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Abstract Remote direct memory access (RDMA) has become one of the state-of-the-art high-performance network

technologies in datacenters. The reliable transport of RDMA is designed based on a lossless underlying network and cannot

endure a high packet loss rate. However, except for switch buffer overflow, there is another kind of packet loss in the RDMA

network, i.e., packet corruption, which has not been discussed in depth. The packet corruption incurs long application tail

latency by causing timeout retransmissions. The challenges to solving packet corruption in the RDMA network include:

1) packet corruption is inevitable with any remedial mechanisms and 2) RDMA hardware is not programmable. This

paper proposes some designs which can guarantee the expected tail latency of applications with the existence of packet

corruption. The key idea is controlling the occurring probabilities of timeout events caused by packet corruption through

transforming timeout retransmissions into out-of-order retransmissions. We build a probabilistic model to estimate the

occurrence probabilities and real effects of the corruption patterns. We implement these two mechanisms with the help of

programmable switches and the zero-byte message RDMA feature. We build an ns-3 simulation and implement optimization

mechanisms on our testbed. The simulation and testbed experiments show that the optimizations can decrease the flow

completion time by several orders of magnitudes with less than 3% bandwidth cost at different packet corruption rates.

Keywords datacenter network, packet corruption, programmable switch, remote direct memory access (RDMA)

1 Introduction

Remote memory direct access (RDMA) has become

one of the state-of-the-art high-performance network

technologies in datacenters [1, 2]. It provides extremely

low latency (about 3–5 µs) [3] and high throughput with

low CPU consumption through its kernel-bypass and

RDMA-capable network interface controller (RNIC) of-

floaded protocol stack. Multitudinous distributed ap-

plications and network middleware, such as key-value

store [4–6], distributed transactions [7, 8], distributed file

systems [9, 10], cloud storage [2, 11,12] and Remote Pro-

cedure Call (RPC) systems [13–15], have exploited the

performance of RDMA with novel software designs to

obtain extremely low service latency.

The reliable transport of RDMA is designed based
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on a lossless underlying network (i.e., without packet

loss caused by switch buffer overflow) and cannot en-

dure a high packet loss rate, e.g., 0.1% [1, 16]. RDMA

adopts a go-back-to-N retransmission mechanism in

which the transmission window falls back to the lost

packet. In Ethernet/IP-based best-effort-delivery dat-

acenter network architecture, RDMA is adapted to IP

Routable RDMA over Converged Ethernet (RoCEv2).

RoCEv2 works along with Priority-based Flow Control

(PFC), a data link layer flow control protocol that pre-

vents packet drop caused by buffer overflow.

However, except for switch buffer overflow, there is

another kind of packet loss in the RDMA network, i.e.,

packet corruption [2, 17,18], which has not been discussed

in depth. According to Microsoft’s research [17] on 350k

links across 15 production datacenters, packet corrup-

tion shows universality in large datacenters. Compared

with congestion loss, packet corruption has a rarer oc-

currence but a higher loss rate. Thus the occurrence

of packet corruption causes a more severe system per-

formance downgrade, such as extreme long-tail latency

and request timeout [2].

The packet corruption incurs long application tail

latency by causing timeout retransmissions in the

RDMA network. The retransmission mechanisms can

be classified as the out-of-order retransmission and the

timeout retransmission, and there is a significant price

gap between them [19]. The latency penalty of out-of-

order retransmissions is an RTT, which is often less

than 100 µs in the RDMA network. While the timeout

value of retransmissions should be set to maximal possi-

ble network RTT (e.g., 64 ms by default), which is much

bigger than the latency of most small flows and average

network RTT. The timeout retransmission incurs high

latency to small flows. There are four causes of timeout

retransmissions in RDMA: NAK corruption, corruption

of packet and its retransmission packet (packet corrup-

tion twice), the flow tail packet corruption, and the

flow tail ACK corruption [20]. The first two types are

attributed to the NAK-once mechanism in the RDMA

protocol. The timeout caused by flow tail packet/ACK

corruption also happens in other transport protocols

such as TCP and QUIC [21].

There are two challenges to optimizing packet cor-

ruption in the RDMA network. 1) Packet corruption is

inevitable with any remedial mechanisms. Since packet

corruption is caused by hardware, it is nearly impos-

sible to eliminate it by any remedial mechanisms such

as redundancy by adding additional packets. 2) RNICs

are not programmable. Unlike software transport pro-

tocol stacks like kernel TCP, RDMA transport protocol

is offloaded to fixed-function hardware, i.e., RNICs. For

deployment consideration, a handy solution should not

modify existing RNICs and should be forward compat-

ible with the standard RDMA protocol supported by

existing RNICs.

This paper proposes some designs that can guaran-

tee the expected tail latency of applications with packet

corruption. The key idea is controlling the occurring

probabilities of timeout events caused by packet corrup-

tion by transforming timeout retransmissions into out-

of-order retransmissions. This transforming is achieved

by inserting “dummy headers” (i.e., packets without

payloads) at the end of each flow and repeating signifi-

cant packets (i.e., flow tail ACKs, NACKs, and retrans-

mitted packets) of which the corruption causes timeout.

We implement these two mechanisms with the help of

programmable switches and the zero-byte message fea-

ture provided by existing RNICs, which are deployable

and compatible with existing RDMA hardware. We

also build a probabilistic model to quantify the prob-

lem by estimating the occurrence probability and the

effects of different corruption patterns and mechanisms.

We build an ns-3 simulation and implement opti-

mization mechanisms on our testbed. The simulation

and testbed experiments show that the optimizations

can decrease the flow completion time by several or-

ders of magnitudes with less than 3% bandwidth cost

at different packet corruption rates. Besides, we also

discuss some practical problems in deployment such as

lossy RDMA compatibility and cooperation with cor-

ruption repair systems.

In summary, we make the following contributions.

• We build a probabilistic model that can quantify

the occurrence probabilities of packet corruption in the

RDMA network (Subsection 3.2) and give the probabi-

lities of the four kinds of timeout retransmissions (Sub-

sections 3.3–3.5) based on it.

• We design “repeat” and “dummy headers” opti-

mizations to improve application tail latency for the

packet corruption in the RDMA network and analyze

them (Section 4).

• We introduce P4 programmable switches [22] to

implement the “repeat” methodology (Subsection 5.1)

and exploit zero-byte message RDMA feature to gene-

rate dummy headers (Subsection 5.2) without modify-

ing existing RDMA protocol and RNICs.
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2 Background

2.1 Reliable Protocol in RDMA

There are three kinds of RDMA transport services

implemented on commodity RNICs: reliable connection

(RC), unreliable connection (UC), and unreliable data-

gram (UD). Each type of transport services is provided

by corresponding communication channels (i.e., queue

pairs, QP). Users initiate data send/receive requests to

RNICs by posting work queue elements (WQEs) into

QPs. RDMA operations include one-sided (i.e., re-

mote CPU bypassed) operations (e.g., RDMA READ

and RDMA WRITE) and two-sided (i.e., remote-CPU

involved) operations (e.g., RDMA SEND). RC is the

most commonly used transport type in RDMA since it

provides reliable service [1, 2, 16]. In this paper, we only

discuss RC. We use requesters and responders to refer

to the client and the receiver of RDMA respectively,

which is consistent with the naming in the RDMA pro-

tocol.

