
SQCC: Stable Queue Congestion Control
Jian Tang1, Tingting Xu1, Liming Wang2, Zhenjie Lin2, Ming Zhao2,

Xiaoliang Wang1, Cam-Tu Nguyen1, Chen Tian1, Zhuzhong Qian1, Wenzhong Li1
1State Key Laboratory for Novel Software Technology, Nanjing University, China
2CSG China Southern Power Grid Digital Platform Technology Company, China

Abstract—The advent of high-speed networks has revolution-
ized data center capabilities by providing low latency and high
bandwidth for applications. However, traditional TCP congestion
control algorithms are no longer adequate for data center
networks. RTT-based congestion control leverages advanced NIC
hardware to identify accumulated queuing delay of the end-
to-end path. It is simple, effective, and adaptable to different
environments. Nevertheless, RTT-based congestion control faces
challenges related to unstable queue length and oscillation caused
by RTT feedback delays. With the increase of queue length,
the oscillation range also amplifies. To address these issues, we
propose SQCC, which introduces two key enhancements. Firstly,
it employs a novel error function to regulate the queue length
within a controlled range that is proportional to the number of
incast flows. Secondly, it incorporates self-adjustable parameters
for rate increment and RTT threshold, effectively managing
queue oscillation and ensuring a non-empty link. We evaluate the
algorithm’s effectiveness through NS3 network simulations, and
the results demonstrate that SQCC achieves an 80% reduction
in queue size upon convergence and exhibits a significantly low
oscillation range (27% to 57%) in large-scale incast scenarios.

Index Terms—Data center networks, Transport protocols, Con-
gestion control

I. INTRODUCTION

To ensure the performance, high-performance computing [1]
and large-scale distributed machine learning [2]–[11] appli-
cations demand extremely low network latency. Low-latency
networks require congestion control algorithms that can main-
tain a stable low queuing latency [12]–[14]. Traditional TCP
congestion control algorithms are insufficient for data center
networks because they rely on packet loss as a congestion
signal, which can cause significant delays in detecting, re-
sponding to congestion, as well as converging to stable status.

As a result, numerous congestion control algorithms tailored
to data center environments have been proposed [15]–[21].
Among them, RTT-based congestion control algorithms have
gained increasing attention from enterprises and researchers in
recent years due to their simplicity and ease of deployment.
These algorithms rely on the round-trip time (RTT) between
the sender and receiver as a congestion signal, which allows
them to detect and react to changes in network conditions more
quickly than traditional TCP algorithms.

Compared to other congestion control algorithms, the RTT-
based approach does not rely on the underlying network switch
features ike ECN, and is measured solely by the sender [22]. It
means that RTT-based approaches are equally applicable even
in network architectures without switches. Additionally, the
implementation of RTT-based congestion control is relatively

simple, making it easy for developers to deploy, upgrade,
and maintain. However, existing RTT-based congestion control
algorithms still fail to meet the requirements of ultra-low
latency in high-speed data centers.

Fundamentally, the RTT-based approach itself suffers from
feedback delay. As the congestion grows, it takes long time for
the sender to receive acknowledgments (ACKs) and calculate
the RTT information. The growing feedback delay can cause
long congestion reactions, which affects the ability of the
algorithm to eliminate congestion in a timely manner. Previous
works such as TIMELY [17] and patched TIMELY [23] strug-
gle to rapidly reduce the sending rate when the RTT is large.
For incasts traffic, traffic exacerbates packet accumulation in
the congestion point with the increase of the scale, further
delays the feedback and leads to the queue oscillation [24].

Therefore, when designing and deploying RTT-based con-
gestion controls in data centers, the following points need to
be considered: 1) Designing effective rate reduction metrics
that can quickly respond and reduce the rate when the RTT
is large, ensuring a stable low-latency queue. 2) Addressing
the issue of feedback delay in RTT measurements to maintain
queue length within a small range of oscillation.

This paper analyses the existing issues with RTT-based
congestion controls and introduces a novel RTT congestion
control, named SQCC, that can maintain a relatively stable
queue, reducing the side effect of delayed feedback and
fluctuating queue caused by incast traffic. The contributions
are summarized as follows:

• SQCC introduces a new rate reduction metric that allows
for rapid rate reduction with the increase of RTT, effec-
tively emptying the queue to reduce congestion. The rate
reduction metric in SQCC bounds the congestion queue
length, i.e., when the algorithm is stable, the queue length
is confined within a limited range with the increase of
incast flows. The maximum queue length is guaranteed
not to exceed the theoretical upper limit.

• SQCC incorporates two self-adjustable parameters, rate
increment, and RTT threshold, reacting to queue oscilla-
tions caused by incast flow size fluctuation. It effectively
reduces the range of queue oscillations when the algo-
rithm is stable while ensuring high-resource utilization,
i.e., keeping non-empty link.

• Through flow modeling analysis and NS3 [25] simulation
experiments, it has been verified that SQCC achieves
significant improvements compared to previous RTT-
based congestion control algorithms in scenarios with

2023 14th International Conference on Network of the Future (NoF)

979-8-3503-3807-2/23/$31.00 ©2023 IEEE 19

20
23

 1
4t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 N
et

w
or

k 
of

 th
e 

Fu
tu

re
 (N

oF
) |

 9
79

-8
-3

50
3-

38
07

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
N

oF
58

72
4.

20
23

.1
03

02
75

1

Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:22:14 UTC from IEEE Xplore.  Restrictions apply. 



large-scale incast flows. The maximum queue length
during stability can be reduced by up to 80%, and the
corresponding range of oscillation can be reduced by 27%
to 57%, demonstrating the effectiveness of SQCC.

