
Enabling Virtual Priority in Data Center Congestion Control
Zhaochen Zhang★, Feiyang Xue★, Keqiang He△, Zhimeng Yin3, Gianni Antichi2,

Jiaqi Gao+, Yizhi Wang★, Rui Ning★, Haixin Nan★, Xu Zhang★, Peirui Cao★,
Xiaoliang Wang★, Wanchun Dou★, Guihai Chen★, Chen Tian★

★Nanjing University △Shanghai Jiao Tong University 3City University of Hong Kong
2Politecnico Milano & Queen Mary University of London +Unaffiliated

Abstract
In data center networks, various types of traffic with strict
performance requirements operate simultaneously, neces-
sitating effective isolation and scheduling through priority
queues. However, most switches support only around ten
priority queues. Virtual priority can address this limitation by
emulating multi-priority queues on a single physical queue,
but existing solutions often require complex switch-level
scheduling and hardware changes. Our key insight is that
virtual priority can be achieved by carefully managing band-
width contention in a physical queue, which is traditionally
handled by congestion control (CC) algorithms. Hence, the
virtual priority mechanism needs to be tightly coupled with
CC. In this paper, we propose PrioPlus, a CC enhancement
algorithm that can be integrated with existing congestion
control schemes to enable virtual priority transmission. Prio-
Plus assigns specific delay ranges to different priority levels,
ensuring that flows transmit only when the delay is within
the assigned range, effectively meeting virtual priority re-
quirements. Compared to Swift CC with physical priority
queues, PrioPlus provides strict priority for high-priority
flows without impacting performance sensibly. Meanwhile,
it benefits low-priority flows from 25% to 41% as its priority-
aware design enhances CC’s ability to fully utilize available
bandwidth once higher-priority traffic completes. As a result,
in coflow and model training scenarios, PrioPlus improves
job completion times by 21% and 33%, respectively, compared
to Swift with physical priority queues.

CCS Concepts: • Networks→ Transport protocols; Net-
work protocol design; Data center networks.

Keywords: Congestion control algorithm, In-network prior-
ity, Data center network
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1 Introduction
As cloud computing advances, data centers have been host-
ing more and more services [35, 36, 81, 98]. These services in-
clude latency-sensitive real-time services [22, 36, 40], coflow-
dependent computing tasks [11, 30, 57], and throughput-
sensitive backend tasks [56, 63, 92], each with its own quality
of service (QoS) requirements (e.g., delay and bandwidth). To
address the diverse QoS demands of different traffic types, pri-
ority queues have become a standard solution for providing
weighted bandwidth sharing, effectively isolating traffic from
interfering with one another [34, 45, 55, 98]. Moreover, pri-
ority queues facilitate priority-based scheduling to enhance
application performance by providing strict prioritization
within the same type of traffic including independent flows
[18, 58, 96], coflows [11], RPCs [70], and distributed ML
model training [25]. The effectiveness of these priority-based
algorithms has been shown to improve with the number of
available priority queues [11, 18, 25, 58, 70].
Despite the significance of priority-based isolation and

scheduling, they are fundamentally constrained by the lim-
ited number of physical priority queues (typically 8 [51] or
12 [24]) due to the following two restrictions. (i) Protocols
used in data centers lack support for more priorities. For
example, the DSCP field in the IP header, which is used
to designate priority, supports only 12 priorities as per the
standard [19]. The PFC protocol [49], used for providing
lossless priorities for RDMA, supports just 8 priorities. (ii)
The consistent trend of bandwidth growth outpacing the
increase in switch buffer sizes [44, 71] makes supporting a
large number of priority levels increasingly challenging. Mi-
crosoft [45] reported that it used only two lossless priorities
to provide coarse-grained isolation for real-time and bulk-
transfer traffic class on Trident2 switch [1] to conserve buffer
exclusively allocated to the PFC headroom. However, the
buffer-to-bandwidth ratio in the latest switch [4] is now two
times smaller than Trident2, making it challenging to support

396

https://doi.org/10.1145/3689031.3717463
https://doi.org/10.1145/3689031.3717463
https://doi.org/10.1145/3689031.3717463
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689031.3717463&domain=pdf&date_stamp=2025-03-30


EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Z.Zhang, et al.

Time

Rate

Time

Queue Length

Kmin

Violate 
O1

High-priority flow

(a) D2TCP.
Time

Rate

Time

Delay
High 

target
Low 

target

Low-priority flow

(b) Expected behavior.

Figure 1. Comparison of D2TCP with expected behavior.
more lossless priorities. Due to the limited number of priority
queues, Meta reports having to place traffic from different
congestion control (CC) algorithms into the same queue,
complicating the deployment of new CCs [34]. This scarcity
also hinders the large-scale implementation of priority-based
traffic scheduling algorithms [16].

Targeting this fundamental issue, we focus on supporting
multiple priority levels within a single physical queue, a
concept we refer to as virtual priority. We argue that the
limited physical priority queues in the network should be
reserved for performance isolation across different traffic
classes, while virtual priority can provide strict priorities
within each traffic class for scheduling, thereby enhancing
overall performance. The virtual priority mechanism aims
to emulate the functionality of strict priority queues and
shall ideally meet the following three objectives. 𝑶1: Multi-
priority assurance – supporting the transmission of flows
with varying priorities within a single physical queue, en-
abling strict and granular prioritization for higher-priority
traffic. 𝑶2: Work conservation – fully utilizing available
bandwidth without any waste. 𝑶3: Readily deployable – eas-
ily implemented in data centers without requiring hardware
replacements or upgrades.
Current methods that offer functionality similar to vir-

tual priority rely on packet scheduling algorithms imple-
mented on switches [15, 16, 63, 68, 85, 94, 95]. As switch
bandwidth increases, these algorithms must be integrated
into the switch’s ASIC to achieve line-rate virtual priority [16,
94]. This necessitates switch replacement for deployment.
Given the scarcity of priority queues and the limitations of
deploying existing switch-based virtual priority mechanisms,
we ask this question in this paper: Can we achieve virtual
priority without switch replacements or upgrades?

Observations:Our observation is that virtual priority can
be achieved by carefully managing bandwidth contention
in a physical priority queue, which is traditionally managed
by the Congestion Control (CC) algorithm. Hence, the vir-
tual priority mechanism needs to be tightly coupled with
CC. However, none of the existing CCs can achieve virtual
priority. D2TCP [89] is a representative ECN-based CC that
prioritizes urgent traffic as illustrated in Figure 1a. When
the switch queue length exceeds ECN threshold, both high
and low-priority flows receive ECNs and decelerate, thereby
violating 𝑶1 (§ 3.1). Ideally, low-priority flows should detect
congestion and decelerate earlier, leaving high-priority flows

unaffected. As demonstrated in Figure 1b, achieving this
requires multi-bit congestion signals (e.g., delay) and distinct
thresholds for each priority. Our analysis of Swift [52], the
state-of-the-art delay-based data center CC, also reveals its
inability to support virtual priority directly (§ 3.2 and § 3.3).

PrioPlus: In this paper, we propose PrioPlus, a congestion
control enhancement algorithm that can be integrated with
existing delay-based CCs to enable virtual priority transmis-
sion. The key idea of PrioPlus is assigning specific delay
ranges, referred to as channels, to each priority. Channels
with larger delay thresholds are allocated to higher priorities.
By restricting flows to transmit only when their delay is
below or within the assigned channel and guiding the delay
to converge to that channel, PrioPlus effectively meets the
performance objectives of 𝑶1 and 𝑶2. Implementing Prio-
Plus requires only CCmodifications at the end host, ensuring
easy deployment and fulfilling 𝑶3. PrioPlus addressed two
challenges.
• Find the sweet point between 𝑶1 and 𝑶2. For a Prio-
Plus flow, there is a tension between avoiding interference
with higher-priority flows (𝑶1) and maximizing band-
width utilization (𝑶2), as the former requires the flow
to be conservative while the latter requires aggression.
PrioPlus carefully navigates the two objectives from var-
ious factors across a flow’s lifecycle. (i) After yielding
bandwidth to higher priority traffic, a PrioPlus flow em-
ploys probing with collision avoidance to gather timely
congestion signals with minimal bandwidth usage. (ii)
When starting in an ambiguous network environment,
a PrioPlus flow adopts linear start strategy to start up
quickly while minimizing potential buffer occupancy. (iii)
When delay falls below the assigned range, a PrioPlus flow
precisely raises the delay into the target range without
overreaction through dual-RTT multiplicative increase.
• Set channel width correctly and tightly. A higher pri-
ority will be assigned larger delay thresholds, exceeding
the summed channel widths of lower priorities, which
may increase latency for high-priority flows if the channel
widths are large. The channel width for a priority must
accommodate the CC’s normal delay fluctuations and
delay measurement noises to avoid misreaction. Prio-
Plus employs delay-based flow cardinality estimation that
regulate the overall aggressiveness of flows according to
the observed delay to stabilize the CC’s delay fluctuations.
For noises caused by protocol offloading (e.g., TSO [6])
and hardware and software jitters and so on, we establish
a relationship between channel width and the magnitude
of these noises to optimize performance (§ 4.3).
We implemented PrioPlus on top of Swift, adding only

79 lines of code within DPDK, demonstrating PrioPlus’s
compatibility and ease of deployment (𝑶3). Testbed eval-
uations confirm its ability to achieve 𝑶1 and 𝑶2 while ef-
fectively managing queue lengths in real-world conditions.
Extensive simulations confirmed that, compared to Swift CC
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with physical priority, PrioPlus provides strict priority for
high-priority flows with no more than 9% degradation. It
benefits low-priority flows from 25% to 41% as its priority-
aware design enhances CC’s ability to fully utilize available
network bandwidth once higher-priority traffic completes.
Consequently, PrioPlus outperforms Swift with physical
priority queues by 21% and 33% in coflow scheduling and
model training scenarios, respectively.

