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Abstract—Remote Direct Memory Access has been widely
adopted in distributed storage systems. However, it only supports
unicast operations, which degrades the performance significantly
for data replication because of bandwidth waste and CPU
overhead. To address the problem, we propose MC-RDMA, a
distributed and reliable multicast RDMA. It is compatible with
existing unicast RDMA but supports lazy packet replication
with reliable RDMA multicasting. The key idea of MC-RDMA
is utilizing in-network programmable switches to build a NIC-
transparent reliable multicast protocol for RDMA. MC-RDMA
combines the address information of the IP and RoCEv2 into a
sender-initialized multicast routing protocol. Besides, it synchro-
nizes the hardware transmission states of multiple receivers by
merging ACKs and NAKs. To verify the effectiveness of MC-
RDMA, we implement it with Mellanox ConnectX-6 commodity
RNICs and Intel Tofino P4 programmable switches. Experimental
results show that MC-RDMA can double the sender bandwidth
utilization and reduce the CPU overhead significantly compared
to unicast-based RDMA replications. Moreover, it reduces the
storage request latency by ˜30% with realistic workloads and
decreases the training time by ˜50% in the distributed training
system.

Index Terms—RDMA, Storage System, Multicast, Data Repli-
cation

I. INTRODUCTION

Remote Direct Memory Access (RDMA) [6]–[8], [22] has

been widely used in distributed storage systems [32], [42],

[46], [48]. It provides a way to directly access the remote Non-

Volatile Memory (NVM) storage medium [18], [29]. It per-

forms data operations such as replication and modification [2],

[11], [36], without involving the target host’s operating system,

thus minimizing the overhead of software processing during

data transmission.

Currently, commodity RDMA Network Interface Card

(RNIC) only supports unicast operations [7], and the per-

formance of RDMA-based data replication is lagged by two

drawbacks of unicast traffic: data redundancy and independent
replicating states. On the one hand, data redundancy in

multiple replications incurs a large amount of bandwidth waste

on the network links to replica servers. For example, in

a three-replica primary-backup replication, the unicast-based

replication wastes 50% bandwidth of the primary server uplink

to transfer redundant replicated data to two backup replicas

(§II-A). On the other hand, the independent replicating states

reduplicate the CPU overhead during transmission, since the

CPUs independently post the request, poll the completion, and

keep tracking the delivery status of each unicast replication.

The bandwidth waste and CPU overhead of unicast RDMA

in replication can be reduced by introducing multicast [13],

[16], [19], [31], [44] into RDMA. To make it efficient and

readily deployable, there are several additional requirements:

• Lazy data replication. Delaying data replication from

primary servers to the last points in the network, i.e.,
the replication should happen in the network as late as

possible along the network routing, thus saving most of

the bandwidth from transferring duplicated data.

• Reliable multicast RDMA operations. With reliable mul-

ticast RDMA operations, the sender CPU only needs to

post one single request and completion for each operation

instead of posting and tracking the delivery status of each

replication.

• Compatibility with RDMA-Capable NICs. The high per-

formance of RDMA benefits from its hardware-offloaded

protocol stack. To unleash the full potential of the

hardware performance of RNICs, the multicast RDMA

should be highly compatible with the current RDMA

hardware.

To satisfy the requirements, the RDMA multicast system

should address the following challenges. First, achieving lazy

data replication requires the packet multicast protocol to

support multi-level replications. The replicating switches are

the bifurcated points of network paths to the receivers in a

multicast group. The multi-level replication is similar to the

IP multicast source tree [47], but the address information (IP,

UDP, and RDMA) of the multicast packets should be modified

during the replication. Second, to provide reliable multicast

RDMA operations, the transport protocol should be carefully

designed since RDMA operations have special semantics.

For example, since the RDMA WRITE modifies the remote

memory without passing the server CPU, duplicated software

retries of RDMA WRITE may modify remote memory silently.

Third, to be compatible with current RNICs, the key parts of

multicast RDMA should follow the design and implementation979-8-3503-0322-3/23/$31.00 ©2023 IEEE
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of unicast RDMA, including the hardware-offloaded reliability

and congestion control.

In this paper, we present MC-RDMA, an reliable multicast

RDMA that supports multicast message delivery and memory

operation. It is designed for the distributed system with a high

demand for data replication. Currently, MC-RDMA mainly

focuses on the storage system with multiple data replicas

to tolerate occasional node failures. However, we also show

that MC-RDMA has the potential to accelerate communication

beyond storage systems, such as the distributed training system

(in §VII-F).

The key idea of MC-RDMA is utilizing in-network pro-

grammable switches to build a NIC-transparent reliable multi-

cast protocol for RDMA. MC-RDMA combines multicast tree

building and modification rule configuring in the multicast

Bifurcation procedure (§IV-B). Meanwhile, it utilizes unicast

RDMA hardware implementation to ensure the correctness

of CPU-bypass RDMA memory operations at the transport

layer. Finally, it synchronizes the hardware transmission states

of receivers with in-network programmable switches [10] by

designing ACKs merging and NAK processing according to

the current RDMA protocol (§IV-C).

We implement MC-RDMA with Mellanox ConnectX-6

commodity RNICs and Intel Tofino [24] P4 programmable

switches (§VI). In theory, MC-RDMA can support up to 3

(7) replications on Intel Tofino (II) and at least 320 hosts in

distributed storage systems such as Ceph [48]. The experi-

mental results show that MC-RDMA has similar performance

to unicast RDMA with packet loss and the same capability

of dealing with network congestion while achieving different

fairness. In terms of communication acceleration, our results

demonstrate that MC-RDMA can double sender bandwidth

utilization and reduce CPU overhead significantly compared

to unicast-based RDMA replications. It reduces the storage

request latency by ˜30% with realistic workloads. Moreover,

the preliminary result shows that it cuts the training time by

˜50% in the distributed training system.

In a nutshell, this paper makes the following contributions:

• We propose the novel idea of fully distributed reliable

multicast RDMA, to reduce bandwidth waste and CPU

overhead of replications in the distributed system.

• We introduce programmable switches to design reli-

able in-network multicast RDMA, which achieves trans-
parency to endpoint RNICs and compatibility with the

reliability and congestion control mechanism of unicast

RDMA.

