needs to manage the challenge of letting performance failures of
an experimental system happen so that poor performing algorithms
can be identified, and at the same time masking these failures from
real viewers. As a contrast, a traditional testing platform uses ded-
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icated clients in a non-production environment, and hence perfor-
mance failures of an experimental system will not do harm.

The second is orchestration. In particular, live testing needs to
orchestrate desired experimental scenarios (e.g., flash-crowd) from
production viewers, without disturbing their quality of experiences.
In a traditional testing platform, clients are dedicated and fully con-
trollable artificial viewers. In live testing, a real viewer expects that
the live streaming service starts promptly, as soon as the viewer ar-
rives; real viewers do not expect disruptions in the middle of the
streaming to ask them to join experiments; as soon as a real viewer
closes the live streaming program, the service should stop, not con-
tinuing as a hidden background process to finish the experiment.
Our approach: ShadowStream applies a general Experiment→
Validation→Repair scheme to achieve protection and transparent
orchestration; see Section 8 on discussions for generalization. Specif-
ically, ShadowStream introduces, at each client, a simple streaming
hypervisor, which manages multiple concurrent virtual streaming
machines, one of which is an experimental streaming machine con-
taining the experimental algorithms. The ShadowStream hypervi-
sor first assigns each task (i.e., downloading a video piece) to the
experiment, as if the experimental system were running alone, and
records any failures (i.e., if a piece does not arrive before the target
deadline of the experimental system), to obtain accurate experi-
mental results. However, repair steps in to fix experimental failures
before they become visible to real viewers. The hypervisor also
implements pre-reservation of task space so that an experimental
system can always be started without the interference of the pro-
duction system (i.e., inserting an experiment while the real viewer
has already started with the production system). To make repair
and pre-reservation feasible, in the context of hybrid live streaming
systems, ShadowStream introduces a small additional lag on the
playpoints of real viewers.

ShadowStream extends the basic scheme with novel algorithms
to achieve scalability, for both protection and orchestration. In par-
ticular, it introduces a novel production-CDN-experiment (PCE)
streaming machine layout, to achieve highly scalable protection;
it also introduces novel, local orchestration algorithms to achieve
highly scalable orchestration.

We implement ShadowStream based on one of the largest live
streaming networks. Our implementation shows that ShadowStream
is easy to implement, with code base around 8,000 lines. Based on
real system traces, we demonstrate that ShadowStream can allow
scalable testing reaching 100,000 clients while no existing testbed
can easily reach even thousands.
2. MOTIVATION
2.1 Live Streaming Grows in Complexity

Many modern live streaming networks have become complex
hybrid systems that use both peer-to-peer (P2P) networks and con-
tent delivery networks (CDN) [30]. Adobe Flash is one platform
that has implemented support for a hybrid architecture in recent
versions. In this paper, we target this general, widely used stream-
ing architecture.

The basic design of a hybrid live streaming network is typically
BitTorrent-like. Guided by a tracker, peers viewing the same live
event connect with some neighbors to form an overlay network to
relay video data through the overlay topology. A source encodes
small clips of video data called pieces, which are made available
to CDNs. Some peers in the overlay network download pieces
from CDN networks. A peer may directly push new pieces to some
neighbors and/or exchange piece bitmaps with its neighbors so that
the neighbors can request pieces from it.

To handle practical challenges and improve performance, the
preceding basic design is typically substantially enhanced. Hence,

a production live streaming system often includes a large num-
ber of modules: (i) P2P topology management, (ii) CDN man-
agement, (iii) buffer and playpoint management, (iv) rate alloca-
tion, (v) download/upload scheduling, (vi) viewer-interfaces, (vii)
shared bottleneck management (e.g., [20]), (viii) flash-crowd ad-
mission control, and (ix) network-friendliness (e.g., [5, 44]).

The performance of a network with a large number of peers each
running a software system containing many modules can become
difficult to evaluate. A main metric on the performance of live
streaming is piece missing ratio, which is the fraction of pieces that
are not received by their playback deadlines. A major factor affect-
ing piece missing ratio is channel supply ratio, which is the ratio
between total bandwidth capacity (CDN and P2P together) and to-
tal streaming bandwidth demand of all participating peers. Next,
we use a few concrete examples to demonstrate the importance of
large-scale realistic experiments.

2.2 Misleading Results at Small-Scale
Testbed experiments have difficulty replicating the scale of ac-

tual deployment, which can reach hundreds of thousands of view-
ers. But results obtained from small-scale networks can be quite
different from those obtained from large scale networks. As a con-
crete example, we run the same production version (default ver-
sion) of a major live streaming network at two scales in Emulab:
60 clients (smaller scale) and 600 clients (larger scale). In both
cases, clients join sequentially with a 5-second interval; the stream-
ing rate is 400 Kbps; each client’s upload capacity is 500 Kbps, and
a CDN server provides an upload capacity of 10,000 Kbps. Thus,
the supply ratio of the smaller network is around 1.67 (= (60 * 500 +
10,000)/(60 * 400)), while for the larger network it is around 1.29.
Since the smaller network has a larger supply ratio, one might think
that it would perform better than the larger network.

Small-Scale Large-Scale

Production Default 3.5% 0.7%

Table 1: Piece missing ratio at different scales (default).
Table 1 shows the performance of the two networks measured by

piece missing ratio. We observe a large performance difference: the
piece missing ratio of the small network is 5 times that of the large
network. A detailed trace analysis shows that content bottleneck
(i.e., diversity of data among neighbors) is a key reason for the poor
performance of the small network. The average buffer map differ-
ence among peers is not sufficient to fully utilize available band-
width. On the other hand, in the larger network, content bottleneck
may not be an issue; the peer upload bandwidth together with the
bandwidth scheduling algorithm dominate the performance. This
observation is consistent with a recent measurement [42].

Small-Scale Large-Scale

With Connection Limit 3.7% 64.8%

Table 2: Piece missing ratio at different scales (variant).
We run a variant of the default version with a connection limit

(i.e., a client declines all subsequent connection requests when the
connection limit is reached). Table 2 shows a surprising and inter-
esting result: after imposing the limit, we again observe a large
performance difference, but opposite from the preceding result.
Specifically, the performance degrades significantly in the larger
scale experiment, with piece missing ratio of the larger scale ex-
periment being 17.5 times that of the smaller scale! Our detailed
evaluation shows that with a connection limit, the CDN server’s
neighbor connections are exhausted by those clients that join ear-
lier and the clients that join later cannot connect to the CDN server
and experience starvation. Both experiments illustrate that obser-
vations from a smaller scale may not directly translate to those at a
larger scale.
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2.3 Misleading Results due to Missing
Realistic Features

It is extremely challenging to capture all aspects of real networks
in a simulator, emulator, or testbed. For example, end hosts may
differ in type of their network connectivity, amount of system re-
sources, and network protocol stack implementations; routers may
differ in their queue management policies, scheduling algorithms,
and buffer sizes; background Internet traffic may change dynami-
cally and is hard to replicate. Failures to capture any of these effects
may result in misleading results. As a motivating example, below
we show that simply changing the access link types can lead to
different performance results.

