
Multi-Resource VNF Deployment
in a Heterogeneous Cloud

Jiaqi Zheng ,Member, IEEE, Zixuan Zhang, Qiufang Ma , Xiaofeng Gao ,Member, IEEE,

Chen Tian ,Member, IEEE, and Guihai Chen , Senior Member, IEEE

Abstract—The emerging paradigmof Network Function Virtualization (NFV) promises to shorten the renewal cycles of network functions

and reduce the capital expenses by flexibly deploying virtualized network functions (VNFs) implementation on commodity servers. However,

the required resource of each type (CPU,memory, etc.) for the running VNF should be provisioned to guarantee the performancewhen

processing packets. This comeswith different deployment cost, especially in a heterogeneous cloud consisting of a large number of network

function platforms from various vendors. To optimally operate VNFs, it is necessary for the network operator to dynamically deploy VNFs in

the expensive cloud infrastructures. In this article, we initiate the studyofminimizing the deployment cost under multi-resource constraints in

a heterogeneous cloud.We formulatemulti-resource VNFdeployment problem (MVDP) asanoptimization programand prove its hardness.

We propose an offline ð1; dþ 1Þ-bicriteria approximation algorithmand an ðOð1Þ;Oðn � lognÞÞ-competitive online algorithm to deploy VNFs

in a scalablemanner, where d is the number of resource types and n is the number of requiredVNFs. Large-scale simulations andDPDK-

basedOpenNetVM implementation show that our algorithms can reduce the overall cost by 34% and improve the performance in terms of

multi-resource allocation.

Index Terms—Network function virtualization, heterogeneous cloud, approximation algorithm

Ç

1 INTRODUCTION

MASSIVE expensive and dedicated hardwaremiddleboxes
such as firewalls, intrusion detection systems (IDSs),

deep packet inspection (DPI) and WAN optimization are
deployed in a cloud to provide various network functions,
which can perform a set of specific security policies [1] and
improve performance. The emerging paradigm of Network
Function Virtualization (NFV) [2], [3] makes it possible to
flexibly deploy virtualized network functions (VNFs) imple-
mentation on general-purpose commodity servers. NFV can
accelerate network innovation for the network operators by
shortening the renewal cycles, reducing capital expenses
and saving energy [4]. Meanwhile, hardware acceleration
techniques such as Intel DPDK [5] and SR-IOV [6] enable
high-performance VNFs to process packets at line rate [7].

The current cloud computing infrastructure fromAmazon,
Google and Rackspace typically includes a heterogeneous col-
lection of platforms [8] and provides a wide range of network
services. To optimally operate a NFV-based heterogeneous
cloud platform, an operator requires dynamically deploying

various VNF instances on virtual machines or docker-based
containers [9] on one physical network function platforms
with limited resource capacities (CPU, memory, etc). How-
ever, the different VNF instances consume diverse types of
resources when processing packets. For example, intrusion
detection systems and deep packet inspection both bottleneck
on CPU, while software implementation of virtual routers
bottleneck on memory [10]. This also comes with amount of
deployment cost, leading to unfavorable capital expenses.

Existing offline [11], [12], [13] and online [14], [15] deploy-
ment approaches only consider single resource consumption
and do not respect the diversity of multiple resource con-
sumptions for each type of VNFs, leading to unstable packet
processing performance [16]. NFVnice [17] and ResQ [18]
report that a VNF may become bottleneck even though only
one of its available resources is limited, where the packets
will be dropped and the performance could be significantly
degraded. Usually these dropped packets have already been
processed by the upstream VNF of a service chain and this
undoubtedly results in wasted work. Furthermore, the proc-
essing capacity of multiple resources in the expensive cloud
infrastructure cannot be fully utilized. In addition, the previ-
ous work assumes that the provisioning cost is a constant
even if an identical VNF is deployed onto different network
function platforms, which cannot be established especially
in a heterogeneous cloud consisting of a large number of
platforms from various vendors. Say an example in Amazon
EC2 cloud platform [19], the deployment cost ranges from
$10 to $40, depending on the network platformwith different
physical resources.

In this paper, we study a general problem of minimizing
deployment cost with multi-resource constraints in a het-
erogeneous cloud. Given the VNFs for each arrived flow
and their required resource vector, we aim to determine an

� Jiaqi Zheng, Chen Tian, and Guihai Chen are with the State Key Labora-
tory for Novel Software Technology, Nanjing University, Nanjing
210023, China. E-mail: {jzheng, tianchen, gchen}@nju.edu.cn.

� Zixuan Zhang and Xiaofeng Gao are with the Department of Computer
Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240,
China. E-mail: zhangzx.sjtu@gmail.com, gao-xf@cs.sjtu.edu.cn.

� QiufangMa is with the State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China. E-mail: mg1633053@smail.
nju.edu.cn.

Manuscript received 19 July 2020; revised 29 Oct. 2020; accepted 21 Nov. 2020.
Date of publication 3 Dec. 2020; date of current version 13 Dec. 2021.
(Corresponding author: Guihai Chen.)
Recommended for acceptance by R. Wang.
Digital Object Identifier no. 10.1109/TC.2020.3042247

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 1, JANUARY 2022 81

0018-9340� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0002-5710-4033
https://orcid.org/0000-0002-5710-4033
https://orcid.org/0000-0002-5710-4033
https://orcid.org/0000-0002-5710-4033
https://orcid.org/0000-0002-5710-4033
https://orcid.org/0000-0003-1776-8799
https://orcid.org/0000-0003-1776-8799
https://orcid.org/0000-0003-1776-8799
https://orcid.org/0000-0003-1776-8799
https://orcid.org/0000-0003-1776-8799
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
mailto:jzheng@nju.edu.cn
mailto:tianchen@nju.edu.cn
mailto:gchen@nju.edu.cn
mailto:zhangzx.sjtu@gmail.com
mailto:gao-xf@cs.sjtu.edu.cn
mailto:mg1633053@smail.nju.edu.cn
mailto:mg1633053@smail.nju.edu.cn

optimal deployment with the objective of minimizing the
overall cost such that each type of consumed resource cannot
beyond its capacity, where the overall cost refers to the provi-
sioning cost for the required resource and operational cost.
Our problem is fundamentally different from previous work
as the heterogeneous cloud model generalizes the VNF
deployment problem andmakes the optimization essentially
harder. Furthermore, we allow the operator to navigate a
broader design space, where one may flexibly make decision
by steering resource consumption of each type.

We make three novel contributions in this paper. First,
we propose a general optimization framework for the
multi-resource VNF deployment problem (MVDP) in a het-
erogeneous cloud. Generally speaking, the optimization
program aims to determine VNF deployment during each
epoch, where the required VNFs for each arrived flow are
given, such that the total deployment cost is minimized and
the resource capacity of each type cannot be overbooked.

Our second contribution is an offline and online algo-
rithm to solve MVDP. We prove that MVDP is NP-hard,
and thus focus on designing approximation algorithms. We
first propose a ð1; dþ 1Þ-bicriteria approximation algorithm
and prove that it yields a near optimal solution and the
resource capacity constraints can be violated by a factor of
d, where d is the number of resource types. Despite the near
optimal performance offered, this offline algorithm cannot
be applied to the case that the order of flow requests is
unknown. We further propose an ðOð1Þ;Oðn � lognÞÞ-com-
petitive online algorithm and prove that it produces a solu-
tion bounded by a constant and the resource capacity
constraints are violated by a factor of Oðn � lognÞ, where n is
the number of required VNFs for the arrived flows.

Our third contribution is a comprehensive performance
evaluation of our algorithms. Large-scale simulations using
synthetic network topologies show that our algorithms can
reduce the total deployment cost by 34%. Meanwhile, our
algorithms run faster compared to state of the art and can
achieve near optimal. We also develop a prototype on the
DPDK-based OpenNetVM platform [20]. Experimental
results show that our solution can improve the performance
in terms of multi-resource allocation.

