
Aquila: A Practically Usable Verification System for
Production-Scale Programmable Data Planes

Bingchuan Tian
★†△

, Jiaqi Gao
§†△

, Mengqi Liu
†
, Ennan Zhai

†
, Yanqing Chen

★
, Yu Zhou

†
, Li Dai

†
, Feng Yan

†
,

Mengjing Ma
†
, Ming Tang

†
, Jie Lu

†
, Xionglie Wei

†
, Hongqiang Harry Liu

†
, Ming Zhang

†
, Chen Tian

★
, Minlan Yu

§

†Alibaba Group §Harvard University ★Nanjing University

ABSTRACT
This paper presents Aquila, the first practically usable verification

system for Alibaba’s production-scale programmable data planes.

Aquila addresses four challenges in building a practically usable

verification: (1) specification complexity; (2) verification scalabil-

ity; (3) bug localization; and (4) verifier self validation. Specifically,

first, Aquila proposes a high-level language that facilitates easy ex-

pression of specifications, reducing lines of specification codes by

tenfold compared to the state-of-the-art. Second, Aquila constructs

a sequential encoding algorithm to circumvent the exponential

growth of states associated with the upscaling of data plane pro-

grams to production level. Third, Aquila adopts an automatic and

accurate bug localization approach that can narrow down suspects

based on reported violations and pinpoint the culprit by simulating

a fix for each suspect. Fourth and finally, Aquila can perform self

validation based on refinement proof, which involves the construc-

tion of an alternative representation and subsequent equivalence

checking. To this date, Aquila has been used in the verification of

our production-scale programmable edge networks for over half

a year, and it has successfully prevented many potential failures

resulting from data plane bugs.

CCS CONCEPTS
• Software and its engineering → Formal methods; • Net-
works → Programmable networks.

KEYWORDS
Formal Methods; Programmable Switches; P4 Verification

ACM Reference Format:
Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai, Yanqing Chen, Yu

Zhou, Li Dai, Feng Yan, Mengjing Ma, Ming Tang, Jie Lu, Xionglie Wei,

Hongqiang Harry Liu, Ming Zhang, Chen Tian and Minlan Yu. 2021. Aquila:

A Practically Usable Verification System for Production-Scale Programmable

Data Planes. In ACM SIGCOMM 2021 Conference (SIGCOMM ’21), August
23–27, 2021, Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3452296.3472937

△
Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00

https://doi.org/10.1145/3452296.3472937

1 INTRODUCTION
As a prominent online service provider, Alibaba operates a global

network infrastructure serving over one billion customers, offering

diverse services including cloud, e-commerce, and video. In order

to provide end users with faster services (e.g., IoT and CDN) at rea-

sonable costs, Alibaba has built and is operating a large number of

edge networks, each consisting of hundreds of light-weight servers

with tight space constraints and CPU compute limitations. As ser-

vices today constantly evolve in size, it is becoming increasingly

difficult for these resource-constrained edge networks to handle

the ever-growing traffic, a situation that could severely undermine

the performance of business services. This prompted us to look into

solutions to offload a group of network functions (e.g., load balanc-

ing, firewall, and NAT) from the server, with a goal to conserve

CPU resources for better performance.

Recent advances in programmable switchingASICs have equipped

us with the ability to implement network functions in the data plane

using P4 language, opening up new cost-effective solutions to sig-

nificantly improve the performance of our edge networks, in terms

of both functionality and efficiency as well as flexibility. First, we

can offload a group of network functions from the edge servers to

the switch data plane to significantly save on the constrained server

CPU resources. Second, we can implement the network functions

on programmable ASICs at Tbps speeds for packets. Finally, we can

introduce additional flexibility in network function updates as the

business evolves, by directly programming the switch data plane.

Given these advantages, we have widely adopted programmable

switches in our edge networks.

Nevertheless, the deployment of programmable switches also

inevitably introduces new challenges. Given the evolving scale and

diversity of our services, the data plane programs in our edge net-

works are greatly increasing in complexity. The data plane program

of each switch consists of thousands lines of P4 code in multiple

pipelines, each pipeline holding a number of network functions. Net-

work functions across different pipelines are tangled with various

packet paths, resulting in complex function chain logical relations

within a single programmable device. Therefore, it has become a

great challenge for our network engineers to ensure the correctness

of data plane programs of such complexity.

Amongmethods of checking correctness, testing (e.g., p4pktgen [36])
is the most straightforward. However, it is too expensive and com-

plicated to test programmable devices with diverse packet formats

and operations [30, 48]. A number of previous efforts have focused

on the rigorous verification of programmable data planes, such

as p4v [30], Vera [48], bf4 [11], p4-assert [35], and p4-NOD [32].

While these state-of-the-art efforts work well in principle, in re-

ality in our situation, they fail to address a number of technical

obstacles and limitations that affect the practical usage experience

17

https://doi.org/10.1145/3452296.3472937
https://doi.org/10.1145/3452296.3472937
https://doi.org/10.1145/3452296.3472937

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tian et al.

of our engineers. Under the existing methods, our engineers have

encountered drawbacks in both specification expression and ver-

ification efficiency, as well as violation localization and verifier

self-validation.

Alibaba therefore decided to build a verification system that

not only provides a rigorous guarantee on the correctness of our

production-scale programmable data planes, but also meets the

practical usage requirements of our network engineers. A practi-
cally usable verification system that satisfies our purpose should

holistically and simultaneously achieve the following features: first,

it should enable our network engineers to express their correctness

specifications with ease; second, it should be able to efficiently ver-

ify the production-scale data plane programs within few minutes;

third, upon detection of a violation, it should be able to automat-

ically and accurately localize the bugs in the data planes and the

table entries; and fourth, the system should have the ability to

self-validate its own implementation correctness, thus delivering

confidence in its verification results.

This paper shares our real-life experience with building a prac-
tically usable verification system, Aquila, as shown in Figure 1,

for Alibaba’s production-scale programmable data planes. To sat-

isfy the aforementioned feature requirements, we have specifically

addressed the following challenges.

Challenge 1: Specification complexity. Properties in our pro-

duction context are complex and related to specific service purposes,

such as “for each packet with headers ‘eth, optional vlan, ipv4 (or

ipv6), tcp’, the tcp header remains unchanged after passing through

the switch” as shown in Figure 3. This requires encapsulations of

commonly-used property assertions and comprehensive property

supports, enabling our engineers to describe their intent with ease.

However, prior work does not meet the above requirements. First,

the state of the art employed low-level specification languages, e.g.,
first-order logic, and both Vera and p4v, for example, need 20+ lines

of specifications to express just a single (above-mentioned) prop-

erty. While a recent work bf4 [11] has focused on automatically

inferring annotations for undefined behaviors, e.g., invalid header

and out-of-register checking, it is unable to infer properties related

to specific services (called service-specific properties), such as “the

DSCP value of each packet destinating 10/8 should be changed to

three”. In our network, service-specific properties account for 90%

of our specifications. Second, existing tools fail to support impor-

tant properties (e.g., multi-pipeline control, recirculation, deparsing,

and checksum), which are widely used in our production.

We, therefore, propose a new specification language, LPI, that

encapsulates commonly-used properties with declarative grammar

and supports comprehensive properties for parser, MAUs (match-

action units) and switch architecture, such as multi-pipeline, header

parsing/deparsing, and recirculation. LPI reduces lines of specifica-

tions by tenfold compared to previous low-level languages.

Challenge 2: Verification scalability. Our production-scale P4
programs typically contain (1) many network functions, each with

thousands lines of P4 code, across multiple pipelines, and (2) com-

plex parser programs with thousands of dependencies across states.

Such a complexity results in the exponential growth of states and

program branches to be verified, outgrowing a solver’s compute

capability. For example, when our engineers used p4v and Vera to

Network
Engineer

Verification (§4)

No Violation

Debugging Report

Violation

Self Validator (§6) Aquila

Bug Localization (§5)Specification (§3)

Figure 1: Aquila’s practically usable workflow.

check an INT-enabled switch.p4, which is just a part of our CDN

P4 program (in Figure 2), p4v crashed due to the state explosion

of encoded formula, and Vera triggered a timeout, let alone check-

ing the entire program. To address the scalability challenge, we

propose a novel sequential encoding algorithm to circumvent the

exponential growth of states associated with the upscaling of data

plane programs to production level. Our experiments show our

approach verifies our production-scale programs in an efficient

way (see Table 3 and Figure 11).

Challenge 3: Bug localization.While verification can tell specifi-

cations are violated, it is non-trivial to automatically, accurately find

the root cause in the production P4 program, because a violation

might be caused by diverse root causes, especially in P4 context,

such as incorrect table entries and table action missing. Aquila

proposes a novel algorithm that narrows down suspect variables

and actions based on reported violations and pinpoints the culprit

by simulating a fix for each suspect. Our experiments show that

this approach can accurately find out the root causes in real-world

buggy P4 programs, saving a lot of debugging time.