Specifically, typical academic testbeds (e.g., PlanetLab, Emulab)
are Ethernet based. On the other hand, most live streaming viewers
are connected to the Internet using cable or DSL networks. We run
the same live streaming network in two settings: LAN-like univer-
sity networks versus ADSL-like networks. We set up 20 clients,
where each client is a PPLive client, with 1-second piece request
time out. Clients join sequentially with a 5-second inter-arrival
time; the testing lasts 100 seconds after all peers have joined. Each
client’s upload capacity is equal to the streaming rate of 400 Kbps,
and the CDN server provides an upload capacity of 2,400 Kbps.

LAN ADSL

% Piece missing ratio 1.5% 7.3%
# Timed-out requests 1404.25 2548.25

# Received duplicate pkts 0 633
# Received outdated pkts 5.65 154.20

Table 3: Different results at LAN vs ADSL.
Table 3 shows the results. We observe a large performance dif-

ference between the LAN-based and ADSL-based experiments: the
piece missing ratio of ADSL-based is almost 5 times that of LAN-
based. Our investigation shows that the ADSL-based experiment
performs worse because of large hidden buffers that are not present
in LAN-like networks [23]. As an ADSL modem has a large buffer
but limited upload bandwidth, a large queue can be built up at the
modem and the queueing delay can reach several seconds. On the
other hand, the default piece request time out value is 1 second,
due to testing in the LAN-based network. This shows that testing
in an environment that is different from the real setting can give
misleading results and yield inappropriate system configurations.

Note that once it is determined that this is an important feature,
hidden buffers can be approximated by a FIFO queue using the
Linux tc tool. other network features, such as PowerBoost [2], may
involve internal and dynamic ISP-policies, and hence can be much
harder to emulate [14].

3. SYSTEM COMPONENTS
ShadowStream makes two extensions to a traditional live stream-

ing network: (1) it introduces a lightweight experiment orches-
trator, which extends the functions of a typical tracker to coordi-
nate experiments; (2) it introduces new capabilities in traditional
streaming clients to support live testing. ShadowStream comple-
ments analysis, simulation, and testbed to provide a more complete
experimentation framework.

Figure 1 shows the major components of a ShadowStream net-
work, their interactions, and tools such as deterministic replay that
we build on top of basic ShadowStream. For scalability, the main
intelligence of ShadowStream is in individual ShadowStream clients.

4. STREAMING CLIENT DESIGN
We start with the design of ShadowStream clients. We assume

that experimental algorithms have been first tested in lab, going
through unit and regression tests to fix correctness errors and pro-

Figure 1: ShadowStream system components.

Figure 2: Streaming machine buffer: (a) at t=100; (b) at t=101.
gram crashes. Our focus is on performance. We focus on the main
ideas in this section and choose to present our design in steps to
make understanding easier. Implementation is in the next section.

4.1 Streaming Machine
We adopt the general, widely used piece based streaming struc-

ture, where a live streaming client downloads and uploads stream-
ing data in units of pieces. For simplicity of explanation, we as-
sume that each piece contains 1-second of streaming data.

We refer to a self-complete set of algorithms to download and
upload pieces as a streaming machine or a machine for short. In a
traditional setting, a streaming client of a viewer has one streaming
machine. In ShadowStream, as we will see in this section, there can
be multiple streaming machines executing concurrently. We refer
to the streaming machine containing the experimental algorithms
as experiment.

A key data structure of a streaming machine is its play buffer,
which keeps track of pieces that are already downloaded as well as
the pieces that the machine needs to download from its neighbors
or CDN networks in order to feed a media player, which displays
to a viewer. Figure 2 (a) is an example illustrating the play buffer
status at time t = 100 of a client i. A shaded piece is one that has
been downloaded. We follow a convention that the index of a piece
is the time that the piece was produced at the source.

In a traditional setting without ShadowStream, the right most
piece of play buffer is the most recent piece produced by the source.
We refer to this piece as the sourcepoint. We also use sourcepoint
to refer to the index of the sourcepoint piece. For the example in
Figure 2 (a), the sourcepoint is 100. A client may not always com-
municate with the source to directly know about the sourcepoint.
But during initialization, the client learns the time at the source and
hence can always compute the time at the source through its local
clock and hence the current sourcepoint. Another important piece
at an instance of time is the next piece to be delivered to the media
player at the client. We refer to it as the playpoint. For the example
in Figure 2 (a), the playpoint is 90.

The time difference between the sourcepoint and the playpoint
represents the lag, which is the delay from the time that a piece
becomes available to the time that it should become visible to a
viewer. A streaming machine may choose a lag when it starts. But
as soon as it starts playback to a real viewer, it can no longer change
the lag without disturbing the real viewer. The lag is essentially the
total budget of time to finish downloading each piece. Note that the
play buffer keeps some pieces older than the playpoint so that the
client can serve other peers in a P2P mode.

The playpoint and sourcepoint advance in time. Figure 2 (b)
shows the advancement of the playbuffer from Figure 2 (a). We
see that at the next time t = 101, the playpoint becomes 91, and
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the sourcepoint becomes 101. If the client is not able to download
piece 91 from time t = 100 to t = 101, then we say that piece 91
is missing.

We comment that one may consider the piece-based streaming
machine model as a quite general program model, where each piece
is a computational task, and a sequence of tasks arrive at a stream-
ing machine to be computed and the results are revealed to real
viewers. Hence, we also refer to each piece to be downloaded as a
task; a piece missing its deadline as a task failure.
4.2 Starting Point: R+E to Mask Failures

The starting design of ShadowStream is simple and intuitive. To
reveal the true performance of experiment, ShadowStream as-
signs a task first to experiment (E) as if it were running alone.
To protect real viewers’ quality-of-experience (QoE), ShadowStream
assigns a failed task to another streaming machine repair (R) for
repair; that is, if a piece is not received by its target playback dead-
line, ShadowStream records a performance failure event and the
responsibility for downloading the piece is shifted to R. We refer to
such a design as a R+E design pattern which is shown in Figure 3.

Figure 3: The general R+E design pattern.
Assume that Figure 2 (b) is the playbuffer state of a stream-

ing machine experiment. Since experiment is not able to
download piece 91, ShadowStream records that experiment has
missed piece 91, and then assigns it to R. Assume that R is able
to download piece 91 within one second. Then the piece becomes
available at time t = 102.

To ensure that the failure of experiment on finishing piece
91 is not visible to the real viewer during our evaluation, we need
that the playpoint of experiment is not the actual viewer visible
playpoint. Hence, we say that the playpoint of an experimental
streaming machine is a virtual playpoint. Specifically when t =
101, if the viewer visible playpoint actually is 85, then the real
viewer will not see a missing piece 91.

In other words, in the R+E design, experiment is evaluated
by its ability to finish each piece within its designed target dead-
line, which is 10 = (100-90) in this example, when experiment
is running alone. But the R+E design delays the delivery of results
to real viewers with an additional 5-second lag, to give R the time to
repair errors, if any. We comment that the technique of introducing
a slight delay in revealing results has been used in other contexts.
In particular, radio and television broadcast introduces a 7-second
profanity delay to handle profanity, bloopers, violence, or other un-
desirable material [9]. We are the first to introduce this technique
to achieve our new goal of live testing.
4.3 R=production for Staging/Protection

A question that we have not answered is how to design R. One
simple approach is that R is a machine which can check the status
of each piece and download missing pieces from dedicated CDN
resources provided for testing; we call this design R=rCDN. How-
ever, there can be limitations.

