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Abstract— Due to the privacy advantages of federated learning
(FL), federated recommendation systems (FedRSs) are gaining
popularity for improving recommendation performance through
training on local data. However, FedRSs frequently face the sig-
nificant challenge of high communication costs between the server
and clients. Most FedRSs utilize a client-server communication
architecture, leading to heavy communication loads and single
points of failure due to dependence on a central server. Clients
may also encounter problems due to limited communication
resources. In view of this challenge, in this paper, we propose
a blockchain-assisted federated learning method at edge for
communication-efficient recommendation systems, named BFe-
dRec. Specifically, BFedRec reduces reliance on the central server
by utilizing blockchain systems on edge servers to aggregate
and distribute the recommendation model. To mitigate the high
communication costs between clients and blockchain in each
iteration, a communication-efficient training algorithm is used
that trains the recommendation model directly on low-rank com-
pressed parameters. Finally, we conduct extensive experiments
on real-world datasets to verify the communication efficiency of
BFedRec compared to existing methods. The experimental results
show that BFedRec effectively improves communication efficiency
without compromising recommendation performance.

Index Terms—Federated Learning, Recommendation System,
Communication Efficiency, Blockchain, Low-rank Training

I. INTRODUCTION

With the rapid growth of e-commerce and digital services,
digitization has become deeply ingrained in people’s daily
lives. Nowadays, individuals spend a significant portion of
their time online, exploring a vast array of products, content,
and services tailored to their specific interests. Recommen-
dation systems play a crucial role for e-commerce [1] and
digital service [2] providers by leveraging user data to offer
personalized recommendations, thereby enhancing the overall
user experience. These systems [3]–[5] analyze various types
of data, such as browsing history, purchase records, and user
interactions, to understand individual preferences and suggest
relevant items or content.

While recommendation systems provide significant con-
venience and personalized user experiences, they also raise
substantial privacy concerns. The collection and processing
of user data, including sensitive information such as brows-
ing history and purchase records, inherently pose risks of
privacy breaches. Unauthorized access to this data can lead
to severe security threats and potential misuse by malicious
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entities, putting user privacy. Moreover, there is a mounting
apprehension that certain platforms might exploit user data
for excessive and intrusive personalized recommendations,
potentially violating users’ privacy rights and diminish their
trust in digital services.

Federated learning (FL) [6] has emerged as a revolutionary
distributed machine learning framework that addresses privacy
concerns associated with centralized data processing. In FL,
deep learning models are collaboratively trained across mul-
tiple clients or devices, protecting data privacy by keeping
user data on local devices instead of centralized servers. The
development of federated recommendation systems (FedRSs)
[7]–[10] is a direct extension of the principles of FL. In Fe-
dRSs, user data is securely stored and processed locally, with
only model parameters uploaded for aggregation, ensuring data
privacy and security.

However, conventional FedRSs assume ideal communica-
tion conditions between servers and clients, which is often
not the reality. In practice, clients and servers commonly en-
counter communication bottlenecks like bandwidth limitations
and high loads, significantly affecting system efficiency and
performance.

• High communication load on the server is a common
issue in FedRSs, especially when using large neural
network models in modern recommendation systems.
These models require frequent data exchanges for cen-
tralized aggregation, leading to servers handling multi-
ple model updates and parameter synchronizations. This
strains servers and increases network bandwidth require-
ments, exacerbating communication bottleneck issues. FL
in a decentralized manner may be a feasible solution.
Research on decentralized FedRSs is limited despite
some progress in the field. Blockchain technology, with
its security features like immutability, transparency, and
traceability, offers a promising approach for decentralized
aggregation and eliminating single points of failure in
FedRSs. These features enhance system security and re-
liability, showcasing blockchain’s potential in enhancing
FedRSs.