II. MOTIVATION

A. TIMELY Rate Adjustment

TIMELY [17] was proposed and implemented as a conges-
tion control mechanism in data centers by using only RTT
variations for congestion control. It adjusts the sending rate
based on the gradient of RTT changes. We briefly review the
corresponding algorithms and apply the same notations in the
literature [17].

Algorithm 1 TIMELY

1: newRTTDiff = newRTT − prevRTT
2: prevRTT = newRTT
3: rttDiff = (1− α) · rttDiff + α · newRTTDiff
4: rttGradient = rttDiff

DminRTT

5: if newRTT < Tlow then
6: rate = rate+ δ
7: else if newRTT > Thigh then
8: rate = rate · (1− β · (1− Thigh

newRTT ))
9: else if rttGradient ≤ 0 then

10: rate = rate+ δ
11: else
12: rate = rate · (1− β · rttGradient)
13: end if

The rate adjustment in TIMELY (Algorithm 1) involves
calculating the RTT gradient (∆RTT , or rttGradient in
algorithm) and adjusting the rate accordingly. If ∆RTT ≤ 0,
indicating an empty or decreasing congestion queue, the rate is
increased by δ. If ∆RTT > 0, indicating an increase in queue
length and potential congestion, the rate is reduced based
on the gradient. The algorithm relies on additional parame-
ters: Tlow and Thigh. Tlow ensures stability by disregarding
temporary queue length increases caused by segment-sized
transmissions. Thigh enables rate reduction when the queue
exceeds a threshold, preventing it from becoming unlimited.

However, TIMELY lacks a stable convergence length for the
congestion queue due to its criteria for rate acceleration and
deceleration [20], [23]. This results in oscillations between the
Tlow and Thigh thresholds, which are amplified when dealing
with multiple incast flows. Unfairness arises when flows
are transmitted at varying rates or times. Additionally, the
algorithm exhibits a prolonged convergence time, especially
when a large number of incast flows are sent in segments.

The patched TIMELY [23] addresses the limitations of
TIMELY. The algorithm (in Algorithm 2) maintains similar
handling for values below the Tlow threshold and above
the Thigh threshold as in TIMELY. It introduces two key
differences in rate adjustment when the measured RTT falls
between Tlow and Thigh:

First, in the patched TIMELY, the rate reduction is deter-
mined based on the sign of ∆RTT , replacing the gradient with

Algorithm 2 Patched TIMELY

1: newRTTDiff = newRTT − prevRTT
2: prevRTT = newRTT
3: rttDiff = (1− α) · rttDiff + α · newRTTDiff
4: rttGradient = rttDiff

DminRTT

5: if newRTT < Tlow then
6: rate = rate+ δ
7: else if newRTT > Thigh then
8: rate = rate · (1− β · (1− Thigh

newRTT ))
9: else

10: if rttGradient ≤ −0.25 then
11: weight = 0
12: else if rttGradient ≥ 0.25 then
13: weight = 1
14: else
15: weight = 2 ∗ rttGradient+ 0.5
16: end if
17: error =

newRTT−RTTref

RTTref

18: rate = δ(1−weight)+ rate · (1−β · error ·weight)
19: end if

the current RTT as a reference. This modification addresses
fairness concerns that arise when different flows with different
rates experience the same ∆RTT . By utilizing each flow’s
individual RTT as the indicator for rate reduction during
congestion, the algorithm adapts to varying RTT values and
achieves convergence towards a common target RTTref of
50us. This approach ensures fair rate reduction among flows.

Second, the algorithm incorporates a weight function to fa-
cilitate smooth rate adjustments within the range of ∆RTT ∈
[−k, k], where k is set to 0.25. This feature prevents os-
cillations caused by abrupt rate changes. Importantly, when
∆RTT = 0, the weight function assigns a weight of 0.5,
effectively neutralizing rate adjustments and maintaining the
current rate. The patched TIMELY aims to converge to a
stable point with minimal oscillations, ensuring queue length
stability. However, it is important to note that the weight
function does not guarantee stability in practical scenarios
involving numerous incast flows, although it does help mitigate
oscillations to some extent.

TABLE I: Notations
R Rate g RTT Gradient
q Queue Length t Time

τ∗ Rate Update Interval τ
′

Measured Delay
N Incast Ratio α EMA Smoothing Factor
C Link Capacity β Rate Decrease Factor
δ Rate Increase Factor i Flow Number

Tlow Low Threshold Thigh High Threshold
DminRTT Delay Dprop Propagation Delay

seg Segment Size

B. Analysis of Patched TIMELY

In this section, we analyze the flow model using the patched
TIMELY as an example, based on paper [23]. Besides, we
further examine the applicability of the patched TIMELY

2023 14th International Conference on Network of the Future (NoF)

20
Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:22:14 UTC from IEEE Xplore.  Restrictions apply. 



in practical environments [26], [27]. Based on this analysis,
we summarize the issues with RTT-based congestion control
algorithms.

