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Abstract
Random walks are a primary means for extracting informa-
tion from large-scale graphs. While most real-world graphs
are inherently dynamic, state-of-the-art random walk en-
gines failed to efficiently support such a critical use case. This
paper takes the initiative to build a general random walk
engine for dynamically changing graphs with two key princi-
ples: (i) This system should support both low-latency stream-
ing updates and high-throughput batched updates. (ii) This
system should achieve fast sampling speed while maintain-
ing acceptable space consumption to support dynamic graph
updates. Upholding both standards, we introduce Bingo, a
GPU-based random walk engine for dynamically changing
graphs. First, we propose a novel radix-based bias factor-
ization algorithm to support constant time sampling com-
plexity while supporting fast streaming updates. Second,
we present a group-adaption design to reduce space con-
sumption dramatically. Third, we incorporate GPU-aware
designs to support high-throughput batched graph updates
on massively parallel platforms. Together, Bingo outper-
forms existing efforts across various applications, settings,
and datasets, achieving up to a 271.11x speedup compared
to the state-of-the-art efforts.

CCS Concepts: • Computing methodologies→ Parallel
algorithms; • Theory of computation→ Dynamic graph
algorithms.
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1 Introduction
Random walks have drawn increasing attention in recent
years since the representation learning of graphs (a.k.a, graph
learning) entered the center stage of machine learning [18,
42, 70]. Below are two well-known scenarios: (i) In graph
learning, a typical option is to use random walks to select
a few subsets of vertices and edges from the original graph
(each of the subsets is treated as a mini-batch) to train the
graph neural networks [2, 9, 47, 50, 55]. This approach in-
creases the scalability, generality, and efficiency of graph
learning. However, random walks, unfortunately, take 96.2%
of the end-to-end training time for graph learning, according
to Gong et al’s paper [15]. (ii) In friend recommendation of
social media, one uses random walks to generate the node
embeddings for the final recommendation. The random walk
takes 3.5 hours (or 35% of the total time) on a graph snapshot
of 227 million users and 2.71 billion edges [39]. In addition,
in personalized PageRank [20], SimRank [25], and Random
Walk Domination [32], we need to launch many random

walks and use the visit frequency of each vertex across all
these random walks as the major indicator to derive PageR-
ank value, vertex similarity, and influence, respectively.
Perhaps the most practical use case of random walks

would be extending their capabilities to real-world dynamic
graphs. Using fraudulent detection of e-commerce platforms
as an example, the transaction graph is changing constantly.
The malicious users could commit a series of illicit activ-
ities if the graph updates are not immediately integrated
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into the graph learning process [49]. Therefore, it is imper-
ative to support random walks on dynamic graphs, which
is already evident in Ant Finance [34]. Similar needs are
also observed in weather forecast [35], Retrieval-Augmented
Generation (RAG) of Large Language Models (LLMs) [30],
friend/product recommendation [74], and human resource
management [19] among many others [64, 71].
Unfortunately, there does not exist, to the best of our

knowledge, a dedicated system that can efficiently support
random walks on dynamically changing graphs. Below, we
discuss related projects in four aspects: (i) Most existing
CPU or GPU-based random walk and graph sampling sys-
tems only support random walk on static graphs (KnightK-
ing [73], C-SAW [44], Graphwalker [62], and others [15, 24,
52]). Of note, TEA [22] focuses on a temporal graph, a spe-
cial static graph with time-sensitive attributes. (ii) Existing
dynamic graph analytical engines only support traditional
graph algorithms, excluding random walks (see most recent
LSGraph [48] and the prior ones [1, 23, 51, 65]). (iii) We do
notice two recent projects that support updating random
walk based on the graph updates [21, 45]. These two projects
are orthogonal to Bingo. Particularly, they focus on man-
aging a laundry list of random walks and expediting the
process of finding the correct random walk to update. When
updating the random walk, they simply rebuild the sampling
space for updating, which is inefficient. (iv) We also want to
clarify that - some recent efforts [39, 52] called higher-order
Random Walk applications, such as Node2vec, as Dynamic
Graph Random Walks. However, these random walk appli-
cations are performed on static graphs with biases that can
change based on the random walk history. For more details
on these related works, we refer the readers to Section 7.
This paper aims to design a system that could efficiently

support various random walk applications on dynamically

changing graphs.We identify two important design principles
for building such a system:

First, this system should support both low-latency stream-
ing updates and high-throughput batched updates. On the
one hand, real-world graphs could experience important
updates that should be incorporated immediately. Fraud de-
tection, weather forecast, and RAG of LLM belong to this
category. On the other hand, ingesting the system with a
batch of graph updates is also commonplace. Certain graph
systems, such as product recommendations, could require up-
dating the graph daily with a large volume of updates. As we
will demonstrate, batched updates offer more optimization
opportunities for a higher ingestion rate.
Second, this system should achieve fast sampling speed

while introducing acceptable memory consumption to sup-
port dynamic updates. It is anticipated that supporting dy-
namic graph updates could lead to more complex data struc-
tures that will consume more time for sampling and more

memory for maintaining the transition probabilities. How-
ever, if the penalty on sampling speed and memory consump-
tion is too high, one might simply adopt the sampling on
static graphs approach by rebuilding the sampling space from
scratch to cope with the dynamic updates. This principle will
uphold the quality of this system.
We design and implement Bingo, a GPU-based random

walk engine for dynamically changing graphs that adheres
to the aforementioned two principles. Together, Bingo is up
to 271.11× faster than the state-of-the-art that handles graph
updates. For graph updates, the ingestion rate of Bingo can
reach up to 226 million updates per second. Bingo features
the following four major contributions:

• We introduce a novel radix-based bias factorization
approach that decomposes the bias of each edge by
their radix such that the updates are performed on
each bias radix group, which is unbiased. This leads to
constant time updating complexity. We also propose
a hierarchical sampling algorithm for constant time
sampling complexity (Section 4).

• Considering the memory consumption of our new data
structure could be high, we present a group-adaption
design to reduce the memory consumption signifi-
cantly. Since our adaptation is designed according to
the nature of various radix groups, this design pre-
serves fast sampling time complexity (Section 5.1).

• When handling batched updates, Bingo processes all
the requests in a massively parallel manner. Particu-
larly, (i) we introduce a workflow to handle insertions
and deletions and potential group rebuilding efficiently.
(ii) Our novel delete-and-swap design enables massive
parallel deletions (Section 5.2).

• We perform comprehensive evaluations of Bingo on
various datasets, configurations, and random walk ap-
plications. Overall, Bingo constantly outperforms the
state-of-the-art across all graph update settings with
acceptable memory consumption. Further, our inges-
tion rate can reach 0.2 million (streaming updates)
and 226 million (batched updates) updates per second
across workloads of insertions, deletions, and mixed
updates, respectively (Section 6).

2 Background
This section introduces the definition of dynamic graphs,
along with popular random walk applications and the re-
quired background about sampling algorithms.

2.1 Dynamic Graph
As shown in Figure 1, different from static graphs, the states
or number of vertices and edges may change over time in dy-
namic graphs, which is caused by a series of events like vertex
update/insertion/deletion or edge update/insertion/deletion.
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Figure 1. Running example. Event 1 contains one edge in-
sertion and event 2 one edge deletion.

Formally, we define dynamic graphs using the graph snap-
shot model as follows [26]:

Definition 2.1. (Dynamic graph). A dynamic graph is a
sequence of discrete graph snapshots, G𝑡= {V𝑡 , E𝑡 }, where
𝑡 ∈ N represents a timestamp, V𝑡 = {𝑣𝑡1, ..., 𝑣𝑡𝑛} represents
the vertices, and E𝑡 = {𝑒𝑡1, ..., 𝑒𝑡𝑚} represents the edges.

