
SINUS: A Scalable and Distributed Routing Algorithm with

Guaranteed Delivery for WSNs on High Genus 3D Surfaces

Tianlong Yu1 Hongbo Jiang1 Guang Tan2 Chonggang Wang3 Chen Tian1 Yu Wu1

1Department of Electronics and information Engineering, Huazhong University of Science and Technology, China
2SIAT, Chinese Academy of Sciences, China, 3InterDigital Communications, PA, 19406

1{yutianlong21,hongbojiang2004,alexandretian,yuwu199111}@gmail.com,2guang.tan@siat.ac.cn, 3cgwang@ieee.org

Abstract—In this paper, we put forward a novel scalable and
distributed routing algorithm, called SINUS, for sensor networks
deployed on the surface of complex-connected 3D settings such
as tunnels, whose topologies are often theoretically modeled as
high genus 3D surfaces. SINUS is carried out by first slicing
the genus-n surface along a maximum cut set based on Morse
theory and Reeb graph, in order to form a genus-0 surface with
2n boundaries. Then, it groups these 2n boundaries into two
groups each of which is next connected together. By doing so, a
genus-0 surface with exactly two boundaries emerges, which can
be flattened into a strip, using the Ricci flow algorithm and next
mapped to a planar annulus by Möbius Transform. By assigning
nodes virtual coordinates on the planar annulus, SINUS finally
realizes a variation of greedy routing to enable individual nodes
to make local routing decisions. Our simulation results show that
SINUS can achieve low-stretch routing with guaranteed delivery,
as well as balanced traffic load.

I. INTRODUCTION

Recent years have witnessed a rapid growth of Wireless

Sensor Networks (WSNs) with generic tunnel-shape in e-

merging applications where nodes are typically deployed on

the surface of complex-connected 3D settings. Examples of

such applications include monitoring of coal mine tunnels for

disaster prevention and rescue,fire detection in the corridors of

buildings,as well as monitoring of underground tunnels used

in water, sewer or gas systems. These networks are called 3D
high genus WSNs [22] or WSNs on high genus 3D surfaces,

as shown in Fig. 1. The sensor network on a high genus 3D

surface is often of a complex-connected 3D setting and has

non-trivial topology, possibly with high genus (i.e., multiple

handles) [22]. While there exist a series of previous studies

This work was supported in part by the National Natural Science Foun-
dation of China under Grant 61073147, Grant 61173120, Grant 61103243,
Grant 61202460, Grant 61271226, and Grant 61272410; by the National
Natural Science Foundation of China and Microsoft Research Asia under
Grant 60933012; by the Fundamental Research Funds for the Central U-
niversities under Grant 2012QN078; by the CHUTIAN Scholar Project of
Hubei Province; by the Youth Chenguang Project of Wuhan City under
Grant 201050231080; by the Scientific Research Foundation for the Returned
Overseas Chinese Scholars (State Education Ministry); by the National Natural
Science Foundation of Hubei Province under Grant 2011CDB044; by the Fok
Ying Tung Education Foundation under Grant 132036; by the Hong Kong
Scholars Program; and by the Program for New Century Excellent Talents
in University under Grant NCET-10-408 (State Education Ministry). Guang
Tan’s work was supported by the Natural Science Foundation of China under
Grant 61103243, Youth Innovation Promotion Association, Chinese Academy
of Sciences, the Ministry of Science and Technology 863 Key Project No.
2011AA010500, and Shenzhen Overseas High-level Talents Innovation and
Entrepreneurship Funds KQC201109050097A. The corresponding author is
Hongbo Jiang.

that achieve scalable routing for 2D networks and simple 3D

volume networks (say with only one inner boundary) [20], few

of them can work for WSNs on high genus 3D surfaces [22].

Mining Area

Decline Tunnel

Entrance

(a)

Area 1

Area 2 Corridor

(b)

West Tunnel

East Tunnel

Service Tunnel

Transverse Passage

(c)
(d)

Fig. 1. The networks of (a) coal mine tunnels; (b) corridors of buildings;
(c) underground tunnels. These three networks are homotopically equivalent
to (d) a 3D genus-2 network.

Existing Work: Greedy routing is appealing for its simplic-

ity and scalability to large networks with stringent resource

constraints. Unfortunately, its performance suffers from local

minima, where greedy forwarding cannot proceed. To deal

with this, face routing [14] exploits the fact that a concave void

in a 2D planar network is a face with a simple line boundary.

When a local minimum is encountered, the packet employs

face routing to route along the boundary in either clockwise

or counter-clockwise direction, until greedy forwarding is

achievable. However, the hole in a 3D topology is not a 2D

face and its boundary becomes a surface, yielding an arbitrarily

large number of possible paths to be explored [20].
Recent 3D greedy embedding methods [3], [17], [20]map

the original sensor network topology to a planar surface or to a

virtual sphere to enable greedy routing. However, none of these

algorithms can be applied to the sensor networks on high genus

3D surfaces [22]. The reason is that the embedded surface M
should be continuously deformed to the embedding surface

D, that is, M and D should be in the same homotopy class.

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

2175

However, a high genus 3D surface, as shown in Fig. 1(d), is

obviously not homotopically equivalent to a 2D planar surface

or a 3D sphere [5], rendering the direct greedy embedding

infeasible for WSNs on high genus 3D surfaces.

