
430 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

Accelerating Network Features Deployment With
Heterogeneous Platforms

Tingting Xu , Student Member, IEEE, Xiaoliang Wang , Member, IEEE, Chen Tian , Senior Member, IEEE,
Yun Xiong, Baoliu Ye , Member, IEEE, Sanglu Lu , Member, IEEE, ACM, and Cam-Tu Nguyen

Abstract— Enhancing the networking system with appropriate
functions is a longstanding goal. Unfortunately, in today’s large-
scale high-speed data centers, the feature velocity of network
functions is slow because it is hard to verify the function in
realistic scenarios. Recent advances in programmable switching
ASICs have enabled the network data plane to move beyond
its traditional role of packet forwarding. However, the current
compromise between performance and flexibility results in lim-
itations such as restricted memory/computation resources and
programmable models. These limitations make it challenging
for programmable switches to offer more features and to be
deployed in large-scale production environments. In response,
we present CLIP, a framework that works in collaboration with
programmable devices and commodity servers to enhance the
validation and deployment velocity of features. CLIP defines
a cross-platform function definition framework and provides
a set of tools to reduce the complexity of manually writ-
ing cross-platform programs. We propose an automatic traffic
placement and scaling mechanism to coordinate packet pro-
cessing performance across heterogeneous devices. Compared
with software-based Network Functions (NFs), CLIP achieves
a throughput ranging from 1.36× to 16.06× under different
realistic traffic loads. Through the development and deploy-
ment of three self-defined functions within a realistic testbed,
we demonstrate the feasibility and efficiency of CLIP.

Index Terms— Programmable network, network functions
deployment, hardware–software co-design.

I. INTRODUCTION

CLOUD networks are complex infrastructures that serve
a large number of tenants and a variety of applications.

The demands on cloud networks are continuously changing,
requiring an adaptable solution to achieve fast feature velocity.
Traditional network devices such as routers and switches

Received 13 December 2023; revised 14 September 2024;
accepted 25 October 2024; approved by IEEE TRANSACTIONS ON
NETWORKING Editor T. Qiu. Date of publication 12 November 2024;
date of current version 14 February 2025. This work was supported in
part by the National Key Research and Development Program of China
under Grant 2022YFB2702803, in part by the National Natural Science
Foundation of China under Grant 62172204 and Grant 61832005, in part
by the Key Research and Development Program of Jiangsu Province under
Grant BE2020001-3, and in part by the Collaborative Innovation Center of
Novel Software Technology and Industrialization. (Corresponding author:
Xiaoliang Wang.)

Tingting Xu, Xiaoliang Wang, Chen Tian, Baoliu Ye, Sanglu Lu,
and Cam-Tu Nguyen are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China (e-mail:
xutingting@smail.nju.edu.cn; waxili@nju.edu.cn; tianchen@nju.edu.cn;
yebl@nju.edu.cn; sanglu@nju.edu.cn; ncamtu@nju.edu.cn).

Yun Xiong is with Huawei, Nanjing 210012, China (e-mail:
xiongyun1@huawei.com).

Digital Object Identifier 10.1109/TNET.2024.3491840

cannot keep up with the fast-changing nature of cloud net-
works due to their inherent inflexibility. Specifically, these
devices are based on vendor-fixed-function chips, and their
data plane algorithms are typically impervious to modification
[1]. Relying on updates from device vendors, which typically
follow years-long release cycles, has proven insufficient to
keep pace with the evolving requirements of modern networks.

Programmable data planes enable users to implement their
own data plane algorithms, which can be applied through
self-defined network control [1], [2]. The community has
developed programmable facilities that include software-based
development frameworks [3], [4], [5], dedicated hardware
such as network processors [6] and programmable switch-
ing chips [7], [8], offering significant flexibility for network
customization [1], [2], [6], [7], [8]. Although programmable
switches strike a balance between adaptability and perfor-
mance, they do not fully bridge the gap between increasing
customer demands and limited hardware capabilities. For
example, the limited memory on the chip, around O (10M),
is cramped for state-heavy network functions [9], [10]. The
primitive computation makes the in-network computation have
to scarify the precision [11], [12], [13]. In addition, a limited
number of stages and the ability to access the memory only
O (1) times [14], make it harder to develop more advanced
applications.

Therefore, in practice, we need a solution for quickly
addressing users’ requirements, rapid prototyping of new
protocols, and verifying the functions in production net-
works, which guides the design of the network chip of the
next generation. The fundamental concept to address the
requirements involves a collaborative approach between pro-
grammable switches and commodity servers, which achieves a
synergy of flexibility and performance. However, developing a
seamlessly integrated platform that harmonizes switch ASICs
and servers is a formidable challenge, primarily due to the
divergent design of these devices. Software-based network
processing offers high flexibility in terms of expressiveness,
while programmable hardware is constrained by existing
models. In terms of performance, programmable switches
can achieve Tbps throughput with latencies of hundreds of
nanoseconds, whereas the capacity of commodity servers is
limited to 100 Gbps throughput with latencies of tens of
microseconds. This challenge requires us to strike a balance
between the strengths and limitations of each device, with
the goal of building a platform that supports rapid feature

2998-4157 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7917-4729
https://orcid.org/0000-0002-3410-8621
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-1065-449X
https://orcid.org/0000-0003-1467-4519

XU et al.: ACCELERATING NETWORK FEATURES DEPLOYMENT WITH HETEROGENEOUS PLATFORMS 431

development while navigating the trade-offs between expres-
siveness and performance.

In this paper, we propose CLIP, a framework inspired by
remote procedure call (RPC) that enables remote processing
through the switch data plane (§III). To simplify programming,
we design a top framework that incorporates a pre-processing
module on the switch, an on-loaded request handler on servers,
and a post-processing module on the switch (§IV-A). This
design facilitates the creation of user-defined network features
with the collaboration of heterogeneous devices. Our suite of
tools, which includes a compiler and a controller (§IV-B), gen-
erates executable files for the switch and the remote processors
for the user-defined program. Using this cross-platform frame-
work empowers remote processors and memory to extend
programmable switch capabilities, accelerating the deployment
of functions (§IV-C). We employ multiple servers to balance
traffic and maintain high throughput across concurrent high-
speed channels/links. Furthermore, a load balancer based on
programmable switches reduces the server workload, ensuring
scalability (§V).

We implement CLIP and evaluate it in the testbed con-
sisting of a Tofino-based programmable switch and servers
(§VII). We demonstrate the use of CLIP through the practical
requirements in the production network, including the network
function of state-heavy NAT, the forwarding module in cloud
gateway FIB, and the new feature of overlay network mea-
surement through active TCP retransmission detection. For
example, the measurement of the overlay network requires
identifying the retransmission packets of specified flows to
determine the root cause of network delay jitters. The detection
of retransmission packets is not supported by the current
programmable switches due to the limited size of buffers
and the difficulty of maintaining the state of TCP connec-
tions. By using CLIP we successfully deploy this feature in
the experimental environment which has demonstrated and
verified the effectiveness of designs. Meanwhile, compared
to software-based Network Functions (NFs), CLIP improves
throughput by 1.36× to 16.06× under realistic workloads.

The contributions of this paper are summarized as
follows:
• CLIP addresses the challenge of overcoming the slug-

gishness of hardware function provision at the data plane.
The integration of programmable switches with a cluster
of commodity servers to rapidly prototype new protocols,
and verify the functions in production networks. It creates
a versatile and programmable data plane, adept at meeting
the evolving requirements of modern network infrastruc-
tures, and guides the design of the network chips.

• The introduction of a framework by CLIP facilitates
the efficient partitioning of network functions between
switches and servers. This framework streamlines the
deployment of new features, offering user-friendly pro-
gramming interfaces for easy customization of the
data plane. Additionally, CLIP demonstrates scalability
to dynamic traffic by intelligently balancing the load
between servers and offloading resource-intensive tasks
to the switch, ensuring adaptability to evolving network
demands.

• CLIP achieves fast feature velocity to address the urgent
demands of customers in production networks. The sys-
tem introduces a pioneering approach to prototype and
verify new network functions in the realistic system,
offering valuable insights for cloud network service
providers to determine the effectiveness of new functions.

A short conference version [15] of this paper appeared in
INFOCOM 2023. In this extended version, we expand our
focus on enhancing the capabilities of programmable switches.
One major addition is the usage of remote handlers on servers
to mitigate the impact of the limited computational power
of switches and the memory capacity of servers. Specifically,
we introduce key designs: (i) optimizing variable placement by
conducting code optimization, (ii) extending switch memory
via table mirroring, (iii) enhancing computational capabilities
by supporting more complex operands, such as floating-point
values, and (iv) employing stateful variables to maintain state
across multiple packets. Additionally, we refine the flow
placement strategy to address the critical bandwidth limitations
and extend this approach to the longest prefix match (LPM)
type. To further validate the efficiency of CLIP, we implement
an additional cloud network application, the Multi-tenancy
Forwarding Information Base (FIB). The effectiveness of
CLIP’s flow placement strategies and case studies is modeled
and thoroughly evaluated.

II. MOTIVATION

We explain the new feature demand of network functions
in modern data centers and discuss why the current software
and hardware design of programmable data planes are not suf-
ficient to meet the demands. We then highlight the motivation
which centers on enhancing the ability for feature deployment.

A. Demand for New Network Features

Cloud providers have progressively adopted new network
functions or new features to support effective networking oper-
ation, continuous performance optimization, and the specific
demands of users that are emerging. Software-based solutions
are applied because of the inherent programmability. Take
the disaggregated software routers [16], [17] applied in cloud
gateways as an example, the fundamental architecture of which
is shown in Figure 1a, it uses a software-based data plane such
as DPDK [3], VPP [18], Click [5], FastClick [19] and achieves
a feature velocity of a few weeks in the product network.

