
Dilemma of Proactive Congestion Control Protocols
Kexin Liu, Chen Tian*, Xiaoliang Wang, Wanchun Dou, Guihai Chen

Nanjing University, China

ABSTRACT

Reactive congestion control (RCC) protocols have undergone decades
of evolution, where senders first send data packets and then back off
when congestion occurs. Recently, there has been a surge of inter-
est in proactive congestion control (PCC) that allocates bandwidth
before transmission. Despite its potential, we found that there are
certain scenarios where PCC may fall short. In this paper, we aim
to provide a comprehensive understanding of PCC and motivate
further exploration of this area. We conduct case studies and lever-
age NS3 simulations to compare state-of-the-art PCC with RCCs,
delving into the real dilemma of PCC.

CCS CONCEPTS

• Networks→ Transport protocols; Data center networks.

KEYWORDS

Proactive Congestion Control, Datacenter
ACM Reference Format:

Kexin Liu, Chen Tian*, Xiaoliang Wang, Wanchun Dou, Guihai Chen. 2023.
Dilemma of Proactive Congestion Control Protocols. In 7th Asia-Pacific
Workshop on Networking (APNET 2023), June 29–30, 2023, Hong Kong, China.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3600061.3603123

1 INTRODUCTION

Basic Logic of PCC. Reactive congestion protocols (RCC) have
undergone decades of evolution, where flows are first transmitted
and then back off when congestion is detected [4, 7]. While in
recent years, research communities are exploring the potential
advantages brought by proactive congestion protocols (PCC), where
data transmission is scheduled through bandwidth allocation from
receivers [1–3, 6].

A typical pure proactive design such as ExpressPass [1] proceeds
as follows. When a new flow arrives, the sender first notifies the
receiver and then waits for the token packets for further data trans-
mission. After receiving the notification, the receiver transmits
token packets to schedule the data transmission at a per-token
granularity. Tokens compete for bandwidth in networks instead
of data packets. And only the tokens that arrive at the sender can
trigger the transmission of the corresponding data packets. In this
way, the bandwidth used by senders is totally pre-allocated hence
the congestion can be eliminated.
PCC is not the ultimate solution.While PCC reduces the pos-
sibility of network congestion and provides a relatively steady

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
APNET 2023, June 29–30, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0782-7/23/06.
https://doi.org/10.1145/3600061.3603123

Table 1: PCC performance under different scenarios.

ExpressPass [1] Aeolus [3] NDP [2] Homa [6]

Traffic that
is composed of tiny flows × ×

In-network congestion exists
(i.e., load imbalance,

or oversubscribed topology)
× ×

Switch buffer size decreases ×
Incast traffic ×

network environment by bandwidth pre-allocation, the evolution
of PCC faces challenges. Recent works show that some PCCs (e.g.,
ExpressPass, and Aeolus [1, 3]) fall short in scenarios such as when
traffic is composed of tiny flows [3, 5]. We also found that other
PCC protocols (e.g., NDP and Homa [2, 6]) are not efficient in pro-
viding good performance when in-network congestion exists or
switch buffer size shrinks.
Our contributions. In this paper, we target understanding the
dilemma countered by state-of-the-art PCC to motivate further
exploration. Taking NDP andHoma as the study case, we first revisit
their core design. Then we conduct NS3 simulations to compare
NDP and Homa with other state-of-the-art PCCs (e.g., ExpressPass
and Aeolus) and RCCs (e.g., DCQCN and HPCC). We investigate
the cause of their unsatisfactory performance in these scenarios.

2 CASE STUDY

In this section, we deep dive into the dilemma encountered by
proactive congestion control (PCC) protocols. Table 1 summarizes
the scenarios where some PCC protocols fall short. It is worth
noticing that these scenarios are not uncommon in datacenter net-
works. ExpressPass and Aeolus do not perform well when traffic
is composed of tiny flows. NDP and Homa both can not handle
in-network congestion. Besides, Homa encounters a large packet
loss ratio when the switch buffer is reduced or under bursty traffic
such as incast. Since ExpressPass and Aeolus are already discussed
in previous works [3, 5], we mainly analyze NDP and Homa case
by case.
Evaluation settings.We use a leaf-spine topology with a 4:1 over-
subscription ratio. It contains 4 core switches, 10 ToRs, and 160
hosts (similar to that in [6]). Each ToR connects to hosts/cores via
100 Gbps links. The buffer size of switches is set to 32M by default
and the shared buffer model is used (except for NDP since it sets
a small drop threshold on the data queue to avoid a large queuing
delay). We use four types of realistic traffic widely used in previ-
ous works, covering a wide range of flow sizes [3, 6]. The flow
generation follows a Poisson arrival process with a load of 0.8.

2.1 NDP

The logic of NDP. The core design point of NDP is the determin-
istic drop, i.e., when the queue length exceeds a small threshold,
the packet payload is trimmed, and the header is sent to notify
the packet loss. It avoids timeout retransmission when packet loss
occurs. NDP assumes that congestion only occurs at the last hop of

176

https://doi.org/10.1145/3600061.3603123
https://doi.org/10.1145/3600061.3603123
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600061.3603123&domain=pdf&date_stamp=2023-09-05


APNET 2023, June 29–30, 2023, Hong Kong, China Liu.et al.