• We implement MC-RDMA with Mellanox ConnectX-6

RNICs and Intel Tofino P4 programmable switches. The

evaluation results show that MC-RDMA improves band-

width utilization and reduces CPU overhead significantly.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce two popular unicast-

based replication mechanisms in distributed storage systems

and show the bandwidth waste and CPU overhead of unicast-

based replications (§II-A). Concentrating on the transport

protocol for distributed storage systems, we then give a brief

duplicate 
traffic

Fanout replication Chain replication

extra 
latency

duplicate 
traffic

primary backup backup primary backup backup

Fig. 1. The bandwidth duplication and latency overhead in unicast-based
replications.

introduction to the user interfaces, transport primitives, and

transport protocols of RDMA (§II-B). Based on the back-

ground knowledge, we discuss the opportunities (§II-C) and

challenges (§II-D) for reliable RDMA multicast in datacenters.

A. Replications in Distributed Systems

Primary-Backup Replication (PBR) is one of the most pop-

ular replication mechanisms in distributed storage systems [5],

[12], [21], [48]. In PBR, one replica server is selected as

the primary, and the remaining replica servers are called

secondaries or backups. The read/write requests from clients

are firstly sent to the primary node and then forwarded to

secondaries. The replication of data from primary to backup

may take many forms, e.g., fanout [17] and chain replication

(CR) [4], [38]. As illustrated in Figure 1, in fanout replications,

the primary distributes data to the replicas in parallel and keeps

checking the replicating states of the replicas. While in chain

replication, data are replicated from the previous replica to

the next one in a chain. Similarly, the parameter server in the

distributed machine learning system iteratively synchronizes

the updated model to all workers in the same group. It involves

a larger-scale data replication than PBR, because of the larger

number of workers belonging to a parameter server. The data

replication from the parameter server to workers can also be

conducted in the fanout/CR form.

Traditional unicast-based replication has inherent bandwidth

waste because of duplicated data transfer and CPU overhead

in the delivery of multiple replicas. Figure 1 demonstrates

the bandwidth waste and latency penalty of the unicast-

based fanout and chain replication. Fanout replication has

a bandwidth bottleneck at the sender uplink since it sends

the same data replications to two different receivers. Chain

replication overcomes the bandwidth bottleneck at the sender

by utilizing intermediate nodes for forwarding replica data.

However, chain replication also has the longer replicating

latency that is proportional to the number of replications,

which is not preferred in most latency-sensitive applications.

B. RDMA Protocol

Transports and operations. RDMA provides two kinds of

popular communication interfaces: one-sided memory opera-

tion (RDMA READ/WRITE) and two-sided message sending

(RDMA SEND). Queue Pair (QP) is the entity of an RDMA

connection on a network endpoint. Each Queue Pair consists

of a Send Queue (SQ) and a Receive Queue (RQ). Users

register memory buffers to the RDMA hardware driver and

obtain read/write keys for registered memory. To initiate an

RDMA WRITE operation of writing the data locating at the

Authorized licensed use limited to: Nanjing University. Downloaded on December 25,2023 at 02:24:24 UTC from IEEE Xplore.  Restrictions apply. 



local address at buffer of size length to the remote addr
memory address, the user posts Work Requests (WRs) with

parameters 〈addr, key, buffer, length〉 to the RNICs. The

keys are verified by the local and remote RNICs for memory

access protection. Users do not need to provide addr for

RDMA SEND operation because the data will be written into

the memory pointed by the request that is pre-posted by the

remote CPU into the remote RQ.

Reliability. RDMA protocol [6]–[8] dictates that the re-

quester and responder should maintain the Packet Sequence

Number (PSN) and expected Packet Sequence Number (ePSN)

for each packet, respectively. The responder in Reliable Con-

nection (RC) mode only accepts packets with PSN correctly

matching ePSN and increases ePSN after successful receiving.

The responder generates the coalesced ACK that contains the

largest successfully received PSN to the requester. For exam-

ple, ACK = 5 informs that the responder has successfully

received all the packets with PSN ≤ 5. Duplicated packets

are silently dropped or re-processed according to the operation

types [7]. The responder sends back a NAK packet containing

the ePSN N to the requester when it receives an out-of-

sequence packet. The requester then retransmits the packets

ranging from the ePSN N to the largest PSN ever sent, which

is also called Go-Back-to-N (GBN).

Congestion control and flow control. Current Ethernet

and IP-based datacenter deploys IP-routable RDMA over
Converged Ethernet (RoCEv2) [8]. DCQCN [49] is the built-

in congestion control algorithm for RoCEv2 in Mellanox

ConnectX RNICs. DCQCN uses ECN as the congestion signal:

packets are marked in the egress queues of the switch ac-

cording to the queue lengths. Once receiving an ECN-marked

packet, the receiver sends Congestion Notification Packets

(CNPs) to the sender to cut the flow rate. The deployment

of RoCEv2 usually cooperates with the Priority-Based Flow

Control (PFC) [23], a link-layer flow control mechanism that

prevents packet drop due to congestion. A key design in PFC

is reserving headroom buffers for in-flight incoming packets,

which ensures that the switch buffer will not overflow.

C. Opportunities for Reliable Multicast RDMA in Datacenters
Today’s datacenter network provides new opportunities for

multicast RDMA protocol. First, for the distributed storage

systems, the serving goal of multicast has shifted from large

object delivery to many receivers, to data replication among

a small group of replication nodes. The number of replication

nodes in a replicated group, e.g., Placement Group (PG) in

Ceph [48], is small and fixed (e.g., 3 replicas), which restricts

the number of receiver states in multicast. Besides, the total

number of PGs on each node is also limited (e.g., 100 PGs per

storage node is recommended [14]), which makes it possible

to store and process the multicast groups inside the network.

Second, the low latency and rare packet loss [30], [50] in

datacenter networks reduce the complexity of the multicast

protocol. On the one hand, since packet loss is rare in a lossless

network (e.g., with PFC [23]), the out-of-synchronization re-

ceiver states are very rare. On the other hand, the ACK/NAKs

can be forwarded back to the sender in time due to the low

latency of RDMA. Thus, simple synchronization mechanisms

for receiver states and retransmission mechanisms (e.g., GBN)

can still achieve high performance. In this environment, the

utilization of intricate on-endpoint retransmission mechanisms

or in-network cache is deemed unnecessary [13].

