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A B S T R A C T

The core of programmable switches is the flexible data plane, composed of multiple programmable pipelines in
existing programmable switches. These pipelines are isolated from each other and cannot share state and data.
However, most of network monitoring systems ignore this condition and implicitly assume that the switch has
only a single pipeline. This results in an inaccurate measurement and high communication overhead with the
practical switch. To tackle this problem, we propose MpScope, a general multi-pipeline monitoring framework,
which centers around the control plane, supporting accurate and efficient network monitoring. Specifically,
MpScope combines the switch’s data plane and control plane to achieve comprehensive network monitoring of
the whole switch scope. The control plane aggregates the statistical results from multiple pipelines and tunes
the monitoring module residing in the different pipelines in the data plane dynamically. The data plane is
responsible for real-time traffic measurement and statistic reports. Its behaviors can be adjusted periodically
with the instructions from the control plane. Two typical monitoring applications, i.e., heavy hitter detection
and distinct counting, are developed with MpScope to validate the effectiveness of multi-pipeline monitoring.
Experiments show that MpScope significantly reduces communication overhead compared to the static threshold
scheme while maintaining high detection accuracy over time.
1. Introduction

With the explosive growth of network traffic, problems such as
configuration errors, malicious attacks, hardware failures, etc., are
inevitable in increasingly complex networks, which will affect the
security and stability of the network. Network monitoring can help
engineers understand the behavior and state of the network, which
is essential for the successful operation of the network. It efficiently
collects information from the data plane to detect network bottlenecks
and abnormal behaviors, supporting network management.

In network measurement, the period of information collection is
called an epoch. Usually, a switch collects data within an epoch, sends
the statistics to the server, and then clears the records and starts the
next epoch measurement. Common tasks of network monitoring include
heavy hitter [1], SuperSpreader [2], and DDoS [3] detection. Heavy
hitter refers to a flow whose size exceeds a certain threshold in a
measurement epoch; SuperSpreader refers to a source host that sends
data to more than a threshold number of destination hosts in an epoch;
DDoS is when a destination host is under DDoS attack, i.e., it receives
messages from more than a threshold number of source hosts in an
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epoch. SuperSpreader and DDoS are similar, they both belong to the
distinct counting problem, i.e., a flow should be counted only once.
Moreover, there are many other metrics [4] for network monitoring,
such as Top-K, Hierarchical heavy hitter, heavy changer and flow
cardinality statistics, etc.

Traditional network monitoring tools and protocols, such as
SNMP [5], NetFlow [6], and sFlow [7], collect either sampled or
coarse-grained statistical data, and cannot provide sufficiently accurate
information for network troubleshooting. Moreover, sampling-based
measurement systems [6,7] cannot monitor every packet in the net-
work. Programmable switches bring new opportunities for network
monitoring. The programmability of the data plane allows monitoring
modules to be deployed directly on switches. Unlike sampling-based
measurements, the modules deployed on switches can count all packets
entering the switch, achieving fine-grained network measurement [4].
As a result, many P4-based network monitoring systems and measure-
ment algorithms have emerged, e.g., a large number of sketch-based
approaches [8–14] are proposed to achieve fast and accurate network
monitoring.
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The existing programmable switches are composed of multiple pro-
grammable pipelines, which process network packets in parallel to
obtain an extremely high processing rate. For instance, the Intel Tofino
2 chip can support up to 12.8 Tbps of non-blocking throughput and
up to 6 billion pps of forwarding capacity. Currently, these pipelines
are isolated and cannot share state and data. The configuration and
action on one pipeline cannot interfere with others, which provides
simplicity and security. Hence, network engineers should be aware of
the limitations caused by the internal architecture of multiple pipelines
when designing and implementing P4 programs.

However, most of current network monitoring systems make an
implicit assumption that the programmable switch has only a sin-
gle pipeline for simplicity [8–13,15–20]. When a monitoring job is
launched on a switch, it implements only the monitoring module in
a pipeline and neglects the others. Consequently, the traffic of interest
passing through the pipelines, not deployed with a monitoring module,
is not counted. As a result, if the existing monitoring approaches are
leveraged directly, they cannot accurately measure the real situation
of the network with the multi-pipeline condition. For example, a heavy
hitter on the entire switch may not be a heavy hitter on any pipeline,
and existing systems will miss these heavy hitters. Recently, several
related works have begun to focus on conducting network monitoring
across multiple pipelines, e.g., PipeCache [21]. It aggregates the flow
statistics at the egress of a specific pipeline (monitoring pipe) and
conveys the necessary monitoring information to the monitoring pipe.
Specifically, it temporarily caches the metadata of packets that are
not routed to the monitoring pipe at the ingress, then piggybacks the
corresponding cached metadata onto the packets being forwarded to
the monitoring pipe. However, PipeCache consumes additional data
plane resources that are scarce in the programmable switch and can
lead to significant monitoring errors.

To overcome the practical issue of multi-pipeline monitoring, we
propose MpScope, a general framework, which centers around the
control plane, supporting multiple network monitoring applications. In-
spired by the network-wide distributed network monitoring work [22],
MpScope combines the data plane and control plane inside a switch
to achieve network monitoring under multiple pipelines, thereby solv-
ing serious measurement limitations. The key idea of MpScope is to
implement the monitoring modules on all pipelines and coordinate
the behaviors of pipelines to complete the switch-wide monitoring
job. Specifically, the pipelines in the data plane measure the traffic
passing through and report the results to the control plane periodi-
cally. Meanwhile, the control plane has a global view of the multiple
pipelines and dynamically adjusts the measurement behaviors based
on the data plane reports and control plane applications. Meanwhile,
unlike existing multi-pipeline monitoring work that focuses on the data
plane, MpScope does not require additional data structures in the data
plane. This approach maintains the simplicity of the data plane while
achieving good performance with limited data plane resources.

Moreover, based on the framework of MpScope, we design the
corresponding solutions to improve performance for two specific mon-
itoring applications, i.e., heavy hitter detection and distinct counting.
To detect heavy hitters, MpScope assigns the global threshold of the
entire switch to each pipeline in the data plane, which is responsible
for counting and reporting local heavy hitters. The control program
in the control plane aggregates the reported information to obtain the
heavy hitters of the entire switch. It dynamically adjusts the pipeline’s
local threshold according to historical information to reduce commu-
nication overhead. Similarly, MpScope follows the above idea with the
BeauCoup algorithm [15] to detect the global SuperSpreader. Exper-
iments show that the communication overhead of MpScope with the
dynamic threshold (MpScope dynamic) is several orders of magnitude
and up to 37.6% lower than that of existing network-wide distributed
work [22] (distributed) and MpScope with the static threshold
(MpScope static). Moreover, in the heavy hitter detection and distinct
counting, MpScope achieves zero false negatives while introducing an
acceptable number of false positives.
In summary, the contributions of this paper are as follows:
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Fig. 1. The internal architecture of commodity programmable switch.

• We design MpScope, a general framework, which centers around
the control plane, to enable accurate multi-pipeline monitoring in
the commodity programmable switch.

• Based on the MpScope framework, we modify and propose two
specific network monitoring solutions, i.e., heavy hitter detection
and distinct counting, to adapt to the practical multi-pipeline
architecture.

• We conduct extensive experiments to show that MpScope dynamic
can reduce the communication overhead significantly compared
to distributed and MpScope static, while maintaining high
detection accuracy over time.

