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Abstract
With the rise of deep learning, many companies have devel-
oped domain-specific architectures (DSAs) optimized for AI
workloads, with Ascend being a representative. To fully re-
alize the operator performance on Ascend, effective analysis
and optimization is urgently needed. Compared to GPU, As-
cend requires users to manage operations manually, leading
to complex performance issues that require precise analysis.
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However, existing roofline models face challenges of visual-
ization complexity and inaccurate performance assessment.
To address these needs, we introduce a component-based
roofline model that abstracts components to capture opera-
tor performance, thereby effectively identifying bottleneck
components. Furthermore, through practical operator opti-
mization case studies, we illustrate a comprehensive process
of optimization based on roofline analysis, summarizing com-
mon performance issues and optimization strategies. Finally,
extensive end-to-end optimization experiments demonstrate
significant model speed improvements, ranging from 1.07×
to 2.15×, along with valuable insights from practice.

CCS Concepts: • Computer systems organization →
Processors and memory architectures; • Computing
methodologies→ Modeling methodologies.
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1 Introduction
With the rapid evolution of deep learning technologies, nu-
merous enterprises have devoted themselves to developing
domain-specific architectures (DSAs) optimized for compu-
tations [22, 41], such as Google’s Tensor Processing Units
(TPU) [15, 20, 36] and Huawei’s Ascend chips [23, 24]. As
a representative, Ascend supports a wide range of influen-
tial models, such as DeepSeek V3/R1 [17, 25], and delivers
outstanding performance and energy efficiency [40, 49, 50].

Compared to general-purpose GPU architectures, Ascend
introduces several targeted architectural features to improve
the performance of AI workloads:

• Dedicated compute units. Ascend assigns distinct roles to
its compute units, with the Scalar unit handling control
logic, and high-performance units like Vector and Cube
dedicated to vector and matrix operations, respectively,
enabling parallelism for different calculations.

• Customized memory buffers and flexible data transfer.
Ascend is designed for AI-specific memory access and
features customizedmemory buffers, including L0 A/B/C
buffers for Cube and the unifier buffer for Vector. Data
transfer is flexible, allowing for cross-layer and asymmet-
ric bandwidth transfers rather than strict layer-by-layer
flow. This setup lets users choose the transfer paths that
best match workloads, minimizing overhead.

• Efficient transfer control and instruction pipelining. To
prevent memory access conflicts, Ascend uses the mem-
ory transfer engine (MTE) that enforces serial execution
within each MTE for transfers, while enabling parallel
transfers between MTEs. Additionally, through instruc-
tion pipelining, Ascend supports broader parallelism, en-
compassing compute and transfer components. Within
the same component, operations are executed sequen-
tially, while they run in parallel across components. This
design allows users to control pipelining explicitly for
maximum efficiency.

While these designs grant users greater flexibility and
performance potential, they also pose significant challenges
in optimizing operator performance. Given that users must
manually manage computation, transfers, and instruction
pipelines, developers unfamiliar with Ascend’s architecture
can easily encounter poor performance. The causes are com-
plex, including but not limited to: suboptimal algorithms,

parameter configurations, or task allocations leading to inef-
ficient computation, poorly selected transfer paths or band-
widths reducing MTE efficiency, and improper instruction se-
quence or too much/few synchronization impacting pipeline
parallelism. Therefore, effective optimization first requires
accurate performance analysis to pinpoint bottlenecks.
Unfortunately, existing performance analysis methods

cannot effectively identify bottlenecks in Ascend operators.
ThemainstreamRooflinemodels, such as DRAMRoofline [47,
53] and hierarchical Roofline [19, 38, 54] for CPUs and GPUs,
are not well-suited for Ascend due to the significant architec-
tural differences. Even naively extending the Roofline model
from GPU to Ascend is not suitable for two reasons.

• Numerous combinations of precision and transfer. Ascend
incorporates three compute units, each supporting multi-
precision computation, totaling 9 precision-compute units.
Moreover, it employs various memory buffers, intercon-
nected by up to 20 memory transfers. A naive compar-
ison of each precision to each transfer, analogous to
GPU analysis, would yield 180 roofline combinations,
complicating visualization and analysis.

• Contention, asymmetry, and cross-layer interactions. As-
cend suffers contentions from the precision computa-
tions and memory transfers. For example, the MTE unit
sequentially schedules transfers within it, while consid-
ering the transfers separately maymisdiagnose underuti-
lization when fully occupied. Moreover, the cross-layer
transfer and asymmetric bandwidth complicate the anal-
ysis. Similarly, challenges also exist in mixed-precision
computation within the same compute unit.

In this paper, we make the following contributions:
Bottleneck Analysis (Section 4). We introduce the con-
cept of a "component" to describe the serial execution of
instructions within it and the parallel execution between dif-
ferent components. Physically, each component corresponds
to a specific compute or MTE unit. Utilizing this abstraction,
we introduce a component-based roofline model to present
whether the operator is bound by a component or under-
utilized. For underutilization cases, using the component
execution time, we decomposed utilization into component
active time ratio and execution efficiency and attributed
underutilization to two primary causes. 1) Insufficient Paral-
lelism: The low parallelism between components results in
near-serial execution, leading to inadequate execution time
and consequently low utilization. 2) Inefficient Component:
Even if there is sufficient parallelism between components,
low execution efficiency also results in low utilization.
Optimization Experience (Section 5). To facilitate oper-
ator optimization, we provide three in-depth case studies
in our practice. These cases illustrate how we use Roofline
analysis to identify bottleneck components, followed by in-
specting pipeline status and operator code to diagnose root
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causes, thereby enabling the application of targeted opti-
mization strategies. The cases cover cube, vector, and scalar
computations, as well as all MTE units, addressing multiple
types of bottlenecks such as insufficient parallelism, ineffi-
cient compute/MTE, and MTE bound. Additionally, we sum-
marize common operator bottlenecks and the corresponding
optimizations that best address them.
Extensive Evaluation (Section 6). Through two years of
practice, we have optimized 11 models from real-world deep
learning training and inference tasks, including those in
vision, NLP, recommendation systems, and large language
models (LLMs), especially PanGu-𝛼 with over 100 billion pa-
rameters [56]. Performance optimization results show com-
putation time speedups ranging from 1.08× to 2.70×, with
overall acceleration between 1.07× to 2.15×. A total of 41
optimized operators have been integrated into the Ascend
operator library. We present end-to-end analysis and opti-
mization and share insights from extensive experiments on
bottleneck distribution and optimization selection.
Scope: This paper focuses on the computational perfor-
mance of operators, making I/O and communication bot-
tlenecks in large-scale training orthogonal to this work.

2 Background and Motivation
In this section, wewill first introduce the Ascend architecture
and its unique design principles. However, such a distinctive
design poses significant challenges for optimizing operator
performance. Even worse, existing roofline analysis, includ-
ing its naive extension, fails to pinpoint operator bottlenecks,
nor can it provide guidance for optimization.

2.1 Ascend Architecture
As themainstream accelerator, GPU provides considerable in-
spiration for Ascend’s design, particularly its efficient hetero-
geneous compute units and hierarchical memory structure.
Specifically, a GPU consists of multiple Streaming Multi-
processors (SMs), each equipped with numerous computing
units, including CUDA Cores for general-purpose math oper-
ations and Tensor Cores for tensormultiplication-accumulation
tasks. The hierarchical memory in GPU encompasses global
memory, L2 cache, and L1 cache (shared memory). Data flow
from global memory through the L2 cache into the L1 cache
before being fed into computing units.