Challenge 4: Verifier self validation. Verifer implementation er-

rors are headache in practice, since they badly affect the accuracy of

verification results. We did incur bugs during Aquila development.

To identify Aquila implementation errors, we build a self validator

based on refinement proof [33, 39], which checks the GCL (guarded

command language) semantic equivalence between Aquila and

alternative. We successfully identified errors in the Aquila develop-

ment such as incorrect encoding and language misunderstanding.

Real-world evaluation. Aquila has been used to verify our pro-

grammable edge networks for half a year, and successfully detected

many bugs, preventing service downtime. After Aquila is used, no

failures resulting from data plane bugs occurred so far. §7 shares real
cases we met in practice. §8 compares Aquila with the state-of-the-

art verification tools, e.g., p4v and Vera, by verifying open-source

and production P4 programs. Aquila outperforms these tools in

verification scalability and specification expressing.

2 OVERVIEW
Alibaba has a global network infrastructure to support its world-

wide online services, including cloud, e-commerce, and video, which

have more than one billion users. By Jan. 2021, we have built many

edge networks—consisting of O(100) PoP (point of presence) nodes

and O(1000) edge sites in total—to ensure to offer end users fast,

high-quality services. To offer high throughput (Tbps speeds) and

save CPU resources, our edge networks have widely deployed pro-

grammable switches to offload a group of network functions (e.g.,
load balancing, firewall and DDoS defense) from software to pro-

grammable switching ASIC hardware.

18

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Egress
(switch.p4)

Traffic
Manager

Ingress
(scheduler.p4)

Ingress
(firewall.p4)

Pipeline 0

Pipeline 1

Pipeline 2

Pipeline 3

Internal
Loopback

Ingress
(switch.p4)

Egress
(loadbalancer.p4)

Ingress
(loadbalancer.p4)

Egress
(scheduler.p4)

Internal
Loopback

Egress
(firewall.p4)

Figure 2: An example hyper-converged data plane within a
single edge switch for Alibaba’s CDN service.

Figure 2 shows a real example of a single programmable switch in

our edge network. We call such an architecture involving multiple

P4 functions in a single programmable switch as hyper-converged
data plane. In this example, this switch uses P416 to implement

four functions (switch, load balancer, scheduler and firewall) across

its four pipelines, respectively. Pipeline 1 and 3 employ pipeline

recirculation to allow packets to go through the ingress and egress

programs multiple times. Note that we can also implement multiple

functions within the same pipeline, which depends on business

needs and resource constraints in practice. According to the opera-

tion policies, traffic from the Internet may need to travel different

function-chain paths, such as switch ingress→ load balancer egress

→ load balancer ingress → scheduler egress (i.e., the red arrows

shown in Figure 2). Our network engineers control different traffic

paths (i.e., routes forwarding) by installing and distributing differ-

ent table entries to the corresponding switches. See Appendix A

for more details about hyper-converged data plane.

The majority of our edge switches employ the above hyper-

converged architecture. Such a single switch’s data plane typically

consists of thousands lines of P416 code, hundreds of tables, each

containing hundreds of entries, and a big parser program with

thousands of dependencies across states. Our production networks

use P416 (rather than P414) because P416 supports many impor-

tant features such as multi-pipeline control, reordering header via

deparsing, and checksum.

Reliability of edge networks in Alibaba is always extremely im-

portant. Given the fact that testing coverage is limited, Alibaba

decided to build a verification system to provide a rigorous guaran-

tee on the correctness of programmable data planes. Furthermore,

our network engineers propose their practical usage requirements

for such a verification system: a practically usable verification system
should simultaneously achieve four features (1) expressing specifica-
tion with ease, (2) scalable verification, (3) automatic and accurate
violation localization, and (4) self validation; otherwise, the system
would be hard to use in production.

In the rest of this section, we first use Figure 2 example to illus-

trate why the state of the art does not meet the above features, and

then present Aquila, the first practically usable verification system.

(1) Specification expressing. Our engineers need to specify di-

verse properties to express the correctness of the hyper-converged

@pkt.$order == <eth [vlan] (ipv4|ipv6) tcp> => keep(tcp)

parse_eth:
last := eth

parse_vlan:
assume last == eth
last := vlan

parse_ipv4:
assume last == eth || last == vlan
last := ipv4

parse_ipv6:
assume last == eth || last == vlan
last := ipv4

parse_tcp:
assume last == ipv4 || last == ipv6
last := tcp
@tcp.src_port := tcp.src_port
@tcp.dst_port := tcp.dst_port
...

parse_udp:
last := udp

assume last == tcp
assert tcp.src_port == @tcp.src_port
assert tcp.dst_port == @tcp.dst_port
...

InstructionBlock(
CreateTag("START", 0),
Call("router.generator.eth.ipv4.tcp"),
res.initFactory(switchInstance)

)
InstructionBlock(

CreateTag("START", 0),
Call("router.generator.eth.ipv6.tcp"),
res.initFactory(switchInstance)

)
InstructionBlock(

CreateTag("START", 0),
Call(router.generator.eth.vlan.ipv4.tcp),
res.initFactory(switchInstance)

)
InstructionBlock(

CreateTag("START", 0),
Call(router.generator.eth.vlan.ipv6.tcp),
res.initFactory(switchInstance)

)

AF(Constrain(tcp.src_port, Eq(Original.tcp.src_port)))
AF(Constrain(tcp.dst_port, Eq(Original.tcp.dst_port)))
...

Aquila spec (in LPI)

p4v spec Vera spec (NetCTL)
VS

Figure 3: Specification comparison with prior work. This ex-
ample describes a real property: for each packet with head-
ers ‘eth, optional vlan, ipv4 (or ipv6), tcp’, the tcp header re-
mains unchanged after passing through the switch.

1 action a1() { ig_md.ttl = ipv4.ttl; }
2 action a2() { ig_md.drop = 1; }
3 action a3() { ipv4.ttl = ig_md.ttl; }
4 apply {
5 a1();
6 if(ig_md.ttl == 0) { a2(); }
7 // ig_md.ttl = ig_md.ttl - 1; //bug: statement missing
8 ...
9 a3();
10 } // Specification: assert ipv4.ttl == @ipv4.ttl - 1

Figure 4: A bug example in switch.p4 (pipeline 0).

data plane, shown in Figure 2, such as (i) is a specified packet

processed according to the sequence shown in Figure 2, and (ii)
whether table 𝑎 in the egress scheduler is only hit by a specified

packet. Existing tools (e.g., Vera [48] and p4v [30]) only provide

low-level languages, which are hard to express our intent. Figure 3

shows an example snippet that expresses a real property: for each

packet with headers ‘eth, optional vlan, ipv4 (or ipv6), tcp’, the tcp

header remains unchanged after passing through the switch. We

can observe that p4v and Vera describe such a simple property with

many lines of specifications.

(2) Verification. Our production P4 programs, e.g., Figure 2, are
large and complex. Existing verification approaches are not scalable

to check them. For example, when we used p4v and Vera to check

switch.p4 in Figure 2, they triggered out-of-memory and timeout,

respectively, let alone the entire hyper-converged program.

(3) Bug localization.Manually localizing bugs in the production

program, as shown in Figure 2, is time-consuming, even though

we know the specification is violated. Many bug localization tools

for general-purpose languages like C and Haskell [7, 27, 40, 44, 53]

have been proposed. These tools, in principle, extract a counterex-

ample when violation occurs and then find root causes iteratively

negating counterexamples. However, these efforts do not work in

P4 debugging context due to two limitations. (i) Bugs resulting from
statement missing (e.g., the bug in Figure 4), commonly existed in

our hyper-converged programs, cannot be localized by prior work.

(ii) These general-purpose language debugging tools cannot localize
the bugs in P4-specific semantics. For example, P4 parser supports

19

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tian et al.

Table 1: Required properties of production data plane program verification. Half tick means partial support.