Nevertheless, in comparison with commodity networking
devices, like switches, general-purpose CPUs are an order of
magnitude slower and lack the performance-boosting advan-
tages of pipelining and parallelism. Besides, achieving the
same throughput as commodity switches, we usually need a
cluster of servers which leads to a high cost [9].

B. The Rise of Programmable Switch

The programmable switch consists of a software-based con-
trol plane and a dedicated hardware data plane. The data plane
is programmable, allowing developers to customize the packet
processing pipeline based on user-defined requirements. Users

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

432 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

Fig. 1. Network Function Deployment. (a) Software-based NF without switch
cooperation. (b) Switch-based NF with server memory expansion. (c) CLIP:
switch-based NF with server cooperation.

define data planes using the domain-specific language [2],
[20]. The prevalent model for data plane programming is
Programming Protocol-Independent Packet Processors (P4),
supported by a range of software- and hardware-based target
platforms. It allows define the following two programmable
functionalities [2].
• User-defined processing pipeline: The operation of packet

processing is abstracted into a generic pipeline of match-
action tables. As the packet traverses this pipeline, it exe-
cutes corresponding actions when matching the key values.
Developers can define the packet processing logic through
the match-action tables. Stateful memory can maintain
state across packets, such as tables, registers, counters, and
meters. The registers can be updated as the packets cross
the pipeline. Thus, numerous novel in-network applications
leverage the registers to cache data or perform primitive
computations at data plane [11], [12], [13], [21], [22].

• Interaction between data plane and control plane: The
high-speed pipeline for match-action processing is segre-
gated from complex computations, which are handled by
the control plane running on general-purpose processors
like CPUs. Communication from the data plane (ASIC)
to the control plane (CPU) is facilitated either through
the digest mechanism or packet redirection. In the former,
the data plane reports a concise amount of information
to the control plane, whereas the latter involves redirecting
the entire packet to the control plane. The control plane
gives instructions to guide the packet processing at the data
plane.

C. Limitation of Programmable Switch

Compared to traditional fixed-function switches, pro-
grammable switches offer flexible packet processing in the
data plane, resulting in shorter development cycles and reduc-
ing costs for the implementation of new functions. However,
deploying network functions on programmable switches in
large-scale production environments presents challenges [9],
[10], [14]. Key concerns include limitations in primitive com-
putation, limited memory, and a narrow control channel.
• Primitive Computation. The computational limitations

pose constraints on more advanced applications. While
programmable networks facilitate a variety of innovative
applications (e.g., stateful load balancing [13], in-network

caching [21], in-network aggregation [11], [12]), enhanc-
ing performance and reducing costs by offloading specific
actions from servers, there are limitations in action execu-
tion. However, the action execution supports only a small
set of simple ALU (arithmetic and logic unit) operations
on integers but not floating-point values. The supported
operations are addition, subtraction, bitwise operations and
comparison, which is sufficient for packet processing, but
not enough for more novelty applications. For instance, the
machine learning acceleration [11], [12] leverages on-chip
memory to aggregate (perform addition on) floating-point
gradients but sacrifices precision.
Moreover, the utilization of a register necessitates strict
adherence to the template of computation, stored value,
and argument width, presenting challenges in designing
applications.

• Limited Memory. The limitation of on-chip memory
presents challenges in deploying large-scale features. State-
ful processing is integral to network systems, enabling
applications to store and retrieve data across different
packets. The register arrays and match-action tables are
organized into physical stages within the pipeline. The
total data storage across all stages is constrained, typically
ranging from tens to hundreds of megabytes. Additionally,
resource utilization is sub-optimal due to placement con-
straints [14], [23]. In practice, the actual stored data often
falls short of the specified capacity. The packet header
vector (PHV) serves to convey information from headers
and metadata, including temporary values or intermediate
results, passing through the pipeline. Although a 200-byte
PHV size accommodates traditional protocol processing,
it imposes limitations for functions necessitating additional
values or operations on the packet contents [14], [24].

• Narrow Channel. The programmable model imposes lim-
itations on communication-intensive functions. To ensure
high-speed processing of data plane, match-action opera-
tions are extracted from network processing, with relatively
complex processes left to the control plane. Effective com-
munication between the data plane and the control plane is
vital for function deployment. Taking network measurement
as an example, more precise network status analysis is
possible with increased data collected and reported by
the data plane. However, the channel between ASIC and
CPU, designed for occasional control plane traffic (e.g.,
L2 address learning), has a fixed bandwidth lower than the
ASIC’s per-port capacity. This limitation hinders support for
higher traffic rates without hardware modification [9]. The
frequency of interaction via this narrow channel must be
carefully considered when deploying features.

D. Objective

The deployment of software-based network functions,
as depicted in Figure 1a, exhibits high flexibility to improve
the velocity of features but suffers from high cost [9],
[25]. TEA framework [9] stands out as the pioneering solu-
tion, implementing NFs through a programmable switch and
using RDMA-accessible memory on servers for state storage.

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACCELERATING NETWORK FEATURES DEPLOYMENT WITH HETEROGENEOUS PLATFORMS 433

Fig. 2. The CLIP enables the cross-platform program to run at a pro-
grammable switch (PS) and several commodity servers (CS) processing
planes. The red two-way arrow indicates the request data path.

As illustrated in Figure 1b, TEA extends the memory of
the switch by forwarding packets to servers that house the
rules needed for packet processing. However, TEA cannot
support complex network functions that surpass the capabil-
ities of switches [25]. To address the need for swift feature
deployment, our goal is to design a hardware-software co-
design packet processing framework that fulfills the following
requirements:
• R1 - Expressiveness: Supporting a variety of complex logic

for packet processing.
• R2 - Efficient Cooperation: Minimizing the cooperation

overhead of heterogeneous processors including program-
ming complexity and communication cost.

• R3 - High Performance: Maintaining high performance
through heterogeneous devices. It is crucial to ensure that
remote processing does not become the bottleneck, throttling
the throughput or significantly increasing latency.

III. CLIP ARCHITECTURE

To accelerate the deployment of network features, we pro-
pose CLIP, a cross-platform system to cooperate with the
switch and commodity servers. Through CLIP, the new fea-
tures can be verified in realistic systems.

A. System Overview

The system consists of a programmable switch (PS)
connected to a cluster of commodity servers (CS), which
presents a promising avenue to meet the outlined requirements.
As depicted in Figure 1c, we offload a portion of the network
processing logic to commodity servers, not only to extend
memory but also to enhance flexibility and expressiveness
(R1). Facilitated by a directly connected data plane, commu-
nication between the programmable switch and commodity
servers becomes efficient, because it bypasses the narrow
control channel (R2). The cluster of commodity servers offers
ample memory and adaptable computational resources, nar-
rowing the performance gap between software and dedicated
hardware processing, and ultimately improving throughput
(R3).

The CLIP architecture, depicted in Figure 2, streamlines
the process for cross-platform programming. Users define
their network functions in a user-defined program (app.p4c)
using the CLIP framework. And a topology configuration
(topo.conf) outlines the available physical devices and inter-
connections. The CLIP compiler then generates executable

files for the switch ASIC (app.bin) and remote processors
(app.out) based on the user-defined program and topology con-
figuration, respectively. Installation involves deploying app.bin
through the switch control plane and app.out to the servers.
The controller initiates device setup, establishing the runtime
environment, and monitoring device status. The controller
manages the switch table content using the remote P4Runtime
API [26].

To minimize the overhead of remote processing, CLIP
enables the switch data plane to independently request process-
ing, which functions similar to RPC, without the involvement
of the control plane. While this procedure is well-defined,
manually writing cross-platform program is tedious and error-
prone. To simplify programming, the compiler generates
essential components, including the control flow, parameter
transmission, and the forwarding module to be deployed on
the switch. In addition, to prevent the server from throttling
the overall performance, we designed a load balancer deployed
on the switch to relieve the load on servers and ensure that no
traffic stops during scaling.

B. Efficient Communication Design

Efficient resource access is crucial to enable the collabora-
tion of heterogeneous devices in high-speed networks. In this
context, a key question arises: How can we access the memory
and utilize the computation resources of a server without mak-
ing any hardware modifications? Existing switch ASICs lack
abstractions for inter-program communication mechanisms
such as remote procedure call (RPC) [27]. Currently, switch
ASICs communicate with the control plane by redirecting
packets to the switch CPU or by reporting a digest with several
bits of information. Once packets or digests are received, the
switch control plane can utilize the traditional RPC mechanism
to request remote processing. It can draw support from remote
processors by taking existing communication mechanisms
while facing the following problems:
• Throughput bottleneck. The capacity of packet processing

is constrained by the limited bandwidth of the channels
between the switch ASIC and the switch CPU, as well
as between the switch CPU and the server CPU. The channel
between the switch ASIC and the switch CPU, primarily
used for control plane traffic like L2 address learning, has
a fixed bandwidth of approximately one hundred Gbps.
Similarly, the network bandwidth between the switch CPU
and the server CPU is also one hundred Gbps. However,
the switch ASIC can handle several Tbps of traffic. When
traffic requiring remote processing exceeds the channel’s
capacity, it becomes the bottleneck. Moreover, for packets
that need to be processed by remote processors (e.g., the
length of requisite data exceeds the PHV capacity), they
must be encapsulated into RPC messages since neither the
control plane nor the data plane of the switch can store a
large number of packets. This transmission of large RPC
messages further exacerbates the throughput problem.