Unlike GPUs for general-purpose computing, deep learn-
ing DSA like Ascend is tailored from the ground up for DL,
incorporating unique designs optimized for AI workloads.
Dedicated High-Performance Compute Units. In deep
learning models such as CNN and Transformer, matrix opera-
tions (e.g., matrix multiply, convolution, and fully connected
layers) account for 70-90% [45]. Regular compute units like
CUDA Core are well-suited for basic operations like addition
but lack the efficiency for these high-throughput tasks. Ac-
cordingly, high-performance units such as the tensor cores
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GM

AICore

Scalar

L0BL0A

L1

MTE-L1MTE-GM MTE-UBCompute Unit Memory Unit

Compute 
Unit

L0 Level

L1 Level

Global 
Memory

Figure 1. The architecture of AICore in Ascend.

and the systolic array [18] can accelerate the computations.
Similarly, Ascend adopts a heterogeneous design but with
a more specialized focus: regular units handle logic, while
dedicated high-performance units are tailored for vector and
matrix operations. This highly specialized design aims to
enable these units to work in parallel, boosting computation.
Specifically, Ascend’s computational core, AICore, inte-

grates three types of compute units with varying precision1,
each specialized for a particular computing task: i) Scalar Unit
(supporting INT32/FP16/FP32/FP64) similarly to a CPU Core,
is primarily responsible for instruction control and logic oper-
ations; ii) Vector Unit (supporting INT32/FP16/FP32) follows
the SIMD (single instruction multiple data) and executes
most vector-related computations, such as normalization,
softmax, pooling and activation. Finally, iii) Cube Unit (sup-
porting INT8/FP16) is dedicated to accelerating compute-
intensive operations, i.e., matrix multiplication (MatMul).
Optimized On-Chip Memory and Data Transfer. Al-
though dedicated compute unit designs offer higher compu-
tational limits, achieving optimal performance requires fast
data provisioning. As shown in Figure 1, Ascend also adopts
three levels of the memory hierarchy, from the top to the
bottom: L0, L1, and Global Memory (GM)2. However, unlike
the GPU, Ascend incorporates extensive memory buffers and
flexible data transfer options to minimize access overhead.
• Customized memory buffers: Ascend provides multiple
customized buffers for specific compute units, enabling
efficient data inflow and outflow. Specifically, the L1 level
distinguishes between Cube and Vector/Scalar computa-
tions through L1 Buffer and Unified Buffer (UB). First, to
accelerate matrix multiplication, the memory involved
in Cube computations is divided into L0A, L0B, and L0C
Buffer for two inputs and one output, respectively. For
example, in a fully connected layer, the two input ma-
trices (feature map and weights) are transferred from
the GM to the L0A and L0B Buffer. The Cube unit mul-
tiplies these matrices and writes the output to the L0C

1These precision standards come from the Ascend training chip, and the
overhead of type-casting is accounted for the compute or MTE units.
2We omit registers and external memory, e.g., CPU memory and SSD.
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Buffer, which then feeds into the Vector unit for activa-
tion (e.g., ReLU), minimizing unnecessary data transfers.
Meanwhile, the UB, as a flexible shared memory among
different compute units, temporarily holds various data,
including feature maps, weights, and activations, ensur-
ing data is available for subsequent operations.

• Cross-layer transfers and asymmetric bandwidth: Ascend
also enhances data transfer options to better align with
AI workload characteristics. Unlike GPUs, which only
allow transfers between adjacent memory layers, Ascend
enables cross-layer transfers. For example, in addition
to the typical data flow from GM to L1 (𝐺𝑀 → 𝐿1),
data can also bypass L1 and be transferred directly to
L0A/B Buffer to speed up Cube computations. Moreover,
recognizing the substantial size difference between two
inputs in matrix multiplications, such as the large feature
map stored in L0A and the relatively smaller weights
in L0B, Ascend offers higher bandwidth from L1 to L0A
than from L1 to L0B. This design enables prioritized
bandwidth allocation based on operator requirements.

In a nutshell, the primary difference in memory access be-
tweenAscend and GPUs is that, while GPUs rely on auto data
management via caches, Ascend’s buffers provide greater
flexibility. Developers can control what data is loaded into
the buffer, when it is loaded, and to which compute unit it is
transferred, allowing for higher efficiency.
Efficient Data Transfer Control and Pipelining.While
diverse transfers enhance computation efficiency, we also
note that there is contention between different transfers.
For example, GM transfers but with different destinations
(𝐺𝑀 → {𝐿1, 𝐿0𝐴/𝐵,𝑈𝐵}) share the bandwidth of the GM.
Meanwhile, the hardware enforces that only one outbound
transfer can occur at any given time per unit. Therefore,
Ascend introduces a physical control unit, Memory Transfer
Engine, to schedule data transfers to avoid conflicts while
maximizing parallelism. Specifically, transfers within the
same MTE unit must execute serially, while transfers across
different MTE units can operate in parallel. Figure 1 shows
three MTE units in Ascend, each corresponding to transfers
originating fromGM, L1, and UB, respectively. The blueMTE-
L1 controls the 𝐿1 → {𝐿0𝐴/𝐵} transfers, and the purple
MTE-GM controls 𝐺𝑀 → {𝐿1, 𝐿0𝐴/𝐵,𝑈𝐵} transfers and
the green MTE-UB controls𝑈𝐵 → {𝑂𝑈𝑇, 𝐿1} transfers.
Furthermore, Ascend provides an instruction pipelining

mechanism on hardware to enable efficient execution be-
tween compute and MTE units. Specifically, both compu-
tation and transfers are implemented by corresponding in-
structions, which are dispatched to the Cube, Vector, Scalar,
and three MTE queues based on the type, awaiting execution
by the respective hardware units. Instructions within the
same queue are executed sequentially, while those in differ-
ent queues can be executed in parallel, forming the instruc-
tion pipeline. This pipeline is explicitly managed, allowing

developers to optimize efficiency by adjusting instruction se-
quences and reducing synchronizations. However, incorrect
execution order and dependency handling can result in ex-
cessive waiting times, which degrade operator performance.

2.2 Operator Optimization on Ascend Is Non-trivial
Ascend’s unique architectural design offers significant power
and flexibility, but makes optimization more complex. Con-
sider a convolution operator, which involves matrix multipli-
cations and additions handled by the Cube unit, the feature
maps and weights should be transferred from GM to L0A
and L0B for computation. Poor performance in convolution
operators can be caused by the following issues.

The first issue is the inefficiency of the compute units, par-
ticular suboptimal algorithms and parameter configurations
hinder their processing. Additionally, developers must assess
whether task allocation across different compute units (Cube,
Vector, Scalar) is appropriate. Each unit has its strengths, and
incorrect assignments can reduce efficiency.
Another common cause is improper memory transfer se-

lection. For example, larger feature maps can benefit from
direct transfer to L0A, while weights could be staged in L1.
Failing to make these data-specific choices can lead to unnec-
essary transfer costs. Furthermore, data allocation between
L0A and L0B with different bandwidths can also go wrong. If
developers place larger feature maps in the slower L0B and
weights in the faster L0A, the Cube unit will wait longer.

Operator performance is also closely tied to inter-component
parallelism, especially in Ascend, where the parallelism be-
tween computation and data transfer relies heavily on man-
ual control by developers, making it prone to errors. For ex-
ample, while computing one part of a matrix, the next part’s
data should be loaded from GM to L1 simultaneously. This
ensures that the Cube unit can immediately receive the next
input once they finish with the current data. However, if the
𝐺𝑀 → 𝐿1 instruction is not correctly sequenced, parallelism
will be disrupted. Additionally, developers must manually
insert synchronization instructions, like 𝑝𝑖𝑝𝑒_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 , to co-
ordinate parallelism across components. Too much synchro-
nization reduces the parallel efficiency between compute and
transfers, while too few can result in data or cache conflicts.
The various potential issues with Ascend operators indi-

cate that maximizing operator performance requires metic-
ulous tuning across all aspects of both hardware and code.
However, accurately identifying them through performance
analysis becomes a challenging, yet essential task.

