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Abstract—Learning-based Internet congestion control algo-
rithms have attracted much attention due to their potential
performance improvement over traditional algorithms. However,
such performance improvement is usually at the expense of black-
box design and high computational overhead, which prevent
them from large-scale deployment over production networks. To
address this problem, we propose a novel Internet congestion
control algorithm called Gemini. It contains a parameterized
congestion control module, which is white-box designed with low
computational overhead, and an online parameter optimization
module, which serves to adapt the parameterized congestion
control module to different networks for higher transmission
performance. Extensive trace-driven emulations reveal Gemini
achieves better balances between delay and throughput than
state-of-the-art algorithms. Moreover, we successfully deploy
Gemini over production networks. The evaluation results show
that the average throughput of Gemini is 5% higher than that of
Cubic (4% higher than that of BBR) over a mobile application
downloading service and 61% higher than that of Cubic (33%
higher than that of BBR) over a commercial network speed-test
benchmarking service.

Index Terms—Transport Protocol, Internet Congestion Control

I. INTRODUCTION

Transmission Control Protocol (TCP) has been adopted
by default for most applications on the Internet (e.g., file
downloading, video streaming, etc.), where congestion control
(CC) algorithm plays a crucial role in the overall transmission
performance of TCP.

Traditional CC algorithms (e.g., Cubic [1] and BBR [2]) are
crafted by human experts and widely deployed for production
networks. They enjoy two advantages. First, the handcrafted
algorithms facilitate easy analysis and debugging by operators,
so when a traditional CC algorithm performs unexpectedly,
operators can quickly localize and resolve the performance
issues. Second, the handcrafted algorithms are usually with
negligible computation and memory overhead, which can
be easily built into compute-intensive and memory-intensive
production services (e.g., content delivery networks). However,
due to their ”one-size-fits-all” design, these handcrafted algo-
rithms are becoming less capable of satisfying the increasingly
diverse application requirements over highly complex network
environments.

Recently, learning-based CC algorithms (e.g., Remy [3],
PCC [4], Vivace [5], Indigo [6], and Orca [7]) have gained
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Fig. 1: The architecture of Gemini

much attraction due to their potential adaptivity to various
network environments. Unlike the aforementioned traditional
CC algorithms, the learning-based CC algorithms learn the
congestion control directly from network environments based
on various machine learning models (e.g., reinforcement learn-
ing [8], LSTM [9], etc.), so intuitively it can adapt to different
network environments to achieve higher transmission perfor-
mance.

However, existing learning-based CC algorithms usually
suffer from the following problems for practical deployment
over production networks. First, existing learning-based CC
algorithms are usually with high computation and memory
overhead (see Section V-B2), which directly prevents them
from being successfully deployed in production environments
as they cannot serve thousands of requests concurrently with
reasonable resources. Second, the performance of existing
learning-based CC algorithms (e.g., Remy [3] and Indigo [6],
etc.) rely heavily on the representativeness of training envi-
ronments, and they may underperform under unseen network
environments. Given highly complex real-world network envi-
ronments, it would be difficult, if not impossible, for operators
to train the algorithms to cover all the possible network
environments, because corner-case network environments are
always endless. Finally, since the congestion control is typi-
cally a learned black box and is usually hard to be understood,
it adds more difficulties to further performance optimization
and troubleshooting for the operators.

To address the above problems and enable practical de-
ployment over production networks, we propose a divide-
and-conquer framework to design practical learning-based CC
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algorithms, called Gemini. Specifically, Gemini consists of the
following two major modules:

• A parameterized CC class, called Fusion. We model
the congestion control algorithm as the control logic and
the control parameter. The control logic determines the
reactions to specific events for data transmissions, and
the control parameter controls the degree of reaction to
specific events. For example, with the occurrence of a
congestion event, the congestion window of Cubic will
be reduced to a size that equals to β (e.g., 0.7 by default)
times the recent maximum non-congested congestion
window. So in this case, the window reduction behavior
is part of the control logic and the parameter β is the
corresponding control parameter. Fusion is handcrafted
to keep the control logic of Gemini unchanged, ensuring
a white-box design and low computation overhead, and at
the same time enables the control parameters of Gemini
dynamically adjustable to achieve flexibility for further
performance optimization by the online optimization en-
gine.

• An online optimization engine, called Booster. Booster
is introduced to boost the adaptability and thus improve
the performance of Gemini under different network envi-
ronments by automatically optimizing the control param-
eters with a given performance objective (also known as
utility function).