Yu et. al. [22] conducted a pioneer work on scalable routing

on high genus 3D surfaces. They proposed to embed the

network on a surface with high genus first. Then a canonical

hyperbolic metric of the embedded surface is calculated and

the network is decomposed into canonical components. The

routing follows a two-level paradigm: first to find a sequence

of components (corresponding to a shortest path on the adja-

cency graph of the components), and then to realize the routing

with greedy steps within each component. However, a major

concern of this approach is its centralized operations during

finding the genus and decomposing the network, which make

the algorithm impractical for distributed sensor networks. In

addition, compact routing among components requires every

node to maintain a routing table to all other components [22],

possibly resulting in high storage overhead on individual nodes

when the network grows large and becomes more complex.

Our Contribution: In this paper, we propose SINUS, a

Scalable and dIstributed routing algorithm with guaranteed

delivery for WSNs on high geNUs 3D Surfaces. The key

contribution of our proposed scheme is to slice the high genus

surface to form one single genus-0 surface via a distributed

algorithm. Then this genus-0 surface is mapped to a planar

annulus for greedy routing.

To summarize, SINUS presents a neat, distributed, scalable,

and general solution with delivery-guaranteed. It is particularly

interesting for a 3D network with complex topology. First,

SINUS is quite neat, mapping the sliced high genus surface to

a single connected planar surface — a unit disk with a circular

hole. As such, in contrast to [22], no partition is involved

and compact routing among components is avoided in SINUS.

Second, SINUS is fully distributed. In the embedding stage,

approximate geodesic patterns and rotation scheme are utilized

to construct Morse function and then slice the high genus

surface in a distributed and discrete manner. In contrast to [22],

SINUS requires no centralized operations. Third, SINUS is

a scalable algorithm, with message complexity during the

embedding stage being O(n · m), where n is the genus of

M and m is the number of nodes. So the embedding stage of

SINUS is scalable in terms of message cost. Plus, the greedy

routing on embedding surface is scalable as well. Besides,

the storage complexity on individual nodes is trivial as each

node only maintains the virtual coordinate and a 4-tuple to

enable local routing decisions. Finally, SINUS is a generic

algorithm. It does not rely on the knowledge of any location

information, angular information. Nor do we require that the

communication graph follows an ideal radio model such as

the unit disk graph model or the quasi-unit disk graph model.

The rest of the paper is organized as follows. We describe

the theoretical foundation of our proposed algorithm in Sec-

tion II. In Section III, we introduce our scalable and distributed

routing algorithm with guaranteed delivery for WSNs on

high genus 3D Surfaces. Simulation results are illustrated in

Section IV. Finally, Section V concludes the paper.

II. THEORETICAL FOUNDATION

A. Genus-n 3D Surfaces

In algebraic topology, a cut C is referred to as a non-

intersecting closed simple curve on a connected and orientable

surface M. A cut locally disconnects the topology of M. We

call Cmax = {C1, C2, . . . , Cn} a maximum cut set of M, if and

only if: (1) the cut set Cmax do not render M disconnected; (2)

any cut set C′ with a cardinality of n+1 or more will render

M disconnected. Accordingly, the genus of M is given:

Definition 1. The genus of M is defined as the cardinality of
maximum cut set Cmax, representing the maximum number of
cuts on M without disconnecting M.

Fig. 2 shows several surfaces with different genus: a sphere

is a genus-0 surface and any cut will cause the sphere

disconnected; a genus-1 torus can have at most one cut on

it without getting disconnected. Generally, one cut C is able

to slice a genus-n surface to genus-(n− 1).

Fig. 2. From left to right: genus-0, genus-1, genus-2, and genus-3.

Since our goal is to obtain a single genus-0 topology,

intuitively we can extract the maximum cut set Cmax and

slice the surface along Cmax. However, the task of finding

a maximum cut set is non-trivial: identifying the genus of

an arbitrary surface is NP-hard,and often demands centralized

operations.Therefore, this paper only targets at the orientable

closed surface (compact and without boundaries) which is the

common case of a tunnel-shape scenario [22]. In this case,

our proposed method utilizing Morse theory guarantees to

find such a maximum cut set, and, more importantly, can be

implemented in a distributed manner.

B. Morse Theory

1) Morse Function: A Morse function is defined as a

mapping f : M → R, from a manifold M to a real number

set R. Fig. 3 illustrates a Morse function on a torus with a

mapping from a successive of contour lines to an integer set

{0, 1, . . . , I} of the height value.

Fig. 3. Morse function.

Fig. 4. The successive geodesic
patterns of a sensor network.

2176

Unfortunately, it is not straightforward to define the Morse

function from mere connectivity information in a discrete

network, where no height value can be derived. To address

this problem, we propose to take the advantage of successive

geodesic patterns [16] in this paper to define the Morse

function on high genus 3D surfaces.
2) Successive Geodesic Patterns: Successive geodesic pat-

terns refer to general sequences gi of successive geodesic

lines on a surface and the distances between them [16].

Often the distances are difficult to obtain, so the first order

approximation is given as follows on a geodesic curve g(s)
where the parameter s is its curve length:

gi+1(s) = gi(s) + εv(s) + ε2(. . .) (1)

Here the derivative vector field v is called a Jacobi field,

presumably orthogonal to g(s). Accordingly, the Morse func-

tion is defined by f : G → Z from general sequences

G : g0, g1, g2, . . . , gi, . . . , gn of successive geodesic lines

to an integer set Z. f−1(i) is called a i-level set of the

Morse function. It is worth noting that calculating a Jacobi

field evolves direction calculation, which is infeasible for a

discrete sensor network based on connectivity information

only. Therefore, an approximation of successive geodesic lines

is utilized, which is initiated from an arbitrary node r (detailed

in Section III-A). Fig. 4 shows an example of geodesic patterns

for a discrete sensor network.
3) Reeb Graph: Based on the Morse function f , the surface

M can be represented by a Reeb graph R, which describes

the evolution of the components of the level sets f−1(·) [5].

