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Abstract—With the development of applications on end devices, such as cell phones and tablets, more and more passengers would

like to have entertainment on these end devices when they are cruising on vehicles. Due to the limited computation ability of the end

devices, some of these applications have back-end components on the edge clouds, which are realized by Service Entities (SEs). In

this work, we propose a system named DSEP to Dynamically determine the SE Placement, such that the maximum latency

experienced by the passengers can be minimized. To this end, we first train two sequential neural networks to predict the position of

each individual vehicle, and propose an efficient algorithm based on optimization relaxation and Lagrange decomposition to determine

the SE placement. Through extensive real-data driven simulations, we find that with the two sequential neural networks proposed in

this paper, there are less than 1 percent errors on estimating where the passengers will access the edge cloud system. When the

computation resources in the edge cloud are limited, DSEP can reduce the response latency by up to 43 percent compared with the

nearest placement scheme. Even averaging the performance improvement over all simulation settings, DSEP can reduce the response

latency by 16 percent.

Index Terms—Transportation systems, vehicle position forecasting, service entity placement

Ç

1 INTRODUCTION

WITH the development of end devices, such as cell
phone, tablet, etc., people can run various of appli-

cations on them. With these applications, people can
watch movies, listen music and play games when they
are traveling on vehicle as passengers. Some of these
applications are computation intensive, and hence, they
consist of front-end components running on the end
devices, and back-end components running on the
Cloud [1], [2], where the Service Entities (SEs) are hosted
to provide additional computation capabilities.

Running back-end components on remote cloud introdu-
ces large communication overhead, which hurts the perfor-
mance of delay sensitive applications, such Virtual Reality
(VR) and Augmented Reality (AR). To solve this problem,
some of the researchers proposed the concept of Mobile
Edge Cloud (MEC). The key idea of MEC is to move compu-
tation closer to users. In MEC, small servers or data-centers
that can host cloud applications are distributed across the
network and connected directly to Access Points (APs),
such as cellular base stations, at the network edge. With this

method, the users can put their back-end components or
outsource their applications to the edge clouds, such that
the communication overhead can be reduced, thus improv-
ing the user experience.

The idea of distributing cloud servers at the network
edge is also leveraged by cloudlets [3], edge computing [4]
and fog computing [5], etc. In all these techniques, edge
servers are collaborating with each other to provide services
to the end users. A significant characteristic of MECs is that
the edge clouds are not as powerful as conventional clouds,
and hence they cannot provide enough dedicated computa-
tion resources to the SEs. The number of SEs placed on the
same edge cloud may greatly impact the computation
latency. On the other hand, always pursuing the load bal-
ance to reduce the computation latency may increase the
communication overhead. Accordingly, how to place the
SEs among the edge clouds is a big challenge in the edge
cloud systems.

Another characteristic of MEC is to support the user
mobility. When a user moves from the area covered by an
AP to another, the edge cloud hosting his/her SE should
be corresponding changed, i.e., the SE should be migrated
from one edge cloud to another. Previous works mainly
focus on 1-D movement [6], which is not the case when
the users are cruising in transportation systems as passen-
gers. In addition, the vehicles are moving much faster than
the conventional walking users. Accordingly, we should
predict the vehicle position in the near future to guide the
SE migration, rather than starting the SE migration until
the users reach the border of the area covered by their
current APs. This brings more challenges to determine the
SE placement and migration for the passengers in transpor-
tation system.
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In this work, we design a system named DSEP to
Dynamically determine the SE Placement for latency sensi-
tive applications in transportation systems when the pas-
sengers are cruising on vehicles. The objective is to
minimize the maximum response latency experienced by
arbitrary passengers, which can provide the worst case per-
formance guarantee to the entire system. To pursue this
objective, we first train two sequential neural networks; the
first one is a revised convolutional neural network hosted
by the remote powerful cloud to forecast the traffic velocity,
while the second one is a traditional full connected neural
network hosted by each vehicle to estimate the velocity of
itself in the near future. Combined with the vehicle route
information, we can predict the position of each vehicle.
Based on this vehicle position prediction, a joint optimiza-
tion model is formulated to calculate the SE placement.
Since the SE placement is NP-hard and difficult to solve in a
timely manner, an efficient algorithm based on relaxation
and Lagrange decomposition is proposed. Through exten-
sive real-data driven simulations, we find that for the pas-
sengers on more than 99 percent of the vehicles, DSEP can
estimate exactly the APs from which they will access the
edge cloud system. For the latency issue, averaging over all
the simulation settings, DSEP can reduce the maximum
response latency by 16 percent compared with the nearest
placement scheme. In the scenario where the edge clouds
have limited computation resources, DSEP can reduce the
maximum response latency by up to 43 percent.

The main technique contributions of our work can be
summarized as follows:

� A system named DSEP to dynamically determine the
SE placement for latency sensitive application in
transportation systems (Section 3)

� Two sequential neural networks to predict the vehi-
cle position (Section 4)

� An efficient algorithm to calculate the SE placement
based on the vehicle position prediction (Section 5)

� Extensive real-data driven simulations to show the
effectiveness of DSEP (Section 6)

2 RELATED WORK

There are a number of related works on vehicle position
forecast and SE placement. We review the most closely
related ones.

Vehicle Position Forecast. Traffic forecasting in transporta-
tion systems is a topic that has been studied for several dec-
ades. Most of the works on traffic forecasting is to predict
the traffic congestion [7], [8], [9] or traffic flow [10], [11], [12],
i.e., the number of vehicles passing through a given road
segment during a unit of time, rather than the exact individ-
ual vehicle position which is required in our work. With the
traffic congestion or flow information, it is difficult to get
the vehicle position. However, if we know the position of
every vehicle, we can forecast the traffic congestion and
flow condition in the near future. Another category of work
related to our work is the traffic speed/velocity forecast-
ing [13], [14]. These works focused on the group velocity of
vehicles on the road, rather than the velocity of each indi-
vidual vehicle as in our work.

SE Placement. It can be treated as job scheduling in an
edge cloud system to determine the SE placement. In this
area, there are a lot of existing works. OnDisc [15] is a sys-
tem to dispatch and schedule the jobs in edge clouds and
minimize the weighted response time. The objective is simi-
lar to our work, but it does not allow the SE migration
among edge clouds. ITEM [16] studies how to allocate the
SEs among the edge clouds such that a series of costs, such
as activation cost, placement cost, etc., can be minimized.
[17] proposes a system to allocate the resources in edge
cloud systems without the user mobility information. How-
ever, this is not suitable to the transportation system as we
can accurately forecast the vehicle position in the near
future. In addition, [18] and [19] focus on the service migra-
tion in edge cloud systems. Both of them are based on sto-
chastic model, and loss the optimization space when the
user movement can be forecast as in transportation systems.

3 PROBLEM DEFINITION

In this section, we define the problem we are to study in
this work. At first, we present the system model investi-
gated in Section 3.1. Then, we discuss the latency cost we
should consider in Section 3.2. At last, we state the prob-
lems to solve in our work and present an overview of
DSEP in Section 3.3.

3.1 System Model

We consider a metropolitan-area transportation system. In
this system, there are a set of edge clouds dispersed along
the road. Each edge cloud is accompanied by an Access
Point (AP), which can be a base station and allows the user
to connect to the platform.