First, using R=rCDN requires dedicated CDN resources. Note
that the dedicated CDN resources are independent of the CDN re-
sources in other streaming machines. Suppose that a testing chan-
nel consists of 100,000 clients at a 1 Mbps streaming rate. To guar-
antee performance during the worst case when experiment can-
not finish the majority of the tasks assigned to it, R=rCDN needs to

reserve a total of 100 Gbps capacity from the CDN network. For
a streaming technology company with multiple groups developing
different algorithms in parallel, multiple testing channels might be
running concurrently, hence the amount of reserved capacity on
CDN could be too high.

Figure 4: Network bottleneck between CDN and clients.

Second, R=rCDN may not work well in some network settings.
Figure 4 shows a network bottleneck (e.g., enterprise ingress) from
the locations of the CDN edge servers to a group of streaming
clients [24]. In this setting, even if the CDN has a large reserved
capacity (e.g., 100 Gbps), due to the bottleneck (e.g., 10 Gbps), the
repair capability of the CDN edge servers cannot be fully utilized.

To better understand the limitations of R=rCDN, we compare
rCDNwith the production streaming engine named production.
We observe that production typically has more sophisticated,
fine-tuned algorithms (e.g., hybrid architecture) compared with a
repair-only rCDN; production can use a much larger resource
pool (the whole production infrastructure) than the dedicated CDN.

Hence, using R=production can lead to much more scal-
able protection. Further, it leads us to a unified approach to han-
dle both protection and orchestration (i.e., serving a client before
experiment starts). Specifically, a ShadowStream client always
uses production as the streaming machine to start. We can con-
sider this state as a testing state with an experiment streaming
machine that misses every task (i.e., a no-op). When a client joins
a test, a corresponding experiment starts. Hence, we can (con-
ceptually) consider that a client is always in a testing phase. We
refer to this as pre-reservation for testing. The virtual “arrival” and
“departure” of an experimental streaming machine experiment
are simple state operations. Figure 5 illustrates the transitions of
states, and these virtual transitions are invisible to real viewers.

Figure 5: ShadowStream orchestration timeline: real arrival,
virtual arrival, virtual departure, real departure.

4.4 Problems of R=production
One issue of using R=production, however, is that it has a

systematic bias in underestimating the performance of experiment,
due to competition between experiment and production on
the shared resources: peer upload bandwidth. To protect viewers’
QoE, it is desirable to give production a higher priority over
experiment on using the shared upload bandwidth. However,
the reduction of resources to experiment may lead to a system-
atic underestimation on the performance of experiment, leading
a developer to unnecessarily reject experiment as poor perform-
ing. Below we provide a more detailed analysis on the bias. Read-
ers who seek a solution directly can skip to the next subsection.

For a reasonably designed streaming machine, piece missing ra-
tio m(θ) is a non-increasing function of the supply ratio θ. The
curve labeled as performance curve in Figure 6 is an example curve
of the piece missing ratio function of a typical live streaming ma-
chine. Then our goal of evaluating experiment is to get an ac-
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curate estimation of m(θ0) for experiment, during a typical live
testing with supply ratio θ0.

However, competition between production and experiment
may not allow us to observe m(θ0). Instead, the dynamic competi-
tion between these two streaming machines will lead to a stationary
point labeled as “misleading result” in Figure 6. The point is the in-
tersection between the performance curve and the curve represent-
ing the points whose x and y-axis values sum to θ0. We label the
x-axis (effective supply ratio to experiment) of the “misleading
result” point as θ∗.

Figure 6: Systematic bias when using production.

To understand why θ∗ is a stationary point that will be observed,
first consider a supply ratio θR on the right of θ∗. Assume that
at an instance of time the supply ratio of experiment is θR,
the piece missing ratio of experiment will be m(θR). Hence,
production takes away m(θR) resources to repair the losses
of experiment. For simplicity, we assume that production
has a repair efficiency η of 1; that is, it uses one unit of band-
width resource to repair one unit of task. The available resources
to experiment after the deduction become θ0 − m(θR). Since
m(θR) is higher than θ0 − θR, as one can verify by noticing from
Figure 6 that the x + y = θ0 curve is a 45 degree line, we know
that the remaining resources to experiment will become lower
than θR (= θ0 − (θ0 − θR)). In other words, the supply ratio of
experiment moves from θR toward θ∗. One can make a similar
observation when considering a supply ratio θL on the left of θ∗.
Specifically, for a fixed η, we can conclude that θ∗ satisfies:

θ∗ + η ∗m(θ∗) = θ0.

In more complex settings, the efficiency of η could be a func-
tion of the specific missing pieces of experiment as well as the
network supply ratio. Hence, one may solve for θ∗ through the
equation:

θ∗ + η[(m(θ∗)] ∗m(θ∗) = θ0.

To summarize, we know that the experimental results reveal m(θ∗),
instead of the true m(θ0).
4.5 Putting It Together: PCE

To remove the systematic bias of R=production and still pro-
vide scalable protection, ShadowStream introduces a simple, novel
streaming system structure where R consists of two streaming ma-
chines: a repair CDN (referred to as rCDN) with bounded, dedi-
cated repair resources and production. We refer to this scheme
as the PCE scheme (i.e., R=P+C).

Specifically, in this scheme, if experiment cannot download
a piece by its deadline, responsibility for downloading the piece
is shifted to rCDN. However, the dedicated CDN repair resources
are only up to δ percentage of total demand, where δ is a control
parameter depending on available CDN resources and the desire to
obtain accurate results for a test. If a piece cannot be repaired by
rCDN, due to either repair CDN capacity exhaustion or network
bottlenecks, responsibility for downloading the piece is shifted to
production as a final protection.

Figure 7: ShadowStream tasks processing percentages to PCE.

One way to understand the essence of the R=P+C design is to
think of it as inserting a small rCDN “filter” between experiment
and production to handle pieces missed by experiment. Fig-
ure 7 shows the flow. If the amount of missing pieces is lower
than the capacity of rCDN (e.g., lower than 5%), rCDN absorbs
all leaked load of experiment, so that production is idle
to avoid interference with experiment. On the other hand, if
experiment has a major failure, repair load is handled by both
rCDN and production, providing a guarantee to viewers’ QoE.

Another way to understand the R=P+C design is that it “lowers”
the piece missing ratio curve of experiment visible by production
down by δ. The solid line in Figure 8 shows the actual missing ra-
tio curve and the dashed line the lowered one. If m(θ0) < δ, then
all missing data can be retrieved by rCDN. Hence, production
is idle and there is no competition on peers’ upload bandwidth, re-
sulting in an accurate experimental result. On the other hand, if
m(θ0) > δ, then rCDN cannot repair some missing pieces. The
remaining missing pieces “overflow” to production.

Figure 8: ShadowStream PCE design intuition.
We make a precise statement on the R=P+C design:
PROPOSITION 1. Assume that the piece missing ratio of experiment

is a non-increasing function of supply ratio. With an unknown θ
value, PCE provides a bi-modal evaluation result: if m(θ) ≤ δ,
precise experiment accuracy can be achieved; otherwise, the sys-
tem converges to a stationary point where the upper bound of m(θ)
can be obtained, and we get an exact indication that m(θ) > δ.