The number of the connected components of f−1(·) does

not change except when a critical point emerges, that is,

a point where the gradient of f is 0. Theoretically, there

are three types of critical points, namely, minima, saddles,
and maxima.respectively. The Reeb graph is obtained by

contracting the connected components of f−1(·) to critical

points. The rest of the Reeb graph consists of arcs connecting

these points. Each arc represents a region (a connected node

set) in M, as illustrated in Fig. 5(a) and Fig. 5(c). The degree
of a point in Reeb graph is the number of arcs associated

with this point. It is noted that, Reeb graph R in this paper

starts from exactly one node r (a minima with index 0), since

the Morse function is defined by a succussive of geodesics

initiated from r.

C. Extracting a Maximum Cut Set
Based on the Reeb graph R, we turn to the mechanism of

extracting a maximum cut set Cmax from the surface M. First,

we have the following result.

Theorem 1. The Reeb graph R of a Morse function over a
connected orientable 2-manifold of genus-n without bound-
aries has exactly n loops [2].

Motivated by Theorem 1, the basic idea behind our algorithms

of extracting a maximum cut set is simple: It suffices to find
a cut for each loop in the Reeb graph of the high genus 3D

surface M.

To that end, we first identify all the loops in R. In a Reeb

graph R, a loop is associated with two degree-3 nodes - a

loop-start node nst and a loop-end node ned. nst separates

one arc (region) into two, and thus the number of components

of the corresponding level set is increased by 1. Accordingly,

ned merges two arcs (regions) into one, thus the number of

components of the corresponding level set is decreased by 1.

Therefore, we present

Definition 2. A region (arc in Reeb graph) is defined as a
loop-end region Im, if two regions Iα and Iβ are merged into
Im by a loop-end node ned.

For example, in Fig. 5(a), loop 1 is associated with loop-start

node B and loop-end node C, while loop 2 is associated with

loop-start node D and loop-end node E. Loop-start node B
separates arc AB into arc a and arc b, while loop-end node

C merges arc a and arc b into arc CD. Correspondingly, in

Fig. 5(c), the blue region and the yellow region are merged to

a loop-end region region in cyan. Consequently, we identify

all the loops in a Reeb graph R by the following observation:

E FCB loop 1A D loop 2

c

b d

a

(a)

FA B

a

b d

D

c

(b)

(c) (d)

Fig. 5. (a) The Reeb graph of the network in Fig. 4; (b) The Reeb graph
after the bisection operation; (c) The regions of the Reeb graph in (a), which
are differentiated by colors; (d) The regions of the Reeb graph in (b), which
are differentiated by colors.

Theorem 2. Each loop Li corresponds to one loop-end region
(arc) Im.

Proof: According to Definition 2, equivalently we need

to prove that each loop Li corresponds to one loop-end node

ned. First we prove that, there exists a loop-end node ned in

each loop Li. In Morse theory, a loop corresponds to at least

two saddle points; each of them is a degree-3 node that merges

two arcs into one, that is, a loop-end node ned.

We next prove that there exists a loop for every loop-end

node ned. In R, arcs Iα and Iβ are connected with loop-end

node ned. Since the Reeb graph R is a connected graph, and

starts from exactly one node r, there exists a path connecting

Iα and r without passing through node ned. Accordingly, there

exists a path in R, which connects Iβ and r without passing

through node ned. So there are two different paths that connect

ned and r (distinguished by Iα and Iβ). Therefore, there exists

a loop associated with the loop-end node ned.

2177

This observation motivates us, in order to identify a cut Ci

for each loop Li, we can find a bisection in the corresponding

loop-end region Im, that disconnects the loop Li. It is noted

that Iα and Iβ are connected by Im, which constitutes part

of loop Li. Therefore, cut Ci can be obtained by bisecting

Im at ned. Consequently, we define a bisection operation at

ned as follows: for a point p in loop-end region Im, if the

minimum distance from p to points in Iα is less than the

minimum distance from p to points in Iβ , it is assigned to

arc Iα, otherwise it is assigned to Iβ . This bisection operation

separates Im into two parts Im1 and Im2 and “glues” them to

Iα and Iβ respectively. After the bisection operation, Iα and

Iβ become newly merged regions I ′α and I ′β , then we have:

Theorem 3. Suppose loop Li is identified by loop-end region
Im. If a cut Ci in the loop-end region Im separates the merged
region I ′α from merged region I ′β , then Ci should be a cut for
loop Li.

Proof: Apparently, cut Ci disconnects one of the two

distinguished paths between Iα and Iβ , which is part of the

loop Li. That is, cut Ci is a cut for loop Li. Based on

Theorem 2, this theorem holds.

Fig. 5 demonstrates the bisection operation. In Fig. 5(a) and

Fig. 5(c), loop-end node C merges arc a (region in blue) and

arc b (region in yellow) into loop-end region CD (cyan). So

a and b are connected by CD, which is part of the loop 1.

The result of the bisection operation is presented in Fig. 5(b)

and Fig. 5(d). After the bisection, the two cuts are obtained

by separating region a (blue) from region b (yellow), as well

as region c (pink) from region d (green). The two cuts are

presented in Fig. 6(a). Finally, all the cuts Ci(i = 1, 2, ..., n)
form a maximum cut set Cmax for M.

D. Surface Ricci Flow and Möbius Transform

Given a genus-0 surface S with exactly two boundaries,

surface Ricci flow and Möbius transform can be applied,

aiming at mapping S to a planar annulus D where the greedy

routing is allowed.