We differentiate the rate adjustment formula in the patched
TIMELY and consider the relationship between queue length
and time, along with relevant functions. This allows us to
derive the differential equation model for the patched TIMELY.
The differential equation model is as follows (refer to Table I
for the relevant parameters).

dRi

dt
=


δ
τ∗ , q(t− τ ′) < C ∗ Tlow

(1−wi)δ
τ∗ − wiβRi(t)

τ∗
q(t−τ ′)−q′

q′ , Otherwise

− β
τ∗ (1−

C∗Thigh

q(t−τ ′) )Ri(t), q(t− τ ′) > C ∗ Thigh

(1)
dq

dt
=

∑
i

Ri(t)− C (2)

τ∗ = max{seg
Ri

, DminRTT } (3)

τ
′
=

q

C
+

MTU

C
+Dprop (4)

wi =


0, gi ≤ −0.25

2gi + 0.5, −0.25 < gi < 0.25

1, gi ≥ 0.25

(5)

When the queue is stable, i.e. the queue length remains con-
stant and stays within the range of Tlow and Thigh, otherwise,
according to the algorithm, there must be either rate increase
or rate decrease, and stability cannot be achieved. When the
queue length is stable, the RTT measured in each round also
remains constant, resulting in ∆RTT = 0, which implies
gi = 0. Substituting this into Equation (3) yields wi = 0.5. At
this point, the rate of each flow no longer changes, therefore,
both Equation (1) and Equation (2) equal 0, and we can solve
for:

{
dRi
dt

= (1−wi)δ
τ∗ − wiβRi(t)

τ∗
q(t−τ ′)−q′

q′ = 0
dq
dt

=
∑

i Ri(t)− C = 0
⇒

{
Ri =

C
N

q∗ = Nδq
′

βC
+ q

′

(6)
This indicates that the differential equation has a trivial

solution, which means that the algorithm can theoretically
converge to a stable point where each flow shares the bot-
tleneck link’s bandwidth equally, and the queue length on the
bottleneck link is given by (6).

By observing q∗, it is evident that as the number of incast
flows N increases, the stable queue length increases propor-
tionally with N . If N exceeds a certain threshold that causes
the stable queue length q∗ to be greater than qhigh (where qhigh
is the queue length corresponding to the threshold Thigh),
according to the algorithm, when the measured RTT > Thigh,
the algorithm performs a rate reduction. However, when
RTT < Thigh, in order to reach a stable state, the algorithm
will inevitably increase the rate, leading to a further increase
in the queue length. This ultimately results in the algorithm’s
inability to stabilize, and the queue length oscillates around

qhigh. In Equation (6), let us assume q∗ ≥ qhigh, then we can
get:

Nδq
′

βC
+ q

′
≥ qhigh (7)

Furthermore, in a many-to-one traffic environment, the
measured RTT on the bottleneck link satisfies D+ q

C = RTT .
Substituting this into Equation (7) and simplifying, we obtain:

N ≥ (Thigh − Tlow)βC

δ(Tlow −D)
(8)

Where D represents the link propagation delay, set to 5us
in the simulation environment, and other relevant parameter
values are Thigh = 500us, Tlow = 50us, C = 10Gbps, β =
0.008, and δ = 10M . Substituting these values into Equation
(8), we can determine that N ≥ 80. This indicates that when
N = 80, the congested queue length at the stable state is
theoretically already reaching qhigh. However, according to the
patched TIMELY, the congested queue length cannot actually
reach a stable state.

Additionally, in real-world environments, the feedback time
of RTT itself is affected by the congested queue length. The
longer the queue length, the more delayed the feedback time of
RTT measured at the host. This causes the rate adjustment of
the algorithm to always lag behind the occurrence of conges-
tion, resulting in the congested queue length oscillating around
the theoretical stable value instead of remaining consistently
stable. In reality, when N ≥ 60, the algorithm fails to reach a
stable state and causes the maximum length of the oscillating
queue to exceed Thigh.

Compared to TIMELY, the patched TIMELY theoretically
guarantees convergence to a stable point, where all flows fairly
share the bottleneck link bandwidth and the congested queue
length remains stable. However, this ideal state can only be
achieved when there are fewer flows. It faces serious stability
issues as the number of incast flows increases.

Based on the previous analysis, we can identify the follow-
ing issues with RTT-based congestion control algorithms:1)
Delayed feedback influenced by queue length: The sender
may experience a significant delay in measuring RTT and
adjusting the rate, potentially leading to congestion occurring
in the network during this delay. Such delays contribute
to oscillations in queue length. 2) Ineffective queue length
control: Patched TIMELY theoretically ensures a stable queue
length at convergence, in practical scenarios, the stable queue
length increases proportionally with the number of incast
flows. This increase in queue length exacerbates the delays
in RTT feedback and intensifies queue oscillations.

The fundamental problem with RTT-based algorithms is the
capability to control the congestion queue length within a low
range. If the queue length can be controlled within a certain
range regardless of the value of N and if RTT feedback delay
does not increase with queue length, the algorithm would
eventually reach a stable state.

2023 14th International Conference on Network of the Future (NoF)

21
Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:22:14 UTC from IEEE Xplore.  Restrictions apply. 



III. DESIGN AND IMPLEMENTATION

This section proposes SQCC, an RTT based congestion
control algorithm that can maintain stable congestion queue
length fluctuations within a certain range. The main steps
are shown in the Algorithm 3. SQCC has made two main
improvements to address the issues in the patched TIMELY.
First, we redesigned the speed reduction indicator function
error, so that when a large number of flows are incast, the
sender can respond quickly to speed reduction, as shown in
line 18 of the Algorithm 3. Second, we designed automation
parameters low and δ that vary with the number of cast flows
N , significantly improving the oscillation range of the queue
during stability, as shown in line 5 of the algorithm 3. At the
same time, adjusting the δ parameter also reduces the length of
the congestion queue when the algorithm is stable to a certain
extent.

