
PayDebt: Reduce Buffer Occupancy Under
Bursty Traffic on Large Clusters

Kexin Liu , Chen Tian , Qingyue Wang, Yanqing Chen, Bingchuan Tian , Wenhao Sun ,

Ke Meng, Long Yan, Lei Han , Jie Fu, Wanchun Dou , and Guihai Chen

Abstract—The average/tail Flow Completion Times (FCTs) are critical to many datacenter applications. Congestion control plays a

central role in optimizing FCT. Inappropriate congestion control can exacerbate buffer occupancy, thus hurting the flow performance.

Our observations are that current approaches are too aggressive in injecting packets into underlying networks. Instead of handling

buffer explosion afterward, we reduce buffer occupancy in the first place. We propose PayDebt, a novel and readily-deployable

proactive congestion control protocol. At its heart, a debtmechanism provides bandwidth coordination between the already-buffered

and the forthcoming packets. We evaluate PayDebt both in a testbed and large-scale simulations. The buffer occupancy can be

decreased by up to 8.0�-35.9� compared to DCQCN and Homa.

Index Terms—Token, proactive congestion control, datacenter networks

Ç

1 INTRODUCTION

IN a datacenter cluster [1], [2], [3], [4], [5], the network traffic
represents the mix of its applications [6], [7], [8], [9]. Con-

necting tens of thousands of nodes, such a cluster usually
simultaneously carries small and large flows. Small flows
can be triggered by key-value stores [9], [10], Remote Proce-
dure Calls (RPCs) [11], and application control messages.
Large flows can be generated by various applications,
including Hadoop/Spark shuffle [12], [13], [14], [15], [16],
[17], data replication [18], and machine learning parameter
updates [19], [20], [21]. The average/tail Flow Completion
Times (FCTs) are critical to many applications. For example,
a lower FCT directly contributes to a higher service through-
put for RPC systems [11], [22], [23].

Congestion control plays a central role in optimizing FCT.
Base Round-Trip Times (RTTs) in datacenters are relatively
short (e.g., 10ms), hence small flows are dominated by network
queuing delay, and large flows are usually dominated by

network goodput. State-of-the-art datacenter congestion con-
trol protocols can be classified into two categories: reactive and
proactive. After first injecting a portion of traffic for each new
flow, reactive protocols (e.g., DCTCP [24], DCQCN [25],
HPCC [26], PINT [27],PowerTCP [28], Timely [29], Swift [30],
and On-Ramp [31]) react to congestion signals from the under-
lying networks or hosts. For proactive protocols (e.g., Express-
Pass [32]), a flow’s sender transmits scheduled packets after
receiving bandwidth allocation instructions (i.e., token packets)
from the receiver. Instead of waiting for allocation in the first
RTT, recent proactive protocols (e.g., Homa [33], NDP [34],
pHost [35], and Aeolus [36]) transmit a portion of each new
flow as unscheduled packets to improve small flows’ per-
formance. This paper also focuses on proactive protocols.

Inappropriate congestion control can exacerbate buffer
occupancy, thus hurting the flow performance. Many data-
center networks are oversubscribed (Section 2.1) [37], [38],
[39], [40], [41]. Meanwhile, datacenter traffic can be bursty
with an on/off behavior [7], hence flows may quickly fill up
switches’ buffers at the network bottleneck. Large buffers
add queuing delay and significantly increase small flows’
average FCT. Even worse, buffer overflow causes packet
drops and hurts flows’ tail FCT. Existing drop remedies
(i.e., timed out, fast retransmission [42], and selective drop
[36]) are either hard to tune or compromise the performance
of specific traffic patterns.

Current approaches are too aggressive in injecting pack-
ets into underlying networks. Ignoring already buffered
packets in switches, a flow driven by an existing proactive
protocol can still transmit scheduled packets. This lack of
coordination between scheduled and unscheduled packet
injections severely exacerbates buffer occupancy (Section 2).

Subsequently, we take one step back and ask: instead of
handling buffer explosion afterward, can we reduce buffer occu-
pancy in the first place? PayDebt is a novel proactive conges-
tion control protocol to answer the question. At its heart, a
debt mechanism provides bandwidth coordination between

� Kexin Liu, Chen Tian, Qingyue Wang, Yanqing Chen, Bingchuan Tian,
Wanchun Dou, and Guihai Chen are with the State Key Laboratory for
Novel Software Technology, Nanjing University, Nanjing 210093, China.
E-mail: {kxliu, mg1933055}@smail.nju.edu.cn, {tianchen, douwc, gchen}
@nju.edu.cn, yqchen19@outlook.com, bingchuantian@gmail.com.

� Wenhao Sun, Ke Meng, Long Yan, Lei Han, and Jie Fu are with the
Huawei Technologies Co., Ltd, Shenzhen 518063, China. E-mail: {sam.
sunwenhao, mengke6, yanlong20, phoebe.han, fujie}@huawei.com.

Manuscript received 28 February 2022; revised 11 July 2022; accepted 12
August 2022. Date of publication 29 August 2022; date of current version 14
September 2022.
This work was supported in part by the Key-Area Research and Development
Program of Guangdong Province under Grant 2020B0101390001, the National
Natural Science Foundation of China under Grants 92067206, 62072228 and
61972222, the Fundamental Research Funds for the Central Universities, the
Collaborative Innovation Center of Novel Software Technology and Industriali-
zation and the Jiangsu Innovation and Entrepreneurship (Shuangchuang)
Program.
(Corresponding authors: Chen Tian and Lei Han.)
Recommended for acceptance by K. Gopalan.
Digital Object Identifier no. 10.1109/TPDS.2022.3202504

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022 4707

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0599-2320
https://orcid.org/0000-0003-0599-2320
https://orcid.org/0000-0003-0599-2320
https://orcid.org/0000-0003-0599-2320
https://orcid.org/0000-0003-0599-2320
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0001-9644-8851
https://orcid.org/0000-0001-9644-8851
https://orcid.org/0000-0001-9644-8851
https://orcid.org/0000-0001-9644-8851
https://orcid.org/0000-0001-9644-8851
https://orcid.org/0000-0001-8848-4545
https://orcid.org/0000-0001-8848-4545
https://orcid.org/0000-0001-8848-4545
https://orcid.org/0000-0001-8848-4545
https://orcid.org/0000-0001-8848-4545
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
mailto:kxliu@smail.nju.edu.cn
mailto:mg1933055@smail.nju.edu.cn
mailto:tianchen@nju.edu.cn
mailto:douwc@nju.edu.cn
mailto:gchen@nju.edu.cn
mailto:yqchen19@outlook.com
mailto:bingchuantian@gmail.com
mailto:sam.sunwenhao@huawei.com
mailto:sam.sunwenhao@huawei.com
mailto:mengke6@huawei.com
mailto:yanlong20@huawei.com
mailto:phoebe.han@huawei.com
mailto:fujie@huawei.com

unscheduled and scheduled packets. This mechanism can
minimize superfluous injections of scheduled packets (Sec-
tion 3). Opposite to reactive congestion controls facing data
incast problem, there is a token incast problem for proactive
congestion control protocols, where several receivers send
tokens to the same sender simultaneously. PayDebt solves
it by applying token congestion control. In addition, a num-
ber of practical challenges are solved (Section 4). For a prac-
tical solution, PayDebt meets two design requirements as
follows: (i) effective for a wide range of topologies and traf-
fic patterns, and (ii) readily-deployable.

We implement a running PayDebt system with Linux
hosts and commodity switches. We evaluate PayDebt both
in a testbed and large-scale simulations (Section 5). The
results demonstrate that PayDebt performs well in its tar-
geted scenarios, i.e., mainstream oversubscribed networks.
In other kinds of networks (e.g., non-blocking), PayDebt
also demonstrates better or at least comparable performance
than state of the art. The buffer occupancy can be decreased
by up to 8.0�-35.9� compared to DCQCN and Homa. Con-
sequently, compared to state-of-the-art approaches except
for Homa (since it benefits from SRPT scheduling strate-
gies), the average FCT of small flows can be decreased by
up to 50.2% - 85.4%. For all flows, the average FCT can be
decreased by up to 13.0% - 38.1%. The tail FCT can be 1.06�
- 7.4� lower. At last, we conclude the paper (Section 7). This
work does not raise any ethical issues.

2 MOTIVATION

2.1 Background

Datacenter Network Topologies. Non-blocking networks have
been proposed for years [43]. While, on the one hand, many
operators tend to consider that full connectivity is rarely
worthwhile due to traffic locality [44]. On the other hand,
non-blocking networks are considered to be costly [38]. In
practice, many datacenter clusters enforce a low degree of
over-subscription [6], typically ranging from 8:1 to 2:1 [37],
[38], [39], [40], [41].

Traffic Characteristics. Datacenter traffic is usually bursty
with an on/off behavior [7]. Microbursts in today’s datacen-
ters [7], [45], [46], [47], [48] can quickly accumulate packets
at the network bottleneck. Given that many network topolo-
gies are oversubscribed, the network bottleneck usually
occurs at the fan-in point of topologies, e.g., ToR switches or
spine switches [8], [49], [50].

Datacenter Workloads. Fig. 1 shows the flow size distribu-
tions of widely accepted datacenter workloads (drawn from
existing work [33]) used to evaluate different approaches.
Data traffic inMemcached is composed of small flows,where

more than 85% of flows are smaller than 1KB. In Hadoop and
Web search, large flows are mixed with small flows where a
small ratio of large flows contributesmost bytes.

2.2 Existing Congestion Control Protocols

Scheduled packets denote packets that are transmitted accord-
ing to rate adjustment (i.e., in reactive protocols) or band-
width allocation (i.e., in proactive protocols). And unscheduled
packets denote those transmit upon newflow arrives, without
waiting for rate adjustment or bandwidth allocation.

Reactive Approaches. We revisit state-of-the-art congestion
control protocols shown in Fig. 2. For reactive designs, a
sender first sends a number of start-up packets and then
reacts to congestion signals (i.e., ECN bits [24], [25], [51],
network delay [29], [30], [31], [52], or switch measure-
ment [26], [27]). Only flows that last longer than one RTT
can react to congestion signals; hence, these approaches can
deplete switch buffers when bursty flow arrivals occur.
Both DCQCN [25] and HPCC [26] send a new flow’s
unscheduled packets at line rate. DCQCN controls its sending
rate based on ECN. Using in-network telemetry (INT), an
HPCC sender can obtain precise link load information and
calculate a large flow’s rate. However, it can still lead to
inaccurate bandwidth allocation due to stale measurements
(see Appendix in [53]). PINT [27] is similar to HPCC, except
that it uses probabilistic INT to reduce the cost of INT.
PowerTCP [28] combines both absolute network state (e.g.,
queue length or RTT) and its variations through INT. Both
DCQCN and HPCC enable the Priority Flow Control (PFC)
feature of Enhanced Ethernet to prevent packet drops. The
PFC mechanism faces severe scalability challenges because
of PFC storm, Head-Of-Line (HOL) blocking, and dead-
lock [54], [55]. It also hurts small flows’ FCTs. A transport
protocol without the need for PFC is more preferable to
industry [56]. Swift [30] is an RTT-based solution, leverag-
ing an additional congestion window also to track endpoint
congestion besides in-network congestion. On-Ramp [31]
handles the transient state of the network by leveraging
accurate measurements of one-way delay and leaves the
equilibrium state for current reactive approaches. For that
PayDebt is a proactive protocol, these efforts are orthogonal
to PayDebt.

