
Revisiting Dynamic Query Protocols
in Unstructured Peer-to-Peer Networks

Chen Tian, Hongbo Jiang, Member, IEEE, Xue Liu, Member, IEEE, and Wenyu Liu, Member, IEEE

Abstract—In unstructured peer-to-peer networks, the average response latency and traffic cost of a query are two main performance

metrics. Controlled-flooding resource query algorithms are widely used in unstructured networks such as peer-to-peer networks. In this

paper, we propose a novel algorithm named Selective Dynamic Query (SDQ). Based on mathematical programming, SDQ calculates

the optimal combination of an integer TTL value and a set of neighbors to control the scope of the next query. Our results demonstrate

that SDQ provides finer grained control than other algorithms: its response latency is close to the well-known minimum one via

Expanding Ring; in the mean time, its traffic cost is also close to the minimum. To our best knowledge, this is the first work capable of

achieving a best trade-off between response latency and traffic cost.

Index Terms—Peer-to-peer networks, query algorithm, selective dynamic query.

Ç

1 INTRODUCTION

PEER-TO-PEER overlay networks, running at the application
layer, perform scheduling and routing without any

knowledge of the underlying physical networks. Various
peer-to-peer systems have became the most popular Internet
applications and a major portion of the Internet traffic is
attributed to them.

Topologies of peer-to-peer systems can be divided into
three different categories: centralized, decentralized but
structured, and decentralized and unstructured. Napster-
like [15] centralized systems have their resource directories
hosted at some central servers. A centralized topology
scales poorly and suffers from the single-point-of-failure
problem. Chord [25] and Tapestry [30] are decentralized,
but their network topologies are highly structured and their
resources are placed by distributed-hash-table algorithms. It
is not surprising that these topologies are sensitive to the
extremely transient join/leave/failure behaviors of peers,
which is, unfortunately, an intrinsic characteristic of
Internet peer-to-peer applications.

Nowadays, the unstructured topology is a popular model

in some peer-to-peer systems since: 1) the unstructured peer-

to-peer systems are highly resilient to peers’ failures and

incur a very low overhead at peer arrivals and departures;

2) they are simple to be implemented and have little overhead

in topology maintenance. Gnutella [9] and Limewire [19] are

examples of such file-sharing systems. In decentralized and

unstructured systems, neither central servers nor any precise

managements over network topology/resources placement
are required [4].

In this paper, we consider the problem of a resource
query in unstructured peer-to-peer networks [12], [17], [18].
That is, given an overlay network G ¼ ðV ;EÞ, m copies of a data
item published in V , and a predefined parameter Nðm � NÞ, the
goal of the study is to enable any inquiry peer in V to discover at
least N identical data copies published in G at the expense of the
minimum traffic cost and response latency. Here, the traffic cost
is defined as the number of messages required to complete
a query, and the response latency is the time spent to collect
at least N identical data copies. Since unstructured net-
works do not offer any clue to facilitate a resource query,
researchers are facing considerable challenges when de-
signing the query algorithms in those networks.

A novel algorithm named Selective Dynamic Query
(SDQ) is proposed in this paper. By solving a Knapsack
programming problem, SDQ calculates the optimal combi-
nation of a group of neighbors with a proper integer TTL
value for the next query round. Our extensive simulation
results (with different network topologies, and with various
object replica scenarios etc.) show that SDQ exhibits
superior performance over existing protocols.

The remainder of this paper is organized as follows: we
summarize related work in Section 2. We present some
background in Section 3. Section 4 introduces the intuition
behind the proposed SDQ algorithm. Section 5 presents the
design details of SDQ. The simulation results and analysis
are presented in Section 6. Finally, we summarize our
results and draw our conclusions in Section 7.

2 RELATED WORK

To allow resource querying in unstructured peer-to-peer
networks, two main categories of query protocols are
developed. Controlled-flooding-based algorithms, as the
name suggests, control the iterative flooding process: instead
of blind flooding, an integer TTL value is carried in each
packet of an individual query round; the scope of the

160 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 1, JANUARY 2012

. C. Tian, H. Jiang, and W. Liu are with the Wuhan National Laboratory for
Optoelectronics, the Department of Electronics and Information Engineer-
ing, Huazhong University of Science and Technology, Wuhan 430074,
P.R. China. E-mail: hongbojiang2004@gmail.com.

. X. Liu is with the University of Nebraska-Lincoln, 104 Schorr Center,
Lincoln, NE 68588.

