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Abstract—Weighted congestion control aims to provide end-to-
end differentiated bandwidth allocation. MulTCP and EWTCP
are two closely related schemes for this purpose and they both
want to achieve weighted proportionality through modifying
AIMD behaviors. In this paper, we revisit the performance of
MulTCP and EWTCP in terms of weighted proportionality.
Through testbed experiments, we reveal a lot of counter-intuitive
phenomena for achieving weighted proportionality — the switch
buffer size, propagation delay and ACK options have a dominant
impact on the weighted proportionality. Specifically, we develop
WCC, a fundamental weighted AIMD-based congestion control
building block, which can be implemented via individually mod-
ifying AI (WCC-AI) or MD (WCC-MD) behavior. We analyze
WCC using extended fluid models, NS3 simulations and Linux
kernel implementations with droptail and RED queues, and
point out the determinant of performance. Finally, we clarify
the influences of dynamic network characteristics on weighted
proportionality with sufficient experimental results and summa-
rize a basic law of how to implement weighted AIMD-based
congestion control.

I. INTRODUCTION

AIMD is a dominant congestion control principle in TCP,

which combines the basic functionality of linear growth and

exponential reduction, i.e., AIMD uses additive increase to

probe the usable bandwidth once receiving a ACK and multi-

plicative decrease to throttle the bandwidth consumption upon

detecting congestion. The TCP family, such as Tahoe [19],

Reno [20], Vegas [6], NewReno [16], uses AIMD principle

to adjust the window size (e.g. sending rate), where the

additive increase (multiplicative decrease) parameter of each

flow is the same. Accordingly, each flow can react to potential

network congestion signals — packet drops [14], [20] or RTT

variants [6] or both [12], [49] — and adopt its flow to dynamic

network characteristics. The AIMD’s nature guarantees that

each flow can be provably convergent to fairness [15], i.e.,
each flow would obtain the equal bandwidth if they shared a

single bottleneck link and had equal RTT.

However, the connection-level fairness may not always be

desired in practice. First, end-to-end video transport requires

QoE fairness [24], [35] as the connection-level fairness is

blind to user experience. The transport protocol needs to be

able to achieve weighted fairness, i.e., the allocated bandwidth

for each video client should be proportional to a dynamic

weight computed by a algorithm that can optimize the overall

utility of the video system without changes to the network.

Second, under the payment model in data centers [50], the

bandwidth should be proportionally divided among the tenants

according to their payments [40], i.e., the tenant would receive

correspondingly higher bandwidth if it paid more money.

Third, multipath TCP allows a single data stream to be split as

multiple subflows. The allocated bandwidth of each subflow

needs to be proportional to a given weight so that the entire

data stream’s fairness is guaranteed [46], [48].
Existing work supporting differentiated bandwidth alloca-

tion in the network level can be implemented in the switch

such as WFQ [10], [39] and Diffserv [36]. Recently, NUM-

Fabric [34] and Faircloud [40] both rely on WFQ in the

programmable switches [13], [44] to enforce weighted fair-

ness, i.e., imposing different dequeue rates or packet drop-

ping mechanisms via different queueing schedule policies.

The increasingly enhanced functionality in the switch can

aid to achieve weighted fairness, but this actually enforces

additional constraints on the network. As the end hosts have

to respond to the network feedback in time, purely end-to-

end rate adjustment mechanisms still play a fundamental role

in achieving weighted congestion control. From an end-to-

end perspective, we ask a fundamental question whether we

can modify AIMD’s behavior such that a TCP flow with

weight ai can roughly receive ai times the throughput of a

TCP flow with unit weight ? MulTCP [9] and EWTCP [17]

modify AIMD’s behavior to achieve differentiated bandwidth

allocation in the end host. Based on the TCP throughput

model’s analysis [38], [42], MulTCP modifies the increase and

decrease parameter to ai and 1
2·ai , respectively, and EWTCP

only modifies the increase parameter to a2i . However, they

both fail to take dynamic queuing delay into account and

we will reveal that MulTCP and EWTCP can only work

well in the presence of shallow-buffered switches (Sec. II),

i.e., the case that the window size fluctuation for different

flows is desynchronized. On the contrary, the deep-buffered

switches can lead to the synchronized window size fluctuation

and thus the performance of MulTCP and EWTCP is far

away from the perfect weighted proportionality at this point

(Sec. II). This synchronized case is beyond their models’

analysis. Essentially, they both ignore the significant impact

from dynamic network characteristics — switch buffer size,

propagation delay, the ACK options.
In this paper, we develop WCC, a fundamental weighted

AIMD-based congestion control building block, which can

be implemented via individually modifying AI (WCC-AI) or

MD (WCC-MD) behavior. Accordingly, we derive an extend-

ed fluid model that takes the dynamic queueing delay into

account. Furthermore, we use Poincaré map technique [26] to

analyze the steady state behavior of WCC and conclude that
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(a) The AIMD variations that two
MulTCP flows with weight a1 and
a2 share a single bottleneck link of
capacity one.
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(b) The AIMD variations that two
EWTCP flows with weight a1 and
a2 share a single bottleneck link of
capacity one.
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(c) The AIMD variations that two
WCC flows (modify AI phase) with
weight a1 and a2 share a single
bottleneck link of capacity one.
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(d) The AIMD variations of two
WCC flows (modify MD phase) with
weight a1 and a2 share a single
bottleneck link of capacity one.