Dynamic graphs otherwise behave similarly as static graphs,
regardless of whether they have directed or undirected edges,
or whether the edges are weighted.

2.2 RandomWalk Applications
Random walks randomly extract paths from the original
large graph. Random walks can be unbiased or biased. Here,
we introduce two well-known random walk applications:
DeepWalk and node2vec.
DeepWalk. DeepWalk [46] is a simple but popular random
walk algorithm. It generates random walk paths through
repeated sampling. In this process, the walkers stop when
they reach the given path length. The paths are treated as
sentences and used in the SkipGram model [41] to learn the
latent representation. The original DeepWalk was unbiased
and extended to a biased version later by Cochez et al [10].
Node2vec. Different from DeepWalk, node2vec [17, 75] is a
more expressive higher-order algorithm, in which the transi-
tion probability also depends on the walk history. Supposing
there is an undirected graph walker at vertex 𝑢, and the just
visited vertex is 𝑤 , the transition probability of an edge to
the neighbor 𝑣 will be multiplied with a factor 𝑓 (𝑤, 𝑣) that
depends upon the following conditions:

𝑓 (𝑤, 𝑣) =


1
𝑝
, if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑤,𝑣 = 0,

1, if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑤,𝑣 = 1,
1
𝑞
, if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑤,𝑣 = 2.

(1)

Here, 𝑝 and 𝑞 are user-defined hyper-parameters that in-
fluence the behavior of the walker. Specifically, smaller 𝑝
increases the tendency for the walker to backtrack, while
larger 𝑝 decreases such a tendency. A lower 𝑞 encourages the
walker to explore far away, like Depth-First Search, while
a larger 𝑞 traps the walker around the group of vertices
with strong connections. Finally, we normalize the transition
probability to ensure the sum is 1.
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Figure 2. Three classical Monte Carlo sampling methods for
sampling on vertex 2.

2.3 Monte Carlo Sampling Algorithms
Despite the large volume of random walk applications [71],
they all share a common operation - a walker arrives at a
vertex and selects among its neighbors for further explo-
ration based on the transition probabilities. This process is
called sampling. Sampling is called unbiased when all the
candidates share identical probability; otherwise, it is biased
sampling. Unbiased sampling is trivial, as we can easily pick
the edge through randomnumber generation. For biased sam-
pling, the situation becomes more complex. Each candidate
has a bias, which could be the weight or other information
associated with the edge or vertex, depending on the spe-
cific application. Let𝑤𝑖 denote the bias of the 𝑖-th candidate.
Without loss of generality, we consider biased sampling at
vertex 𝑢, which has 𝑑 neighbors denoted by {𝑣0, . . . , 𝑣𝑑−1}.
The transition probability of selecting neighbor 𝑣𝑖 is:

𝑃 (𝑣𝑖 ) =
𝑤𝑖∑𝑑−1
𝑗=0 𝑤 𝑗

. (2)

Figure 2 shows the three most common Monte Carlo sam-
pling methods on a static graph. We describe them as follows:
Alias method splits all the 𝑑 (𝑑 is the vertex degree) can-
didates into no more than 2𝑑 pieces and places them into 𝑑
buckets, where two specifications are met: (i) Every bucket
only contains up to 2 candidates. (ii) The volume of each
bucket should be the same and equal to the average bias
of the candidate set. The above structure is the so-called
alias table. When sampling, we first select one bucket with
equal probability, and then sample among up to 2 elements
in that bucket. The total sampling time complexity is 𝑂 (1)
and the time for alias table construction is 𝑂 (𝑑). Figure 2(b)
illustrates the alias table-based approach for vertex 2.
Inverse Transform Sampling (ITS) mainly samples based
on an array C, which stores the information of Cumulative
Distribution Function (CDF) for candidate transition prob-
abilities. We arrange the candidates into a compact array
and construct array 𝐶 as the prefix sum of their biases, i.e.
𝑐𝑖 =

∑𝑖
𝑗=0𝑤𝑖 with 𝑐0 = 0. During the sampling process, we

randomly generate a number 𝑥 within the range [0, 𝑐𝑑 ), then
use binary search to determine the interval it belongs to.
Specifically, if we find a value 𝑘 such that 𝑐𝑘−1 ≤ 𝑥 < 𝑐𝑘 ,
then the edge labeled 𝑘 is the result of sampling. Since we
use binary search, the sampling time complexity is 𝑂 (log𝑑),
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while the time complexity for constructing array 𝐶 is 𝑂 (𝑑).
Figure 2(c) illustrates an example of the ITS method.
Rejection sampling is commonly used in cases with dy-
namic bias because it does not require maintaining a table
or array like the alias method or ITS. It randomly selects one
candidate 𝑖 with equal probability then decides whether to ac-
cept or reject it. We randomly generate a number within the
range [0,𝑚𝑎𝑥 (𝑤)), where𝑚𝑎𝑥 (𝑤) indicates the maximum
bias across all the candidates. If this number is less than𝑤𝑖 ,
we accept the candidate; otherwise, we reject it and repeat the
above steps to select another candidate. The sampling time
depends on the distribution of all the biases and the expected
time complexity for rejection sampling is 𝑂 ( 𝑑 ·𝑚𝑎𝑥 (𝑤 )∑

𝑖 𝑤𝑖
). In

Figure 2(d), the uncolored area is the rejection area. If we
select this area, we need to perform resampling.

3 Motivation and Bingo Overview
Motivation. None of the existing Monte Carlo sampling
methods, to the best of our knowledge, is well-suited for
sampling on dynamically changing graphs. First, the Alias
method [60, 61, 73] requires 𝑂 (𝑑) time complexity for ac-
commodating one edge update, where 𝑑 is the degree of the
affected vertex, although it enjoys 𝑂 (1) sampling time com-
plexity. Second, while rejection sampling presents constant
time complexity for updating, its rejection rate could be high,
see [24, 73]. Third, ITS sampling also enjoys fast updating
time but suffers from non-trivial𝑂 (log𝑑) sampling complex-
ity, which is especially true for real-world graphs that reach
billions of neighbors [15, 44].

Bingo overview. Figure 3 illustrates the major data struc-
tures, sampling, and graph updating workflow of Bingo.
Particularly, the sampling space is partitioned into various
groups. We further build a inter-group sampling space for
Bingo to choose the group of interest for sampling.

Batched 
updates

Walker

Inter-group sampling space

Sampling

Intra-group sampling space

Graph

Bingo data structure

Graph updatesSampling

Streaming updates

Figure 3. Bingo workflow. The right top is sampling while
the right bottom is updating the graph.

Bingo features two functionalities: random walk query
and graph update. (i) During random walk, when a walker
reaches a vertex, it samples from inter-group to intra-group
sampling spaces. First, it samples on the per-vertex inter-
group sampling space to decide which group to further sam-
ple. Second, Bingo moves to that particular group for sam-
pling. This process repeats until the end of the walk. (ii) The

updating procedure follows the opposite direction. That is, it
begins by deciding which groups will experience updates for
a graph update. Subsequently, those groups will be updated.
Finally, the per-vertex inter-group sampling space is updated.
When batched updates are experienced, we will only update
the inter-group space once.