Manuscript received 7 June 2010; revised 12 Jan. 2011; accepted 14 Feb. 2011;
published online 17 Mar. 2011.
Recommended for acceptance by L. Xiao.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-06-0335.
Digital Object Identifier no. 10.1109/TPDS.2011.111.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

flooding can then be controlled. Controlled-flooding-based
algorithms are widely used in unstructured networks such as
wireless ad hoc networks [5], [6]. Expanding Ring (ER) is the
first such protocol [5]. Several researchers [14], [20] have
compared the performance of ER [5] with other algorithms in
peer-to-peer networks. The Gnutella developer community
proposed the Dynamic Query (DQ) technique to retrieve
enough results at a low traffic cost [12]; Jiang and Jin
analyzed the DQ protocol and then proposed an enhanced
version (DQ+) [17], [18] to reduce response latency.

The second category of query protocols is random-walk-
based. The query node sends out a query packet, which is
then forwarded in a random fashion until it finally hits the
target [20]. Lv et al. [21] strived to improve the performance
of random-walk-based protocols by exploiting neighbor
heterogeneity. In biased random walks [2], [31], a node has
statistical preference to forward the walker toward the target,
so as to reduce the excepted number of steps before the target
is reached. In general, random-walk-based algorithms can
reduce network traffic and enhance the system scalability.
On the downside, they usually result in much longer search
latency, and the number of returned results can greatly vary
in different underlying network topologies [13], [14], [20].
For energy-constrained applications, random-walk-based
protocols are considered as the good choices. While in
unstructured peer-to-peer networks, their response latencies
are too high to be acceptable for users.

In addition to direct query, some orthogonal studies
have been developed for unstructured networks to achieve
low search latency at relatively low traffic cost. Crespo and
Garcia-Molina [10] proposed routing indices to find docu-
ments with content of interest across potential peer-to-peer
sources, by having each node to maintain the indices.
Doulkeridis et al. [11] extended this scheme to enable
multidimensional routing indices. Apart from highly
popular files, Puttaswamy et al. [24] proposed to use index
replication [8] to find “rare” objects. With this scheme,
every node stores just the metadata of its data on all of its
one/multihop neighbors. Ioannidis [16] proposed to treat
the failed query as “evidence of absence” of the file when a
node fails to locate a file. This information is then stored
and shared with other peers in order to quickly stop the
search and inform the inquiry node that the file is
unavailable. By doing so, the proposed scheme can reduce
the traffic cost and search delay significantly. In [29],
network traffic in a query flooding can be reduced by only
sending queries to nodes that are not likely to be free riders
[1]. Chawathe et al. [7] proposed to direct queries to high-
capacity nodes, and hence increase the chance of finding the
request item. GES [32] combined techniques from informa-
tion retrieval (IR) to enhance search performance in terms of
search efficiency and quality. Some researchers attempt to
improve search efficiency by exploiting the geographical
and temporal locality [3].

3 BACKGROUNDS

We first state some definitions used in this paper. In each
query packet, the TTL value indicates the hops from the
farthest reached node to the inquiry node. For simplicity,
we also use nTTL value ðnTTL ¼ TTL� 1Þ to denote the

hops from the farthest reached node to one of the inquiry
node’s direct neighbor which is passed by the packet.
Consistent with the state of the art, we assume that the
inquiry node could (only) know its direct neighbors’ degree
information (number of direct neighbors), which is likely to
be the case in practice. The average degree of the network is
D, which can be estimated.

As the degrees of intermediate nodes are unknown, the
inquiry node can adopt the average value D as their
estimation. Horizon H refers to the expected number of
queried peers in a query round. If the nTTL value and a
neighbor’s degree d are given, the horizon H within nTTL

hops from this neighbor can be estimated by

H ¼ ðd� 1Þ
XnTTL�1

i¼0

ðD� 1Þi: ð1Þ

On the contrary, if H is given, then the nTTL value
required to reach H via this neighbor can be calculated by

nTTL � logðD�1Þ
HðD� 2Þ
d� 1

: ð2Þ

The number of all visited nodes after a query round Hes can
be calculated by the summation of the estimation of all
finished rounds; let Rc denote the number of results that
already collected; then the estimated popularity of the
targeted item Pes can be given by

Pes ¼ Rc=Hes: ð3Þ

4 INTUITION OF OUR ALGORITHM

Before delving into the details, we present our intuition
first. In DQ+ [17], when there are many residual neighbors
at one round, only one query packet is propagated to only
one neighbor, trying to retrieve all the residual results. In a
Gnutella system with the average degree D ¼ 24, assume
that there is one iteration of DQ+ with next neighbor degree
d ¼ 12, and the expected horizon Hne ¼ 8;324. In this case,
nTTL ¼ 3:10 should be used according to (2). We also
assume that there are other 26 neighbors left with different
degrees; 10 peers among them have the total degrees of 357.
The observation is that the query could be completed within
one iteration, by sending these 10 neighbors together with
nTTL ¼ 2 query packets (we will provide a detailed
analysis on how to calculate this value in Section 5.3). It is
obvious that the optimal utilization of neighbor hetero-
geneity is not achieved yet.