• Limited client-side communication resources in Fe-
dRSs pose a significant challenge. Clients, often situated
at the network edge with restricted bandwidth, face
bottlenecks due to frequent data transmission and large
model updates. Each server communication consumes
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substantial network resources, causing delays and overall
performance issues. Despite various technologies aimed
at enhancing communication efficiency, the outcomes
are suboptimal. Top-K compression minimizes the size
of transmitted parameters by sparsification, yet clients
incur extra expenses to organize and recognize updated
data. Singular Value Decomposition (SVD) compression
transmits low-rank model updates via singular value
decomposition, but these updates may lose their low-rank
status after server-side aggregation, ultimately failing to
decrease downlink communication costs.

To address these issues, we propose BFedRec, a blockchain-
assisted federated edge learning method with low-rank training
for recommendation systems. Inspired by BEFL [11], we
decrease dependence on central servers by implementing a
blockchain network on edge nodes. By aggregating models
through edge servers and propagating the global model via
blockchain consensus mechanisms, decentralized aggregation
and distribution of model have been achieved. To reduce
communication costs between blockchain and clients during
iterative training, we adopt a method that optimizes the model
directly on low-rank parameters. It involves clients training the
model on parameters with a low-rank structure and transmit-
ting only the components of model updates between the client
and the blockchain. Unlike SVD compression, it decreases
communication load on both the uplink and downlink, while
maintaining the performance and privacy of the recommen-
dation system. The main contributions of this paper are as
follows:

• We present a novel blockchain-based federated recom-
mendation system for decentralized aggregation of rec-
ommendation models. It uses a blockchain network on
edge nodes to replace the central server for global model
aggregation and distribution.

• Inspired by SVD compression, we aim to optimize the
model by focusing on low-rank structural parameters
to reduce communication costs in both the uplink and
downlink channels.

II. PRELIMINARIES

In this section, we will introduce the preparation work and
background of this paper. Additionally, we will also introduce
knowledge of blockchain.

A. Federated Learning for Recommendation System

In a typical item-based FedRS [12], there are M users
and N items. Each user u has a private interaction set
Ou = {(i, rui)}, where rui represents a rating or interaction
value. Users aim to collaboratively construct a recommenda-
tion system while maintaining privacy. This situation is ideal
for horizontal federated learning, where each user is an active
participant.

The system aims to generate a list of the top K items
that are both relevant to the user’s preferences and have not
been interacted with yet. This problem can be mathematically

defined as finding a global model represented by parameters
θ to minimize the global loss function L(·).

L(θ) :=
M∑
u=1

wuLu(θ) (1)

Here, θ is the global parameter, wu is the relative weight
of user u, and Lu(·) is the local loss function on user u’s
device. To achieve our objective, we utilize a federated matrix
factorization (FedMF) [7] model as the core model in this
paper, with the local loss function for user u defined as
follows:

Lu(pu, Q) :=
∑

(i,rui)∈Ou

ℓ
(
rui, (Q

T pu)i
)

+
λ

2
∥pu∥22 +

λ

2
∥Q∥22

(2)

In the model, the local parameters of user u consist of the
user embedding vector pu and the item embedding matrix
Q. The loss function ℓ(·) quantifies the difference between
predicted and actual values, while λ is the regularization
parameter used to prevent overfitting.

Federated Averaging (FedAvg) [6] is one of the most
popular algorithms in federated learning. It divides the training
process into multiple rounds. At the beginning of each round,
the server distributes the current item embedding matrix Q(t)

to a group of users S(t), and then each user performs local
SGD updates on their datasets. The local update rule for user
u is as follows:

• user embedding vector pu:

p(t+1)
u = p(t)u (1− ηλ) + ηQ(t)T (r − r̂) (3)

• item embedding matrix Q:

Q(t+1) = Q(t) − η(λQ(t) − (m ∗ (ru − r̂u))p
(t)T

u ) (4)

Next, the user will send the local item embedding matrix
update ∆

(t)
u = Q(t+1) − Q(t) to the server, and the server

will perform aggregation steps to update the global model:

θ(t+1) = θ(t) +

∑
u∈S(t) wu∆

(t)
u∑

u∈S(t) wu
(5)

This process is repeated until the algorithm converges.