Proactive Approaches. A typical pure proactive design
such as ExpressPass [32] proceeds as follows. On the arrival
of a new flow, a control packet is sent from the sender to the
receiver as a notification. A receiver schedules the tokens
(i.e., credit in ExpressPass, PULL packet in NDP [34], and
grant packet in Homa [33], [57]) to allocate bandwidth for
different flows. Upon the reception of a token, the sender
can correspondingly send a full-length scheduled packet.

ExpressPass generates tokens based on a rate. Each
receiver automatically generates tokens based on a sending

Fig. 1. Flow size distributions of typical workloads [33].

Fig. 2. Design space.

4708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

rate to fetch the remaining scheduled packets for each flow.
Congestion points (i.e., receivers and switches) limit tokens’
bandwidth to around 5% of link bandwidth to guarantee
drop-less of data in the reverse direction. In turn, token
packets are dropped at the network bottleneck by setting
the token queue length to a relatively small value (e.g.,
eight-token length). This rate is calculated by the length of a
token versus a full-length data packet (i.e., 84

1538þ84 � 5%).
Thus, ExpressPass can achieve low queuing latency and
zero data packet drop together. The main problem of a pure
proactive protocol is its waste of the first RTT. For work-
loads where most flows are smaller than one Bandwidth-
Delay Product (BDP) worth of bytes (e.g., the Memcached
workload), their FCTs could be tripled [36]. In addition, it
could result in the last-RTT waste of tokens (see discussion
later in Section 4.1.1).

For most recent proactive protocols (i.e., pHost [35], NDP
[34], and Homa [33]), a sender can send up to one BDP
worth of unscheduled data for a new flow. The rest packets
(if there are any) are scheduled by the receiver. A non-
blocking network core is sometimes assumed to provide
full bi-sectional bandwidth. Thus, the receiver and the
sender are two scheduling points for each flow. In general,
these protocols have reasonable performance, but flaws
exist at the same time (verified in our evaluations).

Homa [33] mainly targets RPC-like scenarios, where most
bytes are from small flows with several hundreds/kilos of
bytes. Homa uses SRPT (shortest remaining processing time)
scheduling strategies on senders, prioritizing smaller flows
over larger ones. In addition, in-network priority queues are
leveraged to enforce priorities among unscheduled/sched-
uled packets according to their flows’ sizes. It mitigates the
head-of-line (HOL) blocking caused by queuing, i.e., when a
short flow gets stuck behind a long flow in the same queue.
Homa assumes that packet drops are rare, so it relies on a
timeout mechanism (e.g., a few milliseconds) to retransmit.
NDP [34] trims the payload of a dropped packet and uses the
header to precisely inform the receiver about the drop. A
dropped data packet needs to be pulled by the receiver again.
By limiting the length of packet queues, NDP can constrain
one-way delay. As a clean-slate solution, NDP significantly
changes switch behaviors; hence it is not readily-deployable.
This paper also focuses on proactive protocols.

2.3 Buffer Occupancy Should be Controlled

A large buffer, by adding queuing delay, is a curse to small
flows’ performance. If the situation exacerbates and the
buffer overflows, the packets are dropped. Packet drops can
severely hurt small flows. A single packet drop (followed
by detection/retransmission procedures) can push a small
flow’s completion time to tens or even hundreds of times
the base RTT. Furthermore, in private discussions with us,
some leading Network Interface Controller (NIC) providers
raise their practical concerns: a large number of packet
drops pose challenges to RDMA NICs, including (but not
limited to) a tremendous buffering demand for re-ordered
packets and complicated receive processing logic.

The number of in-network priority queues is not always ade-
quate to handle queuing delays. Homa leverages eight in-net-
work priority queues, which could significantly mitigate the
queuing delay of small flows by prioritizing small flows over

large flows. Generally, traffic from different applications
(e.g., storage, computing, outbound applications, etc.) needs
to be isolated by different queues [38], [58]. A single applica-
tion can not use up priority queues on switches. The effec-
tiveness of in-network prioritization could be compromised
as the number of available in-network priority queues
shrinks. There is a greater possibility that small flows are
queuing behind large flowswhen the buffer occupancy is rel-
atively large (Section 5). In this article, we use Homa as our
upper bound, and we mainly focus on practical scenarios
where priority queues should be used conservatively.

Existing drop-remedies are hard to tune. Homa relies on a
rough timeout mechanism to retransmit. As demonstrated
by previous work [36], a large timeout value (i.e., a few
milliseconds) results in a large tail latency. In contrast, a
small timeout value (i.e., tens of microseconds) results in
redundant retransmission, downgrading goodput.

NDP trims the payload of data packets when the buffer
exceeds a small threshold and uses packet headers to notify
receivers for fast retransmission. Its shallow buffer setting
causes packet drops much earlier. Control packets (i.e., cut-
payload headers) can also get dropped. Too many control
packets and retransmission waste bandwidth under heavy
congestion scenarios. Our evaluations (Section 5) demon-
strate that these control packets could overflow their
belonging queues when a large incast is faced, which results
in performance collapse.

Selective drop is not a cure. Aeolus [36] is a state-of-the-art
patch focusing on solving start-up injection challenges for
existing proactive protocols. Aeolus leverages the Active
Queue Management (AQM) feature of commodity switches
to achieve a selective drop of unscheduled packets. They
are transmitted blindly at line rate and are dropped when
buffer occupancy exceeds a relatively small threshold (i.e.,
8KB). Thus, scheduled packets are guaranteed to be deliv-
ered without loss.

The selective drop of unscheduled packets may unneces-
sarily increase small flows’ FCT when a workload contains a
large fraction of small flows. We demonstrate this by con-
ducting an NS-3 simulation, where workloads are composed
with small flows with an 80% load [33] (i.e., Memcached).
Flow arrival intervals follow the Poisson process. For Homa,
the same non-blocking topology in its paper is used. For
ExpressPass, links connected to core switches are decreased
to 10 Gbps to construct an oversubscribed topology with a
4:1 over-subscription ratio (see Section 5 for details).

Fig. 3 shows the results. For Homa/Homa(A), a signifi-
cant performance downgrade has been observed. The aver-
age/99th-tail FCTs are increased by 5.5�/2.0� compared
with pure Homa, respectively. A large ratio (i.e., 1.38%) of
packet drops leads to a large number of retransmissions.
Although Aeolus makes full use of the first RTT, small
flows’ performance is still hurt. With the large amount (i.e.,
16.5%) of packet loss, the performance of 17.4% flows signif-
icantly downgrades, and EP(A) quickly back-offs to pure
ExpressPass.

2.4 State-of-the-Art Injections are Aggressive

In prior works, transmission decisions of scheduled packets
are made independently of in-network buffered packets’
current status. For illustration, a strawman protocol (i.e.,

LIU ETAL.: PAYDEBT: REDUCE BUFFER OCCUPANCY UNDER BURSTY TRAFFIC ON LARGE CLUSTERS 4709

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

simplified Homa without priority queues) is depicted in the
first row of Fig. 4. Note that the packet drop in the following
discussions is irrelevant to priority usage. Here, we assume
three hosts, S0, S1, and S2 send to a host R via a Top-of-Rack
(ToR) switch. For clarity, the base RTT is set to two-time
units (see an extended version where the base RTT is four-
time units [53]). The transmission delays are ignored. The
link delay between a sender and the switch is one time unit,
while the link delay between the switch and the receiver is
negligible. Thus, a packet can traverse one link per time
unit. The switch-to-receiver output queue status is demon-
strated, which denotes the exact buffer state of the time on
its right. The BDP and queue length are set to 2 MTU and 4
MTU, respectively.

Three flows A/B/C sent from S0/S1/S2 arrive at the sys-
tem at T0/T2/T4, respectively. Each flow consists of 6
MTU packets, i.e., two unscheduled and four scheduled.
Au0/At0/As0 are used to represent the first unscheduled/
token/scheduled packets of flow A. At T0, flow A arrives at
S0, and Au0 is transmitted. After receiving Au0 at T1, R gen-
erates a token At0. At0 is forwarded to S0 and arrives at T2.
Triggered by token At0, S0 sends a scheduled packet As0,
which arrives at the switch at T3, along with an unsched-
uled packet Bu0 sent by S1. The same thing happens to
Au1, Bu0, Bu1, . . . , etc., and generates tokens At1, Bt0, Bt1,
. . . , etc., respectively. The length of the queue is increasing,
which finally leads to unscheduled packet Cu1 drop at T6.

Ignoring bandwidth consumed by unscheduled packets,
existing protocols send tokens to allocate full bandwidth for
the following scheduled packets. Therefore, scheduled
packets are unnecessarily injected into the underlying net-
work and accumulated in switches. The queue length never
decreases as long as scheduled packets continually arrive.

3 PAYDEBT INTUITION

Unscheduled packets are the cause of network bursts. As
the name of unscheduled packets suggests, they consume
bandwidth without reservation. Inspired by the observa-
tions in Section 2.4, we need a coordination mechanism
between unscheduled and scheduled packets so they can
harmoniously share the bandwidth.

Insight. Although an unscheduled packet can not be con-
trolled until it is transmitted, it could announce its used band-
width after its transmission. This announcement could work as
a back pressure to the underlying network when congestion
exists. Network bottlenecks along the unscheduled packet’s
path can subtract the same amount of bandwidth from their
following bandwidth allocation to scheduled packets, i.e.,
tokens can only reserve the rest of the bandwidth. Thenunnec-
essarily injected scheduled packets can be suppressed. In this
way, scheduled packets could be aware of the exact band-
width usage of unscheduled packets and back-off accurately.

Challenges. For a practical solution to this ambition, we
list two design requirements as follows:

� Effective for a wide range of topologies and traffic pat-
terns. Traffic patterns can vary significantly across
both time domains and different regions. This work
focuses on heavy load scenarios in typical oversub-
scribed networks. Meanwhile, the performance of
other scenarios (e.g., non-blocking fabrics) should not
be compromised.