Fig. 1: The two-source AIMD variations comparison using the technique of Chiu and Jain [8]. Each axis corresponds to the

window size of each source that is normalized to a number between 0 and 1 for convenience. If the point colored red lies in

the blue solid line, this represents that one unit capacity is fully utilized, i.e., the sum of the obtained bandwidth for two flows

is equal to one. If the point colored red lies in the blue dashed line, this indicates that the obtained bandwidth ratio for two

flows is a1 : a2. The intersection of the blue solid line and dashed line is the optimal point to achieve efficiency and weighted

proportionality.

the corresponding fluid models have a fixed point or a periodic

solution. Specifically, for n WCC-AI flows with weight a1, a2,

· · · , an, their throughput ratio is
√
a1 :

√
a2 : · · · : √an when

the buffer size approaches to
√
2a1+

√
2a2+ · · ·+√

2an. As

the buffer size becomes large enough, the throughput ratio

gradually becomes a1 : a2 : · · · : an. For n WCC-MD

flows with weight a1, a2, · · · , an, their throughput ratio is√
a1 :

√
a2 : · · · : √an when the buffer size approaches to√

2a1+
√
2a2+ · · ·+√

2an. As the buffer size becomes large

enough, the throughput ratio becomes 1 : 1 : · · · : 1. The

throughput is in general proportional to the weight for WCC-

AI and WCC-MD flows.

Our concern in this paper aims to promote the under-

standing of weighted congestion control. We conduct ex-

tensive experiments in NS3 simulations and Linux kernel

implementations to justify our theoretical analysis results. We

found that the shallow/deep buffer size, more/less numbers of

flows and smaller/larger propagation delay can lead to desyn-

chronized/synchronized window size fluctuation, which is an

essential reason to affect weighted proportionality. Finally,

we conduct extensive experiments to quantify the weighted

proportionality in terms of different buffer sizes, propagation

delay, the ACK options and the total number of flows.

II. PRIOR WORK ON WEIGHTED CONGESTION CONTROL

Under weighted fairness model, when two AIMD-based

TCP flows with weight a1 and a2 share a single bottleneck

link of capacity C, the expected bandwidth for them should

be a1
a1+a2

C and a2
a1+a2

C, respectively, i.e., their received

bandwidth should be proportional to their weights in the steady

state. Weighted congestion control is more general since the

default AIMD-based TCP can be viewed as a special case

that its weight equals one. In this section, we first review two

representative previous works, MulTCP [9] and EWTCP [17].

We show their vulnerabilities through experimentations and

point out the limitations of their theoretical basis.

MulTCP: MulTCP modifies both AI and MD phase

to achieve weighted congestion control. The increase and

decrease parameter is ai and 1
2·ai , respectively, where ai is the

corresponding weight. MulTCP-sender’s behavior with weight

ai can be summarized as follows.

• Additive Increase: cwnd← cwnd+ ai
cwnd

For each ACK, the congestion window cwnd increases

by ai
cwnd .

• Multiplicative Decrease: cwnd←
(
1− 1

2·ai

)
· cwnd

For each loss, the window size is decreased by 1
2·ai ·cwnd

when the window size cwnd is larger than the slow start

threshold ssthresh.

Now we explain the basic idea of MulTCP. Each TCP flow

would obtain 1
n bandwidth when n AIMD-based TCP flows

competed on a single bottleneck link. Hence, a flow that

imitates behaviors of ai flows can obtain ai
n bandwidth of the

single bottleneck link capacity. Based on the above intuition,

MulTCP is designed to make a TCP flow with weight ai
behave as if it is a collection of ai TCP flows. However, the

design doesn’t align with the intuition using the technique of

Chiu and Jain [8] as shown in Fig. 1(a), where the trend of the

sample path from two MulTCP flows is far away from the opti-

mal weighted proportionality. This demonstrates that MulTCP

cannot work well for the highly synchronized window size

fluctuations. Furthermore, MulTCP’s design derives from the

sawtooth model [42] that cannot take dynamic queuing delays

into account. We will reveal that MulTCP can only work well

in the presence of shallow-buffered switches.

EWTCP: EWTCP only modifies AI phase to achieve

weighted congestion control. The increase parameter is a2i ,

where ai is the corresponding weight. EWTCP-sender’s be-

havior with weight ai can be summarized as follows.