Algorithm 3 SQCC

1: newRTTDiff = newRTT − prevRTT
2: prevRTT = newRTT
3: rttDiff = (1− α) · rttDiff + α · newRTTDiff
4: rttGradient = rttDiff

DminRTT

5: Tlow = ⌊lgN⌋ · seg
C , δ = C

N · k
N

6: if newRTT < Tlow then
7: rate = rate+ δ
8: else if newRTT > Thigh then
9: rate = rate · (1− β · (1− Thigh

newRTT ))
10: else
11: if rttGradient ≤ −0.25 then
12: weight = 0
13: else if rttGradient ≥ 0.25 then
14: weight = 1
15: else
16: weight = 2 ∗ rttGradient+ 0.5
17: end if
18: error =

Thigh(RTTcur−Tlow)
Tlow(Thigh−RTTcur)

19: rate = δ(1−weight)+ rate · (1−β · error ·weight)
20: end if

SQCC requires information on the current number of incast
flows N for each adjustment. The receiver in SQCC writes
the number of flows received on the current node N into the
ACK each time it sends an ACK, and provides feedback to
the sender. When the sender receives an ACK, they extract the
N value, calculate new low and δ values, and then compare
the current measured RTT value with the calculated low value
to determine whether to accelerate or decelerate and use the
new δ parameter and error function accordingly. In practical
environments, N can be estimated by the sender based on
the current transmission rate, combined with the queue length
reflected by the current measured RTT.

A. Design and Analysis of Speed Reduction Index Function

According to the analysis of the flow model, we found that
the queue length at a stable state increases proportionally with

the increase of the number of incoming flows N . Observing
Equation (1), the queue length only appears as a variable in
the deceleration indicator function error. Obviously, the queue
length during stability is directly related to the setting of the
error function. This suggests that if we want to control the
queue length, we need to redesign the error function. The
settings of the error function in the Patched TIMELY are as
follows:

error =
newRTT −RTTref

RTTref
, newRTT ∈ [Tlow, Thigh]

(9)
As the number of competing flows increases, the number

of segments that simultaneously arrive on the switch queue
at a certain time also increases, and the queue length and
RTT generated by collisions also increase. The error function
also increases proportionally with the measured RTT, and the
rate of each flow correspondingly decreases even more. When
RTT = Thigh, the error function takes the maximum value.
This means that the algorithm has an upper limit on the degree
of rate reduction each time, which makes it difficult to quickly
slow down to reduce queue length when there are many flows.
If the error function can tend towards infinity, the rate drops
quickly enough, and the data packets on the congested queue
are emptied quickly enough, the length of the congested queue
can be controlled to fluctuate only within a certain range.

B. Derivation of Error Function

Assuming the current measured RTT value is RTTcur,
the corresponding queue length is qcur, the current rate
of each flow is Rcur. Correspondingly, assuming that af-
ter the algorithm adjustment, the corresponding values are
RTTexp, qexp, Rexp, the propagation delay of the link is D,
and the link capacity is C. Assuming that the packet process-
ing delay on the host side and the packet forwarding delay on
the switch port in the network are both very small, and there
is no packet loss caused by packet verification errors or link
disconnects, the RTT measured each time on the host side and
the current queue length meet the following relationship:{

D + qcur

C = RTTcur before adjustment
D +

qexp

C = RTTexp after adjustment
(10)

By subtracting the two equations in Equation (10), it can
be obtained that

∆q = qcur − qexp = C(RTTcur −RTTexp) (11)

Because the length of the congested queue within each
round of RTT is the portion of the data sent by all flows that
exceeds the link capacity, the change in length of the congested
queue between each round of RTT (∆q) approximately follows
the following relationship:

∆q =
∑
i

Rcur∗RTTcur−
∑
i

Rexp∗RTTexp−C(RTTcur−RTTexp)

(12)

2023 14th International Conference on Network of the Future (NoF)

22
Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:22:14 UTC from IEEE Xplore.  Restrictions apply. 



The effective part of algorithm speed reduction is Rexp =
Rcur(1 − error), substitute this into Equation (12), and
subtract equations (11) and (12) to obtain

2C(RTTcur −RTTexp) =
∑
i

Rcur(RTTcur −RTTexp) (13)

+
∑
i

Rcur · error ·RTTexp∑
i

Rcur · error ·RTTexp = (RTTcur −RTTexp)(2C −
∑
i

Rcur)

error =
RTTcur −RTTexp

RTTexp

(
2

C∑
i Rcur

− 1

)
When the rate of each flow oscillates near the stable point

C
N , 2 C∑

i Rcur
− 1 ≈ 1, the final error is

error =
RTTcur −RTTexp

RTTexp
(14)

In Equation (14), if the algorithm adjusts the expected RTT
after each round of measurement to RTTexp = RTTref , then
Equation (14) is a error function repaired in time. According
to the analysis in the previous section, when the error function
works, there must be RTTcur ∈ [Tlow, Thigh] and timely
repair is equivalent to setting a fixed RTTexp to get the error
function with a fixed value range. If the RTT to be measured
increases within the above range, the error function does not
take the value within the limited range of the maximum value,
but can tend to infinity, as shown in the following relationship:

RTTcur → Tlow error → 0 ⇒ RTTexp → Tlow

RTTcur → Thigh error → ∞ ⇒ RTTexp → 0

So, when the congestion queue is very long, the algorithm
can obtain a larger deceleration ratio through the error func-
tion, which can quickly reduce the rate to empty the queue.
Perform a simple linear fitting for RTTexp and RTTcur to
obtain the following relationship (15).