4 Bingo: Radix-based Bias Decomposition
for RandomWalk

4.1 Bingo: Bias Decomposition Algorithm

High-level intuition:When handling vertices with many
neighbors, the complexity of rebuilding alias tables or other
auxiliary structures increases linearly with the number of
neighbors, making traditional sampling techniques computa-
tionally expensive. The core idea behind Bingo is to apply a
transformation that mitigates this growth by leveraging the
binary representation of sampling biases𝑤𝑖 . Specifically, by
decomposing biases into buckets corresponding to powers of
2, we effectively reduce the number of values involved in re-
computing the alias table from the total number of neighbors
to the logarithm of the maximum bias value. This transfor-
mation significantly reduces the complexity of incorporating
the graph updates.
Sampling space construction: We follow a two-step ap-
proach for sampling space construction. (i) We perform a
radix-based bias decomposition, decomposing each bias into
sub-biases according to the bit positions. Formally, for bias
𝑤𝑖 , we have a decomposition function 𝐷 that decomposes𝑤𝑖
into a set of 𝐾 sub-biases, where 𝐾 is the number of bits. We
term this set as 𝐷 (𝑤𝑖 ). To put it more concretely, we have

𝐷 (𝑤𝑖 ) = {2𝑘 |𝑤𝑖 ∧ 2𝑘 ≠ 0, 𝑘 = 0, 1, . . . , 𝐾 − 1}, (3)

where ∧ represents bitwise AND in this paper. (ii) We reor-
ganize all the 𝐷 (𝑤𝑖 )’s according to the bit positions, 𝑘 , by
grouping the sub-biases with the same bit position into the
same group. We define the reorganized bias group as𝑊 (𝑝𝑘 ),
where 𝑝𝑘 is the 𝑘-th bit position:

𝑊 (𝑝𝑘 ) =
𝑑−1∑︁
𝑖=0

𝑤𝑖 ∧ 2𝑘 . (4)

Notice that if𝑤𝑖 ∧ 2𝑘 = 0,𝑤𝑖 does not contribute to𝑊 (𝑝𝑘 ),
which is equivalent to the fact that 2𝑘 is not in 𝐷 (𝑤𝑖 ).
Hierarchical sampling. Bingo performs a two-stage-based
sampling on the aforementioned data structure as follows:
During stage (i), termed inter-group sampling, we select a
group of interest via Monte Carlo sampling. Of note, the bias
of a group is the sum of biases in this group. Therefore, the
transition probability for group 𝑝𝑘 is:

𝑃 (𝑝𝑘 ) =
𝑊 (𝑝𝑘 )∑𝐾−1
𝑗=0 𝑊 (𝑝 𝑗 )

. (5)
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At stage (ii), we proceed to intra-group sampling. Since
group 𝑝𝑘 maintains all the neighbors whose bias bit at radix
position 𝑘 is 1, neighbors belonging to the same sub-bias
group have equal transition probability.
Thus, we can perform unbiased sampling by randomly

picking a vertex 𝑣𝑖 from group 𝑝𝑘 . The probability is:

𝑃 (𝑣𝑖 |𝑝𝑘 ) =
𝑤𝑖 ∧ 2𝑘

𝑊 (𝑝𝑘 )
. (6)

The corresponding original edge of this sub-bias is the final
selected edge.

Theorem 4.1. (Correctness). Bingo ensures that the proba-

bility of choosing each neighbor remains the same before and

after radix-based bias factorization, i.e., Equation (2) holds for

Bingo’s sampling.

Proof. Although we have transformed the sampling space,
the probability of selecting each neighbor remains unchanged
because the total bias associated with each neighbor is pre-
served. Formally, for a vertex 𝑣𝑖 to be chosen, it can be chosen
through all the groups 𝑣𝑖 belongs to. Therefore, we arrive at:

𝑃 (𝑣𝑖 ) =
𝐾−1∑︁
𝑘=0

(𝑃 (𝑝𝑘 ) · 𝑃 (𝑣𝑖 |𝑝𝑘 )) . (7)

Replacing 𝑃 (𝑝𝑘 ) by Equations 5 and 𝑃 (𝑣𝑖 |𝑝𝑘 ) by Equa-
tion 6, we arrive at:

𝑃 (𝑣𝑖 ) =
𝐾−1∑︁
𝑘=0

𝑤𝑖 ∧ 2𝑘∑𝐾−1
𝑗=0 𝑊 (𝑝 𝑗 )

=

∑𝐾−1
𝑘=0 𝑤𝑖 ∧ 2𝑘∑𝑑−1

𝑖=0 𝑤𝑖
=

𝑤𝑖∑𝑑−1
𝑖=0 𝑤𝑖

, (8)

which is the same as when we perform sampling before
radix-based bias factorization. □
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Figure 4. Bingo on the running example.

Bingo running example. Figure 4 exemplifies how to im-
plement Bingo for the running example. Using vertex 2 as
an example, following the (𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑏𝑖𝑎𝑠) format, there are
three candidate edges from vertex 2, i.e., (2, 1, 5), (2, 4, 4),
and (2, 5, 3). Applying binary factorization to the biases of
all three neighbors, we get group 20 contains {1, 5}, group 21
contains {5}, and group 22 contains {1, 4}. Here, we directly
use the out-neighbor ID to represent the edge. Therefore,
the biases of these three groups are 2, 2, and 8. We adopt
the alias table method to build the (i) inter-group sampling
space, which is shown in the top right of Figure 4.

During sampling, step (i) selects group 22 in the inter-
group alias table. Subsequently, step (ii) relies on unbiased
sampling to select neighbor 1 in group 22.
Remarks on Bingo sampling benefits. Bingo enjoys fast
sampling speed. Particularly, in stage (i), we adopt the alias
method in stage(i), which offers constant time complexity.
Further, because the number of groups is small, updating
the alias table will be fast. For stage (ii), while the sampling
space is large, it is uniform sampling. Therefore, the sampling
speed is, again, fast (i.e., constant time complexity).

4.2 Bingo for Streaming Updates
Now, we introduce our designs to achieve fast graph updates
(i.e., insertion and deletion) in Bingo.

Intra-group sampling space update
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Figure 5. Bingo insertion operation.

Insertion: Figure 5 exemplifies the insertion operation of
Bingo. We first split the newly inserted edge following Equa-
tion 3 and reorganize these sub-biases following Equation 4.
In this example, the new edge (2, 3, 3)’s bias is decomposed
into 3 = 20 + 21. We thus split this edge into two sub-biases,
one belonging to group 20, and the other to 21.
During insertion, we perform the intra-group updates

before the inter-group one: First, one can simply (i) append
the new edge to the end of each neighbor list array. Second,
the inter-group alias table is updated based on the new biases
in all groups, which is shown as (ii) rebuild in Figure 5.
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Figure 6. Bingo deletion operation.

Deletion: Figure 6 illustrates the edge deletion operation
of Bingo. This process contains four steps: (i) we perform a
radix-based bias decomposition to identify which groups this
edge has contributed sub-biases to. (ii) One needs to locate
this edge in those identified groups. (iii) We swap this edge
with the edge in the tail of that group to maintain a compact
intra-group neighbor list for𝑂 (1) unbiased sampling. (iv)We
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rebuild the inter-group sampling space similar to insertion
in Figure 5 thus omitted for brevity.

We introduce two design changes to achieve a near-constant
time complexity for deletion. First, we store the neighbor
index in each group as opposed to the neighbor ID, which
was the case in Figures 4 and 5, because the neighbor index
can locate the edge in the neighbor list in O(1) complexity.
This will help the swap operation in step (iii). Second, we
introduce an inverted index that tracks where each neighbor
index was stored in each group. Formally, this inverted index
maintains a mapping from the neighbor index to the position
in each group. This reduces the complexity of locating edges
in step (ii) from 𝑂 (𝑑) to 𝑂 (1).

Figure 6 exemplifies our deletion operation. Assuming we
want to delete edge (2,1,5). In step (i), we identify this edge
contributes to groups 20 and 22. (ii) Because the edge (2,1,5)’s
index is 0, we obtain the location of this edge in these two
groups at the first entry of the corresponding inverted index,
both of which are 0 in the inverted index. (iii) We swap them
with the tail of that group. Using group 20 as an example, the
neighbor index 0 will swap with neighbor index 3. Because
we store the neighbor index in the intra-group neighbor
index, we use this index to locate that we should update the
pink location to 0. In a nutshell, one can use the content in
the intra-group neighbor index to locate where we should
change in the inverted index and vice versa.