• Additive Increase: cwnd← cwnd+
a2i
cwnd

For each ACK, the congestion window cwnd increases

by
a2i
cwnd .
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(a) The throughput trace of MulTCP
with 2MBytes DropTail queues.
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(b) The summary data of MulTCP
with 2MBytes DropTail queues.
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(c) The throughput variations of two
MulTCP flows with the change of
buffer size.
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(d) The throughput ratio variations of
two MulTCP flows with the change of
buffer size.
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(e) The throughput trace of EWTCP
with 2MBytes DropTail queues.
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(f) The summary data of EWTCP
with 2MBytes DropTail queues.
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(g) The throughput variations of two
EWTCP flows with the change of
buffer size.
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(h) The throughput ratio variations of
two EWTCP flows with the change of
buffer size.

Fig. 2: Weighted Proportionality of two MulTCP and EWTCP flows with weight 1 and 2 in our testbed, which consists of

one Mellanox SN2700 switch associated with two hosts as the sources and one host as the destination. The link capacity is

10 Gbps.

• Multiplicative Decrease: cwnd← cwnd
2

For each loss, the window size is cut down by half.

EWTCP is also called WAIMD [17], where a2i in the AI

phase is derived from a classic theoretical model that can be

used to estimate TCP throughput [38]. However, this model

cannot take dynamic queuing delays into account and uses

a static estimated average RTT instead. We will reveal that

EWTCP can only work well in the presence of shallow-

buffered switches.

Discussions: Fig. 2 illustrates our testbed experiments under

different buffer sizes. Fig. 2(a) and Fig. 2(e) show the weighted

proportionality in the presence of the deep-buffered switches,

where the buffer size is 2 MBytes. We can observe that the

average throughput for two MulTCP flows with weight 1 and 2

is 1.83 Gbps and 7.58 Gbps, respectively, where the throughput

ratio is around 1:4 and is far away from the optimal point 1:2

as shown in Fig. 2(b). Similarly, the average throughput for

two EWTCP flows with weight 1 and 2 is 1.91 Gbps and

7.51 Gbps as shown in Fig. 2(f), which also has an obvious

deviation from the optimal weighted proportionality.

What’s more, after we take numerous tests for MulTCP

and EWTCP, we find that the switch buffer size greatly

have an impact on the throughput ratio of MulTCP and

EWTCP flows. For example, Fig. 2(c) and Fig. 2(g) reveal

the throughput variations of MulTCP and EWTCP flows with

different configurations of switch buffer size. Specifically, the

throughput for two MulTCP flows is 2.46 Gbps and 4.58

Gbps when the buffer size equals 10 KB, while the throughput

becomes 2.38 Gbps and 7.13 Gbps when the buffer size equals

100 KB. The throughput for two EWTCP flows is 2.55 Gbps

and 5.38 Gbps when the buffer size equals 10 KB, while

the throughput becomes 2.42 Gbps and 6.96 Gbps when the

buffer size equals 100 KB. Fig. 2(d) and Fig. 2(h) show the

normalized results, where MulTCP and EWTCP approach the

target ratio only when the buffer size is less than 10 KB. This

demonstrates that the weighted proportionality of MulTCP

and EWTCP is perfect in the presence of shallow-buffered

switches. In general, MulTCP and EWTCP are far from the

optimal weighted proportionality. We will show and discuss

more about this in the following sections.

III. WEIGHTED AIMD-BASED CONGESTION CONTROL

In this section, we present WCC, a weighted AIMD-based

congestion control building block, which can be implemented

via individually modifying AI or MD phase.

A. WCC Intuition and Design
Our intuition comes from the technique of Chiu and Jain [8],

where two WCC flows with weight 1 and 2 compete with

each other and adjust their window sizes according to the

augmented AIMD principle, leading to a sample path shown

in Fig. 1(c) and Fig. 1(d). Specifically, Fig. 1(c) shows the

throughput fluctuation for two WCC flows when we modify

AI phase, while Fig. 1(d) shows that when we modify MD

phase. We can observe that they both fluctuate around the

optimal weighted proportionality point (i.e., the intersection

between the blue solid line and the blue dashed line) once get

converged. Hence, we summary this intuition as the following

two algorithms: WCC-AI and WCC-MD.
WCC-AI: WCC-AI only modifies AI phase to achieve

weighted congestion control. The increase parameter is ai,
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where ai is the corresponding weight. WCC-AI’s behavior

with weight ai can be summarized as follows.

• Additive Increase: cwnd→ cwnd+ ai
cwnd

For each ACK, the congestion window cwnd increases

by ai
cwnd .

• Multiplicative Decrease: cwnd→ cwnd
2

For each loss, the window size is cut down by half.

WCC-MD: WCC-MD only modifies MD phase to achieve

weighted congestion control. The decrease parameter is 1
2·ai ,

where ai is the corresponding weight. WCC-MD’s behavior

with weight ai can be summarized as follows.

• Additive Increase: cwnd→ cwnd+ 1
cwnd

For each ACK, the congestion window cwnd increases

by 1
cwnd .