What’s more, the number of already returned resultsRc is
variable in the startup phase due to the random nature of
item replication, as the number of visited peers is not large
enough yet. If the estimation of item popularity Pes is not
properly deduced, the risk of overshooting takes place. That
is why DQ+ needs a very conservative estimation of the
returned copies Res. Such a conservative estimation has little
chance to complete the query in the first one or two iterations;
hence, it is difficult to further reduce the response latency.
Here, the questions are: why do we have to undertake the high

risk of TTL rounding? Why do we have to upgrade millions of

reluctant users to support floating TTL values?

TIAN ET AL.: REVISITING DYNAMIC QUERY PROTOCOLS IN UNSTRUCTURED PEER-TO-PEER NETWORKS 161

The main idea behind SDQ is: rather than processing the
floating TTL value, SDQ dynamically calculates an
optimal combination of a proper integer TTL value
and the corresponding group of neighbors via mathema-
tical programming.

We emphasize that SDQ is 1) well planned—every query
round always tries to finish the query in a small TTL value,
so that the inquiry node can limit the range of flooding and
the chance of overshooting, and reduce perspective re-
sponse latency; 2) greedy—in each iteration, the inquiry
node propagates the query packets to the calculated subset
of neighbors with the calculated TTL value, expecting to
obtain the required number of results via these neighbors at
one time; and 3) safe—with relatively low integer TTL
values, SDQ can be more aggressive on neighbor selection.
Take TTL ¼ 3=nTTL ¼ 2 as an example: selecting one more
neighbor would incur just hundreds of visited peers and a
few overshooting results; in DQ+, an aggressive TTL value
may bother thousands of peers.

SDQ is in fact an optimization process with two
objectives: minimizing both response latency and traffic
cost. If in each iterative round the TTL value is selected
wisely and the query packets are propagated to the right
number of neighbors, it can be expected that within only
one or two iterations, there would be enough returned
results and the cost and latency could be minimized. This is
the intuition behind our approach: the inquiry node always
tries to exploit the degree heterogeneity of all residual
neighbors. As mentioned above, DQ(f)+ also avoids TTL
value rounding, while users are unlikely to have incentives
to upgrade. The SDQ algorithm does not require any
upgrade in other peers except the inquiry node itself; hence,
the flag data for transition are not necessary.

5 ALGORITHM DESIGN

5.1 Overview

The SDQ algorithm is comprised of two query phases: a
probe phase and an iterative flooding phase.

1. Probe phase. This phase is similar to DQþ.
2. Iterative flooding phase. Based on the estimated

horizon of next query Hne and the total residual
degrees of all unused neighbors, SDQ calculates a
proper integer nTTL value and the number of
required degree; after that, a subset of the neighbors
are chosen according to the number of required
degrees; query packets with this nTTL value are
then propagated via these neighbors. The iteration
process stops if enough results are returned; other-
wise, a new query round is initiated. Hereby are the
pseudocodes of an iterative phase algorithm.

1: Rl results need� results received {results number

remains to be retrieved}

2: Hes horizon esimated {estimated number of touched

nodes}
3: Dl degree remain {total degrees of available

neighbors}

4: Hne EstimationðRl;HesÞ {estimation of next horizon}

5: Dne; nTTL NextQueryTTLðHne;DlÞ {calculate

proper nTTL and required degree for next query}

6: SelectQuerySetðDne; nTTLÞ {select a proper set of
neighbors}

5.2 Estimating Item Popularity and Next Horizon

To avoid overshooting in flooding phase, like DQ+, we use
the Pearson’s confidence interval to provide a safety margin
on the estimation of the targeted item’s popularity.
Compared with DQþ, SDQ is less likely to have a big
overshooting with a relatively smaller perspective TTL
value. Therefore, we could be more aggressive than DQ+ in
estimation of the popularity (results of � ¼ 1 and � ¼ 0 are
both presented in simulations). Hereby are the pseudocodes
of popularity and horizon estimation.