D. Challenges
Multi-level replication with packet modification. To

achieve lazy data replication, i.e., delaying data replication

along the network path as last as possible, the multicast

protocol should support multi-level replication on switches.

The switches also have to modify the transport headers of

replicated packets to make them correctly forwarded to the re-

ceivers. The IP-based multicast [25], [34] supports lazy packet

replication but is hard to co-design with the transport-layer

protocol, i.e., RDMA. Besides, some complex IP multicast

routing mechanisms such as broadcasting and pruning are not

needed in a distributed storage system, where the number of

replications does not change.

The reliable transport protocol for RDMA opera-
tions. Different from socket-based transport protocols such

as TCP and UDP, the special semantics of RDMA operations

incur more constraints in the transport layer. For example, the

RDMA protocol ensures that the retransmission of RDMA

WRITE will not be mistakenly written into the memory again

after the completion of the original WRITE operation. How-

ever, since the RDMA WRITE modifies the remote memory

without the involvement of the server CPU, software retries

for RDMA operations may cause the data integrity problem.

With the reliable multicast semantic, it should ensure the same

results for multiple remote nodes.

Following unicast RDMA’s design and implementa-
tion. The high performance of RDMA benefits from

its hardware-offloaded protocol stack. Thus, the multicast

RDMA should be highly compatible with the current RDMA

hardware. Most multicast protocol designs should follow the

implementation of unicast RDMA, including the hardware-

offloaded reliability and congestion control (CC). However,

the reliability of multicast differs from unicast since the

receiving states of the packets from different receivers may

be inconsistent. Besides, the CC of multicast flows is also

different since the flows belonging to a multicast group may

have their own congestion states on different paths. Finally,

the non-programmability of RNICs is the biggest challenge

for building the reliability and congestion control of multicast.

III. OVERVIEW

In this section, we present the building blocks and basic

workflow of MC-RDMA (§III-A) and show the key ideas

in MC-RDMA that solve the challenges for reliable multi-

cast RDMA, including lazy data replication (§III-B), reliable

multicast RDMA operations (§III-C), and compatibility with

RDMA-capable NICs (§III-D).

A. Building Blocks and Basic Workflow
Figure 2 demonstrates the functionalities of control and data

plane of MC-RDMA. The data plane of MC-RDMA consists

of hosts with commodity RNICs and programmable switches

(the left pink blocks). MC-RDMA does not modify RDMA
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Multicast 
Group 

Management

RDMA 
Operations

Congestion
Control

Reliability

Packet
Replication

RDMA 
Operation 
Translation

Congestion
Signal

Aggregation

ACK/NAK
Merging

RDMA
Packets

RDMA
CNP

RDMA 
ACK/NAK

RDMA QP
Handshake

Multicast
Routing

Bifurcation
Decision

TCP/
UDP

TCP/
UDP

Control PlaneData Plane

Fig. 2. MC-RDMA overview. The first/second row includes the elements in
the physical host/switch, respectively. The first/second column includes the
elements in the logical data/control plane, respectively.

TX/RX protocols on the host and provides multicast RDMA

operations with reliability mechanisms and congestion control,

based on the functionalities of unicast RDMA provided by

commodity RNICs. The programmable switches are respon-

sible for recognizing, replicating RDMA data packets, and

translating RDMA operations. The programmable switches

adapt the reliability and congestion control of unicast RDMA

to the multicast traffic by aggregating congestion signals and

merging ACK/NAKs.

The control plane of MC-RDMA is running on CPUs

of hosts and switches (the right green blocks). It provides

multicast group management and multicast connection estab-

lishment for multicast traffic. Specifically, the hosts connect

and disconnect QPs in a multicast group. Also, it updates

multicast group information and configures the multicast

tables to the control plane of switches. The control plane of

switches calculates the multicast routing and makes bifurcation

decisions for replication.

The basic workflow of MC-RDMA is as follows: (1).

Multicast group construction. The application constructs a

multicast group including a sender and multiple receivers.

(2). Connection establishment. The application sends the

multicast request to the Connection Management Daemon
(CMD) residing at the sender server. CMD handshakes with

all the receivers, exchanging and configuring the initial states.

(3). Switch configuration. CMD runs the multicast routing and

configures the corresponding switches in the control plane. It

helps to generate tables to guide the switch to accomplish key

functionalities in the data plane, such as packet replication,

ACK/NAK merging, etc. (4). Data transmission. The sender

performs RDMA unicast to one of its receivers transparently.

The data packets and ACK/NAK/CNP packets are manipulated

in the network based on the switch configuration.
B. Lazy Data Replication

To achieve lazy replication for RDMA packets, MC-RDMA
combines the address information of both the IP and RoCEv2

into a sender-initialized multicast routing protocol. First, MC-
RDMA distinguishes the multicast group with the source IP

and a virtual QP number that is unique on each server. Since

ACK, NAK, and CNP packets in RDMA protocol do not have

the source QP number in the protocol headers [7], the destina-

tion QP number (i.e., the source QP number of multicast data

packets) must be used in the multicast group ID to identify

the multicast group. Second, MC-RDMA builds a multicast

routing protocol based on unicast routing along with packet

replication and address modification. Packet replications are

only configured on the bifurcation points where receivers

in the multicast groups have different next hops. Address

modification is set on the last replication points to reduce the

number of switches that stores the multicast information.

C. Reliable Multicast RDMA Operations
For each multicast group that contains a sender and multiple

receivers, MC-RDMA establishes a connection that contains

one QP on the sender (sender QP) and one QP on each receiver

(receiver QPs) in the multicast group. The RDMA operations

posted on the sender QP will be multicast to all receivers. For

RDMA SEND/WRITE operations, the completion event of the

send queue on the sender indicates that the operation has been

successfully acknowledged by all receivers.

As mentioned in §II-D, the reliable transport protocol

of RDMA operations should be carefully designed because

of their special semantics. Thus, MC-RDMA utilizes the
hardware-offloaded reliability of unicast RDMA, which is

mature and has been verified by unicast traffic, to build the

reliability of multicast RDMA. This is achieved by synchro-

nizing unicast transmission states (§III-D).