• Multiplicative Decrease: cwnd→ (1− 1
2·ai ) · cwnd

For each loss, the window size is decreased by 1
2·ai ·cwnd.

B. An Extended Fluid Model

Without loss of generality, we consider two long-lived WCC

flows that traverses a single bottleneck link with capacity

C. The weight of these two WCC-sender flows is a1 and

a2, respectively. The extended fluid models for WCC-AI and

WCC-MD under droptail queues are omitted due the space

limitation.

WCC with droptail queues: The fluid model (1) and

(2) capture the dynamics of window size W1(t), W2(t) and

the queue length q(t) for WCC-AI and WCC-MD flows,

respectively. We use the indicator variable p(t) = �{q(t)>K}
to characterize the packet dropping behavior at the switch, i.e.,
the packets will be dropped once the queue length is beyond

K. The RTT can be captured by the equation R(t) = d+ q(t)
C ,

where d is a fixed propagation delay.⎧⎪⎪⎨⎪⎪⎩
dW1

dt = a1
R(t) − W1(t)W1(t−R∗)

2R(t−R∗) p(t−R∗),
dW2

dt = a2
R(t) − W2(t)W2(t−R∗)

2R(t−R∗) p(t−R∗),
dq
dt =

W1(t)+W2(t)
R(t) − C.

(1)

The first two equations in fluid model (1) capture the window

size variations with time t for two WCC-AI flows. They

consist of an additive term ai
R(t) that is proportional to the flow

weight ai and a multiplicative decrease term
Wi(t)Wi(t−R∗)

2R(t−R∗)
when p(t − R∗) equals one, where R∗ = d + K

C . The third

equation in fluid model (1) characterizes the queue length

evolution, which is the difference between the arrival rate
W1(t)+W2(t)

R(t) at t and the departure rate C.⎧⎪⎪⎨⎪⎪⎩
dW1

dt = 1
R(t) − 1

2a1
· W1(t)W1(t−R∗)

R(t−R∗) p(t−R∗),
dW2

dt = 1
R(t) − 1

2a2
· W2(t)W2(t−R∗)

R(t−R∗) p(t−R∗),
dq
dt =

W1(t)+W2(t)
R(t) − C.

(2)

For the fluid model (2), the condition ai >
1
2 (i = 1, 2) must

hold since the decrease parameter is at most one. The first two

equations capture the window size variations with time t for

two WCC-MD flows. And the third equation characterizes the

queue length evolution with time t. The additive increase term

is 1
R(t) , which is a default TCP setting like NewReno [16]. The

multiplicative decrease term is proportional to 1
2a1

.

We rewrite the fluid model (1) and (2) by replacing the

variables R∗ = d + K
C , W̃ (t) = W (R∗t) and q̃(t) =

q(R∗t)−K
CR∗ . Accordingly, p(t) can be rewritten as p̃(t), i.e.,

p̃(t) = �{q̃(t)>0}. w̄ is defined as w̄ = Cd + K. Since the

queue does not underflow, we define the variable ψ = K
Cd

and the fluid models can be rewritten as (3) and (4). Here the

system has five parameters (C, d,K, a1, a2) and the dynamics

can be determined by w̄, a1 and a2.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d˜W1

dt = a1
1+q̃(t) −

˜W1(t)˜W1(t−1)
2(1+q̃(t−1)) p̃(t− 1),

d˜W2

dt = a2
1+q̃(t) −

˜W2(t)˜W2(t−1)
2(1+q̃(t−1)) p̃(t− 1),

dq̃
dt =

⎧⎨⎩
1
w̄

˜W1(t)+˜W2(t)
1+q̃(t) − 1 q̃(t) > −ψ

1+ψ ,

max
(

1
w̄

˜W1(t)+˜W2(t)
1+q̃(t) − 1, 0

)
q̃(t) = −ψ

1+ψ .

(3)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d˜W1

dt = 1
1+q̃(t) − 1

2a1
· ˜W1(t)˜W1(t−1)

1+q̃(t−1) p̃(t− 1),

d˜W2

dt = 1
1+q̃(t) − 1

2a2
· ˜W2(t)˜W2(t−1)

1+q̃(t−1) p̃(t− 1),

dq̃
dt =

⎧⎨⎩
1
w̄

˜W1(t)+˜W2(t)
1+q̃(t) − 1 q̃(t) > −ψ

1+ψ ,

max
(

1
w̄

˜W1(t)+˜W2(t)
1+q̃(t) − 1, 0

)
q̃(t) = −ψ

1+ψ .