2.3 Limitations of Performance Analysis
The operator performance analysis is paramount for opti-
mization, and previous studies [7, 11, 46, 55] have success-
fully done this on CPUs and GPUs. The most representative
work is the roofline model [47], which is widely applied
in performance analysis such as Empirical Roofline Toolkit
(ERT) [53], Intel Advisor [19] and Nsight Compute [38].
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Figure 2. Existing roofline models.

DRAMRoofline [47]. This model was originally conceived
to evaluate the performance of CPU kernels accessing Dy-
namic Random Access Memory (DRAM). It assesses kernel
performance by considering Floating-point Operations Per
Second (FLOPs) and data accessed from DRAM (Byte). As
depicted in Figure 2a, the performance point indicates the
performance of this kernel. The X-axis represents Arithmetic
Intensity (AI), which is the ratio of FLOPs to Byte. The Y-axis
denotes Peak Floating-Point Performance (P), with a horizon-
tal line (arithmetic ceiling) indicating the peak throughput.
The slope of the diagonal line (bandwidth ceiling) reflects
the Peak DRAM bandwidth. The ridge point i.e., the inter-
section of the horizontal and diagonal lines, as well as the
dashed vertical line starting from it, divides the space into
two regions. The left region is memory-bound as the perfor-
mance is limited by memory bandwidth, while the right one
is compute-bound as the performance is limited by arithmetic.
Hierarchical Roofline [54]. In practice, the CPU and GPU
utilize a hierarchical architecture with multi-layer caches.
As any layer of memory can be a bottleneck, the hierarchical
roofline model is proposed to model them. To assess whether
an operator’s performance hits its bandwidth limitation at
a specific layer, researchers construct individual bandwidth
ceilings for each layer as shown in Figure 2b. Furthermore,
the hierarchical roofline supports evaluating the arithmetic
ceilings of various precision and compute units within a
GPU, including FP32, FP16, and Tensor Core [13] operations.
Naive Roofline for Ascend. Due to the significant architec-
tural differences between Ascend and CPUs/GPUs, original
roofline models are inherently unsuitable for Ascend. To
analyze Ascend performance, a naive method is to build
rooflines by comparing each precision-compute unit against
each transfer independently, similar to how the hierarchical
Roofline expands from DRAM Roofline. For example, the
roofline between the transfer of 𝐿1 → 𝐿0𝐴 and the FP16-
Cube is built to identify whether the cache of the left matrix
or the FP16 computation in Cube is the bottleneck in Mat-
Mul. However, this model overlooks the features of Ascend,
which results in incorrect and complicated analysis.
Issue 1: Complicated visualization and analysis due to
massive combinations between percisions and trans-
fers. Generally, according to Figure 1, the Ascend chip has 9
precision-compute units and 20 transfers, which results in

Cube INT8
P(FLOP/s)

AI (FLOPs/Byte)

GM->L0A
67%

GM->L0B
33%

A

B

GM->L0A

GM->L0B
Naïve

A BActual
GM->L0A GM->L0B

(a) Bandwidth underutilization.

Cube INT8
P(FLOP/s)

AI(FLOPs/Byte)

Cube FP16

INT8
33%

FP16
67%

Mul1 Mul2

Mul1

Mul2
Naïve

Actual
FP16 INT8

FP16

INT8

(b) Compute underutilization.

Figure 3. Incorrect analysis cases of the naive roofline.

180 combinations for rooflines. The massive combinations
result in crowded performance points when visualizing the
roofline model, making it difficult to analyze.
Issue 2: Incorrect analysis due to the contention of
memory transfers within the same MTE unit. Consider
the example in Figure 3a, where two matrices, 𝐴 and 𝐵, are
multiplied, with 𝐴 being twice the size of 𝐵. The matrices
are transferred sequentially via𝐺𝑀 → 𝐿0𝐴 and𝐺𝑀 → 𝐿0𝐵
due to memory contention within the MTE-GM. Assum-
ing that the MTE-GM remains fully occupied, both transfer
bandwidths are fully utilized and equal. However, the naive
roofline model assumes that data transfers of 𝐴 and 𝐵 are
executed in parallel throughout the entire operation, over-
looking the sequential nature. Since𝐺𝑀 → 𝐿0𝐴 takes 67%
of the time and 𝐺𝑀 → 𝐿0𝐵 takes 33%, the naive analysis
mistakenly concludes that the bandwidth of both transfers
is underutilized (67% and 33%, respectively).
Issue 3: Incorrect analysis due to the sequential exe-
cution of mixed-precision operations within the same
compute unit. Similarly, a single compute unit may in-
volve operations of multiple precisions executed sequentially.
However, the naive roofline model only separates rooflines
for different precisions, overlooking the serial nature. For
example, as shown in Figure 3b, during data quantization,
the Cube involves multiplication with FP16 and INT8 pre-
cisions, where the peak performance of INT8 is twice that
of FP16. Assume the Cube is always busy and achieves the
peak performance of given precision. When the two preci-
sion operations have the same number of operands, FP16
takes twice as long as INT8. However, the Naive analysis
concludes that both achieve the same computational perfor-
mance over the entire period (the same performance point)
and their utilization is only 67% and 33%.

Re-visiting of the error analysis is detailed in Section 4.2.
In summary, the naive roofline not only loses the easy-to-

visualize feature but also fails to distinguish between bottle-
neck and underutilization. As a result, developers urgently
need an accurate solution for analyzing Ascend operator
performance to effectively guide optimization efforts.
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Figure 4. The execution of matrix multiplication 𝐴 × 𝐵.

3 Overview
In this section, we present two key observations that moti-
vate our work and the workflow of our optimization system.

3.1 Key Observation
Abstraction of Component. To better understand the As-
cend architecture, we demonstrate the data access flow of
the matrix multiplication 𝐴 × 𝐵 in Figure 4a. In step 1○, ten-
sor A follows the 𝐺𝑀 → 𝐿1 transfer. Subsequently, in step
2○, tensor A executes the 𝐿1 → 𝐿0𝐴 transfer, while tensor
B concurrently follows the 𝐺𝑀 → 𝐿0𝐵 transfer, achieving
parallelism. In step 3○, tensors A and B are fed into the Cube
to compute 𝐴 × 𝐵. Correspondingly, Figure 4b depicts the
execution timeline of MTEs and Cube.

In summary, operations with different precisions (or trans-
fers) among various compute and MTE units ("component")
can be parallelized, whereas those within the same compo-
nent are sequential. This is attributed to the fact that each
component in Ascend corresponds to a physically existing in-
struction queue, which sequentially schedules instructions
within it, and different queues operate concurrently.
Additionally Profiling Metrics. The instruction queue for
each component provides more detailed profiling metrics for
analysis. The additional metrics come from two aspects:

• Analyzing the instructions of each component: trans-
fer bytes/operations of precision. The instruction
queue of each component can provide the number of
each type of instruction, which can be further utilized to
derive the number of bytes (operations) for each transfer
(precision). These metrics reflect the importance of each
transfer (precision) within the component, which can be
further utilized to compute the ideal performance of the
entire component and identify its bottleneck.

• Monitoring the queue status: execution time of the
component. By monitoring the non-empty time of the
instruction queue, we can estimate the actual execution
(active) time of the component, which can be utilized to
identify the cause of component underutilization, such
as the low execution time or inefficient execution.
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Figure 5. The workflow of analysis system.