2 RELATED WORK

Webriefly reviewprior art on the VNFs deployment problem.
VNF-P [21] proposes a hybridVNFdeploymentmodel to allo-
cate physical resources, i.e., network services can be provided
by a mixture of traditional dedicated hardware and VNFs. As
for the fully virtualized environment, Addis et al. [22] formu-
late the VNFdeployment problemas an integer programming
and solve the solution using standard solver. Ghaznavi et al.
[14] present amodel tominimize the operational cost and pro-
vide elastic services. Furthermore, Cohen et al. [11] develop an
approximation algorithm to minimize the distance cost
between the clients and VNFs such that the capacity con-
straint of single resource should be satisfied. Feng et al. [13]
jointly optimize the VNF deployment and routing selection to
reduce the resource consumption. To respect the order among
different VNFs, Ma et al. [23] design a heuristic algorithm to
deploy interdependent VNFs, where the relations among
these VNFs can be captured by a partially- or totally-ordered

set. Instead of that one VNF processes all of the flows, Sang
et al. [12] admit that one VNF can process a fraction of one
flow while the others can process the rest, whose objective is
minimizing the number of running VNF instances. Zhang
et al. [15] develop an online learning-assisted algorithm to
deploy VNFs in the cloud for cost minimization. NFVnice [17]
andNFP [24] deploy the VNFs of a service chain onto one net-
work function platform with multiple CPU cores. RABA [25]
and REINFORCE [26] study the VNF failover mechanisms.
You et al. [27] propose fair queueing algorithm to provide QoS
guarantees for VNFs.

The work above only focuses on single resource con-
straint, leading to unstable packet processing performance
[16]. Multi-resource generalized assignment problem is first
introduced in [28]. However, its naive heuristic algorithm
cannot provide provable guarantee. Guo et al. [29] develop a
set of algorithms for vector packing constraints, while their
model cannot be used to solve our problem. Our work is
complementary to previous work. The novelty lies in a gen-
eral optimization framework and provably algorithms of
considering multi-resource constraints and various deploy-
ment cost that can well capture the heterogeneous cloud
model. In addition, we provide in-depth theoretical analysis
both in offline and online manner, which to our knowledge
has not been done before.

3 AN OPTIMIZATION FRAMEWORK

In this section, we introduce our optimization framework
for multi-resource VNF deployment problem.

3.1 A Heterogeneous Cloud Model

Before formulating the problem, we first present our hetero-
geneous cloud model. Our model captures the rack-based
VNF deployment in data centers [30]. We deploy the VNFs
onto the heterogeneous network platforms belonging to one
data center. Our model can be captured by a tuple ðM;F Þ,
whereM is the set of network function platforms (locations)
and F represents the set of network flows. It should be
noted that a flow in our model is actually an aggregate of all
flows between the same source destination pair. Each flow
should pass through a set of VNFs to perform a specific
function. The required VNFs set for each flow are known
and which VNF should be deployed onto which network
function platform needs to be determined. Without loss of
generality, we assume each type of resources (CPU, mem-
ory, bandwidth, etc.) at network function platform i has
capacity constraint as the following equation.

RiRi ¼ r1; r2; . . . ; rk; . . . ; rd
� �

; (1)

Where RiRi is the resource capacity vector consisting of all
types of resources and d is the number of resource types.
The resource consumption during epoch t at each network
function platform should be provisioned to guarantee the
performance of the running VNFs. We use rkf;i;jðtÞ to repre-
sent the resource consumption during epoch t if the
required VNF j for flow f is deployed onto the network
function platform i. Accordingly, we denote the provision-
ing cost cf;i;jðtÞ as the deployment cost during epoch t. To
highlight our novelty and simplify the model, we only focus

82 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

on multi-resource constraints. This does not lose generality
of the model and is complementary to previous work. For
convenience, we summarize important notations in Table 1.

3.2 Problem Formulation

Based on the network model and problem definition above,
we formulate MVDP, i.e., multi-resource VNF deployment
problem, as an integer linear program (2). We seek to deter-
mine an optimal VNF deployment that minimizes the over-
all cost under multi-resource constraints. At the beginning,
we discuss the meaning of the constraints one by one in
detail.The capacity of each resource must be respected.

. . . ;
X
f2F

X
j2VNFf

rkf;i;jðtÞ � xf;i;jðtÞ; . . .
0@ 1A � RiRi;

8i 2 M;8t 2 T; k 2 f1; 2; . . . ; dg;
(2a)

The LHS of constraint (2a) characterizes that the total
consumed resource of each type at network function plat-
form i should be less than or equal to the resource capacity
vector RiRi, where the definition of vector RiRi is shown in
equation (1) and the index k indicates the resource type. The
VNF especially for the stateful VNF like IDS and DPI not
only requires the CPU resource, but also consumes memory
and other resources [31], [32]. Multi-resource constraints are
a natural and necessary extension.

A VNF Must be Assigned to One Network Function Platform,
Not Split.X

i2M
xf;i;jðtÞ ¼ 1; 8f 2 F; j 2 VNFf; 8t 2 T; (2b)

Constraint (2b) captures a fact that one VNF can only be
deployed onto one network function platform. That is to
say, we cannot split one VNF into different parts.

The solution uses 1 to indicate a match in the mapping (0 oth-
erwise).

xf;i;jðtÞ 2 f0; 1g;
8f 2 F; i 2 M; j 2 VNFf; 8t 2 T:

(2c)

The zero-one integer variable xf;i;jðtÞ equals one when
the required VNF j for flow f is deployed onto network

function platform i during epoch t, and equals zero oth-
erwise. This optimization variable determines that which
VNF should be deployed onto which network function
platform.

Combining the constraints (2a), (2b) and (2c), the formu-
lation of multi-resource VNF deployment problem is shown
in (2). The objective aims to minimize the total provisioning
cost and the optimization variables xf;i;j determine the
deployment policy.

minimize
X
f2F

X
i2M

X
j2VNFf

cf;i;jðtÞ � xf;i;jðtÞ ð2Þ

subject to ð2aÞ; ð2bÞ; ð2cÞ:

3.3 Hardness Analysis

We establish the hardness of MVDP below.

Theorem 1. MVDP is NP-hard.

Here we only give an intuition. Given a special case of
MVDP where the resource type d is equal to one, we can
construct a polynomial reduction from the classic general-
ized assignment problem (GAP) [33] to it. The work in [33]
presents a (1,2)-bicriteria approximation algorithm. Essen-
tially, MVDP is a harder variant of GAP. We extend the
model of GAP and provide in-depth theoretical analysis
both in offline and online manner.

4 AN OFFLINE APPROXIMATION ALGORITHM

Given the VNFs deployment problem formulated as (2), we
seek to solve this problem through a LP rounding technique.
Our offline algorithm is not just a simple extension from [11].
The LP-rounding techniques such as classic deterministic
rounding or randomized rounding cannot directly be applied
into our problem with multi-resource constraints. Specifi-
cally, we novelly introduce an average function to comprehen-
sively capture the multiple resource consumption for each
VNF and sort the VNFs according to the results of this aver-
age function to affiliate the rounding procedure, which to our
knowledge has not been done before.

We first transform it to a relaxed LP and obtain a fractional
solution. Based on a constructed bipartite graph, we round it
to an integer solution by minimum weight matching algo-
rtihm. Note that our rounding procedure may violate the
constraint (2a) bounded by ðdþ 1Þrk while still ensuring the
optimal property, which will be discussed in Theorem 3. The
complete algorithm is shown in Algorithm 1, which works
as the following four steps.

Step 1. Transforming to a Simplified Relaxed LP. In the off-
line setting, the required VNFs for all the flows are known
as a prior and we can remove the index t in program (2) to
simplify the formulation. Furthermore, the constraint (2b)
and (2c) can be replaced by the constraint (3b) and (3c).
Note that the LHS in constraint (3b) cannot be larger than
one as this has been implied by the objective function.