• Unpredictable latency. RPC messages sent from the control
plane must traverse multiple network hops before reaching
the server. This is because the control plane and the data

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

434 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

plane of switches and servers are isolated for security
purposes. The switch CPU and switch ASIC connect to
servers through different links and devices. In contrast to the
directly connected data plane, RPC messages generated by
the switch CPU must travel through the control plane links.
In addition, other control messages that maintain network
operations share these same links. As a result, the latency
of RPC messages becomes unpredictable due to variations
in the control plane’s path and network status.
CLIP enables the switch ASIC to directly request remote

processing from servers, bypassing narrow control channels
and eliminating throughput bottlenecks and reducing the
latency associated with traversing multiple control plane hops.
Inspired by the RPC mechanism, the request parameters are
provided by the switch data plane, delivering the necessary
data for the server-side function to perform its operation.
After processing the request parameters, the remote procedure
returns the response value that contains the result of the
operation. In this communication framework, the switch ASIC
forwards the original packet carrying the request parameters
(i.e., request packet) and receives the modified packet contain-
ing the returned value (i.e., response packet). These request
and response packets are transmitted through the data plane
channel that connects the switch ASIC to the server CPU,
completing the entire process without involving the switch
control plane.

IV. NETWORK FEATURES IN CLIP

In this section, we introduce network features partition and
their deployment over CLIP architecture.

A. Network Features Definition Framework

Based on efficient resource access, we need to tackle the
challenge of arranging the new feature on heterogeneous
devices. This involves addressing various questions, such as
how to partition the NF, what parts of NF should run at the
remote processor or local ASIC, and how to fully utilize the
resource at both programmable switch (PS) and commodity
servers (CS). It is hard to build a universal model for diverse
NFs [1], [14]. Considering the performance and flexibility
of heterogeneous PS and CS frameworks, we have identified
two principles: 1) Efficient Packet Match-Action Processing
in PS: programmable switches should handle packet match-
action processing, enabling fast and precise packet forwarding
based on predefined rules. 2) Rich Resource Capacity in
CS: commodity servers are equipped with abundant resources
in terms of memory and computation capabilities. They are
capable of executing complex computations and handling
resource-intensive tasks efficiently. Based on these principles,
we propose the approach of partitioning the function into three
parts, i.e., a pre-processing partition, a request handler and a
post-processing partition. The pre-processing partition handles
the initial processing of incoming packets, preparing them
for further analysis and action. The request handler processes
specific complex tasks related to incoming requests, ensuring
timely and accurate responses. The post-processing partition
deals with the final processing of packets after the required

computations have been performed, ensuring correct packet
forwarding and delivery. Based on the above partitions, the
top framework definition is shown as follows.

1 /* Top layer control */
2 control pipeline(inout header hdr,

inout metadata md){
3 pre_processing pre; post_processing

post;
4 request req; response res;
5 bool flight;
6 apply {
7 pre.apply(hdr, flight, req);
8 /* Call the remote procedure */
9 if (flight) remote_handler(req, res

);
10 post.apply(hdr, res); }}

The control flow for packet processing is defined in the
pipeline control block, where the packet header (hdr) and inter-
mediate values (md) serve as input and output parameters. The
pipeline encompasses three essential components represented
by different control blocks. The pre-processing control block
executes P4-defined parts at the switch data plane, responsible
for pre-processing tasks on incoming packets. Similarly, the
post-processing control block runs P4-defined parts in the
data plane switch to handle post-processing tasks. To facili-
tate cross-platform communication for packet processing, two
parameter lists named request (req) and response (res) are
defined, serving as references for the remote-handler and post-
processing blocks, respectively.

Specifically, to address performance limitations and enhance
programming flexibility compared to running solely on servers
or switches, our proposed solution involves embedding the
C language with the P4 language to define cross-platform
programs, denoted by the suffix p4c. This approach allows
us to capitalize on the strengths of both languages while
minimizing their limitations. The remote-handler block exem-
plifies this approach, as it represents C-defined parts running
on general-purpose processors. This enables us to harness the
computational power of servers to efficiently handle resource-
intensive tasks, which might be less performance-sensitive
or inflexible if executed exclusively on switches using P4-
defined parts. Furthermore, we introduce the flight flag to
aid in filtering packets that necessitate remote processing,
effectively offloading the server’s burden. By combining this
flag with the filtering logic within the pre-processing block,
we can efficiently manage packet distribution between remote
and local processing. Through an use case like the state-heavy
Source Network Address Translation (SNAT) [9], which we
present in section VI, we showcase the effectiveness of our
proposed architecture in real-world scenarios.

B. Network Features Deployment

The top framework implies the partitions of a program exe-
cuting, i.e., the remote handler executed after pre-processing
and before post-processing. However, the switch ASIC cannot
suspend and wait for remote processing in the middle of

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACCELERATING NETWORK FEATURES DEPLOYMENT WITH HETEROGENEOUS PLATFORMS 435

Fig. 3. The processing path when the network feature deployed. The green
solid line is the fast path and the orange dotted line is the slow path.

the pipeline. To address this limitation, the top framework
requires a different approach to effectively incorporate remote
processing without interrupting the switch’s packet processing.

To this end, the proposed framework employs an asyn-
chronous model for remote processing. Instead of suspending
the switch’s pipeline, the switch forwards the packet requiring
remote process to the remote handler while continuing its
regular processing. The handler processes the packet on the
remote server and sends the response. Upon receiving the
response, the switch pipeline does with the post-processing
for this packet. To implement NFs under the top framework,
addressing the challenges posed by remote processing within
the pipeline, three critical components need to be designed:

• Control flow. The P4 program needs to distinguish the
response packets from the regular packets entering CLIP,
and then decide which is next execution: the pre-processing,
post-processing, or requesting remote process. The flight
flag in the framework is also a key factor in influencing the
control flow. Careful design is essential to avoid forming
path loops between the switch and servers.

• Transmission of parameters. Efficient parameter transmis-
sion is vital for the success of remote processing. The
framework must generate request and response headers that
appropriately store and transmit the parameters and inter-
mediate values required for packet processing. The header
format varies depending on the network function.

• Forwarding Module. The forwarding module is responsi-
ble for traffic routing, server selection and route isolation
between regular traffic and request packets. This module
must ensure consistency between flows and their states
and avoid disruptions in flows during scaling by efficiently
managing traffic distribution among servers.

Writing this cross-platform program manually is tedious
and error-prone, so we designed a compiler to automatically
generate executable programs, including the aforementioned
components. The details are as follows.

Control flow module distinguishes the original packets
and request/response packets and decides on incoming packet
processing, which is shown in Figure 3. The flight flag, along
with the packet header type, plays a crucial role in guiding the
control flow and deciding the path for packet processing. The
control flow consists of two main paths: the fast path (1⃝∼ 5⃝)
and the slow path (1⃝, 2⃝, 6⃝∼11⃝, 4⃝, 5⃝). The fast path is
exclusively used for local processing within the programmable
switches (PS), enabling quick packet handling. The slow path
is designed for remote processing that involves interactions
between the switch and the servers.

Parameters transmission module plays a critical role in
communication between PS and CS by handling the transmis-
sion of parameters required for remote processing. To ensure
efficient and error-free parameter transmission, the CLIP
compiler takes charge of generating this module, alleviating
the burden on the developers. The parameters for remote
processing are piggybacked within request/response header of
packets and assembled as the Ethernet packet payload. The
format of the request/response header consists of a 2-byte
load_type, NF-specific parameters, and an option field. The
request header is appended to the regular packet in the switch,
while the response header is appended to the modified packet
in the server. The load_type field records the original packet’s
load type, copied from the Ether_type field of the Ethernet
header. This prevents the loss of the original Ether_type
value during the packet reassembly. To accelerate handler
processing, two optimizations are applied within the request
header: 1) The request header includes options that enhance
processing speed. For example, combining the index option
(i) and the length option (l) allows fast retrieval of data
from the payload of the packet. Servers can directly extract
a value with length l, starting from the i-th byte, as opposed
to parsing the packet from scratch. 2) To avoid the extra
packet copy during remote processing, which can slow down
overall performance, the request and response headers are
aligned. This is achieved by padding with zeros to ensure
both headers match in length and byte alignment. As a result,
parameter modifications from request to response only require
header rewriting, eliminating the need for an additional packet
copy. By automatically generating the parameter transmission
module and incorporating these efficiency-enhancing tricks,
the CLIP compiler ensures smooth and error-free parameter
transmission between PS and CS.

Forwarding module: As regular traffic may adopt either
L3 routing or L2 forwarding, and request packets need to be
routed to a specific server, the forwarding module is respon-
sible for isolating the request packet forwarding from regular
packets. To achieve this, the forwarding module leverages the
Equal-Cost Multi-Path (ECMP) group of the L3 Route to
distribute the request packets to servers. For packets flagged
with flight, the forwarding module assigns the corresponding
group ID before routing, ensuring that the packet is directed
to the appropriate CS for processing. This allows efficient
and seamless handling of request packets without disrupting
regular traffic flow. Another challenge the forwarding module
addresses is the scaling problem further elaborated (§ V-B).

C. Function Expansion

We propose the simplified RPC generated at ASIC to
utilize the remote resource. Yet, barriers to maximizing the
advantages exist due to the difference in processing logic.
Next, we delve into strategies for extending the programmable
switch capacity, focusing on both memory and computation
optimization.