3.2 Workflow
Typically, the workflow for the analysis system, as depicted
in Figure 5, involves the following concise steps:
Profiling. With the assistance of profiling tools provided
by Ascend, such as msprof [3] and Pytorch Profiler [39],
we have filtered the required metrics, including the transfer
bytes/operations of each transfer (precision), the execution
time of each component and operator time, for further anal-
ysis.
Modeling. (Section 4.1) Based on the abstraction of compo-
nents, we propose the component-based roofline model to
analyze the operator performance. This allows us to identify
bottleneck components (component bound) or determine if
all components are underutilized (underutilization).
Underutilization Analysis. (Section 4.2) For the underuti-
lization cases, we further leverage the additional profiling
metrics “execution time of each component”, thereby decom-
posing the utilization into component active time ratio and
component execution efficiency. This decomposition further
pinpoints whether the underutilization is due to insufficient
parallelism or inefficient component execution.
Optimization. (Section 5) After identifying the bottleneck
causes, optimization becomes more targeted. We present
three in-depth case studies of operator optimizations (Add_ReLU,
Depthwise, and AvgPool) and share insights from practices.

4 Bottleneck Analysis
In this section, wewill introduce an enhanced Rooflinemodel
that utilizes component abstraction for effective bottleneck
classification and visualization. Further, based on the visual
representation of component utilization, we conduct a de-
tailed analysis of the root causes of underutilization.

Due to the nature of sequential execution within the same
component and parallel execution between different com-
ponents, we suggest treating each component as a single
entity in the roofline model for 1) simplicity and 2) captur-
ing the actual performance of the component, proposing a
component-based roofline. Without loss of generality, we
take the mixed-precision computation in Cube as an example
to illustrate the design of our analysis.
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4.1 Component-based Roofline Model
Deriving the actual performance of Cube 𝐴cube is trivial.

𝐴cube =
𝑂cube

𝑇total
, (1)

where 𝑂cube is the number of operations executed by Cube
from profiling, and 𝑇total is the total time the operator takes.

In contrast, determining the ideal performance of the com-
ponent presents a challenge. Different precision instructions
can unleash varying arithmetic power, with INT8 instruc-
tions boasting peak arithmetic twice that of FP16. Similarly,
as described in Section 2.1, the bandwidth of transfers within
the same MTE is not necessarily the same. We first consider
two naive methods, which unfortunately don’t work.

• Maximum Arithmetic Power. A straightforward solu-
tion is to use the maximum arithmetic power among the
precision instructions supported by Cube as the ideal
Cube performance, which suggests only leveraging the
fastest instruction, i.e., lowest precision, to achieve the
best performance. However, this is impractical as devel-
opers may want to leverage the higher precision instruc-
tions to achieve better accuracy.

• Average Arithmetic Power. Another solution is to use
the average arithmetic power of all precision instructions
in Cube as the ideal Cube performance. However, in
some cases, the actual performance of Cube may be
higher than this “ideal performance” when leveraging a
higher percentage of the lowest precision instructions,
e.g., 100% INT8 instructions.

Operator-aware Ideal Performance. According to the
above analysis, we observe that the ideal performance of the
component should be related to the operator’s execution. For
instance, the highly demanded precision instructions should
contribute more to the ideal Cube performance. The easiest
way is to use the time of each operation with different preci-
sions as the weight to calculate the weighted average ideal
arithmetic power. However, due to the lack of a timing mech-
anism for transfers on AICore hardware, it is not feasible to
accurately capture the duration of each precision operation
from profiling. In contrast, only the counts for each precision
type of instruction are available, which can be obtained by
profiling the instruction queue of each component.

Definition 1 (Ideal Cube Performance). The operator-aware
ideal performance of the Cube 𝐼cube is the maximum perfor-
mance, on the other hand, related to the minimum time (ideal
time 𝑇ideal) to process the mixed-precision operations, i.e.,

𝐼cube =
𝑂cube

𝑇ideal
. (2)

As the ideal arithmetic power of each precision instruction
𝑃prec and the number of operations of each precision 𝑂prec

are available, the ideal time can be obtained as follow:

𝑇ideal =
∑︁
prec

𝑂prec

𝑃prec
. (3)

Subsequently, we obtain

𝐼cube =

∑
prec𝑂prec∑
prec

𝑂prec
𝑃prec

, (4)

i.e., the operator-aware ideal performance of the Cube 𝐼cube is
the weighted harmonic mean of the performance of all preci-
sion instructions within the Cube by treating the operations
of each precision instruction as the weight.

The harmonic mean makes sense in this context because
we can treat each precision as a task, where the number
of operations is the amount of work done by the task and
the performance is the rate of work done. Intuitively, the
harmonic mean weights the slower tasks more heavily, as
they impose greater limits on the system.

Definition 2 (Cube Utilization). The utilization of the Cube
𝑈cube can be calculated as the ratio of the actual performance
to the ideal performance, i.e.,

𝑈cube =
𝐴cube

𝐼cube
. (5)

Insight 1. Due to hardware profiling frequency limitations,
we can only obtain performance data for hardware units
over a period of time, rather than their precise performance
at each clock cycle. Taking the Cube unit as an example,
we track the total number of cycles for operator execution
(𝑇𝑡𝑜𝑡𝑎𝑙 ) and the total number of Cube operations (𝑂𝑐𝑢𝑏𝑒 ) to
calculate its actual compute performance (𝐴𝑐𝑢𝑏𝑒 ). Therefore,
in the roofline model, we assess whether the hardware has
reached its compute/bandwidth limits by evaluating the over-
all arithmetic/bandwidth utilization. For instance, if 𝑈𝑐𝑢𝑏𝑒

exceeds the practical threshold, we consider that the opera-
tor’s computational power has reached the hardware limit.

4.2 Underutilization Analysis
In deployment, we set a threshold for the utilization of each
component, and if the utilization exceeds the threshold, the
component is considered a bottleneck (bound). In contrast, if
the utilization of all components is below the threshold, the
hardware is underutilized, and further analysis is required.
Utilization Decomposition. Fortunately, our detailed pro-
filing data provides more available information, which can
be further employed to identify the root cause of the un-
derutilization of a component. An important metric is the
execution time of a given component, which is the time spent
on the component during the operator execution like 𝑇cube.
This metric provides a more detailed view of the performance
of each component. For example, the utilization of the Cube
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component can be transformed into the following formula:

𝑈cube =
𝑂cube

𝑇op · 𝐼cube
=

𝑂cube

𝑇cube · 𝐼cube︸        ︷︷        ︸
𝐸cube

· 𝑇cube
𝑇total︸︷︷︸
𝑅cube

.
(6)

Eq. 6 decomposes the utilization of the Cube component
into two parts: 𝐸cube and 𝑅cube. The 𝐸cube measures the execu-
tion efficiency of the Cube component, which is the ratio of
the actual execution performance to the ideal performance.
The 𝑅cube measures the proportion of time spent on the Cube
component during the operator execution. Accordingly, the
underutilization of the Cube component can be further attrib-
uted to the inefficiency when executing Cube operations or
the insufficient time spent on the Cube component. Note that
the same decomposition can be applied to other components.
The following insight gives further intuition into the de-

sign of our utilization analysis.

Insight 2. The Cube efficiency reflects the weighted average
efficiency of all precision instructions in the Cube. Firstly,
we obtain:

𝐸cube =

∑
prec

𝑂prec
𝑃prec

𝑇cube
. (7)

For a given precision, the efficiency 𝐸prec is calculated as:

𝐸prec =
𝑂prec

𝑇prec · 𝑃prec
, (8)

where𝑂prec is the number of operations,𝑇prec is the execution
time and 𝑃prec is the peak performance for the given precision.
Therefore, the Cube efficiency can be regarded as:

𝐸cube =

∑
prec 𝐸prec ·𝑇prec∑

prec𝑇prec
. (9)

Classification of Underutilization.We observe that the
time ratio of a given component can be affected by other
components, as it reflects the component activity during the
operator execution. In contrast, a component’s efficiency is
more intrinsic to the component itself, as it measures the
performance when the component is active. Moreover, for
an underutilized component, the high time ratio must result
in low efficiency. Therefore, we use the time ratio as the core
metric to identify the cause that leads to underutilization.