Offline LP (MVDP-Primal):

minimize
X
f2F

X
i2M

X
j2VNFf

cf;i;j � xf;i;j (3)

TABLE 1
Key Notations in This Paper

Input F The set of flows f

M The set of network function platforms i
VNFf The set of required VNFs for flow f
rkf;i;jðtÞ The resource consumption during epoch t if the

required VNF j for flow f is deployed onto the
network function platform i

RiRi The resource capacity vector at network platform i
rk The kth component of resource capacity vector RR
d The number of resource types

cf;i;jðtÞ The provisioning cost during epoch t if the
required VNF j for flow f is deployed onto the
network function platform i

Output xf;i;jðtÞ The zero-one integer variables that indicate that
whether the required VNF j for flow f is
deployed onto network function platform i
during epoch t

ZHENG ETAL.: MULTI-RESOURCE VNF DEPLOYMENT IN A HETEROGENEOUS CLOUD 83

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

subject to . . . ;
X
f2F

X
j2VNFf

rkf;i;jxf;i;j; . . .

0@ 1A � RiRi; 8i; k;

(3a)X
i2M

xf;i;j � 1; 8f; j; (3b)

xf;i;j � 0; 8f; i; j: (3c)

In this way, the integer program (2) can be relaxed to the
linear program (3). We are able to obtain a fractional solu-
tion f~xf;i;jg in polynomial time by standard solver, before
we round it to a feasible integer solution.

Step 2. Constructing Slots and the Bipartite Graph. The frac-
tional solution f~xf;i;jg indicates that we assign in totalPn

j¼1 ~xf;i;j VNFs on machine i. Accordingly, we allocate ti
“slots” for machine i to be assigned VNFs, where there is at
most one VNF assigned on each slot, then

ti ¼
�X
f2F

X
j2VNFf

~xf;i;j

�
(4)

Now we can model the restriction by constructing a
bipartite graph B ¼ ðJ; S; EÞ, where J denotes the set of
VNF nodes (j ¼ f1; 2; . . . ; ng), and S denotes the set of
machine slots.

S ¼ ði; sÞ : i ¼ 1; . . . ;m; s ¼ 1; . . . ; tif g
As for the edge set E, we are going to explain how to add
edges to the bipartite graph in Step 3.

Step 3. Fractional Bin Packing. Consider the slot nodes
ði; sÞ as bins of capacity one, where s ¼ 1; 2; . . . ; ti, and the
fractional solution ~xf;i;j as sizes of pieces of items to be
packed in these bins, where j ¼ 1; 2; . . . ; n. We first sort the
fractional solution f~xf;i;jg, according to a pre-defined
“average function” ai;j in descending order, where

ai;j ¼
Xd
k¼1

rkf;i;j
rk

The average function ai;j we introduced can be viewed as
a comprehensive description of resources usage. After we
sort ~xf;i;j, we assume without loss of generality that (for
each machine i) the inequation (5) hold.

ai;15ai;25 � � �5ai;n: (5)

Next the bin-packing procedure begins. We can place the
pieces in the bin from slot ði; 1Þ to slot ði; tiÞ. The pieces with
larger ai;j values is always packed in the bin first. (Accord-
ing to inequation (5), the order will be ~xf;i;1; ~xf;i;2; . . . ; ~xf;i;n.
Note that if there is only capacity z remaining in the bin
(where ~xf;i;j > z), then we pack z of this piece j (of size
~xf;i;j) into slot ði; sÞ, and pack the remaining ~xf;i;j � z in the
next slot ði; sþ 1Þ. In this way, the slots of machine i can
never run out because we can easily infer that ti5

Pn
j¼1 ~xf;i;j

from equation (4). Once we pack a positive fraction of job j
in slot ði; sÞ, we add an edge between j and ði; sÞ, and set
~yj;ði;sÞ equal to that fraction at the same time; all other com-
ponents of ~y are set to 0.

Step 4. Rounding.When the bin-packing procedure is done,
we obtain a fractional complete matching f~yj;ði;sÞg between
VNFs j ¼ 1; . . . ; n and slots S ¼ fði; sÞ : i ¼ 1; . . . ;m; s ¼
1; . . . ; tigwhich satisfies the following constraints.X

8ði;sÞ2S
~yj;ði;sÞ ¼ 1; 8j 2 J

Xn
j¼1

~yj;ði;sÞ41; 8ði; sÞ 2 S

0 4 ~yj;ði;sÞ41: 8j 2 J; 8ði; sÞ 2 S:

Obviously, for each edge e 2 E, which connects j and ði; sÞ,
it has a weight of ci;j. Now the problem is transformed to
determining a minimumweight matching fyj;ði;sÞg between J
and S, where

yj;ði;sÞ 2 f0; 1g:

We use Kuhn-Munkres algorithm [34] to complete the
matching procedure. We can allocate j on machine i if and
only if yj;ði;sÞ is equal to one. Eventually we obtain the opti-
mal integer solution xi;j. The complete algorithm is shown
in Algorithm 1.

We provide a toy example here as an illustration of our
bin-packing and LP rounding procedure defined in Step 2 to
Step 4. We consider allocating two jobs j1 and j2 onto two
machines i1 and i2. At Step 2, as shown in Fig 1a, suppose
that we solve a relaxed LP and obtain the fractional solution
ð~x1;1; ~x1;2Þ ¼ ð34 ; 34Þ and ð~x2;1; ~x2;2Þ ¼ ð23 ; 13Þ, we first construct
the number of slots according to equation (4), thus we have
t1 ¼ d34 þ 2

3e ¼ 2 and t2 ¼ d14 þ 1
3e ¼ 1, and we construct 2 slots

for i1 and 1 slot for i2 respectively. At Step 3, as shown in
Fig. 1b, we conduct a bin-packing procedure where each
fractional solution is packed into a slot (with capacity 1) in an
order according to our newly defined average function ai;j.
Here we suppose a1;1 > a1;2 and a2;1 > a2;2 for illustration,
so j1 is first packed into i1 while j2 is first packed into i2.
Note that if the remaining capacity is not enough for accom-
modating the next element, we cut the next element into two
pieces to first fill up the previous slot and then pack the
remaining one to the next slot. (For example, in Fig 1b, the
fractional solution ~x2;1 ¼ 2=3 is divided into 1

4 and 5
12 and

packed into two different slots respectively.) Each time we
packing part of the fractional solution into a slot, we add an
edge between the jobs and the corresponding slot with an
edge weight of the allocation cost ci;j. Finally, we can get a
bipartite graph between each VNF instance and slot. At Step
4, after we obtain the weighted bipartite graph as shown in
Fig. 1c, we use Kunh-Munkres algorithm to obtain a mini-
mum weight complete matching in this bipartite graph, that
is, each VNF instance is mapped to a certain slot. Finally we

Fig. 1. An illustration of rounding the fractional solution to an integer
solution.

84 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

map each VNF instance to the machine i where the slot is
located to and get our integer solution for the problem.

Now we analyze the time complexity of Algorithm 1.

Algorithm 1. A Bicriteria Approximation Algorithm

Input: The set of network function platforms M; the set of
flows F and the set of required VNFs VNFf for each
flow f ; the number of resource types d; the capacity rk

of kth resource.
Output: The integer solution fxf;i;jg
1 Obtain an optimal fractional solution ~xf;i;j to the relaxed LP
of (3)

2 for 8 i 2 M do
3 Calculate the number of slots ti for machine i
4 Build a bipartite graph G ¼ ðJ; S; EÞ, where J denotes the
set of VNFs and S denotes the set of slots

5 Initialize E ¼ ?

6 for 8 f 2 F do
7 for 8 j 2 VNFf do
8 Sort the VNFs according to ai;j in descending order
9 Let j0 denote the index of sorted VNFs
10 Let z ¼ 1 denote the capacity of slots
11 Let s ¼ 1 denote the index of slots on machine i
12 Initialize ~yj;ði;sÞ ¼ 0 to denote the allocation results
13 for 8 j0 2 VNFf do
14 if ~xf;i;j4z then
15 Add an edge from j0 to ði; sÞweighted ci;j
16 ~yj;ði;sÞ ¼ ~xf;i;j

17 z ¼ z� ~xf;i;j

18 if ~xf;i;j > z then
19 Add an edge from j0 to ði; sÞweighted ci;j
20 ~yj;ði;sÞ ¼ z
21 s ¼ sþ 1
22 Add an edge from j0 to ði; sÞweighted ci;j
23 ~yj;ði;sÞ ¼ ~xf;i;j � z
24 z ¼ 1� ~yj;ði;sÞ
25 Find a minimum weight matching yj;ði;sÞ in bipartite graph

G ¼ ðJ; S; EÞ
26 if yj;ði;sÞ ¼ 1 then
27 xf;i;j ¼ 1

Theorem 2. The time complexity of Algorithm 1 is Oðm3:5n3:5k2Þ,
where m, n, and k denote the number of machines, the number
of VNFs and the number of resource types respectively.