B. Blockchain

Blockchain is an innovative distributed ledger technology
known for being tamper-proof, transparent, and decentralized,
making it effective for addressing security issues in edge com-
puting. By sharing a distributed ledger, participants can en-
sure the immutability, auditability, and verifiability of system
transactions, enhancing security in traditional edge computing
systems. Here are some key points about blockchain:

• Nodes: The blockchain network consists of multiple
nodes, typically categorized into two types: user nodes,
responsible for initiating transactions, and miner nodes,
which maintain the blockchain database.
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• Transactions: A transaction is a request to update the
blockchain ledger by packaging data into a new block
and appending it to the ledger.

• IPFS (InterPlanetary File System): IPFS is a peer-
to-peer distributed file system that provides permanent
decentralized data storage. Data is stored in IPFS nodes
and retrieved using a unique hash index derived from
the data, which can be further secured with the tamper-
resistant features of blockchain technology.

• Consensus Mechanism: Blockchain achieves consensus
among decentralized entities through mechanisms such as
Proof of Work and Proof of Stake, eliminating the need
for centralized authority. These mechanisms ensure sys-
tem security, transaction immutability, auditability, and
verifiability.

III. A BLOCKCHAIN-ASSISTED FEDERATED LEARNING
METHOD FOR RECOMMENDATION SYSTEMS

In this section, we will introduce the proposed method by
outlining its framework and explaining the specific tasks of
different participants.

A. Overview

The framework of the BFedRec is illustrated in the Fig. 1.
The BFedRec involves two main types of participants: user
clients and a group of edge servers deploying blockchain,
aiming to achieve communication-efficient federated recom-
mendation, which are described as follows:

Client 1

. . .

Committee 
Node

Aggregator
Node

Candidate 
Block

Verified 
Block

Train

Clients

Local Model

Edge Nodes

Download Model 
Update 

Step2. Client Training

Upload Model 
Update

Step3. Model Aggregation

Verification

Add New Block

Committee 
Node

Committee 

Client M

Update

Step4. Model Verification Step1. Model Initialization

Fetch Initial 
Model

×

Fig. 1. The framework of BFedRec.

• Clients: Users interact with the blockchain through their
clients, which collect local user data to train recommen-
dation models. Before iterative training, the central server
transfers the initial model to the blockchain network.

Clients retrieve the initial model from the blockchain to
initialize their local models. This will be detailed in the
Sect. III-B. In a round of Fl, the client downloads the
latest global model update from the blockchain, uses local
private data for training, and uploads the trained update
to the blockchain. In the training process, we uses low-
rank structures to decompose the recommendation model
update, reducing communication load. Further details will
be discussed in Sect. III-C.

• Edge Servers: In order to address the high communi-
cation load issue caused by central server centralized
aggregation of global models, we are considering using
multiple edge servers to replace the central server, achiev-
ing decentralized model aggregation. A group of eligible
edge servers serves as blockchain nodes, maintaining the
blockchain system for recommendation model aggrega-
tion and verification. This will be detailed in the Sect.
III-D.

B. Model Initialization

To address challenges like high communication load and
single point of failure associated with the central server in FL,
model aggregation is shifted to blockchain nodes (i.e., edge
servers). Initially, the central server shares the IPFS address
of the initial model and recommended task parameters (e.g.,
hyperparameters for FL training) to the blockchain network
for federated training. After this phase, the central server is
no longer needed for the FL process.

During iterative training rounds, clients request information
from the nearest active blockchain node to get the IPFS
address of the global model. Locally trained model updates are
aggregated by decentralized edge nodes and the blockchain,
distributing computational load and improving system robust-
ness and security by removing the single point of failure of a
central server.