1) Riemannian Metric and Curvature: Let S be a surface

in R
3, and it has a Riemannian Metric g = (gij), induced

from the Euclidean metric of R
3. Gaussian curvature K and

geodesic curvature kg are also determined by Riemannian

Metric g, while the total curvature is topological invariant:

Theorem 4. (Gauss-Bonnet) Suppose S is a compact 2-
manifold with boundary ∂S. Then the total curvature is given
by

∫
S
KdA +

∫
∂S
kgds = 2πχ(S), where K is the Gaussian

curvature on interior points, kg is the geodesic curvature on
boundary points ∂S, χ(S) is the Euler characteristic number
of S.

Suppose u : S → R
3 is a scalar function defined on S.

Then ḡ = e2ug is another Riemannian metric on S, and ḡ
is conformal to g.

2) Surface Ricci Flow: As an intrinsic geometric flow, the

Ricci flow [6] deforms the metric of a Riemannian manifold

in the manner analogous to heat diffusion, smoothing out

irregularities of the metric. It can be represented by curvature

evolution:
K(t)
dt = −Δg(t)K(t), where K(t) is the Gaussian

curvature of metric g(t), and −Δg(t) is the Laplace-Beltrami

operator induced by g(t). Let g(t) = e2ug(0), we have
du(t)
dt = −2K(t).

3) Möbius Transformation: To achieve a conformal map-

ping and embed the surface from the strip to a planar annulus,

we make use of the Möbius Transformation with a rational

function of the form f(z) = az+b
cz+d . Specifically, for a point on

the plane p = (x, y): p ← e
2π
h (x+iy) where h is the width of

the strip.

III. SINUS ALGORITHM

This section presents SINUS algorithm which deals with a

fundamental problem: embedding a network on a high genus

surface into a planar surface as a whole. The basic idea

behind SINUS is simple: slicing the genus-n surface M to

a simpler surface for embedding. The preprocess of SINUS

is to compute a triangulation from the original network via

a simple distributed algorithm in [17], [23]. The triangulated

structure, or mesh for short, forms a shape representation of the

high genus surface, as shown in Fig. 1(d). Without leading to

confusion, we still call the triangulated mesh as the high genus

surface, denoted by M henceforth. Overall SINUS mainly

consists of four steps:

1) We identify a maximum cut set Cmax from M, which

is used to slice M to form a genus-0 surface G with 2n
boundaries. To this end, a flooding across M is initiated

by an arbitrary node r. This implicitly approximates

the geodesic patterns on M and constructs a Morse

function by assigning each node a level index. Based

on the Morse function, a Reeb graph R starts at node

r is also constructed in the process, by assigning each

node a region ID. Thereafter, all the loop-end regions

Iim(i = 1, 2, ..., n) are identified, and next a bisection

operation is performed to extract a cut Ci within each

Iim. All the cuts Ci(i = 1, 2, ..., n) form a maximum

cut set Cmax, which slices the genus-n surface M to a

genus-0 surface G with 2n boundaries, as illustrated in

Fig. 6(a).

2) We further slice G to a ‘pipe’ S — a genus-0 surface

with exactly two boundaries. To do so we propose to

cluster the aforementioned 2n boundaries of G into

two groups, each with n boundaries. After a Depth-First

Search (DFS) procedure is performed among the regions

of G, n boundaries in each group are connected and

sliced open with (n − 1) shortest paths. As such, two

boundaries ∂S1 and ∂S2 are extracted, as illustrated in

Fig. 6(b).

3) Using the Ricci flow algorithm, S is flattened into a strip

P, with the edge of the strip being a path connecting

the two boundaries ∂S1 and ∂S2. Thereafter, by Möbius

Transform, strip P is mapped to a planar annulus D,

with ∂S1 and ∂S2 mapped to the inner boundary and

outer boundary of D accordingly, denoted by ∂Dinner

2178

(a) (b)
(c)

o

si
dist(

s’
d

so

s s,d)

i s’

(d)

Fig. 6. (a) The genus-0 surface G with 2n boundaries; (b) Connecting two boundary groups — A ‘Pipe’ S with exactly two boundaries; (c) The planar
annulus D; (d) SINUS realizes a variation of greedy routing.

and ∂Douter. Every node in the network is then given

a virtual coordinate in D, as illustrated in Fig. 6(c).

4) In the virtual coordinate system, it is observed that, a

source node s can route to a destination node d via

three kinds of paths: (1) across only the interior nodes;

(2) across the inner boundary ∂Dinner; (3) across the

outer boundary ∂Douter. Therefore, having obtained the

virtual coordinates, the three paths are estimated and a

shortest path is chosen for routing by the source node

s, as illustrated in Fig. 6(d).

Fig. 6 shows an example pipeline of SINUS.

A. Extracting a Maximum Cut Set in Discrete Settings

For a genus-n surface M, the first step is to find a maximum

cut set Cmax, aiming at slicing M to a genus-0 surface G
based on Morse theory and Reeb graph. To this end, we exploit

the discrete geometry characteristics of M.

In order to set up the Morse function in M, an arbitrary

root node r initiates a flooding across the whole network. By

doing so, every node learns its hop distance i from r, and

records its level index as i. All the nodes with a level index of

i belong level-i of M. Also, after a flooded message from r
reaches a node p, p records the parent from which it receives

the message.