Our artifacts are publicly available online [8] as a contribu-
tion to the research community and to ensure reproducibility.

This work does not raise any ethical issues.

2 Motivation and Background
This section highlights the importance of priority queues
in data center networks (§ 2.1) and emphasizes the need for
virtual priority due to the limited availability of physical
priority queues (§ 2.2). We then introduce the objectives of
virtual priority and discuss existing mechanisms that, while
promising, present challenges in deployment (§ 2.3).

2.1 The Need for a Large Number of Priority Queues
Priority queues are used to provide traffic isolation
for different traffic classes. Data centers run multiple
applications and services with varying Quality of Service
(QoS) requirements within the network [81, 98], including
latency-sensitive real-time services, coflow-dependent com-
puting tasks, and throughput-sensitive backend operations
[56, 92]. In addition, various transport protocols such as
RDMA, DCTCP, and traditional TCP operate concurrently
in data centers, often leading to compatibility issues when
competing for network resources [9, 34, 47]. To accommodate
these requirements, priority queues are employed to provide
weighted bandwidth sharing for different QoS classes [45,
63, 98] and traffic using different protocols [9, 34, 55, 60, 72].
Priority queues are also employed in multi-tenant data cen-
ters for tenants [54, 61, 86] with differing priorities and QoS
requirements [20, 84, 88].
Priority queues are used to perform traffic scheduling
to achieve better performance in the same traffic class.
Although optimal traffic scheduling in general networks is
known as NP-hard [15], priority queue-based approaches can
be utilized to achieve a 2-approximation to the optimum [21]
by assigning flows to different strict priority queues based on
their sizes [11, 18, 58, 64, 75, 96]. The effectiveness of these
priority-based algorithms has been shown to improve with
the number of utilized priority queues across various types
of traffic, including independent flows [18, 58], coflows [11],
RPCs [70], and distributed ML model training [25]. Further-
more, recent research [77, 78] finds that simply assigning
different priorities to models’ traffic in the machine learning
cluster can improve the training speed of all models.

2.2 Only a Few Priority Queues Are Offered
Current commercial switches in data centers typically sup-
port only 8 [51] or 12 [24] priority queues, which cannot be
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Figure 2. Buffer-to-bandwidth ratios of representative switch chips
across different generations.
increased in the short term due to limitations in protocols
and hardware resources.
Priority-related protocols limit the number of priority
queues. The DSCP (Differentiated Service Code Points) field
in the IP header is used to designate priority [45], with
standards defining only 12 mappings of DSCP code points
to service classes [19]. Switch vendors may employ custom
DSCP code points to support additional priorities. However,
the inconsistency in DSCPmappings across different vendors
can complicate its deployment1. Another protocol limitation
is imposed by PFC [49], which is widely used in modern
data centers [17, 42, 45] to provide lossless priorities for
RDMA. The format of PFC frames [49] limits the number of
lossless priorities to a maximum of 8. Since PFC is hardware-
implemented [76], updating the PFC frame format requires
data center operators to upgrade their switches.
The trend of decreasing buffer-to-bandwidth ratio in
switches limits the number of priority queues. The
number of priority queues in the switches is limited by
the scarce on-chip SRAM resource, which contributes sig-
nificantly to switch chip cost and power dissipation. Fur-
thermore, PFC requires dedicated buffer headroom for each
lossless priority, with the required size proportional to the
bandwidth. As bandwidth increases consistently outpace
buffer size growth [44, 71], supporting a large number of
lossless priorities is increasingly difficult. Figure 2 shows the
declining buffer/bandwidth ratios across different genera-
tions of switch chips. A study from Microsoft [45] reports
that they accommodate merely two lossless priorities on Tri-
dent2, which has a buffer/bandwidth ratio of 9.4. In contrast,
the newer Tomahawk4 chip only has a ratio of 4.4, hindering
the support for additional priority queues.
Current priority queue usage. Due to the scarcity of
priority queues, data center operators strive to allocate a
single priority queue for each traffic type with different QoS
requirements [45, 63, 98]. A report from Meta [34] indicates
that the lack of priority queues forces them to place traffic
from different CCs into the same queue, complicating the
deployment of new CC. Although experiments and analysis
show that priority-based traffic scheduling algorithms sig-
nificantly enhance performance [11, 25, 70] within a traffic

1As an example, in HP switches [2], DSCP values 001010 and 001100 are
mapped to the same priority, whereas in Cisco switches [3], they are mapped
to different priorities.
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Figure 3.Micro-benchmark of using existing CCs for virtual priority.

type, their large-scale deployment is hindered by the lack of
priority queues [16].
2.3 Calling for Virtual Priority Capability
The growing demand for priority queues, along with the
current shortage of physical priority queues, has made virtual
priority queues an attractive solution. Virtual priority refers
to the capability of supporting multiple strict prioritieswithin
a single physical priority queue. We argue that the limited
physical priority queues in the network should be reserved
for bandwidth sharing and performance isolation across
different traffic classes (e.g., traffic from distinct product
areas) , while enabling virtual priority at the transport layer
on the end host to offer strict priorities within each traffic
class for traffic scheduling, thereby enhancing performance.
To achieve this vision, virtual priority should achieve the
following objectives.
• 𝑶1:Multi-priority assurance. The virtual prioritymech-
anism must support the transmission of multi-priority
traffic through a single physical queue, ensuring strict
prioritization of higher-priority traffic.
• 𝑶2:Work conservation. The virtual priority mechanism
should aim to fully utilize bandwidth without any waste.
• 𝑶3:Readily deployable. The virtual priority mechanism
should be readily deployable in existing data centers with-
out hardware upgrades or overuse of scarce resources.
Existing virtual priority technologies primarily involve

packet scheduling algorithms that operate on switches. How-
ever, they necessitate programmable switches [95] or addi-
tional specialized hardware [15, 16, 63, 68, 85, 94, 99]. Given
the scarcity of priority queues and the deployment challenges
of existing switch-based virtual priority mechanisms, we
raise the question: Can we achieve virtual priority without
switch replacement/upgrades?

3 Design Rationale
Our insight is that virtual priority can be achieved by care-
fully managing bandwidth contention among flows within a
physical priority queue, a task traditionally handled by the
Congestion Control (CC) at the host. Therefore, the virtual
priority mechanism must be tightly integrated with CC.
Through micro-benchmarks on existing CCs, we derive

three observations for integrating virtual priorities into CC,
guiding the design of PrioPlus. (i) A CC supporting virtual

priority must utilize a multi-bit congestion signal and set
distinct congestion thresholds for different priorities (§ 3.1).
(ii) It should effectively control queue fluctuation (§ 3.2). (iii)
It should cautiously balance multi-priority assurance (𝑶1)
with work conservation (𝑶2) (§ 3.3).

We utilize the ns-3 simulator [5] to analyze bandwidth
contention in a physical priority at a bottleneck port. The
topology comprises a switch connected to multiple hosts,
with one host acting as the receiver and the others as senders.
The switch’s port to the receiver is the bottleneck. The link
bandwidth is set at 100 Gbps, and the round-trip time (RTT)
is 12 𝜇s to mimic a typical data center network environment.
3.1 The Need for the Multi-bit Congestion Signal
The state-of-the-art data center CC that can prioritize a
proportion of traffic is D2TCP [89], an extension of DCTCP
[14]2. It prioritizes flows with imminent deadlines (DDL) by
reducing their rate less significantly. We run two D2TCP
flows with deadlines set at one and two times the ideal
flow completion time (ideal FCT, calculated as flow size
divided by bandwidth), respectively. To meet the established
DDLs, D2TCP should first allocate all bandwidth to the high-
priority flow (the flow with DDL as the ideal FCT), ensuring
it completes within one ideal FCT. Once it completes, D2TCP
should then allocate all bandwidth to the low-priority flow,
i.e., strictly prioritizing the high-priority flow without any
bandwidth waste.

The results are shown in Figure 3a. As shown in the upper
subplot of Figure 3a, when the network notifies ECN to
both senders, they reduce their sending rates simultaneously,
thereby compromising the rate of the high-priority flow
and undermining 𝑶1. Additionally, as shown in the lower
subplot, when two flows converge, the high-priority flow
is not strictly prioritized. This is because when an ECN is
received, high-priority flow will reduce its rate. Although
this reduction is moderate, it prevents high-priority traffic
from monopolizing the bandwidth (i.e., violate 𝑶1).

Ideally, the network should converge to a state where high-
priority flows do not perceive congestion and maintain their
rate, while low-priority flows continuously detect congestion

2Other CCs that can prioritize traffic, such as LEDBAT [80] and PCC Proteus
[66], are internet CCs and only provide an additional background priority.
They are discussed in detail in § 7
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and decrease their rate until they relinquish all bandwidth.
However, this is unattainable by single-bit congestion signals
like ECN that notifies all flows of congestion once the queue
length surpasses the ECN threshold. Therefore, we have:

Observation 1 : CC that supports virtual priority requires
a multi-bit congestion signal and setting distinct congestion
thresholds for flows with different priorities.