Fig.1 shows the receive state machine of the RC re-

sponder. The state machine is simplified for addressing

packet order preserving. Thus it omits some upper-

layer verification such as OpCode verification that does

not influence our analysis. QPs maintain packet se-

quence number (PSN) and expected packet sequence

number (ePSN) on the requester and the responder,

respectively. The responder only accepts packets with

PSN exactly matching ePSN (PSN = ePSN) and in-

creases ePSN after successful receiving. If the respon-

der detects a packet sequence error (PSN > ePSN),

it generates a NAK that carries the current ePSN and

sends the NAK to the requester. The responder only

sends NAK once for each ePSN (even though more than

one packet sequence error is detected). The NACK-

once mechanism prohibits generating a series of NAKs

by subsequent packets when one packet is lost. Our

experiment on Mellanox ConnectX-6 RNICs shows that

NAK is sent only once for each ePSN, which is the same

as the protocol stipulates. When a requester receives

a NAK, it restarts transmission from the packet with

the ePSN carried in the NAK. The responder takes du-

plicated packets (PSN < ePSN) as valid packets and

resends ACKs and responses.

The requester also uses a timer for timeout re-

transmission. If the requester does not receive an/a

ACK/NAK for more than the retransmission time out

(RTO) = 4.096 × 2t µs, it restarts transmission from

the first unacknowledged packet. Parameter t is set by

users according to deployment scale and configuration.

The timeout value should always be larger than the

maximal queueing delay in the network to avoid spu-

rious retransmission (i.e., retransmission triggered mis-

takenly when no packet is lost). For example, perftest

sets the time timeout value to 267 ms, and Alibaba’s

large-scale storage RDMA network [2] endures a four-

second reconnection timeout (which equals retransmis-

sion timeout multiplying retry times).

New Inbound

Request

PSN/ePSN
Valid Request

Process

Yes

PSN < ePSN?

No

No

Duplicate Request

Process

Yes

NAK Already Sent 

for the ePSN?

Yes

Other Sequence 

Error Process

Yes

Send NAK

No

Fig.1. Receive state machine of RDMA RC responder.

2.2 Packet Corruption in Datacenter

Zhuo et al. studied packet corruption based on

statistics on 350k links across 15 Microsoft’s production

datacenters [17]. These links are optical fibers between

switches. The links between hosts and switches are not

considered since their physical medium can be copper

lines, which have different physical features from opti-

cal fibers. Here we conclude some crucial conclusions

for packet corruption from [17].

Firstly, packet corruption affects fewer links than

congestion but imposes a higher loss rate. Zhuo et

al. computed the percentage of links with a conges-

tion/corruption loss rate above 10−8, and found that

the total number of links with corruption is less than

2%–4% of those with congestion [17]. Among these

links, 52.8%/12.7% of them have more than 10−5/10−3

packet loss rate, while the ratio for congested links is

7.6%/0.2%.

The packet corruption rate on a link is stable over
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time and is not correlated with link utilization. To the

contrast, congestion loss has positive relevance to link

utilization. Corruption also exhibits weak locality, i.e.,

the chances of multiple corrupting links being on the

same switch or being topologically close are noticeable

but low. Finally, corruption is also asymmetric and

uncorrelated with link location.

Table 1 [17] shows the root causes of packet corrup-

tion and their distributions in Microsoft’s datacenter.

Table 1. Root Causes of Packet Corruption and Their Distrib-
utions [17]

Root Causes of Packet Corruption Proportion

Connector contamination 17%–57%

Damaged or bent fibers 14%–48%

Decaying transmitters Less than 1%

Bad or loose transceivers 6%–45%

Shared-component failure 10%–26%

3 Packet Corruption Model

3.1 Interaction of Packet Corruption and
RDMA Protocol

Interacting with the RDMA protocol, the packet

corruption of specific packet types (NAK packets),

packet positions (the last packets of flows), and packet

features (packets with the same PSN) is more detrimen-

tal to application performance. The cause is the price

gap between out-of-order retransmission and timeout

retransmission in the RDMA transport protocol.

The latency penalty of out-of-order retransmission

is relatively tiny. When a packet is corrupted and

dropped, the responder detects a packet sequence er-

ror and sends a NAK to the requester. The requester

then retransmits the packets from the NAK PSN. Due

to this packet corruption, an additional RTT is added

to the flow latency, and the links suffer bandwidth loss

since the inflight packets after the corrupted packet are

invalidated and dropped by the responder. Some com-

mon optimizations in RDMA systems, such as limiting

inflight request size [13, 15], can reduce this bandwidth

loss.

However, the requester must wait for the timeout

to retransmit all inflight packets if the out-of-order re-

transmission cannot be triggered. Since the timeout

value should be set to maximal network RTT (e.g.,

64 ms by default), which is much bigger than the la-

tency of most small flows and average network RTT,

timeout retransmission incurs extremely high latency

to flows. The latencies of today’s datacenter RPCs are

often less than 10 µs [2, 15,23,24], which suffer more than

1 000x tail latency if a timeout retransmission is trig-

gered.

Since timeout retransmissions are only triggered

in the absence of ACKs/NAKs, we can analyze

the timeout retransmission according to the state of

ACKs/NAKs (corrupted or not generated), and can

conclude that four kinds of packet corruption can cause

timeout retransmission: NAK corruption, packet cor-

ruption twice, flow tail packet corruption, and flow tail

ACK corruption [20].

• NAK Corruption. Each NAK corruption causes a

timeout retransmission. Since the responder only sends

NAKs once for each ePSN (Subsection 2.1), when a

packet and its corresponding NAK are both corrupted,

the following packets will be silently dropped by the

receiver due to the disorder, and no response will be

sent to the requester. As a result, the requester cannot

sense the loss and continues transmitting until timeout.

Fig.2 demonstrates the case.

Requester Responder

PSN=1

PSN=2

PSN=3

ACK/1

NAK/ 3

Corrupted

ACK/2

PSN=4

CorruptedPSN=5

PSN=6

...

ePSN=1

ePSN=2

ePSN=3

ePSN=3

ePSN=3

ePSN=3

Timeout

PSN=3

ACK/3

ePSN=3

ePSN=4

Data Packet ACK/NAK Packet

Corrupted Packet 

Fig.2. Requester timeout caused by NAK corruption.

• Packet Corruption Twice. The case is also related

to the only-once NAK mechanism in RDMA. Suppose

a packet and its retransmission packet with the same

PSN are both corrupted. In that case, the requester

also launches a timeout retransmission since the respon-

der will not generate a NAK again for this ePSN. Fig.3

demonstrates the case.

• Flow-Tail Packet Corruption. Once the flow tail

packet (the last packet of a flow) is corrupted and

dropped, the requester must wait for a timeout since
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no more packet can trigger out-of-order retransmission.

Fig.4 demonstrates the case.

Requester Responder

PSN=1

PSN=2

PSN=3

ACK/1

NAK/3

Corrupted

ACK/2

PSN=4

PSN=5

...

ePSN=1

ePSN=2

ePSN=3

ePSN=3

ePSN=3

ePSN=3

Timeout PSN=3

ACK/3

ePSN=3

ePSN=4

Data Packet ACK/NAK Packet

Corrupted Packet 

PSN=3
PSN=3 Corrupted

PSN=4

ePSN=3

Fig.3. Requester timeout caused by packet corruption twice.