� Readily-deployable. The solution must work with exist-
ing commodity switches in datacenter networks.
Bandwidth coordination must be performed at the
data-plane instead of the control-plane.

Fig. 3. Selective drop hurts FCTs of small flows. Homa(A) denotes Homa-
patched-with-Aeolus, and EP/EP(A) denotes ExpressPass/ExpressPass-
patched-with-Aeolus, respectively.

Fig. 4. How debt works, illustrated by a strawman receiver-driven example. Here the x-axis stands for time units, and the y-axis stands for three differ-
ent variants of the strawman protocol.

4710 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

3.1 Pay Your Debt

We propose debts, a special kind of control packets sent from
receivers to senders, for coordination between unscheduled
and scheduled packets. Let us say the token mechanism
works like a debit card, where links deposit (i.e., reserve)
bandwidth before a scheduled packet uses it. The debt
mechanism works like a credit card, where an unscheduled
packet spends (i.e., consume) bandwidth first and links
reclaim it back later.

In the third line of Fig. 4, we illustrate how debt works by
adding a naı̈ve debt mechanism to the strawman protocol.
After receiving Au0, debt Ad0 is sent instead of At0. When a
debt packet is received, the sender does not send a sched-
uled packet. The same thing happens to Au1, Bu0, . . . , etc.,
and replies debt Ad1, Bd0, . . . , etc., respectively. Therefore,
the queue length does not increase, making unscheduled
packets Cu1 successfully received by the receiver. After all
the debts are transmitted, the remaining tokens can be sent
to allocate bandwidth for the scheduled packets.

Thus, unscheduled packets can pay back pre-consumed
bandwidth in a readily-deployableway. Following scheduled
packets’ transmission is delayed to avoid buffer built-up.
Likewise, if a scheduled packet collides with an unscheduled
packet already buffered in a congestion point, it can drain
from the bottleneckwhen a corresponding debt takes effect.

4 PAYDEBT DESIGN

The debt mechanism, which cannot be simply added to cur-
rent proactive approaches, should be co-designed with
tokens. In this section, we propose PayDebt, a novel proac-
tive congestion control protocol. As shown in Fig. 5, there
are three major components of PayDebt: sender logic,
receiver logic, and switch configuration. There are many
remaining challenges, e.g., how tokens are generated?
When should debts and tokens be sent? In this part, we
present the debt designs in detail (Section 4.1.1). Its limita-
tions are discussed (Section 4.1.2). We introduce the token
incast problem and token congestion control designs (Sec-
tion 4.1.3), followed by the receiver logic, the switch config-
uration, and miscellaneous detailed designs (Section 4.4).

4.1 Receiver Logic

4.1.1 The Debt Mechanism

Debt Generation. PayDebt uses a data-driven mechanism to
generate debts. The meaning behind debt packets is to pay
back the unallocated bandwidth used by unscheduled pack-
ets. Therefore, a debt packet is generated if an unscheduled
packet is received.

Token Generation. Tokens can be generated based on a rate
(i.e., rate-based) or when a data packet is received (i.e., data-
driven). PayDebt uses a data-driven mechanism to generate
tokens. When a data packet is received, a token packet is
generated if necessary.

PayDebt generates tokens based on a data-driven man-
ner for that it is more compatible with the unscheduled-
driven debt mechanism. With a rate-based mechanism, the
massive number of tokens could reduce the effect of debts.
At the same time, data-driven token generation can provide
better performance on tail latency. With a data-driven token
mechanism, there is no necessity for switches to set a small
queue for tokens and drop them actively since the number
of tokens is under control. Hence, the token loss is assumed
to be rare. PayDebt’s receiver can transmit the exact number
of tokens needed by the sender, without token waste. While
the rate-based mechanism has a severe problem, i.e., last-
RTT waste of tokens. The token queue is set to a small value
and tokens can be dropped at the network bottleneck to
reduce the excessive tokens (Section 2.2). A receiver cannot
stop sending tokens until receiving the last data packet or
the notification from the sender. At least one RTT worth of
tokens sent by a receiver can never trigger any data packet.
These useless tokens compete for bandwidth with other
useful tokens at both receivers’ sides and networks, result-
ing in redundant drops of useful tokens. It could down-
grade the performance of small flows and hurt bandwidth
utilization. For workloads comprised of a large fraction of
small flows, FCTs could be prolonged (Section 5).

In PayDebt, if the remaining data is larger than one
BDP, PayDebt’s sender sets a token_request flag in the
packet header. When a data packet with a token_re-

quest flag is received, a corresponding token packet is
generated (see online Appendix [53] for example illustra-
tion). With this design, no excessive tokens will be gener-
ated. Meanwhile, the flow size is not required to be known
a-prior. Instead, the sender needs to check whether the
appending data of a flow exceeds the BDP when a sched-
uled packet is transmitted.

Bandwidth Coordination. PayDebt uses symmetric paths
and sets a reverse-path rate limiter (supported by IEEE
802.1Qaz) to achieve bandwidth coordination. Rate-limiter
can be supported by mainstream datacenter switches [59],
[60], [61]. A debt has precisely the same size as that of a
token (i.e., 84 bytes as that in ExpressPass). Debts and
tokens are rate-limited together to 5% of bandwidth in each
port of switches and hosts (Section 2.2).

Rate-limiters on tokens ensure that bandwidth consumed
by data packets never exceed 95% of the network bottleneck
bandwidth, making PayDebt robust under oversubscribed
networks. Moreover, by rate-limiting debts and tokens as a
whole, the delivery of tokens can be delayed when debts
share the same bottleneck with tokens. In this way, the
transmission of scheduled packets can be delayed precisely;
therefore, the buffer occupancy can be reduced. It is worth
noticing that even if unscheduled and scheduled packets
are from different sender hosts, debts can still take effects,
i.e., compete with tokens sent to other sender hosts.

Send Debt/Token at the Right Time. A question is whether it
is necessary to send debt upon generation, i.e., to pay back
any bandwidth used by unscheduled packets as soon as
possible. Let us revisit the naı̈ve debt approach in Fig. 4. At
T6, if no unscheduled packet arrives at the switch, band-
width is wasted. Consider a simple example where there is
only one flow transmitting packets, the bandwidth used
by its unscheduled packets does not interfere with others.

Fig. 5. PayDebt framework.

LIU ETAL.: PAYDEBT: REDUCE BUFFER OCCUPANCY UNDER BURSTY TRAFFIC ON LARGE CLUSTERS 4711

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

Prioritizing the transmission of debts over tokens actually
increases its FCT.

Debts should be sent when congestion exists. PayDebt
leverages ECN to identify congestion. Data packets are ECN-
marked when the queue occupancy exceeds a given thresh-
old Kd. When an unscheduled packet with ECN-marking is
received, the receiver transmits a debt immediately. Other-
wise, this debt is transmitted until either a following sched-
uled packet is ECN-marked or the flow finishes. This is
because a flow’s unscheduled packets which compete for
bandwidth with other flows can escape from ECN-marked
when leaving the switch queue. Its following scheduled
packets are then responsible for triggering the transmission
of remaining debts, i.e., pay back bandwidth. Debts are pri-
oritized to be sent over tokens at end-hosts, i.e., when debts
and tokens both exist, send debts first. It can pay back the
bandwidth used by unscheduled packets when necessary.

We use the second line of Fig. 4 for illustration. Debt is
transmitted rather than token when the queue length
exceeds a threshold, i.e., 2 MTU. When Bu0 leaves the
switch, the queue length exceeds the threshold, and Bu0 is
ECN-marked. Therefore, when Bu0 is received, Bd0 is sent
instead of Bt0. The same thing happens to As1, Bu1, . . . ,
etc., and replying debt Ad0, Bd1, . . . , etc. In this way,
unscheduled packet Cu1 is successfully received by the
receiver; meanwhile, bandwidth is not wasted at T6. Debt is
sent as long as the queue length exceeds the given thresh-
old; therefore, the queue length continues to decrease at T7.
The queue length can be reduced to zero after debts finish
transmitting.

Fig. 6 summarizes the generation and transmission logic
of debts/tokens, where u0 and s1, which have red borders,
are ECN-marked. The arrival of unscheduled/scheduled
packets triggers the generation of debt/token. Then,
PayDebt’s receiver paces debt/token waiting for transmis-
sion at 5% of port bandwidth. The network congestion
determines the transmission order of debt/token. If the
received data is ECN-marked, send a queuing debt first.
Otherwise, send a token instead.

4.1.2 Debt Discussions

Effectiveness of Debt. Now we discuss the effects of debt in
reducing buffer occupancy. In Fig. 4, although the topology
fan-in ratio is 3:1, the maximum workload (not topology)
fan-in ratio is only 2:1, i.e., at most two data packets per

time unit. The debt mechanism can reduce the input-output
ratio to 1:1. For oversubscribed networks with uniformly
distributed workloads, the maximum workload fan-in ratio
is at most its topology fan-in ratio. Therefore, for main-
stream oversubscribed networks with topology fan-in ratio,
e.g., 2:1, 4:1, debt performs well.

When tokens are generated based on a rate, the last-RTT
waste of tokens can decrease the buffer occupancy to a cer-
tain extent. However, it cannot coordinate the usage of
unscheduled and scheduled packets on time as the debt
mechanism in PayDebt can do (Section 5.5).

Other Scenarios. In non-blocking networks, workload fan-
in could occur with imperfect load balance, which results in
in-network congestion. Debt has a positive effect of reduc-
ing the buffer built-up, as demonstrated in our evaluations
(Section 5.3).

4.1.3 Token Incast and Congestion Control

Token Incast Problem. Tokens are designed to pace the trans-
mission of scheduled packets. A receiver cannot know
whether other receivers are requesting data from the same
sender simultaneously. Hene, opposite to reactive conges-
tion controls facing data incast problem, there is a token incast
problem for PayDebt (as well as proactive protocols, e.g.,
ExpressPass and NDP). When several receivers send tokens
to a single sender simultaneously, token incast occurs. Dif-
ferent from data incast facing buffer overflow, token incast
could result in buffering of tokens and under-utilization of
bandwidth. Fig. 7a illustrates the token incast problem,
where two receivers R1 and R2 both send tokens to a sender
S2. Tokens queue up at the last-hop switch connected to S2

while S1 receives no tokens. This scenario wastes the band-
width of S1 and hurts performance.