In this study, Gemini is fully implemented and readily
deployable over production networks. Specifically, Fusion is
implemented as a Linux kernel module running in kernel
space, and Booster is implemented as an online optimization
engine running in the user space in a computer cluster. We
compared Gemini with existing congestion control algorithms
over both emulated networks and production networks. In
emulated networks, we compared Gemini with state-of-the-
arts congestion control algorithms in a controlled manner. We
showed that Gemini achieved a better performance balance
between throughput and delay, and a comparable RTT (round
trip time) fairness and Cubic friendliness (see Section V-A).
In production networks, we compared Gemini with existing
widely deployed congestion control algorithms over two types
of production services. We observed Gemini improved the av-
erage throughput by 5% compared with Cubic (4% compared
with BBR) over a mobile application downloading service and
by 61% compared with Cubic (33% compared with BBR) over
a commercial network speed-test benchmarking service [10]
(see Section V-B).

The remainder of the paper is organized as follows. Section
II reviews the related works; Section III presents the design
of Gemini; We describe the implementation details of Gemini
in Section IV and evaluate its performance in Section V; In
Section VI we summarize the study and outlines some future
work.

II. BACKGROUND AND RELATED WORK

Numerous CC algorithms have been proposed over the past
three decades, including Vegas [11], Cubic [1], BBR [2],
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Fig. 2: Throughput variations of Cubic with different control
parameter β from production environments over one week

and Copa [12]. These CC algorithms are carefully designed,
easy to be understood by operators, and their fairness and
friendliness have been well analyzed and reported. However,
hardwired design is less capable of satisfying the performance
requirement of diverse applications over different network
environments. Although existing studies have designed a serial
of CC algorithms for different scenarios (e.g., Sprout [13]
and Verus [14] are designed for mobile networks), their
performance deteriorates when being applied to non-target
network environments (See Fig. 4).

Production service operators usually choose to manually
tune the parameters of existing congestion control algorithms
(e.g., Cubic or BBR) for performance optimization since it
is widely observed that by changing the default parameter
of CC algorithms for different network environments we can
probably achieve higher performance (as shown in Fig.2,
although default parameter β = 0.7 in Cubic performs better
in city A and B, we can still further achieve higher throughput
in city C by changing it to 0.9.). However, manual parame-
ter optimization for congestion control algorithms is usually
time-consuming and cost-ineffective because of continuously
emerging new network environments and multiple coupled
parameters in the same algorithms, which may interfere with
each other. Moreover, the design imperfection of existing algo-
rithms also constrain the potential performance improvement
by optimizing the parameters. For example, because of using
packet loss as the only congestion signal, Cubic and Reno
suffer from throughput degradation under random losses [2]
and buffer-bloat [15] under large network queues. BBR suffers
from high losses under the scenarios with small network
queues and suffers from throughput unfairness under scenarios
with large network queues because of its fixing congestion
window to be twice of the BDP (short for Bandwidth Delay
Product) [16]. By contrast, in this study, we propose a new
general congestion control logic for performance optimizations
to address the above problems.

Learning-based CC algorithms (Remy [3], PCC [4], Vi-
vace [5], Indigo [6], and Orca [7]) have recently attracted
much attention due to their potential adaptivity to various
network environments. The control logic of these learning-
based CC algorithms is automatically learned from training
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environments. Thus, they can probably adapt to different net-
work environments. Compared with traditional CC algorithms,
learning-based CC algorithms currently offer a potential ad-
vantage in adaptability. However, it is usually at the expense
of black-box design and a huge cost of model retraining in
each environment. Moreover, the convergence, CPU/Memory
overhead, and maintainability of learning-based CC algorithms
also differ greatly from traditional CC algorithms. These
capabilities are as important as adaptability for deployment in
production environments. Configurator [17] proposed a prac-
tical learning-based optimization framework for the general
parameters of CDN service, by contrast our study focus on the
practical deployment of optimizations for Internet congestion
control algorithms.

III. THE DESIGN OF GEMINI

Gemini (as shown in Fig. 1) consists of two major modules,
i.e., a parameterized CC class (called Fusion henceforth),
which provides the congestion control logic, and an opti-
mization engine (called Booster henceforth), which serves to
optimize control parameters for Fusion to adapt to various net-
work environments. To interconnect the above two modules,
we further introduce a connector, called optimization agent,
serving for data exchange between Fusion and Booster.