1: Initialization

2: Rc results received {results retrieved}

3: Hes horizon esimated {estimation number of

touched nodes}

4: Pes estimation popularity {estimated popularity}
5: Res 0 {conservative estimation of results}

6: Rl results total� results received {results left to be

retrieved}

7: Res Rc þ �=2þ
ffi
Rc þ �2=4

p
8: Pes Res=Hes

9: Hne Rl=Pes

5.3 Selecting Next TTL

It is well known that the most multiobjective optimization
problem is hard to find an optimal solution. Fortunately, we
can exploit the integrity of the nTTL values. The number of
all the residual neighbors’ degrees Dl is the key here. For
each possible nTTL value, we can use (4) to calculate the
number of neighbors’ degrees d which should be covered;
given the estimated horizon of the next round, an optimal
nTTL value can then be derived

d � HðD� 2Þ
ðD� 1ÞnTTL

þ 1: ð4Þ

Starting from a small nTTL value (in general 1 or 2), we
iteratively calculate the required number of selected
neighbors’ degrees Dne. If Dne is less than the current
residual degrees Dl, this nTTL value can be selected as a
candidate for the next query. Let’s assume an example
where Dl ¼ 389 and Dne ¼ 380 with nTTL ¼ 2, and then the
next query round would select almost all residual neighbors
into the query set; if this round eventually cannot complete
the query, there is a high risk of query failure because
almost all neighbors are already used. Here, another safety
margin is needed to limit the total degrees used in a single
round. We set this limitation to be no more than two-third
of all residual degrees; this is an experience value (our
experimental results show no significant difference for this
value from 0.5 to 0.8). Hereby are the pseudocodes of next
TTL value calculation.

1: Dl degree remain {total degrees of available

neighbors}

2: Hne EstimationðRl;HesÞ {estimation of next horizon}

3: for nTTL ¼ 1 to MAX TTL ALLOWED do

4: Dne nTTL�ðAVER DEGR�2Þ
powðAVERE DEGR�1;nTTLÞ þ 1

162 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 1, JANUARY 2012

5: if Dne � 2
3Dl then.

6: continue

7: else

8: return Dne; nTTL

9: end if

10: end for

5.4 Calculating Next Query Set

Selecting the optimal subset of residual neighbors to reach
Dne can be solved by mathematical programming. Even
with a smaller confidence level than DQ+, the popularity
and horizon estimations are still conservative in SDQ. Here,
in neighbors’ selection we can deliberately introduce a little
remedy to achieve balance. Let n denote the number of
residual neighbor and i denote the neighbor index. A ¼
fai; 1 � i � ng is the set of neighbors’ degrees. We define
the following decision variable:

xi ¼
1; if neighbor i is chosen for next query;
0; otherwise;

�

and the integer programming formulation

Get : xi ¼ 0k1; 1 � i � n;

Target : min
Xn
i¼1

aixi

 !
;

Constraint :
Xn
i¼1

aixi � Dne:

8>>>>><
>>>>>:

ð5Þ

Generally speaking, it is difficult to solve integer optimiza-
tion problems because of their inherent combinatorial
complexity. Fortunately, we can use variable replacement
to translate (5) to an equivalent Knapsack programming
problem. With

yi ¼ xi; 1 � i � n;
Df ¼ Dl �Dne;

�
ð6Þ

we have

Get : yi ¼ 0k1; 1 � i � n;

Target : max
Xn
i¼1

aiyi

 !
;

Constraint :
Xn
i¼1

aiyi � Df:

8>>>>><
>>>>>:

ð7Þ

This is a Knapsack problem, and the optimal solution can be
solved by mature algorithms [22].

However, the exact Knapsack algorithm has high
computational complexity. Due to the approximation nature
of our algorithm, an exact optimal solution is unnecessary.
We develop a polynomial-time heuristic algorithm: before
each iteration, all residual neighbors are randomly orga-
nized to a list; if Dne is larger than zero, we select the list
head and subtract its degree from Dne; the loop continues
until Dne value is smaller than zero. Hereby are the
pseudocodes of subset selection.

1: Initialization

2: ListHead {index to available neighbor list}

3: Dm degreeofhead

4: Nberlist neighborlist

5: for all Dne > 0 do

6: chooseNeighbor(Nberlist [ListHead])

7: Dne ¼ Dne �Dm

8: end for

Simulation results, which will be presented later in
Section 6, demonstrate that the performances of our heuristic
method is comparable to the original Knapsack solution. The
main contribution of the heuristic method is that the low
computational complexity makes SDQ a competitive candi-
date for other unstructured networks with lower node
capability (such as wireless sensor networks).

6 EVALUATION

In this section, we first describe our evaluation methodology.
After this, we comprehensively compare the performance of
these algorithms under different conditions.