4.6 Extension: Dynamic Streaming
There are multiple ways to extend PCE. In particular, we present

an extension of ShadowStream to dynamic streaming (i.e., dynamic
bitrate switching), which presents a larger design space for Shad-
owStream. We consider two perspectives. First, experiment
may use dynamic streaming, and dynamic streaming experiments
may be more sensitive to interference caused by protection (i.e.,
experiment switching streaming rates). Second, ShadowStream
protection can take advantage of dynamic streaming, which of-
fers a new dimension for designing the protection scheme. Con-
sider the case that both experiment and protection use dynamic
streaming. A straightforward protection strategy is Follow: when
ShadowStream detects that the pieces at time t is incomplete, it
repairs the video for t, according to the encoding rate decided by
experiment. However, the general idea of ShadowStream al-
lows us to repair a different encoding rate, as long as it protects the
viewer’s QoE. One strategy is Base, which is different from Follow
in that it always repairs the base (lowest) encoding rate. Further-
more, ShadowStream can use Adaptive, in which it considers both
available protection bandwidth and the amount of remaining tasks
at each rate left by experiment, and then picks the best repair.
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Figure 9: Streaming machine sliding download window: (a) at
t=100; (b) at t=101.

5. CLIENT IMPLEMENTATION
There are challenges in implementing the novel PCE scheme de-

signed in the preceding section. In particular, the PCE scheme con-
sists of multiple streaming machines that may interact with each
other. It is highly desirable that each streaming machine be a modu-
lar process, isolated from other streaming machines, without know-
ing whether it is in a test as experiment or production, or
it is just running alone as production. The benefit of such iso-
lation is that the production streaming machine performs the same
when it has been evaluated.

A key observation of implementing ShadowStream is that we
can implement the PCE scheme naturally, seamlessly, using a sim-
ple sliding window to partition the downloading tasks at a client.
Based on the observation, ShadowStream imposes a minimal slid-
ing window abstraction on streaming machines and introduces a
simple streaming hypervisor to implement PCE.

5.1 Basic Idea
The objective of PCE is to assign a task first to experiment;

if experiment fails, reassign the task to rCDN; if rCDN fails,
reassign the task to production. We make an observation on
this PCE behavior.

Specifically, at any instance of time, looking at the pieces which
each streaming machine is responsible for, we observe that the
streaming machines essentially partition the total downloading range
spanning from the viewer playpoint to sourcepoint, with experiment
responsible for a range of pieces that are adjacent to sourcepoint,
and production responsible for a range that is adjacent to the
viewer visible playpoint. Figure 9 (a) illustrates the partition at
time t = 100. We call each partition the task window of the corre-
sponding streaming machine.

Consider a simple scheme that we fix the size of each parti-
tion and slide each partition synchronously to the right at the play-
back speed. After each window movement, the oldest piece in the
task window of experiment moves as the newest of the task
window of rCDN. Figure 9 (b) shows that piece 90 moves from
experiment to rCDN. If a piece that moves from experiment
to rCDN has not been downloaded by experiment, it becomes a
task to be finished by rCDN. In other words, using the simple slid-
ing task window scheme, we achieve automatic shifting of results
and failures from one streaming machine to the next in line!

The preceding observation leads to a simple, natural, modular
abstraction of the key state of a streaming machine implementing
the PCE scheme. Specifically, at an instance of time t, each stream-
ing machine x is responsible for a subrange [xleft(t), xright(t)] of
the total downloading range.

We introduce a streaming hypervisor to manage the PCE ma-
chines. Specifically, the streaming hypervisor provides four key
sets of functions: (1) task window management (TWM) sets up
sliding window; (2) data distribution control (DDC) copies data
among streaming machines; (3) network resource control (NRC)
conducts bandwidth scheduling among flows of streaming machines;
and (4) experiment transition (ET) starts or stops experiments.

Table 4 lists key API functions between a streaming machine and
the streaming hypervisor. We divide the APIs into four categories
corresponding to the four sets of functions.

5.2 Task Window Management
Task window management informs a streaming machine about

the pieces that it should download. We set the length of the task
window of a streaming machine x as the max lag when the stream-
ing machine is running alone:

xlag = x.getMaxLag().

Hence, we focus on the right border of a task window. First con-
sider experiment. We observe that xright(t) is actually equal to
the sourcepoint t known to x. Hence, instead of notifying experiment
xright(t), we notify it of the sourcepoint t. In other words, in
our implementation, we provide a getSourceTime() function
which each streaming machine can call to get the sourcepoint. For
experiment, it is the real sourcepoint, but for production,
it is actually the real sourcepoint minus elag + clag , where elag is
the max lag of experiment, and clag is the max lag of rCDN. In
other words, it is a “virtual sourcepoint”. Notifying the right border
of a task window through sourcepoint is highly desirable, because
we have observed that it is a common practice for a streaming ma-
chine to define program behaviors in reference to the sourcepoint.
For example, a streaming machine may move its playpoint forward
to be closer to the sourcepoint after falling behind due to freezing.

Using the functions to manage the task windows is straightfor-
ward. When the streaming hypervisor is notified of a test, it gets
the lag values plag , clag and elag for production, rCDN and
experiment respectively. The start time and returned values of
getSourceTime() are listed in Table 5.

machine start time getSourceTime()

production Viewer arrival sourcepoint - (clag + elag)
rCDN Enter testing sourcepoint - elag
experiment Enter testing sourcepoint

Table 5: Results of calling getSourceTime().

5.3 Data Distribution Control

Figure 10: Directional data propagation.
Data distribution control copies pieces among streaming machines.

Figure 10 shows the direction of data flows among the three stream-
ing machines. For example, we see that a piece downloaded by C
or P should not be made available to E because E may redistribute
it by uploading to others, leading to misleading experimental re-
sults. In other words, the propagation of a downloaded piece is
directional.

A straightforward implementation of directional data propaga-
tion is that each streaming machine has its own data store. When
an earlier machine finishes downloading a piece to its data store, the
piece is also copied to the data stores of those streaming machines
after it. In ShadowStream, we implement a shared data store, where
a piece is stored only once, for efficiency. The data store of an indi-
vidual streaming machine stores pointers to the actual data pieces in
the shared data store. Figure 11 shows the states of the data stores
of experiment and rCDN. For example, we observe that rCDN
has a pointer to piece 88 downloaded by itself, but experiment
does not due to directional data distribution control.

Two functions implementing directional data control and data
sharing are writePiece() and checkPiece(). A streaming
machine calls deliverPiece() to notify the hypervisor that
a piece is ready to be delivered to player; the hypervisor decides
when to actually deliver the piece.
5.4 Network Resource Control

Network resource control handles the network bandwidth allo-
cation among streaming machines, to achieve the design objectives
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Call Category Direction Description

getMaxLag() TWM H �→ M Streaming machine notifies ShadowStream its maximum lag, which defines the size of its subrange.
getSourceTime() ‘’ M �→ H Streaming machine obtains its virtual sourcepoint, which defines the right border of its subrange.

writePiece() DDC M �→ H
Streaming machine notifies ShadowStream the successful download of a piece. It updates the data stores
of streaming machines that should see the piece.

checkPiece() ‘’ M �→ H Streaming machine obtains the success/failure status of a piece.
deliverPiece() ‘’ M �→ H Streaming machine notifies that a piece is ready to be delivered to player.

sendMessage() NRC M �→ H
Streaming machine sends a protocol/data message. ShadowStream internally manages the priority queues
and may drop the message.

recvMessage() ‘’ M �→ H Streaming machine obtains the next received message.

start() ET H �→ M Streaming hypervisor notifies the streaming machines to activate operations.
stop() ‘’ H �→ M Streaming hypervisor notifies the streaming machines to deactivate operations.
rejoin() ‘’ H �→ M Streaming hypervisor notifies the streaming machines to disconnect all neighbors and rejoin.
fetchCDN() ‘’ M �→ H Streaming hypervisor and rCDN directly fetch pieces from dedicated CDN resources.