The workflow of Gemini is basically an iterative process
cycle between evaluation and decision. Specifically, during
the evaluation process, incoming TCP flows are served by
Fusion with a set of control parameters, this parameter set
is randomly initialized at the beginning and further optimized
by the Booster afterward. After a preset time period (e.g., 5
minutes) until a sufficient number of TCP flows are collected,
the optimization agent will aggregate the performance statistics
(e.g., average throughput) of the flows served by Fusion with
this control parameter set for the decision process. Then in
the decision process, based on the aggregated performance
statistics and the corresponding control parameter set, Booster
will determine a new set of control parameters to Fusion for
serving the next incoming TCP flows for optimizing a given
performance objective.

A. The Parameterized CC Class Fusion

In this section, we propose a general parameterized CC
Class Fusion, which serves the congestion control logic, by
incorporating both window-based (e.g., Cubic/Reno) and rate-
based (e.g., BBR) algorithm. Moreover, since packet loss alone
is not the only good indicator of congestion event, we further
introduce RTT variations (e.g., Copa [12] and Vegas [18]) as
an extra congestion signal into the algorithm.

Specifically, we use Wt to denote congestion window size
at time t and W0 to denote initial congestion window size.
Moreover, Fusion keeps a sliding window (measured in # of
RTT, denoted by n) for throughput and RTT sampling, namely,
we use Rmax

t−n,t to denote the measured maximum throughput
and Tmin

t−n,t (Tmax
t−n,t) to denote minimum (maximum) RTT

sample. We use Lt to denote the loss rate (estimated by

TABLE I: Control Parameters of Fusion

Control Parameter Description

ω Initial congestion window size
α Multiplicative increase factor
γ Additive increase factor
λ Multiplicative decrease factor
l Loss-tolerate threshold
δ RTT inflation threshold
n # of intervals for throughput and RTT sampling

the retransmission rate) at time t. Then the data transmission
behavior of Fusion is summarized as follows:

• Congestion Signal: Once the packet loss rate exceeds
threshold l or the queue occupancy rate (estimated by
RTT inflation [2]) exceeds threshold δ, a congestion
signal is detected.

Lt > l or Tmin
t−1,t−Tmin

t−n,t > δ · (Tmax
t−n,t−Tmin

t−n,t) (1)

• Slow Start: At the slow start phase, Fusion compares the
exponentially increased congestion window and estimated
BDP (computed by Rmax

t−n,t · Tmin
t−n,t) and will choose

whichever is higher as the new congestion window,
denoted by W

′

t .

W
′

t = max(2 ·Rmax
t−n,t · Tmin

t−n,t,Wt), W0 = ω (2)

• Congestion Recovery: Once a congestion signal or an
exit point of slow start is detected [19], Fusion enters
into the congestion recovery phase. During this phase, the
congestion window size is clipped by the multiplicative-
decrease factor λ following the proportional rate reduc-
tion algorithm [20], where 0 < λ < 1.

W
′

t = λ ·Wt (3)

• Congestion Avoidance: After the congestion recovery
phase, Fusion enters into congestion avoidance phase.
During this phase, the congestion window size contin-
ues to grow both multiplicatively and additively if the
estimated BDP keeps increasing. If not, it grows only
additively to occupy more network queues.

W
′

t = max(α ·Rmax
t−n,t · Tmin

t−n,t,Wt) + γ (4)

where α ≥ 1 and γ ≥ 1.
Once the congestion window size is determined, the pacing

rate is set according to the current congestion window size Wt

and minimum RTT Tmin
t−n,t, i.e.

Rt = Wt/T
min
t−n,t (5)

After determining the overall design of control logic, we
can further make the corresponding control parameters listed
in Table I dynamically adjustable, denoted by

θ := {ω, α, γ, λ, l, δ, n} (6)

To be more specific, the initial congestion window size has a
significant impact for static web objects, and has been updated
several times over the years [21]. Multiplicative increase factor
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TABLE II: Statistics collected by the optimization agent

Flow-Level Performance Statistics

time Duration of TCP flow
size Size of TCP flow
rttavg Average RTT of TCP flow
rttmin Minimum RTT of TCP flow

Control Parameters used by Fusion

θ Control parameters of TCP for data transmission

Hidden Variables of TCP

regionsrc Source region of TCP flow
regiondst Destination region of TCP flow
ISPsrc Source ISP of TCP flow
ISPdst Destination ISP of TCP flow

timeStamp Time of day when TCP flow ends

α, additive increase factor γ, and multiplicative decrease factor
λ determine the aggressiveness of the algorithm. The loss
tolerance threshold l and RTT inflation threshold δ allow
Fusion expressing the preferences between higher throughput
and lower queuing delay. Sliding window size n determines
how sensitive the algorithm is to the dynamic change of
network environments in a short period. For example, cellular
(network states change rapidly) and Ethernet (network states
are relatively stable) networks will expect different values of
n for optimal performance (see Section V-A for experimental
evaluations).