Proof. Algorithm 1 consists of the following four steps. In
Step 1, we solve a simplified linear program where we
have m � n variables and k constraints. The time complex-
ity isOððm � nÞ3:5 � k2Þ [35].

In Step 2, we first calculate the number of slots for each
machine and then construct a bipartite graph between n
VNFs and m machines. For each machine i, we calculate
the summation of exf;i;j. Therefore, the time complexity in
this step is

T2 ¼ Oðm � nÞ:

In Step 3, we execute a fractional bin-packing proce-
dure. On each machine i, we calculate the average func-
tions ai;j before sorting and packing the exf;i;js into the
slots. We utilize quick sort with Oðn � lognÞ in this step.
The total time complexity in this step is

T3 ¼ m � ðOðn � kÞ þ Oðn � lognÞ þ OðnÞÞ4Oðmnkþmn lognÞ:

In Step 4, we implement Kuhn-Munkres algorithm [34]
to find a minimum weight matching between VNFs and
slots. The number of VNFs is m and the total number of
slots is no more than m � n. Therefore, utilizing the stack
techniques when updating ’ðjÞ and ’ði; sÞ, the total time
complexity is T44Oðm2n3Þ. Therefore, the total time
complexity of Algorithm 1 is bounded by

T ¼ T1 þ T2 þ T3 þ T44Oðm3:5n3:5k2Þ;
where m, n, and k denote the number of machines, the
number of VNFs and the number of resource types
respectively. tu
Now we begin to analyze the performance of our

algorithm.

Theorem 3. Algorithm 1 is a ð1; dþ 1Þ-bicriteria approximation
algorithm, which outputs an integer solution fxf;i;jg that satis-
fies the following two conditions:

ðR1Þ :
X
i2M

X
f2F

X
j2VNFf

cf;i;j � xf;i;j4
X
i2M

X
f2F

X
j2VNFf

cf;i;j � ~xf;i;j

ðR2Þ :
X
f2F

X
j2VNFf

rkf;i;jxf;i;j4ðdþ 1Þrk: 8i 2 M; 8k 2 ½1; d�

where f~xf;i;jg is the fractional solution of the relaxed LP of
program (3).

Proof. We first prove the formula (R1). From the definition
of yj;ði;sÞ and ~yj;ði;sÞ in our algorithm, we obtainX

i2M

X
f2F

X
j2VNFf

cf;i;j � xf;i;j ¼
X
f2F

X
j2VNFf

X
ði;sÞ2S

cf;i;j � yj;ði;sÞX
i2M

X
f2F

X
j2VNFf

cf;i;j � ~xf;i;j ¼
X
f2F

X
j2VNFf

X
ði;sÞ2S

cf;i;j � ~yj;ði;sÞ

Based on the two equations above,we only need to proveX
f2F

X
j2VNFf

X
ði;sÞ2S

cf;i;jyj;ði;sÞ4
X
f2F

X
j2VNFf

X
ði;sÞ2S

cf;i;j~yj;ði;sÞ (6)

We are ready to show that the equation (6) can be estab-
lished from the Kuhn-Munkres algorithm we used to
determine the minimum weight matching. While imple-
menting Kuhn-Munkres algorithm, we define potential1

for each node in the bipartite graph and we use ’ðjÞ and
’ði; sÞ to represent such potential for each pair of nodes in
vertex set J and S, where

’ðjÞ þ ’ði; sÞ4cf;i;j:

Besides, we introduce tight edges to denote the edges
that only contains the edges hj; ði; sÞi and satisfies the
inequation ’ðjÞ þ ’ði; sÞ ¼ ci;j. Next we change the
value of ’ðjÞ and ’ði; sÞ repeatedly until we determine
a complete matching among the set of tight edges. We
can observe that for each complete matching yj;ði;sÞ,

1. A detailed explanation of Kuhn-Munkres algorithm can be found
in [34].

ZHENG ETAL.: MULTI-RESOURCE VNF DEPLOYMENT IN A HETEROGENEOUS CLOUD 85

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

X
f2F

X
j2VNFf

X
ði;sÞ2S

cf;i;j � yj;ði;sÞ ¼
X

j2J;ði;sÞ2S
’ðjÞ þ ’ði; sÞ

And for arbitrary fractional matching ~yj;ði;sÞ,X
f2F

X
j2VNFf

X
ði;sÞ2S

cf;i;j � ~yj;ði;sÞ5
X

j2J;ði;sÞ2S
’ðjÞ þ ’ði; sÞ

Hence, the equation (6) can be established, which con-
cludes the proof that the condition (R1) holds.

In order to prove the condition (R2), we define
rkmaxði; sÞ as the maximum resource requirement on slot
ði; sÞ, and j0ði; sÞ as the corresponding j when rki;j reaches
themaximum. Accordingly, we get

X
f2F

XjVNFf j
j¼1

~xf;i;jr
k
f;i;j4

Xti
s¼1

rkmaxði; sÞ

¼ rkmaxði; 1Þ þ
Xti
s¼2

rkmaxði; sÞ;
(7)

We divide the sum of rkmaxði; sÞ in equation (7) into two
parts. Obviously, the inequation rkmaxði; 1Þ4rk in the first
part holds and we only need to prove the inequation in
the second part.

Xti
s¼2

rkmaxði; sÞ4d � rk: (8)

Consider rkf;i;j > 0; 8i; j; k, we have

rkmaxði; sÞ ¼ rk � r
k
maxði; sÞ

rk
¼ rk � r

k
i;j0

rk

4 rk �
Xk
t¼1

rki;j0
rk

¼ rkai;j0ði;sÞ:

We can conclude that the equation
P

j ~yj;ði;sÞ ¼ 1 holds,
where s ¼ 1; 2; . . . ; ti � 1. Since we only start the next bin
when we have completely filled the previous one, we can
view the equation

P
j r

k
i;j~yj;ði;sÞ ¼ 1 as a weighted average

of the relevant rki;j values. According to our sorting results
from equation (5) and the bin-packing rules in Step 3, we
get ai;j0ði;sÞ4

Pn
j¼1 ai;j~yj;ði;sÞ

Accordingly, we have

Xti
s¼2

rkmaxði; sÞ4rk
Xti
s¼2

ai;j0ði;sÞ4rk
Xti
s¼2

X
f2F

XjVNFf j
j¼1

ai;j~yj;ði;s�1Þ

¼ rk
Xti�1

s¼1

X
f2F

XjVNFf j
j¼1

ai;j~yj;ði;sÞ4rk
Xti
s¼1

X
f2F

XjVNFf j
j¼1

ai;j~yj;ði;sÞ:

Since the equation ~xf;i;j ¼
P

s ~yj;ði;sÞ can be established, by
interchanging the order of summations, we can obtainPti

s¼2 r
k
maxði; sÞ4rk

P
f2F
PjVNFf j

j¼1 ai;j~xf;i;j. According to

the constraints (2a), we can sum up the terms from k ¼ 1

to d,
PjVNFf j

j¼1 ai;j~xf;i;j4d. Accordingly, we obtain
Pti

s¼2

rkmaxði; sÞ4d � rk, which implies that inequation (8) holds

and concludes the proof. tu

5 AN ONLINE ALGORITHM

In this section, we design an online algorithm to deploy the
required VNFs for each arrived flow. In our online MVDP
problem, the flows enter the network unpredictably. Accord-
ingly, the deployment decision (i.e., which VNF needs to be
deployed onto which network platform) has to be made in
an online manner. Based on the primal-dual paradigm [36]
andweight update approach [37], we design our online VNF
deployment algorithm. Furthermore, we analyze the lower
bound and the competitive ratio.