Along the road, there are sensors installed to measure the
vehicle velocity and count the number of vehicles passing
through. These data will be collected and sent to a remote
cloud for further analysis. The analysis results can be pulled
by the vehicles on the road. In addition, each vehicle can
measure the velocity of other vehicles on its road through
the Vehicle-to-Vehicle (V2V) communication. Furthermore,
we also assume that the route of each vehicle is fixed in the
near future. The route of vehicles may change due to some
unpredictable factors, such as traffic congestion, however,
the route in the near future, such as 5 to 10 minutes, can be
treated as fixed.

On the vehicles, passengers are running applications
like Virtual Reality (VR) and Augmented Reality (AR).
Since these applications are resource-hungry and delay-
sensitive, they should outsource their back-end compo-
nents to the edge cloud system. To host these back-end
components, Service Entities (SE) are set up on the edge
cloud to record the users personal data and the processing
logics on the data, take care of the user state and computa-
tion-intensive tasks such as scene rendering, object recogni-
tion and tracking. For simplicity, we say an SE is placed on
an AP instead of it is placed on the edge cloud accompa-
nied by the AP hereafter.

Passengers (in fact, their end devices) always connect to
the nearest AP, and hence, we assume all the passengers
on the same vehicle are connecting to the sameAP.However,
the SEs for their applications may not be placed on the AP
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they are connecting to. For example, when the vehicle is
cruising on the road, the passengers may connect to an AP
far from the one that is originally hosting their SEs. In this
case, there will be larger latency to transmit the data. To
ensure the highQuality of Services (QoS), we should dynam-
ically migrate the SEs among the edge clouds. In addition,
this SEmigration should be done in advance in order to keep
the continuous services, rather than start migration when an
application suffers from high latency.

The resources in the edge clouds are virtualized using
container-based technologies, and hence they can be allo-
cated and shared flexibly. When a container hosts multiple
SEs, the docker engine schedules the resources to execute
these SEs based on round-robin. Based on these facts, a
remote powerful cloud centrally plans the SE placement
such that the maximum latency experienced by arbitrary
passenger can be minimized.

There are two terms, vehicle velocity and traffic velocity,
should be defined. Vehicle velocity is the velocity of an indi-
vidual vehicle, while traffic velocity is the group velocity of
all the vehicles on a given road segment. The traffic velocity
can be calculated as the average vehicle velocity on such
road segment. Apparently, the vehicle velocity is tightly
coupled with the traffic velocity.

3.2 Latency Models

To allocate back-end component on edge clouds, an applica-
tion would suffer from two types of latency: data transmis-
sion latency and computation latency.

Transmission Latency: When the SE of an application is
not placed on the edge cloud accompanying with the AP
that the corresponding passenger connects to, the applica-
tion data should be delivered among APs, which incurs
transmission latency. The transmission latency increases
with the distance on the topology between the AP from
which the passenger accesses the edge cloud system and
the AP on which the SE of his/her application is
placed [20]. Say dij is the distance, i.e., hop number,
between the AP i and AP j, aui is a binary parameter to
denote if passenger u connects to AP i, and yui 2 f0; 1g
denotes if the SE for passenger u’s application is placed at
the edge cloud accompanying with AP j, the transmission
delay for passenger u’s application is

Tu ¼
X
i;j

aui dijy
u
j : (1)

Computation Latency. Since the edge clouds are not inten-
tionally designed for large-scale resource multiplexing, and
performance isolation is typically difficult with light-weight
virtualization, the SEs allocated on the same edge cloud
should compete for the computation resources [16]. When
multiple SEs are placed on the same CPU core, they will be
scheduled based on round-robin, and thus, the stretch on
execution time. If there are K SEs allocated on a specific
CPU core, the execution time can be modeled as aK þ b,
where a and b are CPU specific parameters. Smaller a indi-
cates a more powerful edge cloud. If all the SEs in an edge
cloud are properly distributed among all the CPU cores, the
computation latency on the edge cloud connecting with AP
i can be formulated as

Ci ¼ aimi þ bi; (2)

where ai and bi are edge cloud specific parameters, and mi

is the number of SEs placed on edge cloud i.
It is worth noting that in DSEP, the SEs would migrate

among edge clouds when the vehicles are cruising on the
road. Accordingly, there should be migration delay experi-
enced by the passengers. However, in DSEP, this migration is
executed in advance based on the vehicle position forecasting.
Therefore, the SE migration latency experienced by the pas-
sengers is only the time to invoke the SE instance on the edge
cloud with container technology. Such latency is usually hun-
dreds ofmicrosecond, and hence can be ignored.

3.3 Problem Statement and Nutshell of DSEP

In DSEP, the time horizon is divided into time slots. At any
time slot, DSEP should determine the placement of SE for
every application in the next time slot such that the maxi-
mum application latency experienced by arbitrary passen-
ger can be minimized. To achieve this goal, DSEP should
first forecast the vehicle positions in the next time slot. There
is a simple way to forecast the vehicle position. Say the vehi-
cle position at time slot s is xs and the velocity is vs, then we
simply forecast the vehicle position in next time slot as
xsþ1 ¼ xs þ vsDt. This method works in small cities with
light traffic load and few traffic lights. However, in a metro-
politan city, such as New York city, this method does not
work, since there are plenty of blocks, and the vehicle veloc-
ity is greatly impacted by other vehicles and traffic lights on
the road.

To solve this problem, DSEP divides the entire area cov-
ered by the edge cloud system into a grid of squares, and
then adopts two sequential Neural Networks (NN) to fore-
cast the vehicle velocity in each square. The first NN fore-
casts the traffic velocity in every square based on the
traffic and environment conditions in the nearby squares.
This NN is hosted by a remote powerful cloud since it
needs the traffic information of the entire area. In addition,
it is a large computation task to forecast the traffic velocity
of all the squares.

Based on the traffic velocity prediction derived by the
NN hosted remote powerful cloud, every vehicle maintains
a local NN to forecast its vehicle velocity. Such NN should

Fig. 1. System model.
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be maintained by each vehicle itself since the vehicle veloc-
ity depends on many individual information, such as vehi-
cle type, driver’s behavior, etc. In addition, this NN only
needs to predict the vehicle velocity in a very few number
of squares along its route. Accordingly, it can be done by a
device with very few computation resources, such as on the
GPS device carried by the vehicle.

With the route and velocity forecast of each vehicle, the
position of each vehicle in the next time slot can be estimated.
Then, a vehicle will push following information to the remote
powerful cloud: 1) its position estimation in the next time slot;
2) the SE identifications of all its passenger’s applications.
When collecting all these information from vehicles in the
area served by the edge cloud system, the remote powerful
cloud calculates the new SE placement, and starts the SE
migration in order to provide low latency services.

According to above discussions, the workflow of DSEP
can be summarized in Fig. 2. With the history traffic data,
the remote powerful cloud trains an NN, which will be
used to forecast the traffic velocity based on the latest traffic
information. Meanwhile, each vehicle trains a local NN
that can predict its vehicle velocity according to the traffic
velocity and environment information. Based on the traffic
velocity derived by the remote powerful cloud and the envi-
ronment information sensed by the vehicle itself or through
the V2V communication, the local NN hosted by each vehi-
cle can estimate its own velocity in the near future. Combin-
ing with its route information, it can estimate the vehicle
position in the next time slot. This position information will
be pushed to the remote powerful cloud with the applica-
tion information. Then, the remote powerful cloud opti-
mizes the SE placement for the next time slot and invokes
the SE migration procedure.