By utilizing blockchain technology, the decentralized frame-
work ensures the continuous and reliable nature of the FL
process. Clients can easily access the latest global model and
contribute their local updates, which are securely aggregated
by the blockchain network. This distributed approach not
only reduces communication bottlenecks but also utilizes the
security and fault tolerance features of blockchain, offering a
more scalable and resilient solution for FedRS.

C. Client Training

In FedRSs, communication costs of recommendation mod-
els are primarily influenced by updates to the item embedding
matrix. To address the limited computational and commu-
nication resources for user clients, an efficient compression
algorithm is essential to reduce data uploads and reduce
communication costs.

As demonstrated in Equation 4, the update on the item
embedding matrix consists of a rank-1 matrix and a regu-
larization term. Inspired by [13], due to the small value of
the regularization parameter λ, we restrict the updates of the

60

Authorized licensed use limited to: Nanjing University. Downloaded on March 10,2025 at 23:53:09 UTC from IEEE Xplore.  Restrictions apply. 



item embedding matrix to a low-rank structure to minimize
communication costs. In particular, the local model update
∆

(t)
u is parameterized as:

∆(t)
u = B(t)

u A(t)
u (6)

where B
(t)
u ∈ Rd×r and A

(t)
u ∈ Rr×N . Given that r < N, d,

this approach reduces communication by a factor of N×d
N×r+r×d .

To minimize downlink communication costs, only A(t) is
transmitted between the client and the blockchain system.
The blockchain aggregates components of model update to
maintain low-rank downlink transmission. Each client’s B

(t)
u

is updated before local training begins in each iteration.
Specifically, during the first round of training, clients obtain

the initial global model Q(0) from the blockchain and use
it to initialize their local models. Once clients receive the
initial model, they can start their local training process. In
each subsequent round of training, the server aggregates the
local models {A(t−1,τu)

u } uploaded by all clients to generate
the updated global model A(t). This updated global model A(t)

is then transmitted back to the clients.Upon receiving A(t), the
clients use it to update their local models Q(t)

u . Specifically, the
clients merge their local models Q

(t)
u with the global update

A(t) to form a new Q
(t)
u . Next, they extract the updated B

(t)
u

from Q
(t)
u and keep this B

(t)
u fixed in the subsequent local

training. At the beginning of each local training round, the
clients initialize a new matrix A

(t,0)
u = 0. They then proceed

with local training to optimize the local model parameters
θ
(t,0)
u = {A(t,0)

u , p
(t,0)
u }. During local training, clients perform

multiple updates based on their data and model parameters,
gradually optimizing the local model. Once the training is
complete, the clients upload the updated local model parame-
ters {A(t,τu)

u } to the server. After receiving the local model
updates from all clients, the server aggregates them again
to start a new round of global model updates. Through this
iterative process, the system can continuously optimize both
local models while maintaining efficient communication. Alg.
1 details the process of low-rank training.

D. Model Aggregation and Verification

We deploy a blockchain network through a set of edge
servers. Each blockchain node is assigned a Verifiable Ran-
dom Functions (VRF) key pair for committee composition,
a signature key pair, and default stake. The blockchain com-
prises blocks linked by hash pointers, with each block header
containing an index, timestamp, and the hash value of the
previous block. The block body of a candidate block includes
multiple transactions representing local model updates and the
IPFS address of the global model. Once a candidate block is
confirmed, local model updates are removed, and the IPFS
address of the global model published by the committee is
recorded in the block body.