D. Compatibility with RDMA-Capable NICs
Bundling RDMA QPs. The key step in establishing a

unicast RDMA connection is exchanging the IP addresses,

QP number (QPN ), and initial SQ/RQ packet sequence

number (PSN ) between the sender and the receiver. With

these attributes properly set into hardware, the SQ and RQ

in the QP can transmit and receive packets with headers that

carry corresponding information. Thus, we can bridge an SQ

with multiple RQs by modifying the information used in the

packets to different destination RQs. A multicast connection

is established on a sender QP and multiple receiver QPs.

The destination IP address of the send QP is the actual

address of one of the receivers. On receiving these multicast

packets, the packets are recognized, replicated and modified

on each bifurcated switch (i.e., the switches on the bifurcated

points of paths to the receivers) to be properly routed to the

receivers. When the replicated packets arrive at the receivers,

these packets are the same as the unicast packets. Later, the

receivers construct the ACK/NAK packets, and the destination

IP address and the destination QP number of the receiver

QPs are exactly those of the sender. Thus the receivers need

no modification. The PSN of QPs are configured to match

the packet sequence verification by the RX state machine

on RNICs. As the PSNs of packets multicast to the server

RQs are synchronized, the global states of server RQs are

synchronously changed when receiving packets.

IV. DESIGN

We present the detailed designs of MC-RDMA in this

section.

A. Basic Endpoint Design
MC-RDMA user interface. MC-RDMA operates RDMA

QPs in the same manner as the unicast traffic on the data

path. After the connection is established, the user can post
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RDMA operations (RDMA SEND and WRITE) into the

sender QP. RDMA READ operation is not supported since it

is meaningless within the multicast semantic. The receivers

should post receive buffers for receiving RDMA SEND
operations and register memory addresses to the switches for

RDMA WRITE address translation. The sender polls the

completions from the completion queues as for unicast traffic.

Different from RDMA unicast, each completion indicates that

the posted operations are finished on all the replications.

Establishing connections. Each server runs a CMD that

is responsible for local multicast group management and

multicast connection establishment. It works as an agent

to manage multicast connections while keeping transparent

to the commodity RNIC. CMD can be implemented in

RDMA CM kernel module if the user applications use

RDMA CM to establish connections. When the sender tries

to connect a multicast group 〈SRC,DST1, DST2, ..., DSTN 〉
including a sender SRC and N receivers DSTi, it

sends a request that includes multicast group information

〈SRC,DST1, DST2, ..., DSTN 〉 and the handshake informa-

tion 〈SRC,QPN,PSN〉 of the source QP to its CMD. Then,

the CMD connects to destination QPs with the handshake

information and allocates an ID for the multicast group

MC ID, which is also the virtual destination QP number

of the sender QP. In this way, the behavior of CMD is

transparent to the sender QP. To synchronize the initial states

of receiver QPs, we configure the initial PSNs of all QPs

to the same value. After the handshakes with receiver QPs

are done, the CMD queries the bifurcated switches from the

control plane of MC-RDMA (see §IV-B). Then, it updates the

multicast information 〈SRC,MC ID〉, destination address

and QP numbers 〈DST1, QPN1, ...DSTN , QPNN 〉 to the

bifurcated switches. Also, it sets the ACK aggregation in-

formation 〈DST1, QPN1, ...DSTN , QPNN , SRC,QPN〉 to

the Top of Rack (ToR) switch of the sender. Later, CMD

returns the handshake response 〈DST1,MC ID,PSN〉 to

the sender QP. After configured with the handshake response,

the connection establishment is completed and the sender is

ready to send RDMA operations.

B. Lazy Data Replication
Packet multicasting. The replication and modification of

packets are processed by programmable switches on the data

plane, such as the Barefoot Tofino programmable switches in

our implementation. With the multicast rules configured by the

control plane, packets with 〈SRC,MC ID〉 are replicated

and forwarded to different egress ports by utilizing the packet

replication engine in the Traffic Manager of the switches. The

destination IPs and QP numbers of the replicated packets are

modified according to the multicast key (〈SRC,MC ID〉)
and the identification of the replication.

Multicast routing and bifurcation. The routing

and bifurcation of MC-RDMA are distributed on the

control plane of in-network switches. For each multi-

cast group with key 〈SRC,MC ID〉 and destinations

〈DST1, DST2, ..., DSTN 〉, the control plane runs multicast
bifurcation procedure (algorithm 1) to locate the bifurcated

Algorithm 1: Multicast Bifurcation Procedure

Input: Mulitcast key 〈SRC,MC ID〉, destination

vector 〈DST1, DST2, ..., DSTN 〉
Output: Multicast tables built on bifurcated switches

1 Function Bifurcation(〈dst1, ...〉, switch s):
2 Dvv ←− 〈〈dst1〉〉
3 foreach dsti in 〈dst2, ...〉 do
4 r ← FALSE
5 foreach Di in Dvv do
6 if NextHop(s,dsti) = NextHop(s,Di[0])

then
7 Di.push back(dsti);
8 r ← TRUE; break;

9 end
10 end
11 if !r then
12 construct a destination vector D;

13 Dvv.push back(D.push back(dsti));
14 end
15 end
16 if Dvv.size() > 1 then
17 foreach Di in Dvv do
18 Add rule: replicate packets that match

〈SRC,MC ID〉 to NextHop(s,Di[0]);
19 Add rule: destination IP ← Di[0];

20 if Di.size() = 1 then
21 Add rule: destination QPN ← the

QPN of Di[0];
22 end
23 end
24 end
25 foreach Di in Dvv do
26 if NextHop(s,Di[0])! = Di[0] then
27 Bifurcation(Di,NextHop(s,Di[0]));

28 end
29 end
30 End Function
31 S ← NextHop(SRC,DST1)
32 Bifurcation(〈DST1, ..., DSTN 〉,S);

33 return

switches, configure the rules of multicast, and modify the

corresponding packets. Since each bifurcation creates one or

more new replicas of the original multicast packet that costs

additional bandwidth, the basic principle of bifurcation is

bifurcating as late as possible, i.e., lazy replication men-

tioned before. Function Bifurcation is the part of the

algorithm running on switch s that decides how the multicast

〈src,mc id〉 〈dst1, ...〉 bifurcates in the network.