Requester Responder

PSN=1

PSN=2

PSN=3

ACK/1

Corrupted

ACK/2

ePSN=1

ePSN=2

ePSN=3

Timeout

PSN=3

ACK/3

ePSN=3

ePSN=4

Data Packet ACK/NAK Packet

Corrupted Packet 

Fig.4. Requester timeout caused by flow tail packet corruption.

Compared with NAK corruption and packet corrup-

tion twice, the consequence of flow tail packet corrup-

tion is more complex. The RDMA connections (QPs)

are usually multiplexed among threads or applications

to decrease the number of QPs per RNIC, which avoids

cache miss in RNIC RAM [2, 25]. In such scenarios,

flows are aggregated in QPs, thus the “flow” in “flow

tail packet corruption” should be defined as batches of

RDMA requests transmitted on the same QP with a

time gap so that there is no more packet on the same

QP to be transmitted immediately after each flow tail

packet. Once a flow tail packet is dropped, the time-

out may not be triggered before the arrival of next flow

in this QP. In such cases, the latency penalty of flow

tail packet corruption is the inter-flow gap rather than

the RTO. The inter-flow gap time is determined by the

traffic load on hosts (i.e., host link utilization) and the

number of QPs on each host. With a lower host link

utilization and a larger number of QPs per RNIC, the

latency penalty of flow tail packet corruption is more

severe.

• Flow Tail ACK Corruption. Similar to flow tail

packet corruption, once the ACK for the flow tail packet

is corrupted and dropped, the requester must wait for

a timeout since no more packet can trigger subsequent

ACKs. Fig.5 demonstrates the case.

Requester Responder

PSN=1

PSN=2

PSN=3

ACK/1

Corrupted

ACK/2

ePSN=1

ePSN=2

ePSN=3

Timeout

PSN=3

ACK/3

ePSN=4

ePSN=4

ePSN=4ACK/3

Data Packet ACK/NAK Packet

Corrupted Packet 

Fig.5. Requester timeout caused by flow tail ACK corruption.

3.2 Packet Corruption Model

Since packet corruption is inevitable but probabilis-

tic, the actual damage of different kinds of packet cor-

ruption to system performance should also be evalu-

ated according to their occurrence probability. Thus

we build a mathematical model to estimate the proba-

bility of different kinds of packet corruption. Table 2

shows the symbols we use in the following theorems and

poofs.

The probability of link corruption in large-scale dat-

acenter networks is not revealed in previous work [2, 17]

and might vary with different lives of datacenters. How-
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ever, the statistical corruption rate of corrupted links

can be analyzed. As we discussed in Subsection 2.2,

the causes of corruption are mostly physical (e.g., con-

nector contamination and damaged/bent fiber) [17] and

are not related with the location of each bit. Thus, as

a simple but effective estimation, it is reasonable to as-

sume the corruption events of each single bit (b) on a

corrupted link are independent identically distributed

(i.i.d.) and obey Bernoulli distribution with probability

α:

P (Cb) = α.

Table 2. Mathematic Symbols Used in This Paper

Symbol Meaning
b, h, p Bit, header, packet respectively
l, w Link and path respectively
X,Y Aliases of b/h/p and l/w
CX Event of X being corrupted
CX(Y ) Event of X (b/h/p) being corrupted on Y (l/w)
SX Size of X (in bytes)
R(S) Value range of S (in bytes)
Tp Event of packet p being the tail packet of a flow
ω Link corruption probability
α Bit corruption probability on a corrupted link
β Packet corruption probability on a corrupted link
γ Header corruption probability on a corrupted link
δ ACK/NAK corruption probability on a corrupted

link
PA Probability of timeout with corruption type A
PB
A Probability of timeout with corruption type A

with optimization B
BY

X Bandwidth of X timeout with optimization Y

C Complement of event C
P (A|B) Probability of event A with the occurrence of B

According to the assumption of single bit corruption

probability distribution, we can obtain the probability

β of single packet corruption.

Theorem 1. The bit corruption probability β of

single packet of size Sp on a corrupted link is 1− (1−
α)8Sp .

Proof. Since a packet p contains bit bi (i =

1, ..., 8Sp), we have

β = P (Cp) = 1− P (Cp)

= 1− P (

8Sp⋃
i=1

Cbi)

= 1−
8Sp∏
i=1

(1− P (Cb))

= 1− (1− α)8Sp . �

Since the packet size Sp is upper-bounded with

maximum transmission unit (MTU) (Sp)max, the

probability of single packet corruption β is also upper-

bounded by:

β 6 1− (1− α)8(Sp)max = βmax.

According to relevant researches [17, 18], the typical

value range of β in a datacenter is [10−8, 10−2]. Since

the majority of the packets on wire are data packets

with MTU (Sp ≈ (Sp)max), we assume this value range

is also approximately applied to βmax, i.e., β ≈ βmax

for all subsequent analyses.

The size of the RoCEv2 packet headers (including

Ethernet CRC field) Sh is 62 bytes (18-byte Ether-

net header and CRC footer, 20-byte IP header, 8-byte

UDP header, 12-byte Base Transport Header, and 4-

byte ICRC header). In order to simplify the calcula-

tion, we assume that all corruption of the headers can

be checked out by validating the checksum. The size

of a full data RoCEv2 packet with a 1 024-byte MTU

is 1 086 bytes. In some datacenters, jumbo frame of

larger MTU (e.g., 4 KB or 8 KB) might be used [15, 26],

and all the conclusions should be simply recalculated

with the same equations. Given these sizes, we have

the approximation.

Theorem 2. The corruption probability of the

packet header (γ) of full-data RoCEv2 packets approxi-

mates 0.06βmax.

Proof. Note that Sh = 8 × 62, (Sp)max = 8 × 1 086

and applying the formula (1 − x)α = 1 − αx + O(x2),

we have:

γ = 1− (1− α)8Sh

= 1− (1− βmax)
Sh

(Sp)max

= 1− (1− βmax)
62

1 086

≈ 0.06βmax +O(β2
max). �

Thus in our bit corruption error model, the proba-

bility of header corruption (γ) is much smaller than the

probability of packet corruption (β).

We can also estimate the corruption probability of

ACK/NAK (δ) with size SNAK = 68 on a corrupted

link:

δ = P (CNAK)

= 1− (1− α)8SNAK

= 1− (1− βmax)
SNAK

(Sp)max

≈ 0.06β ≈ γ.

For packets going through paths with more than one

link, we have to use the following theorem for analysis.

Theorem 3. For flows going through an L-

link path with the corruption rate of each link Cl =
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ω, the probability of packet/header/NAK corruption

(P (Cp)/P (Ch)/P (CNAK)) approximates Lβω/Lγω/

Lδω.

Proof. We only prove the probability of packet cor-

ruption since the proofs of the other cases are similar. It

is assumed that the paths of packets are {li|i = 1, ..., L}.
For each link, the probability of packet P (Cp(li)) is

ωβ. The corruption probability of each packet going

through the path is

P (Cp) = 1− P (Cp)

= 1−
L∏
i=1

P (Cp(li))

= 1− (1− βω)L

≈ Lβω. �

3.3 NAK Corruption

As we referred in Subsection 3.1, each NAK corrup-

tion can incur a timeout event on the requester. The

NAK corruption only occurs when the packet and its

NAK are both corrupted. Note that due to the asym-

metry of corruption [17], the corruption of the links that

the data and NAKs go through should be calculated in-

dependently. Thus the probability of NAK corruption

timeout can be calculated as follows.

Theorem 4. For a flow going through an L-link

path, the probability of NAK corruption timeout on each

link (PNAK) approximates 0.06L2β2
maxω

2.