During the collection phase of model updates, each
blockchain node receives model update transactions from

Algorithm 1: Client Training

Input: Initial item embedding matrix Q(0) or latest
model update A(t); current round t; rank r;
learning rate of client η;

Output: The local model updates
{A(t,τu)

1 , . . . , A
(t,τu)
M };

1 Sample a subset S(t) of clients;
2 for each client u ∈ S(t) in parallel do
3 if t = 0 then
4 Download Q(0);
5 Initialize Q

(t)
u = Q(0);

6 else
7 Download A(t);
8 Merge Q

(t)
u = Q

(t−1)
u +B

(t−1)
u A(t);

9 Update B
(t)
u from Q

(t)
u ;

10 Initialize Q
(t,0)
u = Q

(t)
u and A

(t,0)
u = 0;

11 Set trainable parameters θ
(t,0)
u = {A(t,0)

u , p
(t,0)
u };

12 for k = 0, . . . , τu − 1 do
13 Perform local update

θ
(t,k+1)
u = GSD

(
θ
(t,k)
u ,∇Lu

(
θ
(t,k)
u

)
, η
)

;

14 p
(t+1)
u = p

(t,τu)
u ;

15 Upload A
(t,τu)
u to the nearest blockchain node;

clients. Nodes verify signatures and updates before propa-
gating the transactions to the blockchain network and adding
them to the blockchain. The latest block then includes multiple
model updates and client signatures. Once a blockchain node
collects enough model update transactions, it competes to
calculate a new global model update and records its IPFS
address in a block to form a candidate block. This block is then
sent to a committee of multiple nodes for model verification.

During model verification phase, committee nodes verify
the correctness of the global model update aggregated from
aggregator node through voting. If a candidate block receives
over two-thirds of the approval votes from the committee,
it becomes a validated block and is shared with the entire
network. This validated block replaces the original local model
updates and includes the committee nodes’ signatures. Upon
receiving the validated block, other blockchain nodes will
verify the committee nodes’ signatures and add it to their local
chain. Other candidate blocks in this round will be invalidated
and cleared. If sufficient consensus is not obtained within
the specified time, the committee will discard the candidate
block and wait for the next one. If no candidate block is
confirmed in multiple rounds of voting, a new committee will
be established. The process of blockchain aggregation and
verification is detailed in Alg. 2

By using VRF, our method selects committee members in a
private and non-interactive way. We introduce a novel sortition
algorithm based on VRF to choose a random subset of nodes
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Algorithm 2: Model Aggregation and Verification
Input: The received model updates

{A(t,τu)
1 , . . . , A

(t,τu)
M }; the maximum vote

round MaxStep, maximum voting time
MaxV oteDuration;

Output: The verified block vBlock;
1 for each blockchain node do
2 Collect received model updates;
3 Validate updates and add to the candidate block

cBlock;
4 if updates are sufficient then
5 Aggregate updates

A(t+1) =
∑

u∈S(t)
Nu

N A
(t,τu)
u ;

6 Record A(t+1) to cBlock and send it to
committee;

7 while True do
8 Initialize the current voting round step = 1;
9 while step < MaxStep do

10 if voting time < MaxV oteDuration then
11 Committee nodes vote for cBlock;
12 if agreements more than 2/3 then
13 The cBlock is verified successfully, and

form vBlock;
14 else
15 Verification of the cBlock failed;
16 step++ and wait for a new candidate

block;

17 Committee reconstruction;

for the committee. Each node independently runs the sortition
algorithm with a public seed (i.e. the latest blockchain block)
to confirm their selection as a candidate committee member.
The sortition algorithm selects nodes based on their equity
proportion. If a unique random hash generated from a key and
input seed meets the criteria, the node becomes a candidate
committee member and shares qualifying information with the
network (including hash and proof). The committee formation
phase concludes when the predetermined committee size is
reached, with initial members becoming authoritative. Any
node can access committee information from the network and
verify committee members’ identities using the public key of
VRF, the latest blockchain block, and their equity holdings.

E. Summary of BFedRec

As shown in Fig. 1, we use blockchain to share the workload
of the server and enhance communication efficiency of the
system. The summarized workflow of the BFedRec includes
the following steps, as illustrated in Alg. 3.

1) The central server first publishes FL tasks and the initial
recommendation model stored in IPFS to the blockchain.