6.1 Evaluation Methodology

We have implemented our SDQ algorithm in an event-driven
simulator. The hardware platform is Intel P4 2.8G CPU with
2G memory. We have followed the protocol specifications
[5], [12], [17], [20]. Except for Expanding Ring, a node with
degree of at least 15 is picked to manage a query process;
there is no restriction on the degree of peers which forward
query packets. We use the approach described in [12] and
[17] to estimate the theoretical horizon and the average
popularity of the targeted item. The default maximum TTL
value allowed for each neighbor is 4. The timeout interval is
set to TTL times 2.4 seconds as recommended.

We evaluate the performance in three different topolo-
gies: 1) flat topology model designed by Waxman [28],
where the nodes are randomly placed on an euclidean
plane; 2) the Power Laws topology generated using the
algorithm described by Palmer and Steffan [23]; 3) a
snapshot of the Gnutella network topology on February 2,
2005 [26]. For each topology, the average node degree is 24.
Eight different items are replicated in 160 K peers. Each
item with replication ratio p is distributed randomly. A
common probe phase suggested by [12] is used: the first
query round packets are propagated down three neighbors
with nTTL ¼ 1. The replication ratio and the required
number of results are specified in each experiment. Each
evaluation result is the average of 1,000 independent
simulation runs.

The evaluation metrics include:

1. Response latency: the latency is defined as the total
time needed for complete one query process and is
the most important metric.

2. Number of returned results: for a query with a required
number N of results, a good search algorithm should
retrieve the number of results close to or only a little
more than N .

3. Number of transmitted packets: the number of query
messages is defined as the total amount of query
messages generated during the flooding process.

4. Success ratio: a query retrieved enough or more
results than required is considered as a successful
query. The success ratio indicates the stability of an
algorithm and should be larger than the accepted
level (such as 99 percent).

TIAN ET AL.: REVISITING DYNAMIC QUERY PROTOCOLS IN UNSTRUCTURED PEER-TO-PEER NETWORKS 163

5. Overshooting ratio: the ratio of the number of
returned results over the number of required.

6.2 Performance Comparison

In this part, we evaluate the performance comparisons
among ER, DQ, enhanced dynamic query DQ(i)+/DQ(f)+,
and SDQ, in three aforementioned network topologies. Each
query targets for 50 returned results, and the replication
value is fixed to 0.01. DQ rounds all its obtained floating
TTL value to the ceil; DQ(i)+ uses 0.3 as the boundary
value. Average outputs of 1,000 runs are given in Tables 1,
2, and 3, together with their standard deviations.

We refer to �R/ �P/ �L as the mean values of Number of

Returned Results, Transmitted Packets, and Latency, respec-
tively, and �R, �P , �L as their corresponding standard
deviations. The digits after the algorithm names denote the
confidential parameter � for DQ(f)+/DQ(i)+/SDQ, respec-
tively. For example, DQ(f)+3 means � ¼ 3 and SDQ means
no conservative estimation. Due to space limitation, we
only provide results with various � values in Table 1. To
achieve fair comparison, for the rest of the simulations we
uniformly set � ¼ 1 for all algorithms wherever this
parameter is required.

Tables 1, 2, and 3 demonstrate the results in three
different network topologies. The performance differences
of the algorithms are significant. In terms of Transmitted

Packets, ER is almost three to four times over others. DQ(f)+
has the minimum Number of Returned Results and the
minimum number of Transmitted Packets; its fine-grained
control on last forwarding hop is effective. As regards to
Latency, DQ has the most undesirable performance includ-
ing both mean value and variance. This is the consequence
of its conservative one-by-one query nature; DQ(i)+ and

DQ(f)+ fall into the same level. We argue that SDQ is the

best algorithm here: its performance is close to ER in terms

of Latency, and is close to DQ algorithms in terms of Number

of Returned Results and Transmitted Packets.
First, we investigate the impact of � value over the

algorithms. Table 1 shows that the larger the � value, the

better the traffic being controlled and the larger the Latency.

This characteristic is shared by DQ(f)+, DQ(i)+, and SDQ. It

is interesting that the Latency of DQ(i) increases more

rapidly when � increases. We trace the simulation logs and

find that when there are only one or two results still need to

be retrieved, too conservative estimation would stuck DQ(i)

in the nTTL ¼ 1ðTTL ¼ 2Þ state, and thus suffer the

completion of the whole query.
Also, SDQ exhibits good performance in all three

network topologies. In Tables 2 and 3, we find that SDQ

can result in much smaller Transmitted Packets (�P) and much

smaller Latency than other DQ algorithms. Also, in both Flat

and Power Law topologies, SDQ is significantly stable with

small variations compared to others.