Proof. Note that since the packet and its NAK

go through different paths, the event NAK corruption

(CNAK) and the corruption of packet (Cp) are indepen-

dent; thus we have:

PNAK = P (CpCNAK)

= P (Cp)P (CNAK)

= Lβω × Lδω
≈ 0.06L2β2

maxω
2. �

The value range of the NAK corruption timeout

probability (PNAK) is much smaller than the probability

of packet corruption (P (Cp)) since the NAK corruption

requires bidirectional link corruption and the size NAK

is much smaller than the packet size in some cases. On

a 2-link path (L = 2), the NAK corruption timeout

probability is up to 2.4× 10−5ω2 (when β = 0.01).

3.4 Packet Corruption Twice

The concurrent corruption of a packet and its re-

transmission also incurs a timeout event. According to

our model, the corruption of each bit signal on wire is

independent; thus obviously the corruption of a packet

and its retransmission are also independent. Then the

probability of packet corruption timeout twice (Ptwice)

can be calculated.

Theorem 5. For flows going through an L-link path

W with the corruption rate of each link Cl = ω, the

probability of packet corruption timeout twice (Ptwice)

approximates Lβ2
maxω.

Proof. The packet corruption twice timeout only

occurs when a packet p and its retransmission p′ are

corrupted; thus we have

Ptwice = P (Cp′Cp)

= P (Cp′ |Cp)P (Cp)

= LβωP (Cp′ |Cp).

Note that the corruption of retransmission of p′ is only

related to the path corruption rate; thus its probability

is the same with the corruption of p′, and we have

P (Cp′ | Cp) = P (Cp′ | CL)

= P (Cp| CL)

=
P (Cp)

P (CL)

=
Lβω

1− (1− ω)L

≈ Lβω

1− (1− Lω)
= β.

Thus we have

Ptwice = LβωP (Cp′ |Cp)
≈ Lβ2ω ≈ Lβ2

maxω. �

The value range of probability Ptwice is

[10−16, 10−4]Lω, i.e., Ptwice is [10−16, 10−4] per cor-

rupted link. Ptwice is much larger than PNAK (Ptwice ≈
16.5
Lω PNAK).

3.5 Flow Tail Corruption

The probability of flow tail packet corruption (Ptail)

is affected not only by the bit error rate but also by the

flow size distribution. This corruption event can be ex-

plained as “the corrupted packet is one of the flow tail”

and calculated.

Theorem 6. The probability of flow tail packet cor-

ruption on each link (Ptail) approximates E( 1
S )βmaxω,

where S is the random variable of the flow size (counted

in packets).



750 J. Comput. Sci. & Technol., July 2022, Vol.37, No.4

Proof. Let Tp denotes the event that packet p is the

tail packet of a flow. For any packet in a flow of N

packets, P (Tp) is 1/N . Thus P (Tp) for packet p from

any flow with a random flow size S is:

P (Tp) =
∑

Si∈R(S)

P (Tp|S = Si)P (S = Si)

= E
(

1

S

)
.

Here R(S) is the value range of S. Thus Ptail can be

calculated as:

Ptail = P (Tp|Cp)P (Cp)

= E
(

1

S

)
βω ≈ E

(
1

S

)
βmaxω. �

For the flow distribution with a larger average flow

size, the mathematical expectation E( 1
S ) is smaller. For

the WebSearch workload, E( 1
S ) is 0.055. Under such

flow distribution, Ptail is larger than the probability of

the other two kinds of corruption (Ptail ≈ 0.055
βmax

Ptwice ≈
0.91

βmaxLω
PNAK). However, as we discussed in Subsec-

tion 3.1, although flow tail corruption occurs with a

higher probability, the penalty flow latency of this kind

of corruption is also affected by the inter-flow gap time.

Similarly, for the flow tail ACK corruption, we have

Theorem 7.

Theorem 7. The probability of the flow tail ACK

packet corruption on each link (Ptail ACK) approximates

0.06E( 1
S )βmaxω, where S is the random variable of flow

size (counted in packets).

Proof. The proof is similar to Theorem 6. �
The corruption probability of the flow tail ACK is

smaller than the flow tail packet corruption probability

(Ptail ACK ≈ 0.06Ptail).

4 Optimizations for Different Scenarios of

Packet Corruption

In this section, we show our designs on optimiz-

ing different scenarios of packet corruption. The key

idea is converting timeout retransmissions into out-of-

sequence retransmissions. For low-probability events

such as NAK and duplicated packet corruption, we

adopt “repeat” as our basic methodology. This sim-

ple but effective technique can decrease the possibility

of timeout exponentially. For high-probability flow tail

packets transmission, we generate “dummy” headers af-

ter each tail packet. The solution is low-overhead and

is also handy in software with some RDMA program-

ming techniques. For all the methods, we analyze their

protocol interaction, timeout probability reduction, and

software/hardware overhead.

4.1 Repeating Corrupted NAK

A simple but effective technique for preventing cor-

ruption is adding redundancy by repeating. For each

NAK packet, generating a replication can effectively de-

crease the probability of NAK corruption timeout since

the timeout will not be triggered as one replication ar-

rives at the requester. Fig.6 demonstrates an example

of repeating NAK on the top-of-rack (ToR) switch to

avoid the NAK corruption timeout.

Requester Responder

PSN=1

PSN=2

PSN=3

ACK/1

NAK/ 3

ACK/2

PSN=4 Corrupted

PSN=5

ePSN=1

ePSN=2

ePSN=3

ePSN=3

ePSN=3

ePSN=3

PSN=4
ACK/3 ePSN=4

NAK

ReplicationsPSN=3
PSN=3

ToR
Switch

ToR
Switch

Data Packet ACK/NAK Packet

Corrupted Packet 

Fig.6. Optimizing NAK corruption timeout with repeating on
ToR switches.

The probability of NAK corruption P repeat
NAK can be

further decreased by adding the number of replicated

NAK packets, and can be calculated as follows.

Theorem 8. For flows going through an L-link

path W with the corruption rate of each link Cl = ω,

the probability of NAK corruption P repeat
NAK with (N − 1)

replicated NAK packets approximates 0.06NL2βN+1
max ω

2.

Proof. Since the corruption of the replicated NAK

is only related to the link state, we have

P (C(NAK ′)|C(NAK))

= P (C(NAK ′)|C(LNAK))

= P (C(NAK ′))/C(LNAK)

=
Lδω

1− (1− ω)L

≈ Lδω

1− (1− Lω)
= δ.
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Thus

P repeat
NAK = P (CpCNAK1

...CNAKN
)

= P (Cp)P (CNAK)P (CNAK′ |CNAK)N−1

= Lβω × Lδω × δN−1

≈ 0.06NL2βN+1
max ω

2. �

On a 2-link path (L = 2), using one replication

(N = 2) can decrease the probability to a very low rate

even with a high corruption rate (less than 1.4×10−8ω2

when βmax 6 10−2).

In this design, the requester does not sense the NAK

replication and treats the NAK replications as different

NAKs when processing them. The influence of dupli-

cated PSN fall-back is small if all the NAK replicas ar-

rive at the requester closely. Since the RDMA protocol

stack, including the function of generating NAK, is of-

floaded to hardware RNICs, the replication can only be

generated by RNICs or inside network hardware, e.g.,

by programmable switches. The hardware packet repli-

cations are low-latency, i.e., without adding large time

gap to the packet and its replication. The arrival of the

replicas is very close since they pass through the same

path after being generated (RDMA does not support

packet-level multipath [19]).