As shown in algorithm 1, Dvv represents a vector of Dv

and Dv is a vector of destinations dst that have the same

next hop on switch s. In the initial state, Dvv only contains a

vector D1 that has one element dst1, which means Dvv has

one next-hop group initially (line 2). Later, each dsti will be
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attempted to be contained in a vector Di sequentially (line

3–15). Specifically, if the next hop of dsti is the same as

that of a vector Di, dsti will be merged into Di (line 5–10).

On the contrary, if the next hops of all Di are different from

that of dsti, a new vector Di will be constructed and the

elements in it share the new next hop (line 11–14). Note that

we use a boolean variable r to decide whether to construct a

new vector and its initial value is False. Then, if there are

multiple next-hop groups on the switch, the control plane will

add the multicast rule “the packets should be replicated on the
switch” and the modification rule “modify the destination IP
address of replicated packets to one of their groups” to the

data plane (line 18–19). If a next-hop group only contains one

destination, it means this destination shares no common links

with other multicast packets. Thus, the control plane should

add the rule of destination QP number modification to match

the real QP number at the receiver (line 21). The matching key

of these multicast and modification rules is the 〈src,mc id〉
fields in the packet header. The destinations in the same next-

hop group are sent to the next-hop switches as the input to

execute Bifurcation iteratively (line 27). The algorithm

starts Bifurcation at the ToR switch of the sender (line

31–32) and traverses the multicast tree until the destinations.

C. Transmission States Synchronization
ACK/NAK merging. The ACK merging is based on the co-

alescing ACK mechanism and the retransmission mechanism

that RDMA adopts. Since each ACK acknowledges all the

packets with smaller PSNs than the ACK carries, the merged

acknowledgment state of the receiver QPs in a multicast group

is the minimum PSN of all the ACKs. The switch records the

ACKs of each receiver QP in a multicast group and takes the

one with the minimum PSN as the response to the sender. The

challenges of implementing the ACK merging strategy include

the one-time data access and data isolation among pipelines
features of programmable switches.

One-time data access. In P4 programmable switches,

packets are processed with match-action tables, while each

table can only be accessed with one SALU operation (read

or swap) in one stage. Therefore, in our design, the switch

locates the incoming ACK’s ordered number in the multicast

group and updates the recorded ACK number from the same

receiver with the new value without reading it. Since the ePSN

of the receiver QP is monotonously increasing, updating the

ACK record from the same receiver without comparing it to

the old value is always correct. Then the ACK number is

compared to the recorded ACK numbers of other receiver QPs

in the multicast group. If the ACK number is the smallest

one, its SRC and QPN will be modified by the switch to

match the verification on the sender. Later, this ACK packet

will be forwarded to the sender. For example, for records

〈ACK1 = 4, ACK2 = 2, ACK3 = 5〉, the ACK number

from the second receiver ACK ′
2 = 4 replaces the recorded

ACK2 without comparing and is compared with the other

recorded ACK numbers ACK1 = 4, ACK3 = 5. Since it is

the smallest ACK, ACK = 4 is forwarded to the sender QP.

Data isolation among pipelines. Today’s programmable

switches utilize multiple parallel pipelines to meet high packet

processing rates [45]. However, since the switch hardware

resources are isolated among ports on different pipelines,

the processing logic, and metadata used in the procession

of different pipelines are not shared [45]. Thus, stateful

operations that cross pipelines are not able to implement in

general. Although MC-RDMA merges ACKs that come from

different ingress ports on different pipelines, all the ACKs are

sent to the same port connected to the sender. Thus, MC-
RDMA places the processing logic of ACK merging on the

egress port to avoid data isolation. Making ACK aggregation

on the same egress port is the other reason why we place ACK

merging on the sender ToR switches.

NAK process. In RDMA, the receiver generates a NAK to

the sender when it receives a packet with a larger PSN than

expected. A NAK represents both a negative acknowledgment

for the PSN it carries and acknowledgments to previous
PSNs. Therefore, directly forwarding a NAK to the sender

QP may mistakenly acknowledge some packets of other sub-

flows in the same multicast group and the NAK should be

handled carefully similar to the ACK. MC-RDMA modifies

the number of the NAK to the current merged expected

PSN (i.e., min{NAK − 1, ACKs} + 1) and forwards it to

the sender QP. For example, for recorded ACKs 〈ACK1 =
1, ACK2 = 2, ACK3 = 5〉, NAK2 = 4 will be modified

to NAK = min{3, 1, 2, 5} + 1 = 2 to reply to the sender

QP. This modification keeps the correctness of the multicast

protocol but may fall back more than the ideal, which causes

some throughput loss. The maximal throughput loss caused

by NAK fallback is determined by the differences of ACKs

(max{ACKs} −min{ACKs}), which attributes to the RTT

difference of the paths to receivers. However, the throughput

loss caused by NAK fallback is endurable since packet loss is

rare in today’s datacenter and RTT difference is also small.

D. Congestion Control
Congestion signal aggregation. MC-RDMA utilizes the

entire hardware implementation of the unicast-based RDMA

congestion control (CC), i.e., DCQCN. Since MC-RDMA
bridges RDMA QPs without modifying the RDMA protocol

on the endpoints, each part of unicast congestion control still

works. The receiver RNIC generates CNPs according to the

ECN marking on the packets and sends them back to the

sender. Then the sender cuts the flow rate according to the

DCQCN algorithm implemented on the RNIC. The difference

between MC-RDMA CC and DCQCN is that it aggregates the

CNPs from all the sub-flows in the same multicast group. Note

that this may magnify the loss effect as all CNPs pass through

the switch directly and may cause overly throughput reduction,

which needs to be fixed in the future. However, the aggregated

throughput of all sub-flows is still considerable (verified in

§VII-C and §VII-D). All the CNPs from different multicast

receivers will be modified on the source IP address (to make

it valid to the sender QP) and forwarded to the sender.