Recall the execution timeline of an operator in Figure 4b,
the execution of different components can be overlapped to
improve the overall performance. A good implementation
that fully parallelizes the execution of different components
has a bound component with a time ratio close to 1. Accord-
ingly, if all components have low time ratios, it indicates that
the operator execution is not fully parallelized and there still
exists room for optimization. Formally, we have:
∀component, 𝑅component < 𝑅threshold ⇒ Insufficient Parallelism.

where 𝑅component is the time ratio of the component, 𝑅threshold
is the threshold to determine whether it is fully parallelized.

Otherwise, if it is, we have

∃component, 𝑅component ≥ 𝑅threshold

⇒∃component, 𝐸component ≤
𝑅threshold
𝑈threshold

⇒∃component, Inefficient Component.

Therefore, an inefficient component must exist, leading to
underutilization. Moreover, we classify the inefficient com-
ponent into Inefficient MTE and Inefficient Compute for the
memory and compute components, respectively. In more
detail, among different transfers within the same MTE, those
with the largest number of bytes transferred are often the
most likely to be problematic. Similarly, within the same
computing unit, the proportion of instructions with different
precision can aid in diagnosing the issue, as the most preva-
lent instructions often contribute directly to inefficiency.
Revisit of incorrect analysis of transfer in Figure 3a.
Combining the transferred bytes of matrices𝐴 and 𝐵 through
transfers 𝐺𝑀 → 𝐿0𝐴 and 𝐺𝑀 → 𝐿0𝐵, respectively, the
actual performance of the MTE-GM can achieve the ideal
bandwidth, i.e., the peak bandwidth of 𝐺𝑀 → 𝐿0𝐴/𝐵. Ac-
cording to the underutilization analysis, the MTE-GM will
be identified as the bound bottleneck as it is fully utilized.
Revisit of incorrect analysis of compute unit in Fig-
ure 3b. According to the definition, the actual performance
of the cube unit is 2/3 of the peak performance of the INT8 in-
struction. In contrast, the operator-aware ideal performance,
maximum performance, and average performance of the
cube unit are 2/3, 1, and 3/4 of the peak performance of the
INT8 instruction, respectively. As we assume the Cube unit is
fully utilized, i.e., 100% utilization, the operator-aware ideal
performance perfectly matches the actual performance.

4.3 Pruning, Visualization, and Analysis
The component-based roofline model consolidates multiple
transfers/precision operationswithin the sameMTE/compute
unit into a single component. However, this results in 3 com-
pute components and 15 memory components (3 MTEs and
12 non-MTE transfers), totaling 45 combinations, which can
still be overwhelming for visualization and analysis.
Pruning. The pruning can be conducted from two aspects:
1) the memory components that do not contribute to per-
formance bottleneck and optimization, and 2) the impos-
sible combinations of memory and compute components.
After component abstraction and two prunings, the combi-
nations drop from 180 to 7. Regarding the Ascend chip in
Figure 1, we notice that the transfers directly connected to
the compute unit, such as 𝐿0𝐴/𝐵 → 𝐶𝑢𝑏𝑒 , are inevitable
and leave no room for optimization, thus the corresponding
analysis is unnecessary. Moreover, direct transfer between
𝐿0𝐶 → 𝑈𝐵 is rare, and Ascend implements this transfer
through 𝐿0𝐶 → 𝑉𝑒𝑐𝑡𝑜𝑟 and 𝑉𝑒𝑐𝑡𝑜𝑟 → 𝑈𝐵. Overall, only
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MTE should be considered. Moreover, the impossible com-
binations of MTEs and compute units, including (MTE-L1,
Vector) and (MTE-L1, Scalar), are pruned from the analysis.
Visualization. The component-based roofline model is visu-
alized in Figure 6, where the bandwidth ceilings of different
MTEs and the arithmetic ceilings of various compute units
are set. Accordingly, when analyzing bottlenecks, only amax-
imum of 7 performance points need to be considered. The
utilization of each component is visualized by the closeness
of the performance point to its corresponding ceiling.
Analysis. As shown in Figure 7a, we take the Add_ReLU op-
erator to demonstrate how to analyze performance using the
component-based roofline model. Since this operator only in-
volves vector and scalar computations, along with MTE-GM
and MTE-UB transfers, the figure shows only 4 performance
points. The performance point closest to its ceiling (for Vec-
tor and MTE-UB) achieves the highest𝑀𝑇𝐸_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 of
only 38.42%, indicating significant underutilization. Further-
more, within the pipeline formed by Scalar, Vector, MTE-GM,
and MTE-UB instructions, the component with the highest
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑡𝑖𝑚𝑒_𝑟𝑎𝑡𝑖𝑜 (MTE-GM) accounts for only 58.68%,
indicating insufficient parallelism, which requires optimiza-
tion by increasing inter-component parallelism.

5 Optimization Experience
Using the unique capabilities of Ascend hardware, we present
three detailed operator optimization case studies in the in-
ference of the MobileNetV3 model: Add_ReLU, Depthwise,
and AvgPool. These case studies illustrate how we select
optimizations based on the results of the roofline analysis.

5.1 Optimization of Add_ReLU Operator
In MobileNetV3, the Add_ReLU operator primarily appears
in the Hard-Swish [21] activation. This fused operator com-
bines the Add and ReLU operators to accelerate computation
on Ascend and its formula is as follows:

Add_ReLU(𝑥) = ReLU(𝑥 + 𝑐), (10)

where 𝑐 is the constant defined by the activation function. As
shown in Figure 8, the execution of the Add_ReLU operator
can be divided into four steps: 1○ transfer the inputs (𝑥 and
𝑐) from GM to UB (MTE-GM); 2○ perform the Add operation,
with the result stored in UB (Vector); 3○ perform the ReLU
operation, with the result stored in UB (Vector); 4○ transfer
the computed result from UB back to GM (MTE-UB).
Iteration 1: insufficient parallelism.We chose to optimize
the Add_ReLU operator with the longest execution time
(98.673 µs). According to the analysis in Section 4.3, it suffers
from insufficient parallelism.
Reducing Spatial Dependency (RSD). Memory contention is a
common problem that affects pipeline parallelism. A typical
example is the bank conflict [48] in GPUs, where multiple
threads access the same memory bank, allowing only one
request to be processed while others must wait. In Ascend,

this is reflected as instructions from different MTEs simul-
taneously accessing the same memory address, known as
spatial dependency. In the Add_ReLU code, we identified a
strong spatial dependency between MTE-GM and MTE-UB
instructions. As shown in Figure 9, line 3 represents writing
data back from ‘ub_1‘ to ‘gm_1‘ after the previous round
of computation, while line 4 indicates transferring the next
round of data from ‘gm_2‘ to ‘ub_1‘. When the instructions
are parallelized, both read and write access the same address,
leading to memory contention and interrupting parallel ex-
ecution. Therefore, if memory resources allow, it is best to
allocate separate memory for computation results to reduce
spatial dependency. After completing the previous round of
computation, we can request a new memory ‘ub_2‘ in UB to
store the results, while the next input continues to load into
‘ub_1‘. With this optimization, line 9 and line 10 can execute
in parallel, enabling pipelining across different rounds.
Iteration 2: MTE-UB bound. After applying RSD optimiza-
tion, as shown in Figure 7b, the roofline analysis indicates
that the performance point for Vector and MTE-UB has the
highest 𝑀𝑇𝐸_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, reaching 66.24%, surpassing the
bound threshold for vector operations. Notably, vector opera-
tions often run on smaller data blocks with frequent transfer
requirements, which limits their utilization. Further analysis
reveals that MTE-UB has the highest 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑡𝑖𝑚𝑒_𝑟𝑎𝑡𝑖𝑜
at 85.14%, confirming that this operator is MTE-UB bound.
Minimizing Redundant Transfer (MRT). Apart from hardware
bandwidth limitations, MTE bounds are most likely caused
by redundant data transfers. In particular, transferring data
that is independent of the loop variable inside a loop causes
this, and it is generally recommended to move such data
transfers out of the loop. For this operator, as illustrated in
Figure 10, the original code attempts to transfer the constant
𝑐 from GM to UB during each loop, even though this should
only be done once. Therefore, moving the memory transfer
of constant 𝑐 outside the loop can alleviate the MTE Bound.
Overall Results.After applyingMRT optimization, as shown
in Figure 7c, the roofline analysis indicates that the per-
formance point for Vector and MTE-UB remains the high-
est 𝑀𝑇𝐸_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛. With reduced memory transfers, the
𝑀𝑇𝐸_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 has improved to 70.52%, while the bottle-
neck remains MTE-UB bound. All optimizations reduce the
operator’s execution time from initial 98.673 µs to 57.157
µs. The overall inference latency is reduced by 244.261 us
after optimization of all Add_ReLU operators. During the
iterative analysis and optimization, we realize that a single
round of optimization might not eliminate bottlenecks, and
they might even shift to other parts. Therefore, continuous
analysis and optimization of operators are imperative.

