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Abstract
Cloud-based AI infrastructure is becoming increasingly

important, especially on large-scale distributed training. To

improve its efficiency and serviceability, real-time monitor-

ing of the infrastructure and workload profiling are proved to

be the effective approach empirically. However, cloud envi-

ronment poses great challenges as service providers cannot

interfere with their tenants’ workloads or touch user data, thus

previous instrumentation-based monitoring approach cannot

be applied, nor does the workload trace collection.

In this paper, we propose Moneo, a non-intrusive cloud-

friendly monitoring system for AI infrastructure. Moneo is

capable of intelligently collecting the key architecture-level

metrics at finer granularity in real-time without instrumenting

or tracing the workloads, which has been deployed in real

production cloud, Azure. We analyze the results reported

by Moneo for typical large-scale distributed AI workloads

from real deployment. Results demonstrate that Moneo can

effectively help service providers understand the real resource

usage patterns of various AI workloads and real networking

requirements, so as to get valuable findings help improve the

efficiency of cloud infrastructure and optimize the software

stack with the consideration of the characteristic resource

usage requirements for different AI workloads.

This is a revised version of the symposium paper [23]

presented in IEEE ICC 2022 originally.

1 Introduction

Training deep neural network (DNN) models usually requires

a long time on a single arithmetic computing device, resulting

in distributed training using multiple devices are preferred

to reduce training time. However, most individual users can

hardly afford to purchase many computing devices like GPUs

themselves. Consequently, cloud-based AI infrastructure has

been popular for conducting distributed training such as Azure

[17], Amazon AWS [15] for flexibility and economy.

On cloud-based AI infrastructure, training efficiency is criti-

cal, particularly for large-scale distributed training. Extending

training time and cost are the primary concerns, as model

parameters have increased dramatically in recent years. It

took OpenAI just over a year to double the capacity of GPT

models from 1.5B to 175B [19]. The latest GPT-3 model

would require 355 years and 4.6M dollars to train even with

the single Tesla V100 cloud instance [25].

Even with the most advanced and expensive AI hardware,

we observe a significant decrease in training efficiency as the

number of GPUs increases, as illustrated in Figure 1(a). So

how to improve the efficiency for AI infrastructure? There

may be two main directions, improving performance and re-

ducing cost. If the software stack is not optimized sufficiently,

we can optimize and then improve the performance. If the

hardware is over-provisioning resulting in unnecessary and

expensive costs, we can use other cheaper hardware to re-

duce the cost. But firstly, it’s necessary to know where the

bottleneck is and what is underutilized. Fortunately, real-time

monitoring and profiling are proved to be the effective ap-

proach empirically to help pinpoint inefficiencies [33].

The cloud environment imposes significant challenges on

real-time profiling because service providers cannot interfere

with tenants’ workload execution or collect highly-related

information with the users. Therefore, existing tools can not

meet the requirements.

First, instrumentation-based approaches can not be applied

since they will interfere with tenants’ workloads. Through

experiment, we discovered that Nsight Compute [6] can in-

crease the step time for ResNet50 [22] by more than 50% in

experiment [7, 21, 35].

Second, the majority of fine-grained profiling tools require

the collection of workload traces [6, 13, 14, 36]. Not only do

those tools incur significant overhead, they also expose users

to privacy risks.

Third, some existing monitors for AI workloads are overly

coarse-grained [8, 11]. Most tools can easily monitor GPU

utilization, which is the percentage of time when a kernel

is using GPU over the previous sampled period. However,

they cannot obtain finer-grained information contained within

GPUs. A GPU contains dozens of streaming multiprocessors
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chance of error. If we detect that the peak value is not stable,

we reduce the collection interval to the minimum.

There are two cases to check if the peak performance is

stable. First, the peak value over current sampling period is

quite different from the historical peak value. The other is

that although the peak performance in the current sampling

period is similar to the historical peak performance, the values

change dramatically in the current sampling period. Therefore,

outside of the dynamic collection process, we also regularly

sample the metric at the minimum frequency to obtain the

ground truth of metric values in a short period. For the first

case, we calculate the difference between real peak value of

the current sample and collected peak value since the previ-

ous sampling point in history, and check if it is greater than

10% of the historical collected peak. For the second case, we

count the values’ probability density to check if the density

around the peak value is greater than the threshold in current

sampling window. The sampling period is proportional to the

collection interval. Besides, to avoid errors due to periodicity,

we analyzed the cumulative distribution of stable intervals of

the metrics from a large amount of historical data in advance

and set it to 5 percentile of the stable intervals as the upper

limit of the sampling period time.