We first formulate the dual of primal program (3). For
each required VNF of the flow f , we introduce dual varia-
bles zf;j and for each type of resource k on the network plat-
form i, we introduce dual variables yki .

Offline LP (MVDP-Dual):

maximize
X
f2F

X
j2VNFf

zf;j �
X
i2M

Xd
k¼1

rk � yki (9)

subject to zf;j � cf;i;j þ
Xd
k¼1

yki � rkf;i;j

8f 2 F; i 2 M; j 2 VNFf;

(9a)

yki � 0; 8i; 8k 2 f1; 2; . . . ; dg; (9b)

zf;j � 0; 8f 2 F; j 2 VNFf: (9c)

In the dual formulation, the variables yki capture the
shadow prices for different resources. Specifically, the term
yki � rkf;i;j in constraint (9a) indicates the weighted price for
the kth resources. And the RHS of constraint (9a) represents
the revenues for different VNF deployment. The objective
aims to maximize the profit, i.e., the difference between the
revenues of the utilized resources and their cost.

The complete online algorithm is shown inAlgorithm 2.We
first initialize all variables (line 1). The parameter a is selected
so that the initial value of yki is bounded (lines 2-5). For each
VNF j of the arrived flow f , we determine the network plat-
form i� with the maximum profit in program (9) (lines 8-9).
Once the network platform i� is determined, we update the
dual variables zf;j and yki respectively (lines 10-11). This process
essentially tries to maximize the profit over the time horizon.

Before analyzing the performance of our online algorithm,
we briefly discuss the competitive ratio for multi-resource
VNF deployment problem defined in Section 3. LetOPT and
C denote the deployment cost obtained from offline optimal
solution and an online solution respectively. Our objective
aims tominimize the total cost and thus the competitive ratio
a ¼ C

OPT � 1. We advocate to design an online algorithmwith
the competitive ratio a close to one. Furthermore, the con-
sumption for each type of resource k can be less than or equal
to b � rk, where rk is the resource capacity.

Theorem 4. If there exists a ða;bÞ-competitive online algorithm
for MVDP (a is a positive constant), we can conclude that
b ¼ Vðn lognÞ.
This indicates that if an online algorithm for MVDP has a

constant competitive ratio, the logarithmic violation is inevi-
table. This bound is asymptotically achieved by Algorithm 2,
which will be discussed soon in Theorem 5. We first show
the dual feasibility to facilitate our competitive analysis.

86 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2. Online Algorithm for MVDP

Input: The set of network function platforms M; the set of
required VNFs VNFf for each arrived flow f ; the number of
resource types d; the capacity rk of kth resource.
Output: The integer solution fxf;i;jg
1 Initialize xf;i;j ¼ 0, zf;j ¼ 0
2 cþf;i;j ¼ max cf;i;jj8f; i 2 M; j 2 VNFf

� �
3 c�f;i;j ¼ min cf;i;jj8f; i 2 M; j 2 VNFf

� �
4 rþ ¼ max rkf;i;j

��8f; i; j;8k 2 f1; 2; . . . ; dg
n o

5 yki ¼
a�cþ

f;i;j

n , where a � c�
f;i;j

cþ
f;i;j

� d
rþ

6 for each arrival of flow f do
7 for each j 2 VNFf do

8 i� ¼ argmini cf;i;j þ
P

k y
k
i � rkf;i;j

n o
9 xf;i� ;j ¼ 1
10 zf;j ¼ cf;i�;j þ

P
k y

k
i� � rkf;i� ;j

11 yki� ¼ yki� � e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

rk
f;i� ;j
rk

q
�1

2 , where e is Euler’s Number.

Lemma 1. The dual variables update in Algorithm 2 (lines 10-
11) can preserve the feasibility of constraints in program (9).

Proof. The variables zf;j and yki are initially nonnegative and
the dual feasibility can be satisfied at the beginning. We
only need to prove that the variables update procedure in
Algorithm 2 canmaintain the dual feasibility. For variables
yki , the update (line 11) can only increase their values. And
for variables zf;j, the network platform i� is selected with
minimum value (line 8) such that the constraint (9a) can be
established (line 10). Further updates of yki only makes the
RHS in constraint (9a) larger, always preserving the feasi-
bility in this constraint. Hence, the constraints (9a), (9b)
and (9c) can be always satisfied in program (9). tu
Based on the analysis above, we have the following

theorem.

Theorem 5. Algorithm 2 is ðOð1Þ;Oðn � lognÞÞ-competitive,
where n is the number of required VNFs for the arrived flows.

Proof. We first prove that Algorithm 2 can produce a solu-
tion with cost bounded by a constant 1

1�a �OPT . During
each iteration in the algorithm, the dual feasibility is
ensured by Lemma 1 and the variation of objective value
can be derived by the inequation below.

Ddual ¼
X
f

X
j

Dzf;j �
X
i�

X
k

rk � Dyki�

¼ cf;i�;j þ
X
i�

X
k

yki�r
k
f;i�;j

�
X
i�

X
k

rk yki�e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

rk
f;i� ;j
rk

q
�1

2 � yki�

0B@
1CA

� cf;i�;j þ
X
i�

X
k

yki�r
k
f;i�;j�

X
i�

X
k

rk yki�
rkf;i�;j
rk

þ 1

 !
� yki�

" #
¼ cf;i�;j;

Hence, the deployment cost obtained from Algorithm 2 isP
f2F

P
j2VNFf

cf;i�;j. Further, due to the weak duality the-
orem [38], the objective value of program (9) can provide
a lower bound for OPT , i.e.,X

f2F

X
j2VNFf

cf;i�;j �
X
f2F

X
j2VNFf

a � cþf;i�;j � OPT

Accordingly, the competitive ratio can be derived as the
following.P

f2F
P

j2VNFf
cf;i�;j

OPT

�
P

f2F
P

j2VNFf
cf;i�;jP

f2F
P

j2VNFf
cf;i�;j �

P
f2F

P
j2VNFf

a � cþf;i�;j

�
P

f2F
P

j2VNFf
cf;i�;jP

f2F
P

j2VNFf
cf;i�;j � a

P
f2F

P
j2VNFf

cf;i�;j

¼ 1

1� a
:

Nowwe begin to prove that the constraint (2a) is violated
by a factor of Oðn � log n

aÞ. We can obtain the lower bound
of variables yki by applying the inequation

ffiffiffiffiffiffiffiffi
1þ4x

p �1
2 � x

2
and the definition of variable a in Algorithm 2. The
inequation

ffiffiffiffiffiffiffiffi
1þ4x

p �1
2 � x

2 can be established if and only if
x 2 ½0; 4�. Note that the inequation rkf;i;j � rk is reasonable
as the resource consumption for one specific flow is
always less than the resource capacity in practice, which

indicates the ratio
rk
f;i;j

rk
2 ½0; 1� 	 ½0; 4�.

yki ¼
a � cþf;i;j

n
� e
P

f2F
P

j2VNFf

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

rk
f;i;j

rk

q
�1

2

� a � cþf;i;j
n

� e
P

f2F
P

j2VNFf

1
2�
rk
f;i;j

rk :

(10)

Before analyzing the upper bound of variables yk, we
first introduce the definition of maximum utilization l�k
for resource type k.

l�k ¼ max
rkf;i;j
rk

����8f 2 F; i 2 M; j 2 VNFf

()

We obtain the upper bound of variables yki by applying

the inequation e
ffiffiffiffiffiffiffi
1þ4x

p �1
2 � xþ 1,

yki ¼
a � cþf;i;j

n
� e
P

f2F
P

j2VNFf

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ4

rk
f;i;j

rk

q
�1

2

� c�f;i;j
cþf;i;j

� d

rþ
� c

þ
f;i;j

n
� e
P

f2F
P

j2VNFf
ð1þl�

k
Þ

� c�f;i;j
rþ

� d
n
� ð1þ l�kÞn:

Since the number of resource types d is always less than

that of required VNFs n for each flow, i.e., dn � 1, we have

yki �
c�f;i;j
rþ

� ð1þ l�kÞn: (11)

ZHENG ETAL.: MULTI-RESOURCE VNF DEPLOYMENT IN A HETEROGENEOUS CLOUD 87

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

Combining inequation (10) and (11), we can obtain that

the resource utilization can be captured by the following
inequation.