In the following two sections, we will discuss how to
forecast the vehicle position and how to optimize the SE
placement in detail, respectively.

4 VEHICLE POSITION PREDICTION

As we discussed in last section, there are two main parts in
DSEP: vehicle position prediction and SE placement. At first,
we present how to predict the vehicle position in this section.

In DSEP, two sequential Neural Network (NN) is lever-
aged to predict the vehicle position. The first one is a revised

Convolutional Neural Network (CNN) hosted by the
remote powerful cloud to predict the traffic velocity, we
call it Remote Neural Network (RNN), while the second
one is a conventional full mesh neural network hosted
by each vehicle itself, we call it Local Neural Network
(LNN). In the following, we present how to design these
two NNs in detail.

4.1 Neural Network on Remote Powerful Cloud

Structure of Remote Neural Network. On the remote powerful
cloud, a revised CNN as shown in Fig. 3 is hosted as the RNN
to predict the traffic velocity. It should be noted that the struc-
ture of the RNN is different from the conventional CNN.

In RNN, there are two categories of information that
should be input into the convolutional layer, the traffic load
information and the traffic velocity information. Different
from conventional CNN in which the convolutional kernels
(a.k.a filter or feature detector) are used to deal with all the
input data, the traffic load information and the traffic veloc-
ity information have their own convolutional kernels,
respectively. We make such change due to two reasons: 1)
the kernels are used to distill the characteristics of the input
data, and different kernels should catch different character-
istics of the input data. The traffic load and the traffic veloc-
ity are two categories of information and hence have their
specific characteristics; hereby we train different convolu-
tional kernels for them; 2) since each convolutional kernel
does not connect to all the input data, the computation com-
plexity to train the RNN can be reduced.

The other difference between conventional CNN and the
RNN is that in the full connected layer, more data, such as
the weather, the time and some identifier to indicate if there
is an event nearby, etc., are input into the RNN. We do not
input these information into the convolutional layer because
they are independent to each other, and hence, we do not
need kernels to distill the interrelationship among them.
Again, this is to reduce the computation complexity of train-
ing the RNN.

Similar to most of the conventional CNN, in the sub-
sampling layer (a.k.a. spatial pooling step), RNN adopts the
function MAX to reduce the dimensionality of each feature
map but retain the most important information. This is only
a choice based on experience. We have tried multiple func-
tions, such and MIN, AVERAGE etc., and found that the
MAX function can derive the best results.

Fig. 2. Overview of DSEP.

Fig. 3. Structure of remote neural network.
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Input of Remote Neural Network. To capture the traffic
information (both of the traffic load and the traffic velocity)
of each time slot, we first divide the entire area covered by
the edge cloud system into a grid of squares as in Fig. 4a
(the size of the squares will be discussed based on simula-
tions in Section 6.3). Then, we can calculate the number of
vehicles appear in each square in each time slot, which is
the traffic load information input into the RNN. In the
meanwhile, the vehicle velocity when it passes through
each square is also recorded. By averaging the velocity of all
the vehicles passing through each square in each time slot,
we can derive the traffic velocity information. A sample of
the traffic velocity input is shown in Fig. 4b.

An alternative and more intuitive method to divide the
area covered by the edge cloud system is to perform the
division along the road line. However, it is not necessary in
our work, since the convolutional kernels can distill the
road line information. Also, using squares with dynamic
size may also improve the prediction performance. As we
will see in Section 6.3, dividing the area with the same-size
square can achieve a good performance. Accordingly, we
do not adopt the dynamic size squares which would
increase the problem complexity.

Output of Remote Neural Network. The ideal output of
RNN is the exact traffic velocity in each square. However,
through extensive experiments, we found that such model-
ing method cannot achieve a good performance. Consider
we only need to estimate from which AP that a vehicle will
access the edge cloud system, rather than the exact position,
alternatively, we quantize the traffic velocity. For example,
say the maximum velocity in an area is 50 mph, we can
quantize the vehicle velocity every 5 mph. Then, we can
leverage the quantized traffic velocity in Fig. 4c to denote
the traffic velocity shown in Fig. 4b. With such limited num-
ber of possible outputs for each square (say there are N pos-
sible outputs), we leverage N-bit binary value to encode the
quantized traffic velocity and set up N output perceptrons
for each square. The kth perceptron for a specific square
outputs the likelihood that the traffic velocity in this square
is from 5ðk� 1Þmph to 5kmph.

Based on above discussions, leveraging the traffic and
environment information in each time slot t, and the quan-
tized traffic velocity information in time slot tþ Dt, we can
train the RNN to forecast the traffic velocity of each square
in Dt time slots later.

4.2 Neural Network on Local Vehicles

The neural network on each local vehicle, i.e., LNN, is a con-
ventional multi-stage full-connected neural network. The
input of this LNN is the output of RNN, the velocity of the
host vehicle and some of the vehicles nearby, the identifier

to indicate the vehicle route, and other environment infor-
mation that is also used by the RNN. The LNN should be
maintained by each vehicle itself since the vehicle velocity
depends on much individual information, such as vehicle
type, the driver’s behavior, etc.

The only issue that needs more discussions is how to
generate the training data to integrate the route and vehicle
velocity. At first, We estimate how many squares a vehicle
may traverse in a time slot. Suppose this value is S, we
should input identifiers of the next S squares along the vehi-
cle route, and use the velocity of this vehicle in these
squares as the desired output. For example, a vehicle can
traverse at most 3 squares in a time slot, and the next 3
squares on vehicle V ’s route are squares 1, 2 and 3. In this
case, the identifiers of squares 1, 2 and 3 should be used as
part of the input to train the LNN. In the meanwhile, the
vehicle velocity in these three squares in the following time
slot is used as the output in the training sample. If vehicle V
does not arrive in square 3 in the following time slot, the
desired vehicle velocity in square 3 is 0.

During the training phase, the real traffic velocity is
used to train the LNN. However, in the inference phase,
each LNN first pulls the traffic velocity forecast output
from the RNN, and set it as part of its input. The output of
an LNN is also the quantized vehicle velocity as in RNN.
We use the median value of the output velocity interval to
estimate the vehicle position. For example, if an LNN indi-
cates its quantized vehicle velocity in an area is between
40 mph and 45 mph, we use 42.5 mph to calculate the vehi-
cle position prediction.

It is worth noting that by putting more output percep-
trons in to RNN, it can be used to forecast the traffic velocity
in multiple time slots later. With this forecast, LNN can pro-
vide a longer-term vehicle velocity and position prediction.

4.3 Discussions

Communication Cost. The communication cost in DSEP con-
tains three parts: RNN collects the traffic load and velocity
from each square, vehicles pull the traffic velocity forecast-
ing from the RNN, and the local V2V communication to
detect the velocity of nearby vehicles. Say there are K
squares covered by the edge cloud system, and we need B
bytes to encode the traffic information in each square, the
RNN should collect KB bytes data in each time slot. Usu-
ally, we only need several bytes to encode the traffic infor-
mation in a square; even if there are millions of squares in
the area covered by the edge cloud system, the RNN needs
to collect several millions of bytes data for the traffic veloc-
ity forecasting.

To pull the traffic velocity information from the RNN, the
data amount received by each vehicle should be less than
the amount received by RNN for traffic velocity forecasting,
since the output of RNN is quantized and can be encoded
with fewer bits. To reduce the amount of data sent by the
remote powerful cloud, the traffic velocity forecasting
results can be first pushed to the edge cloud, and each vehi-
cle pulls these forecasting results from the edge cloud.