Table 4: APIs (H hypervisor, M machine): H �→ M APIs are implemented by M and called by H; M �→ H vice visa.

Figure 11: Using data store for data distribution control.

Figure 12: Network resource control

of ShadowStream. At any instance of time during a test when
experiment, rCDN, and production are running concurrently,
there are multiple sets of data flows originating from or terminating
at a streaming client. Figure 12 shows 3 sets of downlink flows and
2 sets of uplink flows. In particular, consider the two sets of up-
link flows due to experiment and production respectively.
These two sets may compete on the shared network uplink when
experiment performs poorly, as we have analyzed in Section 3.

Network resource control in ShadowStream assigns flows from
productionwith a higher priority over those from experiment.
However, simple priority is not sufficient as a misbehaving
experiment may send at a high rate to create external conges-
tions (e.g., due to hidden buffers). Hence, ShadowStream resource
control imposes pacing, based on an algorithm similar to LED-
BAT [34] to perform dynamic bandwidth estimation.

No streaming machine can exceed estimated network bandwidth
to create hidden network congestions. This feature has been imple-
mented for both the UDP mode and the TCP mode. The provided
APIs are sendMessage() and recvMessage().

6. EXPERIMENT ORCHESTRATION
We have covered how a streaming machine can be started inside

a streaming client. A capability still missing in an experimental
platform is to compute the start and stop times of experiment
in each client to create desired testing client behavior scenarios.
Furthermore, when a client joins a test and changes from normal
state to testing state, a smooth transition is needed to guarantee that
the accuracy of the testing is not impaired.

6.1 Specification and Triggering
ShadowStream allows intuitive specification of testing client be-

havior patterns. Specifically, a testing behavior pattern defines one
or multiple classes of clients, where the class of a client is defined
by its properties (e.g., cable or DSL, estimated upload capacity
class, production software version or network location [44]).

For each class j, a behavior pattern defines:

• A class-wide arrival rate function λj(t) during the interval [0, texp],
where texp is the duration of the testing. For example, to gener-
ate a flash-crowd arrival in class j, λj(t) will have high values
initially, and then decreases sharply.

• A client life duration function L is specified by the probability
that a client stays less than a duration in the testing. For live
streaming, it is important that client lifetime is dependent on the
arrival time [38] and video quality [28, 38]. For example, if
the streaming quality at a client is below a threshold (e.g., piece
missing ratio > 3%), the client departs. Specifically, for a client
arriving at time x after experiment starts, the client’s lifetime is
determined by both Lx and the streaming quality.

Given a specified client behavior pattern, experiment orchestra-
tion provides two functions:

• Triggering: The experiment orchestrator monitors the testing
channel to wait for the network to evolve to a state where the
testing client behavior pattern can be triggered. The triggered
test starting time is referred to as tstart. Thus, test will run from
tstart to tstart + texp.

• Arrival/Departure Control: The orchestrator selects clients to
join and depart from the testing channel to create the target test-
ing behavior pattern.

Triggering Condition: To simplify presentation, we assume a sin-
gle global client class with arrival rate function λ(t). If an exper-
iment is triggered at time 0 and should continue for a duration of
texp, then for t between 0 and texp, an upper bound of the expected
number of clients active in the experiment, denoted as exp(t), is as
follows:

exp(t) = Λ(t)−
∫ t

0

λ(x)Pr{Lx < t− x} dx, (1)

where Λ(t) =
∫ t

0
λ(x) dx. The expression is an upper bound

because clients may depart due to insufficient streaming quality,
which is hard to direct model. Such departures only decrease the
number of active clients in the experiment.

At any time t0, the orchestrator predicts the number of active
clients in the testing channel in the interval [t0, t0 + texp]. Let
predict(t) be the predicted value at time t ∈ [t0, t0 + texp]. To
compute predict(t), the orchestrator uses a simple extension of the
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autoregressive integrated moving average (ARIMA) method [43]
that uses both recent testing channel states and the past history of
the same program. To obtain current testing channel states, the
orchestrator gathers channel state (arrivals and departures) from
clients’ low cost UDP reports. Specifically, at current time t0, the
orchestrator checks the condition:

exp(t) ≤ predict(t0 +Δ+ t′) ∀ t′ ∈ [0, texp], (2)

where Δ is triggering delay. If the condition is satisfied, t0 + Δ
can be triggered as tstart.

6.2 Independent Arrivals Achieving Global
Arrival Pattern

After the triggering condition, the orchestrator needs a mecha-
nism to notify a large number of clients in real-time about their
time to join and leave a testing scenario to create a specified testing
behavior pattern.

A direct approach is that one or more orchestrators issue com-
mands at appropriate times to each client to let it join or leave
the test. This approach is taken by some experimental platforms
(e.g., [26, 37, 41]).

However, this approach is not scalable. Furthermore, since the
connections between the orchestrator and the clients can be asym-
metric (e.g., many real viewers in the Internet are behind NAT de-
vices [19]), it is easier for clients to send to the orchestrator than
from the orchestrator to the clients.

Hence, ShadowStream introduces distributed orchestration, which
decouples the scenario parameters from their execution, and thus
relaxes the requirement that control messages are delivered to each
client within a small delay, in contrast with direct control.

Specifically, in the distributed control mode, after computing
tstart, the orchestrator embeds network-wide common parameters,
including tstart, texp, and λ(t), into keep-alive response messages
and distributes to all clients. The orchestrator does not compute or
control the arrival times of individual clients. It may first appear
that achieving a defined testing client behavior such as flash-crowd
requires global computation of client arrival times. However, we
will see that there exists an effective, distributed algorithm where
each client can locally decide and control its own arrival times. The
key is the following theorem from Cox and Lewis [13]:

THEOREM 1. Let T1, T2, . . . be random variables representing
the event times of a non-homogeneous Poisson process with expec-
tation function Λ(t) =

∫ t

0
λ(x) dx, and let Nt represent the total

number of events occurring before time t in the process. Then,
conditioned on the number of events Ntexp = n, the event times
T1, T2, . . . , Tn are distributed as order statistics from a sample
with distribution function F (t) = Λ(t)

Λ(texp)
for t ∈ [0, texp].

An implication of Theorem 1 is that we can generate arrival times
by drawing random numbers independently according to the same
distribution function F (t). Sorting these independent arrival times,
we obtain the arrival times of clients following the desired arrival
rate function λ(t).

One remaining issue in a large-scale experiment is that the pre-
ceding theorem requires selecting a fixed n. Enforcing that exactly
n clients is chosen can force the orchestrator to keep hard state
about specific clients. To reduce orchestrator overhead, the orches-
trator draws the total number of clients from a distribution N̂texp

with the same mean (E[N̂texp ] = E[Ntexp ]) but without increas-
ing the variance (Var[N̂texp ] ≤ Var[Ntexp ]). This mode trades
slight variation in arrival rate for higher scalability. It permits the
variance on number of total clients to be reduced in the interest of
tighter control over the number of clients.