2. Background and motivation

In this section, we show the commodity switch architecture in Sec-
tion 2.1, introduce the existing network-wide and multi-pipeline net-
work monitoring approach in Section 2.2, and describe the motivation
of MpScope in Section 2.3.

2.1. Internal switch architecture

The core of the programmable switch is the programmable pipeline,
which can process packets at line rate. Engineers can use the P4 [23]
programming language to customize the programs on the pipeline,
offloading some functions that used to be run by the CPU to hardware,
achieving huge performance advantages.

The existing programmable switches adopt an internal architecture
with multiple parallel packet processing pipelines to further improve
their processing rate. For example, the Tofino [24] switch comprises
4 pipelines, and its total packet processing rate can reach 6.4 Tbps.
As shown in Fig. 1, the internal architecture of each switch pipeline is
divided into Ingress and Egress: Ingress connects to the switch’s input
port, and Egress connects to the switch’s output port, and the Traffic
Manager links them.

The mapping relationship between ports and pipelines is fixed. For
example, ports 0 to 15 belong to pipeline 0, ports 16 to 31 belong
to pipeline 1, and so on. The multiple pipelines in the current switch
architecture are independent, they cannot share state and data, i.e.,

hen a pipeline processes a packet, it cannot access resources on other
ipelines, such as values stored in the registers or counters. MP5 [25]
lso pointed out this problem and proposed a novel stateful multi-
ipeline programmable switch architecture to achieve state sharing
etween different pipelines. However, this architecture is currently only
prototype and no commercial switch supports it. Therefore, engineers

till have to handle the limitations of the current switch architecture,
.e., the strict resource isolation between multiple pipelines.

.2. Distributed network monitoring

Distributed network monitoring involves multiple nodes that con-
uct network monitoring locally and a central coordinator that collects
he local statistics from distributed nodes to complete the global net-
ork monitoring task. According to the coordinator’s scope, we can

ategorize the existing distributed network monitoring works into two
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Fig. 2. Taxonomy of distributed network monitoring systems.

kinds, i.e., network-wide and multi-pipeline network monitoring, as
illustrated in Fig. 2.
Network-wide Monitoring. One line of distributed network moni-
toring aims to monitor targeted traffic on a network-wide basis, i.e.,
identifying the traffic of interest with the statistics collected from
different switches in a network. Rob Harrison et al. [22] studies the
heavy hitter detection with multiple switches in the whole network
and reduces the communication overhead between multiple switches
and the central coordinator while ensuring accuracy. The proposed
network-wide algorithm counts the traffic entering the network at each
edge switch and applies local, per-key thresholds to trigger reports
to a central coordinator. The coordinator adapts these thresholds to
the prevailing traffic to reduce the total number of reports. As a
follow-up work, Carpe [26] further overcomes the linearly increasing
communication overhead with the number of monitored switches by
probabilistically identifying and reporting potentially important flows.
It benefits from the probabilistic reporting, limiting the required mem-
ory on the switches while introducing the bounded errors. In contrast,
Damu Ding et al. [27] focuses on the hybrid deployment of fixed-
function and programmable switches. They propose an incremental
algorithm capable of detecting network-wide heavy hitters using only
partial information from the data plane as input.
Multi-Pipeline Monitoring. The other line of distributed network
monitoring focuses on orchestrating multiple monitoring functions on
different switch pipelines to complete a network monitoring task. Xin
et al. [28] first points out the fundamental constraints in design-
ing stateful applications on multi-pipeline commodity programmable
switches and proposes several high-level ideas to make any in-network
application feasible to run on multi-pipeline switches. PipeCache [21]
and its preceding work [29] share a similar idea, i.e., storing all the
monitoring information of each monitored traffic class into exactly one
specific pipeline, instead of replicating the information on multiple
pipelines. Specifically, PipeCache briefly stores monitoring information
into a per-pipeline ingress cache and then piggybacks this information
onto existing data packets to the correct egress pipe. Therefore, all the
monitoring statistics are updated completely in the data plane, can be
reflected correctly on one pipeline, and naturally, avoid the inaccuracy
caused by the local scope of different pipelines. However, PipeCache’s
additional cache requires additional memory and logic, which results
in higher usage of resources such as SRAM, TCAM, VLIW Instruction,
Exact Match X-Bar, and TCAM Match X-Bar.

2.3. Motivation

On the one hand, we observe that most of the current network
monitoring systems, such as Marple [18], Sonata [16], and Pack-
etScope [17], and network measurement algorithms, such as vari-
ous Sketches [10–14] and BeauCoup [15], assume that programmable
switches have only one pipeline and do not consider the actual architec-
ture of the switches. Therefore, when applied to existing programmable
switches, they cannot accurately measure the corresponding metrics
3 
and thus do not accurately reflect the real network situation. For
example, Sonata [16] is a monitoring system that supports various
query requests. Suppose we use Sonata to detect which flows are heavy
hitters. Each flow uses source IP and destination IP as the flow key.
Sonata extracts the flow key of each packet in the switch data plane and
performs hash operations on it. Later, it uses the hash value as the index
of the register, accumulating the count in the corresponding register,
thereby counting the flow size. Once the count corresponding to a
certain flow reaches the threshold, the data plane will report the flow.
Because switches have multiple pipelines and load-balancing network
schemes such as Equal Cost Multi-Path (ECMP) are widely used, traffic
with the same pair of source and destination IPs may enter different
pipelines in the switch. This means that a heavy hitter at the global
level of the switch may not be a heavy hitter in any pipeline. Therefore,
Sonata may miss some heavy hitters. For example, a heavy-hitter flow
is missed if the threshold is set to 1000 and the flow hits 800, 100,
100, and 100 times in four pipelines, respectively. In this case, the sum
of the four pipelines exceeds the threshold, but Sonata does not report
the flow because none of the records in each pipeline is greater than
the global threshold. The same missed reports also occur in distinct
counting problems such as DDoS and SuperSpreader detection.

On the other hand, as mentioned above, the recently proposed
network monitoring work targeting the multi-pipeline architecture,
PipeCache, introduces additional data structure and resource consump-
tion in the data plane. The resource consumption linearly grows with
the number of pipelines and is impacted by the traffic distribution.
That is, PipeCache deploys a cache on each ingress pipe, and the cache
may be overwhelmed if the traffic distribution is highly skewed and
the majority of traffic is not routed to the egress pipe that stores the
flow statistics. This would exacerbate the scarcity of resources in the
data plane, especially when the data plane needs to support other
network functions simultaneously, e.g., normal routing/forwarding, IP
address translation, and stateful load balancer. To mitigate this prob-
lem, PipeCache manually generates the cloned packets, piggybacking
the cache to their corresponding monitoring pipelines. However, this
may cause additional packet processing overhead and consume more
bandwidth of the internal recirculation port.

The serious monitoring inaccuracy with the existing single-pipeline mon-
itoring and the additional data plane overhead introduced by the existing
multi-pipeline monitoring motivate us to design a method that achieves high
accuracy while avoiding additional resource consumption in the data plane.
To this end, we place the complexity on the control plane and keep the
data plane the same as the single-pipeline architecture without intro-
ducing additional storage and computation. Specifically, we leverage
the similarity between the network-wide and multi-pipeline network
monitoring, i.e., each pipeline is analogous to a switch in the network-
wide monitoring model and the switch control plane is analogous to the
global coordinator in the network. Therefore, inspired by the work of
Rob Harrison et al. [22] mentioned in Section 2.2, which concentrates
on the functions of the global coordinator, we can follow the same
philosophy and design a framework that adjusts the separated multiple
pipelines dynamically inside a switch, in the switch control plane, to
implement the monitoring job. Besides, it should be able to support
various monitoring applications, e.g., heavy hitter detection and distinct
counting, to accomplish the flexibility for multiple objectives.