In addition, the V2V communication cost should be
much less than that to pull the traffic velocity forecasting
from RNN. Since each vehicle only asks for velocity data
from several nearby vehicles, such communication cost

Fig. 4. How to generate traffic information.
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should be on the dozens of bytes level. Accordingly, DSEP
suffers from very light communication cost.

LNN for New Vehicles. Since the LNN may capture the
characteristics of drivers’ behaviors, the LNN on a new
vehicle may not work. To provide a compensation for this,
each company can train an initial LNN for each brand of
vehicle. When the driver sells the vehicle or move to another
place, he/she can reset the LNN and train it with new driv-
ing data.

Migration Cost. There is cost to migrate the SEs among the
edge clouds. If we migrate the SEs too frequently, it would
incur too much communication cost and even result in net-
work congestion at the network edge. Consider the migra-
tion procedure is only invoked once in each time slot, we
can control the migration cost by properly set the duration
of one time slot.

5 SERVICE ENTITY PLACEMENT

In last section, we discussed how to forecast the vehicle
position. Based on the vehicle position forecast, we can
dynamically adjust the SE placement to improve the appli-
cation latency experienced by the passengers. In this sec-
tion, we first formulate the problem to minimize the largest
latency experienced by passengers through SE placement
and analyze the problem complexity in Section 5.1. Since
the SE placement problem is NP-hard, we propose an effi-
cient algorithm to solve it in Section 5.2.

5.1 Problem Formulation and Analysis

To minimize the largest latency experienced by arbitrary
passenger in a specific time slot through SE placement, we
can formulate following SE Placement Problem (SEPP):

minimize T: (3)

Subject to:X
i;j

aui dijy
u
j þ

X
j

yuj ðajmj þ bjÞ � T; 8u (3a)

X
j

yuj ¼ 1; 8u (3b)

X
u

yuj ¼ mj 8j (3c)

yuj 2 f0; 1g; 8j; u: (3d)

In this formulation, aui is a binary parameter to indicate
if passenger u will access the edge cloud system through
AP i, which can be derived based on the position forecast
in last section; dij is the distance between AP i and AP j
on the topology; and yuj is the decision variable to indicate
if the SE of passenger u is placed on the edge cloud con-
necting with AP j. The objective of SEPP is to minimize
the maximum latency experienced by arbitrary passenger,
T . The constraint (3a) says the latency experienced by
every passenger u should be less than the maximum
latency. On the left hand of this constraint, the first term is
the data transmission delay which is associated with the

distance on the topology, while the second term is the com-
putation latency which is determined by mj, i.e., the num-
ber of SEs that are placed on the same edge cloud.
Constraint (3b) indicates that the SE of every passengers
should be placed in one and only one edge cloud.
Constraint (3c) is used to calculate the number of SEs
placed on each edge cloud.

Due to the binary variable yuj in this formulation, the
SEPP model may be difficult to solve directly. Accordingly,
we first study the complexity of SEPP. To this end, we only
consider a special case of SEPP, i.e., dij ¼ 0 and bj ¼ 0. In
this case, the SEPP can be modified as

minimize T (4)

Subject to: X
j

ajy
u
j

X
v

yvj � T; 8u (4a)

X
j

yuj ¼ 1; 8u (4b)

yuj 2 f0; 1g; 8j; u: (4c)

Theorem 1. The special case of SEPP (4) is equivalent to follow-
ing unrelated machine scheduling problem

minimize T: (5)

Subject to: X
u

ajy
u
j � T; 8j (5a)

X
j

yuj ¼ 1; 8u (5b)

yuj 2 f0; 1g; 8j; u: (5c)

Proof. To prove this theorem, we should show constraint (4a)
is equivalent to constraint (5a).

At first, if we have
P

u ajy
u
j � T ,

X
j

ajy
u
j

X
v

yvj ¼
X
j

yuj
X
v

ajy
v
j

 !
� T

X
j

yuj ¼ T:

Contrarily, if we have
P

j ajy
u
j

P
v y

v
j � T for any u,

suppose there is some j� such that
P

u aj�yuj� > T > 0, to
ensure

X
j

ajy
u
j

X
v

yvj ¼
X
j

yuj
X
v

ajy
v
j

 !
� T:

there must be

yuj� ¼ 0 8u:
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It means

X
u

aj�y
u
j� ¼ aj�

X
u

yuj� ¼ 0;

which contradicts to our assumption. Accordingly, there
must be

P
u aj�yuj� � T . tu

Since a special case of SEPP is equivalent to unrelated
machine scheduling problem, which is NP-hard [21], we
have following theorem:

Theorem 2. SEPP is NP-hard.

Due to the hardness of SEPP, we need an efficient heuris-
tic to solve it.

5.2 Algorithm Details

Since there are two types of latency in SEPP, i.e., the data
transmission latency and the computation latency, we can
consider to decompose the SEPP into two subproblems and
optimize them separately. To this end, we observe that
constraint (3a) is the only constraint that couples these two
types of latency. Therefore, we reformulate it as

X
i;j

aui dijy
u
j þ

X
j

yuj ðajmj þ bjÞ

¼
X
j

X
i

aui dij þ bj

 !
yuj þ

X
j

yujajmj:

If we associate the first term to T1, while the second term to
T2, and introduce another variable zuj ¼ yuj to substitute the
yuj in the second term, SEPP can be reformed as

minimize T1 þ T2: (6)

Subject to:

X
j

X
i

aui dij þ bj

 !
yuj � T1 8u (6a)

X
j

yujaj

X
u

zuj � T2; 8u (6b)

X
j

yuj ¼ 1; 8u (6c)

yuj ¼ zuj ; 8j; u (6d)

yuj 2 f0; 1g; 8j; u: (6e)

It should be noted that in (6b), we replace mj by
P

u z
u
j

due to (3c). By relaxing constraint (6d) with Lagrange multi-
plexer �� ¼ f�u

j g, we obtain

minimize T1 þ T2 þ
X
j;u

�u
j ðyuj � zuj Þ: (7)

Subject to:

ð6aÞ; ð6bÞ; ð6cÞ; ð6dÞX
j

zuj ¼ 1; 8u ð7c0Þ

zuj 2 f0; 1g; 8j; u: ð7e0Þ

Then, (7) can be decomposed into two subproblems. One
is associated with the data transmission, named SEPP-T:

L1ð��Þ ¼ minimize T1 þ
X
j;u

�u
j y

u
j : (8)

Subject to:

ð6aÞ; ð6bÞ; ð6cÞ;

and the other is associated with the computation, named
SEPP-C:

L2ð��Þ ¼ minimize T2 �
X
j;u

�u
j z

u
j : (9)

Subject to:

ð6bÞ; ð7c0Þ; ð7e0Þ:

Following the the same thought to prove Theorem 1, SEPP-
C can be simplified as

L2ð��Þ ¼ minimize T2 �
X
j;u

�u
j z

u
j : (10)

Subject to:

aj

X
u

zuj � T2 8j

ð7c0Þ; ð7e0Þ:
(10a)

Algorithm 1. Service Entity Placement Algorithm

Input: The access point of each passenger faui g and the latency
between arbitrary AP pair fdijg, and the computation capabil-
ity of each edge cloud fajg and fbjg
Output: The service entity placement fyui g
1: Initialize �u

j  0 8j; u
2: Solve (8) and obtain the solution fyuj g
3: Solve (9) and obtain the solution fzuj g
4: while

P
j;u jyuj � zuj j > 0 do

5: �u
j  �u

j þ kðyuj � zuj Þ
6: Update fyuj g to be the solution of (8) associated with

parameter �u
j

7: Update fzuj g to be the solution of (9) associated with

parameter �u
j

8: end while

9: return fyuj g

Since L1ð�Þ þ L2ð�Þ is a lower bound of the objective
value of SEPP, we should pursue:

T ¼ maximize L1ð��Þ þ L2ð��Þ: (11)

Based on above discussions, we design Algorithm 1 to solve
the SEPP problem. In this algorithm, we first initialize all the
Lagrange multiplexer to be 0, and solve SEPP-T and SEPP-C,
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respectively. If these two subproblems cannot achieve an
agreement on the SE placement, i.e.,

P
j;u jyuj � zuj j > 0, we

adjust the Lagrangemultiplexer in Line 5. When yuj � zuj > 0,
Algorithm 1 should increase �u

j . This increases the cost to

place the SE of passenger u to the edge cloud j in SEPP-T.