Specifically, the orchestrator computes p as a ratio of the ex-
pected value of clients in the scenario (Λ(texp) = E[Ntexp ]) to the
total number of available clients M . Each client i independently
participates in the scenario with probability p, and computes an ar-
rival time ae,i at which it will become active in the test. This leads
to a simple distributed algorithm shown in Figure 13.

Orchestrator:
01. Let M be the total number of available clients

02. Let p =
Λ(texp)

M
03. Send tstart, texp, λ(t), and p to each client

Client i, upon receiving tstart, texp, λ(t), and p:
04. if random() > p then return
05. Draw waiting time wi according to F (t) =

Λ(t)
Λ(texp)

06. Compute arrival time: ae,i = tstart + wi

Figure 13: Algorithm with decentralized control for each client
i to choose arrival time ae,i.

6.3 Experiment Transition
Suppose that the current time is t0 and client i has computed

according to the preceding section that it will (virtually) join the
test at ae,i. The preparation during [t0, ae,i] to start experiment
at client i consists of the following two simple steps.
Connectivity Transition: At ae,i when experiment starts at
client i, one possibility that may cause unnecessary interference
to experiment is that production uploads to a neighbor’s
production while the neighbor is not in test. A simple, clean
solution is that during [t0, ae,i], client i’s production rejoins
the testing channel, and the orchestrator returns only peers who are
also in testing as neighbors to client i’s production.
Playbuffer State Transition: Look at the target playbuffer state at
time ae,i when experiment starts at client i. Figure 14 (a) gives
an illustration. We have two observations: (1) pieces at the range
for experiment should be empty; and (2) pieces for production
and rCDN should be full. If these buffers are not full, production
will download those pieces, causing interference to experiment.
We refer to filling up production and rCDN windows directly
from CDN before time ae,i as “legacy” removals.

Figure 14: Playbuffer state transition.
Specifically, at time ae,i, the piece range for production and

rCDN together is [ae,i − plag − clag − elag, ae,i − elag]; note
that these “legacy” pieces become all available to download at time
ae,i − elag as shown in Figure 14 (b). For simplicity, the goal of
playbuffer state transition is to pre-fetch pieces in this range during
time [ae,i − elag, ae,i]. If the testing has a gradual arrival pattern,
the fetching of the range is spread out evenly and there is no issue.

On the other hand, for a flash-crowd arrival, the demand of “legacy”
removal would in-turn cause a flash-crowd to dedicated CDN re-
sources. Consider the extreme case of a simultaneous flash-crowd
arrival of n clients at time ae. Then the total load due to the
prefetching is n(plag + clag). This load should be finished from

time ae−elag to ae. The bandwidth demand rate then is
n(plag+clag)

ae−(ae−elag)
=
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n(plag+clag)

elag
. If this rate is higher than the available CDN capacity,

the transition cannot happen smoothly.
To avoid the issue, we can shift the PCE windows further behind

in the time domain. As shown in Figure 14 (c), this extra window
space is defined as Tspread. Note that all “legacy” pieces are avail-
able for download at time ae − Tspread − elag . The CDN load can
be finished from time ae − Tspread − elag to ae, as shown in in
Figure 14 (d); hence the requirement is that

n(plag + clag)

Tspread + elag
≤ Rpre,

where Rpre is available dedicated CDN capacity. In ShadowStream,
the orchestrator computes Tspread and announces it along with
other arrival parameters. Provided APIs start(), stop(), rejoin()
and fetchCDN() are shown in Table 4. In this mode, the returned
value of getSourceTime() should be revised correspondingly.

6.4 Replace Early Departed Clients
A main challenge is that real viewers have their real departure

behaviors, which cannot be controlled by ShadowStream. Clients
participating in a testing scenario may switch to different channels
or be terminated due to viewer-initiated operations. For example,
a client could have chosen to join the test at a particular calculated
time, but the real viewer has quit the testing channel before that
time; such clients are called early-departed clients.
Capturing client state: When a client departs early, it piggybacks a
small state snapshot in the disconnection message which includes
the scheduled arrival time of the client. When the replacement
client takes over, it “reconstructs” the state of the replaced client.
Substitution: In ShadowStream, an early-departed client is replaced
by another client in the current network, which is not selected for
joining testing yet. The orchestrator maintains a FIFO queue Dj for
early-departed clients in class j. Upon detecting an early-departed
client, the orchestrator appends the client’s state to Dj . The or-
chestrator monitors the queue size of Dj , computes a probability
that each client in class j locally chooses to become a replacement
candidate, and piggybacks the probabilities in control messages. If
a client in class j becomes a candidate, it connects to the orchestra-
tor. The orchestrator checks if Dj is non-empty. If so, it dequeues
the first state snapshot from the queue and includes it in the reply.

6.5 Independent Departure Control
The ShadowStream departure control has limitations due to the

use of real viewers. ShadowStream cannot support arbitrary client
departure patterns since the departure pattern of real viewers cannot
be controlled. Instead, ShadowStream requires that the “departure”
behavior pattern in testing can only be “equal to” or “more fre-
quent” than the real viewer departure pattern. We argue that this
limitation is acceptable since engineers mostly care about stressful
scenarios.

The design of departure control is to fill the gap between the de-
sired departure pattern and the real viewer departure pattern. The
mechanism is similar to distributed arrival control mentioned above;
we omit its details due to space limitation.

7. EVALUATIONS
In this section, we evaluate multiple aspects of ShadowStream.

First, we evaluate the software architecture in terms of code size
and implementation experience. Then, we evaluate the unique eval-
uation opportunities only available in production networks. The
protection and the evaluation accuracy ability of ShadowStream is
evaluated in the third part. The fourth part illustrates the perfor-
mance of distributed control. In the fifth part we illustrate how

Figure 15: Adding an admission control component.

ShadowStream works with dynamic streaming. Finally, we evalu-
ate an additional feature, deterministic replay.

7.1 Software Framework
We implement a complete live streaming network with clients

and an orchestrator using an architecture called Compositional Run-
time. This block-based architecture not only supports evaluation
with streaming machines and easier distribution of code for a test-
ing scenario, but also matches well with the large distributed peer-
to-peer live streaming networks, which typically consist of a set
of key algorithmic components, such as connection management,
upload scheduling, admission control, and enterprise coordination.

Overview: The key objective of the Compositional Runtime is that
the software structure should allow modular design of algorithmic
modules as well as easy composition of a system consisting of all
algorithmic modules for a test. Our software architecture is in-
spired by prior architectures, such as Click [21], GNU Radio [17]
and SEDA [40]. Algorithmic components are implemented as in-
dependent blocks that define a set of input and output ports over
which messages are received and transmitted. A runtime scheduler
is responsible for delivering packets between blocks.

System base: Since we have implemented the full system, we
present statistics on the size of the code to illustrate that the frame-
work is simple yet powerful. The framework and live streaming
machine are implemented in C++. The full system is divided into
multiple components:

• Compositional Runtime (including scheduler, dynamic loading
of blocks, etc): 3400 lines of code;

• Pre-packaged blocks (HTTP integration, UDP sockets and de-
bugging): 500 lines of code;

• Live streaming machine: 4200 lines of code.

Flexibility: Members of our research group have implemented
application-layer rate limiting, modified download schedulers, and
even push-based live streaming by simply writing new blocks and
updating a configuration file.

Figure 15 illustrates a portion of a live streaming machine that is
responsible for managing neighbor connections. A block decode is
responsible for de-multiplexing received packets and sending them
to connected blocks responsible for handling each type of message.