As shown in Figure 5, when the peak values are relatively

stable, we slow down the collection frequency to reduce sys-

tem overhead. When the peak changes suddenly, we adjust to

the highest frequency.

3 Implementation

3.1 Monitor Metrics

The collected metrics for GPU and InfiniBand are divided

into six categories, as shown in Table 1. The first three are

related to GPU computation, and the last three are used for

inter-GPU, GPU-CPU, or inter-node communications. Those

metrics are collected through monitoring APIs provided by

NVIDIA or AMD GPU management tools [1, 12], and Linux

sysfs interface. Other hardware like disk and CPU will be used

for data I/O and processing during AI workloads training. We

leverage existing metrics from Prometheus node exporter [2]

to monitor them.

3.2 Deployment

Testbed Moneo has been deployed on 30 Azure Stan-

dard_ND96asr_v4 nodes, each of them is equipped with 96

AMD Epyc CPU cores, 900 GiB memory, 8x NVIDIA A100

SXM 40GB GPUs connected by 3rd-generation NVLink, and

8x 200 Gbps Mellanox HDR InfiniBand [18].

Workloads There are three typical workloads we profiled

for large-scale distributed training:

1. Data parallelism: GPT-2 [28], BERT-Large [20], ResNet50

[22], and VGG11 [32] model training in single precision

using PyTorch, on single node or multiple nodes.

2. Model parallelism: 175B GPT-3 [19] model training using

Megatron-LM [31], on 196 GPUs. Tensor parallelism is ap-

plied to all GPUs inside one node, and pipeline parallelism

is used to scale up across nodes.

3. Mixture-of-Experts (MoE): GPT-3 based MoE training us-

ing Fairseq [27], on 128 GPUs.

4 Evaluation

We first evaluate monitoring overhead, then show some valu-

able findings and insights from observed data from Moneo.

4.1 Monitoring Overhead

On 30 different nodes, we run distributed different training

workloads with and without Moneo monitoring. The results

indicate that the variance in training throughput with and with-

out Moneo ranges from -1.28% to 1.8%. We also measure the

CPU and memory overhead of Moneo. In the most of time,

Moneo consumes less than 900 MB memory and around

3 CPU cores, which are less than 0.1% of the total mem-

ory and 3.5% of CPU on each Azure Standard_ND96asr_v4

node [18]. To conclude, Moneo introduces limited overhead

on monitored nodes and does not interfere with the original

workloads.

4.2 Insights from Observed Data

4.2.1 Underutilized Computation Resources

We study the computation resource utilization of various

workloads by collecting SM utilization data over one day

and smoothing it per minute. Moneo discovers that over 90%

of the time, the smoothed SM utilization is less than 30%,

indicating a large room for computation resource utilization

improvement.
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Table 1: Metrics List and Descriptions

Category / Metric Description

GPU Basics
Common health monitoring for a single GPU, including clock frequency, temperature, power,

GPU level utilization, memory error correction code (ECC), etc.

GPU SM / CU
Streaming multiprocessor (SM) in NVIDIA GPU or computing unit (CU) in AMD GPU is

used for tensor computation in AI workloads, and each GPU has many SMs or CUs.

SM Active (%) The fraction of cycles one SM was active, averaged over all SMs.

Tensor Active (%) The fraction of cycles Tensor pipe was active, indicating utilization of Tensor Core.

FP64 / FP32 / FP16 Active(%) The fraction of cycles FP64 / FP32 / FP16 pipe was active.

GPU Memory GPU global memory, can be used for storing models and optimizers.

Mem Active (%) The ratio of cycles when GPU memory interface is active sending or receiving data.

NVLink / xGMI Used for high-speed inter-GPU communication inside one node.

NVLink TX/RX (GB/s) The rate of transmitted or received data over NVLink for each GPU, in GB/s.

PCIe Used for memory copy between GPU devices and host, including DtoH and HtoD.

PCIe TX/RX (GB/s) The rate of transmitted or received data over PCIe for each GPU, in GB/s.

InfiniBand Used for inter-node communication with very high throughput and very low latency.

InfiniBand TX/RX (GB/s) The rate of transmitted or received data throughput InfiniBand, in GB/s.
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Figure 6: Smoothed SM utilization Per Minute CDF

Then, we compare the computation resource usage patterns

for various data parallelism models on single node, as shown

in Table 2. It’s worth noting that Tensor Core usage in model

training is relatively low. However, single precision Tensor

Core is a critical improvement for NVIDIA A100 GPU, which

makes it 10x faster than V100 on single precision [24]. We

compare model training performance to an ideal GPU ker-

nel micro-benchmark. According to Figure 7, the ideal GPU

kernel micro-benchmark uses up to 90% Tensor Core, while

model training uses up to 35%. Thus Tensor Core is idle dur-

ing most of the time in model training, and there is much space

for more arithmetic operator optimizations to be adapted by

leveraging Tensor core’s capabilities.