Meanwhile, it reduces the cost to place the SE of passenger u

to the edge cloud j in SEPP-C. Accordingly, increase �u
i bene-

fits SEPP-T and SEPP-C to achieve an agreement on the SE

placement. For the same reason, Algorithm 1 reduces �u
j if

yuj � zuj < 0. Combining these considerations, we update the

�u
i by setting �u

j  �u
j þ kðyuj � zuj Þ, where k is a positive num-

ber as the iteration step size. Another reason behind this

Lagrange multiplexer updating method is that yui � zui is the

gradient of �u
j . To pursue the objective of (11), we should

update �u
j in its gradient direction. After updating the

Lagrange multiplexer, we solve problems (8) and (9) once

again. Such iteration ends when these two subproblems

achieve the SE placement agreement.
So far, we have derived an algorithm framework to solve

SEPP based on Lagrange relaxation and optimization
decomposition. However, problems (8) and (9) are also Inte-
ger Linear Programming (ILP) models for given ��. We need
efficient methods to solve them. In the following, we discuss
how to solve SEPP-T and SEPP-C in detail.

5.3 Efficient Solutions to SEPP-T and SEPP-C

At first, we consider SEPP-T, which can be reformulated as

minimize M: (12)

Subject to:

X
j

X
i

aui dij þ bj

 !
yuj þ

X
j;u

�u
j y

u
j �M 8j; u

ð6cÞ; ð6eÞ:

Since X
j

X
i

aui dij þ bj

 !
yuj þ

X
j;u

�u
j y

u
j

¼
X
j

X
i

aui dij þ bj þ
X
u

�u
j

 !
yuj ;

we have

Theorem 3. Suppose j� is one of the locations, such that

j� ¼ argminj
X
i

aui dij þ bj þ
X
u

�u
j

 !
:

The optimal solution of (12) is

yuj ¼
1 if j ¼ j�

0 otherwise

�
:

Proof. At first, the solution proposed in this theorem clearly
satisfies the constraints of (12). Suppose there is j0 such that

X
i

aui dij0 þ bj0 þ
X
u

�u
j0 >

X
i

aui dij� þ bj� þ
X
u

�u
j� ;

and yuj0 ¼ 1, we can modify the solution by setting yuj� ¼ 1

and yuj0 ¼ 0. This generates another feasible solution with-

out increasing the objective value. tu
As to SEPP-C (10), we can also modify it to be

minimize M: (13)

Subject to:

X
u

aj �
X
j

�u
j

 !
zuj �M 8j

ð7c0Þ; ð7e0Þ:

This is clearly a classic parallel unrelated machine schedul-
ing problem, which is NP-hard [21]. Fortunately, we have 2-
approximation algorithm to solve it efficiently based on
relaxation and rounding [21].

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of DSEP
through extensive real-data driven simulations.

6.1 Data Description and Preprocessing

To evaluate the performance of DSEP, we leveraged the
trace data of all the Electronic Taxis (ETs) in Shenzhen,
Guangdong province, China from March 1st, 2016 to March
31st, 2016, which was collected by Shenzhen Institute of Bei-
dou Applied Technology (SIBAT). During the data collec-
tion procedure, the staffs of SIBAT equipped a location
tracing device on every ET in Shenzhen, and the device
would report ET trace data to the controlling center every
20 seconds. The trace data of each ET includes following
information: its plate ID, time stamp and its location (i.e.,
longitude and latitude). According to these messages, we
can easily construct the route and calculate the velocity of
each ET. In addition, we can also count how many ETs pass
through each square, i.e., the traffic load information, in
each time slot. The same data set has been used in some of
the previous works [22], [23], [24], [25].

During the simulation, the data on the first 21 days are
used for the training purpose, while the remaining data are
used for testing purpose. Before we generate the samples
for training the RNN and LNNs, we remove some of the
data indicating an ET stops on the road. If an ET stops for
more than 3 minutes, and at least one of the following con-
ditions for the square in which this ET stops holds, all its
data from the time it stops to the time it starts to move again
are removed:

� There is a charge station in 20 m from the location
where the ET stops

� There are ETs stopping for more than 20 minutes in
its nearby squares almost everyday

� The ET stops in this square or its nearby squares for
more than 20 minutes almost everyday

The first item implies the ET is waiting for the charging
services. The second item is proposed in case that the ET
enters a parking area and waiting for passengers. The last
item occurs because a driver would park the ET at a place
when he/she has a rest everyday. Under these conditions,
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the ET would not impact the traffic condition, and hence we
do not use related data to train the NNs. In other cases, an
ET may stop on the road due to the traffic signal (< 3 min)
or traffic congestion (> 3min). In addition, our simulations
are only based on the data in the daytime, i.e., 7:00am –
9:00pm. During the night, since the drivers go off work and
the ETs stop in the parking lots, most of the data are filtered
out and there are not enough data for us to train the NNs.

Since ETs seldom appear in some areas, we select a
10 km� 10 km area, in which ETs are usually cruising.
There were 697 ETs that appear in this area everyday during
the period we collected data. We only use these ETs in the
simulation.

6.2 Simulation Settings

Edge Cloud System Setup. Because we only have the ET trace
information, but not the edge cloud system information, we
randomly generate longitudes and latitudes following uni-
form distribution to allocate edge servers in the area we
study to host SEs. In Shenzhen, a metropolis in China, busy
roads are overcrowded in our studying area, and hence we
randomly allocate the edge servers over the entire studying
area, rather than along the roads. Considering the coverage
radius of each edge cloud is several hundreds of meters [26],
[27], we allocate 200 edge servers in the area. In this case, the
coverage radius of each edge server is about 400 meters. It
should be noted that by changing computation latency
parameter, ai, we can derive similar simulation results with
different number of edge servers. For example, if we inc-
rease the ai by 10 times, we can derive similar results with
1
10 of edge servers. Therefore, we fix the number of edge
servers in our simulations. For simplicity, we set bi ¼ 0 and
assume ai ¼ a for all the edge cloud i.