Next, the designer wishes to add an admission control algorithm
to avoid reduced performance for existing clients during flash-crowd.
Admission control may be implemented as an independent block,
which reads handshake messages for newly-connected clients. The
block emits either the handshake message if the new connection
should be accepted or a disconnect message to the client if the con-
nection should be rejected. The designer then composes the block
as shown by the dotted line.

7.2 Experimental Opportunities
We demonstrate that live testing provides experiment scales that

are not possible in any existing testbed. We use real traces from
two live streaming testing channels, SH Sports channel and HN
Satellite channel, from one of the largest live streaming networks
for 1 week beginning on September 6, 2010.
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Figure 16: Experiment opportunities.

When evaluating experiment opportunities, we use a demanding
testing behavior pattern: the arrival curve is a flash-crowd that all
clients arrive within Δ = 1sec, and no clients depart from the test.
Figure 16 demonstrates the test size and test duration that can be
triggered. In this figure, the x-axis is the triggered size and the
y-axis is the possible duration at the size.

We make the following observations. First, the two real testing
channels can allow us to test 60,000 clients for at least 40 minutes,
a reasonable duration. In addition, the SH Sports channel can ac-
commodate a test of 100,000 clients for at least 60 minutes. This
scale is not possible with any testbed that we are aware of. Second,
we observe that different channels can provide different tradeoffs.
While the SH sports channel can provide a large channel size, the
HN channel allows us to run experiments at longer durations.

7.3 Protection and Accuracy
We evaluate protection and accuracy by running fully imple-

mented ShadowStream clients on Emulab. This is a major lack-
ing of our evaluations, as results from production deployment may
reveal unexpected issues, but production deployment of Shadow-
Stream is currently in a work-in-progress state. On the other hand,
Emulab allows us to conduct an experiment multiple times, with
and without ShadowStream, all in the exact same setting. This is
not possible using a production deployment. Hence, Emulab results
can reveal better on ShadowStream accuracy. We plan to report
production results as they become available.

Specifically, we customize a Fedora Linux image with Modelnet
support for Emulab, in order to increase the number of clients. Each
result is the mean value of 10 repeated evaluations.

In the test, there are 300 clients joining the testing channel with
an inter-arrival time of 5 seconds. After all clients have joined,
they play for 100 seconds. The channel rate is 400 Kbps and each
peer’s upload capacity is 500 Kbps. We use a stable P2P streaming
machine as production. We use a standard HTTP server as the
CDN server and fix the length of the rCDN window as 10 seconds.
The capacity limitation of the CDN is set to 2.4 Mbps using the
Linux tc tool. Note that for 300 clients, the average lifetime is 850
seconds; the total demand of the experiment is roughly 850∗300 =
255, 000 seconds of data. The total supply of the CDN is bounded
by 2400/400 ∗ 1700 = 10, 200 seconds of data; hence the δ value
is bounded by 10, 200/255, 000 = 4%.

A dedicated experiment version is customized for the pur-
pose of evaluation. We inject a bug to the experiment, where
pieces with the lowest digit equal to 1 are excluded from the down-
load window until they enter the urgent window (i.e., 3 seconds
prior to the playpoint). We choose this simple setting to highlight
the fact that even simple parameter changes can have a serious per-
formance impact and therefore continuous testing is essential.

In our evaluation, we focus on two piece missing ratios for clients:
(1) virtual playpoint eplay of the experiment, and (2) viewer
playpoint cplay/pplay at the rCDN/production.

R=rCDN design: We start with getting the performance of the
buggy version by running the experiment alone. As shown
in the second column of Table 6, the buggy version yields poor

performance, confirmed by the increased piece missing ratio of
8.73% when running alone. In the next test (third column in Ta-
ble 6), we use R=rCDN and remove the CDN capacity limitation.
The measured piece missing ratio is accurate with a negligible er-
ror (which we ascribe to the non-determinism the real network);
viewer-observable miss at cplay is 0. These results are consistent
with our proposition that when CDN capacity is not the bottleneck,
R=rCDN can achieve very high experimental accuracy and view-
ers’ QoE is guaranteed.

However, when we add a CDN limitation in the third test (forth
column in Table 6), the missing ratio at cplay increases to 5.42%.
Only around 3.4% pieces missed by the experiment are repaired
by rCDN, which is less than the 4% capacity. This is because at the
initial stage of testing, the number of clients in testing is small;
at this stage CDN capacity can not be fully utilized. As we have
stated before, when network bottlenecks exist, the viewer perceived
quality could be seriously impacted.

Buggy R=rCDN R=rCDN with bottleneck

eplay Missed 8.73% 8.72% 8.81%
cplay Missed N/A 0% 5.42%

Table 6: Experiment accuracy v.s. CDN capacity.
PCE design: Next, we use our PCE design. The results are shown
in the second column of Table 7. Due to the presence of a CDN
bottleneck, production repair is activated; thus we see that the
experiment evaluation is inaccurate. As we have expected, the
network evolves to a stationary point; we get an upper bound value
of missing ratio as 9.13%. A key observation is that, even when the
experiment has poor performance, the piece missing ratio at
pplay is only 0.15%. This test illustrates the graceful and scalable
protection provided by the PCE design.

As the final test, we increase the CDN bottleneck to 9.6 Mbps.
As shown in the third column of Table 7, the resulting piece missing
ratio is a good approximation of the experiment. And again, the
viewer perceived quality is guaranteed; there is no piece missing
observed at pplay .

PCE PCE with higher CDN bottleneck

eplay Missed 9.13% 8.85%
pplay Missed 0.15% 0%

Table 7: PCE is more scalable and guarantee viewers’ QoE.

7.4 Experiment Control
Next we evaluate experiment control. We use real client behav-

iors from one live streaming network captured during September
2010 to perform a trace-driven simulation. However, due to the
lack of traces of viewers’ departure behaviors, this part focuses on
studying the distributed arrival performances. Since distributed de-
partures perform similarly to arrivals, we believe this part is already
sufficient for illustrating the effectiveness of distributed control.

Accuracy of Distributed Arrivals: We evaluate the accuracy of
the distributed arrival algorithm in Section 6. Specifically, we use
the arrival rate function shown in Figure 1 of [3]. When instanti-
ated in ShadowStream, it has 349,080 arrivals. To test the impact
of client clock synchronization, each client perturbs its generated
arrival time by a uniform random value selected from the interval
[− s

2
, s
2
], where s is a parameter that the orchestrator announces.

First, we observe that distributed arrivals result in a close match
to the target arrival rate function. The results are shown in Fig-
ure 17, which compares the target arrival rate with the actual arrival
rate resulting from clients joining the channel with orchestrator.
In this experiment, the orchestrator sets the clock skew parameter
s = 3, so clients’ clocks are desynchronized by up to 3 seconds.

Next, we further evaluate the effects of clock desynchronization
on distributed arrivals. In particular, for varying values of s, we test
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Figure 17: Experiment Control generates accurate arrival be-
haviors. Clients have clocks differing by up to 3 seconds.
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Figure 18: Experiment Control robust to desynchronization.
the hypothesis that an observed arrival behavior could have been
generated by rate parameter λ(t) using a Chi-Square test. The null
hypothesis is that the arrivals in interval [t1, t2) are distributed ac-
cording to Λ(t2)−Λ(t1). We place arrival times in an intervals of 3
seconds, and then merge adjacent intervals until both the expected
number of arrivals and the number of arrivals in each are at least 5.