The effect of multiple congested sub-flows. Since all

sub-flows in a multicast group are synchronized, the most
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severely congested sub-flow determines the flow rate of the

whole group. However, because MC-RDMA aggregates all the

CNPs from multiple sub-flows, the number of congested sub-

flows affects the convergence flow rate. Because DCQCN is

an Additive Increase Multiplicative Decrease algorithm, the

CNP receiving rate of two flows at the same congestion point

should be equal when the flow rates converge.

PFC configuration with packet replication. PFC reserves

headroom buffer for each ingress port of switches to prevent

buffer overflow caused by in-flight packets. Packets are repli-

cated by the traffic manager in the switch, which sits between

the ingress and egress ports. As a result, replication will not

impact the ingress ports and no additional headroom buffer

is required. Meanwhile, since an egress port can only receive

a replicated packet when replication occurs, the egress buffer

consumption is also mild for each egress port. Hence, the PFC

configuration for MC-RDMA can be configured the same as

that in the unicast scenario.

E. One-sided RDMA Operations
Memory address translation. Compared to two-sided

RDMA SEND operation, one-side RDMA operations (READ
and WRITE) that bypass remote host CPUs are preferred in

RDMA systems to further decrease latency and CPU overhead.

However, one-sided RDMA operations require the remote

address of the memory region, which is generally different on

different multicast receivers. In MC-RDMA, the programmable

switches translate the memory address carried in the RETH
header of the first packet in each RDMA operation according

to the memory address translation tables. The receivers register

the memory region for RDMA and send the information of the

memory (the beginning address and keys) to the sender. The

sender gathers all the information of receivers and updates the

memory address offset offset to the local address and access

key, 〈offset, rkey〉 of each receiver, to the control plane with

algorithm 1. We use TCAM on the switches to support range-

based match for memory address translation, thus the maximal

number of terms of memory translation can be millions.

V. DISCUSSION

In this section, we discuss some practical issues of the

real deployment of RDMA multicast in datacenter, including

deployment scale of programmable switches and scalability.

A. Deployment Scale of Programmable Switches

The minimal deployment prerequisite of MC-RDMA in

RDMA clusters is that all the ToR switches are replaced with

programmable switches in order to achieve packet multicast

and ACKs merging. Bifurcation only occurs on the sender

and receiver ToR switches, which is decided by the position of

the receivers. The Bifurcation algorithm 1 should be modified

to adapt to the situation where the Bifurcation occurs on

a non-programmable switch. Compared to the network with

sole programmable switches, this deployment is more feasible

currently with the consideration of the cost and the switching

rate of programmable switches. Though the bandwidth dedu-

plication is not complete under this configuration, MC-RDMA
still saves the bandwidth inside racks and CPU overhead.

When only deploying programmable switches at the top

of each rack, the network multicast among leaf and spine

switches can also be achieved by replacing the Bifurcation of

programmable switches with IP multicast that is supported by

non-programmable switches. Accordingly, the programmable

switches and the Bifurcation algorithm should be adapted to

be compatible with the IP multicast protocols. Besides, the

IP multicast protocol must have a certain converge time when

adding a multicast group to support the connection establish-

ment of RDMA QPs. Some multicast routing algorithms, e.g.,
flooding and pruning, do not have such property. Supporting

existing IP multicast in MC-RDMA is our future work.

B. Scalability
The scalability of MC-RDMA refers to the ability to adapt

to the number of members in a multicast group and the

number of multicast groups in a storage cluster. In theory,

the Intel Barefoot Tofino programmable switches can support

at most 65535 members in each multicast group. However, as

we referred in §VI-B, the implementation of ACK merging

limits the number of receivers in the multicast group to 3

on Tofino (7 on Tofino II). Since the number of replications

is commonly limited in distributed storage (e.g., 2 or 3), the

number of multicast members is not a resource bottleneck.

With the limited number of replicas, the number of multicast

groups is also limited in distributed storage systems. If only

ToR switches are programmable switches, there are two types

of bifurcation on the ToR switches in three-replica primary-

backup replication: three replicas are under the same ToR

switch or the primary is under a ToR switch while two backups

reside in different ToR switches. Assumes that the distributed

storage systems are deployed with 16N servers under N
32-ports ToR switches, 16 servers reside in a rack in this

situation. The total number of bifurcation rules on each switch

is 16N × 16 × 15/2 = 1920N (three replicas are in this

rack) plus 16× 16N × 16(N − 1)/2 = 2048N(N − 1) (three

replicas are in different racks). Our implementation on Intel

Barefoot Tofino can support at most ˜40000 multicast rules

for three-replica multicast groups, which can support storage

64-80 hosts with all possible replication patterns at the same
time. As mentioned in §II-C, since some distributed storage

systems limit the number of replication group M on each host,

the number of bifurcation rules in the second case is reduced

from 2048N(N − 1) to at most 16M , in which case MC-
RDMA can support more than 320 hosts.

VI. IMPLEMENTATIONA. Control Plane

We implement an RDMA library (including the CMD

daemon) based on the communication library of Ceph [15]

with ∼8000 lines of code in C++ and the control plane of pro-

grammable switches with ∼3000 lines of code in Python/C++.

We use TCP as the out-of-band communication to exchange

multicast group information and handshake messages.

Table configuration. On the switches, we use BFRun-

time [41] to configure tables on the data path. The rules of

ACK merging and NAK processing in §IV-C are implemented

with static table configurations initialized at the start time
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of the switches. The multicast and modification tables are

configured at the time of connection establishment with the

Bifurcation algorithm 1.

Multicast routing and ECMP support. The routing and

bifurcation of multicast are built based on the unicast routing.

On our implementation of the Barefoot Tofino switches, the

routing table of unicast is configured on the ingress pipeline

while multicast is configured in the switch Traffic Manager,

thus the multicast and unicast can not share the same routing

table. When the control plane of a router reports a routing

change, it re-runs Bifurcation for all affected multicast

groups and spread it to downstream switches.

Equal Cost Multi-path (ECMP) [43] is supported by data-

center switches and used along with CLOS network topology.