(4)

Now we begin to discuss the existence of the possible fixed

point in the fluid model (3) and (4). For fluid model (3), if

this fixed point exists, (W̃1, W̃2, q̃) must satisfy the following

equations.

a1
1 + q̃(t)

− W̃1(t)W̃1(t− 1)

2(1 + q̃(t− 1))
p̃(t− 1) = 0 (5)

a2
1 + q̃(t)

− W̃2(t)W̃2(t− 1)

2(1 + q̃(t− 1))
p̃(t− 1) = 0 (6)

1

w̄

W̃1(t) + W̃2(t)

1 + q̃(t)
− 1 = 0 (7)

The equations (5), (6) and (7) have solution if and only if the

condition w̄ ≤ √
2a1 +

√
2a2 holds. We define ω′ =

√
2a1 +√

2a2 and discuss the solution in cases:

(i) w̄ ≤ ω′: the fluid model (3) has a unique fixed point

(W̃1, W̃2, q̃) = (
√
2a1,

√
2a2,

ω′
w̄ − 1), which means that the

fluid model (1) has a fixed point (
√
2a1,

√
2a2, ω

′−Cd). The

equation w̄ ≤ ω′ implies that K ≤ √
2a1+

√
2a2−Cd, which

indicates to the case when the value of K is smaller, i.e., the

switch buffer size is shallow.

(ii) w̄ > ω′: the fluid model has a periodic solution or

limit cycle, instead of a fixed point. This implies that K >√
2a1 +

√
2a2 − Cd and corresponds to the case when the

value of K becomes larger, i.e., the switch buffer size is deep.

Similar to the discussion in fluid model (3), the fluid

model (4) has similar conclusions.
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Fig. 5: The window size variations for two WCC flows in fluid model (3), where a1 equals to two and a2 equals to one.
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Fig. 6: The window size variations for two WCC flows in fluid model (4), where a1 equals to two and a2 equals to one.

C. Steady State Analysis

We denote x(t) = (W̃1(t), W̃2(t), q̃(t))
T as the phase

diagram in the fluid model (3) and (4). Accordingly,

ẋ(t) = F (x(t), u(t− 1)), u(t) = {cx(t)>0} (8)

where c = [0, 0, 1] and u(t) = p̃(t).
We use Poincaré map to study the stability of limit cycles. We

define the switching plane as S = {x ∈ R
3 : cx = 0} and let

S+ = {x ∈ R
3 : cx > 0} and S− = {x ∈ R

3 : cx < 0}.

The limit cycle passes through the switching plane S twice in

each period, once from S+ and once from S−.

To affiliate the proof of the theorem, we first give the

following notations. Let x∗(t) denote the trajectory of the

limit cycle of the equations (8). Assume that x∗(t) traverses

the switching plane from S+ to S− at time t0 = 0, i.e.,
x∗(0) = x∗, and the period of the limit cycle is T . Let

Z =

(
I − F (x∗, 1)c

cF (x∗, 1)

)
exp

(∫ T

0

JF (x
∗(s), u(s− 1))ds

)

where x∗ traverses the switching plane from S+ to S−at time

t = 0. where I is the identity matrix and JF is the Jacobian

matrix of F with respect to x. The integral of the matrix JF is

term-by-term integration and the exponential function exp(·)
is the matrix exponential. Suppose cF (x∗, 1) �= 0, i.e., x∗(t) is

nontangent with the switching plane S at the traversing points.

Note that Z is 3× 3 matrices.

Lemma 1. There exists ε > 0 such that any trajectory starting
from x = x∗ + Δx ∈ Bε(x

∗) ∩ S will intersect and traverse
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S, and the second traversing point x(T +Δt) satisfies

x (T +Δt)− x∗ = ZΔx+O
(
Δ2
)

Proof. There exists some ε > 0 such that the trajectory starting

from x = x∗ + Δx ∈ Bε(x
∗) ∩ S will traverse S a second

time at T +Δt. Define Δx(t) = x(t)− x∗(t). Then,

Δ̇x(t) = F (x(t), u(t− 1))− F (x∗(t), u(t− 1))

= F (x∗(t) + Δx(t), u(t− 1))− F (x∗(t), u(t− 1))

= JF (x∗(t), u(t− 1))Δx(t) +O
(
Δ2
)

Since Δx(0) = Δx, we get

x(T +ΔT )− x∗(T +ΔT )

= exp

(∫ T

0

JF (x∗(s), u(s− 1)) ds

)
Δx+O

(
Δ2
)

Making a series expansion in ΔT , we get:

x∗(T +ΔT )− x∗ = F (x∗, 1)ΔT +O
(
Δ2
)

Since both x(T +ΔT ) and x∗ are on the switching plane S,

we can derive that cx(T +ΔT ) = cx∗ = 0. Accordingly,

ΔT = −
c exp

(∫ T
0
JF (x∗(s), u(s− 1)) ds

)
Δx

cF (x∗, 1)
+O

(
Δ2
)

Combining the following equation, we conclude the proof.

x (T +ΔT )− x∗ = exp

(∫ T

0

JF (x∗(s), u(s− 1)) ds

)
Δx

+ F (x∗, 1)ΔT +O
(
Δ2
)

Theorem 1. The Poincaré map and its associated limit cycle
is locally asymptotically stable if and only if

ρ(Z) < 1,

where ρ(·) is the spectral radius.

Proof. Note that the conditions x(T +Δt) = P (x) and x∗ =
P (x∗) can be established, where P (·) is the Poincaré map.