3. MpScope design

In this section, we first give an overview of MpScope in Section 3.1
and introduce the basic workflow and framework of it. Later, based on
the framework, we modify and redesign two typical network monitor-
ing applications, i.e., heavy hitter detection and distinct counting, with
multiple pipelines in Sections 3.2 and 3.3, respectively.
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Fig. 3. The design overview of MpScope.

3.1. Overview

To fully utilize the line-rate processing capability of programmable
switches, existing works usually offload the measurement tasks to the
data plane, where the data plane independently completes the statistics
and then reports the results (such as detected heavy hitters) to the
control plane. However, due to the switches’ multi-pipeline architec-
ture, each pipeline in the data plane has only a local view and cannot
complete global statistics. Instead, the control plane has a global view
of the entire switch. Hence, an intuitive method is to copy every packet
passing through the pipeline to the control plane, and the control plane
program completely detects the target flows. However, the overhead
is unacceptable because the bandwidth between the data and control
planes is limited. The control plane comprises general-purpose CPUs
and does not have line-rate processing capability, making it difficult
to process Tbps-level traffic. Therefore, we propose a communication-
efficient monitoring approach to eliminate the per-packet report from
the data plane to the control plane and minimize the communication
overhead. Moreover, the proposed approach is also control plane-
centric to avoid introducing additional resource consumption in the
data plane. Specifically, the main idea of this method is that the data plane
updates the statistics of each flow and reports the potential target statistics to
the control plane, independently. The control plane aims to summarize and
analyze the traffic statistics. It then sends the analysis results to the data
plane to guide the data plane in achieving flexible and accurate monitoring.

Fig. 3 shows the overview of the proposed approach, MpScope. The
basic workflow is as follows: (1). When a data packet enters a pipeline
in the data plane, the pipeline program determines whether it is a
potential target (such as a heavy hitter or a SuperSpreader). If so, the
pipeline reports the packet to the control plane. (2). At the end of each
epoch, the controller in the control plane pulls and merges potential
target statistics from all pipelines in the data plane and verifies whether
the flows reported by the data plane are real targets. (3). After process-
ing the data collected in this epoch based on the control logic of the
monitoring application, the controller sends new control instructions
to the pipelines in the data plane to conduct multiple pipeline co-
operation. This collaborative method efficiently monitors the network
by combining the data plane’s line-rate processing capability with the
control plane’s global view.

Later, the following sections will be based on the general framework
of MpScope, and use the heavy hitter detection and distinct counting
under the multi-pipeline architecture as specific network monitoring
application cases, and propose corresponding designs in Section 3.2 and
Section 3.3, respectively.
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Algorithm 1: Heavy Hitter Detection in the Data Plane
Input: Switch Setting ⟨𝑝𝑖𝑝𝑒𝐼𝐷, 𝑝𝑖𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑⟩, Packet Key ⟨𝑝𝑘𝑔⟩
Output: The marked packet is reported to the control plane

1 Function ProcessPacket(𝑝𝑘𝑔):
2 𝑓𝑘𝑒𝑦 ← ⟨𝑝𝑘𝑡.𝑠𝑟𝑐𝐼𝑃 , 𝑝𝑘𝑡.𝑑𝑠𝑡𝐼𝑃 ⟩
3 ℎ𝑎𝑠ℎ𝑉 𝑎𝑙𝑢𝑒 ← 𝐻𝐴𝑆𝐻⟨𝑓𝑘𝑒𝑦⟩
4 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟[ℎ𝑎𝑠ℎ𝑉 𝑎𝑙𝑢𝑒] ← 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟[ℎ𝑎𝑠ℎ𝑉 𝑎𝑙𝑢𝑒] + 1
5 𝑐𝑜𝑢𝑛𝑡 ← 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟[ℎ𝑎𝑠ℎ𝑉 𝑎𝑙𝑢𝑒]
6 if 𝑐𝑜𝑢𝑛𝑡 = 𝑝𝑖𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦] then
7 report this packet to the control plane
8 end
9 End Function

Algorithm 2: Heavy Hitter Detection in the Control Plane
Input: Pipeline ID ⟨𝑝𝑖𝑝𝑒0, ..., 𝑝𝑖𝑝𝑒(𝑁 − 1)⟩, Switch Threshold

⟨𝑠𝑤𝑖𝑡𝑐ℎ𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑⟩
Output: Heavy Hitter Set ⟨HeavyHitterSet⟩, Pipeline Threshold

⟨𝑝𝑖𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑⟩
1 Function HandleReport(𝑝𝑘𝑔):
2 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐻𝑒𝑎𝑣𝑦𝐻𝑖𝑡𝑡𝑒𝑟.insert(𝑝𝑘𝑡.𝑓𝑘𝑒𝑦)
3 End Function
4 Function GetHH(𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐻𝑒𝑎𝑣𝑦𝐻𝑖𝑡𝑡𝑒𝑟):
5 foreach 𝑓𝑘𝑒𝑦 in 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐻𝑒𝑎𝑣𝑦𝐻𝑖𝑡𝑡𝑒𝑟 do
6 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒 ← 0
7 for 𝑝𝑖𝑝𝑒𝐼𝐷 ← 0 to 𝑛 do
8 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒 ← 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒 + 𝑙𝑜𝑐𝑎𝑙𝑆𝑖𝑧𝑒[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦]
9 end
10 if 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒 ≥ 𝑠𝑤𝑖𝑡𝑐ℎ𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
11 heavyHitterSet.insert(𝑓𝑘𝑒𝑦)
12 else
13 ResetTH(𝑓𝑘𝑒𝑦, 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒, 𝑙𝑜𝑐𝑎𝑙𝑆𝑖𝑧𝑒)
14 end
15 end
16 return heavyHitterSet
17 End Function
18 Function ResetTH(𝑓𝑘𝑒𝑦, 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒, 𝑙𝑜𝑐𝑎𝑙𝑆𝑖𝑧𝑒):
19 𝐸𝑊𝑀𝐴𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒[𝑓𝑘𝑒𝑦] ←

(1 − 𝛼) × 𝐸𝑊𝑀𝐴𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒[𝑓𝑘𝑒𝑦] + 𝛼 × 𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒
20 for 𝑝𝑖𝑝𝑒𝐼𝐷 ← 0 to 𝑛 do
21 𝐸𝑊𝑀𝐴𝑙𝑜𝑐𝑎𝑙𝑆𝑖𝑧𝑒[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦] ←

(1 − 𝛼) × 𝐸𝑊𝑀𝐴𝑙𝑜𝑐𝑎𝑙𝑆𝑖𝑧𝑒[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦] + 𝛼 ×
𝑙𝑜𝑐𝑎𝑙𝑆𝑖𝑧𝑒[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦]

22 𝑓𝑟𝑎𝑐 ← 𝐸𝑊𝑀𝐴𝑙𝑜𝑐𝑎𝑙𝑆𝑖𝑧𝑒[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦] ÷
𝐸𝑊𝑀𝐴𝑔𝑙𝑜𝑏𝑎𝑙𝑆𝑖𝑧𝑒[𝑓𝑘𝑒𝑦]