6.3 Sensitivity to Replica Distribution

6.3.1 Skewed Replica Distribution

Instead of uniform replication scenarios, in this part we

analyze the impact of skewed replica distribution over all

algorithms. Intuitively, the ER algorithm should not be

affected. With high degree numbers, all topologies have

small radius; we expect that this small world nature would

make all dynamic query algorithms insensitive to skewed

replica distribution.
Flat topology. As shown in Table 4, our first evaluation is

in Flat network topology which is the only topology that

incorporates euclidean proximity. In this scenario, 80 percent

of all replicas are put on the left half of the area, and the rest

20 percent replica on the right part; the density of each item

in the left half network is four times over that in the

right half.

164 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 1, JANUARY 2012

TABLE 1
Gnutella Topology Results

TABLE 2
Power Law Topology Results

TABLE 3
Flat Topology Results

TABLE 4
Skewed Replica Distribution

Compared with uniformly distributed scenarios, the
Number of Returned Results is only slightly increased for all
algorithms. This is consistent with our expectation, and
overall, SDQ still shows a good performance, with a
combination of small traffic and small latency, compared
with others.

Hot spots. Table 5 shows the results with the Gnutella
topology while we intensively create resources hot spots:
after randomly selecting a node, we also allocate the items
to all its neighbors; so on and so forth until all items are
distributed. We found that ER, DQ, DQ(f), DQ(i), and SDQ
exhibit stable performance, similar to uniform replica
scenarios in Table 1.

6.3.2 Sensitivity to the Replication Ratio

To extensively evaluate algorithms’ performance under
different conditions, we study ER/DQ(f)+/SDQ with a
large range of the replication ratios. First, we evaluate their
performances in low replication value scenarios. The
replication values are increased from 0.002 to 0.03 by a
0.002 step. Total 15 scenarios are scheduled, each with 1,000
runs. The average Number of Returned Results and Latency
are shown in Fig. 1, respectively.

For every replication value, SDQ and DQ(f)+ are in the
same level in terms of traffic cost and outperform ER. In
terms of response latency, SDQ has a much better
performance than DQ(f)+, and its latencies are close to the
minimum one via ER. There is a turn point of ER: when the
replication ratio increases near 0.004, the traffic suddenly
drops and starts to increase again and after that, the latency
maintains steady after that point.

In the high replication ratios group, we also evaluate a
broader popularity from 0.03 to 0.30 by a 0.03 step. Total 10
scenarios are scheduled, each with 1,000 runs. The average
Number of Returned Results and Latency are shown is Fig. 2,
respectively. The performances are similar to that in low
replication ratio scenarios. Consistent with our analysis,
there is another turn point of ER near 0.09, again illustrating
its inefficiency.

6.4 Impacts of Other Factors

Impact of network scale. Fig. 3 shows the algorithm
performances in different network scales. Again, the
replication value is 0.01 and 50 results are required. There
are four different Power Laws topologies, generated using
[23], with 40, 80, 120, and 160 K nodes, respectively.

All algorithms maintain stable performance. Again, SDQ
archives the best overall control of both traffic cost
and response latency than others. At least in tens of
thousands scale, the network scale has no obvious impact
on query algorithms.

Impact of required number of results. In this part, we
fix the replication value to be 0.01, and evaluate the
algorithms with different required numbers of results
needed. Here, we introduce a new metric Overshooting
Ratio. Let O, C, and N stand for Overshooting Ratio, Number

TIAN ET AL.: REVISITING DYNAMIC QUERY PROTOCOLS IN UNSTRUCTURED PEER-TO-PEER NETWORKS 165

TABLE 5
Gnutella Topology with Hot Spots

Fig. 2. Performance comparison for high replica ratio impact: (1) number of results and (2) latency.

Fig. 1. Performance comparison for replica ratio impact: (1) number of results and (2) latency.

of Returned Results, and Required Number of Results, respec-
tively; we have O ¼ C=N . We vary N from 10 to 150 with
the step of 20. One hundred fifty is the largest number of
requests allowed by a Gnutella ultrapeer [9], [12]. The
results are shown in Fig. 4.

When the required number is small, ER shows the high
Overshooting Ratio. When N is increased, ER becomes stable.
Again, SDQ shows a good performance in terms of both
latency and traffic cost. In general, the required number of
results N has no significant impact for query algorithms.

Impact of deviated average degree estimation. There is
a concern from the society: when D, the average degree of
the network, is not correctly estimated, would those
dynamic query algorithms perform well? In this part, we
maintain the network degree to 24, and change the input D
to algorithms from 18 to 30. For simplicity, only perfor-
mances of DQ(f)+ and SDQ are shown in the Fig. 5.

The algorithms are still stable: when the input D is less
than the real network average degree, the dynamic
algorithms would “consider” this situation as a higher item
popularity in the popularity estimation step; on the
contrary, when the input D is higher than the real network
average degree, this situation can be considered to lower
popularity. To sum up, the input D has trivial impact for
the dynamic query algorithms.