Algorithm 3: BFedRec

1 Server publishes an initial model to the blockchain;
2 User retrieves IPFS address of global model from the

nearest blockchain node and downloads the model
from IPFS;

3 for t = 0, 1, 2, . . . , T do
4 User download the last global model update from

the blockchain;
5 User updates model locally using private data by

Alg. 1 and sends the update to the nearest
blockchain node;

6 Blockchain aggregates and verifies updates to form
a new verified block by Alg. 2;

7 Nodes add the verified block to their local chain.

2) The user retrieves the IPFS address of the initial model
by querying the nearest active blockchain node and
downloads the model using this address.

3) Users use their private data for local model training.
A low-rank structure is adopted to decompose the item
embedding matrix for model compression.

4) After local training, the user sends the compressed
model update and signature to the nearest blockchain
node as a transaction.

5) Upon receiving the model update from the user, the
blockchain node verifies the signature and the update.
After verified, the node shares the transaction across the
blockchain network. Once a sufficient number of model
update transactions are gathered, nodes will compete
to calculate a new global model update to generate
a candidate block, which are subsequently transmitted
to the committee. The committee validates the global
model through voting and propagates the verified block
to the blockchain network.

6) All blockchain nodes add the verified block to their local
chain. The current training round is finished, and it will
proceed to the next round until the model converges.

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate the
performance of our proposed method. Our experiments seek
to answer the following research questions:

• RQ1: How does our method compare to the benchmark
in terms of recommendation performance?

• RQ2: How is our method performing in terms of improv-
ing communication efficiency?

• RQ3: How does our method demonstrate Byzantine fault
tolerance against malicious blockchain nodes?

A. Experimental Setup

1) Datasets: We evaluated the our on three widely used
real-world datasets: MovieLens-1M [14], Pinterest [12], and
LastFM-2K [15]. Table I summarizes the characteristics of
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these datasets. We retain users with at least 20 interactions
and convert numerical ratings into implicit feedback.

TABLE I
STATICS OF THE DATASETS.

Dataset
Statics Users Items Interactions Sparsity

ML-1M 6,040 3,706 1,000,209 95.53%
Pinterest 55,187 9,916 1,500,809 99.73%
LFM-2K 1,600 12,454 185,650 99.07%

2) Baselines: We will experimentally compare our method
with federated recommendation methods and compression
competitors:

• Federated Recommendation methods:
– FedMF [7]: is one of the earliest implicit feedback

collaborative filtering methods based on the federated
learning paradigm.

– FedRec [8]: a method that uploads the set of items
that users have interacted with and a random sample
of other items to achieve privacy preservation during
rating prediction tasks.

• Compression competitors:
– Sparsification: It refers to setting some parameters

in the model so that the model updates become
sparse representing the updates as sparse matrices.
Here, we use a random selection of K variables for
sparse representation.

– Top-K Compression: It is based on sparsification
where only the most important K values are trans-
mitted instead of updates to reduce the transmission
size.

– SVD Compression: It returns low-rank structured
compressed updates based on singular value decom-
position.

3) Evaluation Metrics: To evaluate the performance of our
method in predicting interactions, we choose Hit Rate (HR)
[16] and Normalized Discounted Cumulative Gain (NDCG)
[17] as evaluation metrics. HR indicates whether the test
items appear in the recommended list, while NDCG assigns
higher weights to items ranked higher, thereby measuring the
position of the hit items. In this paper, we set the length L
of recommendation list to 10. We calculate these evaluation
metrics for each client and report the average scores to assess
the recommendation performance comprehensively.

4) Implementation Details: For the base model, we employ
the matrix factorization algorithm. In the experiment, the
embedding dimensions for users and items in the MovieLens-
1M dataset are set to 64, while for the Pinterest dataset, the
embedding dimensions are set to 16. We use a simple SGD
optimizer for local training on edge devices. In each round,
we randomly sample M clients without replacement within
and across rounds. E rounds of training are conducted on the
dataset on each client.