Parts Properties Meaning Aquila p4v [30] Vera [48]

Parser

Header order Whether header order (e.g., ethernet→ ipv4→ tcp) is expected? ✓ ✗ ✓ –

Header parsing Whether packet headers are parsed correctly? ✓ ✗ ✗

Match-

Action

Units

(MAUs)

Header validity Whether invalid header (e.g., ipv6 header should not exist) can be detected? ✓ ✓ ✓
Field correctness Whether header field value (e.g., destination IP) is as expected? ✓ ✓ ✓
Payload correctness Whether header payload is as expected? ✓ ✗ ✗
Expected table access Whether a table or an action is hit by a specified packet? ✓ ✓ ✓
Table entry validity Whether a specified individual table entry is handled as expected? ✓ ✗ ✓
Wildcard table entries Whether a property always holds for any possible table entry? ✓ ✓ ✓ –

Deparser Is output packet (e.g., header reordering and checksum) correct? ✓ ✗ ✗

Switch

Multi-pipeline Are pipelines executed in the expected order (e.g., red arrow in Figure 2)? ✓ ✗ ✗
ASIC behaviors Do recirculation, resubmit or mirror run as expected? ✓ ✗ ✓ –

Register Are behaviors, values and states of registers expected? ✓ ✓ ✓

lookahead operation, which parses packet header based on the un-

parsed portion. Existing general-purpose language debuggers are

hard to be adapted to localize the bugs related to the lookahead

operation.

(4) Verifier self validation. A verification system implementa-

tion might be buggy, significantly affecting the confidence of the

network engineers. No prior work can help.

Aquila: Apractically usable verification system.Webuild Aquila

capable of simultaneously addressing the above problems. As shown

in Figure 1, a network engineer expresses her specification via our

proposed language (§3), saving 10× lines of specifications (see Fig-

ure 3). Aquila then efficiently checks if the program meets the

specification (§4). For violated properties, Aquila calls the bug lo-

calization module (§5) to report where are the bugs. Aquila can

detect bugs in data plane programs, and also find incorrect table

entries. Aquila introduces a self-validator to tell potential Aquila

implementation issues (§6).
Aquila can verify two cases: (1) a specific data plane snapshot (i.e.,

the P4 code along with a snapshot of deployed table entries), and (2)

data plane correctness under any possible table entries, i.e., the P4
code without specifying any concrete table entries. For the second

case, the network engineers want to check whether the target P4

program always meets the specification for any table entries to

be installed. For the table entries potentially triggering bugs, the

second case enables us to record these entries in a blocklist ahead

of time, preventing them in runtime.

3 SPECIFICATION LANGUAGE
Building an effective verification system for production data plane

programs requires us to comprehensively reason about the im-

portant correctness properties our network engineers face in real

world. By surveying our engineers, Table 1 lists key properties that

a practical system should verify, and also shows the comparison

with state-of-the-art tools.

Aquila provides a declarative specification language, LPI (Lan-

guage for Programmable network Intent). In principle, LPI is better

for our engineers to use than p4v and Vera due to two reasons.

(1) LPI is able to express more properties, widely-needed by our

scenarios, which the state of the art failed to consider (see Table 1).

(2) LPI encapsulates common property assertions (including table,

match and modified), making it easier to express specifications

(10× fewer lines of specifications than prior work). Figure 3 shows

a more concrete example comparing LPI with the state of the art.

spec ::= decl* Aquila specification

decl ::= assump Precondition

| assert Postcondition

| prog Main body

| ...
assump ::= assumption ‘{’ block* ‘}’
assert ::= assertion ‘{’ block* ‘}’
block ::= blk_id ‘=’ ‘{’ stmt* ‘}’
prog ::= program ‘{’ stmt* ‘}’
stmt ::= if ‘(’ exp ‘)’ ‘{’ exp* ‘}’ If condition

| exp ‘;’ Simple stmt

| ...
exp ::= ‘<’ hdr* ‘>’ Header sequence

| ‘#’ string Variable declaration

| ‘@’ field_id Get init value

| exp 𝑜𝑝 exp C-like operators

| assume ‘(’ blk_id ‘)’ Insert assumption

| assert ‘(’ blk_id ‘)’ Exec assertion

| keep ‘(’ field_id ‘)’ Field keeps

| match ‘(’ tbl_id, act_id ‘)’ Hit table, action

| modified ‘(’ field_id ‘)’ Field modified

| ...
hdr ::= string Simple header name

| ‘[’ hdr* ‘]’ Optional header

| ‘(’ hdr* (‘|’ hdr*)* ‘)’ Header branch

... ...

Figure 5: Aquila’s specification language grammar

An LPI specification requires three parts: (1) precondition def-

inition (including input packet and switch initial state), assump-
tion, (2) expected behaviors of a single pipeline, assertion, and (3)

expected behaviors of entire device, program. Figure 5 presents

the grammar of LPI. Figure 6 shows an example specification that

checks a P4 program forward.p4, which changes TCP and UDP

packets whose destination IP is 10.0.0.1 to 10.0.0.2. The rest of this

section illustrates the LPI usage based on this example.

Assumption. LPI allows us to define three types of preconditions:

(1) the initial state of switch (e.g., the values in the register), (2) the

input packet’s headers (e.g., the header field value and header order),
and (3) metadata (e.g., mirror state and input port). Specifying

(1) and (3) is straightforward via operators like ‘==’. For example

in Figure 6, line 4 is a metadata specification that specifies the

packet comes from even port number of the switch. To specify (2),

i.e., packet headers, we introduce keywords ‘< >’ for the network

engineer to describe the expected header order. Line 5 in Figure 6

specifies expected order for TCP and UDP headers.

Assertion. In the assertion part, LPI enables us to specify the cor-

rectness of a single pipeline. LPI allows checking the value of an

input packet in any condition at any position in the pipeline: besides

20

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

1 config {path = ./forward.p4;}
2 assumption {
3 init {
4 ig_md.ingress_port & 0x1 == 0; // Even port#
5 pkt.$order == <ethernet ipv4 (tcp|udp)> // TCP or UDP header
6 pkt.ipv4.dst_ip == 10.0.0.1; // Dst. IP
7 }}
8 assertion {
9 pipe_in = {
10 if (@pkt.ipv4.protocol == 6) // TCP header
11 pkt.ipv4.dst_ip == 10.0.0.2; // Send to 10.0.0.2
12 if (match(fwd,send)) // Match table fwd, action send
13 modified(pkt.ipv4.dst_ip); // Dst. IP is modified
14 }
15 pipe_out = {...}
16 }
17 program {
18 assume(init); // Add assumption
19 call(ingress_pipeline); // Execute ingress program
20 assert(pipe_in); // Check pipe_in assertion
21 #quit = (ig_md.drop == 0) // Skip the egress pipeline
22 || (ig_md.to_cpu == 0); // if dropped or sent to CPU
23 if (!#quit) {
24 call(egress_pipeline);
25 assert(pipe_out);
26 }}

Figure 6: Example specification program

regular value checking via ‘==’, LPI allows us to use logical connec-

tives to construct more complex conditional checking. Line 10-11

in Figure 6 show such an example that checks the destination IP

when the input packet has a TCP header. The ‘@’ symbol allows

us to get the value before the packet entering the switch.

LPI can also specify operation properties, such as whether some

value is changed successfully before a table is applied, and whether

an action in a table is hit by a specific packet. We use ‘match’ to

specify whether a specific action in a table is hit and ‘modified’

to check whether a specific header or metadata is modified, no

matter what the modified value is. Engineers can express different

specification for different actions of the same time. In Figure 6

example, line 12-13 indicate the input packet hits the fwd table, send

action and the destination IP is modified.

Program. LPI uses program to connect assumptions and assertions

to their corresponding data plane modules, forming the entire spec-

ification. For example, line 18 and 20 surround the ingress pipeline

encoding (line 19) with assumption ‘init’ and assertion ‘pipe_in’

before and after its execution, respectively. LPI also allows us to

specify customized connections between pipelines. For example,

line 21-22 define a ghost variable 𝑞𝑢𝑖𝑡 and skips the egress pipeline

when 𝑞𝑢𝑖𝑡 holds. Aquila also supports bounded recirculation by

defining a recirc with the maximum allowed recirculations.

During execution, Aquila first parses the specification program,

rejects it if it is either syntactically or semantically incorrect. Then,

it reads P4 program provided in the config section. Finally, Aquila

verifies whether the input program meets the specification.

4 VERIFICATION APPROACH
Aquila’s verification employs Dijkstra’s classic methodology to

check a program based on the predicate transformer semantics [10]:

given a specification, a P4 program, and table entries, we first en-

code individual P4 components into Guarded Command Language

(GCL); then, we follow the specification program to compose com-

ponent GCLs into a whole-switch GCL and insert assumptions

Specification

Report Verification Conditions

Verification

SMT
Solver

P4 Program

Table Entries

Component GCL
Encoding

Data Structure Encoding (§4.2)

Sequentially Encoding
Program (§4.1)

Other Feature Encoding (§4.3)

SMT
Formula

Whole-Switch
GCL Generator

Figure 7: Verification process of Aquila. Gray components
are our contributions.

and assertions at designated places; next, the entire GCL is trans-

lated into verification conditions; finally, we invoke an SMT solver

(e.g., Z3 [9]) to check whether the specification holds. Note that

such a verification methodology is widely used in the verification

community—for example, p4v [30] also adopts the similar principle;

thus, we make no claim it is novel by itself.