X
f2F

X
j2VNFf

rkf;i;j
rk

� 2n � lnn
a
� c

�
f;i;jð1þ l�kÞ
cþf;i;j � rþ

(12)

We conclude our proof by omitting the constant coeffi-

cient in inequation (12). tu

6 EXPERIMENTAL EVALUATION

We evaluate our scheduling algorithm using both prototype
implementation and large-scale simulation.

Benchmark Schemes. We compare the following schemes
with our algorithm.

� MVDP-Offline. Our offline approximation algorithm
for MVDP in Algorithm 1.

� MVDP-Online. Our online algorithm for MVDP in
Algorithm 2.

� Greedy. The heuristic algorithm proposed in [28].
� OPT. The optimal solution of the offline MVDP inte-

ger program (2) obtained using branch and bound.
To perform an “apples to apples” comparison with
MVDP-Offline, we enlarge the resource capacity to d �
RiRi in constraint (3a).

The trace used in our evaluation is generated from [39].
We use heterogeneous VNFs with different processing com-
plexity [17] and ensure that each flow can traverse a pre-
defined VNFs. The length of VNF chains varies from 2 to 10.
Each data point is an average of at least 30 runs.

6.1 Implementation and Testbed Emulations

Implementation. We develop a prototype of our algorithms
on the DPDK-based OpenNetVM platform [20], where the
polling mechanism is used in RX and TX threads for receiv-
ing and sending packets from NIC. Now we describe how
to perform VNF deployment in the service chain in our
experiments. We first obtain solutions to MVDP-Offline and
MVDP-Online using Algorithm 1 and 2 respectively. Acc-
ording to these solutions, we bind each VNF to a dedicated
CPU core located onto one server. The CORELIST and
SERVICE_ID parameter in OpenNetVM specify the index
of CPU core and VNF, respectively.

Testbed Setup. One Mellanox SN2700 switch connects five
servers, two of which have dual Xeon(R) E5-2630 CPUs (2x8
physical cores) with 128GB memory, and the rest have Intel
Xeon E5-2650V4 CPU (2x12 physical cores) with 64GB

memory. Each one is equipped with an Intel 82599ES 10G
dual port NIC and runs Ubuntu 14.04.3 with kernel version
3.19.0. We use pktgen to generate 14 UDP flows with 64
bytes packet size in each run, where each flow is required to
pass through 2 or 4 pre-defined VNFs deployed onto differ-
ent servers. There are 52 VNFs performing basic forwarding
andmonitor function, all of which are lightweight VNFs [17].

Experiment Results. We measure the maximum CPU and
memory utilization using linux top command with differ-
ent packet arrival rate for offline and online setting in
Tab. 2. The 100% arrival rate corresponds to around 7 Gbps
in our testbed. The resource utilization increases when the
packet arrival rate becomes large. Specifically, the maxi-
mum CPU utilization using MVDP-Offline and MVDP-
Online is 9.6% and 10.5%, respectively. The utilization is not
very high since the computation complexity of these light-
weight VNFs is around 60 CPU cycles per packet on aver-
age. From Tab. 2, we can observe that MVDP-Offline and
MVDP-Online in general work well and their resource utili-
zation can be relatively stable even the packet arrival rate
becomes larger. This demonstrates that our algorithm takes
multi-resource constraints into consideration and can make
near optimal decision to deploy VNFs.

Discussions. Note that the solutions produced by our
algorithms may violate the resource capacity. Based on the
theoretical analysis above, the resource violation can be
bounded. To guarantee the physical resource capacity can-
not be violated, we can reserve a bounded number of resour-
ces in advance.

6.2 Simulation

We also conduct extensive simulations to thoroughly evalu-
ate our algorithm at scale.

Setup. In addition to the OpenNetVM experiments in our
testbed, here we use a large-scale synthetic network topol-
ogy [40], which can be usually used for evaluating the per-
formance of VNF deployment [41]. This topology can be
divided into access layer, aggregation layer and core layer,
where the switches in the access layer connect a large num-
ber of heterogeneous servers. Tab. 3 shows the normalized
CPU and memory capacities for eight types of heteroge-
neous network function platforms. For each type, the cost
used in our experiment is the product of the baseline
cost [42], [43] and normalized CPU and memory capacities.
The number of network platforms for each type varies with
the experiments.

We run our algorithms on a server with Intel(R) Xeon(R)
CPU E5-2650 and 64 GB memory and generate different
numbers of flows to measure the performance.

Experiment Results.We first investigate the overall cost for
different VNF deployment schemes generated by Greedy,
MVDP-Offline and MVDP-Online. In addition, we compare

TABLE 2
Maximum CPU and Memory Consumption Comparison

Packet arrival rate (%) 60 80 100

OPT CPU(%) 9.5097 9.5871 9.6351
Mem.(KB) 77172 77024 77872

MVDP-Offline CPU(%) 9.5516 9.6109 9.6381
Mem.(KB) 77404 77420 77965

MVDP-Online CPU(%) 9.5633 10.0328 10.5763
Mem.(KB) 78091 79503 80939

TABLE 3
The Normalized CPU and Memory Capacities for

Heterogeneous Network Function Platforms
in Google’s Cloud [44], [45]

1 2 3 4 5 6 7 8

CPU 0.50 0.50 0.50 1.0 0.25 0.50 0.50 0.50
Mem. 0.50 0.25 0.75 1.0 0.25 0.12 0.03 0.97

88 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

our algorithms against a branch and bound method that sol-
ves the program (3) optimally, denoted as OPT.

Overall Cost With Different Number of Flows.We can see that
in Fig. 2a, as the number of flows increases, Greedy yields sig-
nificantly much cost, while that ofMVDP-Offline andMVDP-
Online is below 2:8
 105 all the time and can achieve near
optimal. Specifically, the overall cost for Greedy, MVDP-Off-
line, MVDP-Online and OPT is 3:8
 105, 2:5
 105, 2:7
 105

and 2:4
 105, when the number of flows is 5000. We can
observe that MVDP-Offline and MVDP-Online can reduce
the overall cost by 33.3% and 28.4% respectively, compared to
Greedy. This demonstrates that our algorithms can reduce the
overall cost by flexibly deploying different VNFs.

Additive Optimality Gap With Different Number of Flows.
Fig. 2b shows the additive optimality gap for MVDP-Offline,
MVDP-Online and Greedy compared to OPT. For this simu-
lation we vary the number of flows from 1000 to 5000. Intui-
tively, a larger additive optimality gap indicates more
deployment cost resulting from aworse solution. We can see
that, as the number of flows increases, Greedy yields signifi-
cantly larger optimality gap compared to MVDP-Offline and
MVDP-Online, where MVDP-Offline andMVDP-Online can
guarantee that the additive optimality gap is less than 1:3

104 and their overall cost is always less than 2:8
 105, even
though the number of flows becomes larger.

Overall Cost With Different Number of Switches in the Access
Layer. Fig. 2c illustrates the overall deployment cost for
MVDP-Offline, MVDP-Online, Greedy and OPT in large-
scale networks, where the value of x-axis represents the num-
ber of switches and that of y-axis represents the overall cost.
We fix the length of VNF chains at 15 in this setting. When
the number of switches is 450, the overall cost for MVDP-Off-
line, MVDP-Online, Greedy and OPT is 5:0
 105, 5:3
 105,
7:5
 105 and 4:9
 105. We can see that MVDP-Offline and
MVDP-Online can reduce the overall cost by 32.7% and
27.9% on average compared to Greedy respectively.