In addition to insert/delete edges, other graph updates, e.g.,
deleting a vertex, and updating the edge bias, can be either
implemented with insertion and/or deletion operations or
supported straightforwardly. We omitted their descriptions
for the sake of space constraints.

4.3 Bingo for Floating-Point Biases
While one might suggest that radix sort [40] is the closest
related work to Bingo when handling floating-point biases,
Bingo, faces more stringent requirements. That is, radix sort
only cares about whether a bias is bigger or smaller than
the other bias to sort out the order while Bingo requires
to know one bias is exactly how much bigger or smaller
than the other to build the sampling space. For more details
about radix sort of floating-point values, we refer the readers
to [56]. In that regard, Bingo cannot adopt radix sort ideas
to handle floating-point biases in sampling.
Bingo’s approach. Bingo handles floating-point biases
in a four-step approach. (i) We empirically determine an
amortization factor 𝜆, which is used to round floating-point
values to proportional integer values. (ii) For each bias, we
decompose this bias into an integer part and a decimal part.
(iii) We further perform radix decomposition for the integer
part of all the biases (similar to our integer alone case) while
leaving the decimal part in one group. If the decimal part
is taken, we will adopt ITS or rejection sampling. (iv) We
perform the hierarchical sampling to choose the edge of

interest. Of note, 𝜆 is properly chosen such that the sum of the
decimal parts is very low. Then the sampling time complexity
remains low. See Section 4.4 for detailed discussion.
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Figure 7. Bingo with floating-point biases.

Figure 7 illustrates how Bingoworks on the floating-point
biases. Still using vertex 2 as an example, there are three
candidate edges from vertex 2, i.e., (2, 1, 0.554), (2, 4, 0.726),
and (2, 5, 0.320). Wemultiply all the biases by 10. Thenwe get
edges with new biases, (2, 1, 5.54), (2, 4, 7.26), and (2, 5, 3.20).
Applying binary factorization to the integer part of biases
of all three edges, we get groups 20, 21 and 22, respectively,
containing neighbors {1, 4, 5}, {4, 5}, and {1, 4}. Besides, we
collect the decimal part as a new group, i.e., {1, 4, 5}. We adopt
the alias table method to build the (i) inter-group sampling
space, which is shown in the top right of Figure 7. Since the
decimal group only takes up a small area of the alias table,
for most of the cases, our sampling happens in the integer
part, whose sampling complexity is constant.

4.4 Complexity Analysis
Table 1 presents the complexity of Bingo vs four common
Monte Carlo sampling methods. The superiority of Bingo’s
time complexity can be clearly observed from this table. How-
ever, Bingo consumes more memory than others. We will
introduce a series of optimizations for memory consumption
in the following section.
Time complexity. For a vertex with a degree of 𝑑 , we as-
sume each neighbor has the bias of𝑤𝑖 . (i) Sampling: Given
that both inter- and intra-group sampling (alias table sam-
pling and unbiased sampling) have a time complexity of
𝑂 (1), the total sampling time remains 𝑂 (1). (ii) Insertion:
For each of the 𝐾 groups, we preform 𝑂 (1) insertions. The
size of 𝐾 could be derived by 𝐾 = 𝑙𝑜𝑔(𝑚𝑎𝑥 (𝑤𝑖 )). Addition-
ally, we need to reconstruct the alias tables for each of these
groups. Therefore, the overall time complexity of insertion
is 𝑂 (𝐾). (iii) Deletion: as deletion operations within each
group are identical, each single deletion step in each group
only consumes 𝑂 (1) constant time, and the time complexity
of deletion is also 𝑂 (𝐾).
For floating-point biases, we only need to analyze the

sampling of the intra-group part (inter-group sampling com-
plexity is O(1)). Let𝑊𝐼 and𝑊𝐷 denote the sums of the biases
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Table 1. Complexity comparison for a vertex: Bingo vs.
Alias, ITS, and Rejection sampling, where 𝐾 and 𝑑 are the
numbers of groups and degree of the vertex.

Name Insertion Deletion Sampling Memory
Bingo 𝑂 (𝐾 ) 𝑂 (𝐾 ) O(1) 𝑂 (𝑑 · 𝐾 )
Alias

𝑂 (𝑑 ) 𝑂 (𝑑 ) 𝑂 (1) 𝑂 (𝑑 )Method
ITS 𝑂 (1) 𝑂 (𝑑 ) 𝑂 (𝑙𝑜𝑔2𝑑 ) 𝑂 (𝑑 )

Rejection
𝑂 (1) 𝑂 (𝑑 ) 𝑂 ( 𝐷 ·𝑚𝑎𝑥 (𝑤)∑

𝑖 𝑤𝑖
) 𝑂 (𝑑 )Sampling

for, respectively, integer and decimal parts. The sampling
time complexity becomes 𝑂 ( 𝑊𝐷

𝑊𝐼 +𝑊𝐷
· 𝑑 ·𝑚𝑎𝑥 (𝑤𝑖 )∑

𝑖 𝑤𝑖
+ 𝑊𝐼

𝑊𝐼 +𝑊𝐷
),

where use rejection sampling as an example. In this expres-
sion, the first term means inter-group sampling selects the
decimal group, while the second term means the integer
group. Through adjusting 𝜆, we can ensure that 𝑊𝐷

𝑊𝐼 +𝑊𝐷
< 1

𝑑
,

which keeps our sampling complexity as 𝑂 (1). In Figure 7,
we set 𝜆 = 10 which leads 𝑊𝐷

𝑊𝐼 +𝑊𝐷
= 1

16 < 1
𝑑

= 1
3 . This 𝜆

ensures 𝑂 (1) sampling complexity.
The updating time complexity of Bingo is only related to

the number of groups, i.e.,𝐾 , which is small (usually no more
than 32 or 64), which is the number of bits for integer and
long integer.A larger radix base can further reduce 𝐾 , which
is briefly discussed in Section 9.2 (see supplement material).
Space complexity. Our naive design repeats the inverted
index𝐾 times, i.e., the number of groups, with the size of each
inverted index as 𝑑 . This leads to a memory consumption of
𝑑 ·𝐾 . Further, each edge appears in 𝑡 = 𝑝𝑜𝑝𝑐 (𝑤𝑖 ) groups, i.e.,
the number of nonzero bits in bias𝑤𝑖 . This leads to a memory
consumption of 𝑑 · 𝑡 for the intra-group neighbor index list.
Combined, our method amplifies the memory consumption
from 𝑑 to 𝑑 · (𝐾 + 𝑡). Since each vertex might not appear in
all groups, we derive 𝑡 ≤ 𝐾 . Therefore, the space complexity
of Bingo is 𝑂 (𝑑 · 𝐾).

5 Bingo System Implementation and
Optimizations

This section implements Bingo on GPUs with two optimiza-
tions, i.e., memory consumption optimization (Section 5.1)
and batched graph updates optimization (Section 5.2).
5.1 Adaptive Group Representation
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Figure 8. Bingo adaptive group representation.

Figure 8 presents our solutions to reduce both 𝐾 + 𝑡 and
𝑑 (see Section 4.4), which reduces the memory consump-
tion for Bingo. Our intuition is as follows: we first separate
dense and sparse groups from the regular group, which per-
mits simpler data structures (i.e., less memory consumption).
Additionally, we observe that one-element groups consti-
tute a significant proportion of the data (see Figure 11), and
handling them separately enables further memory savings
through simplified representation. Based on the cardinality
of different groups 𝐺𝑖 , we divide them into four categories:
dense, one-element, sparse, and regular groups, following
Equation 9:

Group 𝐺𝑖 ∈


Dense group, |𝐺𝑖 |

𝑑
>𝛼%;

One-element group, |𝐺𝑖 | = 1;
Sparse group, |𝐺𝑖 |

𝑑
< 𝛽% and |𝐺𝑖 | ≠ 1;

Regular group, Otherwise.