Nevertheless, we find that directly applying the existing ap-

proaches to verify our hyper-converged programs will result in

state explosion for the following reasons. First, the parser in our

production program is a big state machine, and previous approaches

would further expand it into thousands of states and branches. And

second, our production programs have hundreds of tables, each

containing hundreds of entries, and the match-action dependencies

across these tables would give rise to complex logical relations.

Given these situations, the formula size generated by existing ap-

proaches can easily outgrow a solver’s compute capability.

To address the above challenges, our solution intuition is to

circumvent the exponential growth of states associated with the

upscaling of dataplane programs to production level. Therefore,

we propose a new encoding approach (i.e., the gray components

in Figure 7) that can generate a “compacted” GCL representation

with a smaller number of variables and lower complexity, thus

ensuring the generated formula simple enough to solve. The en-

tire GCL composition and verification condition translation parts

straightforwardly follow Dijkstra’s classic way [10, 30], so we skip

the details. This section first describes our core sequential encoding

approach for P4 program (§4.1), then shows data structures encod-

ing, e.g., packet and table (§4.2), and new features encoding such as

inter-pipeline packet passing (§4.3).
4.1 Sequential Encoding
We propose a sequential encoding approach to encode the main

body of a data plane component (including parser, MAU, and de-

parser) into a compact GCL representation, i.e., Component GCL

Encoding in Figure 7. In §4.1, we use parser as an example (shown

in Figure 8) to first illustrate the key reason for state explosion and

then present how our sequential encoding works. This approach

also applies to encoding match-action dependencies across tables

in MAUs.

The state explosion problem. The parser in P4 uses a state ma-

chine model. As shown in Figure 8(a), a parser parses a TCP/UDP

packet with either an IPv4 or IPv6 header, and it has five states. If

we naively encode this state machine into if-else GCL statements,

the result would involve seven states, i.e., a tree structure with

21

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tian et al.

Ipv4:
 extract(ipv4);
 select (ipv4.proto){
 TCP: Tcp;
 UDP: Udp;
 }

Ipv6:
 extract(ipv6);
 select (ipv6.next){
 TCP: Tcp;
 UDP: Udp;
 }

Udp:
 extract(udp);

Tcp:
 extract(tcp);

extract(eth);
$Ipv4:=eth.type==IPV4;
$Ipv6:=eth.type==IPV6;

if ($Ipv4 == true):
 extract(ipv4);
 $Tcp:=ipv4.proto==TCP;
 $Udp:=ipv4.proto==UDP;

if ($Ipv6 == true):
 extract(ipv6);
 $Tcp:=ipv6.next==TCP;
 $Udp:=ipv6.next==UDP;

if ($Udp == true):
 extract(udp);

if ($Tcp == true):
 extract(tcp);

(b) Sequential encoding result

(a) An example parser state machine

Figure 8: Example for sequential encoding.

seven nodes. It is easy to learn such an encoding structure grows

exponentially as the number of states increases. The key problem is

that a tree-like GCL, unlike a state machine, has to explicitly embed

all possible execution paths, leading to inevitable state duplication.

In the worst case, a DAG with 𝑂 (𝑛) nodes can be expanded into

a tree with 𝑂 (2𝑛) nodes. In one of our production programs, for

example, the parser has only 30 states; however, due to the IP option

header, the expansion results in 1174 states and there are hundreds

of complex table dependencies and actions corresponding to each

of these states, potentially leading to out of memory.

Our algorithm. Our sequential encoding addresses this scalability
challenge. We observe that each state (e.g., rectangles in Figure 8(a))

can be visited at most once. Thus, we perform topological sorting

on the DAG, introduce ghost variables
1
to indicate the activation

of states, and encode the graph as a straight-line program (e.g.,
Figure 8(b)). This encoding has only𝑂 (𝑛) complexity. The algorithm

works as follows:

• (1) Given a state machine DAG, 𝑆 , we order all its states by

topological sorting [6] and put the result in a vector 𝐸.

• (2) For each state 𝑒𝑖 ∈ 𝐸, we look for all statements that will

result in state transitions (e.g., statements in select). We gather

its path condition and translate the transition into an assignment

to a ghost variable as below:

select (𝐶) {... V: L} ⇒ $L := 𝐶 == 𝑉

For example in Figure 8(b), the state transition statement

select(eth.type){IPV4:Ipv4}, is replaced by an assignment ex-

pression $Ipv4:=eth.type==IPV4.

• (3) Finally, except the ‘Start’ state, we enclose each state in an

if-statement, using its label as the entry condition. In Figure 8(b)

example, an if($Ipv4==true) is added to guard the second state.

In the end, E contains the straight-line program that encodes the

original DAG 𝑆 .

1
Ghost variables are assignable variables that appear in program encoding but do not

correspond to actual variables in the header or program, such as $Ipv4 in Figure 8(b)

By far, we sequentially encode a parser program. Given a state

machine in Figure 8(a), the sequential encoding algorithm results in

Figure 8(b). The chain of states represents the union of all possible

traces in the DAG, some states can be skipped based on the in-

put packet’s value. For example, if an IPv4 packet with TCP header

comes in, then $Tcp is true and $Udp is false, the UDP state is skipped

after the TCP state is visited. Comparedwith prior work, the sequen-

tial encoding algorithm achieves𝑂 (𝑛) complexity and significantly

speeds up the verification later. In the same IP option parser exam-

ple, the new encoding method reduces number of encoded states

from 1174 to 30.

Handling loops. The above algorithm has one assumption that

the state machine’s dependency graph is a DAG. However, loop

may exist when parsing complicated headers like TCP options.

Aquila introduces another approach to encode the entire loop into

one state and the rest of the graph is encoded via the sequential

encoding approach. In short, we first break the loop by removing

the transition to the root state (a state that has incoming edges from

outside the loop), then encode the states via sequential encoding,

and finally surround the encoded statement with a while loop in

the format of GCL. Similar to the sequential encoding algorithm,

the loop exits when the value monitored by the while loop is set to

false, and the followup state is applied based on other labels in the

loop. Due to limited space, see Appendix B.1 for details.

4.2 Data Structure Encoding
Besides sequential encoding, we also encode two important data

structures, table and packet, to further compress the resulting GCL.

Table encoding. In a P4 program, a table with multiple entries

can be treated as an ordered switch-statement where each entry

represents a case branch: a table entry’s match filed (i.e., condition)
and its corresponding action (i.e., branch body). In our production

program, tables may contain thousands of entries, encoding table

along with its entries naively with if-statements would easily result

in memory explosion. Thus, a memory-efficient table encoding is

important. More specifically, we encode the table via a two-step

approach: (1) use Action BitVector (ABV) to encode each entry in

the table to avoid branches and (2) use a tree like lookup algorithm

to encode the search operation among the ABVs.

Action BitVector (ABV). The ABV decouples the condition and

branch body by encoding the action index, action parameter into

a fixed-length bitvector. The entries of a table are encoded as a

list of match conditions and the corresponding ABVs. The table

apply operation is separated into (1) looking up the match condition

according to the matched field to get the first matched ABV, and

(2) applying the corresponding action based on the action and

parameter field of the ABV. This encoding decouples the match and

action operation, significantly reduces the memory footprint. More

details about the format and implementation of ABV can be found

in Appendix B.3.

ABV lookup. The naive solution of looking up the ABVs is to

use the ITE (If-Then-Else) statement and simulate the one-by-one

matching. to simulate the one-by-one matching. It generates deep

AND-OR nested expression, which is hard to verify. We instead

encode ABVs into a balanced lookup tree via the following formula:

22

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

𝐴𝐵𝑉𝑙,𝑟 = ite
(
𝑀𝑎𝑡𝑐ℎ

𝑙, 𝑙+𝑟
2

, 𝐴𝐵𝑉
𝑙, 𝑙+𝑟

2

, 𝐴𝐵𝑉 𝑙+𝑟
2
,𝑟

)
,

𝑀𝑎𝑡𝑐ℎ𝑙,𝑟 = 𝑀𝑎𝑡𝑐ℎ
𝑙, 𝑙+𝑟

2

∨𝑀𝑎𝑡𝑐ℎ 𝑙+𝑟
2
,𝑟
,

where ite is the If-Then-Else operator. This optimization reduces

the lookup complexity from 𝑂 (𝑛) to 𝑂 (𝑙𝑜𝑔(𝑛)).
Packet encoding. Previous approaches (e.g., p4pktgen [36] and

p4v [30]) model the input packet as a huge bitvector with a maxi-

mum length. Such an encoding method adds significant overhead

to the SMT solver. Because in the deparser, the header fields had to

be assigned back to the bitvector. Each assignment creates a new

copy of the bitvector in the final logic expression, quickly expand-

ing the memory cost. Aquila introduces a simple, key-value based

structure: encoding packet header operations as (key-value) assign-

ments, which gets rid of the huge vector copying issue. For exam-

ple, the packet operation extract(eth) is encoded as eth:=pkt.eth.