B. Performance Analysis (RQ1)

In performance analysis, we mainly focus on the recom-
mended performance in communication-constrained environ-
ments. We compare the recommended performance of the
system proposed in this paper with FedMF and FedRec under
the same communication budget (i.e. embedding matrices of
the same size). On the ML-1M dataset, we set the dimension
of transmitted item embeddings to 4, while the embedding size
of BFedRec is fixed at 64. Similarly, for the Pinterest dataset,
the item embedding size of FedMF is 1, while BFedRec has an
embedding size of 16. Our setup ensures that the transmission
sizes of the two methods are roughly equal in each dataset.

In Table II, we show the HR and NDCG metrics for different
methods. With the same communication budget, BFedRec
outperforms FedMF and FedRec on both datasets. On the
Pinterest dataset, even with an update size of only 1/16 of the
maximum model, BFedRec still achieves significant perfor-
mance improvement (0.60 HR and 0.33 NDCG) compared to
FedMF (0.41 HR and 0.22 NDCG) and FedRec (0.43 HR and
0.25 NDCG). In contrast, the accuracy of the FedMF model
with the corresponding embedding size is much lower.

TABLE II
RECOMMENDATION PERFORMANCE.

Dataset Metric Centralized Federated
BPR GMF FedMF FedRec BFedRec

ML-1M HR 86% 61% 41% 43% 60%
NDCG 29% 34% 22% 25% 33%

Pinterest HR 89% 83% 23% 25% 78%
NDCG 52% 49% 12% 15% 45%

LFM-2K HR 90% 82% 68% 72% 83%
NDCG 47% 65% 49% 50% 53%

In the MovieLens-1M and LastFM-2K datasets, we also ob-
served similar patterns, where BFedRec consistently exhibited
higher recommendation performance among similar methods.
Experimental results indicate that compared to fully trained
methods FedMF and FedRec, BFedRec can achieve competi-
tive performance while significantly reducing communication
costs.

Overall, the BFedRec method demonstrates higher rec-
ommendation performance in all test datasets, especially in
communication-constrained environments, making it an effi-
cient and competitive recommendation system solution.

C. Communication Efficiency Analysis (RQ2)

The Table III and Fig. 2 compare the communication time
(measured in minutes) of four compression methods, i.e.,
Sparsification, Top-K compression, SVD compression, and
BFedRec with different embedding sizes (1, 2, 4, 8, 16).

The communication time of the Sparsification method,
which involves randomly selecting K variables for sparse
representation, increases from 1.56 minutes to 31.26 minutes
as the embedded size for transmission increases from 1 to 16.
This indicates that the communication time for Sparsification
significantly increases with the increase in embedded size.
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TABLE III
COMPARISON OF COMPRESSION METHODS.

Method
Size 1 2 4 8 16

Sparsification 1.56 3.12 5.98 16.72 31.26
Top-K Compression 2.51 5.03 10.05 20.11 40.21
SVD Compression 1.72 3.45 7.34 17.23 32.12
BFedRec 1.26 2.51 5.03 10.05 20.11

1 2 4 8 16
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Fig. 2. Comparison of Compression Methods.

Similarly, the communication time of the Top-K compression
method increases from 2.51 minutes to 40.21 minutes as
the embedded size for transmission increases from 1 to 16.
This demonstrates that the communication time of the Top-
K method also significantly increases with the increase in
embedded size. The communication time of the SVD com-
pression method increases from 1.72 minutes to 32.12 minutes
for the same embedded sizes for transmission. Compared to
Top-K, the communication time of the SVD method is slightly
lower for smaller embedded sizes, but becomes closer to Top-
K for larger embedded sizes. The BFedRec method shows the
most stable communication time across all embedded sizes,
increasing from 1.26 minutes to 20.11 minutes. Although its
communication time is slightly lower than Top-K and SVD
for larger embedded sizes, it exhibits higher performance
for smaller embedded sizes, indicating that BFedRec has an
advantage in communication-constrained environments.