The major overhead of the solution is generating

additional replications for each NAK. The average ad-

ditional bandwidth consumption BNAK on a corrupted

link can be calculated by counting the expectation of

additional bytes transmitted for each packet:

E(Brepeat
NAK ) =

SNAK(N − 1)β

Sp

< 0.000 6βmax(N − 1). (1)

The additional bandwidth overhead is small even on a

corrupted link. For the normal links, there is no ad-

ditional bandwidth overhead. The implementation of

NAK replication is discussed in Section 5.

4.2 Repeating Retransmission of Corrupted
Packets

Repeating can be also applied for retransmitted

packets to avoid timeout caused by packet corruption

twice. If the requester sends (N − 1) replications of the

retransmitted packet with ePSN, the timeout retrans-

mission will only be triggered when all the replications

are dropped. Fig.7 demonstrates an example of the re-

peating the retransmission of the corrupted packet on

the ToR switch.

Requester Responder

PSN=1

PSN=2

PSN=3

ACK=1

NAK= 3

ACK=2

PSN=4

PSN=5

ePSN=1

ePSN=2

ePSN=3

ePSN=3

ePSN=3

ePSN=3

PSN=4
ACK=3 ePSN=4

Replications

PSN/3 PSN=3

ToR

Switch

ToR
Switch

Corrupted

Corrupted

Data Packet ACK/NAK Packet

Corrupted Packet 

Fig.7. Optimizing packet twice corruption timeout with repeat-
ing.

The probability of timeout with repeating the re-

transmission of the corrupted packet can be calculated

as follows.

Theorem 8. For flows going through an L-link

path W with the corruption rate of each link Cl =

ω, the probability of packet corruption twice timeout

(P repeat
twice ) with N repeated retransmissions approximates

LβN+1
max ω.

Proof.

P repeat
twice = P (CpCp′1 ...Cp′n)

= P (Cp)P (Cp′ |Cp)N

= LβN+1ω ≈ LβN+1
max ω. �

P repeat
twice ≈ LβN+1

max ω is much larger than P repeat
NAK ≈

0.06NL2βN+1
max ω

2 with the same number of replications.

For example, to ensure P ∗twice < 2× 10−8ω with L = 2,

βmax = 10−2, we should replicate the original retrans-

mission for two more times (N = 3).

The overhead of generating additional NAKed pac-

kets is larger than that of generating NAKs. Similar to

(1), we can calculate additional bandwidth overhead on

a corrupted link for replicating NAKed packets Brepeat
twice :

E(Brepeat
twice ) = (N − 1)β < 0.01(N − 1).

The order of magnitudes of additional bandwidth con-

sumption is determined by the packet corruption rate

β, while it is commonly less than 5% (e.g., N = 6,

β = 0.01) on a corrupted link. Since we only replicate
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the packet of which PSN = ePSN (i.e., the first re-

transmitted packet after NAKed), the bandwidth over-

head should be much smaller than the retransmission

bandwidth in most cases.

4.3 Attaching “Dummy Headers” at Flow Tail

To handle with the loss of the flow tail packet, the

method used in QUIC [21] is repeating the last packet

or setting a separate RTO merely for this packet. Fig.8

demonstrates the strategy of repeating the flow tail

packet.

Requester Responder

PSN=1

PSN=2

PSN=3

ACK=1

ACK=2

ePSN=1

ePSN=2

ePSN=3

ePSN=4

PSN=3

ACK=3

Data Packet ACK/NAK Packet

Corrupted Packet 

Fig.8. Optimizing flow tail packet corruption timeout with re-
peating.

However, the overhead of repeating is considerable

when flow sizes are mostly small. While, in some popu-

lar RDMA applications such as key-value stores, the

flow size is usually very small [13, 15]. For example, in

Alibaba’s RDMA-based Elastic Block Storage service,

50% of the total data is contributed by flows with the

size less than 8 KB [27].

Instead of simple packet replication, our method-

ology is converting the timeout retransmission into

out-of-order retransmission. For each flow tail packet,

we add some sentinel packets just after each flow tail

packet. They are named “dummy headers” since they

only contain necessary RDMA headers for transport

without data payload. The dummy packets are still

allocated with PSNs just like other data packets, but

their sizes are small and do not contribute to flow com-

pletion. The risk of timeout is transferred from the

flow tail packet to the dummy headers. Once the flow

tail packet is corrupted, the responder can sense its loss

and generate a NAK through receiving the subsequent

dummy headers with a larger PSN. Besides, the time-

out retransmission of the dummy headers does not af-

fect the completion of the flow. Fig.9 demonstrates how

the dummy headers work with tail packet corruption.

Requester Responder

PSN=1

PSN=2

PSN=3

ACK=1

ACK=2

ePSN=1

ePSN=2

ePSN=3

PSN=3

ACK=3

ePSN=3

ePSN=4

Dummy Header 

PSN=4

NAK=3

Data Packet 

ACK/NAK Packet

Corrupted Packet 

Fig. 9. Optimizing flow tail packet corruption timeout with
dummy headers.

For the dummy headers, we have the following the-

orem.

Theorem 10. For flows going through an L-link

path W with the corruption rate of each link Cl = ω,

the probability of flow tail corruption with N dummy

headers P dummy
tail approximates 0.06NE( 1

S )LβN+1
max ω.

Proof. Similar to the proof in Theorem 5, we have

the approximation P (Ch|Cp) ≈ γ; thus

P dummy
tail = P (TpCpCh1

...ChN
)

= P (Tp|Cp)P (Cp)P (Ch|Cp)N

= Lβω × E
(

1

S

)
γN

≈ 0.06NE
(

1

S

)
LβN+1

max ω. �

For flows on a two-link path (L = 2) that obey

the WebSearch flow distribution (E( 1
S ) = 0.055), using

only one dummy header (N = 1) can decrease P dummy
tail

to 6× 10−7ω.

In contrast, the effectiveness of repeating the flow

tail packet is as follows.

Theorem 11. For flows going through an L-link

path W with the corruption rate of each link Cl = ω,

the probability of flow tail corruption with N replicated

flow tail packets P repeat
tail approximates E( 1

S )LβN+1
max ω.

Proof. The proof is similar to Theorem 10. �
The flow timeout probability using “repeat” is much

higher than that using “dummy headers” with the same
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number of replications (P dummy
tail = 0.06N+1P repeat

tail with

N replications).

Dummy headers and repeating are also effective for

optimizing flow tail ACK corruption. The theoretical

result is similar.

Theorem 12. For flows going through an L-link

path W with the corruption rate of each link Cl = ω, the

probability of flow tail ACK corruption with N dummy

headers P dummy
tail ACK and the probability of flow tail ACK

corruption with N replicated flow tail packets P repeat
tail ACK

both approximate 0.06N+1E( 1
S )LβN+1

max ω.

Proof. The proof is similar to Theorem 10. �
The bandwidth overhead of dummy headers is also

much smaller. The bandwidth overhead of N dummy

headers Bdummy
tail is

E(Bdummy
tail ) = E(

1

S
)× 62N

1 086
≈ 0.06NE(

1

S
).

While the bandwidth overhead of repeating Brepeat is

E(Brepeat
tail ) = E( 1

S )×N ≈ 16E(Bdummy
tail ).