Figure 18 shows the results. The x-axis is the level of clock
desynchronization and the y-axis is the corresponding p-value (i.e.,
the probability that the deviation of the observed from that ex-
pected). We observe that if client clocks are synchronized within 3
seconds with the orchestrator, the distributed arrivals are accepted
with high confidence (the p-value is at least 0.6); we reject the null
hypothesis for clock skews s > 20 seconds. Synchronization to a
precision of 3 seconds is readily doable: in ShadowStream, peers
would use sourcepoint value from source as time reference.
7.5 Dynamic Streaming

We evaluate ShadowStream when experiment implements dy-
namic rate switching among 4 rates: 1x (400 Kbps), 2x (800 Kbps),
3x (1.2 Mbps) and 4x (1.6 Mbps). Specifically, experiment
switches its streaming rate by measuring buffer-filling-ratio (i.e.,
fraction of downloaded pieces) and adapts according to the follow-
ing Adobe OSMF-like rule: (1) every peer starts from rate 1x (400
Kbps); every 120 seconds, it re-calculates the buffer-filling-ratio;
(2) when the buffer-filling-ratio is above 80%, switch to a higher
level rate (overlay) if possible; (3) when the buffer-filling-ratio is
below 50%, switch to a lower level rate (overlay) if possible. The
protection decision is made every 10 seconds, considering missing
video pieces to be played in the next 10 seconds.

Follow Base Adaptive

Accuracy 1.26x 1.26x 1.26x
Protected QoE 1.59x 1.42x 1.58x

Protection Overhead 1.49 3.69 1.39

Table 8: Evaluation of Repair schemes.
We evaluate ShadowStream performance from three perspectives:

(1) Accuracy (to reflect interference by protection to experiment),
measured by average streaming rate observed by experiment;
(2) Protected QoE, measured by average streaming rate observed
by production; and (3) QoE protection overhead, measured by
per-client protection downloading rate (in Kbps).

We report the results of a setting of 300 clients with a supply ra-
tio of 2.5 over the 1x rate. We first run experiment alone. The
average downloading rate is 1.59x. However, if a segment, which
contains 10-second video data, is incomplete, we do not count the

segment when calculating the viewer QoE streaming rate. The av-
erage viewers’ QoE streaming rate when running experiment
alone is 1.26x.

Table 8 shows the results of using the three protection strategies
discussed in Section 4.6. We make two observations. First, for the
dynamic streaming experiment, the protection overhead is low.
None of three protection strategies need more than 3.5 Kbps (<1%
1x rate) average protection downloading rate. Dynamic streaming
experiments may need lower protection overhead because that they
already try to do self-repair: when the buffer-filling-ratio of a client
decreases, it switches to a lower rate.

Second, Base is not a good protection strategy. The protected
QoE of Base is only 1.42x, while the other two strategies achieve
1.59x/1.58x. At the same time, the protection overhead of Base is
higher than twice that of the other two. The reason is that Base of-
ten discards partially-downloaded pieces by experiment while
the other two reuse them. In particular, Adaptive has the lowest
protection overhead.
7.6 Deterministic Replay

We build a replay capability on top of ShadowStream so that real
tests in production streaming can be played back step-by-step of-
fline for detailed analysis. A main challenge for introducing this
capability is how to minimize the logged data. Operating in a
large-scale production environment, ShadowStream clients cannot
log and then upload a large amount of data.

The hypervisor structure of ShadowStream allows us to imple-
ment efficient deterministic replay by controlling non-deterministic
inputs. Specifically, a streaming machine is typically an event-
driven system. Since external events are easier to log and replay,
ShadowStream explicitly transforms a timer event input to an ex-
ternal input provided as a streaming hypervisor service. The event
queue and message queue of each streaming machine are main-
tained by the streaming hypervisor. Random number generations
always use the sourcepoint from the getSourceTime() call as seeds.
Note that the logging implementation can be optimized: for proto-
col packets, we can save the whole payload; for data packets, only
the packet headers are needed. Since our streaming machines are
not computationally-intensive, we implement each streaming ma-
chine in a single thread. Using per-client input logs, we can replay
any client’s behavior.

Table 9 shows the per-client log size in two evaluations: one
with 100 clients running for 650 seconds and the second with 300
clients running for 1800 seconds. The channel rate is 480 Kbps. We
observe that the sizes of logged data to achieve replay are practical:
only 223 KB for the first case, and 714 KB for the second.

Log Size

100 clients; 650 sec 223 KB
300 clients; 1800 sec 714 KB

Table 9: Logged data size for deterministic replay.

8. RELATED WORK AND DISCUSSIONS
Q: [Related Work] How is ShadowStream related to previous work?
A: There are significant previous studies on the debugging and
evaluation of distributed systems (e.g., [4, 16, 18]). Compared with
the preceding work, ShadowStream is the first system based on the
key observation, instantiated in the context of live streaming, that
both the production system and the experiment system can
contribute to the objective of the same function: fetching streaming
data. Another advantage of ShadowStream is that it allows specific
scenarios during live testing, while previous studies focus on the
current deployment state.

ShadowStream is also different from staging/provisioning/rollback,
as used in industry. Such techniques cannot protect real viewers
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from visible disruptions, and have limited capability to orchestrate
evaluation conditions.

A particularly related project is FlowVisor [35], which proposes
to allocate a fixed portion of tasks and resources to experiment
to evaluate performance. The scope of their approach, however, is
limited to only linear systems. On the other hand, complex systems
such as live streaming networks can be highly non-linear due to
factors such as network bottlenecks.
Q: [General Approach] Is the ShadowStream approach general?
A: ShadowStream’s Experiment→Validation→Repair scheme is
general and can be extended to other applications. Specifically, it
requires only that (1) failures of experiment can be efficiently
identified; (2) one can introduce effective Repair to mask experiment
failures. For (1), many computer science problems/systems have
the asymmetric property that efficient validation of a solution is
feasible, but better algorithms take time to develop (e.g., NP prob-
lems). For (2), ShadowStream offers flexibility on designing Re-
pair as long as it masks obvious user visible failures. Note that the
additional lag is NOT a necessity in the general scheme.

Generalizing ShadowStream to other applications should con-
sider the specific problem domain. Consider video-on-demand (VoD).
One difference between live and VoD is data availability: all pieces
are available in VoD at any time and a streaming machine hence
can download pieces forward to the end of the video. Also, the
playpoints of VoD viewers can be heterogenous due to arrival time
differences and viewer seek/pause. To apply ShadowStream for
P2P VoD, a developer can impose a downloading range to avoid
overlapping tasks between experiment and production.
Q: [Limitations] Are there limitations on the experiments that can
be conducted by ShadowStream?
A: Yes. First, ShadowStream introduces a small additional lag.
Users accept such small lags in many production channels. If the
required lag is unacceptable, ShadowStream cannot embed experi-
ments. Second, the ability of ShadowStream protection depends on
the Repair mechanism to mask user-visible failures of experiment.
An experiment cannot be conducted if Repair and experiment
use different codecs and media player cannot use both. Third,
ShadowStream assumes that production is always running and that
management traffic (monitoring and logging) is small. This is typ-
ically true (e.g., 1 report packet per 30 seconds), but if not, the
accuracy of ShadowStream may be reduced.
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