3.2 The Need for the Queue Fluctuation Management
As demonstrated in § 3.1, implementing virtual priority ne-
cessitates that higher-priority flows do not decelerate during
bandwidth competition, while lower-priority flows promptly
decelerate. This can be achieved by utilizing multi-bit con-
gestion signal, such as delay [52] and delay gradient [69], and
assigning higher congestion thresholds to higher-priority
flows and lower ones to lower-priority flows. When the
congestion signal falls between the thresholds of different
priorities, higher-priority flows can tolerate the congestion
and maintain their speed, whereas low-priority flows pro-
gressively slow down.
Therefore, we next investigate whether existing multi-

bit congestion signal-based CC, i.e. Swift [52], can achieve
virtual priority by setting different thresholds. In our exper-
iments, we set a delay threshold (target delay in Swift) of
base RTT plus 15 𝜇s for high-priority flows and base RTT
plus 5 𝜇s for low-priority flows. Note that the higher target
delay in Swift indicates higher-priority flows decelerate more
conservatively than lower-priority flows during bandwidth
contention, rather than necessarily experiencing high delay
as the actual delay depends on queue length.
Figure 3b illustrates the interaction between two high-

priority and two low-priority flows, with the upper subplot
displaying the total send rate of both types of flows. It is
observed that Swift does not strictly prioritize high-priority
traffic. This is due to Swift’s target scaling mechanism.When
the flow rate decreases, Swift tends to assume an increase
in the number of flows within the network, consequently
raising the target delay to accommodate the queue fluc-
tuations caused by numerous flows [52]. As illustrated in
the upper subplot, after rate reductions, low-priority flows
increase their target delay, allowing for a weighted sharing
of bandwidth with high-priority flows (i.e., violate 𝑶1).
Figure 3c illustrates an experiment in which 300 low-

priority flows, starting at 0 ms, compete with a single high-
priority flow that begins at 2 ms, using the Swift congestion
control algorithm without target scaling. Two horizontal
lines in the lower subplot represent the target delays of high
and low priorities, respectively. Without target scaling, Swift
fails to maintain the queue length near the target delay of
low priority, resulting in under-utilization of bandwidth (i.e.,
violate 𝑶2). Once the high-priority traffic appears, the delay
fluctuations exceed the high-priority flow’s target delay,
making it decelerate (i.e., violate 𝑶1)

As we can see, Swift cannot achieve virtual priority re-
gardless of whether target scaling is enabled. This limitation
stems from its ineffective management of queue fluctuations
caused by numerous flows. In summary, we have
Observation 2 : Queue fluctuation management is es-
sential for virtual priority CC to avoid sending erroneous
congestion signals to flows of varying priorities.

3.3 Virtual Priority Necessitates Meticulous Tradeoff
We then investigate whether implementing virtual priorities
requires additional meticulous design. To avoid the issues
discussed in § 3.2, we examine Swift without target scaling
in a scenario with two high-priority flows and two low-
priority flows. The two high-priority flows converge initially,
followed by the commencement of the low-priority flows at
100 𝜇s. Figure 3d shows the rates of one high-priority flow
and one low-priority flow. Two major tradeoffs between
aggressive and conservative are observed.
(i) Trade-off between flow start rate and buffer occupation.

RDMA CCs commonly start flows at the line rate. However,
the blind line rate start of low-priority flows leads to sub-
stantial buffer occupation, resulting in the deceleration of
high-priority flows (i.e., violate 𝑶1). Conversely, starting
below the line rate may lead to bandwidth underutilization,
prolonging the completion time of flows (i.e., violate 𝑶2).
(ii) Trade-off between signal frequency and bandwidth oc-

cupation. For most CCs, congestion signals are piggybacked
by the ACK. Thus, CCs must keep a minimum send rate
to ensure the periodic reception of congestion signals. In
the experiment, after around 400 𝜇s, the rate of the low-
priority flow decelerates to the minimum rate limit, which
is set to 100 Mbps in the experiment. This is corresponding
to sending one packet every 84 𝜇s. When the high-priority
flows cease, the low-priority flow experiences an 80𝜇s idle
before detecting the end of contention by the next packet’s
ACK. This results in a slow rate increase, causing bandwidth
under-utilization, thereby violating 𝑶2. Conversely, increas-
ing the frequency of congestion signals means raising the
minimum rate limit, which would incur greater bandwidth
occupation, especially when there are many low-priority
flows (i.e., violate 𝑶1). In summary, we have
Observation 3 : Many existing CC designs are not suitable
for virtual priority CC, which fail to balance multi-priority
assurance (𝑶1) with work conservation (𝑶2).

4 Design
In this section, we introduce PrioPlus, a congestion control
enhancement algorithm that can be integrated into existing
delay-based CCs to enable virtual priority.
4.1 Overview
Key idea. PrioPlus assigns specific delay ranges, termed as
channels, to each priority. Channels with larger thresholds
are assigned to higher priorities. A channel 𝑖 has two delay
thresholds, 𝐷𝑖𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐷𝑖

𝑙𝑖𝑚𝑖𝑡
, satisfying 𝐷𝑖−1

𝑙𝑖𝑚𝑖𝑡
<𝐷𝑖𝑡𝑎𝑟𝑔𝑒𝑡<
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Priority Priority
Number

Delay
Threshold

Higher Larger Larger

Lower Smaller Smaller

Table 1. Key trems used in the
paper.

𝐷𝑖
𝑙𝑖𝑚𝑖𝑡

By restricting flows of priority 𝑖 to control delay to its
𝐷𝑖𝑡𝑎𝑟𝑔𝑒𝑡 and to suspend transmission when delay larger than
its 𝐷𝑖

𝑙𝑖𝑚𝑖𝑡
, PrioPlus meets the performance requirements of

𝑶1 and 𝑶2, thus achieving virtual priority.
Following the convention in scheduling research [25, 70],

we use larger numbers to denote higher priorities. Higher
priorities are assigned channels with larger delay thresholds.
To ensure clarity of our terminology, we list key terms in Ta-
ble 1. Note that higher delay thresholds indicate that higher
priorities decelerate more conservatively in bandwidth con-
tention, rather than necessarily experiencing higher delays,
as elaborated in § 3.1 and will be demonstrated in § 6.3.
Integrate to existing delay-based CCs. PrioPlus can inte-
grate with most delay-based CCs (referred to as original CC)
that set a target delay for flows and adjust their windows or
rates to maintain the delay close to this target. PrioPlus in-
tegrates with original CC by assigning its target delay to
𝐷𝑡𝑎𝑟𝑔𝑒𝑡 (and disabling any target scaling mechanisms), mod-
ifying CC’s window or rate, and fine-tuning its AI (Additive
Increase) step. In this section, we present the design of Prio-
Plus with Swift, the state-of-the-art delay-based data center
CC. We also integrate PrioPlus with LEDBAT [80], with
methods and effects discussed in § 4.4 and § 6.2. PrioPlus can
leverage either RTT (Round-Trip Time) or OWD (One-Way
Delay) depending on the delay metric used by the original
CC algorithm. For simplicity, we will focus on RTT in the
following sections, as it is used by Swift.
Challenges. Implementing virtual priority is not merely
about setting different delay ranges for each priority. There
are two primary challenges.
• Find the sweet point between 𝑶1 and 𝑶2 (§ 4.2). Current
CCs lack dedicated design considerations for virtual pri-
ority, encompassing various aspects of a flow’s lifecycle,
such as maintaining congestion signal frequency after
yielding bandwidth, initiating low-priority flow without
interfering with higher-priority flows, and quickly adjust-
ing delay to the designated channel. As highlighted in
Observation 3, achieving this requires a careful balance
between aggressive and conservative strategies.
• Set channel width correctly and tightly (§ 4.3). A higher
priority will be assigned larger delay thresholds, exceed-
ing the summed channel widths of lower priorities. This
allocation may increase latency for high-priority flows,
thereby impacting end-to-end performance. As shown in
Figure 4b, the channel width must accommodate both

CC’s normal fluctuation and any noise in delay mea-
surement to prevent misreactions. To minimize channel
width, it is essential to regulate the amplitude of CC’s
fluctuations and to figure out the relationship between
the noise and the channel width.

Workflow.We introduce PrioPlus’s workflow through the
example shown in Figure 4a.

(i) Delay above 𝐷𝑙𝑖𝑚𝑖𝑡 . When the delay exceeds 𝐷𝑙𝑖𝑚𝑖𝑡 , the
low-priority flow infers that higher-priority flows are trans-
mitting and, therefore, halts its transmission, relinquishing
bandwidth to the higher-priority flow. Then it employs a
probe with collision avoidance scheme to obtain high-frequency
congestion signals with minimal bandwidth usage (§ 4.2.1).

(ii) Delay equal to base RTT 3. After the high-priority flow
finishes, the low-priority flow observes a delay equal to base
RTT, which implies that the path’s bandwidth utilization
may vary from being completely idle to just adequately
utilized but no queues are built up. In such circumstances,
PrioPlus employs a linear start strategy to balance switch
buffer occupancy and flow startup speed (§ 4.2.2).

(iii) Delay between base RTT and 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 .When the second
high-priority flow starts, it observes a delay between base
RTT and 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 . The flow deduces that the network traffic
consists of lower-priority flows. Consequently, the flow em-
ploys a dual-RTT multiplicative increase strategy to promptly
elevate the delay to𝐷𝑡𝑎𝑟𝑔𝑒𝑡 to prompt lower-priority flows re-
linquish the bandwidth while avoiding overreaction (§ 4.2.3).

(iv) Delay around 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 and below 𝐷𝑙𝑖𝑚𝑖𝑡 . In this circum-
stance, the flow enters its designated channel and employs
the original CC to regulate the flow rate.
Compress and configure the channel width. As shown
in Figure 4b, the channel width must accommodate (i) CC’s
normal fluctuations and (ii) the noise in delay measurement.

To compress the channel width, (i) we adopt a delay-based
flow cardinality estimation to reduce delay fluctuations. Once
the delay exceeds 𝐷𝑙𝑖𝑚𝑖𝑡 , PrioPlus estimates the cardinality
of flows with the same priority based on the current delay
and its own window size, and accordingly adjusts the overall
aggressiveness of the flows in the network to reduce delay
fluctuations. (ii) For noise caused by protocol offloading (e.g.,
TSO) and hardware and software jitters, we propose a filter
mechanism to filter out infrequent large delay noises (§ 4.3.1).