23 𝑝𝑖𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦] ← 𝑓𝑟𝑎𝑐 × 𝑠𝑤𝑖𝑡𝑐ℎ𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
24 end
25 End Function

3.2. Heavy hitter detection

MpScope combines the switch’s data and control planes to detect
heavy hitters. Specifically, it distinguishes the heavy hitter thresh-
old into the threshold on the entire switch and the threshold on a
single pipeline, the former denoted as switchThreshold and the latter
denoted as pipeThreshold. We aim to detect all heavy hitters that pass
through the switch, for which we need to allocate switchThreshold
to pipeThreshold. We can prove that as long as switchThreshold = 𝛴
pipeThreshold, then any flow that is a heavy hitter at the switch is a
heavy hitter on at least one pipeline, which is presented in the proof of
Theorem 1. Therefore, as long as the data plane’s pipelines report their
local heavy hitters, and the control plane decides on the global view,
it can detect all heavy hitters at the switch level. In the first epoch
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of network monitoring, we evenly allocate the thresholds of different
pipelines, i.e., pipeThreshold = switchThreshold/n, where 𝑛 is the number
f pipelines. Over time, the controller will dynamically adjust the
hreshold according to the traffic distribution of each pipeline.

Algorithm 1 shows the processing procedure in the data plane. Its
nput is the pipeline ID pipeID, the packet 𝑝𝑘𝑡 that flows through the
ipeline, and the local threshold pipeThreshold set by the controller.
hen a packet enters the data plane pipeline, the data plane extracts

he flow key from the packet header and puts it in 𝑓𝑘𝑒𝑦. Then, it
alculates the hash value based on 𝑓𝑘𝑒𝑦, which is used as the register’s
ndex to count the flow size. If the flow size is equal to the local
hreshold set on the pipeline, then the flow is a potential heavy hitter
nd is reported to the control plane. As a result, each flow will be
eported at most once on a single pipeline in each epoch, greatly
educing the communication overhead between the data plane and the
ontrol plane.

Algorithm 2 shows the processing phases in the control plane.
ts inputs are the pipeline IDs of the switch, the global threshold
witchThreshold, and the outputs include the set of heavy hitters of
he switch in this epoch HeavyHitterSet and the pipeline threshold
ipeThreshold. During each epoch, if the control plane receives a report
essage from the pipeline (line 1–3), it will add the reported 𝑓𝑘𝑒𝑦 to

he possibleHeavyHitter set. Multiple pipelines may report a flow, so this
tep also achieves deduplication.

At the end of each epoch, the controller runs the GetHH function
line 4–17) to count the global heavy hitters. The controller first pulls
he counts from each pipeline and then clears the counters in the
ata plane. Next, the controller iterates through the possibleHeavyHitter
et and merges the data from each pipeline to get the global count
lobalSize. If the overall count is greater than the global threshold
witchThreshold, then the flow is a heavy hitter on the switch, and
he controller adds it to the HeavyHitterSet. Otherwise, this is a false
ositive, and the controller adjusts the threshold for this flow (line 13).
ResetTH function (line 18–25) describes the process of the

ontroller adjusting the thresholds on each pipeline based on the
nformation collected from current and previous epochs, predicting
he traffic distribution in the next epoch. The function uses the expo-
entially weighted moving average (EWMA) to synthesize information
rom different epochs, and the weight is set to account for data
loser to the current epoch as more important. The algorithm first
alculates the flow counts in the entire switch after applying the
eighted average EWMAglobalSize[fkey] (line 19), then calculates the

low counts in each pipeline after applying the weighted average
WMAlocalSize[pipeID][fkey] (line 21). Later, it divides the two values
o get the traffic distribution of the pipeline in the switch globally
line 22). Then, according to this ratio, switchThreshold is allocated
o the pipeline’s local threshold pipeThreshold (line 23). The adjusted
hreshold can adapt to the real-time traffic dynamics, reducing the
umber of messages reported by the data plane and the size of the
ossibleHeavyHitter set. For example, if the switch threshold is 1000,
ach pipeline threshold is 250, and a flow has a stable size on each
ipeline of (300, 150, 150, 0), this flow will be accidentally reported
y one of the pipelines. After adjusting by ResetTH, the pipeline
hreshold can be changed to (500, 250, 250, 0), thus avoiding the
eporting of this flow.

Finally, we prove that Algorithm 1 and Algorithm 2 achieve 100%
etection accuracy and can capture every heavy hitter across different
ipelines.

heorem 1. Any global heavy hitter whose aggregated statistics exceed
he global threshold will be reported to the control plane by at least one of
ts pipelines.

roof. Assume there are 𝑛 pipelines in a switch, with the local
hreshold for Pipeline 𝑖 denoted as 𝑇𝑖, and the global threshold for the

witch as 𝑇 . For a global heavy hitter 𝐻 (where 𝐻 ≥ 𝑇 ), which is the w

5 
able 1
The common distinct queries
Name Key Attribute

SuperSpreader srcIP dstIP
DDoS Victim dstIP srcIP
TCP Port Scan {srcIP, dstIP} dstPort

Algorithm 3: Distinct Counting in the Data Plane
Input: Switch Setting ⟨pipeID, pipeCouponThreshold⟩, Packet Key

⟨𝑝𝑘𝑔⟩
Output: The marked packet is reported to the control plane

1 Function ProcessPacket(𝑝𝑘𝑔):
2 𝑓𝑘𝑒𝑦 ← ⟨𝑝𝑘𝑡.𝑠𝑟𝑐𝐼𝑃 ⟩
3 𝑎𝑡𝑡𝑟 ← ⟨𝑝𝑘𝑡.𝑑𝑠𝑡𝐼𝑃 ⟩
4 𝑐𝑜𝑢𝑝𝑜𝑛𝑠[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦] ← 𝐵𝑒𝑎𝑢𝐶𝑜𝑢𝑝(𝑓𝑘𝑒𝑦, 𝑎𝑡𝑡𝑟)
5 𝑐𝑜𝑢𝑛𝑡 ← 𝛴 𝑐𝑜𝑢𝑝𝑜𝑛𝑠[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦]
6 if count = pipeCouponThreshold[pipeID][fkey] ς pkt generates

new coupon then
7 report this packet to the control plane
8 end
9 End Function

sum of multiple local statistics 𝐻𝑖 from different pipelines, one of its
local statistics must be greater than the local threshold, i.e., ∃𝑖,𝐻𝑖 ≥ 𝑇𝑖.
We prove Theorem 1 by contradiction as follows. Assume a global
heavy hitter 𝐻 is not reported by any pipeline, i.e., ∀𝑖,𝐻𝑖 < 𝑇𝑖. Then,
𝐻 =

∑𝑛
𝑖=1 𝐻𝑖 <

∑𝑛
𝑖=1 𝑇𝑖 = 𝑇 , which contradicts the nature of the global

heavy hitter, i.e., 𝐻 ≥ 𝑇 . Therefore, Algorithm 1 and Algorithm 2
ensure that the global heavy hitter must be reported by at least one
of the pipelines, capturing every heavy hitter in any case. □

.3. Distinct counting

Unlike the heavy hitter detection, in the distinct counting problem,
ackets of the same flow should only be counted once. Common distinct
ounting problems include flow cardinality, DDoS, and SuperSpreader.
lthough Sonata [16] uses a counter-based method to handle distinct
ounting on a single pipeline, it cannot solve the problem under mul-
iple pipelines because the packets of the flows of interest may appear
n multiple pipelines. Suppose there are three flows: flow1, flow2, and
low3. Flow1 and flow2 pass through pipeline 1, and flow2 and flow3
ass through pipeline 2. Sonata will detect two flows in pipeline 1 and
ipeline 2, and add them up to get a total of 4 flows, which violates
he ground truth of 3 flows.