5.2 Optimization of Depthwise Operator
In MobileNetV3, the depthwise [30] operator is a modifica-
tion of the standard convolution, performing independent
calculations on each input channel to reduce computational
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Figure 7. Roofline of Add_ReLU operator optimization.
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Figure 8. The execution of Add_ReLU.

Original Code
① · · ·
② ub_to_gm(gm_1,
ub_1);
③ gm_to_ub(ub_1,
gm_2);
④ · · ·

Optimized Code
① · · ·
② ub_to_gm(gm_1,
ub_2);
③ gm_to_ub(ub_1,
gm_2);
④ · · ·

Figure 9. Reducing spatial dependency.

Original Code
① for i = 1 to n do
② gm_to_ub(ub_1,
c);
③ · · ·
④ end for

Optimized Code
① gm_to_ub(ub_1, c);
② for i = 1 to n do
③ · · ·
④ end for

Figure 10.Minimizing redundant transfer.

load. Its core operation also involves multiplication and ad-
dition, with the formula as follows:

𝑌𝑖, 𝑗 = ⟨𝑋 [𝑖:𝑖+𝑘,𝑗 :𝑗+𝑘 ],𝑊 ⟩ = sum(𝑋 [𝑖:𝑖+𝑘,𝑗 :𝑗+𝑘 ] ◦𝑊 ), (11)

where 𝑌𝑖, 𝑗 represents the output, 𝑋 [𝑖:𝑖+𝑘,𝑗 :𝑗+𝑘 ] refers to the
input, and𝑊 denotes the weight. In the Ascend implemen-
tation, the operator typically includes the following steps:
input data is transferred from GM to L1 (MTE-GM), then
from L1 to L0A/B (MTE-L1), and finally, the Cube unit per-
forms the multiply-add operations (Cube).

Original Code
① gm_to_l1(l1_1,
gm_1);
② l1_to_l0a(l0a,
l1_1);
③ cube_mad(l0a, l0b);
④ gm_to_l1(l1_2,
gm_2);

Optimized Code
① gm_to_l1(l1_1,
gm_1);
② gm_to_l1(l1_2,
gm_2);
③ l1_to_l0a(l0a,
l1_1);
④ cube_mad(l0a, l0b);

Figure 11. Code of AIS optimization.
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Figure 12. Adjusting instruction sequence.

Iteration 1: insufficient parallelism. The depthwise op-
erator with the longest execution time reaches 408.101 µs.
A bottleneck analysis reveals that the 𝑀𝑇𝐸_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is
only 35.45%, indicating a clear underutilization. Furthermore,
analysis reveals that the most time-consuming component
(MTE-GM) accounts for 46.66% of the total time, which is far
below the threshold. This indicates a significant insufficient
parallelism, likely requiring multiple optimizations.
Adjusting Instruction Sequence (AIS). As shown in Figure 11,
lines ① and ④ in the original code correspond to two MTE-
GM transfers, with multiple MTE-L1 transfers and MAD
operations in between. Referring to the instruction queue in
Figure 12, we observe a noticeable delay between the two
MTE-GM transfers. This delay occurs because the AI Core se-
quentially retrieves instructions and dispatches them to the
respective instruction queues, with the dispatch overhead
increasing as the number of intermediate instructions grows.
In contrast, the optimized code allows the MTE-GM transfer
in line ② to proceed without waiting, thereby achieving bet-
ter overlap with MTE-L1 transfers and Cube computations.
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Removing Unnecessary Synchronization (RUS). After the AIS
optimization, the𝑀𝑇𝐸_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 increases to 42.72%, but
still remains underutilization. The component with the high-
est time ratio is MTE-L1, which reaches 71.69%, still indi-
cating insufficient parallelism. Upon reviewing the operator
code, we find excessive ‘𝑝𝑖𝑝𝑒_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 (PIPE_ALL)‘ instruc-
tions between MTE-L1 and MTE-UB transfers, forcing all
components to synchronize and causing instructions to exe-
cute sequentially. Removing unnecessary synchronization
instructions can help improve component parallelism.
Ping-pong Policy (PP) [34]. After the RUS optimization, the
operator’s𝑀𝑇𝐸_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 improves to 60.35% but still in-
dicates underutilization for cube operations. The highest
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑡𝑖𝑚𝑒_𝑟𝑎𝑡𝑖𝑜 is 77.69%, leaving room for improv-
ing parallelism. By examining the code, we identified that
the ping-pong policy was not employed, if a memory unit
is already occupied, concurrent read and write operations
are no longer supported. For example, with the L1 buffer,
the 𝐺𝑀 → 𝐿1 transfer must wait for the 𝐿1 → 𝐿0𝐴 transfer
to complete before it starts, limiting component parallelism.
The ping-pong strategy divides the memory unit into two
sections: during a clock cycle, one section handles reading
while the other handles writing. In the next cycle, their roles
swap. Applying this reduced the MTE-GM waiting intervals
from 14 to 3, significantly improving parallelism.
Iteration 2: inefficient MTE. After three parallel opti-
mizations,𝑀𝑇𝐸_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 increased from 35.45% to 71.56%.
Despite the underutilization, the 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑡𝑖𝑚𝑒_𝑟𝑎𝑡𝑖𝑜 of
the MTE-GM reached 94.18%, indicating that the cause has
shifted from insufficient parallelism to inefficient MTE-GM.
Increasing Transfer Granularity (ITG). In our experience, the
most common cause of inefficient MTE is overly small trans-
fer granularity, which increases the overhead of maintaining
transfer connections and leads to low bandwidth utilization.
Our modeling and analysis of various transfer links also con-
firm this finding. By examining the granularity of MTE-UB
transfers, we find that each 𝑈𝐵 → 𝐺𝑀 transfer is only 30
KB, far below the threshold for full bandwidth. Therefore,
we can merge multiple transfers to increase the granularity
of MTE-UB transfer, improving bandwidth utilization.
Overall Results. After all optimizations, the depthwise op-
erator finally achieves MTE-GM Bound with the utilization
of 93.54% and reduces from 408.101 µs to 325.121 µs. The
overall latency is reduced by 347.513 µs after optimizing all
depthwise operators. From the complex parallel optimization,
we find that optimizing the bottleneck is not a one-step pro-
cess; rather, it often requires addressing multiple interrelated
issues. This requires combining instruction pipelining with
operator code inspection to systematically identify problem-
atic instructions and source code.