Since the overhead E(Brepeat
tail ) or E(Bdummy

tail ) is added to

each path rather than corrupted paths (E(BNAK) and

E(Btwice) only exist on corrupted paths), the overhead

of flow tail timeout optimization is much bigger than

that of the other two. In the worst case, when the flows

are all consisted of one packet (E( 1
S ) = 1), E(Brepeat)

is 100% of original throughput while E(Bdummy) is only

6% with one dummy header.

5 Implementation

Since the RDMA protocol is commonly offloaded

to non-programmable RNICs, how to implement the

strategies in practice should also be considered. One

option is to implement these strategies on new gener-

ations of RNICs, which is a clean-slate solution but

cannot benefit existing RDMA clusters. Instead, we

involve in-network programmable switches to tune the

data plane of RDMA. P4 [22], as one of the most

popular programmable switch models, has risen wide

interests [28–30], and the products (e.g., Intel Tofino and

Tofino2) have already been in volume production and

deployed in some datacenters.

5.1 Repeating NAK and Corrupted Packets

with P4

We implement a prototype with the optimization of

NAK/retransmission repeating referred in Section 4 in

P4 and deploy it on the Barefoot Tofino programmable

switch. The function of the packet replication can be

implemented with the “Mirror” function in P4. NAKs

are replicated on the ToR switches of the responders

and packet retransmissions on the ToR switches of the

requesters. For replication, NAK packets can be eas-

ily distinguished by parsing the RDMA AETH headers

and verifying the Opcode field.

However, the retransmitted packets cannot be dis-

tinguished according to their packet headers. Instead,

we store the ePSN (i.e., the PSN of the corrupted

packet) carried in NAKs on the ToR switch of the re-

quester and replicate the first packet with this PSN.

The ePSN is deleted after the replication. Since the re-

transmitted packets are bound to following correspond-

ing NAK packets, this design will replicate retransmit-

ted packets of each NAK packet. Since all RDMA

packets (including NAKs) only contains their destina-

tion QP numbers, we cannot associate the packets and

NAKs of the same QP; thus we do not check the QP

number during the replication. The replication might

be wrong when a packet with the same PSN is trans-

mitted during this time. However, since the value space

of the packet sequence number is very large (224), the

probability of the PSN collision is very small. Besides,

a spurious replication does not incur any fatal conse-

quences except for the failure of avoiding timeout.

5.2 Inserting Dummy Headers with RDMA

Zero-Byte Message

Adding dummy headers is more easy to implement

on requesters rather than inside network. The re-

quester RNIC generates and sends several empty pac-

kets if there is no more data to send in the connection

(QP). On the responder side, the empty packets should

be silently processed without generating completion or

passing anything to applications. Acknowledgment and

retransmission for the packets should still proceed for

the compatibility to the current PSN/acknowledgement

mechanism on RNICs.

We can implement an effective simplification of

dummy headers without modifying the RDMA hard-

ware through the “zero-byte message” feature. A re-

quester is allowed to post a send request with zero data

length (called “zero-byte message”) without providing

the remote address for the RDMA operation. When

processing the request, the requester sends a packet

without payload (but still with RDMA protocol headers

and correct PSNs) to the responder and the responder
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will not check the operation address when receiving the

packet. This feature is initially designed to keep in-

active RDMA connections alive, but is exactly proper

to be used for protecting tail drops. The injecting of

dummy headers can be done when posting a batch of

RDMA requests in the RDMA application (RPC li-

brary or RDMA-coupled applications) or detecting the

drained send queue in the RDMA driver. The dummy

requests can be marked as unsignal to avoid generating

corresponding completion signals. Note that there is

also an exception: for each tail RDMA read operation,

some dummy READs should be injected to pull dummy

headers sent by the responder.

Inevitably, implementing dummy headers through

zero-byte message consumes additional CPU cycles and

PCIe operations. In the worst case where each flow

consists of only one RDMA request, for each RDMA

request, N additional operations should be posted by

CPU and processed by RNIC if using N dummy head-

ers. To decrease the additional RDMA operations,

we calculate the time interval ∆t between the current

post time tc and the last post time tl for each QP:

∆t = tc − tl, and only inject dummy headers when

∆t > T . The parameter T should be configured smaller

than the tolerable tail network latency for applications

since the expected transmission completion time with

corruption is approximately T + RTT , where RTT is

the network transmission time of the initial request. For

example, if a KV store application hopes to control net-

work latency in 300 µs and its measured or estimated

network tail latency without corruption (due to con-

gestion) is 100 µs, then T should be configured up to

200 µs.

6 Evaluation

In this section, we evaluate the impact of packet

corruption and our strategies with packet corruption

through experiments from different aspects. Subsec-

tion 6.1 introduces the simulation and testbed we use

in our evaluation. Subsection 6.2 demonstrates the

long tail latency caused by timeout with the flow com-

pletion time (FCT) distribution under different packet

corruption ratios in simulation and the long tail latency

caused by timeout in our testbed. Subsection 6.3 shows

the effects of the optimizations in both simulation and

testbed results and also verifies the theories of proba-

bility in Section 3 and Section 4.

6.1 Experimental Setup

We build a simulator in ns-3 to simulate the

RDMA protocol. We implement a simplified trans-

port layer of the RDMA protocol, including the

support for RDMA WRITE/RDMA SEND operations

with “First”, “Middle”, “Last”, and “Only” value in

BTH headers, PSN/ePSN mechanism and standard

TX/RX state machine dictated in IB specification,

and ACK and NAK mechanisms. Our understand-

ing of PSN and ACK/NAK mechanisms is also verified

through drop tests on our RDMA testbed.

In simulation tests, the topology we use is standard

non-blocking CLOS [31] (k = 4, 16 hosts). Since the

topology is small, a high corruption occurrence rate (ω,

referred in Subsection 3.2) is set to obtain observable

results. In all simulation tests, we assume the corrup-

tion occurs on all links (ω = 1) (except for the links

between hosts and ToR switches, as referred in Subsec-

tion 2.2). Datacenter-scale network simulation takes

a very long time to proceed, which is another topic

in research [32]. In simulation tests, we use WebSearch

and DataMining as the traffic patterns. The arrival of

flows obeys Poission distribution and the parameter of

the Poission distribution is set according to the traffic

load, i.e., a low link utilization (0.1) and a high link

utilization (0.6). There are two kinds of traffic modes

used in simulation: point-to-point and full mesh. In

the point-to-point traffic mode, one requester initiates

RDMA WRITE requests to one responder. In the full-

mesh traffic mode, all nodes in the CLOS topology ini-

tiate RDMA WRITE requests to all the other nodes.

The destination node is randomly picked for each re-

quest. To show the best effect of our optimizations, we

configure the parameter of inserting dummy headers

T = 0 in all tests.

Our evaluation is conducted on a testbed con-

sisting of one Barefoot Wedge 100BF-65X P4 pro-

grammable switch with 6.5 Tbps Barefoot Tofino ASIC

and two server machines. Each server machine has a

24-core CPU (Intel Xeon E5-2650 v4) and a Mellanox

ConnectX-6 RNIC. The packet corruption is simulated

by randomly dropping packets on the switch. The

lossy-RoCE acceleration features on Mellanox RNICs

are disabled by default since the mechanisms are non-

standard enhancements without specification provided

by NIC vendors. The influence of the acceleration fea-

tures is discussed in Subsection 7.1. The benchmark

test is proceeded with the Perftest benchmark tool 1○.