In this work, we leverage BeauCoup [15], a probability-based net-
ork measurement algorithm, to solve the distinct counting problem
n multiple pipelines. It is inspired by the ‘‘coupon collection prob-
em’’, which has been proven to successfully approximate the distinct
ounting of flows in the data plane. BeauCoup extracts two parts
rom the packets, a Key and an Attribute, and maintains a coupon
it array for each received Key. For example, in the SuperSpreader
roblem, the Key is the source IP, and the Attribute is the destination
P. When a packet enters the switch, BeauCoup locates the coupon bit
rray based on the packet’s flow key. Then it maps the packet to an
lement of the array according to its destination IP, indicating that
his packet will collect the coupon. Note that packets with different
estination IPs may be mapped to the same coupon but are only
ounted once. By approximating the number of collected coupons, we
an infer the number of destination IPs and detect SuperSpreaders.
eauCoup can also support different queries by modifying the Key and
ttribute. We present some common queries in Table 1. BeauCoup has
imilarities with HyperLogLog [30] or Bloom Filter [31] in design, but
he difference is that BeauCoup can support multiple query requests

ithin a limited number of memory operations. Since programmable



C. Huang et al.

S

Computer Networks 254 (2024) 110764 
Algorithm 4: Distinct Counting in the Control Plane
Input: Pipeline ID ⟨𝑝𝑖𝑝𝑒0, ..., 𝑝𝑖𝑝𝑒(𝑁 − 1)⟩, Switch Threshold

⟨switchThreshold⟩, Switch Coupon Threshold
⟨switchCouponThreshold⟩, Coupon Map
⟨couponToNumber⟩

Output: SuperSpreader Set ⟨SuperSpreaderSet⟩, Pipeline Coupon
Threshold ⟨pipeCouponThreshold⟩

1 Function HandleReport(𝑝𝑘𝑔):
2 possibleSuperSpreader.insert(pkt.fkey)
3 End Function
4 Function GetSS(possibleSuperSpreader):
5 foreach 𝑓𝑘𝑒𝑦 in possibleSuperSpreader do
6 𝑔𝑙𝑜𝑏𝑎𝑙𝐶𝑜𝑢𝑝𝑜𝑛, localSizeSum ← 0
7 for 𝑝𝑖𝑝𝑒𝐼𝐷 ← 0 to 𝑛 do
8 ⊳ coupons are the bit arrays pulled from the data

plane
9 globalCoupon← globalCoupon|𝑐𝑜𝑢𝑝𝑜𝑛𝑠[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦]
10 localCount ← 𝛴 coupons[pipeID][fkey]
11 localSize ← couponToNumber[localCount]
12 localSizeSum ← localSizeSum + localSize
13 end
14 globalCouponCount← 𝛴𝑔𝑙𝑜𝑏𝑎𝑙𝐶𝑜𝑢𝑝𝑜𝑛
15 if 𝑔𝑙𝑜𝑏𝑎𝑙𝐶𝑜𝑢𝑝𝑜𝑛𝐶𝑜𝑢𝑛𝑡 ≥ switchCouponThreshold then
16 SuperSpreaderSet.insert(𝑓𝑘𝑒𝑦)
17 else
18 ResetTH(𝑓𝑘𝑒𝑦, localSizeSum, 𝑐𝑜𝑢𝑝𝑜𝑛𝑠)
19 end
20 end
21 return SuperSpreaderSet
22 End Function
23 Function ResetTH(𝑓𝑘𝑒𝑦, localSizeSum, 𝑐𝑜𝑢𝑝𝑜𝑛𝑠):
24 EWMAlocalSizeSum[fkey]←

(1 − 𝛼) × EWMAlocalSizeSum[fkey] + 𝛼 × localSizeSum
25 for 𝑝𝑖𝑝𝑒𝐼𝐷 ← 0 to 𝑛 do
26 localCount← 𝛴𝑐𝑜𝑢𝑝𝑜𝑛𝑠[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦]
27 localSize← couponToNumber[localCount]
28 EWMAlocalSize[pipeID][fkey]←

(1 − 𝛼) × EWMAlocalSize[pipeID][fkey] + 𝛼 × localSize
29 𝑓𝑟𝑎𝑐 ←

EWMAlocalSize[pipeID][fkey] ÷ EWMAlocalSizeSum[fkey]
30 𝑝𝑖𝑝𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑[𝑝𝑖𝑝𝑒𝐼𝐷][𝑓𝑘𝑒𝑦] ← 𝑓𝑟𝑎𝑐 × 𝑠𝑤𝑖𝑡𝑐ℎ𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
31 𝑐𝑜𝑢𝑝𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 ← argmax

𝑘
{couponToNumber[k] ≤

pipeThreshold [pipeId][fkey]}
32 pipeCouponThreshold[pipeID][fkey]← 𝑐𝑜𝑢𝑝𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟
33 end
34 End Function

switches are limited in memory operations, BeauCoup is the most
suitable algorithm for the scenario considered in this work.

Thus, BeauCoup algorithm is deployed on different pipelines in the
data plane, and the collected coupons are merged in the control plane
to estimate the distinct value of the entire switch. Note that in this
section, we take SuperSpreader detection as an example to introduce
how to solve the distinct counting problem under a multi-pipeline
architecture. Following the approach in Section 3.2, the controller
dynamically adjusts the thresholds on each pipeline. In this case, the
algorithm introduces additional thresholds for the number of coupons,
namely pipeCouponThreshold and switchCouponThreshold. The BeauCoup
algorithm estimates the number of distinct target IPs based on the
collected number of coupons, i.e., the sum of the coupon bit array.
imilar to Theorem 1, we can prove that as long as switchThreshold = 𝛴
pipeThreshold, then our proposed algorithms would not introduce more
6 
false negatives and achieve high accuracy, which is presented in the
proof of Theorem 2.

Algorithm 3 presents the processing procedure in the data plane.
In this case, the difference from Algorithm 1 is that the pipeCoupon-
Threshold refers to the coupon threshold set by the controller. When a
packet enters the pipeline, the data plane extracts information from the
packet header: the key (𝑓𝑘𝑒𝑦) and the attribute (𝑎𝑡𝑡𝑟) to be used by the
BeauCoup algorithm. Taking SuperSpreader as an example, the source
IP is extracted as 𝑓𝑘𝑒𝑦, and the destination IP is extracted as 𝑎𝑡𝑡𝑟. Sub-
sequently, based on 𝑓𝑘𝑒𝑦 and 𝑎𝑡𝑡𝑟, the BeauCoup algorithm generates
the coupon bit array (𝑐𝑜𝑢𝑝𝑜𝑛𝑠) for 𝑓𝑘𝑒𝑦 (line 4). If the collected coupon
count (𝑐𝑜𝑢𝑛𝑡) reaches the set threshold (pipeCouponThreshold), the data
plane reports it to the control plane (line 6–8). To reduce the number
of reports, the data plane checks whether the packet has generated a
new coupon, ensuring that a pipeline is only reported when the coupon
count reaches the threshold for the first time.