Memory Optimization. In reconfigurable match action
table switches, both the PHV and the match-action units are
scarce resources, deciding the packet processing capabilities
in the data plane. However, their fixed sizes, approximately

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

436 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

256 bytes for PHV and O(10M) for match-action units, present
significant challenges in meeting the ever-growing demands of
modern networks [10]. We propose the following mechanisms
implemented in the compiler:

• PHV Occupation Reducing. The size of the PHV directly
impacts the intermediate values and metadata that can be
carried through the switch, affecting the logic complexity
and depth. Remote processing naturally extends the depth
of the pipeline by on-loading a portion of the function.
However, PHVs are prone to be saturated if the size of inter-
mediate values exceeds 200Bytes, compiling failures arise
for functions in the switch part. Our observation reveals
the presence of postponable intermediate values (PIV) in
user-defined programs—values declared and assigned dur-
ing pre-processing but referenced only in post-processing.
Notably, these PIVs remain unoptimized by the P4 compiler
since pre-processing and post-processing are merged into
a single program fed into the P4 compiler. To address
the compiling failure caused by PHV shortages, the CLIP
compiler steps in when the P4 compiler signals this fail-
ure. It conducts code optimization to identify PIVs in
pre-processing and move the corresponding declaration and
assignment to the remote handler. This proactive measure,
deferring PIV generation, enables the CLIP compiler to
address the compiling issue caused by PHV allocation. For
example, consider a switch implementing L3 routing that
selects a group of next-hops based on a packet’s destination
IP address. It then uses the 5-tuple (Source IP, Destination
IP, Source Port, Destination Port, and Protocol) to compute
an index for selecting one next-hop to forward the traffic.
Initially, the PHV must store the entire 104-bit 5-tuple
as input for the hash unit, along with an 8-bit result for
the next-hop selection index. In this case, the 4-tuple (the
5-tuple excluding the Destination IP) can be identified as a
PIV. To reduce PHV usage, the extraction of the 4-tuple and
the hash computation can be on-loaded to a remote handler,
leaving the PHV to only store the 32-bit Destination IP for
selecting the next-hop group and the 8-bit next-hop index.

• Match-Action Table Mirroring. Match-action table plays a
crucial role in storing data for matching and processing
packets, a pivotal aspect in handling diverse traffic pat-
terns [28]. The expansive DRAM of servers enables the
maintenance of extra match-action tables, meeting the grow-
ing demand for entries. Therefore, we introduce the concept
of table mirroring, allowing the match-action table defined
in pre-processing to be referenced and executed in the
remote handler. This involves performing the same actions
in the server’s table (mirrored table) as those executed in
the switch’s table (original table). The mirrored table is
a structural replica of the original table, sharing the same
definitions of keys, match types, and actions. This approach
enables users to install table rules that surpass the capacity
of the original table into the mirrored table, mitigating the
risk of table content overflow.

Computation Enhancement. The match action table relies
on simple ALU operations for actions on integer val-
ues. Although sufficient for certain packet processing tasks

(e.g., Time-to-Live (TTL) increments), these operations prove
inadequate for more advanced applications such as parameter
aggregation on float value [11], [12], [14]. Looking at a more
flexible computation element, the register that can be updated
with packet traversing the pipeline reveals a certain degree of
flexibility. Moreover, using a register requires strict adherence
to the template of computation, stored value, and argument
width. For instance, each register can maintain a value or a
value pair, combined with three fixed sizes (less than 64 bits)
of data. Both the input and output of the register are restricted
to not exceed 64 bits, which includes metadata, packet header,
or stored value. Additionally, registers are arranged as a
linear data structure, i.e., a program can access a specific
register using the continuous integer, which is not extensible.
Therefore, allocating a register for a specific flow without
control plane involvement is challenging due to the extensive
scope of flow IDs. Hence, we extend the remote handler to
support more computations as follows.
• Complex Computation Support. In CLIP, we extend support

for floating-point values and more complex computations
than those simple ALU operations by loading these com-
putations onto the remote handler. Here, floating-point
operands are transmitted as request parameters, and the
computation results are returned as responses. However,
P4-defined data types are bit-based (e.g., bit<32> dst_addr)
and lack direct support for float values. To address this,
we enable users to define float operands as parameters for
remote processing. To facilitate this, the compiler translates
the user-defined float values into device-specific data types.
For example, a float value A will be translated into bit<32>
switch_A on the switch side according to the IEEE Standard
for floating-point arithmetic and float value server_A on the
server side. Notably, the float version value on the switch can
be appended to packets rather than engaging in additional
computations in the switch due to semantic differences.
By assigning bit-based value to parameters, users gain the
flexibility to define computations with more diverse data
types, accommodating the needs of complex calculations
beyond basic ALU operations.

• Stateful Variable. To enhance flexibility in stateful compu-
tation, CLIP introduces the concept of a stateful variable
which is maintained at servers and can be both read and
updated at remote handlers. Unlike mirrored tables, the
stateful variable is explicitly defined in the CLIP program
and supports various types, including basic data types, arrays
and user-defined data structures. The stateful variable is
used for servers to maintain states across multiple packets.
To illustrate the necessity of stateful variable, consider
the scenario of managing an address pool for NAT. The
stateful variable proves important in dynamically updating
the status of addresses in response to allocation and release,
marking them as ‘invalid’ or ‘valid’ accordingly. A stateful
variable of bitmap can be used to address the register
index challenge. This bitmap mechanism quickly identifies
an unused register index, allocating it to a new flow.1

1Note that this approach cannot be implemented in ASIC switches using
registers, as registers can be accessed only once for a packet. Once the target
index is occupied, there is no opportunity for a retry.

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACCELERATING NETWORK FEATURES DEPLOYMENT WITH HETEROGENEOUS PLATFORMS 437

Fig. 4. Load balancing for keeping affinity between flows and their states.
(a) Automatic flow placement. (b) Server group scaling.

The variable is distributed among multiple servers, and its
consistency is guaranteed (§V-B).

V. PERFORMANCE AND SCALABILITY

There exists a substantial performance gap, which spans
multiple orders of magnitude, between programmable switches
and general-purpose processors for packet processing in terms
of both latency and throughput. It is imperative to ensure that
remote processing does not become the bottleneck, impeding
the switch’s throughput. To address this challenge, one plausi-
ble approach is to selectively forward only a portion of packet
data or a fraction of packets for remote processing. However,
transmitting partial packet data becomes impractical due to the
switch ASIC’s limitations in buffering high volumes of packets
while awaiting remote processing. Directing a fraction of the
packets to servers becomes a viable solution.

Therefore, we implement a flow-based load balancer to
distribute traffic among the switch and servers. The goal
of existing load balancers is dispatching traffic into flatted,
distributed nodes. Based on the architecture of CLIP, the
instances are organized into a two-layer tree where the switch
is the root and the servers are leaves, and the traffic enters the
system through the root. Therefore, CLIP load balancer places
most of the traffic in the root to gain latency performance by
reducing the length of path that traffic traverses and improving
throughput performance by adding the leaves.

A. Automatic Flow Placement

For functions that only require memory expansion without
the need for remote processing, CLIP leverages the switch’s
capacity to handle resource-intensive traffic, thus relieving the
burden of servers. We design the different placement strategies
to place the flows for exact match (EM) and longest prefix
match (LPM) types.2

EM tables placement. The EM table can be divided into
multiple tables based on flows, e.g., five-tuple or destination
IP. CLIP optimizes resource consumption by using the original
table in the switch to handle the top-N flows. However,
directly selecting the top-N flows in the switch’s data plane is
space- and time-inefficient. This approach requires counting
packets for each flow, iterating counters for all flows, and
maintaining a large table of counters, resulting in a time

2A ternary match kind on a key field means that the field in the table
specifies a set of values for the key field using a value and a mask. This kind
of match type has no efficient data structure in the software to achieve O(1)
lookup. Therefore, we left it for future work.

complexity of O(m), where m is the size of this table. Another
line is counting all flows in the data plane, reporting statistics
to the control plane and then selecting the top-N flows in the
control plane, but it could consume excessive data-plane-to-
control-plane bandwidth.

Rather than reporting specific N top flows, we opt for a
more efficient approach through a two-phase selection strategy.
First, in the switch data plane, we implement a count-min
sketch with compressed space3 to estimate the sizes of flows.
Instead of iterating through the entire table, we report only the
flows that surpass a mutable threshold regarding the number of
arrival packets and flows. Second, in the switch control plane,
it selects the final top N flows from the reported flows for
flow migration. The first selection phase can efficiently reduce
the number of reported flows, thereby reducing the bandwidth
consumption in switch-ASIC-to-switch-CPU communication
and the time consumed in the second phase.

The threshold setting should meet the aim of the first
phase selection: 1) select at least N flows so that the switch
processing resource can be fully utilized; and 2) the number of
reported flows does not exceed N by too much, considering the
time complexity of the second phase selection. We define the
threshold as k·pkt

flow , where pkt and flow is the number of arrival
packets and flows, respectively. Both pkt and flow can be
collected from the switch data plane. By dynamically adjusting
the parameter k, we can control the number of reported flows.
If the number of reported flows (flowr) exceeds N (i.e.,
flowr−N > ϵN , ϵ is a predefined tolerance factor), we set a
more aggressive threshold by increasing k in the next report,
which filters out smaller flows. Conversely, if the number
of reported flows is less than N (i.e., flowr−N < ϵN),
we reduce the threshold by decreasing k.

LPM tables placement. Different from EM types, directly
distributing entries into the two-layer LPM tables may lead
to incorrect results. Take the example of IP routing tables,
if an IP address belongs to multiple network prefixes, where a
shorter prefix is in the switch and a longer prefix is in servers,
a packet may be forwarded based on the shorter network
prefix, violating the semantics of LPM. This situation calls for
careful consideration and specific handling to ensure accurate
flow selection decisions.

To mitigate this issue, we introduce a flow filtering step after
reporting the top flows and before updating the entries. The
flow is identified using the fields same as the key defined in
the original LPM table. Specifically, we select flows that match
the longest prefix in servers and then migrate the longest prefix
to the switch. Further, this LPM entry migration does not just
affect the flow triggering the migration but also other flows
matching the same prefix. This approach maintains match
correction and can enhance performance by handling more
traffic at the switch.

Put them together. As the illustrated process of automatic
flow placement (Figure 4a), arriving packets update and look

3Count-min sketch is commonly used for the task of network measurement.
It uses a multi-way array, named B, compressing of n rows and m columns
buckets to estimate the frequency of items. For a coming item with a key k,
it increases counters in buckets indexed by (i, Fi(k)%m), where 0 < i < n.
The frequency of item with k is identified as mini(B(i, Fi(k)%m)).