Key-value based encoding requires us to additionally maintain the

header order, which can be encoded as a sequence.

Packet encoding makes lookahead no longer trivial. Constraints

about the bits looked ahead in previous states should be considered.

We move this detail to Appendix B.2.

4.3 Encoding Other Features
Aquila can encode new features from P416 (e.g., inter-pipeline
packet passing and recirculation), and other data structures (e.g.,
hash). Please see Appendix B.4 for details.

5 AUTOMATIC BUG LOCALIZATION
Understanding the violated properties is not enough, since local-

izing bugs is tedious and time-consuming for our engineers. Prior

efforts were extensively proposed to localize bugs in C and Haskell

programs [7, 27, 40, 44, 53]; however, they do not fit in P4 programs

for the following reasons. First, existing work is unable to localize

bugs resulting from statement missing (e.g., Figure 4), which com-

monly existed in our development. Second, the general-purpose

language debugging tools cannot localize the bugs in P4-specific

semantics such as bugs in parser and lookahead.

The intuition of our solution is to first narrow down suspects

based on reported violations (§5.1), and then pinpoint the buggy

code snippets by simulating a fix for each suspect (§5.2). Our bug
localization approach not only localizes bugs for statement missing,

but also speeds up debugging process by leveraging table action as

granularity.

5.1 Finding Violated Assertion
When a violation is reported, the first step of bug localization is to

find all the violated assertions. Specifically, we first let the solver

only return the first violated assertion. Then, we remove it from

the specification and iterate𝑚 times to find all violated assertions.

For each assertion assert𝑖 , we add labels before𝑖 and after𝑖 before
and after the assertions, respectively. So the specification is finally

encoded as: before𝑖 ∧ (¬assert𝑖 ∨ (assert𝑖 ∧after𝑖 ∧ (before𝑖+1 · · ·))).
Such an expression guarantees that, if assert𝑖 is violated, the ex-
pression can be simplified into before𝑖 ∧ true. Thus, the satisfiability
of the above expression is only determined by before𝑖 . All the fol-
lowing variables (e.g., after𝑖) are irrelevant to satisfiability and do

control BugExample(md) {
action a1() { md.ttl = ipv4.ttl; }
action a2() { ipv4.ttl = md.ttl - 1; }
table t1() {
key = { ipv4.dst_ip : exact; } // table entry bug
actions = { a2; }

}
apply { a1(); t1.apply(); }

} // assert ipv4.ttl == @ipv4.ttl - 1

Figure 9: Localizing table entry bug.

not appear in the counterexample found by the solver, narrowing

down our search space later.

5.2 Bug Localization
We now localize the bug. Bug localization requires Aquila to point

out the potential locations that could potentially fix the viola-

tion [44, 53], such as replacing table entries and changing a state-

ment in the action granularity. A fix should correspond to a po-

tential bug location. Because one bug may have multiple fixes, our

goal is to report the minimal scope of program snippet that may

trigger the violation.

Preparation. Before localizing the bug, we first use SMT solver

to return a counterexample, which exhibits concrete values for all

the variables to trigger the violation. We assign these values to

the target program in order to “freeze” the input. Also, we record

the actions that the counterexample triggers. The preparation can

reduce the search space. Next, we run the following algorithms to

locate the bugs.

Table entry bug localization. A table entry bug means the table

does not behave as expected, such as incorrect table entry, and a

table entry missing. For example in Figure 9, table t1 has no entry,

and action a1 is never executed, and the assertion is violated. To lo-

calize this bug, our table entry bug localization algorithm first finds

the correct entries to rectify the table’s behavior. According to §4.2,
we can encode the table’s lookup result into the ABV and execute

corresponding actions. Thus, Aquila tries to find such entries by

replacing all the tables with variables and let the SMT solver search

a valid entry for each table. In Figure 9, for example, t1 is replaced

with a variable v1. If the solver can find such valid entries, then

we continue the next step to report the minimal set of potential

locations; otherwise, the bug should be in data plane. In this case,

the SMT solver finds a solution that matches the input packet’s

destination IP and action a2, which means the table entry is buggy.

To minimize the potential locations, for each table, we use an

indicator variable rep𝑖 to represent whether a table should be re-

placed with a function variable fv𝑖 . As a result, the table is en-

coded as 𝑡𝑖 = ite(𝑟𝑒𝑝𝑖 , 𝑓 𝑣𝑖 , 𝑒𝑖), where 𝑒𝑖 is the encoded table entries
(ABV). Now, we solve the same problem with an optimization goal

MAXSAT𝑖¬𝑟𝑒𝑝𝑖 , obtaining a minimal subset of table entries poten-

tially triggering the bug.

Localizing bugs in P4 program. Intuitively, we simulate a fix by

overwriting variables in the suspect actions and checking whether

the violation could be fixed. We use SMT solver to find a valid fix.

The algorithm works as follows:

• (1) Given the counterexample in the preparation stage and vio-

lated assertion 𝑣 (§5.1), we employ a reverse taint-analysis ap-

proach that checks each action in the program backward, and

23

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tian et al.

identify and put the action that potentially causes 𝑣 in a list𝐴. In

Figure 4, because ipv4.ttl assertion is violated, we use a trace

list to record correlated variables and actions, such as ipv4.ttl

and ig_md.ttl.

• (2) We continue filtering the actions in 𝐴 by checking the causal-

ity between each action 𝑎𝑖 in 𝐴 and the violated assertion 𝑣 . For

each 𝑎𝑖 , we use the SMT solver to check whether 𝑣 implies the

execution of 𝑎𝑖 ; if not, we remove 𝑎𝑖 from 𝐴. Finally, we get a

new list 𝐴′
. This step mainly aims at reducing false positives in

our debugging result.

• (3) Wemaintain a variable list 𝑅, which contains all variables that

appeared in 𝑣 . We now check each action 𝑎′
𝑖
in𝐴′

backward from

the end of the program. For each 𝑎′
𝑖
, we put all of its variables in𝑅.

Then, for each 𝑟𝑖 ∈ 𝑅, we create a new statement 𝑠 that overwrites

𝑟𝑖 with an arbitrary “havoc” value, and then insert 𝑠 below 𝑎′
𝑖
.

We use SMT solver to check whether the new program (i.e., with
the newly added statement 𝑠) fixes the violated assertion 𝑣 . If so,

this means the action is a candidate root cause for the violated

assertion. Such a design enables us to find the location of missing

statements. To minimize the location scope, we can again use

the minimal satisfiability optimization of SMT solver to get a

minimal set.

• (4) Until all actions in𝐴′
are checked. We have multiple potential

bug root causes for the violation.

An example for localizing statement missing bug. We now

use Figure 4 to illustrate how do we localize the statement miss-

ing bug. Suppose we meet a violation and get a counterexample:

when ipv4.ttl==1, the TTL computation is wrong. In the prepa-

ration phase, we record actions a1 and a3, because a2 is removed

because it does not trigger the counterexample. In the bug local-

ization phase, (1) we check each action backward in Figure 4 pro-

gram. Because actions a1 or a3 may result in the violated assertion

ipv4.ttl==ipv4.ttl-1, our list 𝐴 = {𝑎1, 𝑎3}. (2) 𝐴 = 𝐴′
in this ex-

ample, because the violated assertion implies both the actions. (3)

For each action in 𝐴′
, we simulate the “fix” for the violated as-

sertion. Due to limited space, we skip previous fixing steps and

go directly to line 5. In line 5, for variable ig_md.ttl, we insert

one new statement ig_md.ttl=havoc_i below a1, which overwrites

ig_md.ttl in a1. The new program does not have the violation,

which means line 5 or line 6-8 are potential locations for the bug,

because line 9 is another action. By optimization mentioned earlier,

we can narrow down the scope from line 6-8 to line 7-8. This de-

bugging result means we can fix the bug by two ways: (1) adding

ig_md.ttl=ig_md.ttl-1 in line 7 or 8; and (2) changing the statement

in a1 into ig_md.ttl=ipv4.ttl-1.

The “accuracy” of bug localization. In practice, the bug localiza-

tion of Aquila may not always be just one line in data plane code

or one table in the control plane; the result may contain a block of

data plane program or multiple tables for complex switch functions.