3The base RTT represents the RTT when a packet does not experience
queuing delays, which can be directly calculated in data centers [52].
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Subsequently, we present the methods for configuring
channel width in different use cases and detail the applica-
bility of PrioPlus (§ 4.3.2).

The overall algorithm is specified in Algorithm 1.
4.2 Balancing Aggressive and Conservative Tactics
In this section, we describe PrioPlus’s mechanisms for balanc-
ing aggressive and conservative tactics across three scenarios.
(i) obtain congestion signals with minimal bandwidth occu-
pation, (ii) startup in ambiguous network conditions, and
(iii) increasing delay to 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 while avoiding overreaction.
4.2.1 Probe with Collision Avoidance
As shown in Observation 3, the low-priority flows face a
tradeoff in choosing the minimum rate. PrioPlus addresses
this tradeoff through probe with collision avoidance. Probe
is used for a lower-priority flow when it starts or when
it relinquishes all bandwidth due to higher-priority flows
presenting. High-priority flows should start transmission
without a probe. We will discuss this design choice in § 4.4.

When a probe is needed, the sender sends a minimal-sized
probe packet, which will be echoed back once received by
the receiver, allowing the sender to determine the RTT. Con-
sidering sending a 64-byte probe packet per base RTT (e.g.,
12us), the bandwidth occupation is only 42 Mbps, allowing
for the checking of the delay with each base RTT.

However, the straightforward probe mechanism presents
two issues. (i) Collisions. In the presence of high-priority
flows, all low-priority flows simultaneously start to probe
and then restart transmission if the probed delay is low,
potentially leading to transient congestion. (ii) Bandwidth
occupancy. Although a single flow requires only 42 Mbps for
one probe per base RTT, probe packets can impose a heavy
load on the bandwidth when there are numerous flows.
PrioPlus employs probing with collision avoidance which

is inspired by priority assisted CSMA/CA, an advanced tech-
nique used in WLANs [82, 87]. When 𝑑𝑒𝑙𝑎𝑦 exceeds 𝐷𝑙𝑖𝑚𝑖𝑡 ,
PrioPlus flow sends a probe after (𝑑𝑒𝑙𝑎𝑦 − 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 ) +
𝑟𝑎𝑛𝑑𝑜𝑚(𝐵𝑎𝑠𝑒𝑅𝑡𝑡)where 𝑟𝑎𝑛𝑑𝑜𝑚(𝐵𝑎𝑠𝑒𝑅𝑡𝑡) is a randomvalue
between 0 and base RTT (line 22). The former item leverages
the temporal locality of traffic, predicting that the queue
length (i.e., delay) will not reduce to 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 (the target delay
of this priority) within the time frame of 𝑑𝑒𝑙𝑎𝑦 − 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 .
Additionally, in networks with flows at multiple priorities
probing, it keeps the probing frequency of higher-priority
flowswhile decreasing the bandwidth usage of lower-priority
ones. The randomization in the latter item can reduce colli-
sion probabilities.
If the probe ACK indicates that the delay still exceeds

𝐷𝑙𝑖𝑚𝑖𝑡 , the next probe will be sent following the method
described above (line 27). Probe losses are recovered through
the original CC’s RTO (Retransmission Timeout). When a
probe ACK is received, PrioPlus resets the original CC’s RTO.
4.2.2 Linear Start
An important trade-off emerges in starting a flow when
facing an uncertain network environment. This situation

Algorithm 1: PrioPlus’s Main Algorithm
1 Procedure NewAck(𝑑𝑒𝑙𝑎𝑦)
2 if 𝑝𝑘𝑡 .𝑠𝑒𝑞 > 𝑟𝑡𝑡𝐸𝑛𝑑𝑆𝑒𝑞 then
3 𝑟𝑡𝑡𝑃𝑎𝑠𝑠 ← 𝑡𝑟𝑢𝑒 , 𝑟𝑡𝑡𝐸𝑛𝑑𝑆𝑒𝑞 ← 𝑠𝑛𝑑𝑁𝑥𝑡

4 𝑑𝑢𝑎𝑙𝑅𝑡𝑡𝑃𝑎𝑠𝑠 ← ¬𝑑𝑢𝑎𝑙𝑅𝑡𝑡𝑃𝑎𝑠𝑠
5 if 𝑑𝑢𝑎𝑙𝑅𝑡𝑡𝑃𝑎𝑠𝑠 == 𝑓 𝑎𝑙𝑠𝑒 then
6 𝑊𝐴𝐼 ←

𝑊𝐴𝐼𝑜𝑟𝑖𝑔𝑖𝑛

#𝑓 𝑙𝑜𝑤 // End of adaptive increase (4.2.3)

7 if 𝑑𝑒𝑙𝑎𝑦 >= 𝐷𝑙𝑖𝑚𝑖𝑡 && 𝑐𝑜𝑛𝑠𝑒𝑐 + + ≥ 2 then
/* Flow cardinality estimation (4.3.1) */

8 #𝑓 𝑙𝑜𝑤 ←𝑚𝑎𝑥 (#𝑓 𝑙𝑜𝑤, 𝑑𝑒𝑙𝑎𝑦 ·𝐿𝑖𝑛𝑒𝑅𝑎𝑡𝑒
𝑐𝑤𝑛𝑑

)
9 𝑊𝐴𝐼 ←

𝑊𝐴𝐼𝑜𝑟𝑖𝑔𝑖𝑛

#𝑓 𝑙𝑜𝑤 , 𝑐𝑜𝑢𝑛𝑡𝐷𝑜𝑤𝑛 ← 𝐵𝑎𝑠𝑒𝐵𝑑𝑝

𝑊𝐿𝑆

10 StopSending(), ScheduleProbe(𝑑𝑒𝑙𝑎𝑦) // Probe (4.2.1)
11 else
12 if 𝑑𝑒𝑙𝑎𝑦 <= 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 && 𝑟𝑡𝑡𝑃𝑎𝑠𝑠 then
13 if 𝑑𝑒𝑙𝑎𝑦 == 𝐵𝑎𝑠𝑒𝑅𝑡𝑡 then
14 𝑐𝑤𝑛𝑑 ← 𝑐𝑤𝑛𝑑 + 𝑊𝐿𝑆

#𝑓 𝑙𝑜𝑤 // Linear start (4.2.2)
15 if 𝑐𝑜𝑢𝑛𝑡𝐷𝑜𝑤𝑛 == 0 then #𝑓 𝑙𝑜𝑤 ← #𝑓 𝑙𝑜𝑤 · 2
16 else 𝑐𝑜𝑢𝑛𝑡𝐷𝑜𝑤𝑛 ← 𝑐𝑜𝑢𝑛𝑡𝐷𝑜𝑤𝑛 − 1
17 else if 𝑑𝑢𝑎𝑙𝑅𝑡𝑡𝑃𝑎𝑠𝑠 then
18 𝑊𝐴𝐼 // Start of Dual-RTT adaptive increase(4.2.3)

19 ←𝑊𝐴𝐼 +𝑚𝑖𝑛 ( 𝑐𝑤𝑛𝑑
2 ,

𝐷𝑡𝑎𝑟𝑔𝑒𝑡 −𝑑𝑒𝑙𝑎𝑦
𝑑𝑒𝑙𝑎𝑦

·𝑐𝑤𝑛𝑑 )
20 𝑐𝑜𝑛𝑠𝑒𝑐 ← 0 // (4.3.2)

21 OriginalCC(𝑑𝑒𝑙𝑎𝑦)

22 Function ScheduleProbe(𝑑𝑒𝑙𝑎𝑦)
23 𝑝𝑟𝑜𝑏𝑒𝐷𝑒𝑙𝑎𝑦 ← 𝑑𝑒𝑙𝑎𝑦 − 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑟𝑎𝑛𝑑𝑜𝑚 (𝐵𝑎𝑠𝑒𝑅𝑡𝑡 )
24 SendProbeAfter(𝑝𝑟𝑜𝑏𝑒𝐷𝑒𝑙𝑎𝑦)

25 Function NewProbeAck(𝑑𝑒𝑙𝑎𝑦)
26 if 𝑑𝑒𝑙𝑎𝑦 >= 𝐷𝑙𝑖𝑚𝑖𝑡 then
27 ScheduleProbe(𝑑𝑒𝑙𝑎𝑦) , return

28 if 𝑑𝑒𝑙𝑎𝑦 == 𝐵𝑎𝑠𝑒𝑅𝑡𝑡 then
29 𝑐𝑤𝑛𝑑 ← 𝑊𝐿𝑆

#𝑓 𝑙𝑜𝑤 // Linear start (4.2.2)

30 if 𝑐𝑜𝑢𝑛𝑡𝐷𝑜𝑤𝑛 == 0 then #𝑓 𝑙𝑜𝑤 ←𝑚𝑎𝑥 (1, #𝑓 𝑙𝑜𝑤2 )
31 else 𝑐𝑜𝑢𝑛𝑡𝐷𝑜𝑤𝑛 ← 𝑐𝑜𝑢𝑛𝑡𝐷𝑜𝑤𝑛 − 1
32 else
33 𝑐𝑤𝑛𝑑 ← 𝑃𝑘𝑡𝑆𝑖𝑧𝑒 // Set the window conservatively (4.4)

34 ResumeSending()

35 𝑟𝑡𝑡𝐸𝑛𝑑𝑆𝑒𝑞 ← 𝑠𝑛𝑑𝑁𝑥𝑡 , 𝑑𝑢𝑎𝑙𝑅𝑡𝑡𝑃𝑎𝑠𝑠 ← 𝑓 𝑎𝑙𝑠𝑒

occurs when observed delays are equal to the base RTT or
when a new flow starts without a probe. A delay equal to
the base RTT implies that the path utilization could range
from being completely unused to just adequately utilized.

RDMA CCs typically start data transmission at line rate to
fully utilize the bandwidth [101]. However, when transmit-
ting at line rate, a single lower-priority flow could cause one
BDP of buffer backlog in the worst-case scenario (i.e., the
path was fully utilized), impairing the higher-priority flows.