Overall Cost With Different Length of VNF Chains. Fig. 2d
shows that the overall cost varies with the length of VNF
chains. Essentially this measures the efficiency for different

deployment solutions. We observe that the overall cost
increases as the length of VNF chains becomes longer. When
the length of VNF chains is 8, the overall cost for MVDP-Off-
line, MVDP-Online, Greedy and OPT is 1:2
 105, 1:3
 105,
1:8
 105 and 1:2
 105 respectively. MVDP-Offline and
MVDP-Online can reduce the overall cost by 32.9% and
28.2% comparedwith Greedy on average.

Overload Resource Percentage. We measure the percentage
of overload resources in Fig. 3. We define this percentage as
the ratio between the number of overload resources and
that of total resources among all servers (i.e., the ratio
between the number of violated constraints and that of total
constraints). In this setting, the number of resource types is
2 and the length of VNF chains is around 8 on average. The
overloaded percentage becomes larger when the number of
flows increases since large number of running VNFs require
more resources. Specifically, the overload percentage for
MVDP-Offline and MVDP-Online is 7% and 5% respec-
tively, when the number of flows is 4000. We can reduce the
flow demand or increase the resource capacity in practice to
further make the overload percentage smaller.

The CDF ofOverbook Ratio. Fig. 4 shows the CDFs of the nor-
malized overbook ratio fti;kgwhen the consumed resource is
larger than the resource capacity. The number of flows is fixed
at 5000.We define the overbook ratio ti;k as following.

ti;k ¼
P

f2F
P

j2VNFf
rkf;i;j � rk

rk
; 8i 2 M;8k 2 f1; 2g:

Fig. 2. Overall cost comparison.

Fig. 3. Overload resource percentage.

Fig. 4. Overbook ratio CDF.

Fig. 5. Solver iterations for OPT.

ZHENG ETAL.: MULTI-RESOURCE VNF DEPLOYMENT IN A HETEROGENEOUS CLOUD 89

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

We can observe that the overbook ratio for MVDP-Online is
always less than 0.4%, while that for MVDP-Offline is less
than 0.05%. This indicates that the resource violation is very
small even though the network is saturate. We can reserve a
bounded number of resources to make sure our solution
can be put into practice.

Solver Iterations for OPT. We now look at the number of
iterations and the percentage of solvability when we obtain
the optimal solution OPT using standard solver. In Fig. 5,
the number of flows varies from 1000 to 5000 at the incre-
ment of 1000 for each run. We compare 200 different instan-
ces at each run. We found that the number of unsolvable
instances increases when the number of flows becomes
large. Specifically, when the number of flows is 5000,
around 13% instances cannot be solved by standard solver
after 10 hours. This demonstrates that OPT cannot perfectly
solve all instances, and it’s going to get worse especially
when the number of flows is large. In addition, Fig. 5 also
shows the number of solver iterations for MVDP-Offline
and OPT. We can see that the number of iterations for OPT
increases significantly than that for MVDP-Offline, when
the number of flows becomes large. The convergence rate of
MVDP-Offline in general can be exponentially faster than
that of OPT. This demonstrates that OPT does not work
well and cannot be used in practice in large-scale settings.

Running Time. Finally, we evaluate the running time of
MVDP-Offline, MVDP-Online and OPT which is illustrated
as CDFs in Fig. 6. In this setting, the number of flows is fixed
at 5000 and the number of required VNFs for each flow is 8 on
average. We can see that most cases usingMVDP-Offline and
MVDP-Online finish within 6 seconds and OPT takes 500 sec-
onds. The running time of OPT is 100 times than that of
MVDP-Offline and MVDP-Online in the worst case. As dis-
cussed above, MVDP-Offline and MVDP-Online can be able
to offer near equivalent performance and run faster thanOPT.

7 CONCLUSION

We studied the problem of minimizing VNF deployment cost
under multi-resource constraints in a heterogeneous cloud
and proved its hardness. We proposed an offline bicriteria
approximation algorithm and a competitive online algorithm
to solve our problem. Large-scale simulations and DPDK-
basedOpenNetVM implementation show that our algorithms
can significantly reduce the deployment cost and improve the
performance in terms ofmulti-resource allocation.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments on drafts of this article. This work
was supported in part by the National Key Research

and Development Program of China under Grant
2018YFB1004700, and in part by China NSF under Grant
61802172, Grant 61972254, Grant 61832005, Grant 61672353,
Grant 61772265, and Grant 62072228, in part by China NSF of
Jiangsu Province under Grant BK20201248, and in part by the
Open Fund of PDL under GrantWDZC20205500109.

REFERENCES

[1] T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin, “A
secure IoT service architecture with an efficient balance dynamics
based on cloud and edge computing,” IEEE Internet Things J.,
vol. 6, no. 3, pp. 4831–4843, Jun. 2019.

[2] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella, “OpenNF: Enabling innova-
tion in network function control,” in Proc. ACM SIGCOMM
Comput. Commun. Rev., 2014, pp. 163–174.

[3] G. Liu, Y. Ren, M. Yurchenko, K. K. Ramakrishnan, and T. Wood,
“Microboxes: high performance NFV with customizable, asyn-
chronous TCP stacks and dynamic subscriptions,” in Proc. Conf.
ACM Special Interest Group Data Commun., 2018, pp. 504–517.

[4] Z. Xu, F. Liu, T. Wang, and H. Xu, “Demystifying the energy effi-
ciency of network function virtualization,” in Proc. IEEE/ACM
24th Int. Symp. Qual. Service, 2016, pp. 1–10.

[5] “Intel DPDK,” 2019. [Online]. Available: https://dpdk.org/
[6] “SR-IOV for NFV solutions practical considerations and thoughts,”

2019. [Online]. Available: https://www.intel.com/content/dam/
www/public/us/en/documents/technology-briefs/sr-iov-nfv-
tech-brief.pdf

[7] K. Thimmaraju, S. Hermak, G. R�etv�ari, and S. Schmid, “MTS:
Bringing multi-tenancy to virtual networking,” in Proc. Annu.
Techn. Conf., 2019, pp. 521–536.

[8] S. P. Crago, et al., “Heterogeneous cloud computing,” in Proc.
IEEE Int. Conf. Cluster Comput., 2011, pp. 378–385.

[9] “Docker,” 2018. [Online]. Available: https://www.docker.com/
[10] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,

and I. Stoica, “Dominant resource fairness: Fair allocation of mul-
tiple resource types,” in Proc. 8th USENIX Conf. Netw. Syst. Des.
Implementation, 2011, pp. 323–336.

[11] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Proc. IEEE Conf. Com-
put. Commun., 2015, pp. 1346–1354.

[12] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient
algorithms for joint placement and allocation of virtual network
functions,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[13] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch,
“Approximation algorithms for the NFV service distribution
problem,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[14] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in Proc.
IEEE 4th Int. Conf. Cloud Netw., 2015, pp. 255–260.

[15] X. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “Proactive VNF provi-
sioning with multi-timescale cloud resources: Fusing online learn-
ing and online optimization,” in Proc. IEEE Conf. Comput.
Commun., 2017, pp. 1–9.

[16] R. Potharaju and N. Jain, “Demystifying the dark side of the mid-
dle: A field study of middlebox failures in datacenters,” in Proc.
Conf. Internet Meas. Conf., 2013, pp. 9–22.

[17] S. G. Kulkarni, et al., “NFVnice: Dynamic backpressure and sched-
uling for NFV service chains,” in Proc. Conf. ACM Special Interest
Group Data Commun., 2017, pp. 71–84.

[18] A. Tootoonchian, et al., “ResQ: Enabling SLOs in network function
virtualization,” in Proc. 15th USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2018, pp. 283–297.