Thus, the bug localization of Aquila aims to narrow down the scope

of potential bugs in the “best effort” way. For a data plane pro-

gram violating specification, it may have multiple potential buggy

sources, and fixing one of them would enable the program to meet

the specification; thus, our approach can tell the programmer a

small enough scope for the potential bug.

if (hdr.x != 0) {
 hdr.y = 2;
 hdr.x = 0;
}

{Assume hdr.x != 0;
 let hdr.y := 2;
 let hdr.x := 0;}[]
{Assume hdr.x == 0}

Input:
hdr.x == arg1;
hdr.y == arg2;

Output:
hdr.x == IF(arg1 != 0) THEN 0 ELSE arg1;
hdr.y == IF(arg1 != 0) THEN 2 ELSE arg2;

hdr.x := h1;
hdr.y := h2;

hdr.x := arg1;
hdr.y := arg2;

SA SX

A(P)

X(P)

Semantic Generator Aquila's Validator

Semantic
Translator

Aquila

hdr.x := (arg1 != 0) ? 0 : arg1;
hdr.y := (arg1 != 0) ? 2 : arg2;

hdr.x := h1';
hdr.y := h2';

SA' SX'

P4 Program

Assume:

Assert:

Figure 10: Self validation of Aquila. We put Assume, A(P),
and Assert in a solver to verify equivalence.

6 SELF VALIDATION OF AQUILA
Bugs in Aquila are headaches in reality, as they significantly affect

the confidence of our network engineers in the verification result.

TomakeAquila bug-free, themost rigorousway is to build Aquila by

a fully verified toolchain and formally verifying the implementation

logic of Aquila, which however are not amenable for an industry-

level system. Instead, we take a more practical perspective to ensure

the correctness of Aquila implementation. Given the fact that GCL

and its verification via SMT solvers were well studied with various

tools available for use in the past ten years, we have confidence in

including them in our trusted computing base; on the contrary, the

component encoding part in Aquila is error-prone based on our

experience. Thus, in Aquila implementation, we trust the whole-

switchGCL composition, verification condition generation and SMT

solver (white boxes in Figure 7), and mainly check implementation

bugs in the component encoding (gray boxes in Figure 7).

To validate the implementation of Aquila, we take a translation

validation [34, 41] approach: we employ alternative tools to gen-

erate semantics for the P4 program, and compare it with the GCL

extracted by Aquila. If the two are equivalent, we have confidence

that Aquila is implemented correctly; otherwise, we examine the

discrepancy and identify bugs based on returned counterexample.

Refinement proof. We employ refinement proof [33, 39] (see fig-

ure below) to construct our translation validation.

𝑠𝑋 𝑠′
𝑋

𝑠𝐴 𝑠′
𝐴

X(P)

R

A(P)

R

Given a P4 program 𝑃 is encoded in two different formal lan-

guages. We use 𝐴(𝑃) to denote the one produced by Aquila and

𝑋 (𝑃) to denote an alternative representation. Their equivalence

means the observable effects of 𝐴(𝑃) and 𝑋 (𝑃), i.e., its processing
on packet states, should be the same. In particular, it relies on a

relation 𝑅 that connects equivalent states that describe the same

packet but in different formal languages. Assume that 𝐴(𝑃) tran-
sitions from an initial state 𝑠𝐴 to a final state 𝑠 ′

𝐴
. Starting from an

equivalent initial state 𝑠𝑋 such that 𝑅(𝑠𝐴, 𝑠𝑋) holds, 𝑋 (𝑃) must

transition to a final state 𝑠 ′
𝑋
where 𝑅(𝑠 ′

𝐴
, 𝑠 ′
𝑋
) also holds. Such proof

validates that 𝐴(𝑃) and 𝑋 (𝑃) has equivalent effects on all packets.

How to construct a refinement proof in ourHoare-style frame-
work? By looking 𝐴 as the representation generated by Aquila, we

can define pre and post-conditions for a given program, and it

checks whether the following holds:

24

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

∀𝑠𝐴, 𝑠 ′𝐴, pre(𝑠𝐴) ∧ (𝑠𝐴
𝐴(𝑃)
−−−−→ 𝑠 ′𝐴) ⇒ post(𝑠 ′𝐴). (1)

We thus need to seek another representation for 𝑃 , i.e., 𝑋 (𝑃),
to validate the trustworthiness of 𝐴(𝑃), by defining pre(𝑠𝐴) and
post(𝑠 ′

𝐴
) as the following way:

pre(𝑠𝐴) ≡ 𝑅(𝑠𝐴, 𝑠𝑋),
post(𝑠 ′

𝐴
) ≡ 𝑅(𝑠 ′

𝐴
, 𝑠 ′
𝑋
) ∧ (𝑠𝑋

𝑋 (𝑃)
−−−−→ 𝑠 ′

𝑋
) .

(2)

Self validator of Aquila. The key challenge in building a self

validator is semantic translator (gray box in Figure 10), rather than

alternative representation selection or semantic generator. In our

implementation, we chose a recent effort, Gauntlet [43], to provide

alternative representation, because it defines a big-step semantics

for each individual component (parser, match-action unit, deparser).

This enables us to implement semantic translator easier.

As shown in Figure 10, we use Gauntlet as the semantic generator

to translate a given P4 program 𝑃 into a representation 𝑋 (𝑃)—it
computes symbolically the output value of every header field. This

leads to a straightforward refinement relation between 𝑠𝐴 and 𝑠𝑋 :

we simply require that every header field in 𝑠𝐴 is identical to its

counterpart in 𝑠𝑋 .

Building semantic translator is non-trivial. It is used to translate

the representation 𝑋 (𝑃) into the precondition and postcondition

for 𝐴(𝑃) in the format of guarded command language, i.e., Assume

and Assert in Figure 10. Intuitively, we construct an expression

representing equation (1), and thus we can check the validation by

using SMT solver to check it. Due to limited space, see Appendix C

for more details.

Identifying bugs. Aquila’s self validator cannot directly pinpoint

the implementation bugs; thus, we get a counterexample when

inequivalence occurs, and then analyze where are bugs in a semi-

automatic way.

7 DEPLOYMENT EXPERIENCE
Aquila has been used by Alibaba’s network engineers to verify the

correctness of data plane programs in the edge networks for half a

year. It has successfully guided our network engineers in avoiding

many potential critical failures. After Aquila is used online, no

service failure resulting from data plane bugs occurred so far.

This section first presents representative scenarios and bugs in

our experience with Aquila (§7.1). Then, we show example bugs

detected by Aquila’s self validation (§7.2).

7.1 Scenarios and Bugs
Bugs detected by Aquila in the past months mainly include: (1)

unexpected program behaviors (e.g., invalid header and out-of-

register), (2) incorrect table entries, (3) incorrect service-specific

properties (e.g., buggy actions, and incorrect packet processing

logic), and (4) wrong call sequence of multi-pipeline.

This section selects three representative scenarios, including

a single P4 gateway program, a hyer-converged data plane (i.e.,
Figure 2), and data plane update, to illustrate the practicality of

Aquila. Table 2 compares Aquila’s specification complexity with

two existing tools p4v and Vera in the verification of these three

Table 2: Comparing lines of specifications.
Scenario 1 Scenario 2 Scenario 3

Aquila O(10) O(100) O(100)

p4v O(100) O(1000) O(1000)

Vera [1, 2] Vera’s APIs are not flexibly to express our specifications

scenarios. We reproduced p4v system [30], and used Vera open-

source prototype [1, 2]. Note that in following scenarios, both p4v

and Vera ran out of memory.

Scenario 1: Traffic statistics for monitoring. Our monitoring

system for edge networks relies on statisticizing the incoming busi-

ness traffic. For a given business traffic, it should be first forwarded

by a metropolitan router to a VXLAN gateway. Then, this VXLAN

gateway copies these packets and sends the original packets back

to that metropolitan router. For the copied packets, the VXLAN

gateway encapsulates and sends them to a collection of servers for

traffic statistics. These servers have been deployed programs re-

sponsible for classifying the received packets into different groups

based on their business. Because the rapid traffic growth brought

big pressure to these servers, we implemented the traffic statistic

logic in P4 switches to replace those servers.

We used Aquila to verify this P4 program, which is important. A

small error would mess up our monitoring system. The specifica-

tion includes: (1) when a known type of packet 𝑝 comes, whether

the number and states of 𝑝 is statisticized correctly, (2) when a new

(unknown type of) traffic packet 𝑞 comes, whether a correct meta-

data is successfully added to 𝑞’s header, and (3) whether 𝑞’s fields

are evaluated correctly. For example, whether each packet with

destination IP address 10/8 is successfully added a queue length

metadata information in its header and whether the DSCP value of

each packet destinating 20/8 is changed to be three.