Token Queuing at In-Network Points. In addition, token
queuing could occur at in-network points when competing
for the bandwidth. Token queuing could result in different
RTT values of tokens. These tokens may arrive at different
senders at the same time, then corresponding scheduled
packets will be sent simultaneously, which in turn results in
transmission collision of scheduled packets. Fig. 7b illus-
trates the scenarios where R1 sends tokens ts1 and ts2 to S1

and S2 in order. Token ts1 endures one-packet queuing
delay while ts2 does not. Because of the different queuing
delays on core switches, these two tokens arrive at senders
simultaneously.

Token Congestion Control. PayDebt uses token congestion
control to minimize the impact of a token incast and reduce
the token queue. A token is ECN-marked if the tokens’
queue length in a switch port exceeds a given threshold Kt.
A sender forwards the congestion notification back to the
receiver by attaching it with a data packet. To distinguish
the congestion notification from ECN-marking of the data
packet, PayDebt’s header should leverage a dedicated bit to
carry it. The receiver then updates the maximum inflight
tokens, i.e., limits the transmission of tokens to the sender.
Compared with the traditional ECN-marking scheme, data
packets in PayDebt can carry the congestion information in
token packets.

Algorithm 1 presents the pseudo code of the token con-
gestion control. Each receiver maintains maxInflight, the

Fig. 6. Debt/token transmission on end-hosts.

4712 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

maximum in-flight tokens that can be sent and w, a weighted
parameter (0 <w � 0:5) to adjust it. Similar to Additive
Increase Multiplicative Decrease (AIMD), it updates maxi-
mum in-flight tokens. A token is ECN-marked in switches if
the queue length of the token exceeds a given threshold Kt.
A PayDebt sender conveys the congestion notification back
to the receiver by data packets. When data contains conges-
tion notification arrives the receiver, the receiver decreases w
and maxInflight (Line 7-9). w is decreased by half. maxIn-
flight is decreased by multiple (w+0.5). Otherwise, the
receiver increases w and maxInflight (Line 11-12). maxIn-
flight is increased to a weighted average of (1-w) � max-

Inflight and w � BDP , where BDP is the value of base BDP.
The value of w estimates the congestion degree of the token
queue. Essentially, a value of w closes to 0 indicates a high
degree of token congestion. And a value closes to 1 indicates
a low degree of token congestion. To avoid overreaction,
maxInflight is updated per RTT (Line 6).

Algorithm 1. Update Max Inflight Tokens per Flow

Input: parameter wmin 0:1; wmax 0:5
1: w winit // default 0.5
2: t RTT // update timer
3: maxInflight BDP // max in-flight tokens
4:
5: when a scheduled packet is received do " EVENT

6: if t has passed since last update then
7: if scheduled packet is carried with ECN of token then
8: w ¼ maxðw=2; wminÞ
9: maxInflight ¼ ðwþ 0:5Þ �maxInflight
10: else
11: w ¼ ðwþ wmaxÞ=2
12: maxInflight ¼ ð1� wÞ �maxInflightþ w�BDP

4.1.4 Token Congestion Control Discussions

We regard PayDebt as a proactive protocol. Although Pay-
Debt is inspired by reactive protocols to handle congestion of
tokens and unscheduled packets, its core logic follows a pro-
active way. It schedules the transmission of tokens to allocate
bandwidth for scheduled packets, avoiding congestion
caused by scheduled packets. The insight behind a proactive
protocol is letting tokens queuing instead of scheduled pack-
ets. Hence, PayDebt leverages ECN marking on tokens
to reduce the queuing of token packets. In addition, the

bandwidth used by unscheduled packets is unallocated,
hence the congestion induced by them is relieved by debts.

4.2 Sender Logic

PayDebt adopts a simple start-up injection control at the
sender hosts. All flows are initialized with one BDP of
unscheduled packets. When a sender receives a debt packet,
do nothing. When a sender receives a token packet, a sched-
uled packet is sent to reply to the token.

4.3 Switch Configuration

PayDebt’s switch uses a rate limiter to rate limit debts and
tokens as a whole, i.e., sharing the 5% bandwidth (Sec-
tion 4.1.1). Therefore, debts compete with tokens to share
the 5% bandwidth at the network bottleneck. And band-
width consumed by scheduled packets will not exceed the
network bottleneck, i.e., incast point or network fan-in
point. The switch uses two queues, one for data packets, the
other one for debts/tokens.

4.4 Miscellaneous Detailed Designs

In Sections 4.1.1 and 4.1.3, two essential functions on
receivers are introduced. We summarize sender and switch
logic in this section.

Handling Tiny Flows. In some scenarios, most flows are
smaller even than one MTU (e.g., the Memcached work-
load), raising a possible fractional debt problem. If the
receiver generates a debt upon receiving every small
unscheduled packet, the bandwidth can be wasted. In Pay-
Debt, the sender host maintains a debt_to_receive

counter. Each time a sender sends an unscheduled packet,
debt_to_receive is increased by its size. When its value
reaches one MTU, the debt_request flag bit is set in the
unscheduled packet. The receiver generates a debt if the
debt_request bit is true. This feature avoids transmis-
sions of unnecessary debts.

Handling (Rare) Packet Loss. PayDebt significantly reduces
buffer occupancy; thus, we expect packet loss to be rare. In
switches, relatively large buffer size is reserved for debt/
token queues. Occasional data/debt/token loss can be
promptly detected by Packet SequenceNumbers (PSNs).

There could be extraordinary cases where PSNs cannot
detect packet loss, such as the loss of a flow’s last packet
or even the loss of an entire flow. These scenarios are
detected via minimum-sized probe packets. A probe packet

Fig. 7. It is necessary to leverage token congestion control. Sequence numbers with circles of (b) denote the time order.

LIU ETAL.: PAYDEBT: REDUCE BUFFER OCCUPANCY UNDER BURSTY TRAFFIC ON LARGE CLUSTERS 4713

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

is transmitted when either timeout is triggered or at the end
of a flow. The probe packet uses the same priority as data
packets; therefore, it will not arrive out-of-order. Each probe
is attached with the PSN of the last data packet and the PSN
of the last received token packets. When the probe is
received, the receiver can check the sequence of un-received
packets and generate the tokens with corresponding PSN to
inform the sender, i.e., the same logic as that of re-ordered
data packets are received. Then, the sender can retransmit
corresponding data packets.

Handling Incast. Incast could happen when multiple
senders transmit data simultaneously to the same receiver.
This results in buffer built-up at the incast point. PayDebt
bounds the maximum inflight unscheduled packets of a
sender-receiver host pair. In this way, the incast scale is sig-
nificantly reduced. The maximum buffer occupancy is
determined by topology rather than proportional to the
incast flows.

5 EVALUATION

In this section, we use testbed experiments and large-scale
NS3 simulations to evaluate PayDebt. We compare PayDebt
with state-of-the-art datacenter transport protocols such as
Homa, Homa(A), ExpressPass, EP(A), NDP, DCQCN, and
HPCC. Similar to HPCC [26], a sending window is added to
DCQCN to limit its in-flight data packets. The author-con-
tributed simulation codes, if available, are used in our evalu-
ations [62], [63], [64]. As for Aeolus, we reproduced the
results in Aeolus’ paper and communicated with the authors
to ensure that our implementation is correct. Besides perfor-
mance comparison, we also validatemajor design points and
parameter selection.

Homa leverages SRPT scheduling and priority queues to
benefit small flows (Section 2.2). Hence, in our evaluations,
we choose Homa (8q, i.e., 8 priority queues) as our upper
bound. And we mainly focus on practical scenarios where
priority queues should be used conservatively. Therefore,
we also use a variant of Homa (2q) to compare PayDebt
with Homa’s other design points. Although Homa is not
designed for oversubscribed topology, it performs reason-
ably well in many such scenarios. Therefore we also com-
pare it with PayDebt under oversubscribed topologies.
NDP is designed for non-blocking networks. Under over-
subscribed networks, it suffers from a large amount of
packet loss and can even result in the drop of control pack-
ets. Therefore, we only compare it with PayDebt in non-
blocking topologies.

In summary, PayDebt reduces buffer occupancy in typi-
cal oversubscribed networks under Poisson arrival scenar-
ios, without a significant packet drop or bandwidth waste,
therefore speeding up FCT. PayDebt’s performance is at
least comparable to state of the art under non-blocking
topologies.

Workloads. The flow size distributions of Memcached [9],
[10], Hadoop [6], and Web search [24] are shown in Fig. 1.
Unless otherwise specified, we generate flows following a
Poisson arrival process with a load of 0.8, i.e., the same way
as Homa. A wide range of network loads is also used to
investigate PayDebt’s performance (Section 5.3). Incast traf-
fic is also generated for further evaluation.

Parameters. For PayDebt evaluations, we have a set of
default settings. Here, Kd ¼ 1 � BDP and Kt ¼ 1 � BDP. A
dedicated subsection later discusses why these values are
used (Section 5.6). Round-Robin (RR) is used for sender/
receiver scheduling. For that RR is commonly used in indus-
try as it is easy to implement. In addition, flow sizes are not
required to be known a-prior when RR is used. We also
evaluate PayDebt’s performance under SRPT strategy and
eight priority queues [53]. Results show that PayDebt
achieves comparable performance compared to Homa.

Metrics. We have three major performance metrics: (i)
maximum switch buffer usage, (ii) average/99th-tail FCTs,
and (iii) packet drop ratio.1

5.1 Testbed Experiments

Prototype Implementation. We implement PayDebt in BESS
[65] with about 2500 lines of C++ code. Built on DPDK [66],
BESS allows us to run PayDebt entirely in userspace and
bypass the kernel. In our testbed, each server has two Intel
Xeon E5-2650 2.2GHz 12-core CPUs, 256 GB RAM, one 10
Gbps Intel X710 NIC, and OS of Ubuntu 18.04 LTS with
4.15.0 Linux kernel. For comparison, we port Homa open-
source codes [67], [68] to the same platform. Due to time
constraints, we have not implemented other approaches
yet. We are currently in the process of implementing Pay-
Debt with a vendor-specific smart NIC so that the proto-
type can support 100 Gbps networks.

Topology. The testbed includes two commercial ToR
switches connected via a 10 Gbps link. Each switch connects
two servers via 10 Gbps links. This topology is a single-bot-
tleneck dumbbell topology with a 2:1 over-subscription
ratio. The base RTT is 11 ms.

There are two scenarios: drop-less and drop. In the drop-
less scenario, all 16MB shared switch buffer is used. No
packet is dropped for both approaches. In the drop scenario,
we change the shared buffer mode to 128 KB per-queue
buffer to produce packet drops to evaluate PayDebt and
Homa.