From another perspective, TCP CCs employ an exponential
start strategy [37], which starts at a low 𝑐𝑤𝑛𝑑 (congestion
window) and doubles the 𝑐𝑤𝑛𝑑 every RTT if no congestion
is detected4. However, the low starting rate may result in

4To provide a clearer explanation, the following analysis will use rate to
describe CC’s behavior.

402



EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands Z.Zhang, et al.

Time

Rate

Time

Bytes delayed:
n/2 BDP

Line rate

Utilized:
1/2 line rate

Rate

Bytes delayed:
(n-3/2) BDP

Line rate

Utilized:
1/2 line rate

RTTRTT

Buffer backlog:
1/2n BDP

1/n 
line rate

1/2 
line 
rate

Buffer backlog:
1/4 BDP

n RTTn RTT

Linear StartExponential start

Figure 5. Illustration of exponential start and linear start.

Flow Start Strategy Bytes delayed Maximum extra buffer
Line-rate start 0! 1 BDP #
Exponential start 𝑛 − 3/2 BDP # 0.5 BDP!
Linear start 𝑛/2 BDP! 1/𝑛 BDP!

Table 2. Comparison of start strategies.

significant delays in data transmission. Assume it takes 𝑛
RTT to reach line rate, the left diagram of Figure 5 shows the
amount of delayed bytes (compared to line-rate start), which
is represented by the area above the rate curve as 𝑛 − 3

2 BDP.
Moreover, it does not effectively reduce the additional buffer
backlog. In a scenario where link utilization is 50%, the link
becomes fully utilized exactly at 𝑛 − 1 RTTs. The sender can
only observe the queue buildup and stop increasing the rate
at 𝑛 RTT. During the last RTT, the sender increases the rate
by 1

2 line rate, resulting in a buffer backlog of 1
4 of the BDP.

We notice that a flow’s maximum potential buffer occu-
pancy is related to its rate increase per RTT. To achieve a
line rate within 𝑛 RTTs, the strategy with the least potential
buffer occupancy is to linearly accelerate by 1

𝑛
of the line

rate each RTT. As shown in the right diagram of Figure 5, a
linear startup over 𝑛 RTTs only incurs 𝑛2 BDP delay in data
transmission and additional 1

2𝑛 of BDP buffer backlog.
Based on this, we propose the linear start strategy, whereby

a flow starts transmitting with 𝑐𝑤𝑛𝑑 set to𝑊𝐿𝑆 (window step
for linear start) (line 29), and if no queue buildup is observed,
its rate increases by𝑊𝐿𝑆 per RTT (line 14). As illustrated
in Table 2, compared to the line-rate start and exponential
start, the linear start only delays the transmission by 𝑛

2 BDP,
while at most occupying 1

2𝑛 of the base BDP, efficiently
balancing the bandwidth utilization and the potential extra
buffer occupancy. Linear start is also adopted when an empty
queue is observed during data transmission (line 14).

We prove the following theorem throughVariationalmethod,
with the detailed proof placed in Supplemental Material [8].
Theorem 4.1. Linear start is the start strategy that incurs the
least potential buffer backlog when increasing the send rate
from 0 to the line rate in a given period.

4.2.3 Dual-RTT Adaptive Increase
Delay between base RTT and 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 indicates that only
lower-priority flows are transmitting. In such cases, a flow
should raise the delay to 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 (higher than 𝐷𝑙𝑖𝑚𝑖𝑡 of lower
priorities) to prompt lower-priority flows to relinquish band-
width. Using a predefined increase step size fails in this
scenario as, for instance, a fixed increase step size may be
effective with ten flows but is inadequate for a single flow
and excessive for a hundred flows.

PrioPlus employs an adaptive increase approach to rapidly
and accurately elevate the delay to 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 , regardless of the
number of flows. Consider a scenario where𝑛 flows are at the
same priority, and the current delay is 𝑑𝑒𝑙𝑎𝑦. The amount
of inflight data is given by the formula 𝑑𝑒𝑙𝑎𝑦 · 𝐿𝑖𝑛𝑒𝑅𝑎𝑡𝑒 ,
which equals the total 𝑐𝑤𝑛𝑑 of 𝑛 flows, i.e.,

∑𝑛
𝑖=1 𝑐𝑤𝑛𝑑𝑖 . To

elevate the delay to 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 , each flow’s window size needs
to be increased by the ratio 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 ·𝐿𝑖𝑛𝑒𝑅𝑎𝑡𝑒

𝑑𝑒𝑙𝑎𝑦 ·𝐿𝑖𝑛𝑒𝑅𝑎𝑡𝑒 , which means

increasing the 𝑐𝑤𝑛𝑑 by the step 𝐷𝑡𝑎𝑟𝑔𝑒𝑡−𝑑𝑒𝑙𝑎𝑦
𝑑𝑒𝑙𝑎𝑦

· 𝑐𝑤𝑛𝑑 .
Adaptive increase could significantly elevate the delay. To

prevent excessive fluctuations in delay, PrioPlus constrains
that the step of each adaptive increase does not exceed
𝑐𝑤𝑛𝑑

2 . Rather than directly enlarging the window size after
determining the adaptive increase step, PrioPlus incorporates
this step within the original CC’s additive increase (AI) step
(line 19). Then the original CC’s gradual window expansion
mechanism (e.g., increase the window 𝑊𝐴𝐼

𝑐𝑤𝑛𝑑
per ACK) will

complete the adaptive increase within one RTT.
To avoid overreactions, PrioPlus initiates an adaptive in-

crease every two RTTs. We use the scenario depicted in
Figure 6 to illustrate the rationale. Assume that the per-
hop delay is 1 second and the bottleneck has an output rate
of 0.5 packets per second. Initially, packet 𝑝0 is queued at
the bottleneck, and the 𝑐𝑤𝑛𝑑 is 3 packets. After 𝑝1 is sent,
it takes 1 second to arrive at the bottleneck, where 𝑝0 is
just being dispatched. Consequently, 𝑝1 waits 2 seconds
at the bottleneck, and it takes another 3 seconds for the
acknowledgment of 𝑝1 to return to the sender, marking the
end of 𝑅𝑇𝑇 1. After observing a 4-second delay at the end of
𝑅𝑇𝑇1, the sender initiates an adaptive increase, expanding
the window to 4 packets and sending packets 𝑝4 to 𝑝7 during
𝑅𝑇𝑇2. However, by the end of 𝑅𝑇𝑇2 (marked by the ACK
of 𝑝4), the expanded window has not yet affected the delay,
which remains at 4 seconds. By the end of 𝑅𝑇𝑇3, when 𝑝8
is acknowledged, the delay increases to 6 seconds, corre-
sponding to the 1 packet of 𝑐𝑤𝑛𝑑 increase. In conclusion,
the delay elevation only becomes observable precisely two
RTTs after initiating the adaptive increase. If we perform
another adaptive increase at one RTT after the initial one, it
amounts to applying two consecutive adaptive increases to
the same network conditions, leading to overreaction.

Therefore, PrioPlus utilizes a dual RTT design for adaptive
increase. The 𝑑𝑢𝑎𝑙𝑅𝑡𝑡𝑃𝑎𝑠𝑠 is a boolean variable that toggles
at the end of each RTT (line 4). An adaptive increase is exe-
cutedwhen𝑑𝑢𝑎𝑙𝑅𝑡𝑡𝑃𝑎𝑠𝑠 is true and the delay is below𝐷𝑡𝑎𝑟𝑔𝑒𝑡
(line 17). When 𝑑𝑢𝑎𝑙𝑅𝑡𝑡𝑃𝑎𝑠𝑠 turns false, PrioPlus resets the
𝑊𝐴𝐼 to𝑊𝐴𝐼𝑜𝑟𝑖𝑔𝑖𝑛 (line 6).
4.3 Compress and Configure the Channel Width
As shown in Figure 4b, the channel width must accommo-
date both CC’s normal fluctuations and the noise in the
delay measurement. To prevent channel width from being
excessively large, we propose two methods to mitigate CC’s
fluctuations and manage delay noise (§ 4.3.1). Then we detail

403



Enabling Virtual Priority in Data Center Congestion Control EuroSys ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Time point to start adaptive increase.
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Figure 6. After conducting an adaptive increase, it takes two RTTs to observe the effect in delay.
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Figure 7. Delay noise.

the configuration of the channel width in various use cases
(§ 4.3.2).

4.3.1 Compress the Channel Width
Alleviate CC’s fluctuations.CCs typically show increasing
fluctuations with the number of flows, as each flow indepen-
dently adjusts its rate using a fixed AI step [14, 43, 52, 101].
Additionally, PrioPlus adopts a linear startup mechanism
with a step size of 1

𝑛
𝐵𝑎𝑠𝑒𝐵𝑑𝑝 upon detecting an empty queue.

When the number of flows exceeds 𝑛, a problematic cycle
may occur: an empty queue triggers a linear start for each
flow, which causes the delay exceeding 𝐷𝑙𝑖𝑚𝑖𝑡 , halting trans-
mission and resulting in an empty queue again.