RTTexp =
Tlow(Thigh −RTTcur)

Thigh − Tlow
(15)

Put Equation (15) into Equation (14), and we get

error =
Thigh(RTTcur − Tlow)

Tlow(Thigh −RTTcur)
(16)

Equation (16) is the final error function, and it meets

RTTcur ∈ [Tlow, Thigh] error ∈ [0,+∞]

C. Proof of Effectiveness of Error Function

By substituting Equation (16) into the flow model of the
patched TIMELY, the equation for rate adjustment within the
range of Tlow and Thigh changes. The remaining parts of the
algorithm remain unchanged. By setting this equation to zero,
we can determine the stable length of the congested queue.

dRi

dt
=

(1− wi)δ

τ∗ − wiβRi(t)

τ∗
qhigh(q(t− τ ′)− qlow)

qlow(qhigh − q(t− τ ′))
= 0

q∗ =
δNqlowqhigh + βCqlowqhigh

δNqlow + βCqhigh
(17)

= qhigh − βCqhigh(qhigh − qlow)

δNqlow + βCqhigh
(18)

lim
N→0

q∗ = qhigh − (qhigh − qlow) = qlow lim
N→∞

q∗ = qhigh

As the number of incoming flows increases, we can de-
termine the theoretical range of the stable congestion queue
length by taking the limit of Equation (18), which is q∗ ∈
(qlow, qhigh). This means that as the number of cast flows
increases, the theoretically stable congestion queue length also
increases, but it should not exceed the threshold of Thigh.

q∗patched − q∗new =
q2lowδN(δN + βC)

βC(δNqlow + βCqhigh)
= O(N)

The new error function consistently reduces the congestion
queue length compared to the patched TIMELY. As the number
of incoming flows increases, this difference widens, effectively
controlling queue length. The modified error function ensures
algorithm effectiveness by rapidly reducing the sender’s rate
when the RTT is large, and preventing the error value from
becoming infinitely large as the queue empties.

D. Analysis of Queue Oscillation Range during Stability

By modifying the error function, the algorithm theoreti-
cally has the ability to control the queue length during stability
between (qlow, qhigh) and gradually approach qhigh as the
number of incast flows increases. However, in practice, as the
number of flows increases, the queue length during stability
does not remain fixed at q∗ but oscillates around q∗, and the
oscillation becomes larger with more flows. There are two
main reasons for this:

First, as the number of incast flows N increases, during sta-
bility RTT → Thigh and q∗ → qhigh. The feedback delay of
RTT at the sender is still significant due to the long congestion
queue length. By the time the algorithm adjusts, congestion has
already occurred for a certain period of time, during which
the rate remains unchanged. Moreover, for multiple different
senders, such delays can cause different flows to adjust their
rates at different times, leading to oscillations in the rates of
each flow and causing congestion queue oscillation.

Second, observing Equation (1), if the error function is
directly substituted, we can obtain the value of the error
function during stability.

dRi

dt
=

(1− wi)δ

τ∗
− wiβRi(t)

τ∗
error(RTTt) = 0 (19)

Equation (19) indicates that as the number of incast flows
N increases, the value of the error function during stability
should increase proportionally with N . This also explains why
the patched TIMELY cannot tolerate a large number of incast
flows. A very large error value will cause a sharp decrease
in the rate of each flow. Although each flow receives a very

2023 14th International Conference on Network of the Future (NoF)

23
Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:22:14 UTC from IEEE Xplore.  Restrictions apply. 



small bandwidth during heavy incast, the collective effect on
the congestion queue will also cause a sharp decrease in queue
length and RTT. This rapid reduction in error values combined
with the subsequent acceleration phase of the algorithm, where
many flows simultaneously accelerate by a fixed value δ, leads
to multiple flow packets arriving at the queue simultaneously,
causing congestion once again. This repetitive process results
in oscillation of the queue length.

Based on the analysis above, the value of the error function
during stability increases proportionally with N at a rate of
δ

βC . This results in a large error value, causing the queue
length to oscillate within a wide range. It is evident that
reducing the value of the error function is necessary to
decrease the oscillation range of the queue during stability.
It is important to note that lowering the error value in this
context is different from increasing the error value discussed
in the previous section. As RTT increases, the error function
should increase more rapidly to decrease the rate.

Adjustment of Rate Increment. To adjust the rate incre-
ment δ, we need to consider the following trade-off: if δ
is too small, the rate will decrease gradually, resulting in a
long period of empty queues and low link utilization; if δ
is too large, especially when the number of incast flows N
is large and each flow receives a bandwidth of C

N (where C
is the link capacity), the rate increment will exceed the rate
before adjustment, causing rate oscillation and instability. For
simplicity, we focus on a single oscillation near the stability
point.

Let N be the number of incast flows, and each flow receives
a stable bandwidth of C

N . The time interval for rate adjustment
is denoted as τ . Assuming there are no packet losses due
to link errors or other factors, a single rate change near the
stability point should satisfy the following relationship:

N

((
C

N
+ δ

)
τ +

(
C

N
+ δ

)
(1− β · error)τ

)
−C·2τ ≥ C·Tlow

(20)

In this equation, (CN + δ) represents the maximum rate
during one queue oscillation, while (CN+δ)(1−β·error) repre-
sents the rate after rate reduction based on RTT measurement.
The weight function in patched TIMELY is not considered
here for simplicity. Each flow maintains its original rate for
the duration of the rate update interval τ before rate adjustment
occurs.