Drop-Less Scenario.We evaluate PayDebt and Homa with
all three workloads. The results are shown in Figs. 8a and
8b. As shown in Fig. 8, Homa achieves good performance,
benefiting from SRPT scheduling and in-network priority
queues. PayDebt achieves comparable performance under
Memcached and Hadoop. A relatively smaller buffer occu-
pancy of PayDebt is beneficial. PayDebt does not allocate
in-network priority queues for unscheduled packets, for
Web search which mixed with small and large flows, FCTs
for small flows can be prolonged. While PayDebt reduces
the FCTs for medium and large flows, as shown in Fig. 8d.

When Homa uses only two priority queues, its perfor-
mance is downgraded. Homa is designed for non-blocking
networks, and it does not address congestion in the core. In
an oversubscribed topology, the aggressive injection of
unscheduled packets can accumulate packets in the fan-in
points. In-network prioritization is not always a cure to
buffer built-up. When the number of in-network priority
queues is restricted to two, the HOL-blocking problem (i.e.,

1. A result point is an average of over ten runs. Usually, these runs
show similar outcomes, and a point’s standard deviation is relatively
small. We omit deviations for clarity.

4714 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

small flows get stuck behind large flows) could intensify
when buffer increases.

Drop Scenario. PayDebt gains benefit from reducing
buffer occupancy. With a small per-queue 128 KB buffer,
PayDebt keeps the same performance due to zero packet
drop. With Memcached, Homa’s FCT is almost the same as
that in the drop-less scenario since there is rarely any packet
drop. While with Hadoop and Web search, Homa suffers a
packet drop ratio of 0.28% and 0.10%, respectively. As
shown in Fig. 8b, its performance significantly deteriorates.
The breakdown by message size of Web search is shown in
Fig. 8d. Suffering from timeout retransmission, small flows’
FCTs are increased by an order of magnitude. Compared
with Homa, the average FCT of small flows is reduced by
63.5% and 37.6% under Hadoop and Web search, respec-
tively. The tail latency is 3.1� and 1.9� lower, respectively.

5.2 Simulations Under Poisson Workloads

Topologies. To show the performance variation of PayDebt
among different over-subscription ratios, several topologies
are used in NS3 simulations. The first topology is the same
as that used in Homa. It is a 2-level network that contains 4
core switches, 9 ToRs, and 144 hosts (i.e., 16 hosts per ToR).
As a non-blocking topology, each ToR connects its hosts
and cores with 10/40 Gbps links, respectively. We also
build oversubscribed topologies by changing the ToR-to-
Core links to 20 Gbps/10 Gbps/5 Gbps, i.e., with a 2:1/4:1/
8:1 over-subscription ratio, respectively. The switch buffer
is 8 MB. We use the 4:1 oversubscribed topology by default

unless otherwise specified. The base RTT and BDP are 10 ms
and 12.5KB, respectively.

PayDebt Improves Small Flows’ Performance.Weevaluate Pay-
Debt with all threeworkloadswhen there is nobuffer overflow.
Fig. 9 shows the performance of maximum buffer occupancy
(x-axis) and FCT (y-axis) across different workloads. The closer
the bar is to the x-axis, the smaller FCT the protocol achieves.
Similarly, the closer the bar to the y-axis, the less buffer the pro-
tocol occupies.

These protocols present distinctly different characteris-
tics. Again, we use Homa(8q) as an upper bound. Small
flows’ performance of Homa(8q) is outstanding, especially
under workloads mixed with small and large flows. This is
because small flows can be prioritized over large flows both
on end-hosts (SRPT scheduling) and in-network (8 priority
queues), significantly mitigating the queuing delay of small
flows. In addition, Homa’s large flows also benefit from the
run-to-completion behavior brought by SRPT. PayDebt
benefits small flows across three workloads by leveraging
the debt mechanism to reduce the buffer occupancy. As
expected, debt plays a more effective part in reducing the
buffer occupancy in workloads where small flows mix with
large flows, i.e., Hadoop andWeb search.

(i) Memcached workload. For this workload, scheduled
packets are rare; therefore, debt plays a smaller part in
reducing buffer occupancy. Although ExpressPass and EP
(A) achieve the smallest buffer occupancy across all work-
loads, their FCTs are relatively high. The main reason is
ExpressPass wastes the first RTT. Although EP(A) attempts

Fig. 8. Testbed results with Poisson workloads. The deep/light color of (a) and (b) represents the average/99th-tail value for each bar, respectively.
The left/right y-label of (b) is the FCT/the drop ratio (triangles in the figures). The breakdown FCT by message size of Memcached and Web search
are shown in (c) and (d).

Fig. 9. Poisson workloads in 4:1 oversubscribed topology. The two points on each bar represent the average FCT and the 99th-tail latency, respec-
tively. (a) has only one subgraph because Memcached is almost made up of flows smaller than 100KB. The upper/lower subgraphs of (b) and (c)
depict the average/99th tail FCTof all/0-100KB flows. Note that the y-axis is a log scale for Hadoop andWeb search. (d) and (e) decompose the flows’
FCTof Memcached and Web search.

LIU ETAL.: PAYDEBT: REDUCE BUFFER OCCUPANCY UNDER BURSTY TRAFFIC ON LARGE CLUSTERS 4715

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

to utilize the first RTT, selectively dropping unscheduled
packets makes it suffer a large amount of retransmission.
Besides, ExpressPass and EP(A) credits should compete for
bandwidth at the network bottleneck. It could result in
redundant drops of credits which in turn prolongs flows’
FCT, especially small flows’. The results are consistent with
Section 2.3, while the downgrade of average/tail FCT is less
obvious than the distribution of FCT. Similarly, Homa(A)
downgrades FCTs of Homa because selective drop hurts
small flows. PayDebt achieves almost the same buffer occu-
pancy with Homa (2q) and DCQCN. Buffer occupancy of
HPCC is 15.6% higher than DCQCN as In-Network Teleme-
try (INT) header costs much for workloads composed of a
large fraction of small flows.

Compared with state-of-the-art approaches, PayDebt
reduces the average FCT of small flows by 3.6% to 85.4%.
And the 99th-tail latency is up to 7.4� lower. Buffer built-
up influences the effects of Homa’s mechanism (Section 5.1).
Besides, control packets, i.e., acknowledgments, of Homa
share the same queue with data, while PayDebt control
packets share the same queue with debt and token. This
makes ACKs suffer a smaller queuing time. Therefore, Pay-
Debt achieves a relatively smaller average FCT than Homa
(2q). For clarity, Fig. 9d decomposes the flows’ FCT of
Memcached.

(ii) Hadoop workload. This workload consists of large flows
mixed with small flows, PayDebt benefits from debt to
achieve a modest buffer occupancy; therefore, it speeds up
small flows. Compared with state of the art, the buffer occu-
pancy of PayDebt is reduced by up to 4.8�. Therefore,
small flows’ average and tail latency is reduced by 20.7%
and 35.2%, respectively. The main reason is that Homa
transmits unscheduled and scheduled packets without
coordination, which results in large buffer occupancy (Sec-
tion 2.4). Homa(A) selectively drops unscheduled packets,
downgrading small flows’ performance. Homa(A) transmits
tokens triggering retransmission of lost packets. However, it
does not use in-network rate-limiters for tokens. Tokens
received by senders could exceed network bottleneck band-
width, resulting in scheduled packets piling up. Therefore,
the buffer occupancy of Homa(A) is also relatively large.

The Hadoop workload consists of around 64% of mes-
sages whose size is smaller than one MTU. PayDebt han-
dles these tiny flows by leveraging fractional debt, which
may not perfectly pay back the pre-consumed bandwidth of
unscheduled packets. This results in a larger buffer occu-
pancy than HPCC. However, compared with HPCC, Pay-
Debt reduces small flows’ average and tail latency by 30.7%
and 40.5%, respectively. HPCC leverages INT measure-
ments to adjust the sending window but could mismatch
the network state as the buffer occupancy are instan-
taneously and result in bandwidth waste [53]. Benefit from
a smaller buffer occupancy, PayDebt speeds up small
flows’ average and tail latency, compared to DCQCN, by
56.6% and 51.6%, respectively. The performance of Express-
Pass is not good, suffering from the waste of the first-RTT.
Compared with ExpressPass, PayDebt reduces small flows’
average and tail latency by 72.7% and 83.6%, respectively.
Improvement has been made by EP(A) compared with
ExpressPass, but the retransmission of unscheduled packets
still hurts small flows’ performance.

(iii) Web search workload. The trend is a little different. This
workload is made up of packets with full-length MTU.
Almost no fractional debt exists. Therefore, PayDebt achieves
a smaller buffer occupancy than HPCC. The buffer occu-
pancy of Homa reaches 5.7 MB, where the value is 163.7 KB
for PayDebt. For clarity, Fig. 10 depicts the FCT of flows
smaller than 100 KB. PayDebt achieves a relatively small var-
iance among different flows, indicating that the performance
of PayDebt is stable. The FCT variance of ExpressPass indi-
cates that with the rate-based token generation mechanism,
tokens could be dropped repeatedly. In addition, Fig. 9e
decomposes the flows’ FCT of Web search. Benefiting from a
relatively small buffer occupancy, PayDebt reduces the FCTs
of small flows whose size is smaller than 10 BDP compared
with state-of-the-art approaches except for Homa. At the
same time, the tail latency of PayDebt is not compromised.

PayDebt Does not Hurt the Throughput of Large Flows.Now
we focus on the average FCT and tail latency of Hadoop
and Web search workload. The average FCT is reduced by
up to 38.1% compared with state of the art.

The debt mechanism does not hurt the throughput of
large flows, i.e., the tail latency is not prolonged. The tail
FCT is reduced by 10.3% - 17.3% compared with Express-
Pass/EP(A) and HPCC. They both face the last-RTT waste
of tokens (Section 4.1.1). Instead, PayDebt uses a data-
driven token generation method, which utilizes bandwidth.
HPCC uses accurate in-network information, i.e., queue
length and link bandwidth capacity, to adjust sending win-
dow. On the one hand, small intermittent flows result in the
transiency of queue length. Therefore the adjustment of
sending window may mismatch the current network state.
On the other hand, HPCC explicitly controls the bottleneck
links to have a 5% bandwidth headroom; at the same time,
it uses INT headers, which also wastes bandwidth. For Web
search workload, the tail FCT of PayDebt is slightly down-
graded by 2.4% and 2.9% compared with DCQCN and
Homa (drop-less scenarios). Homa and DCQCN benefit
from a relatively large buffer occupancy to utilize the band-
width. Besides, PayDebt rate limits tokens, therefore revers-
ing data path uses up to 95% bandwidth. This can slightly
downgrade the performance of tail latency.