PrioPlus address this issue by delay-based flow cardinality
estimation. When the delay exceeds𝐷𝑙𝑖𝑚𝑖𝑡 , the flow estimates
the flow cardinality #𝑓 𝑙𝑜𝑤 (i.e., the number of active flows
at the same priority level) as the ratio of inflight size 𝑑𝑒𝑙𝑎𝑦 ·
𝐿𝑖𝑛𝑒𝑅𝑎𝑡𝑒 to its own 𝑐𝑤𝑛𝑑 (line 8). Based on the estimation,
the flow proportionally adjusts the𝑊𝐴𝐼 (lines 6 and 9) and
𝑊𝐿𝑆 (lines 10 and 27). In this way, when the delay fluctuates
exceeding 𝐷𝑙𝑖𝑚𝑖𝑡 due to numerous flows, the aggressiveness
of PrioPlus flows can be controlled based on the estimated
flow cardinality. The cardinality-based adjustment does not
compromise bandwidth utilization, as the total increase step
of all adjusted flows is similar to that of a single flow.
PrioPlus flow employs a countdown mechanism to reset

the estimated flow cardinality. Each time the flow cardinality
is estimated, the 𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛 is set to 𝐵𝑎𝑠𝑒𝐵𝑑𝑝

𝑊𝐿𝑆
(line 9). For

each RTT that observes a delay equal to the base RTT, the
𝑐𝑜𝑢𝑛𝑡𝑑𝑜𝑤𝑛 is decremented by one if it is larger than zero;
otherwise, the estimated flow cardinality #𝑓 𝑙𝑜𝑤 is halved.
The rationale is that when the RTT equals the base RTT,
all flows will adopt the linear start strategy (§ 4.2.2). If the
number of flows matches the estimated cardinality #𝑓 𝑙𝑜𝑤 ,
the total 𝑐𝑤𝑛𝑑 of concurrent flows will exceed the 𝐵𝑎𝑠𝑒𝐵𝑑𝑝
after 𝐵𝑎𝑠𝑒𝐵𝑑𝑝

𝑊𝐿𝑆
RTTs. If the delay remains equal to the base

RTT after this, it indicates that some flows have finished,
leading to an overestimation of the flow cardinality.
Accommodate the delay noise. As shown in previous
works [53, 69] and our latter measurement (§ 4.3.2), delay
noise in modern data centers exhibits a long-tail distribution,
meaning that large noises are infrequent. PrioPlus employs
a simple and effective filter mechanism to filter out infre-
quent large delay noises: a flow relinquishes bandwidth
only when the delay exceeds the 𝐷𝑙𝑖𝑚𝑖𝑡 in two consecutive
measurements (lines 7 and 20). This design allows data center
operators to easily adjust the channel width to accommodate

delay noise. Operators could first measure noise in their data
centers and then expand the channel width according to a
high percentile of the delay noise.

4.3.2 Configure the Channel Width
The configuration of the channel width is dependent on
the use cases. We next introduce how to determine CC
fluctuations and delay noise across various use cases and
how to set the channel width accordingly.
Determine CC’s fluctuations. CC fluctuations can be es-
timated via theoretical tools, such as fluid model [83] and
discrete cycle analysis [74, 90]. As an example, Swift exhibits
a fluctuation of 𝑛 ·𝑊𝐴𝐼

𝐿𝑖𝑛𝑒𝑅𝑎𝑡𝑒
+max

(
𝑛 ·𝛽 ·𝑊𝐴𝐼

𝐿𝑖𝑛𝑒𝑅𝑎𝑡𝑒 ·𝑇𝑎𝑟𝑔𝑒𝑡 ,𝑚𝑎𝑥_𝑚𝑑𝑓

)
·

𝑇𝑎𝑟𝑔𝑒𝑡 , where𝑊𝐴𝐼 is the AI step, 𝑛 is the number of compet-
ing flows,𝑇𝑎𝑟𝑔𝑒𝑡 is the target delay, 𝛽 and𝑚𝑎𝑥_𝑚𝑑𝑓 are the
parameters used in multiplicative decrease (Supplemental
Material [8]). Operators can estimate fluctuations based on
the typical flow count in the scenario. If the actual flow
count is lower, no negative effects occur. Otherwise, the flow
cardinality estimation mechanism (§ 4.3.1) can effectively
mitigate them.
Characterize delay noise. Noises in delay measurement
may stem from jitter in software and hardware, protocol
offloading techniques (e.g., TSO [6]), and so on. In data
centers, noise can be measured through ping-pong packets
between hosts under the same top-of-rack (ToR) switchwhen
the network is idle. Since delay noise is additive noise [53]
(i.e., the measured delay will always be larger than the actual
network delay), the minimum value from a series of delay
measurements can serve as the baseline. The distribution of
delay noise is then determined by subtracting this baseline
from the remaining measurements. A single host can also
complete the aforementioned process by sending packets to
its own IP address if the protocol stack allows this operation.
Next, we present the typical delay noise of modern data

centers observed in our laboratory environment. Currently,
data centers commonly utilize hardware timestamps on net-
work interface cards (NICs) to precisely record packet send
and receive times, with errors usually within 1 𝜇s [52, 69].
Figure 7 shows the Cumulative Distribution Function (CDF)
of noise in delay measured through NIC hardware times-
tamping in our testbed (§ 5), with both TSO enabled and
disabled. The average delay noise is approximately 0.3 𝜇s,
with merely less than 0.1% probability of exceeding 1 𝜇s.
Set channel thresholds. As shown in Figure 4b, the chan-
nel width must accommodate CC’s normal fluctuations and
delay noises. For priority 𝑖 , the distance between its target
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𝐷𝑖𝑡𝑎𝑟𝑔𝑒𝑡 and the previous priority’s maximum delay 𝐷𝑖−1
𝑙𝑖𝑚𝑖𝑡

should accommodate half of the CC fluctuations, while the
distance between its target 𝐷𝑖𝑡𝑎𝑟𝑔𝑒𝑡 and its limit 𝐷𝑖

𝑙𝑖𝑚𝑖𝑡
should

accommodate both half of the CC fluctuations and the delay
noise. Once a flow’s priority 𝑖 is determined, the host can
configure the channel parameters of this flow as 𝐷𝑖𝑡𝑎𝑟𝑔𝑒𝑡 =
𝐵𝑎𝑠𝑒𝑅𝑡𝑡 + 𝑖 · (𝐴 + 𝐵) and 𝐷𝑖

𝑙𝑖𝑚𝑖𝑡
= 𝐷𝑖𝑡𝑎𝑟𝑔𝑒𝑡 + 𝐴

2 + 𝐵 with 𝐴

denotes CC fluctuations and 𝐵 denotes tolerable delay noise.
In this paper, we use 3.2 𝜇s to accommodate CC fluctuation,

corresponding to fluctuations of 150 swift flows. According
to the measured delay noise (Figure 7), we select the 99.85𝑡ℎ
percentile of delay noise (0.8 𝜇s) as the tolerable delay noise.
The filter mechanism (§ 4.3.1) ensures that the misreaction
only occurs every 400 MB data transfer on average5. There-
fore, in the following evaluations, the channel width is set
to 4 𝜇s with 𝐷𝑖𝑡𝑎𝑟𝑔𝑒𝑡 = 4 · 𝑖 𝜇s and 𝐷𝑖

𝑙𝑖𝑚𝑖𝑡
= 4 · 𝑖 + 2.4 𝜇s.

Use cases. PrioPlus can be applied to a variety of use cases.
The primary use cases of PrioPlus are high-performance net-
works, such as parameter plane networks for model training
[39, 50] and modern storage clusters [42]. In such use cases,
CCs are implemented in kernel-bypass software [65, 100]
or NICs [67], where the noise in delay measurement at the
𝜇s level. PrioPlus can also work in use cases where non-
congestive delay exists. Such scenarios include data center
networks with middleware [97] and regional inter-DC data
transmissions [17]. In these scenarios, operators can first
measure the non-congestive delay using well-established
methods [97], then incorporate the fixed part into the base
RTT and the variable part into delay noise. Experiments
demonstrate that PrioPlus can operate effectively with non-
congestive delay as long as non-congestive delay variations
are limited in a range (e.g., < 30𝜇𝑠) (§ 6.3).
4.4 Miscellaneous Design Discussion
Whether to probe before data transmission. For high-
priority or latency-sensitive PrioPlus flows, data transmis-
sion can be initiated with a linear start without probing.
This helps to avoid increased latency, while the linear start’s
conservative nature ensures that it does not significantly
impact higher-priority traffic.
Probed delay between base RTT and 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 .When the
probed delay is between the base RTT and 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 , the Prio-
Plus flow adopts a conservative strategy as setting the 𝑐𝑤𝑛𝑑
to one packet. This is because only one delay measurement
is available, necessitating caution to prevent potential delay
fluctuations. If subsequent delay measurements are between
base RTT and 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 , the PrioPlus flow will rapidly raise
the delay towards 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 through adaptive increase (§ 4.2.3).
Setting of𝑊𝐿𝑆 . The linear start step size𝑊𝐿𝑆 determines
the time it takes for a flow to accelerate from zero to full
speed (§ 4.2.2). If we desire this acceleration to occur over 𝑛
RTTs, the step size should be set to 𝐵𝑎𝑠𝑒𝐵𝑑𝑝

𝑛
. For high-priority,

delay-sensitive traffic, we recommend a step size equal to
5Consider the MTU is 1KB and per-packet ACK is adopted.

𝐵𝑎𝑠𝑒𝐵𝑑𝑝 . For medium-priority, non-delay-sensitive traffic, a
step size of 0.25 ·𝐵𝑎𝑠𝑒𝐵𝑑𝑝 is advised. For low-priority traffic,
we recommend a step size of 0.125 · 𝐵𝑎𝑠𝑒𝐵𝑑𝑝 .
Reverse congestion. PrioPlus assumes that ACKs are trans-
mitted at the highest physical priority to avoid the impact of
reverse congestion on RTT, which is a common practice in
modern data centers [23, 39, 46]. We demonstrate through
experiments in the Supplemental Material [8] that PrioPlus
is only slightly affected when ACKs cannot be prioritized.