The left side of Equation (20) represents the remaining
queue length after one oscillation when the rates of N flows are
accelerated and decelerated. It should not be smaller than the
queue length corresponding to the Tlow parameter to prevent
excessive oscillations and empty queues. The Tlow parameter
is determined by the segment size, τ , and the relationship
between τ and error during algorithm stability is given by:

error =
δN

βC
, τ = max

(
seg

R∗ =
seg

C/N
,minRTT

)
, low =

seg

C

By substituting these equations into Equation (20) and
simplifying, we can obtain a quadratic inequality in terms of
δ. Solving this inequality will yield a relationship for δ.

N3δ2 −N2Cδ + C2 ≤ 0

C

2N
·
N −

√
N(N − 4)

N
≤ δ ≤ C

2N
·
N +

√
N(N − 4)

N
(21)

Furthermore, when N is large,
√
N(N − 4) ≈ N − 2.

Substituting this approximation into Equation (21), we get:

C

N
· 1

N
≤ δ ≤ C

N
· N − 1

N
≈ C

N
(22)

To prevent excessive rate acceleration and oscillations, it is
generally recommended to set δ smaller than the per-flow fair
share bandwidth C

N . Referring to Equation (18), a smaller δ
corresponds to a smaller queue length in the stable state. As
a result, a suitable choice for δ is δ = C

N · 1
N .

Control of the Acceleration Phase. To achieve a relatively
stable state in the algorithm, simply adjusting the δ parameter
is insufficient, especially when dealing with a large number of
incast flows. In such cases, modifying Tlow becomes necessary
to differentiate between the need for a long queue length in the
stable state and the rapid increase caused by a high number
of flows.

Increasing Tlow offers several benefits. It reduces fluctua-
tions in the sending rate by generating smaller error values for
larger N . It helps the algorithm reach a relatively stable state
by allowing the sending rate to decrease to its minimum value
and providing sufficient time for acceleration accumulation.
Moreover, a single Tlow parameter can accommodate various
numbers of flows, ensuring stability in dynamic environments
to some extent.

If we conduct simulation and fitting, we can find that setting

low =
seg

C
· ⌊lgN⌋ (23)

In order to meet the requirements, we can adjust the
value of δ. As N increases, the queue can tolerate more
segment collisions that lead to congestion. However, since the
derivation of the δ parameter involves the Tlow parameter, the δ
parameter needs to change accordingly as Tlow changes. Let’s
assume that as N changes, Tlow = k · segC (where k = 1, 2, 3).
Substituting this into Equation (20) and simplifying, we can
obtain a quadratic inequality in terms of δ. Solving this
inequality gives us:

N3δ2 −N2Cδ + C2k ≤ 0

C

2N
·
N −

√
N(N − 4k)

N
≤ δ ≤ C

2N
·
N +

√
N(N − 4k)

N
(24)

2023 14th International Conference on Network of the Future (NoF)

24
Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:22:14 UTC from IEEE Xplore.  Restrictions apply. 



(a) 2:1 incast (b) 40:1 incast

(c) 60:1 incast (d) Queue Length

Fig. 1: Comparison of the effect of modifying the error
function

Furthermore, when N is large, the value of k tends to be small,
and we can approximate

√
N(N − 4k) as N−2k. Substituting

this approximation into Equation (24), we obtain:

C

N
· k

N
≤ δ ≤ C

N
· N − k

N
≈ C

N

Similarly, the final expressions for Tlow and the correspond-
ing δ are given by:

k = ⌊lgN⌋ Tlow = k · seg
C

δ =
C

N
· k

N
(25)

IV. EVALUATION

We compared the performance of the patched TIMELY and
SQCC in the NS3 simulation environment to evaluate the
improvement of SQCC. Other RTT-based schemes like Swift
[19] is tightly coupled with the protocol stack. The dumbbell
network topology was used with 10 Gbps link capacities and 1
us propagation delay per link. Other relevant parameters were
consistent with the patched TIMELY, where α, β and Thigh

is set to 0.875, 0.008 and 500µs, respectively. The initialized
value of Tlow and δ is 50µs and 10M , respectively. Metrics
examined were the average congestion queue length and queue
oscillation range during stability. These comparisons assessed
the effectiveness of SQCC in achieving stable and efficient
congestion control.

A. Comparison of Error Functions

Figure 1 compares the variation of queue length over time
for 2/40/60:1 incast scenarios using the patched TIMELY and
SQCC with only the new error function without any other
optimizations. The blue lines or bars represent the patched
TIMELY, while the orange lines represent SQCC. It can be
observed that as the number of incast flows N increases,
SQCC consistently maintains lower queue lengths compared
to the patched TIMELY. As shown in Figure 1d, the average

(a) 40:1 incast (b) 60:1 incast

(c) Average queue length at steady state

Fig. 2: Dynamically adjust the effect comparison of δ

queue length during stability can be reduced by nearly 80%,
achieved when N = 60. Additionally, the queue oscillation
range during stability is also lower for SQCC compared to the
patched TIMELY. Figure 1c illustrates that when the number
of incast flows is 60, the patched TIMELY fails to maintain
a stable queue, resulting in significant oscillations around the
Thigh = 500us threshold. The key factor contributing to these
improvements is the new error function.

B. Comparison of Oscillation Range

Figure 2 compares the queue lengths with and without
adjusting the δ parameter using the redesigned error function.
The blue line/bar represents the queue length with only the
modified error function, while the orange line/bar represents
the effect after incorporating the δ adjustment. For N = 40,
δ = 6.25M , and for N = 60, δ = 2.7M according to (21).