PayDebt leverages debt to coordinate between unsched-
uled and scheduled packets. The buffer occupancy is signifi-
cantly reduced to benefit small flows without significant
throughput loss of large flows. Although ExpressPass and
EP(A) achieve the smallest buffer occupancy across all
workloads, FCTs of both small flows and tail latency are rel-
atively high. The buffer occupancy of DCQCN and Homa is
relatively high. The tail latency is good, but the small flows’
FCT is relatively large.

Fig. 10. FCTs of flows with different size (Web Search).

4716 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

5.3 Deep Dive of PayDebt’s Performance

PayDebt Achieves Good Fairness. To test the fairness and con-
vergence speed of PayDebt, we conduct simulations where
eight flows pass through the same network bottleneck one
by one and leave afterward. Note that for PayDebt, a proac-
tive congestion control whose receiver hosts use a Round-
Robin strategy to schedule tokens, flows belonging to the
same receiver host can achieve perfect fairness. Therefore,
to test PayDebt’s token congestion control mechanism (Sec-
tion 4.1.3), we choose a scenario where flows are destined to
different receiver hosts. Figs. 11a and 11b show the fairness
of ExpressPass and PayDebt, respectively. Both PayDebt
and ExpressPass converge quickly. They both benefit from
the characteristics of proactive protocols, allocating band-
width by receivers. PayDebt provides better fairness than
ExpressPass. ExpressPass suffers from redundant credit
drops at the network bottleneck, which could be unfair.
PayDebt does not drop tokens, and debts do not interfere
with the fairness since every flow should generate debt
packets.

Fig. 11c demonstrates the token length accordingly. Pay-
Debt sets the ECN-marking threshold Kt of token to
1�BDP. When the third flow is injected, the queue length of
the token exceeds the threshold, i.e., PayDebt’s token con-
gestion control starts to take effect. The token queue length
converges to around the threshold Kt. It also indicates that
token packets do not consume much shared buffer on
switches.

Performance Across Different Loads. We evaluate PayDebt
under a wide range of network loads from 20% to 80%.
Fig. 12 shows that PayDebt performs well under heavy
loads and is at least comparable to state of the art under

light loads. Under light loads, e.g., 20%, the FCT of small
flows are nearly the same except for ExpressPass/DCQCN/
Homa(A). The main reason is that lightweight does not put
much pressure on the network and the buffer occupancy.
ExpressPass wastes the first-RTT. DCQCN faces a relatively
larger buffer because of a relatively large ECN-marking
threshold.

Along with load increasing, PayDebt stands out gradu-
ally. DCQCN/HPCC/Homa faces a larger buffer occu-
pancy, and EP(A)/Homa(A) faces a larger packet loss rate.
The buffer occupancy of PayDebt is almost stable across
different loads, i.e., around 160KB to 200KB, indicating that
PayDebt achieves good coordination among unscheduled
and scheduled packets.

Performance Under Higher Bandwidth Links. Fig. 13 demon-
strates the performance under 100 Gbps links across a wide
range of network loads from 20% to 80%. The trends of per-
formance among different loads are relatively the same.
PayDebt reduces the average FCTs as well as the tail
latency, indicating that PayDebt is robust to high band-
width links2.

Performance of Topologies With Other Fan-In Ratios. Besides,
to investigate PayDebt’s performance of Poisson arrival
flows across different topologies, a non-blocking topology
and topologies with 2:1 and 8:1 over-subscription ratios are
used for verification, respectively.

Figs. 14a and 14b show the performance variation of Pay-
Debt under Web search workloads following a Poisson pro-
cess among topologies with different over-subscription
ratio. Recall that Fig. 9c shows the performance of PayDebt
under over-subscription ratio 4:1 (Section 5.2). For the 2:1
over-subscription ratio topology, PayDebt achieves good
performance on small flows and competitive performance
on tail latency as expected. For the 8:1 ratio, a more notable
improvement on small flows is achieved. The main reason
is that other protocols struggle under a high fan-in ratio,
and a large buffer occupancy is observed. It means PayDebt
is robust to different fan-in ratios to some extent.

Fig. 11. Fairness behavior of PayDebt and ExpressPass.

Fig. 12. Performance of Web Search workloads across different load.

Fig. 13. Performance of Web Search workloads under 100 Gbps links.
2. Homa suffers from a large number of packet loss and timeout

retransmission under 100 Gbps links. Hence, we omit its results.

LIU ETAL.: PAYDEBT: REDUCE BUFFER OCCUPANCY UNDER BURSTY TRAFFIC ON LARGE CLUSTERS 4717

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 14c shows the performance of PayDebt under Web
search workloads under non-blocking topology. Homa is
designed for small RPCs in non-blocking topology, and
achieves better performance on small flows. Aside from
Homa, PayDebt achieves at least comparable performance
with other approaches. NDP trims packet payload, there-
fore achieving a smaller buffer than PayDebt. However, it
hurts the performance of small flows because of the aggres-
sive drop (Section 2.2).

5.4 Further Optimization of PayDebt

When Buffer Overflows. In prior simulations, 8MB shared
buffer is used, where buffer occupancy of PayDebt/Homa
reaches up to 1.03MB/6MB, respectively. We wonder about
their performance with a smaller switch buffer, where
packet loss occurs. Fig. 15 illustrates the results.

We compare PayDebt with Homa/Homa(A) under both
8MB and 4MB switch buffer. Because PayDebt achieves a
relatively small buffer, no packet loss occurs under both sce-
narios. Under the 4MB shared buffer scenario, Homa faces
0.03% and 0.01% packet loss rate for Hadoop and Web
search, respectively. The average FCT of small flows of
Homa is downgraded by 10.6% - 19.0%, and tail latency is
1.8� larger compared with Homa (8MB buffer) without
packet loss.

Further, the switch buffer is reduced to 800KB to investi-
gate the performance of PayDebt under lossy scenarios. Pay-
Debt starts to drop packets in the Hadoop workload. The

timeout of the probe packet is set to a relatively large value,
i.e., 4ms, to avoid unnecessary transmission of probing. Pay-
Debt faces 0.01% packet loss rate. Packet loss can hurt the
performance of small flows. The average FCT of PayDebt’s
small flows is downgraded by 3.5% compared with PayDebt
(8MB/4MB switch buffer). No explicit downgrade has been
observed for small flows’ tail latency. Benefit from selective
retransmission mechanism, considering all flows, perfor-
mance downgrade is negligible, i.e., average and tail FCT are
increased by 0.9% and 1.4%, respectively. The performance
of PayDebt is better than in Homa, even under lossy scenar-
ios. To summarize, the performance of PayDebt does not
downgrade severelywhen packet loss occurs.

Performance Under Incast Scenarios.We evaluate PayDebt’s
design of bounding the maximum inflight unscheduled
packets of the same sender-receiver host pair. Fig. 16a shows
the buffer occupancy performance under incast scenarios.
Incast flows are composed of one BDP packets. ExpressPass,
EP(A), and Homa(A) achieve a small buffer occupancy. This
is expected because ExpressPass has no unscheduled pack-
ets, while Homa(A) and EP(A) benefit from setting a small
threshold to drop unscheduled packets. Along with the
number of incast flows increasing, the buffer occupancy of
PayDebt remains relatively small. PayDebt benefits from
bounding the maximum inflight packets of the same host
pair. The buffer occupancy of DCQCN and HPCC reach
above 6MB, and PFCs are triggered. The buffer occupancy of
Homa reaches 8MB, andHoma starts to drop.

5.5 Mechanism Validation

This section digs into the debt mechanism of PayDebt to
validate its effects. Fig. 16b depicts the results.

The Timing of Debt is Essential. Fig. 16b shows the perfor-
mance of PayDebt by comparing it with three other variants
of PayDebt, i.e., no debt, w/ late-debt, and w/ early-debt
when running workload Hadoop following a Poisson pro-
cess. No debt means that no debt mechanism is used. Late-
debt stands for debts are sent after data packets of flows are
all received. Contrarily, early-debt stands for a debt is sent
as soon as an unscheduled packet is received (i.e., naı̈ve
debt in Section 3.1). PayDebt outperforms w/o debt and
w/ late-debt. Compared with PayDebt w/o debt and w/
late-debt, the performance of flows smaller than 100KB is

Fig. 14. Performance of different topologies.

Fig. 15. When packet drop occurs. The solid/dashed line denotes avg/
99th-tail latency of flows smaller than 100KB/all flows, respectively.

4718 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

greatly improved. This is expected because the buffer occu-
pancy is reduced by 3.72� and 2.14�, respectively. It has
been observed that improvement is made by PayDebt w/
late-debt, compared with PayDebt w/o debt. The main rea-
son is that the late-debts also compete for bandwidth with
tokens and reduce buffer occupancy. However, the timing
of late-debt deviates; therefore, the performance is not as
well as PayDebt. PayDebt w/ early-debt achieves almost
the same performance as PayDebt. Under a heavy load sce-
nario, sending a debt as soon as an unscheduled packet is
received does not hurt network throughput.

ECN-Based Token Congestion Control. PayDebt deals with
the token incast problem with ECN-based token congestion
control. Fig. 16d shows the buffer usage and average FCT
with different ECN marking thresholds in the Hadoop
workload. A small ECN marking threshold contributes to a
small buffer occupancy and a small average FCT. It indi-
cates that token congestion control is vital to provide better
performance.

5.6 Parameter Selection

ECNMarking ThresholdKd.Kd determines how conservative
it is for flows to transmit scheduled packets. The smaller Kd

is, the more conservative PayDebt is to transmit scheduled
packets. Fig. 16c shows the buffer usage and tail FCT with
different Kd in the Hadoop workload. Threshold 0 means
sending a debt upon receiving an unscheduled packet, i.e.,
early-debt. It achieves the lowest buffer occupancy but not
the smallest average FCT for small flows. As Kd increases,
the buffer increases. It shows that 1� BDP can achieve good
performance among different thresholds.

Token Congestion Control Kt. ECN marking threshold of
tokensKt determines how aggressively PayDebt deals with
the token incast problem. Fig. 16d shows that a too-small
ECN threshold, i.e., 0:5�BDP, causes under-utilization as in-
flight tokens might be insufficient. A too-large threshold is
not sensitive to token queuing and leads to the token incast
problem (Section 4.1.3). We find 1�BDP achieves great
performance.

6 DISCUSSION

Overhead of PayDebt. The bandwidth overhead of debts/
tokens is 5%, as other proactive protocols do. Actually, for
reactive protocols (e.g., HPCC), per-packet ACK is neces-
sary for precise congestion signals, which also consume at
least 5% bandwidth. PayDebt uses a dedicated queue for
rate-limiting. It is necessary for oversubscribed networks to
ensure that bandwidth consumed by scheduled packets
will not exceed the network bottleneck. One additional
queue is generally available.