A Morse function is then defined by approximating the

geodesic patterns on M, as mentioned in Section II-B. Recall

that the final mapped planar annulus D is a developable
surface [16], on which the Gaussian curvature K of D is

zero everywhere. As such, the Jacobi field εv(s) is a constant,

indicating that the distance between two successive geodesics

gi(s) and gi+1(s) is a constant. In this case, the hop-count

distance between nodes of two adjacent levels (level-i and

level-(i + 1)) is exactly one hop. Based on this observation,

we propose to use nodes in level-i in the discrete settings to

approximate gi(s) in the continuous settings. Consequently,

the Morse function in discrete settings is defined as a mapping

f(p) → i, where p is in level-i. Therefore, all the nodes in

level-i are denoted by f−1(i). We denote the max hop count

of nodes from r as I , that is, i ≤ I .
To construct a Reeb graph from the defined Morse function,

a distributed algorithm similar to that in [13] is carried out,

which involves two major steps:

First, the algorithm identifies the nodes in each connected

component in f−1(i) (level-i) with a component ID. To this

end, a randomly selected node q on f−1(i) claims itself

as a landmark and floods a message within f−1(i), which

contains the node ID of q and its level index i. The flooding

is constrained within f−1(i) as follows: when a node p
receives the flooded message, it compares the level index i
with its Morse function value f(p), and if the value is not

equal, the message is discarded. Then by a landmark selection

process similar to [15], each component selects a dominating

landmark, denoted by DM(·), with the smallest ID. Therefore,

the nodes in each component in f−1(i) are notified of a

component ID.

Second, all components should be transformed to regions
(arcs) of the Reeb graph, as shown in Fig. 5. This process

starts from f−1(1) to f−1(I). We call a component Pi in

f−1(i) is connected with a component Pi+1 in f−1(i+1), if

there exists a node p in the component Pi that has a neighbor

p′ in the component Pi+1. Then the nodes p and p′ will

notify the dominating landmarks DM(Pi) and DM(Pi+1) in

the components Pi and Pi+1 respectively of this connectivity.

According to Morse theory, there only exist three cases: (1) Pi
is connected with Pi+1 and another component Qi+1 in level-

(i+1); (2) Pi corresponds to Pi+1 only; (3) Pi+1 is connected

with Pi and another component Qi in level-i, which is notified

to DM(Pi) and DM(Pi+1) respectively. The three cases are

illustrated in Fig. 7. The dominating landmarks will notify the

nodes in the component Pi+1 if Pi+1 only corresponds to the

component Pi. If so, the nodes in Pi+1 are assigned the same

region ID as the nodes in component Pi, otherwise, the nodes

in component Pi+1 are assigned a new region ID. After this

process, every node is notified with its region ID. The result

of constructing the Reeb graph is given in Fig. 5(c), the Reeb

graph regions are distinguished by colors.

With the Morse function and Reeb graph constructed, all the

loop-end regions are notified in a straight forward manner: if

the dominating landmark DM(Pi+1) in Pi+1 is notified that

Pi+1 is connected with Pi and Qi in level-i (as shown in

Fig. 7(c)), then component Pi+1 and all the components in

the same region are notified to be in a loop-end region.

Then to extract the maximum cut set Cmax, each loop-end
region Iim performs a bisection operation to extract a cut Ci

2179

P i

iP

Qi+1 +1

(a)

+1

iP

Pi

(b)

+1

QiPi

Pi

(c)

Fig. 7. Pi, Qi are in level-i; Pi+1, Qi+1 are in level-(i + 1). (a) The
component Pi is connected with Pi+1 and Qi+1; (b) The component Pi

corresponds to component Pi+1 only; (c) The component Pi+1 is connected
with Pi and Qi.

as follows. Suppose a loop-end region Iim consists of a set of

components {Ph} where H1 ≤ h ≤ H2, then the bisection

operation in Iim is initiated from PH1 to PH2 . The nodes in

PH1
reset its region ID to its parent’s region ID. Since PH1

is

the first component of Iim, it is the neighbor of two components

Pi and Qi (Fig. 7(c)), and the component Pi and Qi belong to

region Iα and Iβ respectively (as described in Section II-C).

The nodes in PH1 change their region ID to the region ID of

Iα or Iβ respectively. Therefore, PH1 is bisected and assigned

to region Iα or Iβ . This process is carried out from PH1 to

PH2 . Consequently, loop-end region Iim is bisected and two

newly merged region I ′α and I ′β (as described in Section II-C)

are generated, as shown in Fig. 5(d).

Next, the cut Ci is obtained by disconnecting I ′α and I ′β . In

a continuous domain, a cut is a curve that disconnects I ′α and

I ′β . In contrast, in discrete settings, disconnecting I ′α and I ′β
will generate a pair of curves, as illustrated in Fig. 6(a).

Definition 3. Suppose (pA, pB) is a pair of neighboring nodes,
such that pA ∈ I ′α and pB ∈ I ′β , then (pA, pB) is called a cut
pair.

Definition 4. In discrete settings, a cut Ci in a loop-end region
Im is a pair of simple closed curves CA

i and CB
i , which are

generated by disconnecting all the cut pairs in Im.

Accordingly, the process of identifying a cut Ci is as

follows: (1) each node p in loop-end region Im will send a

message to its neighbor p′ in Im, if p′ has a different region ID

with p, (p, p′) is notified to be a cut pair; (2) by disconnecting

all the cut pairs in loop-end region Im, a cut Ci is identified.

Since each cut generates two simple closed curves in M, the

generated genus-0 surface G has exactly 2n boundaries, as

shown in Fig. 6(a).

B. A ‘Pipe’ S with Exactly Two Boundaries

Unfortunately, the genus-0 surface G with 2n boundaries

is still complex: it is not homotopically equivalent to any

simple planar topology, such as a planar annulus D.Therefore,

we propose to further slice G, to a ‘pipe’ S — a genus-0
surface with exactly two boundaries ∂S1 and ∂S2, which is

homotopically equivalent to a planar annulus D.