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

438 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

up the count-min sketch based on the flow’s identifier. The
result of this lookup provides the number of packets associated
with that flow. If the packet count exceeds a defined threshold
(top), the flow is reported to the control plane. For cases where
the original table is an LPM table, a flow filter is applied in the
control plane. Subsequently, the table entries corresponding
to these (optionally filtered) flows are migrated from the
mirrored table to the original table. This process replaces aged
flow entries, optimizing resource allocation for the specific
flows.

B. Auto-Scaling of Server Group

These remote servers, acting as a supplement to the switch,
should be capable of scaling to adapt to varying workloads.
In response to dynamic workloads, we deploy multiple servers
to enhance platform throughput. Effectively leveraging server
resources involves addressing two pivotal issues: (1) How to
alleviate the processing burden on servers, and (2) How to
handle traffic if the existing servers are unable to process it
effectively.

Strawman solution. A straightforward approach involves
implementing a load balancer at the switch to distribute the
traffic to servers. Conventional distributed hashing schemes
such as consistent hashing [29] and rendezvous hashing [30]
are alternative options. However, they partition the hash tables
and maintain numerous <bucket range, server ID> mappings.
To maintain affinity between packets and their associated
states, especially in cases where server group members change,
stateful load balancing mechanisms like [13] can be employed.
It enables connection consistency at the programmable switch
by recording the per <connection, server ID> mapping, which
offers an effective load balance. However, both of them
consume O(N) on-chip memory space, where N is the number
of bucket ranges or connections.

Dynamic scaling avoiding inter-server flow migration.
The fix-number of servers can not fit the increasing workloads,
so a dynamic approach is proposed. However, main challenge
is it should ensure consistency in the handling of flows and
their associated state. It involves adjusting the composition of
the server group in real time to accommodate varying system
capacity requirements without interrupting traffic.

This dynamic server group scaling relies on the effec-
tive handling of flow consistency when group membership
changes. A flow-based ECMP mechanism is employed to
distribute traffic across the server group, with flow states
created and maintained by the server handling the first packet
of a flow. However, when group membership changes, it can
lead to the re-distribution of flows and flow state migration.
Synchronizing states through state migration is complex, often
involving stopping or buffering traffic until state migration is
completed. To avoid these problems, a small on-chip memory
is used to maintain a snapshot of group membership for flows
arriving at different times. This snapshot helps subsequent
packets of a flow find their original server, thus eliminating
the need for state synchronization. While creating a snapshot
for each flow incurs a non-trivial cost, we record the group
membership and remember the arriving flows using bloom

filter4 before the group updating, and then distributing new
flows and existing flows to their corresponding server.

The procedure of server group scaling is illustrated in
Figure 4b. We mark a CS group with a version ID as the
membership changes at time point Ti. The newest group is
called Gi and the previous one is called Gi−1. The flows
arrived during Ti and Ti−1 are routed into the one group
of Gi−1 while flows arrived after Ti are distributed into the
newest group Gi. The next problem is how to distinguish
the new flows from the arrived flows during Ti and Ti−1

with a little memory consumption. We consider multiplexing
the BM0 and BM1 to identify the flow alternately arrived
during a period. As shown in Figure 4b, before updating the
new group member Gcur, the control plane set a register
cur(cur ∈ {0, 1}) to (cur + 1)%2 that indicates the current
group ID. We define operations on BM for packet arrival to
elaborate on this procedure:
• update: sets values of BM to 1, using the flow ID of the

packet as the key.
• lookup: checks BM using the flow ID of the packet as the

key to determine if the packet belongs to an existing flow.
If so, it returns y; otherwise, it returns n.
Each packet checks the value of a register cur (cur ∈

{0, 1}). If cur = 0, it updates the BM0 and lookup BM1.
If the lookup result is y, which indicates this packet belongs
to an existing flow, it selects a destination from G1. Otherwise,
it selects a CS from G0 as the destination. By memorizing the
group membership and arriving flows before group updates,
the system can efficiently scale without disrupting traffic.

VI. CASE STUDY

To verify the effectiveness of CLIP, we implement three
network features using CLIP.

Multi-tenancy Forwarding Information Base (FIB). It
serves as a forwarding module within the cloud gateway,
responsible for looking up large-scale routing tables for
various cloud tenants [17]. With the continuous growth of
tenants, we cannot maintain the performance by solely relying
on software-based forwarding. To overcome the bottleneck
associated with CPU-based packet processing, a hardware
acceleration solution is required. However, since the current
hardware switch can only support up to 100K LPM entries,
it is insufficient to accommodate the large tables needed for
cloud-scale tenants.

In CLIP, we combine the CS and PS to support 900K
forwarding rules. Initially, all 900K rules are maintained in
mirrored LPM tables. As traffic arrives, the top 10K flows
can be migrated to PS. Based on that the top 1% of the
largest flows contribute to 70% of overall traffic [17], we can
efficiently accelerate FIB and alleviate the limitations posed
by hardware memory constraints.

Overlay Network TCP Retransmission Detection (TRD).
TRD monitors TCP status and reports flows that are expe-
riencing retransmission, aiding in the detection of network

4Bloom filter is a probabilistic data structure that indicates the element
either definitely is not or may be in the set. Its basic data structure is a
multi-way bit vector and can do read-check-write in one cycle.

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACCELERATING NETWORK FEATURES DEPLOYMENT WITH HETEROGENEOUS PLATFORMS 439

failures [31]. In TRD, the sequence numbers of packets
belonging to the same TCP connection are recorded. Retrans-
mission of the TCP connection is detected when packets
with lower sequence numbers arrive. Additionally, TCP flags
are probed to determine the TCP status (establishment or
disconnection). When TRD is deployed at switches, both
sequence numbers and TCP state must be maintained in the
data plane to ensure timely updates. Although the register array
can be updated in the data plane, this operation still introduces
two challenges.: 1) the register array can only be indexed by
continuous integers, while a TCP connection is identified by
its four-tuple, and 2) the limited memory of switches means
registers are insufficient to support a large number of TCP
connections.

In CLIP, the remote handler manages TCP status mainte-
nance and register index allocation. The pre_processing stage
maintains: 1) a match-action table called the Flow-Index table,
recording the mapping from flow ID (the four-tuple) to a
register index; and 2) a register array, named the sequence
number (SN) array, storing the sequence numbers of TCP
connections. The workflow is as follows: when a TCP packet
arrives, it looks up the Flow-Index table. If the packet matches
an entry, it indicates that the connection is active. The register
index is then used to check and update the SN array. If the
recorded number is larger than the current sequence number,
the flow is identified as being in a retransmission state. If there
is no match in the Flow-Index table or if the packet carries
TCP control flags (SYN, FIN, etc.), the packet is sent to the
remote handler. The remote handler creates or releases records
of TCP connections based on the TCP flags. It allocates a new
register index for new connections when a TCP connection
is established and releases the index when the connection is
disconnected. The response returns the allocated index to the
switch, enabling or disabling the slot in the SN array for a
connection. To extend the SN array in the switch, CSs record
the sequence numbers for overflowed connections once the SN
array reaches saturation.

State-heavy Source Network Address Translation
(SNAT). SNAT is a gateway middlebox that isolates the
internal network from external networks. When receiving
traffic from the internal network, SNAT allocates a new <IP
address, port> pair and rewrites the packet header accordingly.
It memorizes the mapping from the flow ID (five-tuple) to
the new pair, allowing it to process subsequent packets based
on this mapping. The widespread deployment of SNAT on
programmable switches is hindered for two main reasons:
1) SNAT is state-heavy, requiring significant memory to
store these address translation mappings. 2) The switch data
plane is incapable of executing pair allocation because the
match-action table can only be updated by the switch control
plane.

Through CLIP, we leverage the CS memory to provide
ample space for storing NAT mappings. We can employ a
remote handler to perform the allocation of the address-port
pair. The workflow is as follows: when a packet arrives at
PS, SNAT looks up the mappings during pre-processing. If a
mapping hits, the packet is rewritten during post-processing.
If a mapping misses, the packet is processed by the remote

handler, which allocates a new pair for the flow and inserts the
mapping into the mirrored table. The new pair is then returned
to post-processing module to rewrite the packet. Once a flow
has its mappings, it can be migrated to PS to enhance the
performance if it is a heavy flow.

Example. We explain CLIP framework design by taking
SNAT as an example. The software-defined and CLIP-defined
SNATs are shown as follows, respectively.

1 void snat() {
2 FLOW_ID flow_id = pkt->get_flow_id();
3 VALUE *value = nat_table.lookup(

flow_id);
4 if (value == NULL) {
5 value = allocation(flow_id);
6 nat_table.insert(flow_id, value); }
7 pkt->set_snat(value);
8 pkt->send(); }

1 /* Define parameters */
2 request {flow_id}; response {sub_addr;

src_addr};
3 /* Define functions deployed at CS */
4 void remote_handler(request req,

response res){
5 res = mirrored_nat_table(req.flow_id)

;
6 if (res == NULL){
7 res = allocation(req.flow_id); }}
8 /* Define P4 program deployed at PS */
9 control pre_processing(inout header hdr

, out bool flight, out request req)
{

10 table nat_table = {
11 req.flow_id : exact;..}
12 apply {
13 req.flow_id = hdr.tuple5;
14 if (nat_table.apply().miss) flight

= true; }}
15 control post_processing(inout header

hdr, in~response res){
16 hdr.src_addr = res.sub_addr; }
17 /* Top layer control flow */
18 control pipeline(inout header hdr,

inout metadata md){..}

VII. EVALUATION

This section evaluates CLIP on the testbed to address the
following questions.