5 Implementation and Testbed Results
In this section, we use two testbed experiments to demon-
strate the software-implemented PrioPlus’s ability to achieve
𝑶1 and 𝑶2 while effectively managing delay fluctuations.
Additionally, we discuss the feasibility of implementing Pri-
oPlus in RDMA NIC (RNIC) hardware.
DPDK implementation and testbed setup.We implement
PrioPlus in Linux using DPDK [38]. Based on a Swift imple-
mentation, we add 79 lines of code to incorporate PrioPlus.
Our testbed uses a tree topology with 10 Gbps links, where
four leaf nodes are senders, and the root is the receiver. The
RTT is around 13 𝜇s. Each node is equipped with an E5-2650
2.9 GHz CPU and Mellanox ConnectX-5 NIC.
PrioPlus can balance 𝑶1 and 𝑶2. The closer the priori-
ties, the smaller the difference in their delay ranges, which
demands higher precision for the algorithm’s ability to distin-
guish between priorities. Therefore, we select four adjacent
priorities (3, 4, 5, 6), each with two flows, to evaluate PrioPlus
in real implementations. The delay channel setting corre-
sponds to § 4.3.2. As shown in Figure 8, flows of the four pri-
orities start from the lower priority to the higher priority at
4 ms intervals and end at 4 ms intervals. Figure 8a shows the
throughput of PrioPlus with Swift. Upon starting of higher-
priority flows, lower-priority flows quickly yield the band-
width (𝑶1). Once the higher-priority flows cease, multiple
lower-priority flows concurrently accelerate through Linear
Start. Following a brief contention, remaining higher-priority
flows quickly consume the available bandwidth again (𝑶2).
As a comparison, we test Swift with target delays aligned
with 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 of PrioPlus. The target scaling is disabled. For
Swift, lower-priority flows yield bandwidth entirely within
about 2 ms after the higher-priority traffic emerges. After
the higher-priority flows cease, it takes about 3 ms for the
lower-priority traffic to fully utilize the bandwidth again.
PrioPlus can effectively manage delay fluctuations. In
our second experiment, we demonstrate that PrioPlus can
effectively manage queue fluctuations under numerous flows.
We use four flows and increase the step size for each flow to
simulate the fluctuations of numerous flows. We set𝑊𝐴𝐼 for
Swift to 0.75 KB, approximately five times the recommended
value, and the𝑊𝐿𝑆 for PrioPlusto 75 KB, which is half of the
base BDP. The 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐷𝑙𝑖𝑚𝑖𝑡 for PrioPlus flows are set
to 37 𝜇s and 39.4 𝜇s (priority 6), respectively, while Swift’s
target delay is set to 37 𝜇s. Figure 9 shows the observed
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Figure 8. Throughput of flows with four virtual priorities.
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Figure 9. Observed delay by one of the flows.

delays for one of the flows. After the PrioPlus flows start,
the delay exceeds 𝐷𝑙𝑖𝑚𝑖𝑡 . Subsequently, PrioPlus estimates
the flow cardinality, thus controlling overall aggressiveness
and keeping the delay near the target. In contrast, Swift
struggles to control delay fluctuations, with delays frequently
exceeding the threshold. This validates the effectiveness of
the delay-based flow cardinality estimation (§ 4.3.1).
Implementation on RNIC. The primary challenges in
implementing CCs on RNICs are the limited memory size
and timer constraints [59]. PrioPlus, as an enhancement
mechanism for CC, introduces only nine variables, requiring
a total of 13 bytes – just one-fifth of the approximately 60
bytes used by typical CC implementations [62]. Additionally,
a PrioPlus flow requires only one extra timer for its probe
with collision avoidance mechanism (§ 4.2.1).

6 Evaluations
We evaluate the performance of PrioPlus using the NS3
simulator [5]. We conduct fine-grained micro-benchmarks
(§ 6.1) to demonstrate that PrioPlus can support multiple
priorities under heavy traffic loads and maintain delay fluctu-
ations within the specified range during severe incast. Then,
we validate the effectiveness of various designs of PrioPlus
through ablation experiments and quantitative analysis in
micro-benchmarks. In large-scale simulations (§ 6.2), we
conduct a detailed breakdown analysis of the flow scheduling
scenario to show that PrioPlus can provide prioritization
comparable to physical priority. Compared with physical
priority, PrioPlus provides strict priority for high-priority
flows with degradation of no more than 9%. It benefits low-
priority flows from 25% to 41% as it enhances CCs to boost
once higher-priority traffic completes. In the coflow sched-
uling scenario, PrioPlus’ average CCT (Coflow Completion
Time) and tail CCT are improved by up to 21% and 2% com-
pared to physical priority. In the machine learning cluster
scenario, by simply assigning priorities to each model’s train
traffic, PrioPlus speeds up the training speed by up to 33%
compared to physical priority without creating unfairness

among models. In all simulation evaluations of PrioPlus, the
delay noise collected from the testbed (§ 5) is incorporated to
enhance the simulation’s fidelity.
Scenarios and workloads. Our large-scale simulation ex-
periments include three scenarios. (i) In the generic flow
scheduling scenario, we generate traffic using the represen-
tative WebSearch workload [81], with traffic load at 70%.
(ii) For coflow scheduling scenarios, we simulate the traffic
of cluster computing (e.g., Hadoop) jobs with two traffic
patterns. The file request traffic, where multiple nodes send
a part of a file to a single node6, represents the data inputting
process from distributed storage systems. And the coflow
traffic is generated from Facebook’s Hadoop trace [29, 31].
(iii) For the model training scenario, we generate training
traffic of ResNet[48] and VGG [7] based on Astra-sim [79].
The detailed introduction of each scenario is deferred to § 6.2.
Topology. In the micro-benchmarks, a tree topology with
multiple senders, a receiver and a single bottleneck port
is used to analyze PrioPlus’s behaviour on a bottleneck.
Each link has a bandwidth of 100 Gbps and a latency of
3 𝜇s to align the RTT with the typical RTT value in the data
center, i.e., 12 𝜇s. In the flow scheduling scenario, we use
a standard fat-tree [12] with 𝑘 = 6 and 100 Gbps links. In
this scenario, the switches’ buffer/bandwidth ratio is set to
4.4 MB/Tbps, aligned with the latest switch [4]. In coflow
scheduling scenario, a non-blocking fat-tree topology with 5
pods and 320 hosts is adopted. The links from hosts to edge
switches are 100 Gbps, while the inter-switch links are 400
Gbps. In the machine learning cluster scenario, we adopt
a spine-leaf topology similar to that used in CASSINI [77],
featuring a 2:1 subscription ratio and 24 servers connected by
100Gbps links. In the last two scenarios, the switches’ buffer
is directly set to 32 MB to avoid insufficient buffer impacting
the performance of physical priorities. The buffer of switches
is shared, with PFC and dynamic threshold algorithms [28]
enabled. Unless specified, all links’ latency is 1us.
Comparisons and parameters. The primary comparison
involves physical priority, D2TCP, Swift and LEDBAT. We
integrate PrioPlus with Swift and LEDBAT, respectively. For
D2TCP, the DDLs for traffic are set from 1.5 × to 12 × the
optimal FCT, assigned in descending order of priority. For
Swift and LEDBAT, the target delays are set from 32 𝜇s to 4
𝜇s plus base RTT, assigned in descending order of priority.

6Essentially, it represents incast traffic widely seen in data center [13, 26,
101].
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Figure 10.Micro-benchmarks of PrioPlus with Swift.
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Figure 11. The breakdown result of the flow scheduling scenario, where Physical* represents ideal physical priorities queues.

The ECN threshold is consistent with the parameters used
in the current data center [59]. All other parameters are
set according to the recommended values in the original
literature [52, 80, 89].

6.1 Micro-benchmarks
PrioPlus can support multiple virtual priorities with
𝑶1 and 𝑶2 both meeting. In Figure 10a, flows of eight
different priorities start from low to high priority at 5 ms
intervals and terminate at the same intervals. Each priority
consists of 30 individual flows. It is observed that when
higher-priority traffic emerges, the lower-priority traffic
immediately relinquishes all bandwidth (𝑶1). Once the high-
priority traffic ceases, the next-priority traffic instantly uti-
lizes the bandwidth fully (𝑶2).
PrioPlus canmanage queue fluctuation even in a heavy
incast. In Figure 10b, 300 flows, each with a 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 of 32
𝜇s (20 𝜇s plus a base RTT of 12 𝜇s) and a 𝐷𝑙𝑖𝑚𝑖𝑡 of 34.4 𝜇s,
start simultaneously, resulting an incast. After experiencing
a delay exceeding 𝐷𝑙𝑖𝑚𝑖𝑡 , PrioPlus effectively moderates
the overall aggressiveness by utilizing the estimated flow
cardinality, maintaining the delay close to 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 .
Dual-RTT adaptive increase (§ 4.2.3) can elevate delay
precisely without overraction. Figure 10c depicts the
process of ten high-priority flows preempting bandwidth
from ten low-priority flows. In the upper subfigure, high-
priority flows initiate at 1 ms and rapidly occupy all band-
width within 1 ms through dual-RTT adaptive increase. In
the lower subfigure, high-priority flows employ adaptive
increase every RTT, resulting in severe overreaction.
PrioPlus robustly tolerates delay noise. Figure 10d shows
the total throughput of five PrioPlus flows with the same
priority passing through the same port under different scale

ratios of delay noise shown in Figure 7. We use dashed lines
to indicate the channel widths required to achieve more than
98% bandwidth utilization. It is observed that the required
channel width increases linearly with the magnitude of the
noise, demonstrating PrioPlus’s robustness to noise.