To this end, we propose to cluster the 2n boundaries of

G into two groups, each group with n boundaries. Then,

by connecting the n boundaries with (n − 1) shortest paths

within each group, two boundaries ∂S1 and ∂S2 are generated.

Since all the loops are disconnected in G, the Reeb graph is

transformed to a tree structure T, as illustrated in Fig. 8(b),

in which a node represents an aforementioned region. In each

region, one dominating landmark is selected (the process is

quite similar to that of selecting a dominating landmark in a

component). It is well-known that, given such a tree structure

T that contains many nodes (regions), it can be traversed in a

manner analogous to a Depth-First Search (DFS) as shown in

Fig. 8(b). The arrow in Fig. 8(b) illustrates the search order:

c→ a→ d→ b→ AB.

B

AB

a

c

b

d

AC1 CB
1

CA
2 C2

(a) (b)

Fig. 8. (a) The tree structure T transformed from the Reeb graph in Fig. 5(a);
(b) The shortest paths (in pink) connecting the boundaries.

In practice, the clustering process is initiated by a node with

the smallest level index on one curve of a cut. For example, in

Fig. 8(b), a node p on CA
2 initiates the clustering procedure.

Then p notifies the dominating landmark in the region c to

start to traverse T. In the process c → a, the curve CA
2 is

clustered with CA
1 , therefore 2 boundaries are clustered to a

group for a genus-2 torus. So the dominating landmark in a
continues to traverse T to cluster another group. Then from

d→ b, CB
2 is clustered with CB

1 . CA
2 and CB

2 find a shortest

path to CA
1 and CB

1 respectively. The two shortest paths of the

‘pipe’ S are depicted in pink in Fig. 8(b). The local topology

is then disconnected according to the shortest paths, and a

genus-0 surface S with exactly two boundaries ∂S1 and ∂S2

is extracted. The result of the ‘pipe’ S is given in Fig. 6(b).

C. Discrete Surface Ricci Flow

Given a genus-0 surface S = (V,E, F) (where V , E,

F represent the vertices, edges and face) with exactly two

boundaries, Ricci flow algorithm is then applied to embed S
into a planar annulus D.

1) Circle packing metric: For a vertex vi ∈ V , a circle

with radius ri is assigned. A function that assigns a radius ri
to each vertex vi is denoted as: Γ : V → R

+. We also define

a weight function: Φ : E → [0, π2] by assigning a positive

weight wij to each edge eij . The pair of vertex radius and

edge weight function on the mesh S, (Γ,Φ), is called a circle
packing metric of S.

2) Discrete Ricci flow: Discrete Gaussian curvature is an

intrinsic measure of curvature, and its value depends only on

the distance metric of the surface.

Definition 5. The discrete Gaussian curvature is defined as
the angle deficit on a mesh. The discrete Gaussian curvature
Ki on a vertex vi is defined as:

2180

Ki =

{
2π − Σfijk∈F θ

jk
i , vi /∈ ∂S

π − Σfijk∈F θ
jk
i , vi ∈ ∂S

(2)

where θjki represents the corner angle attached to vi in face
fijk ∈ F , and ∂S is the boundary of S.

Definition 6. Suppose ui = logri for vertex vi, then the
discrete Ricci flow can be defined as follows:

dui(t)

dt
= (K̄i −Ki) (3)

where K and K̄i are the current and target Gaussian cur-
vatures at vi, and t is the evolving time of the Ricci flow.
To deform the initial circle packing metric S(Γ,Φ) to flatten
surface S, the target curvature is set as follows:

K̄i =

{
0, vi /∈ ∂S,
2π
L , vi ∈ ∂S,

(4)

where L is the length of the inner boundary.

Ricci flow algorithm is performed to flatten the surface S
to a strip P. Then the Möbius transformation is applied

to embed it into a planar annulus D as we mentioned in

Section II-D3. Finally, every node p is assigned a virtual coor-

dinate Coord(xp, yp, 0) in the annulus, as shown in Fig. 6(c).

D. Routing Scheme

With the virtual coordinates, intuitively greedy routing can

be applied directly on the annulus D with guaranteed delivery.

However, there are still two problems. First, the cut pairs are

disconnected in the embedding process, possibly creating long

paths between some of nodes that are close to each other, as

shown in Fig. 9(a); second, many packets tend to travel along

the inner boundary by greedy routing, as shown in Fig. 9(b),

potentially overloading the boundary nodes, which is also a

vital problem in 2D greedy embedding [17], [18].

To solve the problems, we propose a variation of greedy

routing based on the following observation. Suppose (si, s
′
i)

and (so, s
′
o) are two cut pairs associated with the source node

s, there are only three possible shortest routing paths between

the source node s and the destination node d, as shown in

Fig. 6(d): (1) s routes the packet to d all by interior nodes; (2)

s first routes the packet to the node si on the inner boundary,

and then to d from s′i; (3) s first routes the packet to a node so
on the outer boundary, and then to d from s′o. Based on this

observation, our routing scheme includes the following steps:

First, the inner boundary nodes of D, denoted by ∂Dinner,

initiate flooding. In the process, every node s in D records

a root node si, which is the closest to s among all nodes on

∂Dinner. Also, the node s records an arbitrary s′i such that

(si, s
′
i) is a cut pair. It is noted that here s′i could be in ∂Dinner

or ∂Douter. Similarly, the outer boundary nodes ∂Douter

perform flooding, and every node s in D records a root node so
and also records a node s′o. It is worth noting that, every node

requires only maintaining a 4-tuple ((si, s
′
i), (so, s

′
o)), where

(a) (b)

(c) (d)

Fig. 9. (a) Greedy routing path in original topology; (b) Greedy routing path
in the virtual coordinate system; (c) SINUS routing path in original topology;
(d) SINUS routing path in the virtual coordinate system.