(9)

Based on our heuristic study, we set 𝛼 = 40 and 𝛽 = 10 in
our design for the optimal performance.
Dense group is often the groups with less significance. Us-
ing group 20, i.e., the group with the least significant bit
as an example, a neighbor 𝑣𝑖 falls into this group when 𝑤𝑖
mod 2 = 1, or simply with an odd bias. Statistically, half of
the neighbors (50%) has a chance of falling into the 20 group.
We propose a radical change for dense groups, i.e., we

maintain neither the intra-group neighbor index list nor
the inverted index for a dense group. This helps reduce the
memory cost for both 𝑡 and 𝐾 (mentioned above). Besides,
these groups are not accessed frequently because they often
appear in the groups with less significant bits. Therefore, we
save the memory for the largest intra-group neighbor index
lists and the inverted indices with potentially small or no
sampling efficiency impacts.
We adopt a rejection sampling on the original neighbor

list for dense groups. Even if dense groups are selected, we
can still maintain a low rejection ratio because the rejection
ratio is below (1-𝛼%)=60%. Particularly, our rejection sam-
pling works as follows: (i) Our inter-group sampling selects
a particular dense group. (ii) For intra-group sampling, we
select a neighbor from the original neighbor list. Further, we
use that neighbor’s bias to AND (i.e., &) the group radix of
the chosen dense group. If the result is not zero, this sam-
pling is accepted. Otherwise, we repeat the sampling from
the intra-group sampling.
In Fig 8, group 20 and group 21 are dense groups, since

they contained 62.5% of edges. If inter-group sampling selects
group 20, we will further randomly select one neighbor from
the original neighbor list. Assuming we selected the 5-th
neighbor, we use its bias 4 to AND 20, which returns 0. This
means our sampling is rejected. We will repeat this process
until we find a neighbor in group 20.
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Figure 9. Group element ratio of various distributions.

One-element group.With skewed bias distributions, chances
are group(s) with the most significant values might only con-
tain one element. For those groups, there is no need to main-
tain either the inverted index or the intra-group neighbor
index list. Group 24 in Figure 8 belongs to this case.
Sparse group. Our sparse group optimizations mainly focus
on reducing the memory consumption of the inverted index.
As shown in Figure 9, for two out of three cases, groups with
higher powers tend to have fewer edges, which means the
inverted indexes in these groups can be very sparse. Conse-
quently, we maintain a new neighbor list that only contains
edges with larger biases. This leads to a much smaller neigh-
bor list, thus a smaller inverted index for sparse groups.
As shown in Figure 8, neighbor indices 1, 6, and 7 are

the edges with bias larger than 8. Since neighbor 7 also
belongs to the one-element group, we exclude it from the
sparse group. Therefore, our new neighbor list contains {1,
7}, whose cardinality is 2. In this case, our inverted index has
a size of 2 for group 23, which is significantly smaller than
the original inverted index with a size of 8.
Regular group. After filtering out dense, one-element, and
sparse groups, wemight still have a few groups. These groups
require the full inverted index and the original intra-group
neighbor index list. In Figure 8, group 22 is such a group.

5.2 Bingo’s Parallel Batched Graph Updates
Figure 10(a) presents the overall workflow of our parallel
batched graph updates. On the CPU platform, we first put
the graph updates of the same vertex together. Subsequently,
we move these ordered update requests to GPU. For each
vertex 𝑣𝑖 , we, in order, perform three steps, i.e., insert, delete,
and rebuild. Of note, one might insert a just deleted edge
back; we thus allow duplicated insertions of the same edge
with a time stamp. When deletion happens to a duplicated
edge, we delete the earlier version first.

During insertion, we first insert each edge into the graph
following the dynamic graph format [4]. Subsequently, we
perform four types of insertions differently. For dense group,
we simply do nothing because it does not maintain any
sampling-related data structures. One-element group: We de-
rive whether this group evolves into a sparse/regular/dense
group based on all the insertions. Subsequently, it follows
how an insertion is done to a sparse/regular/dense group
to perform this particular insertion. Sparse group: We first

vn
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Figure 10. Parallel batched graph updates.

append this new neighbor to the sparse group neighbor list.
Second, we append to the intra-group neighbor index list
and the inverted index of this group for this specific neigh-
bor. Regular group: we append the edge to the intra-group
neighbor index list and update the inverted index.
Deletion is more complex than insertion. On-element

group: We simply remove this group. Dense group: we will
perform a rebuild if this dense group evolves into a different
group type (details discussed later). Sparse/Regular group:
Since parallel delete-and-swap could introduce bubbles in
the intra-group neighbor index list that prevent unbiased
sampling, we introduce a design to support parallel delete-
and-swap as below:
Figure 10(b) exhibits our two-phase parallel delete-and-

swap N elements operation, which is a key contribution to
our parallel deletion. The biggest concern of the parallel
delete-and-swap is that the elements from the tail might also
be deleted. Therefore, if one uses the concurrently deleted
tail element to fill in the entry that is to be deleted, one fills
the to-be-deleted entry with a voided entry. For instance,
one wants to delete entry 0 and use entry 9 to fill in entry 0.
However, what if entry 9 will also be deleted? In this case,
we cannot use entry 9 to fill entry 0.

In our design, we perform this deletion in two phases. (i)
We load N elements from the tail to GPU’s shared memory, if
fit. Otherwise, we keep them in global memory. Subsequently,
we will delete all the elements that are supposed to be deleted
in these N elements. We assume we have deleted 𝛾 elements.
(ii) Since we have already deleted 𝛾 elements from the list,
we only need to delete 𝑁 − 𝛾 more elements from the list.
In phase (i), we are sure the remaining 𝑁 − 𝛾 elements will
not be deleted. Therefore, we are guaranteed to delete 𝑁 −
𝛾 elements at the front with these 𝑁 − 𝛾 will-not-deleted
elements to fill the entry.

Our rebuild mainly tackles group-type transformations of
the following two cases: (i) from other group formats to a
regular group, and (ii) From other group formats to a sparse
group format. The reason for case (i) is one needs to rebuild
the entire intra-group neighbor index list and inverted index,
which is expensive during insertion or deletion. For case
(ii), one needs to scan the original group to rebuild the new
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neighbor index, which is again better performed after all the
insertions and deletions are accomplished.

6 Evaluation
Bingo is implemented using CUDA/C++ with approximately
2,000 lines of code. It is designed with an efficient GPU-based
architecture to handle graph processing and random walks.
Below are the implementation details: (i) Bingo stores the
graph and related metadata directly on the GPU, ensuring
fast access and efficient computations. (ii) Before each ran-
dom walk computation, Bingo integrates all the graph up-
dates, maintaining the correct order of operations to ensure
consistency. This correctness is enforced for both stream-
ing and batched random walks. (iii) Bingo performs random
walks in a step-by-step manner, where each step involves
sampling to select the next node for the next step of random
walks. (iv) Bingo treats each vertex as an individual object
and utilizes eight main kernels to support various random
walk applications, i.e., streaming_insert, streaming_delete,
batched_insert, batched_delete, random_walk_node2vec, ran-
dom_walk_deepwalk, random_walk_ppr, and random_walk
_simple_sampling.

6.1 Experimental Setup
The evaluation is performed on a Linux server equipped with
two 2.8𝐺𝐻𝑧 Intel(R) Xeon(R) Silver 4309Y CPUs, 16 physical
cores, 512 GB of memory, and four NVIDIA A100 GPUs, each
with 80 GB of HBM2e memory.
Graph Applications.We examine Bingo and the state-of-
the-art with three applications: biased DeepWalk, node2vec,
Personalized PageRank (PPR). For all of them, we initialize
the vertex count number of random walkers. Further, for
DeepWalk and node2vec, we set the default walk length
as 80. We set the hyper-parameters 𝑝 = 0.5 and 𝑞 = 2 for
node2vec. The parameters for DeepWalk and node2vec are
identical to that from KnightKing [73]. We put the termina-
tion probability of PPR as 1/80, which offers an expected
walk length of 80.