Algorithm 4 describes the processing procedure in the control plane.
The input includes pipeline IDs, the switch threshold switchThresh-
old, the switch coupon threshold switchCouponThreshold, and the map
couponToNumber which keeps the relation between the number of
coupons and the number of distinct flows. The outputs of Algorithm
4 include the SuperSpreader set and the pipeline coupon threshold
pipeCouponThreshold. The HandleReport function handles the re-
ports received in each epoch and adds 𝑓𝑘𝑒𝑦 to the possibleSuperSpreader
set. At the end of each epoch, the controller runs the GetSS function,
which fetches and clears the data in all pipelines. Then, it traverses
each 𝑓𝑘𝑒𝑦 in the possibleSuperSpreader set, performs a bitwise OR
operation on the coupon arrays of 𝑓𝑘𝑒𝑦 on each pipeline, and obtains
the sum of the overall distinct counts over the entire switch (line 9–
12). Later, it decides whether the number of collected coupons reaches
the coupon number threshold switchCouponThreshold. The 𝑓𝑘𝑒𝑦 that
exceeds switchCouponThreshold will be added to SuperSpreaderSet (line
16). Similar to the heavy hitter detection, if the report is a false positive,
the controller also calls ResetTH to adjust the threshold allocation on
different pipelines (line 18).

Algorithm 4 also uses EWMA to effectively utilize the historical
information of previous epochs. The difference from Algorithm 2 is
that ResetTH function needs to convert the coupon numbers to
the targeted distinct counts according to the couponToNumber array
generated by the BeauCoup algorithm (line 27, 31). For example,
couponToNumber converts the local coupon count localCount of each
pipeline to the number of targeted local distinct counts localSize (line
27). Next, the distribution ratio 𝑓𝑟𝑎𝑐 of the distinct counts is calcu-
lated using a weighted average (line 29). Finally, the coupon number
is assigned (the key in couponToNumber map) corresponding to the
maximum value in couponToNumber map that is less than or equal to
pipeThreshold[pipeID][fkey], to couponNumber (line 31–32).

At last, we prove that Algorithm 3 and Algorithm 4 introduce no
more false negatives than the corresponding sing-pipeline algorithms
and can capture every SuperSpreader across different pipelines.

Theorem 2. Any global SuperSpreader whose aggregated statistics exceed
the global threshold will be reported to the control plane by at least one of
its pipelines.

Proof. Assume there are 𝑛 pipelines in a switch, with the global
threshold of the switch denoted as 𝑇 and the local threshold for
Pipeline 𝑖 denoted as 𝑇𝑖. Then, with Algorithm 3 and Algorithm 4,
we have 𝑇 =

∑𝑛
𝑖=1 𝑇𝑖. Meanwhile, the local coupon array of Pipeline

𝑖 at the end of an epoch is denoted as 𝐶𝐴𝑖, and a coupon array
can be mapped to the number of the distinct counters with the 𝐹 [∙]
function. We prove Theorem 2 by contradiction as follows. Assume a
global SuperSpreader 𝑆 is not reported by any pipeline, then the local
threshold 𝑇𝑖 is not hit by any pipeline, i.e., ∀𝑖, 𝐹 [𝐶𝐴𝑖] < 𝑇𝑖. Meanwhile,
𝑆 = 𝐹 [(𝐶𝐴1|𝐶𝐴2|...|𝐶𝐴𝑖...|𝐶𝐴𝑛)] ≤

∑𝑛
𝑖=1 𝐹 [𝐶𝐴𝑖] <

∑𝑛
𝑖=1 𝑇𝑖 = 𝑇 , i.e.,

𝑆 < 𝑇 , which contradicts the nature of the global SuperSpreader,
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i.e., 𝑆 ≥ 𝑇 . Therefore, Algorithm 3 and Algorithm 4 ensure that the
lobal SuperSpreader must be reported by at least one of the pipelines,
apturing every SuperSpreader in any case. □

4. Evaluation

In this section, we present the detailed evaluation setup in Sec-
tion 4.1 and conduct extensive experiments to answer the following
questions:

• Does MpScope reduce system overhead compared to ex-
isting approaches? We show that in heavy hitter detection,
MpScope with the dynamic threshold reduces 22.1% ∼ 37.6%
of the communication traffic compared to the static threshold
approach (Section 4.2). Also, in SuperSpreader detection, Mp-
Scope with the dynamic threshold can save 19.3% ∼ 25.1% of the
communication traffic (Section 4.3).

• Does MpScope achieve high measurement accuracy in dif-
ferent applications? We show that in heavy hitter detection,
MpScope results in zero false negatives while introducing an
acceptable number of false positives, with an average value of
up to 377, under different settings (Section 4.2). Similarly, in
SuperSpreader detection, MpScope results in zero false negatives
while introducing an acceptable number of false positives, with an
average value of up to 86, under different settings (Section 4.3).

.1. Evaluation setup

We develop a packet-level simulator that replays the traffic trace
nd realizes the control plane and data plane as two separate modules
n the simulator. The data plane is composed of 4 pipelines. When the
imulation starts, a packet is mapped to one of the pipelines, and the
onitoring function updates its statistics accordingly. If the statistics

each the local threshold, the control plane is called, simulating the
ommunication between the control and data plane. Later, the control
lane periodically calls the data plane and pulls and clears the recorded
tatistics. For PipeCache, we use the simulator provided by its au-
hors, varying the configurations to show performance under different
nvironments.
raffic Distribution: Although some projects and organizations
32,33] have collected network traces in reality, they have not con-
idered the distribution of traffic on a switch. This section refers to
he distributed traffic distribution [22] to simulate network traffic
istribution in reality on 𝑛 different pipelines of a switch. Specifically,

we replay the traces through one ingress pipeline and spread the traffic
over the egress pipelines using an ECMP-like flow-consistent spreader.
In this evaluation, a traffic class is a source IP address so traffic spreads
across egress pipes based on the destination IP address. We generate a
traffic imbalance by changing the weights of a traffic spreader, which
follows the same way as PipeCache. A traffic imbalance of 𝑥 means that
some pipes have a weight that is 𝑥 times higher than the other pipes,
i.e., they receive 𝑥 times more traffic. For example, an imbalance of 1
means traffic is forwarded uniformly, and an imbalance of 31 means
one pipeline receives 31 times less traffic than the other pipelines. In
the simulation, we vary 𝑥 from 1, 7 to 31 to show the performance of
different schemes with diverse traffic distributions across pipelines.
Traffic Trace: The experiment uses the network trace collected by
the WIDE MAWI [32] database in 2020 to evaluate the performance
of different schemes. The MAWI database collects traces from real
networks, helping researchers evaluate their traffic anomaly detection
methods. We replay the trace at the rate of 1Mpkt/s and set the epoch
length to 1 s.
The Compared Schemes: We evaluate the performance of 4 schemes,
i.e., the existing network-wide distributed monitoring approach
(Distributed) [22], PipeCache [21], MpScope with the static thresh-
old (MpScope static), and MpScope with the dynamic threshold (MpScope
dynamic).
7 
Fig. 4. Communication overhead of heavy hitter detection with different threshold
settings.

Table 2
Communication overhead with different thresholds.
Threshold Static threshold Dynamic threshold Reduction ratio (%)

500 17 354 13 525 22.1
1000 12 087 8728 27.8
5000 4511 2973 34.1
10000 2772 1730 37.6

Performance Metrics: (1). We use the number of messages needed to
be delivered between the control and the data plane as the metric to
evaluate the communication overhead, i.e., the number of calls between
the control and data plane in our simulator. (2). We use false negatives
(miss the flows of interests) and false positives (mistakenly report the
non-interest flows) over time to quantify the detection accuracy of
different schemes.