B. The Optimization Engine Booster

The Gemini by nature can be modeled as a black-box
optimization problem with its application to TCP performance
optimization, where we need to determine a x∗ (i.e. the control
parameters) that maximizes the objective function f(x) of
TCP performance over a region χ, i.e.,

x∗ = argmax
x∈χ

f(x) (7)

This is because we can only observe the results of f(x) with
a given x in real world deployment, rather than knowing
any exact expressions of f(x). For example, we don’t know
what control parameter values lead to higher throughput in
production networks.

There are a couple of black-box optimization algorithms
(e.g., standard Bayesian optimization (BO) [22], Tree of
Parzen Estimator (TPE) [23], Stochastic Radial Basis Function
strategy (SRBF) [24] and OnePlusOne evolution algorithm
(OnePlusOne) [25], etc.), in this study we introduce Bayesian
optimization as a basis to our performance optimization due to
its fast convergence, low computational overhead and mature
implementation library.

BO employs historical trials (i.e., set of the (x, f(x)) pairs)
to fit a surrogate model (e.g., Gaussian process) that charac-
terizes this objective function. By maximizing an acquisition
function (e.g., GP-Hedge [26]), it can determine which x to
investigate next and iteratively converges to the parameter
values that optimize the objective function.

1
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Time / Day

1

3 Normalized Avg. Throughput

Fig. 3: Daily variations of TCP flow size, # concurrent flows,
and throughput normalized by their respective overall mean
value from production environments over one week

TABLE III: Exploration Regions of the Control parameters.

Control Parameter Granularity Region Θ Region Θ
′

ω 1 packet [10, 50] [10, 100]
α 0.01 x [1, 1.25] [1, 10]
γ 1 packet [1, 10] [1, 100]
λ 0.01 x [0.5, 0.9] [0.1, 0.99]
l 0.1% [0%, 1%] [0%, 100%]
δ 1% [1%, 100%] [1%, 100%]
n 1/4 RTT [1, 60] [1, 60]

Since we’ve observed that in addition to CC algorithms, the
performance of TCP is also determined by its own distinct
network environments (e.g., region and time of day, as shown
in Fig. 2 and Fig. 3, where we called hidden variables
henceforth). To take hidden variables into the performance
optimization, we further introduce Booster based on the design
standard BO.

The reason for not applying standard BO to Gemini is
twofold. First, in Gemini, directly applying the standard BO
will confuse the impacts of hidden variables with that of
control parameters on the objective function. To be more
specific, if the hidden variables and control parameters have
opposite impacts on the objective function, the design of
standard BO may mislead the surrogate model to characterize a
diametrically opposed relations between control parameter and
objective function. Second, applying the BO for each group of
flows classified by the hidden variables will increase compu-
tation overheads and reduce optimization efficiency, because
we need to optimize control parameters for each group of
flows and require more time to collect sufficient performance
statistics for evaluating objective function robustly.

In Booster, we first employ both control parameters θ
and hidden variables h to construct the surrogate model to
characterize their intrinsic relationship with the objective func-
tion. Next, we can get the new values of control parameters
θ∗, which maximizes the objective function f(θ,h) given
current hidden variables (denoted by h′ and reported by the
optimization agent in Section III-C), i.e.,

θ∗ = arg max
θ∈Θ,h=h

′
f(θ,h) (8)
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It is worth noting that Booster learns from historical trials
which are collected from all the working servers running
Fusion, so it allows for Booster to directly apply optimization
to any new servers running Fusion without scalability issues.

C. The Optimization Agent

As shown in Fig. 1, the agent is introduced to interconnect
the parameterized CC class Fusion and the optimization engine
running the learning algorithm Booster. Specifically, the agent
on each server will periodically (e.g., 5 minutes) aggregate
the flow-level statistics (as shown in Table II), the control
parameter values used by Fusion and the corresponding hidden
variable values and report them to Booster. It is worth noting
that only the aggregated statistics (e.g., average throughput,
average RTT, flow count, etc.) need to be reported, so the
cost of data transmission is negligible (about 2MB data need
to be transferred from 3K servers every minute, and the
average amount of data transferred per server is less than
1KB/minute). Booster will further aggregate these statistics by
the control parameter values and the hidden variable values in
an incremental manner. At the same time, the agent will also
periodically requests new control parameter values with the
corresponding hidden variable values and objective function to
Booster, then Booster will evaluate the objective function over
the aggregated statistics, update its internal surrogate model
and generate the new control parameter values to the agent.
Once the agent receives the new control parameter updates, it
will apply them to Fusion for serving newly incoming TCP
flows immediately.