Aquila detected two data plane bugs in one second. The first

bug was detected in the old traffic handling component of VXLAN

gateway P4 program. As mentioned above, this component should

send the original packets 𝑝 back to themetropolitan router, enabling

the backend servers to handle these packets normally; however,

in this bug case, the program incorrectly sets the metadata of the

original traffic flow packet, i.e., 𝑝 , to zero, causing the backend

servers to read the incorrect state of 𝑝 . The second bug is caused by

a “copy-and-paste” error: when our engineers directly copied and

pasted the register value assignment in our P4 program responsible

for statisticizing the incoming traffic flow, they forgot to change

some of the pasted P4 code.

Scenario 2: Hyper-converged P4 CDN. In our edge networks,

a CDN PoP includes three components: the edge servers provid-

ing content delivery service, the middle-boxes providing network

functions such as load balancer and DDoS defense, and L3 switches

connecting the CDN to ISP network. As motivated in §2, our oper-
ators put the functions of middle-boxes (including scheduler, load

balancer, firewall, and DDoS defense) and L3 switch into a sin-

gle programmable switch, as shown in Figure 2, where the most

packets are processed by programmable ASICs, and the rest (e.g.,
cache-missed HTTP requests) are forwarded to switch CPUs.

We used Aquila to verify the CDN’s hyper-converged P4 pro-

gram with a set of correctness specifications, including (1) each

function’s correctness, (2) undefined behavior checking, (3) the cor-

rectness of values passed among different pipelines, and (4) whether

25

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tian et al.

recirculation number is correctly bounded. A critical undefined be-

havior bug was detected. As shown below, for an input packet that

does not have an ipv4 header and does not have ipv6 header either,

e.g., an ARP packet, the packet should apply the table egress_ipv4,

if this packet sets mac_config_on=false.

if (ipv6.isValid()) {
egress_ipv6.apply(ipv6, eg_state);

} else if (!mac_config_on || ipv4.isValid()) {
egress_ipv4.apply(ipv4, eg_state);

}

An undefined behavior would occur because this packet does

not have an ipv4 header. Aquila detected the violation within 40.1

seconds, and localized this bug in one minute.

Another bug we detected in this scenario existed in deparser

program. The engineer wanted to reassemble the packet via a pre-

defined struct that contains the necessary headers. It was intended

to be used elsewhere so the header order is not carefully designed

to align with the order in the packet. The engineer failed to realize

this issue and unsurprisingly, the returned packet is wrong.

Scenario 3: Checking bugs before updates.Due to our business
diversity, the network engineers are frequently required to update

data plane programs to meet the service needs. However, the pro-

gram update is one of the major root causes of significant service

disruptions; thus, we use Aquila to verify our updates. For the up-

date scenarios, we typically use the original specification, because

we want to ensure the entire program behaves the same before and

after updates.

In an important update event, we needed to exchange the pipelines

of load balancer and switch, which means we move switch.p4 to

Pipeline 1 and loadbalancer.p4 to Pipeline 0 in Figure 2, respec-

tively. This update requirement comes from the following reason.

The load balancer pipeline contains packet processing functions

that involve virtual network encapsulation/decapsulation, such as

network address translation (or NAT). They may change the for-

warding source or destination address of a packet, which the switch

pipeline relies on. For example, NAT translates the destination ad-

dress from a public IP to an internal IP, which the switch pipeline

uses to forward the packet to the correct server. Thus, our engineers

were required to place loadbalancer.p4 in front of switch.p4; oth-

erwise, intricate metadata has to be used to make sure the switch

forwarding behavior is correct.

Such an update task required us to modify many parts of P4

programs, such as the input packet format of load balancer program,

and adding recirculation to switch. It is prone to causing functional

inconsistency before and after the update. Aquila detected a critical

bug. We have two tables, an ACL table 𝑎, which accepts IP address

10.0.1/24 but drops IP address 20.0.1/24, and a forwarding table 𝑏

which changes the IP address in a packet header from 10.0.1/24 to
20.0.1/24.2 Before the update, a packet sent to IP address 10.0.1/24
can be successfully transferred into a packet with destination IP

20.0.1/24 due to table 𝑏; however, this update moved 𝑏 in front of 𝑎,

so that 𝑏 first changes the packet’s IP from 10.0.1/24 to 20.0.1/24,
and then the packet is dropped by table 𝑎’s ACL rules. Once such an

update is committed online, all traffic destinating 10.0.1/24 would
be blocked. It is hard to manually detect such a bug due to complex

logic across pipelines.

2
The IP addresses have been anonymized for confidentiality reasons.

7.2 Self Validation Experience
The majority of bugs in Aquila were detected in the early stage of

Aquila development. The self-validator helped us identify tens of

Aquila implementation bugs in total, which were caused by reasons

such as language misunderstanding, incorrect function implemen-

tation, and chip-specific feature misunderstanding. We also met

bugs in the alternative representation implementation. Because

Aquila’s verification results do not contain any false positive in

recent months, we believe the self validator successfully assisted

us to tune the correctness of Aquila implementation. We pick two

bug examples to explain below.

Languagemisunderstanding. The developers of Aquila maymis-

understand or ignore some features of P4 language, implicitly in-

jecting bugs in Aquila. For example, P4 allows using annotation

@defaultonly to restrict an action. The initial version of Aquila ig-

nored this feature, which caused a correct program to violate its

specification.

Function implemented incorrectly. Function-level implemen-

tation bugs accounted for the majority of Aquila’s bugs. Some of

the functional bugs were tricky to be found. For example, in our

initial attempt, our encoding module failed to well handle empty

states, implicitly returning headers that are already extracted. In

other words, this bug treated an empty state as the ‘accept’ state,

causing the parser encoding to accept more packets than its actual

code. The self validator revealed this subtle inequivalence in the

parser, which is very unlikely if we rely on human code review.

8 PERFORMANCE EVALUATION
All of our experiments were conducted in a container with 32GB

RAM and one 2.5GHz CPU core, with Z3 4.8.5 installed as an SMT

solver. We used the end-to-end verification time to evaluate our

performance, which includes the parsing, encoding and verification

process.

8.1 Benchmark
We chose twelve P4 programs, 8 open-sourced and 4 private ones,

to compare the performance of Aquila with Vera and p4v. We asked

them to check the invalid header access bugs because it is a good

benchmarking property [30]. The chosen programs had at least one

such bug. We recorded the time to find the first bug (by checking all

assertions together) and all bugs (by checking each assertion one

by one) and set 2 hours as the timeout threshold. Note that in all

experiments, we make no assumption about the table entries, regis-

ters and input packet. Also in [30], p4v only recorded the execution

time of finding the first bug in the Switch BMv2 program with

INT module disabled, we modified our own p4v implementation to

find all bugs. As shown in Table 3, Aquila could report bugs within

one second for small programs, and within one minute for large

programs. Even for the largest program, Aquila only needed 4.8

Gigabytes of memory. As a comparison, Vera took a significantly

longer time to verify the small programs, and p4v run out of mem-

ory for large programs due to lack of scalable encoding approaches.

We also observed a higher memory footprint when finding the

first bug, because Aquila encoded all the assertions at once and

maintained more states.

26

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Table 3: Comparing verification time and memory consumption (OOT - Out of Time, OOM - Out of Memory).

Program LoC Pipes Parser Tables Time (s) (Finding first/all bugs) Memory(GB) (Finding first/all bugs)
States Aquila p4v Vera Aquila p4v Vera

Simple Router 131 1 3 4 0.01 / 0.02 0.01 / 0.02 0.42 / 0.45 0.1 / 0.2 0.1 / 0.2 0.1 / 0.1

NetPaxos Acceptor [8] 185 1 5 4 0.01 / 0.09 0.01 / 0.17 9.71 / 9.71 0.1 / 0.2 0.1 / 0.2 0.2 / 0.3

NetPaxos Coordinator 148 1 5 2 0.01 / 0.03 0.01 / 0.06 4.44 / 6.70 0.1 / 0.2 0.1 / 0.2 0.3 / 0.8

NDP [22] 224 1 4 7 0.01 / 0.04 0.01 / 0.06 0.50 / 0.51 0.1 / 0.2 0.1 / 0.2 0.1 / 0.1

Flowlet Switching 237 1 4 6 0.01 / 0.04 0.02 / 0.06 2.75 / 2.94 0.1 / 0.2 0.1 / 0.2 0.3 / 0.3

NetCache [26] 538 1 17 96 0.17 / 9.56 0.22 / 16.1 0.90 / 241 0.1 / 0.4 0.1 / 0.5 0.1 / 5.4

Switch BMv2 w/o INT 5036 1 59 104 1.26 / 290 197 / OOT 13.5 / OOT 0.4 / 0.7 10.5 / OOT 2.5 / OOT

Switch BMv2 5599 1 64 120 1.41 / 347 OOM / OOM 226 / OOT 0.5 / 0.8 OOM / OOM 12.7 / OOT

Switch from vendor 5453 2 30 141 20.1 / 1286 OOM / OOM Error / Error
1

2.5 / 1.6 OOM / OOM Error / Error

Production Program 1 > 6000 4 41 > 150 23.7 / 558 OOM / OOM Error / Error 2.5 / 2.6 OOM / OOM Error / Error

Production Program 2 > 6000 4 47 > 150 25.2 / 733 OOM / OOM Error / Error 2.9 / 2.6 OOM / OOM Error / Error

Production Program 3 > 2000 6 114 > 120 41.3 / 3574 OOM / OOM Error / Error 4.8 / 2.7 OOM / OOM Error / Error

2
Vera [1, 2] only supports P414 while the programs are written in P416 . Even if it supports P416 , we infer it would be OOT from Switch BMv2 results.