Table 2. Graph dataset (𝐾 = 103,𝑀 = 106).

Dataset Abbr. Vertex Edge Avg Max
count count degree degree

Amazon AM 403.4K 3.4M 8.4 10
Google GO 875.7K 5.1M 5.8 456
Citation CT 3.8M 16.5M 4.4 770

LiveJournal LJ 4.8M 68.5M 14.3 20.3K
Twitter TW 41.7M 1,468.4M 35.2 770.2K

Datasets.TABLE 2 presents the five real-world graph datasets,
retrieved from Konect [28] and SNAP [29], which we use
for evaluation. We follow a three-step design to create dy-
namic updates: (i) we split the original graph dataset into two
sets: A (original edges - 10 · 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸 edges) and B (10 ·
𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸 edges) randomly. (ii) We randomly determine

whether we want to delete or insert an edge. (iii) If we want
to delete an edge, we will delete a randomly selected edge
from set A. Otherwise, we randomly choose an edge from the
set B and add that to set A. We perform this 10 ·𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸
times to generate a sequence of 10 · 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸 updates.
In this paper, we set 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸 = 100𝑘 . We use the edges
in set A as the edges to initialize the test.

Dynamic updates. We generate three types of updating sit-
uations for each dataset in TABLE 2: “Insertion”, “Deletion”,
and “Mixed”, which contain insertion only, deletion only, and
mixed graph updates with an equal number of insertions and
deletions, respectively. Except for Section 6.2, which uses
all these three update situations, other sections only use the
“Mixed” update situation (if not stated otherwise).

Bias. We generate the bias for most of the tests based on
the degree of vertices, which naturally follow power law
distribution (given all datasets are real-world graphs [5]).
We also evaluate Bingo under floating-point bias and bias
with different distributions in Section 6.4.
Evaluation Workflow. We perform (i) 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸 num-
ber of updates and (ii) graph application computation. Since
we generate 10 graph updates of 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸, we repeat the
aforementioned steps (i) and (ii) 10 rounds. We report the
total time of these 10 rounds. By default, we conduct tests on
GPU-based systems using a single GPU and on CPU-based
systems using all the 16 physical cores of a single machine.

6.2 Bingo vs. the State-Of-The-Art (SOTA)

Choice of SOTA.We compare Bingo with three representa-
tive projects: KnightKing [73], gSampler [15] and FlowWalker
[39]. KnightKing is the first general-purpose CPU-based dis-
tributed graph random walk engine that employs the alias
method for static biased sampling and the rejection method
for dynamic biased sampling. Because Flashmob [72], a more
recent work, does not support biased sampling, we choose
KnightKing as the CPU-based SOTA. gSampler is one of
the most recent GPU-based graph sampling systems, featur-
ing matrix-based APIs for efficient execution. In addition,
FlowWalker, another recent GPU-based sampling framework,
is based on parallel reservoir sampling and serves as a strong
baseline for comparison. Since the above systems only sup-
port static or streaming graphs, we develop their open-source
code for our evaluation. Specifically, we reload or reconstruct
the corresponding structure after each round of updates. No-
tice that we do not conduct comparative experiments with
the dynamic graph processing systems, e.g., Wharf [45] or
Hornet [4] (see Section 7.2), as Bingo focuses on sampling,
which is different from these projects. We will analyze the
difference between Bingo and these projects in Section 7.

TABLE 3 provides a comprehensive analysis of Bingo vs
the SOTA on various datasets and applications. For ease of
viewing, we color-coded the shortest runtime and largest
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Table 3. Bingo vs. SOTA on time and memory consumption.

Algorithms Frameworks Runtime (s), Memory Consumption (GB) Avg.
Amazon Google Citation LiveJournal Twitter speedup

Bingo 0.51 , 0.70 1.01 , 1.54 0.62 , 2.09 1.99 , 6.34 19.63 , 51.22 -
DeepWalk KnightKing 2.64, 0.17 4.39, 0.17 12.63, 0.80 70.92, 2.54 1114.26, 46.14 24.46
Insertion gSampler 1.55, 1.25 2.44, 1.99 3.81, 7.95 22.97, 8.80 403.91, 71.24 8.74

FlowWalker 0.55, 0.70 1.85, 1.02 4.26, 2.99 11.01, 4.04 25125.48, 43.97 259.05
Bingo 0.25 , 0.70 0.32 , 1.44 0.16 , 2.09 1.46 , 6.24 19.11 , 51.12 -

DeepWalk KnightKing 2.48, 0.17 4.43, 0.17 12.41, 0.78 71.45, 2.54 1136.11, 46.14 41.94
Deletion gSampler 1.47, 1.01 2.33, 1.51 3.44, 5.54 21.46, 5.92 376.54, 60.61 13.81

FlowWalker 0.56, 0.70 1.84, 1.02 4.20, 2.99 10.44, 4.04 25112.71, 43.97 271.11
Bingo 0.25 , 0.87 0.64 , 1.38 0.44 , 4.62 1.96 , 7.25 18.94 , 51.22 -

DeepWalk KnightKing 2.59, 0.17 4.52, 0.22 12.40, 0.78 67.43, 2.53 1006.66, 46.21 26.63
Mixed gSampler 3.30, 1.25 2.64, 2.14 4.39, 7.72 17.60, 10.08 307.16, 73.19 10.50

FlowWalker 0.57, 0.70 1.94, 1.02 4.33, 2.99 10.72, 4.04 25137.66, 43.97 269.57
Bingo 0.63 , 0.79 1.18 , 1.64 0.66 , 2.29 6.35 , 7.03 66.75 , 66.55 -

node2vec KnightKing 13.75, 0.33 15.47, 0.44 58.23, 1.00 202.23, 2.86 2526.14, 49.11 38.57
Insertion gSampler 4.32, 1.29 4.61, 2.05 12.12, 8.24 48.09, 10.79 695.43, 60.01 9.42

FlowWalker 0.64, 0.70 2.92, 1.02 4.60, 2.99 18.57, 4.04 60108.03, 43.97 182.78
Bingo 0.35 , 0.79 0.57 , 1.54 0.18 , 2.29 5.92 , 6.93 66.51 , 66.55 -

node2vec KnightKing 13.66, 0.33 12.94, 0.44 55.50, 1.00 176.38, 2.86 2550.16, 49.11 87.64
Deletion gSampler 3.81, 1.06 4.14, 1.59 10.88, 5.85 43.42, 7.39 672.04, 60.01 19.21

FlowWalker 0.66, 0.71 2.94, 1.03 4.60, 2.99 18.62, 4.04 60007.51, 43.97 187.60
Bingo 0.27 , 0.97 0.81 , 1.58 0.46 , 5.40 6.14 , 8.13 66.64 , 66.55 -

node2vec KnightKing 18.34, 0.33 29.99, 0.43 36.49, 1.00 109.78, 2.86 2510.34, 49.22 47.97
Mixed gSampler 6.01, 1.29 4.36, 2.19 13.87, 8.02 44.03, 12.07 671.59, 72.88 15.01

FlowWalker 0.66, 0.70 2.99, 1.02 4,64, 2.99 18.70, 4.04 59840.22, 43.97 183.45
Bingo 0.56 , 0.70 1.10 , 1.54 0.62 , 2.09 2.01 , 6.34 20.21 , 51.22 -

PPR KnightKing 2.67, 0.29 4.52, 0.37 11.86, 0.78 74.08, 2.54 1172.27, 46.14 24.57
Insertion gSampler 1.67, 1.43 2.42, 2.35 3.86, 9.74 28.36, 10.60 519.07, 52.76 10.24