7 CONCLUSION

Traffic cost and response latency are two critical metrics for
resource query algorithms in unstructured peer-to-peer
networks. In this paper, we propose a novel protocol in this
paper: SDQ, which calculates an optimal combination of an
integer TTL value and a set of neighbors for the next query
round. Our experiments demonstrate that SDQ provides a
fine-grained control: its latency is close to the well-known
minimum one via ER; in the mean time its traffic cost is also
small. Through extensive simulations, performances of the

controlled-flooding algorithms including SDQ and other

existing algorithms are extensively analyzed under a

variety of scenarios.
We will further explore SDQ for a wider range of

applications, in particular, other unstructured networks

such as wireless ad hoc networks and sensor networks.

ACKNOWLEDGMENTS

This work was supported in part through National Natural

Science Foundation of China (No. 60803115, No. 60873127,

and No. 61073147), National Natural Science Foundation of

China—Microsoft Research Asia (No. 60933012), the Funda-

mental Research Funds for the Central Universities (No.

2011QN014), the Youth Chenguang Project of Wuhan City

(No. 201050231080), and the Scientific Research Foundation

for the Returned Overseas Chinese Scholars, as well as New

Century Excellent Talents in University (No. NCET-10-408),

State Education Ministry. An early version of this work

appeared as [27]. Hongbo Jiang is the corresponding author.

REFERENCES

[1] E. Adar and B.A. Huberman, “Free Riding on Gnutella,” technical
report, Xerox PARC, 2000.

[2] R. Beraldi, “Biased Random Walks in Uniform Wireless Net-
works,” IEEE Trans. Mobile Computing, vol. 8, no. 4, pp. 500- 513,
Apr. 2009.

[3] H. Cai and J. Wang, “Exploiting Geographical and Temporal
Locality to Boost Search Efficiency in Peer-to-Peer Systems,” IEEE
Trans. Parallel and Distributed Systems, vol. 17, no. 10, pp. 1189-
1203, Oct. 2006.

[4] A.J. Chakravarti, G. Baumgartner, and M. Lauria, “The Organic
Grid: Self-Organizing Computation on a Peer-to-Peer Network,”
IEEE Trans. Systems, Man, and Cybernetics, Part A: Systems and
Humans, vol. 35, no. 3, pp. 373-384, May 2005.

[5] N. Chang and M. Liu, “Revisiting the TTL-Based Controlled
Flooding Search: Optimality and Randomization,” Proc. ACM
MobiCom, 2004.

[6] N. Chang and M. Liu, “Optimal Controlled Flooding Search in a
Large Wireless Network,” Proc. IEEE Third Int’l Symp. Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
2005.

[7] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, “Making Gnutella-Like P2P Systems Scalable,” Proc.
ACM SIGCOMM, 2003.

[8] E. Cohen and S. Shenker, “Replication Strategies in Unstructured
Peer-to-Peer Networks,” Proc. ACM SIGCOMM, 2002.

[9] O.S. Community, http://gnutella.wego.com/, 2010.
[10] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-

Peer Systems,” Proc. IEEE 22nd Int’l Conf. Distributed Computing
Systems (ICDCS), 2002.

[11] C. Doulkeridis, A. Vlachou, K. Norvag, Y. Kotidis, and M.
Vazirgiannis, “Multidimensional Routing Indices for Efficient
Distributed Query Processing,” Proc. Int’l Conf. Information and
Knowledge Management, 2009.

166 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 1, JANUARY 2012

Fig. 3. Performance comparison with a variety of network sizes:
(1) number of transmitted packets and (2) latency.

Fig. 4. Performance comparison for required number impact: (1) results
overshooting and (2) latency.

Fig. 5. Performance comparison with deviated average degree estima-
tion: (1) number of transmitted packets and (2) latency.

[12] A. Fisk, “Gnutella Dynamic Query Protocol v0.1,” http://
www9.limewire.com/develop-r/dynamic_query.html, 2003.

[13] C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks in Peer-
to-Peer Networks,” Proc. IEEE INFOCOM, 2004.

[14] C. Gkantsidis, M. Mihail, and A. Saberi, “Hybrid Search Schemes
for Unstructured Peer-to-Peer Networks,” Proc. IEEE INFOCOM,
2005.

[15] N. Inc, http://www.napster.com/, 2011.
[16] S. Ioannidis, “Absence of Evidence as Evidence of Absence: A

Simple Mechanism for Scalable P2P Search,” Proc. IEEE INFOCOM,
2009.