5.3 Optimization of AvgPool Operator
In MobileNetV3, the AvgPool operator generates the output
by computing the average of each pooling window of the

input feature map on Vector. Its formula is as follows:

𝑌𝑖, 𝑗 =
1
𝑘2

· sum(𝑋 [𝑖:𝑖+𝑘,𝑗 :𝑗+𝑘 ]), (12)

where 𝑌𝑖, 𝑗 represents the output, 𝑋 [𝑖:𝑖+𝑘,𝑗 :𝑗+𝑘 ] represents ele-
ments in the pooling window, and 𝑘2 is the size of window.
Iteration 1: inefficient compute. By the bottleneck analy-
sis of a typical AvgPool operator, we find that its utilization
is only 13.54%, indicating underutilization. Further analysis
reveals that the Vector accounts for the largest ratio of time,
reaching 83.98%. This pipeline parallelism is relatively high,
but there is a inefficient compute bottleneck in the Vector.
Adjusting Instruction Parameter (AIP). The inefficient com-
puting units often arise from unreasonable parameter settings
in operator implementations. For instance, the 𝑟𝑒𝑝𝑒𝑎𝑡 pa-
rameter, which controls the number of times an operation is
repeated, allows hardware to perform repeated executions
without explicit loops. When this parameter is too low, addi-
tional loops and data transfers are required to compensate,
leading to inefficient computation. Similarly, the𝑚𝑎𝑠𝑘 pa-
rameter determines which elements are activated during a
computation, and can hinder efficiency if set too low, as mul-
tiple instructions may be needed to complete. In this AvgPool
operator code, the 𝑟𝑒𝑝𝑒𝑎𝑡 parameter for the Add operation
is only 1, resulting in 98 loops. Thus, we can eliminate these
extra loops by increasing the 𝑟𝑒𝑝𝑒𝑎𝑡 parameter to 98.
Overall Results. After AIP optimization, the Vector utiliza-
tion improved to 59.07%, and the time decreased from 69.821
µs to 16.206 µs. Although this is still far from the threshold,
it represents the upper limit of software optimization for
lightweight models. After optimizing all AvgPool operators,
the total time decreased by 447.923 µs.

5.4 Summary
In addition to the common underutilization bottleneck op-
timizations described above, we also summarize some opti-
mizations for MTE and compute-bound bottlenecks.
MTE Bound. To mitigate the limited bandwidth in MTE-
bound operators, we usually adopt the following strategies:

• Operator Fusion (OP) [8, 35]. Some operators can be fused
into a single operator to reduce memory access, such
as operators integrating BatchMatmul and Add. And
cache strategies, like FlashAttention [14], can reduce
data transfers by directly computing the output.

• Transfer Transformation (TT).Anothermethod is to lever-
age the various data transfers with significantly different
bandwidths. By switching the transfers to paths with
higher bandwidth, memory-bound can be alleviated.

Compute Bound. Similarly, the optimization of compute
bound can be approached from the following perspectives:

• Enhanced Algorithm (EA). To tackle compute-bound is-
sues, more efficient algorithms are often employed. For
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Table 1. Optimization and speedup of operators.

Operator
Performance Impediment and Optimization Strategy

SpeedupCompute MTE Insufficient Inefficient Inefficient
Bound Bound Parallelism MTE Compute

Add_ReLU [28] MRT RSD 1.72
Depthwise [30] MRT AIS,RUS,PP ITG 1.26
AvgPool [29] AIP 4.31
Mul [32] RSD 1.34

Conv2D [1] MRT RSD 2.65
FullyConnection [37] ITG 1.22

MatMul [2] OP 1.10
GeLU [31] EA 1.06

instance, depthwise separable convolution [12] and im-
provements in activation functions, such as FastGeLU [58],
can significantly reduce computational cost.

• Low-precision Calculation (LC).We can leverage the quan-
tization algorithms [27, 44, 51] to transform the high-
precision computation to low-precision computation for
better processing performance.

• Computation Transformation (CT). The Ascend chip’s
three computing units exhibit increasing computing power.
When a lower-performing compute unit reaches its limit,
the computation can be shifted to a more powerful com-
pute unit through data rearrangement [26, 42], and com-
pilation optimization [10, 52, 57].

Operator performance varies significantly across different
models. However, for some universal operators, their per-
formance bottlenecks tend to be consistent. Therefore, as
shown in Table 1, we summarize the performance impedi-
ments of these presentative operators in MobileNetV3 and
propose targeted optimization suggestions.

6 Evaluation
6.1 Experimental Setting
Hardware. All experiments were conducted on Ascend
chips, including theAscend inference [4] and training chip [5].
The inference deployment was executed on a single card,
while the training was deployed on the Peng Cheng Cloud
Brain II cluster [43], with each node comprising eight cards.
Workloads. In our experiments, we examined the workloads
from various models, encompassing over a dozen models
such as NLP, vision, recommendation, and large language
models (LLMs). Table 2 details their specifications for train-
ing. Additionally, to validate the effectiveness of optimization
across different Ascend hardware, we selected a subset of
these models for inference on the Ascend inference chip. No-
tably, these workloads are based on state-of-the-art models
officially provided by MindSpore [33], each refined through
four years of continuous optimization.
Roadmap of Evaluation. Initially, we present two end-to-
end studies on the training of 100B PanGu-𝛼 model [56] and
the inference ofMobileNetV3model [21] to demonstrate how
to employ our approach to optimize real-world workloads.
Then, a comprehensive analysis and optimization among

Table 2.Workload specification

Type Model Parameter Dataset #NPUs

Vision

MobileNetV3(M3) 5.4M

ImageNet2012 8ResNet50 25.6M
ViT 86M

VGG16 138.4M

NLP Bert 110M WikiText2 8GPT2 355M

Recommendation
DeepFM 16.5M

Criteo 8Wide and Deep(W&D) 75.84M
DLRM 540M

LLM Llama 2 7B WikiText2 8
PanGu-𝛼 100B 1.1TB Chinese Dataset 128
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Figure 13. Optimization results (CB, MB, IP, IM, and IC de-
note Compute Bound, MTE Bound, Insufficient Parallelism,
Inefficient MTE, and Inefficient Compute).

various models are presented to showcase the generality and
effectiveness of our approach, followed by a discussion of
the insights gained from these experiments.

6.2 End-to-end Optimization
We present two end-to-end studies to demonstrate how to
leverage our analysis and optimization strategies to enhance
the performance of real-world workloads.

6.2.1 Case 1: PanGu-𝛼 Training. LLMs, powered by im-
mense parameters and datasets, have witnessed significant
enhancements in their capabilities, yet this comes with sig-
nificant training time costs [9]. Based on our practical expe-
rience, the computation time often accounts for over 50% of
the total training time in LLMs, highlighting the importance
of analyzing and optimizing these computation operators.
An overview of performance impediments. After pro-
filing the 100B PanGu-𝛼 model training, we analyze each
operator’s performance within an iteration by the enhanced
roofline model. As shown in Figure 13a, our analysis revealed
that operators with Insufficient Parallelism accounted for the
largest share of 61.48%, followed by MTE-Bound operators
at 34.02%, while Compute-Bound operators only comprised
4.50%. Among the MTE-Bound operators, approximately
90.30% were found to be bound by MTE-GM bandwidth.
This assessment suggests that low parallelism between com-
ponents is the primary challenge, coupled with a significant
bandwidth bottleneck arising from MTE-GM.
Detailed analysis and optimizations. In practice, we pri-
oritize operator optimizations based on execution time, with
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longer-running operators receiving higher priority. We se-
lected the top 10 longest-running operators for optimization,
focusing on alleviating the insufficient parallelism bottleneck
they exhibit. Briefly, 10 types of operators can be summarized
as matrix multiplication operators (MatMul, BatchMatMul),
format conversion operators (e.g., TransData and Cast), acti-
vation operators (GeLU, DropoutDoMask), and element-wise
operators (e.g., Mul, Add, AddN, and RealDiv). In a single
iteration, they collectively consume 59.59 s, accounting for
83.57% of the total computation time. Thus, the greatest po-
tential gains can be achieved by addressing the root causes
of bottlenecks with the following optimizations:

• We identified many element-wise operators such as Mul,
Add, AddN, and RealDiv suffer from insufficient paral-
lelism. These operators can be optimized by fusing them
into a LayerNorm operator for higher parallelism.