Performance Objective: The agent exposes an interface to
operators to specify the performance objective. Previous works
(e.g., Vivace and Remy) rely on the form of the objective
function to achieve convergence and fairness. However, for
Gemini, given control parameter region Θ shown in Table III,
regardless of the objective form, we can prove if each group
of flows with the same hidden variable values uses the same
control parameter values, when different flows compete with
each other, the corresponding throughput will converge to a
unique and fair state under specific assumptions (e.g., single
bottleneck and synchronized congestion signal assumptions).
Detailed proof is omitted due to space limitation and can be
deduced from existing study [27] [28] [29].

It is worth noting that the major congestion control logic
design to ensure throughput fairness and convergence are as
follows. First, during the congestion avoidance phase, the con-
gestion window increases in both multiplicative and additive
ways at the beginning, but only increases additively after
the measured BDP stops increasing. Second, the congestion
window will be reduced multiplicatively if the congestion
signal is triggered.

Without special considerations in convergence/fairness, in
this study we set the objective function as the following:

f =
1

N

N∑
i=1

Throughputi − σ ·Delayi (9)

where N is the number of flows in the report interval;
Throughputi = sizei/timei is the average throughput of the
ith flow; Delayi = rttiavg − rttimin is the estimated average
queuing delay, where sizei, timei, rttiavg and rttimin are
the flow-level statistics reported by the agent; and σ is the
preference between throughput and delay. Smaller (larger) σ
denotes a preference for higher throughput (lower delay).

IV. IMPLEMENTATION

The parameterized CC class Fusion is implemented as a
kernel module in Linux kernel 4.14.105, and we modified
scikit-optimize library [30] to support hidden variables for the
online optimization engine Booster.

In terms of performance objective, We set three different
weights (σ = 0.1, σ = 1, and σ = 10) in Eq. 9 to represent
the different preferences between high throughput and low
queuing delay. And the regions to be explored for the control
parameters are set as Θ and Θ

′
(See Table III).

(1) Region Θ: The range of each parameter is carefully
designed via the tradeoff among adaptability, fairness,
friendliness and potential congestion collapse risk in
production network based on previous studies [1], [2],
[4], [31].

(2) Region Θ
′
: We set a broader region of control parameters

in order to explore the performance limit of Gemini.

V. PERFORMANCE EVALUATION

TABLE IV: Details of the three network environments.

Environment RTT Bandwidth Loss rate

Ethernet 150ms 15Mbps 0
Cellular 20ms˜250ms 1Kbps˜15Mbps 0%˜75%
Satellite 800ms 45Mbps 0.74%

In this section, we compare the performance of Gemini with
state-of-the-art CC algorithms (e.g., Remy, Vivace, Sprout,
Copa and Orca) and widely deployed CC algorithms (Cubic
and BBR) over both emulated networks and production net-
works. We use pantheon [6] to perform our local evaluations
and the emulated networks have been covered by the training
environments of the prior learning CC algorithms.

Specifically, under three different emulated network envi-
ronments (i.e. Ethernet [3], cellular [32] and satellite [33],
detailed in Table IV), Gemini is able to achieve almost the
highest throughput and lowest delay compared with existing
algorithm. Moreover, Gemini also exhibits improved adapt-
ability compared to existing learning-based CC algorithms
(Remy, Vivace, Orca), despite the significant difference be-
tween learning and evaluation network conditions. Finally, our
evaluations reveal that Gemini has comparable fairness and
friendliness with existing CC algorithms.