1○https://github.com/linux-rdma/perftest, July 2022.
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For each test case, we conduct 10 000 iterations 1 024 B

RDMA WRITE ping-pong tests and mark down the

average, 99.9th and maximal latency. In each ping-

pong test, the client sends an request to the server, and

then the server echoes an response to the client.

6.2 Impact of Packet Corruption on RDMA
Transport

Simulation Results. To understand the influence

of packet corruption on applications, we evaluate the

FCT with different packet corruption rates in simula-

tion. Fig.10 shows the FCT Cumulative Distribution

Function (CDF) of 10 000 flows in simulation. The dis-

tribution of the flows is WebSearch and the average

load (link utilization) is 10%/60%. We can observe ex-

tremely long latencies and flow CDF distribution dis-

tortion even with a small packet corruption rate (0.001).

With higher link utilization, the distortion of FCT CDF

is more severe.

Testbed Results. We also run 10 000 iterations

1 024 B RDMA WRITE ping-pong test with different

packet corruption rates on our testbed. Fig.11(a) shows

the average, 99.9th, and maximal latency in the test.

The maximal tail latency is more than 266 ms (the

value for retransmission timer) when there is packet

corruption. Besides, the same extremely long 99.9th

tail latency is also observable when the corruption rate

is no less than 1/1 024 (12.7% corrupted links referred

in Subsection 2.2).

The average latency in the test can be used to cal-

culate the number of timeout events and then verify the

theories of probability in Section 3. Since the transmit

depth is 1 (E( 1
S ) = 1), the flow tail timeout probability

is Ptail = 1×βmax×1 = βmax, the flow tail ACK timeout

probability is Ptail ACK = 0.06×1×βmax×1 = 0.06βmax,

the NAK corruption probability is PNAK ≈ 12×βmax×
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Fig.10. CDF of flow completion time with different packet corruption rates (β) and link loads (U). (a) U = 0.1. (b) U = 0.6.
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Fig.11. Ping-pong latency with different corruption rates with/without optimizations. (a) Without optimizations. (b) With the
optimization of 2 dummy headers, 1 NAK replication, and 1 NAKed packet replication.
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0.06βmax × 12 = 0.06β2
max, and the packet corruption

twice probability is Ptwice = 1×β2
max×1 = β2

max. Since

Ptail >> Ptail ACK >> Ptwice >> PNAK, taking the

ping-pong communication mode into consideration, the

timeout probability Ptimeout = 1− (1−Ptail)
2 ≈ 2βmax.

Thus in 100 000 iteration tests, the number of timeout

events is approximately 200 000×βmax with corruption

ratio βmax. For example, the estimated average latency

of 1/128 corruption rate with the probabilistic model

approximates 266 000 µs×200 000×1/128
100 000 ≈ 4×103 µs, while

the average latency is 3.8× 103 in the test.

6.3 Effectiveness of Different Optimizations

Simulation Results. Figs.12 and 13 show the FCT

CDF under different optimizations with varied load (U)

and corruption rate (β) in the point-to-point simula-

tion test. The workloads are WebSearch (Fig.12) and

DataMining (Fig.13). The parameters of default opti-

mization (All) are 2 dummy headers, 1 NAK replica-

tion, and 3 NAKed packet replications. The more ef-

fective parameters of optimization (All Optimized) are

3 dummy headers, 2 NAK replication, and 4 NAKed

packet replications. “NAK”, “Twice”, “Dummy”, and

“Repeat” represent enabling NAK replication, NAKed

packet replication, dummy headers, and replicating flow

tail packet, respectively. “NoLoss” represents that no

packet corruption is configured without optimizations.

“None” represents that none of the optimizations is

enabled. For all the cases, the combination of opti-

mizations (labeled as “All” and “All Optimized” in the

figures) can effectively decrease the flow latency by sev-

eral order of magnitudes. Except the case of high cor-

ruption rate and load (β = 10−3, U = 0.6), the CDF of

flows with all optimizations with the packet loss is very

close to the CDF without packet loss, which shows that

the combination of optimizations is effective for deal-

ing with packet corruption. The more aggressive para-

meters labeled as “All Optimized” (3 dummy headers,

2 NAK replications and 4 NAKed packet replications)

result in smaller FCT compared with the default opti-
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Fig.12. Flow completion time in point-to-point tests with different packet corruption rates (β) and link loads (U), and with flow
distribution WebSearch. (a) β = 10−3, U = 0.1. (b) β = 10−3, U = 0.6. (c) β = 10−4, U = 0.1. (d) β = 10−4, U = 0.6.
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Fig.13. Flow completion time in point-to-point tests with different packet corruption rates (β) and link loads (U), and with flow
distribution DataMining. (a) β = 10−3, U = 0.1. (b) β = 10−3, U = 0.6. (c) β = 10−4, U = 0.1. (d) β = 10−4, U = 0.6.

mization parameters labeled as “All” (2 dummy head-

ers, 1 NAK replication and 3 NAKed packet replica-

tions), which verifies that using more replications can

achieve better performance. Under the high corrup-

tion rate and link load (β = 10−3, U = 0.6), though

the combination of optimizations still can reduce the

FCT by several orders of magnitude, the additional la-

tency compared with no packet loss is still high since

the bandwidth becomes the bottleneck with such a high

corruption rate and link load. Note that the link load

U is calculated according to the data payload of in-

jected requests into the link, where retransmissions in

transport are not counted. The reduction of FCT is

not obvious with any singe kind of optimization, which

indicates that all the kinds of corruption occur in the

test.

Fig. 14 shows the FCT CDF under different opti-

mizations of WebSearch flow distribution with varied

loads (U) and corruption rates (β) in the full-mesh sim-

ulation test. In the full-mesh test, as we referred, each

client node sends requests to all the other servers nodes.

Similar to the point-to-point test results, in the full-

mesh test, the FCT CDF with all optimizations (All)

is close to the CDF without packet loss (NoLoss).

Testbed Results. Fig. 11(b) shows the average,

99.9th, and maximal latency with optimizations in

10 000 iterations 1 024 B RDMA WRITE ping-pong

tests with different packet corruption rates on our

testbed. The parameters are 2 dummy headers, 1 NAK

replication and 1 NAKed packet replication. The max-

imal latency is less than 10 µs in the test, which in-

dicates that no timeout event occurs. Here we choose

to use 2 dummy headers rather than 1 since the time-

out probability with 1 dummy header with βmax = 1
128

is Ptimeout ≈ 2P dummy
tail ≈ 2 × 0.06NE( 1

S )LβN+1
max ω =

2 × 0.06 × 1 × 1 × ( 1
128 )2 × 1 = 7 × 10−6. The

timeout event may be observed with 100 000 iterations

tests since the mathematical expectation of the num-

ber of timeout events is 100 000 × 7 × 10−6 = 0.7,

while the timeout probability with 2 dummy head-

ers Ptimeout ≈ 2P dummy
tail ≈ 2 × 0.06NE( 1

S )LβN+1
max ω =

2 × 0.062 × 1 × 1 × ( 1
128 )3 × 1 = 3 × 10−9. The time-
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out probability of NAK corruption with 1 NAK repli-

cation is Ptimeout ≈ 2P repeat
NAK ≈ 2 × L2βmaxδ

Nω2 =

2× 12× 1
128 × (0.06× 1

128 )2× 12 = 3× 10−9. The time-

out probability of packet twice corruption timeout with

one NAKed packet replication is Ptimeout ≈ 2P repeat
twice ≈

2LβN+1
max ω = 2× 1× ( 1

128 )3 × 1 = 9× 10−7. These two

timeout possibilities are less than 10−6 (0.1 times in

100 000 iterations of tests) and should not be observed

in 100 000 iteration tests.