4.2. Heavy hitter detection

We show that MpScope dynamic significantly reduces communica-
tion overhead in Section 4.2.1 compared to the preliminary Dis-
tributed and static threshold approach. Then, in Section 4.2.2,
we show that MpScope maintains no false negatives, at the cost of
introducing additional false positives, in heavy hitter detection. Finally,
the performance of different schemes under varied traffic distribution
is exhibited in Section 4.2.3.

4.2.1. Communication overhead
We measure the communication overhead by the total number

of messages sent between the data and control plane, including the
report counts and responses to pull requests. The key difference be-
tween the dynamic and static thresholds is that the static threshold
scheme does not adjust the threshold based on historical flow distri-
bution information. The static scheme consistently keeps the threshold
on each pipeline as switchThreshold/n, which is the global thresh-
old of the switch divided by the number of pipelines. Meanwhile,

with Distributed, each pipeline continuously reports all counts
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Fig. 5. The false negatives of heavy hitter detection.

hat are greater than or equal to the local threshold to the control
lane, leading to a significant increase in communication overhead.
n contrast, with MpScope, each pipeline only reports once per period,
pecifically when the local count matches the local threshold. Similarly,
ith Distributed, the control plane pulls data from all pipelines
ultiple times within a period whenever it receives a report and its

stimate of the aggregated count surpasses the global threshold. With
pScope, however, the control plane only pulls data that has been

eported once per period. The primary difference between MpScope and
istributed comes from their different target environments. In the
riginal Distributed environment, a centralized coordinator must
onitor numerous observation nodes dispersed across the network.
ach node needs to continuously report its current count to mitigate the
isk of occasional report loss or delay. The coordinator also frequently
djusts the local threshold for each node to incur timely adjustments
nd avoid command loss or delay. However, the environment in this
aper is confined to inside a switch, which is highly controlled with a
imited number of pipelines (typically 2 to 8). This allows the control
lane to quickly gather statistics within a period, enabling MpScope to

monitor the pipelines more lazily. Specifically, each monitor reports at
most once per period to notify the control plane, and the control plane
subsequently queries once at the end of the period. This results in a
significant reduction in communication overhead.

Fig. 4 compares the communication overhead of different schemes
under various threshold settings. As shown in Fig. 4(a), for the thresh-
old 500, we observe that the communication overhead with MpScope is
significantly reduced, compared to the Distributed scheme. More-
over, we observe that the communication volume of the dynamic and
static threshold schemes is the same in the first epoch. As the number of
epochs increases, the advantage of the dynamic threshold scheme grad-
ually becomes apparent, with its communication volume being much
smaller than that of the static threshold scheme. This is because, in the
first epoch, the thresholds of both schemes are the same. Over time,
the dynamic threshold scheme effectively estimates traffic distribution
using historical information. It improves data plane reporting accuracy
by adjusting thresholds on different pipelines, thereby reducing the
number of reported messages. Table 2 summarizes the communication
overhead for all epochs under different threshold settings. It shows
that the dynamic threshold scheme reduces communication volume by
22.1% to 37.6% compared to the static threshold scheme. In the fol-
lowing experiments, we compare the better MpScope with the dynamic
threshold with the related work.
8 
Fig. 6. The false positives of heavy hitter detection.

4.2.2. Detection accuracy
In this experiment, we show that MpScope can avoid false negatives

(capture every heavy hitter) and cause a moderate number of false
positives (additional communication overhead between the data and
control plane).
Setup: We tune the available memory of the data plane from 100Kb to
10Mb to show the performance of MpScope and PipeCache with limited
memory and abundant memory. Moreover, we vary the heavy hitter
threshold from 1000 to 10,000 to reveal the performance difference
between small and big thresholds. With threshold = 1000, the ground
truth list of heavy hitters over time is [75,76,73,74,86,87,92,77]; With
threshold = 10,000, the ground truth list of heavy hitters over time is
[9,9,9,11,8,10,8,8]. The imbalance of the traffic distribution is 31 in
this experiment. Note that we limit the ratio of manually generated
recirculation packets with PipeCache, to 2%, as this moderate ratio
avoids overwhelming the processing capacity of the switch chip.
Results: Fig. 5 shows the false negatives during heavy hitter detection
with different schemes. We find that MpScope avoids false negatives
(zero false negatives with different settings) and captures every heavy
hitter successfully. However, PipeCache results in a great number of
false negatives over time, e.g., in Fig. 5(a), the average false negatives
over time of PipeCache is 55 (the average ground truth over time is
80), leading to a 68.8% miss ratio. We attribute this to the limited
memory of PipeCache, as the cache structure in every ingress consumes
additional memory. When the available memory is so limited that the
PipeCache cannot cache the necessary information in the ingress, the
packets may go to the egress that is not the monitoring pipe and
stores no statistics of these packets. This causes the miss of heavy
hitter detection with PipeCache. On the contrary, MpScope requires no
additional data structures in the data plane, and every egress can report
the flow hitting the threshold.

However, we observe that MpScope achieves zero false negatives at
the cost of introducing some false positives. For example, as depicted
in Fig. 6(a), MpScope can cause the average false positives of 377, 4.7
times the ground truth. On the contrary, PipeCache incurs no false
positives with diverse settings. This is because PipeCache aggregates
the flow statistics at the egress of the monitoring pipe, and every cap-
tured heavy hitter certainly hits the threshold. Instead, in MpScope, the
statistics of a flow spreads over all pipelines, and the controller tunes
the threshold dynamically based on its estimation. Thus, it is more
sensitive and reports the possible heavy hitter aggressively. However,
we found that even the largest false positive, i.e., 461 per second in
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Fig. 7. The performance of heavy hitter detection under varied traffic distribution.

Fig. 8. Communication overhead of distinct counting with different threshold settings.

Fig. 6(a), is still an acceptable traffic load for the control plane, and
much smaller than the overall traffic volume, i.e., 1 Mpkts per second.

4.2.3. Varied traffic distribution
We show that MpScope can maintain accuracy with the diverse

traffic distribution across the pipelines.
Setup: We change the traffic distribution across different pipelines
(imbalance 1 and 7), to show the performance of different schemes with
varied traffic distribution. The available memory in this experiment is
set to 10Mb. The ratio of manually generated recirculation packets with
PipeCache is set to 2%.
Results: By comparing Figs. 7(a) and 7(c), we found that the skewed
traffic distribution incurs more false negatives with PipeCache, i.e., 16
with imbalance = 1 versus 21 with imbalance = 7. This is because, in
the worst case, a minority of traffic goes through the monitoring pipe
and has fewer chances to piggyback information to the correct statistics,
which causes more false negatives. Meanwhile, we found that the traffic
distribution imbalance has a negligible impact on the performance of
MpScope. We attribute this to the homogeneous characteristics of the
pipeline, i.e., every pipeline has the same structure used to store the
statistics for the same flow.

4.3. SuperSpreader detection

We show that MpScope dynamic significantly reduces communica-
tion overhead in Section 4.3.1 compared to the preliminary Dis-
tributed and static threshold approach. Then, in Section 4.3.2, we
 r

9 
Fig. 9. The false negatives of SuperSpreader detection.

show that MpScope maintains no false negatives, at the cost of intro-
ducing additional false positives, in SuperSpreader detection. Finally,
the performance of different schemes under varied traffic distribution
is exhibited in Section 4.3.3.