Our evaluation over production networks shows that com-
pared with Cubic (BBR), Gemini can achieve around 5% (4%)
throughput improvements in a mobile application downloading
service, and 61% (33%) improvement in a commercial speed-
test benchmarking service. Moreover, the computation and
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Fig. 4: Performance comparisons in three typical network environments. For each environment, we first evaluate Gemini with
three weights (σ = 0.1, σ = 1 and σ = 10). Next, we evaluate Gemini with model learned from different network environments
(marked by different line types) to test its adaptivity and robustness. For example, under the Ethernet environment, we evaluate
Gemini learned from cellular (blue dashed line), satellite (magenta dash-dot line), and Ethernet (yellow solid line) networks
respectively. We also evaluate Gemini learned with a broader space of parameter vector (green dotted line in each sub-figure)
in order to explore its performance limits.
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Fig. 5: Control parameter distribution (within region Θ) of Gemini
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Fig. 6: Utility convergence of different network environments

memory overheads of Gemini are comparable with that of
traditional CC algorithms and much lower than that of existing
learning-based CC algorithms. Next, we compare Booster
with existing optimization algorithms, and it reveals Booster
achieves a higher performance gains. Finally, the divide-and-
conquer design enables us to apply Booster to proprietary
TCP for performance optimization and a month-long A/B test
results reveal the around 2% throughput improvement achieved
by Booster-accelerated proprietary TCP.

A. Performance Evaluation Over Emulated Networks

To evaluate the performance of Gemini over different net-
work environments in a controlled manner, we set a linear
topology with three machines (the client, router, and server,
respectively) and emulate three network environments on the
router (Table IV).

1) High Performance in Seen Environments: In Fig. 4a, we
can see that Gemini almost achieves the highest throughput for
the Ethernet environment (within regions Θ

′
or Θ), as well

as the minimum delay. Although loss-based CC algorithms
like Cubic achieve a throughput comparable to Gemini, their
delay exceeds that of Gemini, due to their tendency to fill
up the queue at the bottleneck. Compared with the rate-based
(delay-based) CC algorithms BBR and Copa, Gemini achieves
a lower delay as its queuing-delay tolerance is automatically
optimized rather than fixed.

Under the cellular environment (Fig. 4b), the rapidly chang-
ing network state (bandwidth, RTT, loss rate) is challenging
for CC algorithms to achieve both high throughput and low
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delay at the same time. Although Gemini is not specifically
designed for cellular networks, it achieves the highest through-
put (within region Θ

′
), even compared to Sprout, which is

specifically designed for cellular networks. We also observe
that the throughput of Orca exceeds that of Cubic. However,
the improvement is insignificant as Orca is restricted by the
control logic of Cubic. The throughput of Gemini (within
region Θ) is slightly lower than that of Sprout. This is
attributed to the higher packet loss tolerance of Sprout in
the cellular environment, thus it will ”steal” more bandwidth
from Cubic when competing with Cubic flows for the same
bottleneck (Section V-A5).

The satellite environment (Fig. 4c) is also challenging due to
the high BDP and stochastic loss. But Gemini (within regions
Θ

′
and Θ) outperforms all existing CC algorithms. Although

BBR and Vivace exhibit similar throughput with Gemini, their
delay is much higher.

2) Robustness in Unseen Environments: In real world de-
ployment, it is common to run CC algorithms over unseen
network environments. In order to evaluate the robustness
of Gemini, we first train Gemini in one environment, then
evaluate Gemini with another two different environments.

We observe that although there is a clear mismatch between
the testing and training environments, the performance of
Gemini still surpasses that of most existing traditional CC
and learning-based CC algorithms. This is because although
Booster has adapted the control parameter values of Fusion in
training environments, i.e. the degree of reaction to specific
events during data transfer, Fusion still maintains the same
full control logic as traditional algorithms, which maintains
its robustness to unseen environments.

3) Convergence of Control Parameters: Since under itera-
tive decision and evaluation process cycle, Gemini periodically
update new control parameters for Fusion, we collect such
control parameters and corresponding utility conference in this
section, and summarize our key findings as follows.

First, compared to Ethernet and satellite environments
(Fig. 5a and Fig. 5c), we find Gemini in cellular environment
tends to converge to smaller sliding window n for throughput
and RTT sampling (Fig. 5b). This is because the bandwidth
in the cellular environment is more dynamic and longer-ago
throughput samples are less correlated with the future samples,

so closely tracking the most recent throughput can result in
higher performance.

Next, since in Gemini the performance objective can trade
off between throughput and delay preferences by controlling
the value of σ in Eq. 9. Accordingly, we observe that different
preferences to delay finally result in different convergence
value of RTT inflation threshold δ (Fig. 5d, Fig. 5e and Fig.
5f), i.e. higher preference to delay results in a lower RTT
inflation threshold and vice versa.