RDMA only supports flow-level ECMP since it only tolerates

limited out-of-order packet delivery [37], [39], [40]. To support

ECMP with MC-RDMA, the NextHop in algorithm 1 can

return sets of switches, thus the key bifurcation rule (line 6),

should compare the sets of next hops rather than a single

next hop. Only when the two switch sets are the same, the

dsti will be joined to the Di. Otherwise, the new Di will

be constructed even if the two switch sets are partially equal,

which is determined by the ECMP group (line 11–14). Later,

the replication rules are added based on the Dvv set the same

as before (line 16–24). Finally, the switch will send bifurcation

inputs to all the next-hop switches in ECMP (line 31–32).

B. Data Plane
Our implementation is on Barefoot Tofino programmable

switches with ∼900 lines of code in P4.

Packet replication and ECMP support. The Barefoot

Tofino supports two-level replication. The first-level replica-

tion engine replicates the original packets into packets with

different Receiver IDs (RIDs). The second-level replication

replicates packets with different RIDs into different ports. At

each level of replication, a hash function can be configured to

randomly select members in this replication. We implement

multicast at the first-level replication and implement ECMP at

the second level of replication.

ACK merging. Our implementation on the Barefoot Tofino

switch supports at most 3 members in each multicast group

because of the limitation of processing stages of programmable

switches. Barefoot Tofino only has 12 stages, while adding

each group member in a multicast group adds 2 additional

stages for ACK merging procession. The number of the max-

imal multicast groups can be increased to 7 on the Barefoot

Tofino II switch since it has 20 stages. 2–3 multicast members

are enough for replication in distributed storage systems.

VII. EVALUATION

In this section, we investigate the performance of MC-
RDMA from the following perspectives: the basic performance

gain of MC-RDMA (§VII-B), the effectiveness of congestion

control (§VII-C), the endurance to packet drop (§VII-D), per-

formance with realistic workloads (§VII-E), and performance

on distributed training system (§VII-F). We use both a real

testbed and simulations (NS-3 [1]) in the evaluation. Fanout

and chain replication (CR) are developed for comparison.

Fig. 3. Testbed topology.

A. Experiment Setups
Configurations. Figure 3 shows the topology used in our

testbed and simulation. 8 servers with 100Gbps Mellanox

ConnectX-6 RNICs (A1–D2) are connected to a two-level

network. There are 4 100Gbps links connected from each

Barefoot Tofino switch to the leaf non-programmable switch

to ensure no blocking inside the network. The leaf switch is

a non-programmable switch.

In the experiments, we bind the sending thread (i.e., for

posting requests) and the RDMA thread (i.e., for polling and

processing completions) on the client to two CPU cores of

the same NUMA node. The reason for restricting the CPUs

on the same NUMA node is to accelerate the access of the

two threads to the same data in the send completions.

B. Single-client Latency and Throughput
As a basic performance validation, we measure the per-

formance of MC-RDMA and other unicast-based replication

protocols (fanout and CR) in a three-replica primary-backup

replication in different racks (A1 → D1, A2). Figure 4(a)

shows the latencies of different request sizes from 128B to

1024KiB with IO depth (the number of in-flight requests)

8. For small request sizes, CR has longer latencies because

it costs more replication hops to replicate the data while

MC-RDMA and fanout only need one RTT. However, for

large requests, the latency of fanout replication increases

significantly compared to MC-RDMA and CR since it costs

twice the bandwidth of the sender to send data to different

receivers. Figure 4(b) shows the sender RNIC bandwidth

consumption in the same test. The bandwidth consumption

of fanout is twice of the others until it saturates the link

rate. MC-RDMA consumes higher bandwidth compared to CR

with different request sizes since it provides accordingly larger

requests throughput with smaller request completion time,

which is shown in Figure 4(c). Note that the latency of MC-
RDMA in the experiment is always the shortest among all

the methods. This is because the CPU usage of MC-RDMA is

more than 2× effective with fewer request posting, completion

polling, and cross-connection data access. Due to the multicast

interface and semantic, MC-RDMA only operates on exactly

one QP, resulting in less software processing overhead.

C. Congestion Control
To validate the effectiveness of congestion control among

multicast and unicast flows, we start 3 flows (multicast flow

fm1: A1 → C1, D1, fm2: C1 → D1, A2, and unicast flow fu1:

D1 → A2) separately. Figure 5 shows the throughput of each

flow in testbed. The rates of flow fm1 decrease to 1/2 and
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(a) Single-client latency (testbed). (b) Single-client bandwidth (testbed). (c) Single-client throughput (testbed).

Fig. 4. Performance of MC-RDMA, CR and fanout in single-client tests.

Fig. 5. Fairness of congestion control
among MC-RDMA and RDMA unicast
flows (testbed).

Fig. 6. The converged rate of MC-
RDMA with the varied number of
congested subflows (simulation).

(a) Throughput (testbed). (b) 99th Latency (testbed).

Fig. 7. Throughput and latency of MC-RDMA, CR, and fanout with packet
loss on the long path (l).

1/3 when fm2 and fu1 start respectively, which reveals that

multicast flows can share bandwidth fairly with other flows.

As we discussed in §IV-D, the converged rate of a congested

multicast flow is affected by the number of congested sub-

flows. To verify our conclusion, we initiate a multicast flow

with 7 receivers A1 → B1, ..., D2 and observe the flow rate

with different numbers of congested sub-flows in simulation.

For example, with the configuration of 2 congested sub-

flows, there are two unicast flows C1 → B1, D1 → C1

that compete with the multicast flow on the downlinks to

B1 and C1. Figure 6 shows the throughput of the multicast

and unicast flows with 1–7 congested sub-flows with the

DCQCN configuration for 100Gbps [49] (Kmin = 50KB,

Kmax = 500KB, Pmax = 0.01). The theoretical values are

the predicted flow rate according to our discussion in §IV-D,

which conforms to the simulation results.

D. Packet Loss
To validate the correctness and effectiveness of the reliabil-

ity of MC-RDMA, we test with manual configuration of packet

drop on the switch. In this experiment, there exists a multicast

flow from A1 to B1, A2. We compare the throughput and

latency of different methods, by tuning the packet loss rates on

the long path (A1 → A2) in testbed. Figure 7(a) and 7(b) show

the test results with different packet loss rates on the long path.