4.3.1. Communication overhead
Fig. 8 shows the communication overhead of SuperSpreader detec-

tion with different threshold settings. Note that BeauCoup’s distributed
scheme involves each pipeline of the data plane running the algorithm
independently with the same hash function. Whenever BeauCoup gen-
erates a new coupon, it reports to the control plane, and the control
plane aggregates the coupons reported by each pipeline, thus obtaining
the distinct count of the whole switch.

It is evident that MpScope has several orders of magnitude less
communication overhead than the distributed scheme. This is
because in MpScope, only when the coupon count reaches the preset
ipeline threshold, the data plane will report the flow, while the
istributed scheme will report every new coupon, elaborated in
ection 4.2.1. We also find that the communication overhead of the
ynamic threshold scheme is lower than that of the static threshold
cheme, e.g., the communication overhead reductions with threshold

100 and threshold = 200, are 19.3% and 25.1%, respectively. The
eason is similar to that of the heavy hitter case explained earlier. In
he following experiments, we compare the better MpScope with the
ynamic threshold with the related work.

.3.2. Detection accuracy
This experiment shows that MpScope can avoid false negatives

capture every SuperSpreader) and cause a moderate number of false
ositives (additional communication overhead between the data and
ontrol plane).
etup: We tune the available memory of the data plane from 10 Mb to
Gb, to show the performance of MpScope and PipeCache with limited
emory and abundant memory. Moreover, we vary the SuperSpreader

hreshold from 100 to 200 to reveal the performance difference be-
ween small and big thresholds. With threshold = 100, the ground
ruth list of SuperSpreaders over time is [29,31,32,29,32,32,34,32];

ith threshold = 200, the ground truth list of SuperSpreaders over time
s [15,16,14,16,16,16,15,14]. The imbalance of the traffic distribution
s 31 in this experiment. Note that we limit the ratio of manually
enerated recirculation packets with PipeCache to 2%, as this moderate

atio avoids overwhelming the processing capacity of the switch chip.
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Fig. 10. The false positives of SuperSpreader detection.

Results: Fig. 9 shows the false negatives during SuperSpreader de-
tection with different schemes. We find that MpScope avoids false
egatives (zero false negatives with different settings) and captures
very SuperSpreader successfully. However, PipeCache results in many
alse negatives over time, e.g., in Fig. 9(a), the average false negatives
ver time of PipeCache is over 17 (the average ground truth over time
s 31), leading to a 45.1% miss ratio. We attribute this to the memory
ensitivity nature of PipeCache, similar to the reason explained in the
eavy hitter detection.

However, we observe that MpScope achieves zero false negatives at
he cost of introducing some false positives. For example, as depicted
n Fig. 10(a), MpScope can cause the average false positives of 86,
hich is 2.8 times the ground truth. On the contrary, PipeCache incurs
few false positives with diverse settings. This is because PipeCache

ggregates the flow statistics at the egress of the monitoring pipe, and
very captured SuperSpreader certainly hits the threshold. Note that
he non-zero false positives of PipeCache result from the inaccuracy
f the probability-based BeauCoup algorithm. Instead, in MpScope, the
tatistics of a flow spreads over all pipelines, and the controller tunes
he threshold dynamically based on its estimation. Thus, it is more
ensitive and tends to report the possible SuperSpreader aggressively.
owever, we found that even the largest false positive, i.e., 99 per

second in Fig. 10(a), is still an acceptable traffic load for the control
plane, and much smaller than the overall traffic volume, i.e., 1 Mpkts
per second.

4.3.3. Varied traffic distribution
We show that MpScope can maintain accuracy with the diverse

traffic distribution across the pipelines.
Setup: We change the traffic distribution across different pipelines
(imbalance 1 and 7), to show the performance of different schemes with
varied traffic distribution. The available memory in this experiment is
set to 1 Gb. The ratio of manually generated recirculation packets with
PipeCache is set to 2%.
Results: By comparing Figs. 11(a) and 11(c), we found that the skewed
traffic distribution incurs more false negatives with PipeCache com-
pared to the balanced traffic distribution, i.e., 13 with imbalance =

versus 15 with imbalance = 7. This is because, in the worst case,
minority of traffic goes through the monitoring pipe and has fewer

hances to piggyback information to the correct statistics, which causes
ore false negatives. Meanwhile, by comparing Figs. 11(b) and 11(d),
e found that the traffic distribution imbalance has negligible impact
10 
Fig. 11. The performance of SuperSpreader detection under varied traffic distribution.

on the performance of MpScope. We attribute this to the homogeneous
characteristics of the pipeline, i.e., every pipeline has the same structure
sed to store the statistics for the same flow.

. Related work

Most of the existing network monitoring approaches implicitly as-
ume using a single pipeline, and we overview the most related ideas
nd can be enhanced by the idea in this paper.
uery-based Monitoring. Marple [18] is a novel monitoring system

hat supports flexible query jobs from network operators, utilizing
he data flow primitives, e.g., Map, Reduce, and Groupby. Similar to
arple, Sonata [16] provides the query interface, and it divides the
easurement requirements and network traffic between the switch and

low processor, making them jointly undertake the monitoring tasks.
acketScope [17] is an extension of Sonata, which can monitor the
nternal situation of switches, such as packet header changes, internal
ueue packet loss, etc. OmniMon [19] is a network-wide flow-level
elemetry architecture combining multiple network entities’ capabilities
endpoints, switches, and controllers) to achieve high statistical accu-
acy and low resource overhead. Different from the aforementioned
pproaches that aim for a convenient query interface, MpScope focuses

on a general framework to support multiple monitoring applications
on multiple internal pipelines. MpScope is suited to be the monitoring
backend and to be integrated into the existing query-based system.
Sketch-based Monitoring. UnivMon [12] is a Sketch-based flow
monitoring framework that can support different monitoring tasks
while aiming for generality and high accuracy. ElasticSketch [8] is
an adaptive Sketch that can dynamically adjust according to different
traffic characteristics. SpreadSketch [11] is a reversible Sketch data
structure for detecting SuperSpreader across the network, which has
theoretical guarantees on memory space, performance and accuracy.
CocoSketch [9] is a Sketch-based measurement algorithm that supports
arbitrary partial key queries. FlyMon [13] is the first Sketch mea-
surement system that can achieve runtime dynamic reconfiguration of
measurement tasks. SketchLib [10] is an efficient Sketch development
library for programmable switch platforms. It systematically analyzes
the resource bottlenecks in implementing various Sketch algorithms on
programmable switches and proposes feasible optimization techniques
for these bottlenecks. Generally, Sketch-based approaches count the
traffic of all observed packets and perform lossy compression on the
statistical data. They are orthogonal to MpScope, and designing a novel
sketch supporting multiple pipeline monitoring is part of our future
work.
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6. Conclusion

Neglect of the internal switch architecture can cause serious
overhead and inaccuracy in network monitoring. To overcome the lim-
itation, we propose MpScope, a monitoring system that centers around
the control plane to support multi-pipeline network monitoring inside
a programmable switch. The measurement modules in the data plane
report the measurement results to the control plane, periodically. The
switch’s control plane dynamically adjusts the measurement modules
residing in different pipelines based on different monitoring applica-
tions. The experimental results show that MpScope can significantly
reduce communication overhead and maintain accuracy compared to
the previous works. Integrating more network monitoring applications
in MpScope and developing new data structures natively supporting
multiple pipelines are our future work.
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