(1) What is the overhead of remote processing and per-
formance improvement through load balancing and flow
migration? (§VII-B)

(2) How does the CLIP framework facilitate the deploy-
ment of new features? What are the performance benefits of
functions implemented using CLIP compared with software
implementation? (§VII-C)

(3) What is the on-chip resource consumption of the ASIC
when offloading forwarding modules through CLIP? (§VII-D)

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

440 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

Fig. 5. Performance without application deployed. The “Ideal” shows all
traffic traversing the switch. (a) Average throughput. (b) Latency distribution.

A. Experiment Setup.

Testbed Setup. The testbed comprises a Wedge 100BF-
32X 32-ports programmable switch with a two-pipeline
Barefoot Tofino P4 ASIC and three servers. The network inter-
faces of the switch are configured to run at 100Gbps, achieved
by aggregating four 25Gbps network channels. Each server
in the setup is equipped with Intel Xeon Silver 4110 CPUs
(2.10GHz, 8 cores) and a Mellanox ConnectX-6 NIC. Servers
run Ubuntu 18.04 with Linux kernel version 4.15. All three
servers are interconnected through the switch via 100 Gbps
links. For the backend servers, two dedicated servers are
allocated. DPDK [3] version 21.05 is deployed on these
servers. DPDK-pktgen [32] is deployed on one server as the
packet generator. Specifically, one port is assigned three cores
for packet generation, while another port is allocated additional
cores for packet reception.

Work Loads. We evaluate our system using synthetic
traffic, six traces of realistic public workloads, and a public
route dataset. The synthetic traces are generated to mimic the
Zipf distribution in terms of the number of packets per flow
[33], [34]. For realistic workloads, three are collected from
an access point [35], backbone [36], and a data center [33].
The remaining three workloads are derived from scenarios of
instant messaging [37], web search [38], and video stream-
ing [39]. Additionally, we use a public route dataset containing
IPv4 Prefix-to-Autonomous System mappings derived from
RouteViews data [40]. This dataset includes nearly 964,000
prefixes, with 24-length prefixes being the most common,
comprising about 59.32% of the entries.

B. Microbenchmarks.

Forwarding Capacity. To improve forwarding capacity,
multiple server instances are employed because packet pro-
cessing at a single server can provide no more than 100Gbps
throughput, which is significantly lower than what the capacity
of commodity switch. We continuously generate packets of
varying sizes at the maximum speed of the generator and
forward them to the switch. In an ideal scenario where all
packets traverse only the switch, the performance upper bound
is established, indicating the maximum packet generating/re-
ception rate. As depicted in Figure 5(a), for packets ranging
from 512 to 1500 bytes, the packet generator utilizing three
cores can achieve a near 100Gbps reception rate. In the
case of a single CS with one core, it can achieve 50Gbps
forwarding efficiency for 1024-byte packets. As the packet
size increases, a higher throughput in Gbps is attained. This

Fig. 6. Throughput changes as the CS group membership changes. The time
points of the red dotted line indicate server-changing commands from the
controller. The blue one shows the traffic-reducing time point.

trend is attributed to the nature of software-based processing,
which operates on a packet-by-packet basis and can process
a fixed number of packets per second. The use of parallel CS
instances contributes to the overall improvement in throughput.

The introduction of remote handlers can enhance processing
capabilities but also introduces additional latency. We measure
the latency of packet transmission to evaluate this extra
latency. Figure 5(b) demonstrates the latency distribution,
where 10000 packets of random size are injected to measure
the forwarding latency. With CSs involved, 90% packets can
traverse the platform within 16µs. The remote processing
introduces an additional latency of approximately 9µs for 90%
of packets. Prior work like TEA [9] introduces about 2µs to
expand ASIC memory. The extra 9µs latency in our approach
allows for the expansion of not only memory but also possible
computational ability.

Capacity Adjustment. To validate that the scaling opera-
tion of SC does not disrupt traffic, we monitor the throughput
during membership changes. To validate that the CS group
membership change would not disrupt the traffic processing,
we monitor the throughput of server-1, server-2 and the whole
system during the membership transition from one group
(server-1) to another (server-2). We inject four sets of flows
with different transmission rates and start and stop times to
simulate real-world traffic. As shown in Figure 6, we first
send flow set-1, set-2, and then set-3, set-4 at around 15 sec
with the same rate (about 1 million packets per flow set per
second). Finally, we stopped sending set-1 at around 31 sec.

As shown in Figure 6, all traffic is initially routed to server-1
until the group is changed to server-2 at around 15 sec. The
newly arrived flows (set-3 and set-4) are distributed to server-2,
while the flows reached before the membership change (set-
1 and set-2) are still sent to server-1. If another change
happens, it triggers the redirection of the remained flows on
server-1 (set-2) to be offloaded to the switch. The destination
of flow set-3 and set-4 is still server-2. While the bottom figure
indicates that the overall throughput fluctuates very slightly
during the changes of backend server.

Throughput Improvement with Flow Migration. By
migrating heavy traffic from servers to the switch, we can
improve the system throughput and avoid the servers from
becoming the bottleneck. We evaluate the throughput improve-
ment with flow migration by generating packets of 64B

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACCELERATING NETWORK FEATURES DEPLOYMENT WITH HETEROGENEOUS PLATFORMS 441

Fig. 7. Flow selection percentage under different strategies. (a) EM. (b) LPM.

Fig. 8. EM Performance of under different selection strategies. The “BL”
shows all traffic traversing the switch. The darkest color is the throughput of
traffic handled by the switch (PS) and the two lighter colors are the throughput
of traffic handled by servers (S1 and S2).

with different flow size distributions, where α denotes traffic
skewness following the Zipf distribution.

In Figure 7, the flow selection percentages are depicted for
three flow migration strategies: random (R), count-min sketch
with max-heap (H), and count-min sketch with threshold (T).
The baseline (BL or non-migrating) represents results where
all traffic is handled by servers (S1 and S2). Strategy-R
randomly selects flows to migrate. In strategy-H, the data plane
of the switch reports statistics for all flows and then executes a
max-heap at the control plane to select top flows. In strategy-T,
the data plane of the switch only reports flows whose statistics
exceed the threshold, reducing the overhead of flow selection
compared to strategy-H.

Strategies R and H of EM select (1− α)% flows. We aim
for strategy-T to achieve the same performance as strategy-
H, which strictly selects top flows, and consumes fewer table
resources and channel bandwidth. The threshold of strategy-T
is initialized as 2α#pkt

#flow , where the number of packets (#pkt)
is collected at the switch and flows (#flow) at servers.
Theoretically, strategy-T reduces α% of channel bandwidth
compared to strategy-H if both strategies select the same
number of flows. This is because strategy-T only reports
selected flows rather than statistics for all flows like strategy-H.
The selected flow numbers for EM are shown in Figure 7 (a).
Strategy-T selects fewer flows than strategy-H and strategy-R
under all flow size distributions. Therefore, strategy-T reduces
the bandwidth consumption of the channel by about 56.7% ∼
99.2% compared to strategy-H.

Figure 8 illustrates the throughput of EM under the three
strategies. Strategy-R helps improve performance under lower
skewing conditions (α = 0.5 and α = 0.8). However,
it becomes challenging to accurately identify heavy loads
under severe skewing traffic (α > 0.9). Strategies T and
H push the switch (PS) to handle more traffic under highly

Fig. 9. LPM Performance of under different selection strategy.

TABLE I
THE ACCESSING LATENCY UNDER DIFFERENT STRATEGIES

skewed scenarios, thereby reducing the processing burden on
servers. We believe the overall throughput can be improved
with a more powerful packet generator. Furthermore, com-
pared to strategy-H, strategy-T can select a smaller number of
flows and achieve similar throughput.

In contrast to the parameters’ setting in EM, LPM intro-
duces a filter that selects prefixes with specific lengths to
prevent incorrect matches. For this evaluation, we perform
IPv4 lookup based on LPM using IPv4 route prefixes from
the public dataset [40]. Therefore, for the threshold of the
LPM application, we use the threshold of strategy-T with an
extra discount, i.e., the percentage of 24-prefix. This threshold
setting allows the selected flow numbers of strategy-T to be
close to strategy-H, as shown in Figure 7 (b).

Figure 9 shows the throughput of the LPM table under
the three strategies and selected flows. Similarly, strategy-
R performs well at lower skewing levels (α = 0.5 and
α = 0.8), while strategy-H and strategy-T can achieve better
performance even under severe skewing traffic conditions (α >
0.9). Unlike EM, LPM still leaves some flows to be handled by
servers; therefore, it does not achieve as high as the throughput
gained at EM.

Latency Improvement with Flow Migration. Flow migra-
tion reduces the processing burden of servers so that it
can improve latency distribution of tables in CLIP. Thus,
we evaluate the latency improvement under different migration
strategies. We marked packets with timestamps at sending
and receiving, capturing 1 million packets with a flow size
distribution at α = 0.9 to evaluate the end-to-end latency
when accessing the EM table and LPM table. The latency
of accessing for end-to-end is shown in Table I, where the
numbers after ± denote the standard deviations. By migrating
flows to the switch, CLIP reduces average latency by 84.71%
and 48.3% for EM and LPM, respectively, based on strategy-T.

Looking at the latency distributions shown in Figure 10,
the latency for 90% of flows (for EM) and 37% of flows (for
LPM) is below 8 µs for strategy-T and strategy-H, which is a
significant contribution to latency improvement. Furthermore,
there is an improvement in tail latency. This is attributed to the
reduction in the number of packets in each processing batch,
effectively minimizing the queuing time.

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

442 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

Fig. 10. Latency under different selection strategies. (a) EM. (b) LPM.