FlowWalker 0.57, 0.70 1.93, 1.02 3.80, 2.99 17.25, 4.04 24230.61, 43.97 243.28
Bingo 0.27 , 0.70 0.34 , 1.44 0.16 , 2.09 1.47 , 6.24 19.69 , 51.12 -

PPR KnightKing 2.56, 0.29 4.13, 0.36 11.32, 0.78 69.85, 2.54 1122.42, 46.14 39.38
Deletion gSampler 1.33, 1.13 2.39, 1.75 3.56, 6.74 21.97, 7.12 476.82, 72.54 14.67

FlowWalker 0.53, 0.70 1.94, 1.02 3.78, 2.99 17.04, 4.04 24181.06, 43.97 254.19
Bingo 0.26 , 0.87 0.66 , 1.38 0.44 , 4.62 1.74 , 7.35 19.96 , 51.22 -

PPR KnightKing 2.58, 0.29 4.25, 0.37 11.08, 0.77 64.76, 2.53 989.14, 46.21 25.66
Mixed gSampler 3.39, 1.44 2.58, 2.53 4.52, 9.45 19.73, 12.19 559.58, 53.97 13.32

FlowWalker 0.55, 0.70 1.97, 1.02 3.86, 2.99 17.23, 4.04 24243.25, 43.97 247.67

memory consumption . Briefly, Bingo consistently outper-
forms KnightKing, gSampler, and FlowWalker by 24.46 −
112.28×, 8.74 − 25.66× and 182.78 − 271.11×, respectively.

When it comes to runtime, we observe four different in-
sights: (i) Bingo outperforms all SOTA across all graph
applications on all graph datasets and updating cases. (ii)
Bingo enjoys more speedup on larger graphs with bigger de-
grees. Using DeepWalk-Insertion as an example, our speedup
climbs from 5.17× (Amazon) to 1279.9× (Twitter). (iii) Bingo
offers higher speedup on deletion than insertion, with mixed
operations sitting in the middle. The reason lies in the fact

that dynamic arrays may need to allocate memory immedi-
ately during insertion. In contrast, memory released during
deletion can be managed offline without incurring immedi-
ate overhead in our custom memory pool. In short, deletion
is more friendly to Bingo than insertion.
Regarding memory consumption, we witness two key

insights: (i) gSampler often consumes the most memory, fol-
lowed by Bingo, then KnightKing and FlowWalker. The rea-
son is that gSampler relies on matrix APIs, which will factor
out a laundry list of memory costs. Bingo would consume
more memory than KnightKing and FlowWalker because
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Figure 11. Adaptive group representation impacts on memory consumption of Bingo, where BS, GA, respectively, represent
“BaSeline” and “Group Adaption optimization”. In BS, we use regular group format for all groups.

these two SOTAs rely on relatively simpler sampling space
data structures or do not require such structures at all. (ii)
We notice a downside of Bingo. That is, Bingo consumes the
most memory for three cases, i.e., DeepWalk-Deletion (Live-
journal), node2vec-Insertion (Twitter), node2vec-Deletion
(Twitter). The major reason is that these graphs contain
more vertices with higher bias. That will render more regu-
lar groups in Bingo, which consumes more memory. Given
Bingo outperforms the SOTA on larger graphs, we can
slightly adjust 𝛼 and 𝛽 in Equation 9 whenmemory consump-
tion is a concern. Further, Bingo is a distributed randomwalk
system and can support higher radix factorizations, both of
which can help mitigate the memory consumption problem
faced by Bingo.

6.3 Impacts of System Optimizations
Adaptive group representation. Figure 11 illustrates the
memory consumption savings brought by the adaptive group
representation in Bingo. Figure 11(a) shows that overall this
optimization, on average, reduces the memory consump-
tion from 14.6× (GO) to 22.2× (AM). Further, as shown in
Figures 11(b) - (d), Dense, One-element, and Sparse group
representations, on average, reduce the memory by 323.67×,
21.51×, 6.41×, respectively. Overall, AM graph enjoys the
most savings because this group contains the highest ratio
of dense groups (72.7%); see Figure 11(e). It is worth noting
that our GA optimization resolves the out-of-memory issue
faced by the BS design for TW.
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Figure 12. Impacts of batched updates optimization.

Batched updates. Figure 12 exhibits the performance im-
pacts of our batched graph update optimization. In this study,
we ingest ten 100𝐾 “insertion”, “deletion”, and “mixed” graph

updates to Bingo in streamed vs. batched designs. Over-
all, our batched update designs are, respectively, 1006.1x,
1119.1x, 992.5x, faster than streaming update on “insertion”,
“deletion”, and “mixed” update cases because (i) we can par-
allelize all the updates in batched updates, and (ii) we only
perform one rebuild for all the updates. Further, “delete” en-
joys the best speedup thanks to our 2-phase parallel delete-
and-swap optimization. “Mixed” experiences the smallest
speedup because one has to invoke both “insert” and “delete”
kernels to perform the updates.
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Figure 13. Time consumption of BS vs GA, where BS and
GA are defined in Figure 11.

Table 4. Group conversion ratio in LJ graph.

Group Type Dense Regular Sparse One element
Dense — 0.02% 0.01% 0.47%
Regular 0.01% — <0.01% 0.02%
Sparse <0.01% <0.01% — 0.14%

One element 0.05% 0.03% 0.01% —

Impact on time cost. Figure 13 presents the time consump-
tion breakdown of with vs without GA optimization. Surpris-
ingly, our GA optimization is, on average, 1.09× faster than
BS in addition to the dramatic memory saving presented in
Figure 11. This speedup is offered from three aspects: (i) The
sampling on GA optimization is 1.05x - 1.61x faster. (ii) Our
insert/delete is faster than BS because updating one-element,
sparse, and dense groups is faster, and (iii) as shown in TA-
BLE 4, while rebuild introduces extra overheads compared to
BS, the conversion from one group type to the other is very
low for LJ graph. Particularly, the highest conversion rate is
less than 0.47%. This leads the time of GA insert/delete step
together with the rebuild step to be merely 8% slower than
the BS insert/delete step for the worst case (AM).
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6.4 MicroBenchmarks
This section uses DeepWalk with 100𝐾 mixed graph updates
for microbenchmark evaluations.
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Figure 14. Bingo: Integer bias vs. floating-point bias.

Floating-point vs. integer bias. Figure 14 presents the
performance of Bingo on the same dataset with different
bias data types. For the fair comparison, the floating-point
bias is the integer bias added with a random floating-point
value between 0−1.00. Overall, the floating-point bias merely
consumes, on average, 1.02× longer and 1.08×more memory
than the integer counterpart, which is acceptable.
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Figure 15. Varying evaluation configurations.

Varying evaluation configurations. Figure 15(a) shows
the execution time of gSampler vs Bingo under different
updating batch sizes for 1million updates on the LiveJournal
dataset. We observe that the runtime of gSampler and Bingo
decrease while the batch size increases. This is because larger
batch size provides more parallel execution opportunities
and helps reduce the rebuild time.

Figure 15(b) studies the performance of gSampler vs Bingo
under different walk lengths. With the increase in walk
lengths, indicating the increase in workloads, both gSam-
pler and Bingo experience longer runtime. With the help of
Bingo accelerated sampling, the gap between gSampler and
Bingo also widens from 18.17 s to 22.27 s.