Compatible With Multiple Applications. Different applica-
tions are isolated by different queues (Section 2.3). Their
bandwidth can be allocated statically or dynamically. For
static allocation, PayDebt’s rate-limiters can be simply con-
figured to a static proportion (i.e., 5%) of the allocated band-
width. For dynamic allocation, given that the bandwidth
used on bi-direction paths is not symmetric, data packets
should go through the same direction as the corresponding
tokens to ensure that the rate-limiting is correct. It can be
achieved by leveraging forwarding tokens, i.e., tokens are
sent by senders. When the sender receives the ACKs of
tokens, corresponding scheduled packets can be transmitted.

When no Scheduled Packet Exists. Debts do not take effect
when all flows are made up of unscheduled packets. This is
the limitation for almost all the end-to-end congestion con-
trol protocols, i.e., flows finish transmitting too fast to take
congestion control. To handle all-unscheduled-packets sce-
narios, per-hop flow control should be involved [69], [70],
which is complementary to end-to-end congestion control
protocols.

7 CONCLUSION

The central idea of PayDebt is that buffer occupancy could
be reduced significantly in the first place instead of han-
dling buffer explosion afterward. At the core of PayDebt, it
proposes a debt mechanism to coordinate unscheduled and
scheduled packets so that they can share bandwidth harmo-
niously. Consequently, packet queuing delay and drops can
be reduced significantly. The average FCTs under main-
stream oversubscribed networks can be greatly reduced.
PayDebt’s performance is at least comparable to state of the
art under non-blocking networks. This design also alleviates
the switch vendors’ pressure to further increase the capacity
of on-chip buffers.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their valuable comments.

REFERENCES

[1] F. Ahmad, S. Chakradhar, A. Raghunathan, and T. N. Vijaykumar,
“ShuffleWatcher: Shuffle-aware scheduling in multi-tenant Map-
Reduce clusters,” in Proc. USENIXAnnu. Tech. Conf., 2014, pp. 1–12.

[2] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with
Borg,” in Proc. 10th Eur. Conf. Comput. Syst., 2015, Art. no. 18.

[3] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint
flexibility in data-intensive clusters,” in Proc. ACM SIGCOMM
Conf., 2013, pp. 231–242.

[4] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A.
Akella, “Multi-resource packing for cluster schedulers,” in Proc.
ACM Conf. SIGCOMM, 2014, pp. 455–466.

Fig. 16. Mechanism validation and parameter selection. In (b), late-debt stands for debts are sent after data packets of flows are all received. Con-
trarily, early-debt stands for a debt is sent as soon as an unscheduled packet is received. In (c) and (d), the left y-label indicates the value of buffer
and the right y-label indicates FCTs.

LIU ETAL.: PAYDEBT: REDUCE BUFFER OCCUPANCY UNDER BURSTY TRAFFIC ON LARGE CLUSTERS 4719

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

[5] D. Gibson et al., “Aquila: A unified, low-latency fabric for data-
center networks,” in Proc. 19th USENIX Symp. Netw. Syst. Des.
Implementation, 2022, pp. 1249–1266.

[6] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in Proc. ACM Conf.
Special Int. Group Data Commun., 2015, pp. 123–137.

[7] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in Proc. ACM SIGCOMM Conf.
Internet Meas., 2010, pp. 267–280.

[8] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in
Proc. ACM SIGCOMMConf. Internet Meas., 2009, pp. 202–208.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc.
ACM SIGMETRICS/PERFORMANCE Joint Int. Conf. Meas. Model.
Comput. Syst., 2012, pp. 53–64.

[10] B. Fitzpatrick, “Memcached: A distributed memory object caching
system,” 2011. [Online]. Available: http://www.memcached.org/

[11] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can
be general and fast,” in Proc. 16th USENIX Conf. Netw. Syst. Des.
Implementation, 2019, pp. 1–16.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[13] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. USENIX
Conf. Netw. Syst. Des. Implementation, 2012, Art. no. 2.

[14] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. USENIX
Conf. Hot Topics Cloud Comput., 2010, Art. no. 10.

[15] G. Ananthanarayanan et al., “Reining in the outliers in map-
reduce clusters usingMantri,” in Proc. 9th USENIX Conf. Operating
Syst. Des. Implementation, 2010, pp. 265–278.

[16] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” in
Proc. ACM SIGCOMMConf., 2011, pp. 98–109.

[17] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. USENIX
Conf. Netw. Syst. Des. Implementation, 2012, Art. no. 2.

[18] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proc. 7th Symp. Oper. Syst. Des. Implementation, 2006, pp. 307–320.

[19] M. Li et al., “Scaling distributed machine learning with the param-
eter server,” in Proc. 11th USENIX Conf. Oper. Syst. Des. Implemen-
tation, 2014, pp. 583–598.

[20] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Conf. Oper. Syst. Des. Implementa-
tion, 2016, pp. 265–283.

[21] Y. Peng et al., “A generic communication scheduler for distrib-
uted DNN training acceleration,” in Proc. 27th ACM Symp. Operat-
ing Syst. Princ., 2019, pp. 16–29.

[22] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74–80, 2013.

[23] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
Reducing the flow completion time tail in datacenter networks,”
in Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protoc. Com-
put. Commun., 2012, pp. 139–150.

[24] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM SIG-
COMM Conf., 2011, pp. 63–74.

[25] Y. Zhu et al., “Congestion control for large-scale RDMA
deployments,” in Proc. ACM Conf. Special Int. Group Data Commun.,
2015, pp. 523–536.

[26] Y. Li et al., “HPCC: High precision congestion control,” in Proc.
ACM Conf. Special Int. Group Data Commun., 2019, pp. 44–58.

[27] R. B. Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mit-
zenmacher, “PINT: Probabilistic in-band network telemetry,” in
Proc. Annu. Conf. ACM Special Int. Group Data Commun. Appl. Tech-
nol. Archit. Protoc. Comput. Commun., 2020, pp. 662–680.

[28] V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing the
performance limits of datacenter networks,” in Proc. 19th USENIX
Symp. Netw. Syst. Des. Implementation, 2022, pp. 51–70.

[29] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” in Proc. ACM Conf. Special Int. Group Data Commun.,
2015, pp. 537–550.

[30] G. Kumar et al., “Swift: Delay is simple and effective for conges-
tion control in the datacenter,” in Proc. ACM Conf. Special Int.
Group Data Commun., 2020, pp. 514–528.

[31] S. Liu, A. Ghalayini, M. Alizadeh, B. Prabhakar, M. Rosenblum,
and A. Sivaraman, “Breaking the transience-equilibrium nexus: A
new approach to datacenter packet transport,” in Proc. USENIX
Symp. Netw. Syst. Des. Implementation, 2021, pp. 47–63.

[32] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded
congestion control for datacenters,” in Proc. ACM Conf. Special Int.
Group Data Commun., 2017, pp. 239–252.

[33] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A rec-
eiver-driven low-latency transport protocol using network priorities,”
inProc. Conf. ACMSpecial Int. GroupDataCommun., 2018, pp. 221–235.

[34] M. Handley et al., “Re-architecting datacenter networks and
stacks for low latency and high performance,” in Proc. Conf. ACM
Special Int. Group Data Commun., 2017, pp. 29–42.

[35] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “pHost: Distributed near-optimal datacenter transport
over commodity network fabric,” in Proc. 11th ACM Conf. Emerg.
Netw. Experiments Technol., 2015, Art. no. 1.

[36] S.Hu et al., “Aeolus: A building block for proactive transport in data-
centers,” in Proc. Annu. Conf. ACM Special Int. Group Data Commun.
Appl. Technol. Archit. Protoc. Comput. Commun., 2020, pp. 422–434.

[37] A. Andreyev, “Introducing data center fabric, the next-generation
Facebook data center network,” 2014. [Online]. Available:
https://engineering.fb.com/2014/11/14/production-
engineering/introducing-data-center-fabric-the-next-generation-
facebook-data-center-network/

[38] A. Singh et al., “Jupiter rising: A decade of Clos topologies and
centralized control in Google’s datacenter network,” in Proc. ACM
Conf. Special Int. Group Data Commun., 2015, pp. 183–197.

[39] Cisco, “Oversubscription and density best practices,” 2015. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/
data-center-virtualization/storage-networking-solution/
net_implementation_white_paper0900aecd800f592f.html

[40] C. DeCusatis, “Transforming the data center network,” in Hand-
book of Fiber Optic Data Communication, 4th ed. New York, NY,
USA: Academic, 2013, pp. 3–22.

[41] L. Paraschis and K. Raj, “Chapter 15 - Innovations in DCI trans-
port networks,” in Optical Fiber Telecommunications VII, A. E. Will-
ner, Ed., New York, NY, USA: Academic, 2020, pp. 673–718.

[42] V. Vasudevan et al., “Safe and effective fine-grained TCP retrans-
missions for datacenter communication,” in Proc. ACM SIG-
COMMConf. Data Commun., 2009, pp. 303–314.

[43] A.Greenberg et al., “Vl2: A scalable andflexible data center network,”
inProc. ACMSIGCOMMConf. Data Commun., 2009, pp. 51–62.

[44] L. A. Barroso and U. H€olzle, “The datacenter as a computer: An
introduction to the design of warehouse-scale machines,” Synth.
Lectures Comput. Archit., vol. 4, no. 1, pp. 1–108, 2009.

[45] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren, “Re-architect-
ing congestion management in lossless ethernet,” in Proc. USENIX
Conf. Netw. Syst. Des. Implementation, 2020, pp. 19–36.

[46] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 40, no. 1, pp. 92–99, 2010.

[47] R. Kapoor, A. C. Snoeren, G. M. Voelker, and G. Porter, “Bullet trains:
A study of NIC burst behavior at microsecond timescales,” in Proc.
9th ACMConf. Emerg. Netw. Experiments Technol., 2013, pp. 133–138.

[48] M.Noormohammadpour and C. S. Raghavendra, “Datacenter traf-
fic control: Understanding techniques and tradeoffs,” IEEE Com-
mun. Surveys Tuts., vol. 20, no. 2, pp. 1492–1525, Apr.–Jun. 2018.

[49] M. Al-Fares et al., “Hedera: Dynamic flow scheduling for data
center networks,” in Proc. USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2010, pp. 89–92.

[50] X. Zhou et al., “Mirror mirror on the ceiling: Flexible wireless links
for data centers,” ACM SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 443–454, 2012.

[51] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN
for data center networks,” in Proc. 8th Int. Conf. Emerg. Netw.
Experiments Technol., 2012, pp. 25–36.

[52] C. Lee, C. Park, K. Jang, S. B. Moon, and D. Han, “Accurate
latency-based congestion feedback for datacenters,” in Proc. USE-
NIX Conf. Annu. Tech. Conf., 2015, pp. 403–415.