Figures 2a and 2b display the queue length variation over
time for 40:1 and 60:1 incast scenarios. SQCC with adjusted
δ parameter further reduces the queue length and oscillation
range in the stable state. Figure 2c compares the average
queue lengths in the stable state, with vertical lines indicating
the range of queue length oscillation. In the 40/60:1 incast
scenarios, compared to SQCC without modifying δ, SQCC
with adjusted δ reduces average queue length by 21.5% and
42% respectively, and decreases oscillation range by 27% and
57%.

Adjusting the parameter of δ has a greater impact with
a higher number of incast flows. When more flows arrive
simultaneously, SQCC’s error function engages more flows
in acceleration and deceleration, leading to better results.
By setting (22) to 10M and solving for N , we find that
adjusting the δ function significantly improves performance
when N ≥ 40. However, for smaller N values, SQCC’s error
function already maintains low queue lengths effectively.

2023 14th International Conference on Network of the Future (NoF)

25
Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:22:14 UTC from IEEE Xplore.  Restrictions apply. 



(a) 500:1 incast effect when only
modifying the error function

(b) 500:1 incast parameter opti-
mization effect comparison

Fig. 3: Comparison of dynamic adjustment parameters

TABLE II: 500:1 incast Average queue length at steady state
Scheme Tlow(us) δ(M) Queue

Length(pkt)
Standard De-
viation(pkt)

W/O δ & Tlow 50 10 272.77 122.38
W/O Tlow 50 0.04 53.96 20.55
SQCC 100 0.08 149.3 13.73

C. Comparison of the Effectiveness of the Tlow Parameter

Figure 3 illustrates the effects of various optimizations in
SQCC using the scenario of 500:1 incast. Figure 3a represents
the result of modifying only the error function, corresponding
to the blue line in Figure 3b.

It can be observed that when there are multiple incast flows,
modifying only the error function is not sufficient to effec-
tively reduce the queue length. The congestion queue length
oscillates between 0 and 400 packets, leading to frequent
empty queues and low link utilization. Additionally, modifying
only the error function does not reduce the convergence time
of the algorithm since the value of δ = 10M is relatively
large, requiring multiple RTTs before the rate decreases.

In Figure 3b, the orange line represents the queue behavior
after adjusting δ = 0.04M in addition to modifying the error
function. However, although the algorithm maintains a low
queue length, the link utilization is not high, and the queue
frequently becomes empty. The yellow line, on the other hand,
represents the queue behavior after adjusting Tlow = 100us
and δ = 0.08M based on modifying the error function. This
combined adjustment of Tlow and δ ensures a stable state with
a low queue length and reduced oscillation compared to the
previous optimizations.

Table II summarizes the average queue length and standard
deviation during the stable state for the three optimization
methods. It shows that adjusting Tlow and δ leads to a stable
and minimally oscillating queue.

D. Large Scale Incast Experiment

Figure 4 shows the variation of queue length over time for
large flow incasts with different ratios (60/100/500/1000:1).
SQCC is applied with the error function defined in Equation
(16) and the values of Tlow and δ set according to Equation
(25). It reveals that regardless of the value of N , the queue
length during the stable phase remains within the range of 100-
200 packets and exhibits only small oscillations within a range
of 1-25 packets. For N is less than 1000, SQCC achieves a

(a) 60:1 incast (b) 100:1 incast

(c) 500:1 incast (d) 1000:1 incast

Fig. 4: Queue length changes in a large number of flow incast
environments

balance between queue length and link utilization by adjusting
Tlow and δ.

V. RELATED WORK

Traditional TCP congestion control algorithms are not well-
suited for data centers due to their reliance on packet loss
and slow convergence. New congestion control algorithms
have been proposed, categorized into special switch-based,
receiver-based, and sender-side feedback approaches. Special
switch-based algorithms like pFabric [28], PDQ [29], and
D3 [30] prioritize traffic for rate allocation but require costly
customizations and lack scalability. Floodgate [31] and BFC
[32] design a switch-based per-hop per-flow flow control to
absorb incasts, revising much logic of switches. HPCC [33]
leverages INT to measure the precise link load, requiring the
middle node of network (switches, routers, etc.) to support the
INT technology.

ECN-based algorithms use explicit congestion notification
markings to control congestion, such as DCTCP [15] and
D2TCP [16]. However, ECN-based approaches face challenges
in parameter tuning, consistency, and scalability [34], [35].
RTT-based algorithms like TIMELY, Patched TIMELY, and
Swift [19] use RTT information to detect congestion. Swift
relies on a custom network protocol stack to achieve fine-
grained control over packet transmission and reception, en-
abling precise RTT measurements and dynamic adjustment
of the RTT threshold to reduce queue length. However, this
approach is often challenging to deploy on a large scale in
different network environments [20]. Patched TIMELY and
Swift improve stability and achieve low queue lengths, but
Swift is tightly coupled with the protocol stack, making
deployment difficult. Inaccurate RTT measurements impact
Swift’s performance. PowerTCP [21] utilizes both ECN and
delay to detect congestion.

2023 14th International Conference on Network of the Future (NoF)

26
Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:22:14 UTC from IEEE Xplore.  Restrictions apply. 



VI. CONCLUSION

In response to the issue of unstable queue length and
limited congestion control capability of the patched TIMELY
in the scenario of large-scale traffic incast, we have designed
a new error function and adjusted the parameters Tlow

and δ, proposing SQCC. Extensive and in-depth simulation
experiments conducted on the analysis of the patched TIMELY
and the implementation of SQCC have demonstrated that the
congestion queue length remains stable within the range of
[qlow, qhigh]. Additionally, when the number of flows N is less
than 1000, we are able to maintain the queue length within
a very narrow range, resulting in minimal oscillation in the
stable state.