Figure 15(c) evaluates the performance of Bingo under dif-
ferent bias distributions. Bingo on workload with a Uniform
bias distribution consumes the least memory and time. This
is because uniform bias distribution results in more dense
groups and a lower rejection rate. In contrast, the other two
distributions have relatively skewed bias distribution, requir-
ing more memory and time to process.
Piecewise breakdown. Figure 16 studies the time consump-
tion of 1 million insertions vs. 1 million deletions vs. 1 mil-
lion sampling in Bingo and FlowWalker on various graph
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(a) Updating time. Bingo_I and Bingo_D denote the time con-
sumption of Bingo performing 1 million insertions, and 1 mil-
lion deletions, respectively. FlowWalker_R means FlowWalker
reloads the graph after applying both the 1 million insertions
and 1 million deletions.
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Figure 16. Piecewise breakdown: Bingo vs. FlowWalker on
updating and sampling time.

datasets. This study reveals the dominant factors affecting
the overall performance. On average, Bingo’s insertion is
3.96× slower than deletion. Bingo’s sampling is around 2 or-
ders of magnitude faster than deletion and insertion, thanks
to 𝑂 (1) sampling time complexity.

Figure 16(a) also compares the updating time of Bingo vs
FlowWalker. FlowWalker achieves slightly faster (2.35𝑋 ) up-
dating performance than Bingo because it does not require
maintaining auxiliary sampling structures. Instead, it sim-
ply reloads the new graph after updates. In contrast, Bingo
must maintain additional sampling-related data structures,
leading to marginally higher update times.
Figure 16(b) further compares their sampling time. Both

Bingo and FlowWalker achieve efficient sampling, but Bingo
consistently outperforms FlowWalker across all datasets. No-
tably, in large-scale graphs like TW, Bingo maintains low
sampling latency, while FlowWalker suffers a significant per-
formance drop, with Bingo achieving a remarkable 218.7×
speedup. This gap stems from FlowWalker’s reliance on reser-
voir sampling, which has an O(𝑑) complexity. As the graph
size and vertex degrees increase, this complexity becomes a
bottleneck, significantly impacting sampling efficiency.

7 Related Work
7.1 RandomWalk and Sampling Systems

CPU-based systems. KnightKing [73] pioneered the ef-
fort of building a dedicated graph engine for random walk
applications. It introduces a walker-centric programming
interface, divides the large biases into two smaller ones in
pursuit of a lower rejection rate, and adopts 1-D graph par-
titioning to enable distributed random walk. GraphWalker
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[62], on the other hand, builds a single machine-based ran-
dom walk framework with a focus on I/O-efficient sub-graph
loading strategy. ThunderRW [52] notices that randomwalks
severely under-utilize memory bandwidth. Thus, it breaks
random walks into four steps and uses step interleaving to
over-subscribe memory access requests. This design triggers
aggressive software prefetching to improve memory band-
width utilization. FlashMob [72] simply re-arranges themem-
ory operations of various sampling tasks to improve memory
throughput during random walks. Most recently, TEA [22]
implements a hybrid sampling algorithm, which combines
ITS and alias methods, for fast and memory-efficient sam-
pling on a new type of graph, i.e., temporal graphs.
Accelerator-based systems. C-SAW [44] leads the effort of
building a general sampling framework on GPUs. This paper
mainly optimizes the ITS method for first-order sampling.
Inspired by KnightKing, NextDoor [24] applies rejection
sampling to GPUs and introduces transit parallelism for bet-
ter load balancing and caching. Skywalker [60] implements
parallel construction of alias tables on GPUs for improved
load balancing, with Skywalker+ [61] extending Skywalker
to multiple GPUs. Recently, gSampler [15] introduced a set
of expressive matrix-centric Application Programming In-
terface (APIs) to enhance the generality and efficiency of
graph sampling for graph learning. We also noticed that
LightRW [54] has extended ThunderRW to FPGAs.

Whether on CPU, GPU, or FPGA platforms, none of these
random walk systems explore random walk on dynamically
changing graphs, which is the target of Bingo.

7.2 Dynamic Graph Processing Systems
We identify a line of closely related interesting work which
focuses on updating random walk results based on graph up-
dates. These projects mainly aim to rapidly find the affected
random walks that were computed previously for updating.
Towards that end, Wharf [45] invents a compressed data
structure that stores the random walk results with afford-
able memory and supports rapid results updates on dynamic
graphs. FIRM [21] presents an efficient indexing scheme that
can trace and update the already calculated personalized
PageRank results in constant time complexity when edge
insertion and deletions are involved. Similar earlier efforts
in this line are FORA [63] and SpeedPPR [66].

Dynamic graph processing, which departs from traditional
static graph processing systems[7, 8, 27, 33, 36, 57, 76, 77] or
graph query systems[6, 13, 67], is another related direction.
First, on GPU platforms, STINGER [14] and cuSTINGER [16]
initialized the algorithm and data structure designs for fre-
quent changes in dynamic graphs on GPUs. Hornet [4] fur-
ther improves cuSTINGER, while faimGraph [65] designs a
memory page management strategy for incremental updates
on the GPU. Second, on the CPU platform, the streaming
graph is a hot topic [23, 37, 38, 59]. Recent years have wit-
nessed a surge of interest in maintaining ordered neighbors

during graph updates for efficient streaming graph analyt-
ics [48], examples are hash table [1], Packed Memory Ar-
ray [3, 51], Aspen [12] and Pac-tree [11]. Terrace [43] further
adopts multiple data structures, including PMA and B-tree,
for better performance. Most recently, LSGraph [48] advo-
cates support for both graph updates and graph computation
analytics simultaneously with ordered neighbor updates.

Bingo differs from the aforementioned two lines of work
as follows: (i) Bingo is orthogonal to identifying the already
calculated random walks for the update. Particularly, once
the calculated random walks are identified, instead of re-
building the sampling space from scratch, Bingo can help
them rapidly update the random walks. (ii) The second line
of work (i.e., dynamic graph systems) provides a foundation
for Bingo. In other words, these systems provide a platform
but do not directly address instance generation for sampling
or random walks. In particular, we adopt Hornet to support
our dynamic data structures on GPUs.

7.3 Second-Order RandomWalk
Several projects have dubbed second-order random walks as
dynamic graph random walks because these second-order
algorithms (i.e., node2vec [17], Metapath [53], Second-order
PageRank [68]) require to change the transition probability
of current vertex with respect to the history of a random
walk. In short, these second-order algorithms introduce a
dynamic bias for an unchanged static graph.
There mainly exist two lines of efforts in this direction,

i.e., algorithm innovation and system designs: (i) Regarding
sampling algorithm design, KnightKing [73] introduces a
novel two-step approach for second-order sampling: (1) us-
ing static sampling to select a vertex, and (2) using rejection
sampling to involve the history of this random walk. On the
contrary, FlowWalker [39] introduces two massively parallel
sampling approaches based on Reservoir Sampling [58] to
quickly sample from the newly built sampling spaces. (ii)
For system design, GraSorw [31] is a disk-based system for
large graphs, using a triangular bi-block scheduling strat-
egy to convert small random I/Os into large sequential I/Os.
SOWalker [69] optimizes I/O utilization by maximizing the
benefit from block loading.

Bingo is orthogonal to these approaches because we work
on algorithm and system designs of graphs with dynamic
changing structures.We adopt Knighking’s approach for han-
dling second-order randomwalk applications, e.g., Node2vec.

8 Conclusion
This paper takes the initiative to build a general random
walk engine for dynamically changing graphs with two key
principles: (i) this system should support both low-latency
streaming updates and high-throughput batched updates.
(ii) This system should achieve sampling speed and memory
consumption comparable to the existing Monte Carlo sam-
pling algorithms while supporting dynamic updates. Our
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system Bingo features three contributions: We first present
a novel sampling algorithm that offers constant time sam-
pling and fast updates. Furthermore, we introduce group
adaptations for memory-efficient sampling space data struc-
tures. Finally, we introduce GPU-aware designs to support
high-throughput batched graph updates. Our comprehensive
evaluation demonstrates that Bingo outperforms the SOTA.
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