[19] “AmazonEC2,” 2020. [Online]. Available: https://aws.amazon.com/
[20] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,

K. K. Ramakrishnan, and T. Wood, “OpenNetVM: A platform for
high performance network service chains,” in Proc. Workshop Hot
Topics Middleboxes Netw. Function Virtualization, 2016, pp. 26–31.

[21] H. Moens and F. D. Turck, “VNF-P: A model for efficient place-
ment of virtualized network functions,” in Proc. 10th Int. Conf.
Netw. Service Manage. Workshop, 2014, pp. 418–423.

[22] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Proc. IEEE 4th
Int. Conf. Cloud Netw., 2015, pp. 171–177.

Fig. 6. Running time.

90 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 1, JANUARY 2022

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

https://dpdk.org/
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/sr-iov-nfv-tech-brief.pdf
https://www.docker.com/
https://aws.amazon.com/

[23] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic
aware placement of interdependent NFV middleboxes,” in Proc.
IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[24] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: enabling network
function parallelism in NFV,” in Proc. Conf. ACM Special Interest
Group Data Commun., 2017, pp. 43–56.

[25] J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, and Y. Liu, “RABA:
Resource-aware backup allocation for a chain of virtual network
functions,” inProc. IEEEConf. Comput. Commun., 2019, pp. 1918–1926.

[26] S. G. Kulkarni, G. Liu, K. K. Ramakrishnan, M. Arumaithurai, T.
Wood, and X. Fu, “REINFORCE: achieving efficient failure resil-
iency for network function virtualization based services,” in Proc.
CoNEXT, 2018, pp. 41–53.

[27] C. You, “Hierarchical multi-resource fair queueing for network
function virtualization,” in Proc. IEEE Conf. Comput. Commun.,
2019, pp. 406–414.

[28] B.Gavish andH. Pirkul,“Algorithms for themulti-resource generalized
assignment problem,”Manage. Sci., vol. 37, no. 6, pp. 695–713, 1991.

[29] Y. Guo, A. L. Stolyar, and A.Walid, “Shadow-routing based dynamic
algorithms for virtual machine placement in a network cloud,” IEEE
Trans. CloudComput., vol. 6, no. 1, pp. 209–220, First quarter 2018.

[30] S. Palkar, et al., “E2: A framework for NFV applications,” in Proc.
25th Symp. Operating Syst. Princ., 2015, pp. 121–136.

[31] T. Wang, H. Xu, and F. Liu, “Multi-resource load balancing for
virtual network functions,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst., 2017, pp. 1322–1332.

[32] Y. Liu, Z. Zeng, X. Liu, X. Zhu, and M. Z. A. Bhuiyan, “A novel
load balancing and low response delay framework for edge-cloud
network based on SDN,” IEEE Internet Things J., vol. 7, no. 7,
pp. 5922–5933, Jul. 2020.

[33] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge, UK: Cambridge Univ. Press, 2011.

[34] R. Diestel, Graph Theory. Springer, 2012, vol. 173.
[35] R. J. Vanderbei et al., Linear Programming. Berlin, Germany: Springer,

2015.
[36] N. Buchbinder and J. Naor, “The design of competitive online

algorithms via a primal-dual approach,” Foundations Trends Theor.
Comput. Sci., vol. 3, no. 2–3, pp. 93–263, 2009.

[37] S. Arora, E. Hazan, and S. Kale, “The multiplicative weights
update method: A meta-algorithm and applications,” Theory Com-
put., vol. 8, no. 1, pp. 121–164, 2012.

[38] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
UK: Cambridge Univ. Press, 2004.

[39] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networkswith traffic-aware virtualmachineplacement,”
inProc. IEEE INFOCOM, 2010, pp. 1154–1162.

[40] N. Ron and T. Naveh, “Wireless backhaul topologies: Analyzing
backhaul topology strategies,” CeragonWhite Paper, pp. 1–15, 2010.

[41] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “Softcell: Scalable and
flexible cellular core network architecture,” in Proc. CoNEXT,
2013, pp. 163–174.

[42] “A simplemodel for determining true total cost of ownership for data
centers,” 2018. [Online]. Available: http://tinyurl.com/kznlhn2/

[43] P. Patel, et al., “Ananta: Cloud scale load balancing,” in Proc. ACM
SIGCOMM Comput. Commun. Rev., 2013, pp. 207–218.

[44] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace ana-
lysis,” in Proc. 3rdACMSymp. Cloud Comput., 2012, pp. 1–13.

[45] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces,” 2019. [Online]. Available: http://code.google.com/p/
googleclusterdata/

Jiaqi Zheng (Member, IEEE) is currently a
research assistant professor with the Department
of Computer Science and Technology, Nanjing Uni-
versity, China. His research interests include com-
puter networking, particularly data center
networks, SDN/NFV, machine learning system,
and online optimization. He was a research assis-
tant at the City University of Hong Kong, in 2015
and collaborated with Huawei Noah’s Ark Lab. He
visited CIS center at Temple University, in 2016. He
has received the Best Paper Award from IEEE

ICNP 2015, Outstanding Doctorial Dissertation Award from ACM SIG-
COMM China 2018, the First Prize of Jiangsu Science and Technology
Award in 2018, and Outstanding Doctorial Dissertation Award from CCF,
JiangsuProvince andNanjing University, in 2019. He is amember of ACM.

Zixuan Zhang currently working toward the grad-
uate degree from the School of Cyber Science
and Engineering, Shanghai Jiao Tong University,
P.R. China. His research interests include social
network mining, deep reinforcement learning,
and natural language processing.

Qiufang Ma received the BS degree from the the
College of Information Engineering, Nanjing Uni-
versity of Finance and economics, Nanjing, China,
in 2016, and the master’s degree, in 2019. She is
currently working toward the master’s degree with
the Department of Computer Science and Technol-
ogy, in Nanjing University. Her research interests
focus on network function virtualization.

Xiaofeng Gao (Member, IEEE) is currently a pro-
fessor with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
China. Her research interests include wireless
communications, data engineering, and combina-
torial optimizations. She has published more than
160 peer-reviewed papers, including well-archived
international journals such as the IEEE Transac-
tions on Computers, IEEE Transactions on Knowl-
edge and Data Engineering, IEEE Transactions on
Parallel and Distributed Systems, Theoretical

Computer Science, and also in well-known conference proceedings such
as INFOCOM, SIGKDD, and ICDCS. She has served on the editorial board
ofDiscreteMathematics,Algorithms and Applications.

Chen Tian (Member, IEEE) received the BS, MS,
andPhD degrees from theDepartment of Electron-
ics and Information Engineering, Huazhong Uni-
versity of Science and Technology, China, in 2000,
2003, and 2008, respectively. He is an associate
professor with the State Key Laboratory for Novel
Software Technology, Nanjing University, China.
He was previously an associate professor with the
School of Electronics Information andCommunica-
tions, Huazhong University of Science and Tech-
nology, China. From 2012 to 2013, he was a

postdoctoral researcher with the Department of Computer Science, Yale
University. His research interests include data center networks, network
function virtualization, distributed systems, Internet streaming, and urban
computing.

Guihai Chen (Senior Member, IEEE) He is a dis-
tinguished professor at Nanjing University, China.
He had been invited as a visiting professor by
many universities including the Kyushu Institute
of Technology, Japan, in 1998, the University of
Queensland, Australia, in 2000, and Wayne State
University during September 2001 to August
2003. He has a wide range of research interests
with focus on sensor networks, peer-to-peer com-
puting, high-performance computer architecture,
and combinatorics. His papers have been cited

for more than 10000 times according to Google Scholar. Besides, he is
a CCF fellow, since 2017.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHENG ETAL.: MULTI-RESOURCE VNF DEPLOYMENT IN A HETEROGENEOUS CLOUD 91

Authorized licensed use limited to: Nanjing University. Downloaded on December 16,2021 at 02:30:43 UTC from IEEE Xplore. Restrictions apply.

http://tinyurl.com/kznlhn2/
http://code.google.com/p/googleclusterdata/
http://code.google.com/p/googleclusterdata/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