VII. ACKNOWLEDGEMENT

We gratefully appreciate the feedback from anonymous
reviewers. This work was partially supported by National Nat-
ural Science Foundation of China under Grant Nos. 62172204.
Collaborative Innovation Center of Novel Software Technol-
ogy and Industrialization.

REFERENCES

[1] V. Mauch, M. Kunze, and M. Hillenbrand, “High performance cloud
computing,” Future Generation Computer Systems, vol. 29, no. 6, pp.
1408–1416, 2013.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI), 2016.

[3] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” Statistics, 2015.

[4] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[5] C. Galakatos and T. K. E. Zamanian, “The End of Slow Networks: It’s
Time for a Redesign,” Proceedings of the VLDB Endowment, vol. 9,
no. 7, 2016.

[6] A. Dragojević, D. Narayanan et al., “FaRM: Fast Remote Memory,” in
Proceedings of USENIX NSDI, 2014.

[7] C. Mitchell, Y. Geng, and J. Li, “Using One-Sided RDMA Reads
to Build a Fast, CPU-Efficient Key-Value Store,” in Proceedings of
USENIX ATC, 2013.

[8] Y. Taleb, R. Stutsman et al., “Tailwind: Fast and Atomic RDMA-Based
Replication,” in Proceedings of Annual Technical Conference (ATC),
USA, 2018.

[9] M. Wu, F. Yang, J. Xue et al., “Gram: Scaling graph computation to
the trillions,” in Proceedings of the Sixth ACM Symposium on Cloud
Computing, 2015.

[10] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, 2008.

[11] R. Miao, L. Zhu, S. Ma, K. Qian, S. Zhuang, B. Li, S. Cheng, J. Gao,
Y. Zhuang, P. Zhang et al., “From luna to solar: the evolutions of
the compute-to-storage networks in alibaba cloud,” in Proceedings of
SIGCOMM, 2022.

[12] N. Dukkipati, “Rate control protocol (RCP): congestion control to make
flows complete quickly,” 2008.

[13] ——, “RCP: Congestion control to make flows complete quickly,” Ph.D.
dissertation, Department of Electrical Engineering, Stanford University,
2006.

[14] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proceedings of the conference
on Applications, technologies, architectures, and protocols for computer
communications, 2002.

[15] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (DCTCP),” in
Proceedings of SIGCOMM. ACM, 2010.

[16] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacen-
ter tcp (d2tcp),” ACM SIGCOMM Computer Communication Review,
vol. 42, no. 4, pp. 115–126, 2012.

[17] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-
based Congestion Control for the Datacenter,” in Proceedings of the
ACM Conference on Special Interest Group on Data Communication
(SIGCOMM). ACM, 2015.

[18] Y. Zhu, H. Eran, D. Firestone et al., “Congestion control for large-
scale RDMA deployments,” ACM SIGCOMM Computer Communication
Review, 2015.

[19] G. Kumar, N. Dukkipati et al., “Swift: Delay is Simple and Effective
for Congestion Control in the Datacenter,” in Proceedings of ACM SIG-
COMM. New York, NY, USA: Association for Computing Machinery,
2020.

[20] J. Tang, T. Xu, C. Nguyen, X. Wang, S. Lu, and B. Ye, “Tuning
Target Delay for RTT-based Congestion Control,” in 30th International
Conference on Network Protocols (ICNP). IEEE, 2022.

[21] V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing the
performance limits of datacenter networks,” in 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2022.

[22] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized” zero-queue” datacenter network,” in Proceedings of
the 2014 ACM conference on SIGCOMM, 2014, pp. 307–318.

[23] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “ECN or Delay: Lessons
Learnt from Analysis of DCQCN and TIMELY,” in Proceedings of the
12th International on Conference on emerging Networking EXperiments
and Technologies (CoNEXT), 2016.

[24] J. Gettys, “Bufferbloat: Dark buffers in the internet,” IEEE Internet
Computing, vol. 15, no. 3, pp. 96–96, 2011.

[25] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM demonstra-
tion, vol. 14, no. 14, p. 527, 2008.

[26] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
stability, convergence, and fairness,” ACM SIGMETRICS Performance
Evaluation Review, vol. 39, no. 1, pp. 73–84, 2011.

[27] F. Golnaraghi and B. C. Kuo, Automatic control systems. McGraw-Hill
Education, 2017.

[28] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp.
435–446, 2013.

[29] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 127–138, 2012.

[30] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 50–61, 2011.

[31] K. Liu, C. Tian, Q. Wang, H. Zheng, P. Yu, W. Sun, Y. Xu, K. Meng,
L. Han, J. Fu et al., “Floodgate: Taming incast in datacenter networks,”
in Proceedings of the 17th International Conference on emerging
Networking Experiments and Technologies, 2021, pp. 30–44.

[32] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh, and T. E.
Anderson, “Backpressure flow control,” in 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Renton, WA,
Apr. 2022.

[33] Y. Li, R. Miao, H. H. Liu et al., “HPCC: High Precision Congestion
Control,” in Proceedings of SIGCOMM. New York, NY, USA: ACM,
2019.

[34] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” in Proceedings of SIGCOMM. ACM, 2015.

[35] S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “ACC: Auto-
matic ECN tuning for high-speed datacenter networks,” in Proceedings
of ACM SIGCOMM, 2021.

2023 14th International Conference on Network of the Future (NoF)

27
Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:22:14 UTC from IEEE Xplore.  Restrictions apply. 