From Lemma 1, we have

P (x) = P (x∗) + ZΔx+O
(
Δ2
)

Consequently, the Jacobian of the Poincaré map at x∗ is Z.

Therefore, the limit cycle is locally asymptotically stable if

and only if ρ(Z) < 1.

Since we cannot obtain the analytical solution of the func-

tion F (·), the matrix Z is unknown. Hence, we have to

use numerical solution to determine the spectral radius. The

experiment results show that ρ(Z) is always less than one,

indicating WCC can be provably convergent to a steady state.

Due to space limits, we only show parts of the results in

Fig. 3. The window size variations with the parameter w̄ for

the WCC-AI and WCC-MD flows are shown in Fig. 5 and

Fig. 6. Accordingly, we can derive the following observations

from Fig. 4.

We first define the throughput TPi of a flow i as follows.

TPi =
1

T

∫ T

0

1

w̄

W̃i(t)

1 + q̃(t)
dt, i = 1, 2, · · · , n

Observation 1. The throughput ratio of two WCC-AI flows in
fluid model (3) can be derived as follows.

TP1

TP2
→
{ √

a1√
a2

w̄ → √
2a1 +

√
2a2,

a1
a2

w̄ → ∞.
(9)

where a1 and a2 are the weights of two flows, respectively.

Observation 2. The throughput ratio of two WCC-MD flows
in fluid model (4) can be derived as follows.

TP1

TP2
→
{ √

a1√
a2

w̄ → √
2a1 +

√
2a2,

1 w̄ → ∞.
(10)

where a1 and a2 are the weights of two flows, respectively.

Furthermore, we can extend the above observations to a

more general case for n flows.

Observation 3. When w̄ → √
2a1 +

√
2a2 + · · · + √

2an,
the throughput ratio of n WCC-AI flows can be TP1 : TP2 :
· · · : TPn → √

a1 :
√
a2 : · · · : √an. When w̄ → ∞, the

throughput ratio of n WCC-AI flows can be TP1 : TP2 : · · · :
TPn → √

a1 : a1 : a2 : · · · : an. where a1, a2, · · · , an are
the weights of n flows, respectively.

Observation 4. When w̄ → √
2a1 +

√
2a2 + · · ·+√

2an, the
throughput ratio of n WCC-MD flows can be TP1 : TP2 :
· · · : TPn → √

a1 :
√
a2 : · · · : √an. When w̄ → ∞, the

throughput ratio of n WCC-MD flows can be TP1 : TP2 :
· · · : TPn → 1. where a1, a2, · · · , an are the weights of n
flows, respectively.

Based on the observations and analysis above, we conclude

that modifying AI phase can well achieve weighted propor-

tionality. At the same time, different buffer sizes and the

total number of flows can quantitatively affect the weighted

proportionality.

IV. IMPLEMENTATION AND TESTBED EXPERIMENTS

We have implemented WCC-AI, MulTCP and EWTCP as

Linux congestion control modules. We use them to conduct

testbed experiments and find that the results are consistent

with our theoretical analysis. In this section, we present our

experimental results and summarize the basic principles of

achieving weighted congestion control.

Testbed Setup: We implement WCC-AI, MulTCP and

EWTCP all based on the standard Linux kernel congestion

control API. Our testbed consists of one Mellanox SN2700

switch associated with two hosts as the sources and one host

as the destination, i.e., a typical star topology. Two TCP flows

with weight 1 and 2 are generated by Iperf3 [18] and share a

single bottleneck link of 10 Gbps capacity. The testbed is built

inside a rack where servers are connected by optical fibers

with a fixed length of around 5 meters, so the propagation

delay of the links can be roughly calculated by dividing fiber
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Fig. 7: The weighted proportionality of two WCC-AI flows with weight 1 and 2 under droptail and RED queues in our testbed.

The buffer size of droptail queues are 2 MBytes. The minimum threshold and maximum threshold of RED queues are 1

MBytes and 5MBytes respectively.

length with light speed, i.e., 17ns. The measured throughput

for each TCP flow is reported by Iperf3. We use Drop-tail and

RED queues in Mellanox SN2700 switch to observe WCC-

AI’s behaviors with different queue management mechanisms.

In terms of the TCP ACK mechanisms, we exploit the Linux

kernel parameter net.ipv4.tcp_sack to switch between

the selective ACK [30] and the cumulative ACK and observe

their influence on the weighted proportionality.

Experiment Results: WCC-AI can achieve near perfect
weighted proportionality. The measured throughput varia-

tions for each flow are shown in Fig. 7(a). We can observe

that WCC-AI can provide differentiated bandwidth allocation,

while maintaining the stability in a long term. Furthermore,

the throughput ratio is approximately equal to the ratio of

their weights, i.e., 1 : 2. Likewise, from Fig. 7(c), we can see

that under the RED condition, the throughput of two WCC-AI

flows maintain a ratio 1 : 2 roughly most of the time, although

the random drop causes more oscillations. However, we also

notice that only when using the selective ACK mechanism,

can WCC-AI achieve such good performance. We will take a

more specific inspections about this in the Sec. V.