Moreover, we observe that λ (i.e. the multiplicative de-
crease factor in Fig. 5h, Fig. 5j and Fig. 5l) and α (i.e. the
multiplicative increase factor in Fig. 5g, Fig. 5i and Fig. 5k)
in Gemini usually converges to their respective upper bound
(i.e. 0.9 and 1.25 in region Θ), this may indicate that by
expanding the parameter in Region Θ, Gemini can achieve
higher performance, which also motivate us to expand the
parameter region from Θ to Θ′ to explore its performance
limit.

Finally, we show the utility (performance objective) conver-
gence behavior of Gemini in Fig. 6. We can see that at the
beginning they start at a lower utility, which is expected since
the parameters are randomly initialized at the beginning, and
after several iterations, they gradually converge to a higher
and stable utility. We also observe that because of the higher
bandwidth dynamics in cellular network, Gemini in cellular
network takes more iterations to converge to a comparatively
stable utility and the converged utility is more fluctuated
compared with the behavior of Gemini in the Ethernet and
the satellite networks.

4) RTT Fairness: In this section, we set up two flows
competing on a single bottleneck link, where the path RTT
of the first flow is fixed to 10ms, the path RTT of the second
flow varies from 10 to 80ms, the bottleneck bandwidth is set to
100Mbps, and the queue length at the bottleneck varies from
0.5x BDP to 4x BDP (1x BDP = 10ms × 100Mbps).

The fairness ratio is employed as the fairness metric [12]:

FairnessRatio = AvgTptbase/AvgTptx (10)

where AvgTptx is the average throughput of the flow with
path RTT x (x =10, 20, 40 and 80ms) and AvgTptbase is the
average throughput of the flow with based path RTT (set to
be 10ms in this experiment).
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We show the mean and standard deviation of the fairness
ratio for more than 100 repeated experiments in Fig. 7. For
each run of Gemini, we randomly sample control parameters
θ from the region Θ. We observe that existing CC algorithms
exhibit different degrees of RTT fairness. For example, the
flow with the shorter path RTT has a larger bandwidth share
for Cubic; Orca and BBR are relatively fair at shallow-buffered
queues, yet the flow with the longer path RTT has a larger
bandwidth share at deep-buffered queues; Remy exhibits a
larger bandwidth share for the flow with longer path RTT
at shallow-buffered queues. The fairness-ratio variance of
Vivace and Remy is much larger than existing CC algorithms,
indicating that the converged bandwidth share of the two
competing flows varies greatly in the repeated experiments.

By contrast, due to the introduction of both multiplicative-
increase factors like BBR (which introduces an additional
bandwidth share for long-RTT flows) and additive-increase
factor like Reno (which introduces an additional bandwidth
share for short-RTT flows), Gemini achieves a medium level
of RTT fairness among existing algorithms.

5) Cubic Friendliness: We evaluate Cubic friendliness of
Gemini with the same emulated network setting as [12], i.e.
the bandwidth and path RTT are randomly sampled from 1 to
50Mbps and 2 to 100ms respectively, the queue length on the
bottleneck is set between 0.5x and 5x BDP. For each run, we
calculate the ratio of its actual bandwidth share to its ideal fair
share:

FriendlinessRatio = AvgTpt/IdealTpt (11)

where AvgTpt is the average throughput of the flows using a
specific CC algorithm and IdealTpt is the ideal fair share of
each flow competing on the same bottleneck.

We summarize the results in Fig. 8 based on 100 repeated
experiments. It is clear that Gemini exhibits a greater level
of friendliness with Cubic compared to existing learning-
based CC algorithms. By contrast, Vivace is more aggressive
than BBR when they both compete with Cubic, while Remy
exhibits an unstable performance when competing with Cu-
bic flows across different network environments. Moreover,
although the underlying Cubic in Orca can generally control
the sending rate, the learning of the window scaling factor

does not consider friendliness, so it is not surprising to see
the unfriendliness of Orca compared to Cubic.

B. Performance Evaluation Over Production Networks

For evaluations over production networks, we set the per-
formance objective of Gemini as Eq. 9 with the weight factor
σ = 0.1 and region Θ is used as the exploration region of
control parameters.