Table 2: Peak Value of GPU Metrics on Different Models

GPT-2
BERT

Large
ResNet50 VGG11

SM Active (%) 85.1 88.2 93.3 86.3

Tensor Active (%) 23.8 34.7 20.6 24.2

Mem Active (%) 60.0 55.3 20.5 16.6

FP32 Active (%) 14.8 23.5 70.7 52.1

NVLink TX/RX (GB/s) 33.1 13.8 3.9 19.4

Figure 7: Tensor Active in Kernel Micro-benchmark, BERT-Large

and GPT-2 Model Training, Respectively

4.2.2 Underutilized GPU Inter-connection

Figure 8 shows another issue that NVLink bandwidth in dis-

tributed training is much lower than its capacity. We run

all-reduce micro-benchmark with 8 GiB message size in nccl-

tests [4] to validate the accuracy of measured metrics. Mo-

neo’s result is similar to the 235 GB/s bus bandwidth reported

by nccl-tests. Though the peak bandwidth for NVLink is 300

GB/s per direction [26], it is less than 35 GB/s during model

training of GPT-2, BERT-Large, ResNet50, and VGG11 on

single node, as shown in Table 2. According to Figure 9, the

utilized bandwidth is highly related to message size. Only

large sizes can saturate NVLink while model training usu-

ally uses dozens MiB for all-reduce. Thus, the GPU inter-

Figure 8: NVLink Bandwidth in Micro-benchmark, BERT-Large

and GPT-2 Model Training, Respectively
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there’re contentions when computation and communication

overlap, different types of computation kernels would have

different patterns.

4. Besides above GPU metrics, NVSwitch metrics could also

help us better understand whether there is contention in

GPU interconnection which may help improve communi-

cation libraries.

In addition, we also plan to deploy Moneo on more mod-

els, different hardware, and larger clusters, to strengthen the

data analysis results. By exploring the resource utilization

patterns of different workloads in various AI systems, we can

understand the characteristics of different AI workloads and

learn what AI hardware is more suitable for them, which helps

with better resource allocation and scheduling. By studying re-

source utilization in larger clusters, we can gain more valuable

insights at the cluster level into more prevalent resource usage

bottlenecks and underutilized resources, and discover trends

in AI workload development, which can help on decision

marking of AI infrastructure improvement and evolution.

6 Related Work

Commonly used lightweight monitor tools like nvidia-smi

[8] and rocm-smi [11] provided by GPU vendors can monitor

GPU utilization and memory usage on the GPUs. Other third-

party tools like nvtop [9] are actually the wrapper of them.

But non of them could collect fine-grained metrics.

The majority of fine-grained profiling tools require the

collection of workload traces. Popular frameworks provide

TensorBoard [13] for tracing the op-level execution timeline

on the GPU. NVIDIA provides performance measurement

tools ranging from the kernel to the application level includ-

ing NVProf [10], Nsight Systems [7], and Nsight Compute [6]

which will replay kernels, APIs, then gather workload traces.

Academic efforts including TAU Performance System [30],

HPCToolkit [14] and CUDABlamer [34, 36] also collect sev-

eral useful performance metrics and scale to large HPC appli-

cations. Aforementioned profilers employ NVIDIA CUPTI

API [5] which requires instrumenting the kernel in order to

collect events and metrics.

Besides, there are some other methods instrumenting the

executed codes and software stack. GVProf [35] instruments

GPU memory instructions to profile value redundancies.

DCUDA [21] tracks memory utilization by intercepting API

calls and the function parameters. Both of them will incur

significant overhead and expose users to privacy risks.

7 Conclusion

This paper presents Moneo, a non-intrusive monitor for cloud-

based AI infrastructure. Moneo intelligently collects several

key architecture-level fine-grained resource usage metrics in

real-time without touching users’ data or workloads. Moneo

can help to identify resource usage patterns and requirements

of diverse AI workloads. Analyzing the results of typically

distributed training workloads in production demonstrates

that Moneo can effectively obtain valuable insights into the

optimization space of software, including arithmetic operators

and communication libraries, as well as more efficient hard-

ware architecture design to meet the networking requirements

of different workloads.
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