Among the edge clouds, we assume there is a wired con-
nection between any two edge clouds with a probability
reversely proportional to the physical distance between
them. The transmission latency between two directly con-
nected edge clouds is set to be 2 ms, and the application
data are delivered through the wired path with minimum
number of hops among edge clouds. This setting is based
on the measurement with traceroute or ping command. We
can see that usually the latency from our hosts to a nearby
server is hundreds of microseconds to 2 ms. Accordingly,
we conservatively assume the transmission latency between
two directly connected edge clouds is 2 ms, since the
smaller the transmission latency is, the larger performance
improvement DSEP can achieve. Actually, we can also
assume it is hundreds of microseconds or tens of mini-
seconds. Regardless of which setting we adopt, almost the
same conclusion should be derived in the simulations:
DSEP can achieve a good trade-off between the transmis-
sion latency and the computation latency, such that the
entire latency experienced by the passengers will be
minimized.

Baselines and Metrics. For the vehicle velocity forecast,
the baseline is the ground truth which is derived based
on the collected ET location data. We leverage Average
Root Mean Square Error (ARMSE) to evaluate the perfor-
mance of the vehicle velocity forecast method, which is
defined as:

ARMSE ¼ 1

E

X
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
tðv̂eðtÞ � veðtÞÞ2

T

s
; (14)

where E is the number of ETs, T is the number of time slots,
while v̂eðtÞ and veðtÞ are the forecast and real velocity of ET
e at time slot t, respectively. To evaluate the performance of
vehicle position prediction, we test the average number of
ETs whose passengers connect to the APs different from the
estimated one over all the time slots.

As to the SE placement part, we have three baselines: 1)
place SEs on the nearest edge cloud based on the predicted
ET positions; 2) place SEs on the nearest edge cloud based
on the real ET positions; 3) place SEs with Algorithm 1
based on the real ET positions. It should be noted that, in
fact, DSEP places SEs with Algorithm 1 based on the pre-
dicted ET positions. In this part, the evaluation metric is the
performance improvement. We define the performance
improvement of scheme 1 compared with scheme 2 as
L2�L1
L2

, where L1 and L2 are the maximum latency experi-
enced by arbitrary passenger under scheme 1 and scheme 2,
respectively.

Since the locations of edge clouds are randomly selected,
all the points in following simulations are averaged by
20 tries.

6.3 Performance of Vehicle velocity/Position
Prediction

There are mainly three parameters that greatly impact the
performance to predict the vehicle position: 1) the size of
squares to divide the studying area; 2) the size of the con-
volutional kernels in RNN; and 3) the number of hidden
layers in LNNs. In this subsection, we investigate the
impact of these parameters through extensive simula-
tions, which also provides us guidelines on how to set the
NN parameters.

Impact of Square Size. To study how the square size
impacts the performance to predict the vehicle position, we
assume the convolutional kernel of the RNN is 50� 50 and
each ET hosts a LNN with only 1 hidden layer. Then, we
change the size of the squares and test the vehicle position
prediction performance. The simulation results are shown
in Fig. 5. From this figure, we can make following
observations.

First, when we divide the area into a grid of squares with
side length 8 � 10 m, we can derive the best traffic velocity
prediction performance (the performance is slightly worse
when the side length is 8 m than that when the side length
is 10 m). No matter the square size goes larger or smaller,
the vehicle velocity prediction performance goes worse. By
carefully studying the road condition of the metropolis
where the traffic data were collected, we found that the
width of most of the roads in one direction is about 8 � 9
meters. The squares with side length 8 � 10 m can best
match such characteristic. Because we cannot ensure the
squares used to divide the studying area starting from the
bound of the roads, both of these two types of squares may
incur some errors (interference between two directions or
cannot cover one direction). Even if we can set the square
side length to be the road width in one direction (in fact, we
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cannot since the road width is changing over the studying
area), such error still exists and we cannot expect a much
better performance. However, both of these two settings
can derive almost the same vehicle velocity prediction per-
formance and outperform other settings, which gives us
some hints to tune the parameters. On the other hand, the
squares with larger size may include too many lanes in a
square, while the smaller squares may divide the traffic
information in one direction into multiple squares, there-
fore, larger or smaller size of the squares used to divide the
studying area incurs larger error and hurts the performance
of traffic velocity prediction.

Second, as shown in Fig. 5a, by dividing the entire area
into a grid of 8 m� 8 m or 10 m� 10 m squares, the
ARMSE of vehicle velocity prediction is about 1.8 mph,
which is close to the average quantizing error 1.25 mph. It
shows the good performance of our vehicle velocity predic-
tion method.

Third, it performs better to predict the vehicle velocity in
a time slot closer to the current one. This is a very intuitive
observation. However, it is worth noting that even to pre-
dict the vehicle velocity in 5 time slots later, the perfor-
mance is very close to that only predicts the vehicle velocity
in 1 time slot later. This enables DSEP to predict the vehicle
velocity in several minutes later, which is enough for the SE
placement optimization and migration.

Lastly, from Fig. 5b, we can observe that, with improper
square size, many passengers would connect to the APs dif-
ferent from our estimation. However, by tuning the parame-
ters, there are on average less than 1 percent of the ETs
(about 6 ETs) suffer from the wrong AP estimation in 1 time
slot later.

Impact of Convolutional Kernel Size. Now, we assume there
are 10 convolutional kernels for both of the traffic load infor-
mation and traffic velocity information; we divide the entire
area into a grid of squares, each of which is 10 m� 10 m.
Then, we change the size of the convolutional kernels and
derive the simulation results as shown in Fig. 6.

In addition to the observations we made when we studied
the impact of square size, we can see that the vehicle velocity
prediction performance enhances with the increase of the con-
volutional kernel size. This is also a straight forward observa-
tion as the larger convolutional kernel introduces more
decision variables to figure out the traffic characteristics. How-
ever, we can also observe that when the convolutional kernel
size achieves 50� 50, the vehicle velocity prediction perfor-
mance does not significantly improve even we continue to
enlarge the convolutional kernel size. This indicates that the
velocity of a vehicle is impacted by the traffic condition within
a 500m radius. Consider that larger convolutional kernel incurs
larger computation overhead which hurts the performance of
online systems, we believe 50� 50 should be the best choice of
the convolutional kernel size in our simulation scenario.

Impact of Hidden Layer Number. To study how the number of
hidden layers in LNNs impacts the vehicle velocity prediction,
we divide the entire area into a grid of squares of 10 m �
10 m, and set the size of the convolutional kernels to be
50� 50. Then, we try different number of hidden layers in
LNNs and obtain the simulation results shown in Fig. 7. From
this figure, we can see that increasing the number of hidden
layers in LNNs can only slightly improve the vehicle velocity
prediction performance. Consider the vehicle position predic-
tion should be completed in a timely manner and the scarcity
of computation resources carried by each vehicle, we can
maintain the LNNs on each vehiclewith only 1 hidden layer.

Another observation from Fig. 7 is that even the ARMSE
of vehicle velocity prediction keeps the same, the number of
ETs connecting to the APs different from the estimation
may slightly change. This is because even if the velocity
ARMSE keeps the same, the vehicle position estimation can
be different, and hence there are different number of ETs
connecting to the APs different from our estimation.

6.4 Performance of DSEP

In this section, we explore how the performance of DSEP is
impacted by the computation latency parameters, and the

Fig. 5. The impact of square side length.
Fig. 6. The impact of convolutional kernel size in RNN.
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workload in the entire system. The parameters of the RNN
and LNNs are set based on the simulation in last subsection.
Because these simulations are based on real traces where the
vehicle velocity is continuously changing, it also shows that
the DSEP has the ability to deal with the dynamic character-
istic of the real transportation systems. It should be noted
that under every specific simulation setting, we not only
show the maximum latency averaged among all the simula-
tion time slots, but also present the 95 percent confidence
interval of the maximum latency with the error bar.