[17] H. Jiang and S. Jin, “Exploiting Dynamic Querying Like Flooding
Techniques in Unstructured Peer-to-Peer Networks,” Proc. IEEE
13th Int’l Conf. Network Protocols (ICNP), 2005.

[18] S. Jin and H. Jiang, “Novel Approaches to Efficient Flooding
Search in Peer-to-Peer Networks,” Computer Networks, vol. 51,
no. 10, pp. 2818-2832, 2007.

[19] Limewire, http://www.limewire.com/, 2011.
[20] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and

Replication in Unstructured Peer-to-Peer Networks,” Proc. Int’l
Conf. Supercomputing, 2002.

[21] Q. Lv, S. Ratnasamy, and S. Shenker, “Can Heterogeneity Make
Gnutella Scalable,” Proc. First Int’l Workshop Peer-to-Peer Systems
(IPTPS), 2002.

[22] G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimiza-
tion. John Wiley, 1988.

[23] C. Palmer and G. Steffan, “Generating Network Topologies that
Obey Power Laws,” Proc. IEEE Global Telecomm. Conf. (GLOBE-
COM), 2000.

[24] K. Puttaswamy, A. Sala, and B.Y. Zhao, “Searching for Rare
Objects Using Index Replication,” Proc. IEEE INFOCOM, 2008.

[25] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM, 2001.

[26] D. Stutzbach and R. Rejaie, “Characterizing the Two-Tier Gnutella
Topology,” Proc. ACM Int’l Conf. Measurement and Modeling of
Computer Systems (SIGMETRICS), 2005.

[27] C. Tian, H. Jiang, X. Liu, W. Liu, and Y. Wang, “Towards
Minimum Traffic Cost and Minimum Response Latency: A Novel
Dynamic Query Protocol in Unstructured P2P Networks,” Proc.
IEEE 37th Int’l Conf. Parallel Processing (ICPP), 2008.

[28] B. Waxman, “Routing of Multipoint Connections,” IEEE J. Selected
Areas in Comm., vol. 6, no. 9, pp. 1617-1622, Dec. 1988.

[29] C.-J. Wu, K.-H. Yang, and J.-M. Ho, “Antsearch: An Ant Search
Algorithm in Unstructured Peer-to-Peer Networks,” Proc. IEEE
Symp. Computers and Comm., 2006.

[30] Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An Infra-
structure for Fault-Tolerant Wide-Area Location and Routing,”
Technical Report UCB/CSD-01-1141, Computer Science Dept.,
University of California, 2001.

[31] M. Zhong, K. Shen, and J.I. Seiferas, “The Convergence-
Guaranteed Random Walk and Its Applications in Peer-to-Peer
Networks,” IEEE Trans. Computers, vol. 57, no. 5, pp. 619-633,
May 2008.

[32] Y. Zhu and Y. Hu, “Enhancing Search Performance on Gnutella-
Like P2P Systems,” IEEE Trans. Parallel and Distributed Systems,
vol. 17, no. 12, pp. 1482-1495, Dec. 2006.

Chen Tian received the BS, MS, and PhD
degrees from the Department of Electronics and
Information Engineering at the Huazhong Uni-
versity of Science and Technology, China, in
2000, 2003, and 2008, respectively. He joined
the faculty as a lecture in the Department of
Electronics and Information Engineering at the
Huazhong University of Science and Technol-
ogy, China. His research interests include dis-
tributed networks and wireless networks.

Hongbo Jiang received the BS and MS degrees
from Huazhong University of Science and Tech-
nology, China. He received the PhD degree from
Case Western Reserve University in 2008. After
that he joined the faculty of Huazhong University
of Science and Technology as an associate
professor. His research interests include compu-
ter networking, especially algorithms and archi-
tectures for high-performance networks, and
wireless networks. He is a member of the IEEE.

Xue Liu received the BS and MS degrees in
mathematics and in automatic control both from
Tsinghua University, China. He received the
PhD degree in computer science from the
University of Illinois at Urbana-Champaign in
2006. He is an associate professor in the
Department of Computer Science and Engineer-
ing, University of Nebraska of Lincoln. His
research interests include real-time and em-
bedded systems, networked server performance

management, and software reliability. He is a member of the IEEE.

Wenyu Liu received the MS and PhD degrees
from the Department of Electronics and Informa-
tion Engineering at the Huazhong University of
Science and Technology, China. He is a profes-
sor of electronics and information engineering at
the Huazhong University of Science and Tech-
nology, China. His research interests include
image processing, distributed networks, and
wireless networks. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TIAN ET AL.: REVISITING DYNAMIC QUERY PROTOCOLS IN UNSTRUCTURED PEER-TO-PEER NETWORKS 167

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