TABLE II
THE LATENCY OF TABLE OPERATION

Flow Migration Overhead. The flow migration procedure
consists of two steps: 1) migrating heavy flows from servers
to the switch and 2) migrating aged flows from the switch
to servers. This process involves inserting and deleting table
entries in both the original and mirrored tables. Because the
operations are non-blocking, i.e., migrations do not involve
traffic halting, the latency of operations in both tables does
not introduce performance degradation. However, the latency
of table operation affects the efficiency of flow migration.
Thus, we created programs with different match types and
various numbers of flows to test migration latency. Specifically,
we measured the latency of updating 1 and 1,000 entries for
EM and LPM tables required for migrating flows from servers,
as well as the latency for updating the same entries in mirrored
EM (EM-m) and LPM (LPM-m) tables locally. The results
are shown in Table II. Updating an entry in the mirrored
table takes 10 µs, which is negligible compared to the same
operation on the original tables. The latency of operations on
the original tables is tens of milliseconds. This is because
match-action tables in the switch can only be updated by the
control plane, not the data plane. Consequently, the latency for
updating original tables primarily results from the time taken
for entry-install messages to be delivered from the switch CPU
to the switch ASIC, the entries to be inserted into the original
table, and the results to be returned to the switch CPU. The
migration efficiency can be improved using batch updating,
which has an average latency of 516 µs per flow.

C. Network Features Deployment

CLIP can accelerate existing software middleboxes such as
NAT, Load Balancer, and Firewall. These middleboxes have
a similar processing model: applying for entries from the
control plane and performing match-action with high speed for
particular flow ID, five-tuples, destination IP, etc. The main
problem with deploying them to programmable switches is
the on-chip memory limitation. We evaluate SNAT and FIB
performance as representatives and compare them with the
current software design.

Feature Performance. We run SNAT and FIB implemented
using FastClick [19] at one CS. For a fair comparison,

TABLE III
THE LATENCY OF NETWORK FEATURE

TABLE IV
THE ADDITIONAL RESOURCE USAGE OF SYSTEM

both applications run on the same server and use one core.
TCP retransmission detection is a new feature without the
public software implementation as we know it. We evaluate
applications’ performance in terms of throughput and latency.
Table III shows the latency of applications in CLIP and
Fastclick. Compared to software-based SNAT and FIB, the
average latency of CLIP-based has reduced by nearly 67.5%
and 71.5%, respectively.

To evaluate the end-to-end throughput, we replay six packet
traces.5 To analyze the benefits of CLIP on different work-
loads, we first show the packet size distributions of those
traces, as shown in Figure 11 (a). We classify the six traces
into two groups: (AP, BB, DC) and (IM, WS, VS). Within each
group, flows with large packets become increasingly frequent
in sequence. The throughput of two applications is shown in
Figure 11 (b) and (c). Compared to the software-based imple-
mentation, CLIP achieves 1.36× to 4.05× higher throughput
for SNAT and 2.85× to 16.06× higher throughput for FIB.
Throughput improvement (blue line) is more significant for
workloads dominated by small packets. This suggests that
flow migration effectively reduces the bottleneck caused by
server CPU consumption when processing small packets. This
observation is not obvious in FIB, as it uses a filter to select the
longest prefix to ensure look-up correction, rather than relying
solely on traffic distribution.

D. Resource Consumption

We evaluate how much ASIC resource is consumed only
by CLIP based on the P4 compiler’s output. Table IV shows
the resource consumption of throughput-intensive traffic Selec-
tion (count-min sketch), Scalability, and Forwarding module.
We observe that there are plenty of resources remaining to
implement other functionality on the ASIC along with CLIP.
The SRAM and Hash Bit consume the most in a short time for
the scale of entry. The selecting module is made of registers
that are deployed at SRAM. Thus, its SRAM space usage
depends on the total number of count-min size, and in this

5We utilize the traffic header and append payloads ranging from 64 bytes to
1500 bytes to simulate the data center traffic distribution because the payload
of the trace has been anonymous.

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACCELERATING NETWORK FEATURES DEPLOYMENT WITH HETEROGENEOUS PLATFORMS 443

Fig. 11. The throughput of application performance under six traces: Access Point (AP), Backbone (BB), Data Center (DC), Instant Message (IM), Web
Search (WS) and Video Stream (VS). (a) Packets size (byte) distribution of traces; (b) SNAT; (c) FIB.

evaluation, we set 1024 2-way count-min sketch. Besides,
it consumes some other amount of TCAM, VLIW instruction,
and hash bits, all less than 5%. The scalability module and
the forwarding module consume SRAM and hash bits to store
metadata and resolve the bucket. The forwarding module uses
the TCAM to support LPM lookup. As the Scalability module
shares the hash calculation with Forwarding, its occupation of
the hash bit is under 2%.

VIII. LIMITATIONS AND DISCUSSION

Cost of Remote Processing. The primary costs of remote
computation are the additional latency and the reduced number
of available switch ports. The added latency is unavoid-
able since some packets must traverse extra hops. However,
we argue that the increased feature velocity justifies this trade-
off. The overall number of available switch ports is decreased
because some ports are needed to connect the servers. This
introduces a trade-off between processing ability and the avail-
able ports. We provide the dynamic scaling mechanism(§V-B)
that allows users to determine which servers connected to
switch ports can be included in CLIP. This enables users to
make decisions based on their actual requirements.

Machine Learning Acceleration. CLIP provides a solution
to enhance distributed machine learning (ML) architectures.
For example, the programmable switch can perform gradient
aggregation as the parameter server for deep neural network
training. While servers can function as workers to compute
gradients. Due to ML applications being latency-intensive, the
system latency should be optimized. The propagation latency
between the programmable switch and servers is comparable
to the propagation latency between a traditional parame-
ter server and workers. Moreover, programmable switches
can accelerate gradient aggregation, thus reducing process-
ing latency. To further enhance computational efficiency and
flexibility, remote processing should contain various resources,
such as graph processing units (GPUs).

IX. RELATED WORKS

Programmable Dataplane Enhancement. The trend in
cloud networks is to enhance programmability, but deploying
current programmable devices in real production environ-
ments comes with challenges. Some works, such as [9], [10],
[41], aim to extend and explore programmable match-action
tables, but not focus on PHV, analyzable header length, and
register capacity limitations. P4All [23] defines elastic data
structures and translates them into native P4 programs to

improve expressiveness. However, it still faces limitations in
primitive computations, such as floating-point computation.
FPISA [42] attempts to enable floating-point representation
in programmable switches but encounters architectural limi-
tations in existing hardware. Other works focus on different
restrictions; for instance, IPSA [24] aims to achieve online
updating for programmable switches by restructuring their
architecture.

Heterogeneous Platforms Cooperation. Considering com-
bining the strengths of different programmable hardware,
several works [14], [25], [43], [44], [45] have designed
architectures, languages, compilers, or toolchains to facilitate
cross-platform cooperation. Gallium [14] translates existing
Click-defined software middleboxes into separate programs
running on programmable switches and servers. It focuses
less on new feature deployment limitations and the perfor-
mance gap of heterogeneous platforms. Flightplan [43] aims
to automatically disaggregate a P4 program into ASIC, FPGA,
and CPU. Lyra [44] designs a cross-platform language and
compiler for heterogeneous ASICs on the switch. RIBO-
SOME [25] splits packet processing into headers processing
and payloads buffering, and deploys processing on multiple
kinds of devices. All of them have limitations in function
expressiveness concerning P4 or NLP [20]-defined behaviors.
CLIP leverages a small scope of topology to explore the
network features expressiveness and deployment.

X. CONCLUSION

Inspired by the inherent flexibility of software network
functions, we advocate for harnessing a shared server cluster
to swiftly augment the capacity of network switches. This
architectural innovation caters to the demands of network
customers that may exceed the capabilities of existing com-
modity or programmable switches with limited resources. The
framework establishes an environment abundant in resources.
To address challenges tied to performance and complexity,
we introduce traffic balancing across multiple servers and
strategically allocate network functions to fully maximize
resources in both hardware switches and software functions
on servers. Lastly, we present applications that capitalize on
this advanced programmable data plane.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments.

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

444 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

REFERENCES

[1] A. Sivaraman et al., “Packet transactions: High-level programming
for line-rate switches,” in Proc. ACM SIGCOMM Conf., Aug. 2016,
pp. 15–28.

[2] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, Jul. 2014.

[3] I. DPDK. (2014). Data Plane Development Kit. [Online]. Available:
https://www.dpdk.org/

[4] D. R. Barach and E. Dresselhaus, “Vectorized software packet forward-
ing,” U.S. Patent 7 961 636, Jun. 11, 2011.

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3,
pp. 263–297, Aug. 2000.

[6] R. Giladi, Network Processors: Architecture, Programming, and Imple-
mentation. San Mateo, CA, USA: Morgan Kaufmann, 2008.

[7] Intel, Tofino, BC, Canada. (2021). Intel Programmable Ethernet Switch
Products. [Online]. Available: https://www.intel.com/content/www/us/
en/products/network-io/programmable-ethernet-switch.html

[8] (2020). Trident4 / BCM56880 Series. [Online]. Available: https://
www.broadcom.com/products/ethernet-connectivity/switching/
strataxgs/bcm56880-series?_ga=2.101838278.670967709.1597289176-
917906606.1597289176

[9] D. Kim et al., “TEA: Enabling state-intensive network functions on pro-
grammable switches,” in Proc. Annu. Conf. ACM Special Interest Group
Data Commun. Appl., Technol., Archit., Protocols Comput. Commun.,
Jul. 2020, pp. 90–106.

[10] T. Pan et al., “Sailfish: Accelerating cloud-scale multi-tenant multi-
service gateways with programmable switches,” in Proc. ACM SIG-
COMM Conf., Aug. 2021, pp. 194–206.

[11] A. Sapio et al., “Scaling distributed machine learning with in-network
aggregation,” in Proc. 18th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI), 2021, pp. 785–808.

[12] C. Lao et al., “ATP: In-network aggregation for multi-tenant learning,”
in Proc. 18th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
2021, pp. 741–761.