• For inefficient activation operators like GeLU andDropout-
DoMask, we substituted them with high-performance
ones, FastGeLU and DropoutDoMaskV3.

• For MTE-bound matrix multiplication operators, we pro-
posed fusing MatMul with FastGeLU and BatchMatmul
with Add to reduce the cost of memory access.

• The inefficient format conversion operators stem from
the Cube Unit’s requirement to convert input tensors
from arbitrary formats into the private format [6] for
efficient processing. We can minimize their occurrence
by adjusting the input format.

As shown in Figure 13b, after these optimizations, the com-
putation time is significantly reduced from 72.31s to 25.16s
and the iteration time fell from 98.01s to 48.16s. While these
optimizations have brought positive changes, the distribu-
tion of operator bottleneck causes has undergone remarkable
changes. Notably, the percentage of operators suffering from
Insufficient Parallelism dropped significantly to 40.10%. Con-
versely, as parallelism issues eased, many operator bottle-
necks shifted to MTE-Bound, with their proportion increas-
ing to 53.45%. Moreover, 47.37% of operators are MTE-GM
bound, all originating from the 𝐺𝑀 → 𝑈𝐵 transfer, which
is difficult to alleviate through software optimizations. This
insight highlights the insufficient bandwidth in current LLM
training, emphasizing the need of next-generation chips.

6.2.2 Case 2: MobileNetV3 Inference. Compared to the
PanGu-𝛼 LLM, MobileNetV3 is a lightweight CNN that sig-
nificantly reduces the model size and computational load,
making it more suitable for resource-constrained environ-
ments. We conduct experiments on MobileNetV3 to validate
the generality of our approach on Ascend inference chips.
Compared to training, operator bottlenecks in inference

show more underutilization, with more inefficient components
emerging, particularly within MTE transfers. As shown in
Figure 13, among the 155 computation operators, the most
significant bottleneck was Insufficient Parallelism (73.55%),

followed by Inefficient MTE (15.48%), while the rest were
Inefficient Compute (6.45%) and MTE Bound (4.52%). Ta-
ble 1 summarizes the optimization and results for the time-
consuming operators. After optimization, the total time de-
creased from 8642 µs to 7157 µs and the distribution of the
bottleneck causes underwent significant changes. The in-
sufficient parallelism has significantly decreased to 61.94%,
while the Inefficient MTE has risen to 28.39%. The inefficient
compute slightly dropped to 4.52%, while the MTE-Bound
has increased to 5.16%.

6.3 Insights from Comprehensive Experiments
In addition to themodels discussed, we conduct a comprehen-
sive study of operator optimization, further validating the
breadth of the optimizations and gaining valuable insights.
Training Various Models. As depicted in the causes of
training bottlenecks in Figure 14a, the distribution of perfor-
mance impediments varies significantly across different models.
We can further deduce that the model parameter size is a key
factor affecting the causes of bottlenecks. For small models,
the main issue is insufficient parallelism, rarely reaching
compute or MTE Bound. However, due to their substantial
computation and data transfer demands, large models like
7B Llama2 and 100B PanGu-𝛼 , are particularly prone to com-
ponent bound, especially MTE-GM bound. This is primarily
driven by the frequent 𝐺𝑀 → 𝑈𝐵 transfers required in
numerous vector computations, compounded by relatively
limited GM read bandwidth. Additionally, we observe that,
aside from the Llama2model, othermodels exhibit significant
IP bottlenecks, indicating suboptimal operator implementa-
tions and suggesting considerable room for optimization.
Various Programming Frameworks. We also analyze the
impact of different programming frameworks on the perfor-
mance impediments of the same model. The Ascend infer-
ence chip enables the conversion of models frommainstream
DL frameworks such as TensorFlow, PyTorch, Caffe, and into
executable formats for Ascend processors. This allows us to
evaluate the bottleneck distribution of the samemodel across
different frameworks. As shown in Figure 14b, take inference
for example, we reveal that the programming framework has
little impact on the performance impediments, owing to the
same operator library on the Ascend hardware. This also
indirectly reveals that our operator optimizations could be
effectively applied across different frameworks.
Training vs. Inference. As shown in Figure 14c, we also
explore the differences and correlations of bottleneck causes
between training and inference workloads, including GPT-2,
MobileNetV3, ResNet50, and VGG16 models, using differ-
ent Ascend chips for training and inference, respectively.
Briefly, the impediment causes differ significantly for the same
model under different workloads. Specifically, insufficient par-
allelism is common, underscoring the need for optimized
operator implementations. In models with more efficient
implementations, like ResNet50 and VGG16, the inference
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Figure 14. The distribution of performance impediments.
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chip’s lower compute capacity compared to the training chip
is more likely to reach Compute Bound. Additionally, as data
transfer requirements grow substantially during training,
training workloads are more prone to MTE Bound, partic-
ularly the memory bandwidth in MTE-GM and MTE-UB,
which calls for improvements in future chip designs. Con-
versely, reduced computation and data transfer in inference
tend to inefficient compute and MTE units.
Optimization. Guided by the bottleneck analysis across
various models, we accelerate their training by applying op-
erator optimization techniques discussed in Section 5. For
example, we optimize the widespread insufficient parallelism
by adjusting instruction sequence, reducing spatial depen-
dency, and using the ping-pong policy. And for models like
Llama2 that suffer from severe MTE Bound, we mitigate
these by minimizing redundant transfers. The corresponding
speedups are illustrated in Figure 15, including the opera-
tor computation time and the overall time, which further
involves communication and I/O in a single iteration. It is
evident that through operator optimization, the operator
computation time for each model decreased significantly,
with speedups ranging from 1.08× to 2.70×. Consequently,
the overall execution time also decreased to a certain extent.
However, due to the influence of factors such as data pre-
processing and communication, the speedup ratio is slightly
lower, ranging from 1.07× to 2.15×. Nonetheless, the results
demonstrate the effectiveness of our operator optimization.

7 Discussion and Future Work
Extend to other DSAs. Although the component-based
roofline model was derived from the Ascend architecture, its

methodology is also applicable to other DSAs. For example,
Google TPU v5 [15] also undergoes improvements in mem-
ory and compute organization. It also incorporates heteroge-
neous compute units, including Matrix Multiply, Vector, and
Scalar Units. For memory access, the Matrix Multiply Unit
has two distinct memory paths, namely inputs from the Uni-
fied Buffer and the Weight FIFO, with significantly different
bandwidths. These characteristics can be well represented
by the concept of components, and the component-based
roofline model can be extended to more DSAs in the future.
Detailed analysis of hardware.Due to profiling limitations
on hardware, this paper does not fully explain how software
implementations can cause hardware-related issues, such
as bank conflicts [16], lack of double buffering [50], and im-
proper memory tiling [23]. Therefore, we plan to explore the
hardware architecture and its interaction with the software
stack, including cycle-by-cycle analysis, detailed descriptions
of hardware operations, and how optimizations translate into
hardware efficiency.

8 Conclusion
The rise of deep learning has driven the development of
Domain-Specific Accelerators (DSAs), whose unique archi-
tectures lead to a lack of effective performance analysis
and optimization. This paper introduces a component-based
roofline model for performance analysis, tailored to the archi-
tectural features of the representative DSA, Ascend. Through
in-depth operator optimization case studies, we guide users
on how to use the enhanced roofline model for optimization.
Additionally, we share insights and lessons from extensive
optimization experiments in production environments, hop-
ing to inspire future DSA designs.
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