To verify that each optimization works, we run the

same test “without” each optimization mechanism with

packet corruption ratio βmax = 1
128 . Fig. 14 shows

the average, 99.9th, and maximal flow latency with

0 or 1 dummy header, without NAK replication or

NAKed packet replication. The timeout probability

with 0 and 1 dummy header is Ptimeout ≈ 2Ptail = 1/64

and Ptimeout ≈ 2P dummy
tail ≈ 7 × 10−6 respectively.

Without NAK replication, the timeout probability is

Ptimeout ≈ 2PNAK ≈ 2×0.06×( 1
128 )2 ≈ 7×10−5. With-

out NAK packet replication, the timeout probability is

Ptimeout ≈ 2Ptwice ≈ 2 × ( 1
128 )2 ≈ 1.2 × 10−4. Thus in

our test of 100 000 iterations, the expectation of times

of different kinds of timeout is 1 562 (without dummy

headers), 0.7 (with 1 dummy), 7 (without twice repeat)

and 12 (without NAK repeat) respectively, and the ave-

rage latency increment should approximate 4× 104 µs,

3×100 µs, 2×101 µs, and 3×101 µs respectively, which

match the results of our tests in Fig.15.

7 Discussion

7.1 Lossy RDMA Compatibility

In order to avoid the problems incurred by PFC such

as victim flow [16] and deadlock [1], some researchers and

RNIC vendors [19] try to adapt and deploy RDMA in a

lossy environment without PFC. For new generations

of RNICs, e.g., the Mellanox ConnectX-6 RNIC, selec-

tive repeat is supported to replace the Go-back-to-N

retransmission mechanism dictated in IB (Infiniband)

specifications. The impact of repeating NAK and NAK

packets depends on the specific implementation of re-

transmission.
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Fig.15. Ping-pong latencies with different corruption rates with
different optimizations. The default optimization parameters are
2 dummy headers, and 1 NAK/NAKed packet (twice) replication.
“−X” means the X mechanism is disabled.

Besides, Mellanox ConnectX RNICs implement a

series of lossy features called lossy-RoCE accelerations.

The lossy-RoCE accelerations include optimizations on

transport such as adaptive retransmission, limited send

window, and optimizations on congestion control such

as slow restart. The difference between corruption loss

in the lossless network and congestion loss in the lossy

network is that the latter should experience flow rate

reduction while the former should not. Thus the NAKs

caused by corruption may incur spurious flow rate re-

duction. The optimizations in Section 4 may exacerbate

this mistake since they repeat NAKs. Thus, we repeat

the ping-pong tests in Subsection 6.2 and Subsection 6.3

with enabling and disabling lossy-RoCE accelerations,

and the results show that there is no difference between

the flow latencies when enabling and disabling lossy-

RoCE accelerations.

While, the “dummy headers” mechanism designed

for protecting tail packet loss does not have such po-

tential side effects in the lossy RDMA network. How-

ever, we suggest that the feature should be finally im-

plemented into the RNIC hardware by NIC vendors to

reduce CPU and PCIe overhead of the software imple-

mentation.

7.2 Cooperation with Corruption Repair
Systems

Some datacenter operators may deploy network

monitoring systems [2, 17] based on packet loss (NAK)

or timeout events. The monitoring systems are used to

fast locate the malfunctioning link/device for the net-

work operator. Using optimizations for packet corrup-

tion may interfere these applications since the numbers

of NAK and timeout events are changed. Some emer-

gency measures such as breakdown switch isolation and

path switching [2] might be interfered. The network

monitoring systems should be adapted when coexisting

with loss optimizations. However, since we do not elim-

inate the NAK, the existing monitoring system should

always be able to locate the problem. P4-based net-

work monitoring systems can be designed and deployed

together with these optimizations.

8 Related Work

Zhu et al. discussed the influence of packet loss on

goodput in RDMA [16]. Most of RDMA applications are

also latency-sensitive applications; thus the long tail la-

tency caused by packet loss deserves attention and dis-

cussions. Besides, a low packet loss rate (e.g., less than

10−3) incurs limited goodput loss, but can result in

an extremely high tail latency through timeout events.

Guo et al. discussed the transport livelock problem

in RDMA caused by organized packet drop (e.g., one

packet drop every 256 packets) [1]. Packet corruption

we discuss in the paper is random and irregular, which

may not cause livelock commonly.

Similar to Zhu et al. [16], Wang et al. [20] also dis-

cussed the throughput loss caused by packet loss in

the RDMA network and brought up remedial mecha-

nisms such as checking ePSN and sending twice (i.e.,

repeating in Subsection 4.3) while they did not dis-

cuss the more important flow latency either. Unfor-

tunately, they misunderstood the mechanism of NAK.

The “NAK interval” does not exist on real RNICs.

We have verified on Mellanox RNICs that if the NAK

is dropped, the retransmission timeout is always trig-

gered on the requester, just as the protocol specifica-

tion dictates. Besides, without a probabilistic model

and consideration for the size difference of packets and

ACK/NAKs, the occurrence frequencies of causes of

timeout are misestimated. Both checking ePSN and

sending twice are not currently deployable since RNICs

have to be modified. We have shown in Subsection 3.5

and Subsection 6.3 that our optimizations are more pre-

cise with lower overhead compared with sending twice

in Wang et al.’s work [20].

9 Conclusions

The paper investigates the packet corruption in

RDMA network. Unlike previous work, we treated
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the corruption as a quantifiable and controllable phe-

nomenon. Based on the conclusions of previous work,

we built a probabilistic model on packet corruption and

analyzed all kinds of corruption that may cause time-

out. With these analyses, datacenter operators may

have some clues of the annoying “slow IOs” (applica-

tion requests with extremely long latency) [2] caused by

corrupted links. RDMA NIC vendors can also take such

features into consideration when designing new RNICs.

Besides, we also provided an example of switch-based

solutions with P4 switches, which may be inspiring for

related researchers. Finally, our optimizations, espe-

cially the “dummy headers” in software, can be di-

rectly applied with little software modification in cur-

rent RDMA systems in industry.
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[6] Dragojević A, Narayanan D, Hodson O, Castro M. FaRM:

Fast remote memory. In Proc. the 11th USENIX Confe-

rence on Networked Systems Design and Implementation,

April 2014, pp.401-414.

[7] Wei X, Shi J, Chen Y, Chen R, Chen H. Fast in-memory

transaction processing using RDMA and HTM. In Proc. the

25th Symposium on Operating Systems Principles, October

2015, pp.87-104. DOI: 10.1145/2815400.2815419.

[8] Chen Y, Wei X, Shi J, Chen R, Chen H. Fast and general

distributed transactions using RDMA and HTM. In Proc.

the 11th European Conference on Computer Systems, April

2016, Article No. 26. DOI: 10.1145/2901318.2901349.

[9] Yang J, Izraelevitz J, Swanson S. Orion: A distributed file

system for non-volatile main memories and RDMA-capable

networks. In Proc. the 17th USENIX Conference on File

and Storage Technologies, February 2019, pp.221-234.

[10] Kim J, Jang I, Reda W, Im J, Canini M, Kostić D,
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