6.2 Large-Scale Simulations
PrioPlus can support numerous virtual priorities to de-
liver performance improvement consistent with ideal
physical priorities. Implementing and comparing priority-
based flow scheduling algorithms is beyond the scope of this
paper. Instead, in general flow scheduling scenario, we cate-
gorize all flows into groups by size, assigning higher priority
to the smaller-sized flow group to approximate general flow
scheduling algorithms [15, 18, 58, 70]. The metric of interest
is flow completion time (FCT). Figure 11a shows the overall
FCT. Physical queues can only support eight priorities due to
buffer constraint (§ 2.2). When the number of physical prior-
ities exceeds 6, the excessive buffer occupation of headroom
incurs a significant increase in FCT due to frequent PFC.
We implement an ideal physical priority (Physical*), which
is free from protocol constraints and headroom occupies
no switch buffers. The performance of PrioPlus with Swift
closely approaches ideal physical priority with Swift, with
average FCT being at most 8% worse.
PrioPlus ensures the performance of high-priority (small
and middle) flows (𝑶1). Figure 11b and 11c show the FCT
for small and medium flows. When the number of priorities
is low, PrioPlus effectively reduces the switch buffer usage by
suppressing low-priority flow injections, thus reducing the
triggering of PFC and achieving lower FCT for small flows.
As the number of priorities increases, the FCT for PrioPlus’s
small flows is slightly impaired due to the increased CC’s
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Figure 12. Speedup ratio in coflow scheduling and model training scenarios.

target caused by accumulated channel width. For medium
flows, PrioPlus consistently performs close to ideal physical
priorities. Overall, for small and medium flows, the average
FCT of PrioPlus is at most 9% worse than ideal physical
priorities, and the p99 FCT is at most 19% worse.
PrioPlus effectively utilizes bandwidth, thus benefiting
low-priority (large) flows (𝑶2). Figure 11d shows the FCT
for large flows. When the number of priorities is fewer than
six, most large flows are placed together with medium flows
in the same priority, achieving a lower FCT at the expense
of increased FCT for medium flows. When the number of
priorities exceeds six, all large flows are assigned to lower
priorities. At this point, the FCT of the physical priority
with Swift significantly downgrades. This is because flows at
lower physical priorities experience substantial delays when
higher-priority flows are present, leading to the deceleration
of Swift and suffering from slow acceleration after the higher-
priority flows have ceased. PrioPlus addresses this issue
through linear start (§ 4.2.2). We also compare with ideal
physical priority without CC, which results in better FCT
for large flows but significantly worse FCT for small and
medium flows. For large flows in low priorities, PrioPlus
with Swift outperforms ideal physical priority with Swift
from 25% to 41% on average and from 24% to 43% on the tail.
PrioPlus can provide virtual priority for coflow sched-
uling and outperforms physical priority. In coflow sched-
uling scenario, the load ratio of coflow traffic to file request
traffic is 1:1. For each file request, 20 random nodes send a
piece of data to a randomly selected node. Similar to previous
experiments, we categorize coflows into eight groups based
on size and assign higher priorities to the smaller groups. The
metric of interest is the speedup ratio of coflow completion
time (CCT) compared to the baseline, which uses Swift with
default parameters as the CC without priority scheduling.
Figure 12a and 12b present the average CCT speedup

ratios for the high four and low four priorities, as well as
the overall CCT speedup ratio. When the load is at 40%
(Figure 12a), the average speedup ratio of PrioPlus with Swift
is 12% higher than that of physical priority with Swift. In
the higher priorities, the speedup ratio of PrioPlus is 9%
higher than that of physical priority, and is 15% higher for
the lower priorities. Consistent with previous findings, this
is because flows in coflow scenario are almost middle and
large flows. Thus, the bandwidth underutilization of physical
priority with Swift impairs the performance. When the load
is at 70% (Figure 12b), the trend is similar. However, the

issue of underutilization is more severe for physical priority.
The overall speedup of PrioPlus with Swift is 21% higher
than that of physical priority. The analysis of tail speedup,
performance of physical priority without CC and HPCC in
coflow scenario is placed in Supplemental Material [8] due
to space limitations.
PrioPlus can improve the speed of model training. In
the model training scenario, we simulate a medium-sized
machine learning cluster following that used in CASSINI
[77]. The models we employed are ResNet[48] and VGG [7],
utilizing data parallelism and implementing the all-reduce
operation via the ring algorithm. By assigning different
priorities to the traffic of various models, the training traffic
can be interleaved to accelerate the training of all models [78].
We assigned four higher priorities to four ResNet models
and the other four to four VGG models. The focus metric
is the speedup ratio7 compared to the baseline, which uses
Swift with default parameters as the CC without using any
priority scheduling. As shown in Figure 12c, we categorize
models by their type, showing their training speedups and
the overall speedups. PrioPlus with Swift, compared to the
baseline, accelerates the training of ResNet and VGG by 12%
and 15%, respectively, with a total acceleration ratio of 13%.
However, while the physical priority with Swift increases
ResNet’s training speed by 16%, it reduces VGG’s training
speed by 18%, which is 33% lower than PrioPlus, resulting in
an overall acceleration ratio of just 9%.
6.3 Design Choice Verification
PrioPlus can operate under non-congestive delay.We
replicate the testbed experiment (Figure 8a) in the simu-
lation with non-congestive delay introduced at the bottle-
neck. The generation of non-congestive delay followed a
uniform distribution within its range. The performance of
PrioPlus is characterized by the Normalized FCT Gap, which
is defined as the sum of |𝐹𝐶𝑇𝑃𝑟𝑖𝑜𝑃𝑙𝑢𝑠−𝐹𝐶𝑇𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 |

𝐹𝐶𝑇𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙
for all flows,

where 𝐹𝐶𝑇𝑃𝑟𝑖𝑜𝑃𝑙𝑢𝑠 is FCT of PrioPlus+Swift and 𝐹𝐶𝑇𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙
is the FCT of Physical+Swift. As shown in Figure 13, with
tolerable delay noise settings of 10 𝜇s, 20 𝜇s and 30 𝜇s, the
smallest range of non-congestive delay variations that impact
performance are 14 𝜇s, 24 𝜇s and 32𝜇s, respectively. This
demonstrates that PrioPlus can effectively operate under
non-congestive delay variations by incorporating the range
of non-congestive delay variations into the tolerable delay
noise setting.

7The training speed refers to the number of iterations in a fixed period.
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Figure 14. FCT breakdown for different priorities and flow sizes, normalized by FCT of Physical*+Swift.

Setting higher delay thresholds for high-priority flows
does not necessarily increase their experienced de-
lay. We conduct evaluations in the same environment as
the flow scheduling scenario. Instead of dividing the Web-
Search workload by flow size and assigning higher priority
to smaller flows to mimic scheduling algorithms, we assign
each priority a complete WebSearch workload to assess the
performance of various flow sizes in different priorities. Each
priority has the same load, with the total load at 50%. The
result is shown in Figure 14, the performance is characterized
by FCT normalized by the FCT of Physical*+Swift8.
We classify priorities into three levels: 11 (high), 6-10

(middle), and 0-5 (low). The 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 for the highest priority is
60 𝜇s, yet the average FCT for sub-RTT high-priority flows
is only 20.9 𝜇s, indicating that higher delay thresholds do
not necessarily increase experienced delays.
Probe before start mechanism does not significantly
raise sub-RTT flows’ delay. The "probe before start" mech-
anism (4.2.1), which is enabled for middle and low priorities
may raise concerns about introducing an additional RTT
delay. However, as shown in Figure 13a, PrioPlus just raises
the delay of medium-priority sun-RTT flows by 12% while
reducing it by 8% for low-priority ones compared with Physi-
cal*+Swift. This is because the probe before start mechanism
significantly reduces the PFC pausing in the network. In
contrast, Physical*+Swift blindly injects middle and low-
priority packets into the network, which may accumulate in
the switch for a long time given their lower priority, making
PFC trigger more easily.

The performance of Physical* w/o CC and D2TCP is con-
sistent with the findings of previous experiments and is
detailed in Supplemental Material [8]. Among evaluated algo-
rithms, PrioPlus+Swift consistently maintains virtual prior-
ity (slowdown less than 21% compared with Physical*+Swift)
across all flow sizes and priorities.

7 Discussion
Related works. To the best of our knowledge, PrioPlus is
the first algorithm to achieve strict virtual priority without
switch support. There are many existing flow differentiation
techniques [32, 89], achieving weighted priority by adjusting

8Recall that Physical* denotes ideal physical priority which supports more
than 8 lossless priorities and PFC’s headroom does not occupy switch buffer
(§ 6.2).

AIMD step sizes. As demonstrated in § 3.1, prior techniques
that adjust AIMD step sizes can not meet objectives of strict
priority. Besides, while some CCs [66, 80] effectively man-
age low-priority background traffic, they lack support for
multiple priorities (𝑶1). Most data center CCs, including
sender-driven ones [10, 14, 52, 59, 69, 91, 101] and receiver-
driven ones [27, 46, 60] aim for fair convergence across all
flows, which has been shown to be detrimental to application
performance when prioritization is required [89, 93]. Homa
[70] and pHost [41] are receiver-driven CCs that incorpo-
rate strict priorities. However, the number of priorities they
support depends on the number of physical priorities, which
PrioPlus aims to address. Our future work will focus on
integrating PrioPlus with these CCs.
Weighted virtual priority. This paper focuses on strict
virtual priority, where high priority preempts all bandwidth,
which is required by many performance-enhancing sched-
uling algorithms [11, 18, 25]. Although many CCs aim for
weighted sharing of bandwidth at the flow level [33, 73],
excessive low-priority flows can lead to priority inversion,
breaking weighted sharing among priorities. This will be the
direction of our future research.
Deployment requirements and feasibility of supporting

ECN-based CCs are discussed in Supplemental Material [8].

8 Conclusion
PrioPlus is a congestion control enhancement algorithm
designed to integrate with existing delay-based CC mecha-
nisms, enabling multiple virtual priorities within each phys-
ical queue in data centers. Testbed evaluations and large-
scale simulations demonstrate that PrioPlus meets the per-
formance objectives for virtual priority. It is lightweight,
requiring fewer than 100 lines of code modifications to ex-
isting CC implementations.
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