As we stated in Sec. III, the decisive factor of weighted

proportionality is the parameter w̄. The w̄ is the average

congestion window in the steady state, which is dominated

by the bandwidth delay product. That is w̄ ∝ C · d + K,

where K is the buffer size, C is the link capacity and d is

the propagation delay. Hence, we change the buffer size K
and the link propagation delay d respectively to observe their

influence on the weighted proportionality.

TABLE I: The throughput ratio for two WCC-AI flows with

weight 1 and 2 varies with the switch buffer size.
Buffer size Average throughput (Gbps)

Ratio
(Bytes) Flow 1 Flow 2

12000 K 3.12 6.31 1 : 2.022
5000 K 3.11 6.31 1 : 2.029
2000 K 3.15 6.27 1 : 1.990
1000 K 3.22 6.20 1 : 1.925
500 K 3.49 5.93 1 : 1.699
250 K 3.69 5.61 1 : 1.520
100 K 3.22 5.12 1 : 1.590

TABLE II: The throughput ratio for two WCC-AI flows with

weight 1 and 2 varies with the propagation delay.
Emulated Average throughput (Gbps)

Ratio
delay Flow 1 Flow 2
5 ms 1.20 2.37 1 : 1.975
1 ms 2.17 4.15 1 : 1.912

500 μs 2.69 5.15 1 : 1.914
375 μs 2.88 5.20 1 : 1.806
250 μs 2.86 5.61 1 : 1.962
100 μs 3.27 5.68 1 : 1.737
50 μs 3.42 5.80 1 : 1.696
10 μs 3.57 5.75 1 : 1.611
1 μs 3.61 5.77 1 : 1.598

The switch buffer size has a significant impact on the
weighted proportionality. We perform a set of experiments

to measure the weighted proportionality variations with the

switch buffer size K. We can observe that the experiment

results in Tab. I are consistent with our theoretical analysis

in Sec. III. When the buffer size is small, i.e., w̄ approaches√
2a1 +

√
2a2 � 3.414, the ratio keeps fluctuating around

the expected value 1 :
√
2 � 1 : 1.414. With the growth of
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the buffer size, the throughput ratio of two WCC-AI flows

increases to the perfect value 1 : 2. In general, the weighted

proportionality of AIMD-based weighted congestion control

mechanisms have two relatively stable bounds: when the

switch buffer size increases, the ratio of two WCC-AI flows

with weight 1 and 2 will move towards an upper bound 1 : 2.

Otherwise, it will move towards a lower bound 1 :
√
2. The

results in Fig.2 also demonstrates the same fact.

The propagation delay also has a significant impact on
the weighted proportionality. According to our theoretical

analysis, the throughput ratio is not only related to the switch

buffer size which dominates the queuing delay, but also related

to the propagation delay. Thus, we run another set of experi-

ments in our testbed to observe the performance of WCC-AI

with the propagation delay variations. Since the propagation

delay of physical links are fixed and hard to change, we use

the netem module in Linux Traffic Control to emulate the

propagation delay between senders and receivers. In this set

of experiments, the switch buffer size is fixed at 500 KBytes.

From Tab. II, we can see that when the propagation delay

increases, the throughput ratio of two WCC-AI flows approach

the perfect value 1 : 2 gradually. That demonstrates that the

throughput ratio moves from the lower bound to the upper

bound, when the incremental delay makes w̄ become larger.

V. SIMULATION AND ANALYSIS

Setup: We exploit NS-3 simulator [37] and implement the

weighted congestion controls — MulTCP, EWTCP and WCC-

AI — as subclasses of TcpNewReno. The link capacity is set

to 10 Gbps, the link delay is set to 20 μs and the switch buffer

size is set to 200 KBytes. The selective ACK is enabled.

Experiment Results: WCC-AI can achieve weighted pro-
portionality under dynamic network characteristics. As

shown in Fig. 8, we firstly investigate the weighted propor-

tionality of WCC-AI compared with MulTCP and EWTCP

in a dynamic traffic environment. The four flows have the

weight 4, 3, 2 and 1, respectively. We can see that EWTCP

has very poor stability and is far away from perfect weighted

proportionality. MulTCP and WCC-AI can well converge to a

steady state in a long run while WCC-AI performs much better

than MulTCP. In Fig. 8(c), we can observe that the throughput

ratio for WCC-AI flows approaches the perfect ratio even in

a network with dynamic traffic. When the first flow and the

third flow coexist in the time intervals between 2s and 4s, the

throughput ratio is precisely close to 3 : 1. While all four flows

together are in the network during the time intervals from 4s

to 7s, WCC-AI converges quickly and approaches the perfect

ratio within half a second. Similarly, WCC-AI also performs

well when only the second flow and the fourth flow are in the

network.