(a) Memcached. (b) Web Server. (c) Cache Follower. (d) Web Search.

Figure 1: Performance comparison under an oversubscribed topology. The deep/light color for each bar represents the

average/99th-tail value, respectively.

the network. It only focuses on non-blocking topology and mean-
while uses per-packet source routing to avoid congestion caused
by load imbalance. Hence, data packets are simply pulled based on
the link rate of the receiver.
NDP can not handle in-network congestion. The mechanism in
NDP is effective against congestion at the last hop of the network,
but it does not address congestion at the network core. In scenar-
ios where persistent congestion exists at the core switches, e.g.,
under oversubscribed topology or load imbalance occurs, sched-
uled data packets could overwhelm the bottleneck. Considering
an oversubscribed topology where queue length increases at the
fan-in point, NDP actively trims the payload of data packets when
the queue length exceeds the preset threshold. The receiver then
sends back PULL packets, intending to receive packets at its link
rate. All receivers send PULL packets distributedly, without coordi-
nation. Given that the topology is oversubscribed, when there are
several receivers transmitting PULL packets simultaneously, data
triggered by PULL packets could build up at the fan-in point again.
It exaggerates in-network congestion. Meanwhile, a relatively small
packet-trimming threshold induces a massive packet loss further,
which wastes the bandwidth and prolongs the FCTs of flows. When
the average flow size is relatively large, the pulling phase dominates
and could result in severe congestion. As shown in Figure 1, under
Cache Follower and Web Search workloads which are composed of
relatively large flows, NDP crashes. The FCTs of NDP are extremely
large, i.e., several orders of magnitude than related works.
Per-packet load balancing worth reconsidering. NDP uses per-
packet source routing to spray the packets to reduce in-network
congestion. It makes the packet pulling more like a scheduling
mechanism than a bandwidth allocation since a PULL packet and its
corresponding data could pass through a different path. In addition,
practical concerns are that it can result in packet reordering which
challenges the design of hosts’ NICs. It requests NICs to provide a
large buffer to handle re-ordered packets.

2.2 Homa

The logic of Homa. In Homa, packets are assigned with different
priorities according to the remaining size of their belonging flows.
Packets with a high priority are scheduled first at sender hosts
and then queued in a high-priority queue in switches. When the
receiver receives data packets, it constrains the number of active
flows. Tokens are sent to active flows based on a data-driven behav-
ior. With the help of prioritizing scheduling, Homa achieves great
performance for tiny flows. It mitigates the Head-of-line (HOL)
blocking caused by queuing to an extent, hence small flows can

complete transmission quickly. Besides, Homa does not handle con-
gestion in the network core. It uses per-packet spraying to evenly
distribute data packets, having the same problem as NDP (§ 2.1).
Prioritization does not intrinsically solve congestion. Prior-
ity scheduling is orthogonal to congestion control itself, which
could not intrinsically deal with congestion. Since the buffer size
of switches is limited, without control over congestion, the queue
length can continue to grow when new flows arrive, i.e., when
persistent high load or incast traffic pattern exists. Hence, packet
loss and timeout retransmission can not be avoided. As shown in
Figure 1(b), Homa does not perform well in Web Server workload,
for that Homa encounters a large amount of packet loss, i.e., the
packet loss rate is around 3% even with a 32 MB shared switch
buffer. When the switch buffer decreases, the performance of flows
could downgrade further.

Besides, in-network priority queues are not infinite, and in prac-
tice, an application can notmonopolize all priority queues of switches.
When the number of queues is restricted to a smaller value, it
could be possible that small flows queue behind large flows when
the buffer occupancy increases. Thus HOL-blocking could not be
avoided.
Homa does not react to congestion. In Homa, tokens are trans-
mitted according to the arrival rate of data packets, with the over-
commitment mechanism to keep only several flows active simulta-
neously. Besides this mechanism, no additional control for conges-
tion is applied. The number of active flows is static, and could not
respond to the variable congestion status of the network. From this
perspective, Homa is more like an end-host scheduling or matching
protocol rather than a congestion control protocol.

REFERENCES

[1] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-scheduled delay-bounded
congestion control for datacenters. In ACM SIGCOMM.

[2] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In ACM SIGCOMM.

[3] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai Chen, Kun
Tan, and Yi Wang. 2020. Aeolus: A Building Block for Proactive Transport in
Datacenters. In ACM SIGCOMM. ACM.

[4] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:
High precision congestion control. In ACM SIGCOMM.

[5] Kexin Liu, Chen Tian, Qingyue Wang, Yanqing Chen, Bingchuan Tian, Wenhao
Sun, Ke Meng, Long Yan, Lei Han, Jie Fu, et al. 2022. PayDebt: Reduce Buffer
Occupancy Under Bursty Traffic on Large Clusters. IEEE Transactions on Parallel
and Distributed Systems (2022).

[6] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A receiver-driven low-latency transport protocol using network priorities.
In ACM SIGCOMM.

[7] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In
ACM SIGCOMM.

177


	Abstract
	1 Introduction
	2 Case Study
	2.1 NDP
	2.2 Homa

	References