In general, the results demonstrate that the throughput loss of

MC-RDMA with packet loss is similar to CR and fanout, which

is acceptable since packet loss in the datacenter is usually

rare. Because of the NAK fallback mechanism in MC-RDMA
(§IV-C), a larger packet loss rate can result in a slightly larger

performance penalty. For instance, with loss rates 1/4096 and

1/1024, the throughputs of MC-RDMA degrade more than

those of the others, but the differences are still negligible.

E. Distributed Storage System Workloads

To investigate the performance gain of MC-RDMA com-

pared to unicast RDMA in distributed storage systems, we test

MC-RDMA, CR, and fanout replication with two real work-

loads, i.e., the storage workload from Alibaba cloud [35] and

the web search workload released by the previous work [3],

in our large-scale simulation.

We use a 3-layer fat-tree network topology (k = 6),

consisting of 54 servers, to reveal the performance of all

methods at a large scale. Each server has a 100Gbps access

link and each ToR switch connects 9 servers in a rack. Each

link has a propagation latency of 500ns and the maximum

end-to-end round-trip latency is 6μs. 27 servers of the first

three racks are clients and the remaining 27 servers are storage

nodes. For write operation, a client first writes a message to a

primary storage node randomly, and then the primary storage

node replicates it to two other replicas in a multicast group.

For read operation, a client reads a message from one of

the replicas in a multicast group. The request message size

is generated according to the above two realistic workloads.

Each request is generated in a Poisson process and we vary

the inter-arrival time of requests to form different levels of

load. The proportion of the read and write requests is 1:1.

As depicted in Figure 8(a) and Figure 8(b), the average

latency of read operation of MC-RDMA is always the shortest

with different network loads. Specifically, the performance gap

between MC-RDMA and the others becomes larger with the

increase of the network load. This is because, with a larger

network load, network congestion occurs more frequently. The

saved bandwidth of MC-RDMA in the network can mitigate

the congestion and is used to accelerate the transmission from

the storage nodes to the client nodes, resulting in the shortest

latency. Moreover, we observe that the latency decrease of

web search workload is more obvious (˜30% latency decrease
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(a) Alibaba Storage Workload (simulation). (b) Web Search Workload (simulation).

Fig. 8. The average latency of read operation of MC-RDMA, CR and fanout in a k = 6 fat tree.

Fig. 9. The average training time for each iteration
with MC-RDMA, CR, and fanout (simulation).

compared to the others with network load 8). We attribute

this to the much larger message size of the Web Search

workload and the network link will be saturated easier with

this workload. Besides, we test the performance with the

ToR-only and full network support for multicast (discussed

in §V-A), using the Alibaba Storage workload, respectively.

The results show that the reduced average latency with full

network support can vary from 33% to 47% with different

network loads, compared to the ToR-only support. Note that

the latency of write operation of all methods is similar, and

we omit it for page limit.
F. Distributed Machine Learning Scenario

To show that MC-RDMA has the potential to accelerate more

data-intensive applications with data replication, we simulate

the distributed machine learning system with the same setup

in §VII-E, except for the communication pattern among nodes

and the message generation process.
We adopt the parameter server (PS) training framework to

simulate the training process of distributed machine learning.

In the PS framework, a parameter server aggregates gradients

from a group of workers, averages the aggregated gradients,

performs stochastic gradient descent to update the model, and

distributes the model to workers, iteratively. This process can

be simplified as the iterative collection of multiple fix-sized

messages from a group of workers and the delivery of the

message back to the workers. In our simulation, 5 servers in

a pod are used as the parameter servers and each parameter

server communicates with 6 servers in other pods regularly.

The messages in this simulation are of large sizes, i.e., 1MB,

4MB, and 8MB. This is because of the popular large model,

which is also confirmed by the related work [28] (the model

is partitioned into multiple 4MB messages).
As shown in Figure 9, MC-RDMA achieves the shortest

training time in an iteration, with all message sizes. Specifi-

cally, with a larger message size, the reduction of the training

time is more significant. For example, with 8MB message size,

the training time of MC-RDMA is almost half of the others, i.e.,
6.1 versus 11.3 and 10.8ms. This is because a larger message

can cause more severe congestion, which lags the gradient

distribution process dramatically. Therefore, MC-RDMA can

obtain better performance with a larger message size and a

larger scale of the training cluster, which is in agreement with

the trend of the development of machine learning.

VIII. RELATED WORK

IP-level Multicast Solutions. Traditional multicast pro-

tocols [13], [16], [19], [20] are designed for large object

delivery based on IP-level multicast. Thus these multicast

protocols require high scalability to the number of receivers.

For example, the ACK implosion problem [19], [20] claims

that since there can be as many acknowledgments as the

number of receivers, the efficiency gained by the use of the

broadcast of the network is negated in processing a large

number of acknowledgment packets [20]. Thus protocols are

designed as NAK-based [19], receiver-driven [13], [20], with

the help of in-network cache [13], or with novel labeling

mechanisms [16]. On the contrary, MC-RDMA is a transport-

layer multicast protocol that is highly compatible with an

existing unicast protocol, i.e., RDMA. Besides, it is designed

for datacenter distributed storage systems that have a small

and fixed number of members in a multicast group.

RDMA-based Multicast Solutions. Existing RDMA-based

multicast solutions are not designed to cooperate with in-

network switches sophisticatedly [9], [26], [27], [31], [33].

[26], [27], [33] use RDMA to boost the atomic multicast

in the distributed systems, which guarantees the order of a

group of message deliveries to multiple receivers. [9] uses

the chain replication, which involves an RNIC in each node

along the chain. The above approaches do not take advantage

of the in-network switches to save the scarce bandwidth of

the access link. [31] explores the one-sided RDMA multicast

in a centralized way. It relies on a centralized coordinator

to configure the programmable switches globally. In contrast,

MC-RDMA is a fully distributed approach and tackles unique

challenges, such as congestion control and routing algorithm.

IX. CONCLUSION

MC-RDMA is a distributed and reliable multicast RDMA

system that supports multicast message sending and memory

operations. It utilizes programmable switches to achieve in-

network reliable RDMA multicast, which reduces bandwidth

waste and CPU overhead in replication. Moreover, MC-RDMA
is highly compatible with current RDMA hardware and is

handy for current RoCEv2 deployment.
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