(si, s
′
i) and (so, s

′
o) are two cut pairs. That is, the storage

overhead for local routing decisions is trivial.

Second, if we denote the Euclidean distance between two

nodes by the virtual coordinate as dist(·, ·), the routing path

is determined as follows: in the virtual coordinate system,

the length of the routing path s → d is estimated by LA =
dist(s, d); the length of the routing path s→ si → s′i → d
is estimated by LB = dist(s, si) + dist(s′i, d); and the

length of the routing path s → so → s′o → d is estimated by

LC = dist(s, so) + dist(s′o, d). Therefore, by finding the

minimum value in the set {LA, LB , LC}, the source node s
chooses the corresponding route to deliver the packet.

Fig. 9(a) and Fig. 9(b) illustrate the routing path by directly

applying greedy routing in the virtual coordinate. Fig. 9(c) and

Fig. 9(d) illustrate the routing path via SINUS.

IV. SIMULATIONS AND EVALUATIONS

We have implemented a simulator and conducted a series

of simulations on various 3D topologies. Simulation results

presented in Fig. 10 depict four 3D topologies — a genus-1
corridor with 710 nodes, a genus-2 bowknot with 837 nodes,

a genus-3 smile with 1,102 nodes, and genus-4 window with

5,429 nodes. It is observed that despite the variation in scale

and complexity, SINUS extracts appropriate maximum cut

sets for the networks by which it embeds them to the planar

annuluses, which guarantees packet delivery between any pair

of nodes. It is noted that, SINUS generates more perceptible

“cuts” for large-scale sensor networks such as Fig. 10(h) and

Fig. 10(i), as they are closer to smooth surfaces. The delivery

rate of Greedy routing is 65% for Corridor, 76% for Bowknot,

70% for Smile and 81% for Window, while SINUS constantly

2181

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 10. Columns from left to right: (a) A genus-1 corridor network with 710 nodes; Avg deg is 8.92; (b) A genus-2 bowknot network with 837 nodes; Avg
deg is 9.35; (c) A genus-3 smile network with 1,102 nodes; Avg deg is 10.01; (d) A genus-4 window network with 5,429 nodes; Avg deg is 9.74. Rows: (1)
the original network; (2) the genus-0 surface G with 2n boundaries; (3) the ‘pipe’ S with exactly two boundaries; (4) the planar annulus D.

produces a delivery rate of 100%. Therefore we focus on

two factors for routing performance evaluation: routing stretch

and load distribution. For comparison, we also implemented

two other routing algorithms for 3D high genus surfaces with

guaranteed delivery — the High-Genus algorithm in [22] and

the Random-Walk algorithm in [4].

Routing Stretch: The routing stretch for a pair of nodes

(s, d) is the ratio of the actual path length to the shortest

path length between s and d. The average routing stretches of

Random-Walk [4], High-Genus [22] and SINUS, are summa-

rized in Fig. 11(a). In our simulation, 10,000 pairs of nodes are

randomly selected to calculate the average routing stretch for

each 3D network. It is observed that, SINUS yields a much

smaller average routing stretch (1.30, the average of the 4

topologies in Fig. 11(a)) than Random-Walk [4] (1.94) and

High-Genus [22] (1.86).

We also notice that, for the topology of the genus-1 cor-

ridor, the routing stretch of High-Genus is close to SINUS.

This is because for genus-1 surfaces, High-Genus adopts the

algorithm in [21] to embed the topology to a standard genus-

1 torus without introducing decomposition. When decomposi-

tion is introduced for High-Genus, that is, when the topology

is genus-2 or higher, the stretch of High-Genus increases

significantly. The reason is that the adjacency graph does not

consider the information of component size. So for routing

between different components, a packet may travel through a

series of large components even if there exists a much shorter

path through small components. Consequently, the stretch of

2182

High-Genus increases as the genus of the topology increases.

It is also observed that, Random-Walk has larger stretches in

Corridor and Smile than in Bowknot and Window. This is due

to the fact that Random-Walk has to traverse the nodes in

the concave region. When the concave region is large (say

Corridor and Smile), the stretch increases significantly. In

contrast to High-Genus and Random-Walk, SINUS maintains

a relatively stable low routing stretch despite the diversity in

the genus or topology concavity, since it embeds the topology

as a whole with the concave region flattened.

Corridor Bowknot Smile Window
0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 R
ou

tin
g

S
tre

tc
h

SINUS
High−Genus
Random−Walk

(a)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Load (Number of Routes Involved)

C
D

F

SINUS
High−Genus
Random−Walk

(b)

Fig. 11. (a) Average routing stretch; (b) Load distribution.

Load Balance: For algorithms that enable greedy routing

by embedding, such as [17], [20], there exists a critical issue –

the nodes on the embedded hole boundary tend to experience

a higher traffic load. In SINUS, the case that the packet

is routed between non-neighbor boundary nodes has been

considered. Therefore, SINUS achieves good load balance and

its boundary nodes are not overloaded. We simulated the traffic

load of Random-Walk [4], High-Genus [22] and SINUS, with

randomly selected 100,000 routes from the four tested topolo-

gies. Fig. 11(b) shows the Cumulative Distribution Function

(CDF) of the loads of the nodes, which is measured by the

number of routes involved.