[13] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching ASICs,”
in Proc. Conf. ACM Special Interest Group Data Commun. (SIGCOMM),
Aug. 2017, pp. 15–28.

[14] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium: Automated
software middlebox offloading to programmable switches,” in Proc.
Annu. Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Archit., Protocols Comput. Commun., Jul. 2020, pp. 283–295.

[15] T. Xu, X. Wang, C. Tian, Y. Xiong, Y. Lin, and B. Ye, “CLIP:
Accelerating features deployment for programmable switch,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), May 2023, pp. 1–10.

[16] K.-K. Yap et al., “Taking the edge off with espresso: Scale, reliabil-
ity and programmability for global Internet peering,” in Proc. Conf.
ACM Special Interest Group Data Commun. (SIGCOMM), Aug. 2017,
pp. 432–445.

[17] H. Shao, X. Wang, Y. Lu, Y. Yu, S. Zheng, and Y. Zhao, “Accessing
cloud with disaggregated software-defined router,” in Proc. 18th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), 2021, pp. 1–14.

[18] FD.IO. VPP. Accessed: Jul. 22, 2024. [Online]. Available:
https://wiki.fd.io/view/VPP

[19] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet process-
ing,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS),
May 2015, pp. 5–16.

[20] (2021). GitHub: NPL-Spec. [Online]. Available: https://github.com/
nplang/NPL-Spec

[21] X. Jin et al., “NetCache: Balancing key-value stores with fast in-network
caching,” in Proc. 26th Symp. Operating Syst. Princ. (SOSP), Oct. 2017,
pp. 121–136.

[22] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Special Interest Group Data Commun.
(SIGCOMM), Aug. 2018, pp. 561–575.

[23] M. Hogan, S. Landau-Feibish, M. T. Arashloo, J. Rexford, and
D. Walker, “Modular switch programming under resource constraints,”
in Proc. 19th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
2022, pp. 193–207.

[24] Y. Feng et al., “Enabling in-situ programmability in network data plane:
From architecture to language,” in Proc. 19th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2022, pp.‘635–649.

[25] M. Scazzariello, T. Caiazzi, H. Ghasemirahni, T. Barbette, D. Kostić,
and M. Chiesa, “A high-speed stateful packet processing approach for
tbps programmable switches,” in Proc. 20th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2023, pp. 1237–1255.

[26] T. P. A. W. Group. (2019). P4RunTime Specification. [Online]. Available:
https://p4.org/p4-spec/p4runtime/v1.0.0/P4Runtime-Spec.html

[27] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Trans. Comput. Syst., vol. 2, no. 1, pp. 39–59, 1984.

[28] G. Zhou, Z. Liu, C. Fu, Q. Li, and K. Xu, “An efficient design of intelli-
gent network data plane,” in Proc. 32nd USENIX Secur. Symp. (USENIX
Secur.). Anaheim, CA, USA: USENIX Association, 2023,
pp. 6203–6220.

[29] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proc. 29th
Annu. ACM Symp. Theory Comput. (STOC), 1997, pp. 654–663.

[30] D. G. Thaler and C. V. Ravishankar, “Using name-based mappings to
increase hit rates,” IEEE/ACM Trans. Netw., vol. 6, no. 1, pp. 1–14, 1998.

[31] B. Arzani et al., “007: Democratically finding the cause of packet drops,”
in Proc. 15th USENIX Symp. Netw. Syst. Design Implement. (NSDI),
2018, pp. 419–435.

[32] (2011). Pktgen-DPDK: Traffic Generator Powered by DPDK. [Online].
Available: https://git.dpdk.org/apps/pktgen-dpdk/

[33] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., Nov. 2010, pp. 267–280.

[34] M. Dalton et al., “Andromeda: Performance, isolation, and veloc-
ity at scale in cloud network virtualization,” in Proc. 15th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), 2018, pp. 373–387.

[35] Tcpreplay. Accessed: Jul. 11, 2024. [Online]. Available:
https://tcpreplay.appneta.com/wiki/captures.html

[36] J. Luxemburk, K. Hynek, T. Čejka, A. Lukačovič, and P. Šiška,
“CESNET-QUIC22: A large one-month QUIC network traffic dataset
from backbone lines,” Data Brief, vol. 46, Feb. 2023, Art. no. 108888.
https://www.sciencedirect.com/science/article/pii/S2352340923000069

[37] IP Network Traffic Flows Labeled With 75 Apps. Accessed: Jul. 12,
2024. [Online]. Available: https://www.kaggle.com/datasets/jsrojas/ip-
network-traffic-flows-labeled-with-87-apps?resource=download

[38] S. Špaček, P. Velan, P. Čeleda, and D. Tovarňák, “Encrypted web traffic
dataset: Event logs and packet traces,” Data Brief, vol. 42, Jun. 2022,
Art. no. 108188.

[39] YouTube Traces From the Campus Network. Accessed: May
8, 2024. [Online]. Available: https://traces.cs.umass.edu/index.php/
Network/Network

[40] (2019). Routeviews Prefix to as Mappings Dataset for IPv4 and IPv6.
[Online]. Available: https://www.caida.org/catalog/datasets/routeviews-
prefix2as/

[41] H. Zhu, T. Wang, Y. Hong, D. R. Ports, A. Sivaraman, and X. Jin,
“NetVRM: Virtual register memory for programmable networks,” in
Proc. 19th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2022,
pp. 155–170.

[42] Y. Yuan et al., “Unlocking the power of inline floating-point operations
on programmable switches,” in Proc. 19th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2022, pp. 683–700.

[43] N. Sultana et al., “Flightplan: Dataplane disaggregation and placement
for P4 programs,” in Proc. 18th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2021, pp. 571–592.

[44] J. Gao et al., “Lyra: A cross-platform language and compiler for data
plane programming on heterogeneous ASICs,” in Proc. Annu. Conf.
ACM Special Interest Group Data Commun. Appl., Technol., Archit.,
Protocols Comput. Commun., Jul. 2020, pp. 435–450.

[45] P. Bressana, N. Zilberman, D. Vucinic, and R. Soulé, “Trading
latency for compute in the network,” in Proc. Workshop Netw. Appl.
Integr./CoDesign, Aug. 2020, pp. 35–40.

Tingting Xu (Student Member, IEEE) received the
B.E. degree from Hunan University, Hunan, China,
in 2019. She is currently pursuing the Ph.D. degree
with the Department of Computer Science and Tech-
nology, Nanjing University, under the supervision of
Prof. Xiaoliang Wang. Her research interests include
programmable networks, data center networks, and
network function virtualization.

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

XU et al.: ACCELERATING NETWORK FEATURES DEPLOYMENT WITH HETEROGENEOUS PLATFORMS 445

Xiaoliang Wang (Member, IEEE) is an Associate
Professor with the Department of Computer Sci-
ence and Technology, Nanjing University, China.
He has published more than 30 technical articles
at premium international journals and conferences,
including IEEE/ACM TRANSACTIONS ON NET-
WORKING, IEEE INFOCOM, ACM SIGCOMM,
USENIX NSDI, FAST, and OSDI. His research
interests include networking systems and distributed
computing.

Chen Tian (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the Depart-
ment of Electronics and Information Engineering,
Huazhong University of Science and Technology,
China, in 2000, 2003, and 2008, respectively. He is
a Professor with the State Key Laboratory for Novel
Software Technology, Nanjing University, China.
Previously, he was an Associate Professor with
the School of Electronics Information and Com-
munications, Huazhong University of Science and
Technology, China. From 2012 to 2013, he was a

Post-Doctoral Researcher with the Department of Computer Science, Yale
University. His research interests include data center networks, network
function virtualization, distributed systems, internet streaming, and urban
computing.

Yun Xiong is a highly experienced Network Sys-
tem Architect with nearly 20 years of expertise
in researching and designing high-performance net-
working. He has was a Senior Expert and a Principal
Architect with Huawei and Broadcom.

Baoliu Ye (Member, IEEE) received the Ph.D.
degree in computer science from Nanjing University,
China, in 2004. He is a Full Professor with the
Department of Computer Science and Technology,
Nanjing University. He was a Visiting Researcher
with the University of Aizu, Japan, from March
2005 to July 2006; and the Dean of School of
Computer and Information, Hohai University, since
January 2018. His current research interests mainly
include distributed systems, cloud computing, and
wireless networks, with over 70 papers published

in major conferences and journals. He served as the TPC Co-Chair for
HotPOST12, Hot-POST11, and P2PNet10. He is the Regent of CCF and the
Secretary-General of CCF Technical Committee of Distributed Computing
and Systems.

Sanglu Lu (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from Nanjing University in
1992, 1995, and 1997, respectively, all in computer
science. She is currently a Professor with the Depart-
ment of Computer Science and Technology and the
Deputy Director of the State Key Laboratory for
Novel Software Technology. She was the principle
investigator of many national funding, including the
National Key Research and Development Program
of China; the National Natural Science Foundation
of China; and the Key Research and Development

Program of Jiangsu Province, China. Her research interests include distributed
computing, pervasive computing, and wireless networks. She has published
more than 100 papers in refereed journals and conferences in the above areas.
She is a member of ACM.

Cam-Tu Nguyen received the bachelor’s and mas-
ter’s degrees from Vietnam National University,
Hanoi, in 2005 and 2008, respectively, and the Ph.D.
degree in information science from Tohoku Univer-
sity, Japan, in 2011. From 2012 to 2015, she was
with the LAMDA Group, Nanjing University, as a
Post-Doctoral Researcher. From 2005 to 2017, she
was a Lecturer with Vietnam National University.
From 2017 to 2019, she was an Assistant Researcher
with the Software School, Nanjing University, where
she is currently an Associate Professor with AI
School.

Authorized licensed use limited to: Nanjing University. Downloaded on February 20,2025 at 15:35:18 UTC from IEEE Xplore. Restrictions apply.