Impact of Computation Resource Power. Consider that the
capacity of an ET is 5 or 7, besides the driver, there would
be 0 – 6 passengers on an ET. Accordingly, we first assume
that in each ET, the passengers runs 0 – 6 and on average 2
applications having SEs on edge clouds. Then, we test how
the maximum latency experienced by all the passengers
changes with the computation latency parameter a. Fig. 8a
shows the simulation results.

From this figure, we can see that regardless of the nearest
placement or the Algorithm 1 is adopted, place the SE with
the real ET position leads to a lower latency since it elimi-
nates the unnecessary data transmission among edge
clouds. However, such performance improvement is very
slight since the vehicle position prediction in DSEP is very
close to the ground truth.

When the nearest placement scheme is adopted, we can-
not balance the workload among the edge clouds to reduce
the computation latency, and thus, the latency experienced
by passengers increasing linearly with the computation
latency parameter a. In DSEP, we can balance the workload
among edge clouds, and hence the maximum latency
increases slower than that derived by nearest placement.
When the a is set to be 1, DSEP outperforms the nearest
placement with real ET positions by 43 percent when aver-
aging the maximum latency among all the time slots. Even
averaging all six cases we tested in the evaluations, DSEP
can outperform the nearest placement scheme by 16 percent.

When the a is small (less than 0.3 in our simulation), the
performance achieved by nearest placement is the same as
that achieved by Algorithm 1. This is because that when the
a is small, i.e., the edge clouds are very powerful, the trans-
mission latency dominates the entire latency experienced
by the passengers. In this case, we should minimize the
transmission latency, which is exactly what the nearest
placement does.

The 95 percent confidence interval of maximum latency
increases with the degradation of the computation power,
i.e., increase of a. This is only because the computation
latency increases when we do not have powerful computa-
tion resources. Regardless of which scheme is adopted, the
maximum latency is determined by the edge servers located
at the hot spot, and hence the system performance is stable
for most of the time. Accordingly, we can observe that the
95 percent confidence interval of maximum latency is nar-
row in all the cases.

It is worth noting that during the simulations when the
computation parameter a is set to be 1, we can observe in
some time slots that the maximum latency under nearest

Fig. 7. The impact of the number of hidden in LNNs.

Fig. 8. Performance of DSEP.
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placement scheme may reach about 17 ms, while the worst
maximum latency in DSEP is only about 7 ms. This case sel-
dom happens and hence is not covered by the 95 percent
confidence interval, but it really results in latency “jitter” in
the system. In DSEP, we can forecast the vehicle locations
and know there would be a hot spot, and then distribute the
workload to other edge clouds, which reduces the worst
maximum latency experienced by the passengers. Accord-
ingly, DSEP can reduce the latency “jitter” in the system.

Impact of Workload. To see how DSEP adapts to different
workload, we have two different ways to change the work-
load. First, change the number of vehicles, i.e., the vehicle den-
sity in the system. However, this scheme is difficult to
implement in our simulations since in our real trace driven
simulations, we cannot ensure the vehicles we add into the
system follows the same characteristics in the real system,
especially how their velocity changes with the environment
condition. It may degrade the forecasting performance of the
nerual networks in DSEP. Accordingly, we adopt the second
way, changing the number of applications run by the passen-
gers in each ET. It should be noted that in the workload per-
spective, i.e., the number of SEs that should be placed on the
edge clouds, changing the vehicle density and the number of
applications run by the passengers in the ETs achieves the
same effect. In this simulation, we set the computation param-
eter a to be 0.1. The simulation results are shown in Fig. 8b.

We can see that we derive a group of curves similar to
those in Fig. 8a. When the workload is light, the perfor-
mance of DSEP is similar to that derived by nearest place-
ment scheme since the computation latency is smaller than
the transmission latency. With the increase of workload, the
computation latency on some edge clouds exceeds the trans-
mission latency for balancing the workload. In this case, the
latency in DSEP increases slower than that with nearest
placement since DSEP can trade off the computation and
transmission latency, such that the total latency can be mini-
mized. When there are on average 6 applications run by
passengers in each ET, DSEP can reduce the maximum
latency experienced by passengers by 21 percent on aver-
age. When the workload increases, though the 95 percent
confidence interval of maximum latency experienced by
passengers also increases, it is always narrow, which shows
the stability of the system. Again, we can also observe
extreme large maximum latency experienced by passengers
in some time slots when the workload is large in the system
under the nearest placement scheme, which is incurred by
the hot spot problem. With DSEP, we can solve the hot spot
problem. Accordingly, such “jitter” can be reduced and bet-
ter experience can be provided to the passengers.

7 CONCLUSION

This paper proposed DSEP to dynamically place Service
Entities (SEs) of passengers’ applications in edge clouds.
To this end, we first designed two sequential neural net-
works to predict the position of each vehicle in the near
future; and then proposed an efficient algorithm based on
Lagrange relaxation and decomposition to calculate the
SE placement. Extensive real-data driven simulations sho-
wed that DSEP can not only predict the vehicle position
accurately, but also greatly reduce the maximum latency

experienced by arbitrary passenger compared with the nea-
rest placement scheme.

ACKNOWLEDGMENTS

Many thanks to the Shenzhen Institute of Beidou Applied
Technology (SIBAT), who provides us with the electronic taxi
location data in Shenzhen. This research is partially supported
by theNational Key R&D Program of China 2018YFB1003202;
NSF grants CNS-1626374, US Department of Transportation
grant DTRT13-G-UTC48, NSFC grants 61671130, 61671124,
and 61602194; the Fundamental Research Funds for the
Central Universities-HUST 2016YXMS304.

REFERENCES

[1] Y. Abe, R. Geambasu, K. Joshi, H. A. Lagar-Cavilla, and
M. Satyanarayanan, “vTube: Efficient streaming of virtual
appliances over last-mile networks,” in Proc. 4th SoCC, 2013,
pp. 1–16.

[2] K.Ha, Z. Chen,W.Hu,W.Richter, P. Pillai, andM. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proc. 12th MobiSys,
2014, pp. 68–81.

[3] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha, “The role of cloudlets in hostile environments,” IEEE
Pervasive Comput., vol. 12, no. 4, pp. 40–49, Oct 2013.

[4] S. Davy, J. Famaey, J. Serrat, J. L. Gorricho, A. Miron,
M. Dramitinos, P. M. Neves, S. Latre, and E. Goshen, “Challenges
to support edge-as-a-service,” IEEE Commun. Mag., vol. 52, no. 1,
pp. 132–139, 2014.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proc. 1st Ed. MCC
Workshop Mobile Cloud Comput., 2012, pp. 13–16.

[6] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Mobility-induced service migration in mobile micro-clouds,” in
Proc. IEEE Military Commun. Conf., 2014, pp. 835–840.

[7] X. Kong, Z. Xu, G. Shen, J. Wang, Q. Yang, and B. Zhang, “Urban
traffic congestion estimation and prediction based on floating car
trajectory data,” Future Gener. Comput. Syst., vol. 61, no. C, pp. 97–107,
Aug. 2016.

[8] G. Marfia and M. Roccetti, “Vehicular congestion detection and
short-term forecasting: A new model with results,” IEEE Trans.
Veh. Technol., vol. 60, no. 7, pp. 2936–2948, Sep. 2011.