It is observed that, in SINUS, all the nodes evolve a number

of routes less than 450, and the CDF rapidly increases to 1,

which means SINUS generates no overloaded nodes and the

nodes involve relatively fewer routes in SINUS than Random-

Walk and High-Genus. For Random-Walk, it has to traverse

the concave region within a certain radius. Therefore, the

nodes of the concave region attract a lot of traffic and may

be overloaded. As for High-Genus, the boundary nodes in

each region may be overloaded, since the six boundaries of

a component [22] are concave, so routing within each region

tends to route along these concave boundaries. In contrast,

SINUS achieves a better load balance with the concave region

flattened and a fairly traffic load on boundaries.

V. CONCLUSION

We have presented SINUS, a novel scalable and distributed

routing algorithm with guaranteed delivery for sensor networks

on high genus 3D surfaces. By slicing high genus surfaces to

simpler ones for embedding, SINUS finally realizes a variation

of greedy routing. The proposed algorithm is appealing as it

requires no centralized operation, and offers a trivial storage

overhead for routing on high genus surfaces. In the future we

will study its uses in applications such as data processing [7]–

[10], skeleton extraction [1], [11], [12], and localization [19],

especially for 3D sensor networks, which have attracted the

attention of many researchers.

REFERENCES

[1] J. Bruck, J. Gao, and A. A. Jiang. Map: Medial axis based geometric
routing in sensor networks. Wireless Networks, 13(6), 2007.

[2] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and
V. Pascucci. Loops in reeb graphs of 2-manifolds. In Proceedings
of ACM Symposium on Computational Geometry, 2003.

[3] R. Flury, S. V. Pemmaraju, and R. Wattenhofer. Greedy routing with
bounded stretch. In Proceedings of INFOCOM, 2009.

[4] R. Flury and R. Wattenhofer. Randomized 3d geographic routing. In
Proceedings of IEEE INFOCOM, 2008.

[5] A. Gray, E. Abbena, and S. Salamon. Modern differential geometry of
curves and surfaces with Mathematica. Chapman & Hall CRC, 2006.

[6] R. S. Hamilton. The ricci flow on surfaces. Contemp. Math., 71(1),
1988.

[7] H. Jiang, J. Cheng, D. Wang, C. Wang, and G. Tan. Continuous multi-
dimensional top-k query processing in sensor networks. In Proceedings
of IEEE INFOCOM, 2011.

[8] H. Jiang, J. Cheng, D. Wang, C. Wang, and G. Tan. A general framework
for efficient continuous multi-dimensional top-k query processing in
sensor networks. IEEE Transactions on Parallel and Distributed
Systems, 23(9), 2012.

[9] H. Jiang, S. Jin, and C. Wang. Parameter-based data aggregation for
statistical information extraction in wireless sensor networks. IEEE
Transactions on Vehicular Technology, 59(8), 2010.

[10] H. Jiang, S. Jin, and C. Wang. Prediction or not? an energy-efficient
framework for clustering-based data collection in wireless sensor net-
works. IEEE Transactions on Parallel and Distributed Systems, 22(6),
2011.

[11] H. Jiang, W. Liu, D. Wang, C. Tian, X. Bai, X. Liu, Y. Wu, and
W. Liu. CASE: Connectivity-based skeleton extraction in wireless sensor
networks. In Proceedings of IEEE INFOCOM, 2009.

[12] H. Jiang, W. Liu, D. Wang, C. Tian, X. Bai, X. Liu, Y. Wu, and
W. Liu. Connectivity-based skeleton extraction in wireless sensor
networks. IEEE Transactions on Parallel and Distributed Systems, 21(5),
2010.

[13] H. Jiang, T. Yu, C. Tian, G. Tan, and C. Wang. Consel: Connectivity-
based segmentation in large-scale 2d/3d sensor networks. In Proceedings
of IEEE INFOCOM, 2012.

[14] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for
wireless networks. In Proceedings of ACM MOBICOM, 2000.

[15] A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J. Guibas.
Landmark selection and greedy landmark-descent routing for sensor
networks. In Proceedings of IEEE INFOCOM, 2007.

[16] H. Pottmann, Q. Huang, B. Deng, A. Schiftner, M. Kilian, L. Guibas,
and J. Wallner. Geodesic patterns. In Proceedings of ACM SIGGRAPH,
2010.

[17] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with
guaranteed delivery using ricci flows. In Proceedings of IEEE IPSN,
2009.

[18] R. Sarkar, W. Zeng, J. Gao, and X. D. Gu. Covering space for in-network
sensor data storage. In Proceedings of IPSN, 2010.

[19] G. Tan, H. Jiang, S. Zhang, and A.-M. Kermarrec. Connectivity-based
and anchor-free localization in large-scale 2d/3d sensor networks. In
Proceedings of ACM MOBIHOC, 2010.

[20] S. Xia, X. Yin, H. Wu, M. Jin, and X. D. Gu. Deterministic greedy
routing with guaranteed delivery in 3d wireless sensor networks. In
Proceedings of ACM MOBIHOC, 2011.

[21] X. Yu, X. Ban, W. Zeng, R. Sarkar, X. Gu, and J. Gao. Spherical
representation and polyhedron routing for load balancing in wireless
sensor networks. In Proceedings of IEEE INFOCOM, 2011.

[22] X. Yu, X. Yin, W. Han, J. Gao, and X. Gu. Scalable routing in 3d
high genus sensor networks using graph embedding. In Proceedings of
INFOCOM, 2012.

[23] H. Zhou, H. Wu, S. Xia, M. Jin, and N. Ding. A distributed triangulation
algorithm for wireless sensor networks on 2d and 3d surface. In
Proceedings of IEEE INFOCOM, 2011.

2183