1) Gemini versus Cubic and BBR: We evaluate Gemini in
the following two different services. The first one is a mobile
application downloading service in a top CDN service provider
in China. The flow size in this service varies from Kilobytes to
Gigabytes, with over 90% flow size ranges between 1MB and
100MB. Over a 96-hour period of experiment and more than
three million requests, Gemini (with an average throughput of
28.34Mbps) achieves around 5% mean throughput improve-
ment over Cubic (with an average throughput of 27.06Mbps)
and 4% average throughput improvement over BBR (with
an average throughput of 27.22Mbps). We summarize the
throughput distribution for each CC algorithm and compare
their respective percentiles in Fig. 9. We can see that the
throughput of Gemini is generally higher than that of Cubic
and BBR for each percentile. Moreover, we observe that
though BBR achieves more throughput gains under lower and
higher percentiles compared with Cubic, it under-performs in
the middle percentiles (e.g., from the 10th to 80th percentile),
which may indicate that BBR does not always perform better
than Cubic in real-world deployments.

Fig. 10 further investigates the performance of Gemini for
different flow sizes. We observe that Gemini outperforms
Cubic and BBR regardless of the flow size. Though BBR
exhibits advantages over Cubic for small flows, Cubic has
similar throughput with BBR on average for large flows.

The second one is a commercial speed-test benchmarking
service with thousands of nodes located across nine provinces
in China. The nodes in the platform run in a round-robin
manner and periodically request a 1MB file from the servers
deploying Cubic, BBR and Gemini. In this experiment, the
total number of requests for each algorithm is around 30K. We
can see from Fig. 11 that Gemini generally outperforms Cubic,
BBR for each percentile of the throughput distribution. And
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we also summarize that Gemini (with an average throughput
of 65.85Mbps) improves the average throughput by around
61% for Cubic (with an average throughput of 39.96Mbps)
and by around 33% over BBR (with an average throughput
of 49.07Mbps). Moreover, we observe that the advantages of
BBR and Gemini over Cubic are reduced as the throughput
increases, indicating that Gemini and BBR can boost the
throughput of flows with poor network environments while
the three perform similarly with better network environments.

2) CPU Overhead Comparison: In addition to transmission
performance, memory and computation consumption are an-
other two major concerns for the deployment in production
networks [7]. Since existing learning-based algorithms cannot
be directly deployed over production services and for the
sake of performance benchmarking, we further compare the
CPU and memory usage of existing algorithms using a virtual
machine (8-core, 16-thread 3.6GHZ CPUs and 8GB RAM)
with 1Gbps link capacity. We vary the number of concurrent
flows and summarize the corresponding CPU and Memory
consumption in Fig. 12. It is clear that the computation and
memory overhead of Gemini is comparable with Cubic and
BBR while existing learning-based CC algorithms suffer order
of magnitude higher consumption of CPU and memory.

3) Booster versus existing black-box optimization algo-
rithms: We also compared the performance of Booster with
existing black-box optimization algorithms in the production
network over another 192-hour period experiment (Fig. 13).
We find Booster achieves around 3% higher average through-
put than standard BO. This confirms the advantage of Booster
due to its ability to incorporate the impact of hidden variables
on the performance objective. Moreover, our further investi-
gation reveals that the TPE, OnePlusOne, and SRBF usually
fail to converge to stable control parameters in production
networks, which indicates further optimization is needed for
the applications of these algorithms to production networks.

4) Apply Booster to Proprietary TCP: The divide-and-
conquer design of Gemini enables its applications to any other
TCP (CC) for performance optimization. In this section, we
further apply Booster to a proprietary TCP used by a top CDN
service provider for a mobile application downloading service.
Specifically, we conducted a month-long A/B test between

the proprietary TCP and Booster-accelerated proprietary TCP
with two groups (denoted by A and B in Fig. 14) of servers
across China. At the end of the A/B test, over 20 million
requests are served by each group. We summarize the daily
average throughput of each group and its corresponding ratio
of slow flows (defined as the ratio of the number of flows with
throughput below 100KB/s over the total number of flows) in
Fig. 14. Though the load balancer enables an equal share of
requests for each group, we switch the CC for each group
on day 7 to eliminate the potential system bias in production
networks. From the figure, we can see Booster-accelerated
proprietary TCP consistently outperforms proprietary TCP
with higher throughput (2% improvement on average) and a
lower ratio of slow flows (3.5% improvement on average).

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a practical learning-based Inter-
net congestion control algorithm Gemini and deployed it in
production networks successfully. Extensive evaluations over
both emulated and production networks show that Gemini can
significantly outperform existing learning-based algorithms in
fairness, friendliness, and CPU/Memory overhead and out-
perform traditional algorithms in transmission performance.
Applying Gemini to more Internet applications (e.g., video
streaming and video communications) and more different
network environments (e.g., datacenter network) will be con-
ducted in the future works.
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