[9] P. Lopez-Garcia, E.Onieva, E.Osaba,A.D.Masegosa, andA. Perallos,
“A hybrid method for short-term traffic congestion forecasting using
genetic algorithms and cross entropy,” IEEE Trans. Intell. Transp. Syst.,
vol. 17, no. 2, pp. 557–569, Feb. 2016.

[10] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han, “Online-
SVR for short-term traffic flow prediction under typical and atypical
traffic conditions,” Expert Syst. Appl., vol. 36, no. 3, pp. 6164–6173,
2009.

[11] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow pre-
diction with big data: A deep learning approach,” IEEE Trans.
Intell. Transp. Syst., vol. 16, no. 2, pp. 865–873, Apr. 2015.

[12] P. Dell’Acqua, F. Bellotti, R. Berta, and A. D. Gloria, “Time-aware
multivariate nearest neighbor regression methods for traffic flow
prediction,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6,
pp. 3393–3402, Dec. 2015.

[13] “Monte carlo simulation-based traffic speed forecasting using
historical big data,” Future Generation Comput. Syst., vol. 65,
pp. 182–195, 2016.

[14] C. Dong, Z. Xiong, C. Shao, and H. Zhang, “A spatialtemporal-
based state space approach for freeway network traffic flow
modelling and prediction,” Transportmetrica A: Transport Sci.,
vol. 11, no. 7, pp. 547–560, 2015.

[15] H. Tan, Z. Han, X.-Y. Li, and F. C. M. Lau, “Online job dispatching
and scheduling in edge-clouds,” in Proc. IEEE Conf. Comput.
Commun., Apr. 2017, pp. 1–9.

[16] L. Wang, L. Jiao, T. He, J. Li, and M. Muhlhauser, “Service entity
placement for social virtual reality applications in edge computing,”
inProc. IEEEConf. Comput. Commun., Apr. 2018, pp. 1–9.

[17] L. Wang, L. Jiao, J. Li, and M. Mhlhuser, “Online job dispatching
and scheduling in edge-clouds,” in Proc. IEEE Conf. Comput.
Commun., 2017, pp. 1281–1290.

ZHAO ET AL.: DYNAMIC SERVICE ENTITY PLACEMENT FOR LATENCY SENSITIVE APPLICATIONS IN TRANSPORTATION SYSTEMS 471

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2021 at 12:32:03 UTC from IEEE Xplore.  Restrictions apply. 



[18] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in Proc. IFIP
Netw. Conf., 2015, pp. 1–9.

[19] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in
edge-clouds,” Perform. Eval., vol. 91, no. C, pp. 205–228, Sep. 2015.

[20] Q. Qin, K. Poularakis, G. Iosifidis, and L. Tassiulas, “SDN control-
ler placement at the edge: Optimizing delay and overheads,” in
Proc. IEEE Conf. Comput. Commun., Apr. 2018, pp. 1–9.

[21] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algo-
rithms for scheduling unrelated parallel machines,” in Proc. 28th
Annu. Symp. Foundations Comput. Sci., Oct. 1987, pp. 217–224.

[22] Z. Tian, L. Tu, Y. Wang, F. Zhang, and C. Tian, “Impact of core
charging station’s cease operation in the entire charging station
system: A case study in shenzhen,” in Proc. IEEE 3rd Int. Conf. Big
Data Comput. Service Appl., Apr. 2017, pp. 90–95.

[23] J. Zhang, D. Shen, L. Tu, F. Zhang, C. Xu, Y. Wang, C. Tian, X. Li,
B. Huang, and Z. Li, “A real-time passenger flow estimation and
prediction method for urban bus transit systems,” IEEE Trans.
Intell. Transp. Syst., vol. 18, no. 11, pp. 3168–3178, Nov. 2017.

[24] Z. Tian, Y. Wang, C. Tian, F. Zhang, L. Tu, and C. Xu,
“Understanding operational and charging patterns of electric
vehicle taxis using GPS records,” in Proc. 17th Int. IEEE Conf. Intell.
Transp. Syst., Oct. 2014, pp. 2472–2479.

[25] Z. Tian, T. Jung, Y. Wang, F. Zhang, L. Tu, C. Xu, C. Tian, and
X. Li, “Real-time charging station recommendation system for
electric-vehicle taxis,” IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 11, pp. 3098–3109, Nov. 2016.

[26] Y. Yu, J. Zhang, and K. B. Letaief, “Joint subcarrier and CPU time
allocation for mobile edge computing,” in Proc. IEEE Global
Commun. Conf., Dec. 2016, pp. 1–6.

[27] Y. Zhang, K. Wang, Y. Zhou, and Q. He, “Enhanced adaptive
cloudlet placement approach for mobile application on spark,”
Security Commun. Netw., vol. 2018, 2018, Art. no. 1937670.

YangmingZhao received theBSdegree in commu-
nication engineering and the PhD degree in commu-
nication and information system from the University
of Electronic Science and Technology of China,
in 2008 and 2015, respectively. He is a research
scientist with SUNY Buffalo. His research interests
include network optimization, data center networks,
edge computing and transportation systems.

Xin Liu received the BS degree in electrical and
engineering from the Beijing University of Technol-
ogy, Beijing, China, in 2014, the MS degree in com-
puter science and engineering, from SUNY Buffalo,
NY, in 2016, where he is working toward the PhD
degree.His research interests include edge comput-
ing and transportation systems.

Lai Tu received the BS degree in communica-
tion engineering and the PhD degree in information
and communication engineering from the Huaz-
hong University of Science and Technology,
Wuhan, China, in 2002 and 2007, respectively.
From 2007 to 2008, he was a post-doctoral fellow
with the Department of EIE, Huazhong University
of Science and Technology. From 2009 to 2010, he
was a post-doctoral researcher with the Depart-
ment of CSIE, Nation Cheng Kung University,
Tainan, Taiwan. He is currently an associate pro-

fessor with School of Electronic Information and Communications,
Huazhong University of Science and Technology. His research interests
include urban computing, human behavior study, intelligent transportation
system,mobile computing, and networking.

Chen Tian received the BS, MS, and PhD
degrees from the Department of Electronics and
Information Engineering, Huazhong University of
Science and Technology, Wuhan, China, in 2000,
2003, and 2008. He is an associate professor at
the State Key Laboratory for Novel Software
Technology, Nanjing University, China. He was
previously an associate professor at the School of
Electronics Information and Communications,
Huazhong University of Science and Technology.
From 2012 to 2013, he was a postdoctoral

researcher with the Department of Computer Science, Yale University.
His research interests include data center networks, network function vir-
tualization, distributed systems, Internet streaming, and urban
computing.

Chunming Qiao is a SUNY distinguished profes-
sor and also the current chair of the Computer
Science and Engineering Department, University
at Buffalo, Buffalo, NY. He was elected to IEEE
fellow for his contributions to optical and wireless
network architectures and protocols. His current
focus is on connected and autonomous vehicles.
He has published extensively with an h-index of
more than 69. Two of his papers have received
the best paper awards from IEEE and Joint ACM/
IEEE venues. He also has seven US patents and

served as a consultant for several IT and Telecommunications compa-
nies since 2000. His research has been funded by a dozen major IT and
telecommunications companies including Cisco and Google, and more
than a dozen NSF grants.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

472 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 2, FEBRUARY 2021

Authorized licensed use limited to: Nanjing University. Downloaded on January 13,2021 at 12:32:03 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