[53] PayDebt appendix, 2021. [Online]. Available: https://anonymous.
4open.science/r/Paydebt-appendix-8BEC

[54] C. Guo et al., “RDMA over commodity ethernet at scale,” in Proc.
ACM SIGCOMM Conf., 2016, pp. 202–215.

[55] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle flow control:
Avoiding deadlock in lossless networks,” in Proc. ACM Conf. Spe-
cial Int. Group Data Commun., 2019, pp. 75–89.

4720 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

http://www.memcached.org/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/storage-networking-solution/net_implementation_white_paper0900aecd800f592f.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/storage-networking-solution/net_implementation_white_paper0900aecd800f592f.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/storage-networking-solution/net_implementation_white_paper0900aecd800f592f.html
https://anonymous.4open.science/r/Paydebt-appendix-8BEC
https://anonymous.4open.science/r/Paydebt-appendix-8BEC

[56] Y. Le, B. Stephens, A. Singhvi, A. Akella, and M. M. Swift,
“RoGUE: RDMA over generic unconverged ethernet,” in Proc.
ACM Symp. Cloud Comput., 2018, pp. 225–236.

[57] J. Ousterhout, “A Linux kernel implementation of the Homa trans-
port protocol,” inProc. USENIXAnnu. Tech. Conf., 2021, pp. 99–115.

[58] Y. Gao et al., “When cloud storage meets RDMA,” in Proc. USE-
NIX Conf. Netw. Syst. Des. Implementation, 2021, pp. 519–533.

[59] Cisco., “Cisco Nexus 7000 series NX-OS security configuration
guide, release 6.x,” 2019. [Online]. Available: https://www.cisco.
com/c/en/us/td/docs/switches/datacenter/sw/6_x/nx-os/
security/configuration/guide/b_Cisco_Nexus_7000_NX-
OS_Security_Configuration_Guide__Release_6-x.html

[60] Juniper, “Configuring rate limiting and sharing of excess band-
width on multiservices PICs,” 2021. [Online]. Available: https://
www.juniper.net/documentation/us/en/software/junos/cos/
topics/task/cos-configuring-rate-limiting-and-sharing-of-excess-
bandwidth-on-multiservices-pics.html

[61] Broadcom, “Broadcom BCM53154: Low-power five-port GbE
time-sensitive networking switch,” 2018. [Online]. Available:
https://docs.broadcom.com/doc/53154-PB100

[62] Stanford, “Homa simulator,” 2018. [Online]. Available: https://
github.com/PlatformLab/HomaSimulation

[63] KAIST, “Expresspass simulator,” 2017. [Online]. Available:
https://github.com/kaist-ina/ns2-xpass

[64] Alibaba, “Hpcc simulator,” 2019. [Online]. Available: https://
github.com/alibaba-edu/High-Precision-Congestion-Control

[65] Berkeley, “Berkeley extensible software switch,” 2018. [Online].
Available: https://github.com/NetSys/bess

[66] Intel, “Data plane development kit,” 2011. [Online]. Available:
https://www.dpdk.org/

[67] Stanford, “An implementation of the Homa transport protocol as
a C++ userspace library,” 2019. [Online]. Available: https://
github.com/PlatformLab/Homa

[68] Stanford, “A Linux kernel module that implements the Homa
transport protocol,” 2019. [Online]. Available: https://github.
com/PlatformLab/HomaModule

[69] K. Liu et al., “Floodgate: Taming incast in datacenter networks,” in
Proc. 17th Int. Conf. Emerg. Netw. Experiments Technol., 2021, pp. 30–44.

[70] P. Goyal, P. Shah, N. K. Sharma, M. Alizadeh, and T. E. Anderson,
“Backpressure flow control,” in Proc. 19th USENIX Symp. Netw.
Syst. Des. Implementation, 2022, pp. 779–805.

KexinLiu received theBSdegree from theDepart-
ment of Software Engineering, Sun Yat-senUniver-
sity, China, in 2017. She is currently working
toward the PhD degree in the Department of Com-
puter Science and Technology, Nanjing University,
China. Her research interests include congestion
control protocols, flow control protocols, and data-
center networks.

Chen Tian received the BS,MS, and PhD degrees
from the Department of Electronics and Informa-
tion Engineering, Huazhong University of Science
and Technology, China, in 2000, 2003, and 2008,
respectively. He is a professor with the State Key
Laboratory for Novel Software Technology, Nanjing
University, China. He was previously an Associate
Professor with the School of Electronics Informa-
tion and Communications, Huazhong University of
Science and Technology, China. From 2012 to
2013, he was a postdoctoral researcher with the

Department of Computer Science, Yale University. His research interests
include data center networks, distributed systems, and internet protocols.

Qingyue Wang received the BS degree from the
Department of Computer Science and Technol-
ogy, Wuhan University, China, in 2019. She is cur-
rently working toward the MS degree in the
Department of Computer Science and Technol-
ogy, Nanjing University, China. Her main research
interest is datacenter networks.

Yanqing Chen received the BS degree from the
Department of Computer Science and Engineer-
ing, Southeast University, China, in 2019. He is cur-
rently working toward the PhD degree in the
Department of Computer Science and Technology,
Nanjing University, China. His research interests
include programmable switches and datacenter
networks.

Bingchuan Tian received the BS degree from
the Department of Computer Science and Tech-
nology, Nanjing University of Aeronautics and
Astronautics, China, in 2016, and the PhD degree
from the Department of Computer Science and
Technology, Nanjing University, China, in 2021.
His research interests include network verification
and intent-based networking.

Wenhao Sun received the BS degree in informa-
tion engineering from Southeast University,
China, in 2010, and the PhD degree in circuits
and systems from Southeast University, China, in
2017. He has been with the Network Technology
Lab, 2012 Labs, Huawei since graduation. His
current research interests include: Datacenter
networks, industrial networks, network reliability,
and network science.

Ke Meng received the BE degree in automation
control from the University of Science and Tech-
nology of China, Hefei, China, in 2013, and the
PhD degree in robotics and biomedical engineer-
ing from both the University of Science and Tech-
nology of China and the City University of Hong
Kong, Hong Kong, in 2018. She has been with
the Network Technology Lab, 2012 Labs, Huawei
since graduation. Her current research interests
include: Datacenter networking, congestion con-
trol, flow control, and network optimization.

Long Yan received the BS and PhD degrees in
computer science and technology from the Uni-
versity of Science and Technology of China,
Hefei, China, in 2014 and 2019, respectively.
Since 2019, he has been with the Network Tech-
nology Lab, 2012 Labs, Huawei, where he is cur-
rently a senior engineer. His current research
interests include datacenter networks, conges-
tion control protocols, and flow control protocols.

Lei Han is the principal investigator in the data-
center network field with the Network Technology
Lab, 2012 Labs, Huawei. He has been working
on datacom network technology research since
2005, and started concentrating on datacenter
networks in 2009. Many of his research results
have been adopted by Huawei DCN products,
and he has more than 30 global patents.

LIU ETAL.: PAYDEBT: REDUCE BUFFER OCCUPANCY UNDER BURSTY TRAFFIC ON LARGE CLUSTERS 4721

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/6_x/nx-os/security/configuration/guide/b_Cisco_Nexus_7000_NX-OS_Security_Configuration_Guide__Release_6-x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/6_x/nx-os/security/configuration/guide/b_Cisco_Nexus_7000_NX-OS_Security_Configuration_Guide__Release_6-x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/6_x/nx-os/security/configuration/guide/b_Cisco_Nexus_7000_NX-OS_Security_Configuration_Guide__Release_6-x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/6_x/nx-os/security/configuration/guide/b_Cisco_Nexus_7000_NX-OS_Security_Configuration_Guide__Release_6-x.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/task/cos-configuring-rate-limiting-and-sharing-of-excess-bandwidth-on-multiservices-pics.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/task/cos-configuring-rate-limiting-and-sharing-of-excess-bandwidth-on-multiservices-pics.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/task/cos-configuring-rate-limiting-and-sharing-of-excess-bandwidth-on-multiservices-pics.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/task/cos-configuring-rate-limiting-and-sharing-of-excess-bandwidth-on-multiservices-pics.html
https://docs.broadcom.com/doc/53154-PB100
https://github.com/PlatformLab/HomaSimulation
https://github.com/PlatformLab/HomaSimulation
https://github.com/kaist-ina/ns2-xpass
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/NetSys/bess
https://www.dpdk.org/
https://github.com/PlatformLab/Homa
https://github.com/PlatformLab/Homa
https://github.com/PlatformLab/HomaModule
https://github.com/PlatformLab/HomaModule

Jie Fu is currently the director of the Network
Technology Lab, 2012 Labs, Huawei. She leads
the research and innovation in network protocols
and architecture, fundamental theories, DCN net-
works, campus networks, etc. She has rich expe-
rience in datacom network technology research
and product development.

Wanchun Dou received the PhD degree in
mechanical and electronic engineering from the
Nanjing University of Science and Technology,
China, in 2001. He is currently a full professor of
the State Key Laboratory for Novel Software
Technology, Nanjing University. From April 2005
to June 2005 and from November 2008 to Febru-
ary 2009, he respectively visited the Department
of Computer Science and Engineering, Hong
Kong University of Science and Technology,
Hong Kong, as a visiting scholar. Up to now, he

has chaired three National Natural Science Foundation of China projects
and published more than 60 research papers in international journals
and international conferences. His research interests include workflow,
cloud computing, and service computing.

Guihai Chen received the BS degree in com-
puter software from Nanjing University, in 1984,
the ME degree in computer applications from
Southeast University, in 1987, and the PhD
degree in computer science from the University
of Hong Kong, in 1997. He is a distinguished pro-
fessor of Nanjing University. He had been invited
as a visiting professor by Kyushu Institute of
Technology in Japan, University of Queensland in
Australia and Wayne State University in USA. He
has a wide range of research interests with focus

on parallel computing, wireless networks, data centers, peer-to-peer
computing, high-performance computer architecture, and data engineer-
ing. He has published more than 350 peer-reviewed papers, and more
than 200 of them are in well-archived international journals such as the
IEEE Transactions on Parallel and Distributed Systems, IEEE Transac-
tions on Computers, IEEE Transactions on Knowledge and Data Engi-
neering, IEEE/ACM Transactions on Networking and ACM Transactions
on Sensor Networks, and also in well-known conference proceedings
such as HPCA, MOBIHOC, INFOCOM, ICNP, ICDCS, CoNext and
AAAI. He has won nine paper awards including ICNP 2015 best paper
Award and DASFAA 2017 Best Paper Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4722 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on October 05,2022 at 04:14:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