The selective ACK and cumulative ACK can also signif-
icantly affect the weighted proportionality. We investigate

the performance of NewReno, MulTCP, EWTCP and WCC-

AI with two different ACK mechanisms. The comparison is

illustrated in Fig. 9 and Tab. III shows the average throughput

ratio with 5 s duration corresponding to Fig. 9. We can observe

TABLE III: The average throughput ratio with 5 s duration

corresponding to Fig.9.

CC Scheme
Average throughput ratio of five flows

SACK Non-SACK
NewReno [16] 1:1.01:1.01:1.03:1.02 1:1.04:1.07:0.74:0.92
MulTCP [9] 1:3.67:8.81:16.03:24.96 1:1.10:1.36:1.54:1.55
EWTCP [17] 1:2.38:5.30:9.37:13.21 1:2.81:3.15:3.28:3.53

WCC-AI 1:1.65:2.50:3.33:4.14 1:1.44:2.48:2.56:3.10

that the ACK options do not dramatically affect the fairness

of NewReno in the long run: the average throughput ratio

of five flows is 1:1.01:1.01:1.03:1.02 with the selective ACK

and 1:1.04:1.07:0.74:0.92 with the cumulative ACK. However,

the weighted proportionality of MulTCP, EWTCP and WCC-

AI perform better when the selective ACK is enable. More

specifically, we find that using cumulative ACK is easily

to make CWND fluctuate sharply and potentially limits the

congestion window size in the long term. As a result, the

weighted proportionality performs poorly with the cumulative

ACK. Our testbed experiments in Fig. 7 verify this fact as

well.

VI. RELATED WORK

Control Principles: Under a synchronized-feedback as-

sumption, Chiu and Jain [8] analyze classic linear controls —

AIMD, AIAD, MIAD, MIMD — in terms of efficiency and

fairness and conclude that only AIMD can achieve efficiency

and fairness simultaneously in the steady state. Subsequently,

RAP [41], RLM [31], LDA [43], Reno [20], Vegas [6],

NewReno [16] and so on are proposed to use AIMD as

its control logic. Later, GAIMD [47], binomial congestion

control [4] and SIMD [23] are proposed to generalize the linear

controls with non-linear controls.

Congestion Control: TCP leverages network feedback such

as packet drops [14], [16], [20] or RTT variants [3], [6],

[7] or both [49] in response to potential network congestion.

DCTCP [1], [2] combines the ECN marking mechanism to

perform rate reduction in MD phase, providing smoother

transmission rate in data centers. For RDMA-enabled network,

DCQCN [51], Timely [32] and HPCC [27] rely on the feed-

back of programmable switches to facilitate the congestion

control. Remy [45] and PCC Vivace [11] leverage machine

learning technique to perform fine-grained congestion control.

Weighted Fairness: As the network evolves from a free-

use model to a pay-for-use model, the fairness principle [5],

[21], [25], [33] can be increasingly augmented with weighted

fairness, i.e., differentiated bandwidth allocation. The network-

level weighted fairness relies on WFQ [10], [39] and D-

iffserv [36] techniques implemented in the switch. NUM-

Fabric [34], DGD [28] and Faircloud [40] rely on WFQ to

enforce weighted fairness. In a purely end-to-end perspective,

MulTCP [9] and EWTCP [17] modify AIMD’s behavior to

perform weighted congestion control. A recent work [35]

implements weighted congestion control based on CUBIC [14]

and FAST [22] and aims to achieve weighted QoE fairness. In

addition, multipath TCP [29], [46] requires weighted conges-
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(c) WCC-AI

Fig. 8: The weighted proportionality comparison for MulTCP, EWTCP, and WCC-AI with the selective ACK. The purple,

yellow, red, blue line corresponds to the flow with weight 4, 3, 2 and 1, respectively.
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with cumulative ACK
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(c) The performance of MulTCP with
cumulative ACK
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(d) The performance of MulTCP with
selective ACK.
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(e) The performance of EWTCP with
cumulative ACK
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(f) The performance of EWTCP with
selective ACK.
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(g) The performance of WCC-AI
with cumulative ACK
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(h) The performance of WCC-AI
with selective ACK.

Fig. 9: The influence of different ACK options, i.e. selective ACK or accumulative ACK. The green, purple, yellow, red, blue

line corresponds to the flow with weight 5, 4, 3, 2 and 1, respectively.

tion control [17] to adjust the rate of each subflow such that

the entire data stream’s fairness is guaranteed.

VII. CONCLUSION

In this paper, we pinpoint that existing works fail to re-

veal the hidden relation between the weighted proportional

performance and different network parameters. We design a

fundamental weighted congestion control mechanism WC-

C and use the fluid model to analyse the critical factors for

achieving weighted proportionality. Testbed experiments and

NS3 simulation results can well match our analysis. We believe

that our work can give a much deeper understanding in terms

of weighted congestion control and affiliate developing novel

weight congestion control mechanisms in the future.
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