Overall, the BFedRec method performs better in commu-
nication time for smaller embedded sizes compared to the
other three methods. As the embedded size increases, its
communication time increases more steadily. This indicates
that BFedRec can maintain high efficiency under different
communication budgets, making it an efficient and stable
compression method.

D. Security analysis (RQ3)

The security of BFedRec relies on a committee-based con-
sensus protocol. However, fully validating its security through
testing all potential attack strategies is impractical. Malicious
blockchain nodes disrupt the system by influencing committee
formation, candidate block generation, and voting processes.
They cast dissenting votes for correct candidate blocks and
approve votes for incorrect ones. Moreover, during candidate

block generation, malicious nodes conduct Gaussian attacks
by setting random values as global model parameters instead
of adhering to the secure aggregation protocol.

In the experiment, one-third of the blockchain nodes (the
maximum Byzantine fault tolerance in distributed systems)
were considered malicious and colluded to mislead the learn-
ing process. The results in Fig. 3 show that the performance of
BFedRec was not affected too much by these Byzantine nodes,
demonstrating its robustness against this attack scenario.
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Fig. 3. Performance with vs. without Malicious Nodes.

V. RELATED WORK

A. Federated Recommendation Systems

FL has been widely applied to address privacy issues in rec-
ommendation systems. FCF [7] and FedRec [8] are examples
of FL-based collaborative filtering approaches used to enhance
privacy in rating prediction tasks. In addition, some researchers
have proposed personalized federated recommendation frame-
works. MetaMF [9] uses meta-learning to train personalized
models for each client for more accurate recommendations.
HPFL [10] introduces a hierarchical personalized federated
learning framework to improve recommendation performance
by adapting to data heterogeneity. In recent years, federated
recommendation systems have advanced significantly in vari-
ous fields. Researchers have proposed innovative approaches
to improve accuracy, user experience, and security. Ye et al.
[18] and He et al. [19] introduced clustering-based federated
learning frameworks. Zhang et al. [20] addressed the cold start
problem by separating item attributes and user interaction data.
Nguyen et al. [13] optimized communication costs and security
through low-rank training. Qu et al. [21] enhanced security
and user control with personalized privacy protection. Yan et
al. [22] developed a privacy-protected recommendation system
using a federated heterogeneous graph neural network.

B. Blockchain-based Federated Learning

FL is vulnerable to single points of failure and requires a
more distributed and secure approach to enable collaboration
among participants. To address these issues, researchers have
suggested integrating blockchain with FL. Nguyen et al. [23]
proposed FedChain, a secure framework based on Proof of
Stake (PoS) for federated blockchain systems, enhancing se-
curity and performance of cross-chain asset transfers. Wu et al.
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[24] proposed a blockchain-based clustering federated learning
system using clustering and distillation techniques for peer-
to-peer knowledge transfer support. Jin et al. [11] presented
the BEFL system, addressing issues like malicious clients
and communication costs by utilizing lightweight blockchain
technology. Meanwhile, various applications of blockchain-
based FL exist. Guo et al. [25] achieved secure traffic pre-
diction, improved data privacy, and model accuracy through
B2SFL, a dual-layer blockchain architecture. Aloqaily et al.
[26] proposed combining digital twins and blockchain-assisted
federated learning to enhance Industry 4.0, improving the
intelligence and security of manufacturing processes. Ayepah-
Mensah et al. [27] introduced a blockchain-based federated
learning resource allocation and trading system, enhancing the
efficiency and privacy of 5G network slicing.

VI. CONCLUSION

In this paper, we present a blockchain-assisted federated
edge learning method for recommendation systems (BFedRec)
that utilizes blockchain technology on edge nodes to decentral-
ize aggregation and distribution of recommendation models. A
low-rank training method is employed to reduce communica-
tion costs between the blockchain and clients. Experimental
results demonstrate enhanced communication efficiency with-
out compromising recommendation performance.
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