	0

	50

	100

	150

	200

1 2 3 4 5

Ti
m
e	
(s
ec
on
ds
) w/o	bugs

w/	bugs

10

100

1k

Timeout

1k 2k 3k 4k 5k

Ti
m
e	
(s
ec
on
ds
) ABV+Opt

ABV
Naive

	1
	1.5
	2

	2.5
	3

1 2 3 4 5

M
em
or
y	
(G
B
)

Number	of	copies

(a) Program complexity

	1.2
	1.4
	1.6
	1.8
	2

1k 2k 3k 4k 5k

M
em
or
y	
(G
B
)

Number	of	additional	table	entries

(b) Table entries.
Figure 11: Scalability evaluation.

We used two Switch BMv2 programs, one with the INT module

enable and one without. The INT module contains a complex parser

module and the additional complexity caused p4v to run out of

memory. Vera had a similar pattern that the added INT module

increases the verification time by 16× and memory by 5×. On the

contrary, due to the sequential encoding, this additional complexity

only adds 10% overhead in time and 25% inmemory to Aquila.While

Vera cannot verify our production programs, since it only supports

P414, we infer it would be OOT according to Switch BMv2’s result,

whose P416 version is a part of our production programs.

8.2 Scalability
The performance of Aquila is directly affected by the complexity

of the encoded GCL representation, which is affected by the com-

plexity of the input program and the size of the data structures, e.g.,
the number of table entries. To evaluate Aquila’s scalability, we

conducted two experiments based on a vendor-provided switch.p4

program (called switch-T) with thousands lines of code.

The first experiment evaluated the performance under differ-

ent sizes of the program. Due to the complexity of the mapping

between the P4 program and encoded GCL, it is hard to evaluate

the scalability by comparing different programs. Instead, we con-

structed a huge P4 pipeline by connecting 𝑘 switch-T programs,

where 𝑘 ranges from 1 to 5. For each 𝑘 , we checked two versions,

one without bug and one with bugs, and reported the verification

time and memory usage. Figure 11a shows even for the largest case

(five switch-T connected), Aquila finished verification within 200

seconds, and consumed 3GB memory.

Table 4: Bug localization time and precision.

Scale Wrong Entry Code Missing Code Error
Time (s) Prec. Time (s) Prec. Time (s) Prec.

Large 31.2 100% 164 96.0% 3.01 100%

Medium 21.2 100% 83.2 95.7% 2.92 100%

Small 17.1 100% 68.6 94.8% 1.47 100%

The second experiment focused on the number of entries in the

tables and influence of the ABV encoding. We installed different

number of entries in the tables and compared the performance

against two inferior approaches: the naive encoding that checks

entries one by one through if-else branching and the ABV with-

out lookup optimization. As shown in Figure 11b, as the number

of entries increases, Aquila’s verification time grows logarithmi-

cally, with the 𝑂 (log𝑛) lookup optimization complexity. The naive

approach triggers time out after only 4k entries. The lookup opti-

mization further improved the verification time by up to 6×. Also,
across all three approaches, memory only grew mildly, suggesting

that the table lookup is a compute intensive job.

8.3 Bug Localization
Finally, we evaluated the bug localization. Based on switch-T pro-

gram, we built three versions: Large, which is the original switch-T

program; Medium, with DTEL and sFlow function disabled; Small,

with QoS, mirroring, L2 forwarding and IPv6 disabled additionally.

We injected three bugs, one with a wrong entry installed, one with

a statement missing, and one with a wrong statement. To evaluate

the performance of the localization algorithm, we introduced a

metric called precision. The precision denotes the percentage of

potential locations that Aquila can filter out. This value directly

reflects the amount of effort we can save. A 100% precision means

Aquila can accurately locate the bug with no false positive. Table 4

shows Aquila located wrong entry and code error bugs with 100%

precision in a few seconds. For the code missing bugs, because there

might be multiple potential bug locations, Aquila took longer time,

but is still able to maintain the precision around 95%.

9 LESSONS AND DISCUSSIONS
In this section, we share our lessons in designing and deploying

Aquila, and also discuss limitations of Aquila and open questions.

27

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tian et al.

Specifying service-specific properties.Most (about 90%) of our

specifications are service-specific properties. For example, (1) any

packet sending to 10.0.1/24 should not have VXLAN filed in its

header, (2) all packets from 20.1/16 should remain the DSCP val-

ues after leaving the current programmable switch, and (3) table

arp_𝑡 should not be hit by packets destinating 12.0.2/24. Our expe-
rience shows specifying the above properties is much more chal-

lenging than undefined P4 behaviors such as invalid header and

out-of-register checking. This is because our engineers should well

first understand these service-specific properties and then express

them in a correct and complete way. While using LPI saves our

engineers’ property-specifying time, an automatic specification

inferring approach based on example-based synthesis [3, 21] might

be a potential direction for building more efficient way to express

service-specific properties.

Verification or testing? Verification can offer rigorous correct-

ness checking by modeling program of interest and using some

prover to prove whether the target program is bug-free; on the

contrary, testing techniques provide input-output checking based

on the limited test case coverage. In Alibaba network, we need

both of above two techniques. Specifically, we are using verification

techniques (i.e., Aquila) to ensure the correctness of P4 program

in the perspective of packet processing logic; however, Aquila is

not able to detect bugs such as compiler and ASIC-specific bugs.

Thus, how to build a full-coverage testing technique capable of

automatically detecting compiler, hardware and performance bugs

in P4 programs is highly needed and is still an open question.

Distributed data plane verification. In Alibaba’s edge networks,

each programmable switch’s data plane program is individual; thus,

Aquila is only focused on verifying data plane program on a sin-

gle switch. As increasingly more new data plane applications are

launched in the future, we believe distributed data plane programs
may play important roles. A distributed data plane program means

multiple programmable switches, where switches’ data plane pro-

grams are different, coordinately work together to process packets

for some purpose. For example, a super big table that may not

be put in a single switch’s ASIC can be split across multiple pro-

grammable switches [16]. Verifying such a distributed data plane

program—even with heterogeneous underlying ASICs and program-

ming languages—would need to address more challenges.

Automatically bug repairing. While Aquila can detect the po-

tential violations and automatically localize bugs, Aquila is not able

to fix the detected bugs. Automatically repairing bugs in data plane

programs is very challenging, because (1) the data plane program

may have very complex functional logic, (2) a buggy program may

have many different fixing solutions, and (3) it is also non-trivial to

avoid side effects when producing a potential fixing plan. Thus, we

leave how to automatically repair bugs in the future work.

Aquila’s usage phase. In Alibaba network, we are mainly using

Aquila in two phases: (1) checking data planes during service run-

time and (2) checking new data plane programs before updating

them in the network. In the service runtime, we aim to use Aquila

to check newly-required properties or check data planes if any new

table entries are installed. In the update phase, we use Aquila to en-

sure that the updated data planes still meet our required properties

ahead of time.

10 RELATEDWORK
Programmable data planes checking. There have been several

verification techniques proposed to check correctness of programmable

data planes. For example, p4v [30] employs a classic verification

approach to formally check P4 program correctness in terms of any

table entry. Vera [48] leverages symbolic execution to ensure the

correctness of a network snapshot (including both P4 programs and

table entries). bf4 [11] targets undefined P4 behavior prevention

in runtime by automatically inferring assertions and preventing

table rules from potentially triggering bugs. bf4 is a good comple-

mentary to Aquila, since Aquila does not explicitly prevent bugs

in runtime. p4-assert [35] and p4-NOD [32] translate P4 code into

other language models (e.g., C and NoD) which are verifiable by the

existing frameworks. In addition, p4pktgen [36] and Netdiff [12]

use testing techniques to check programmable data planes.

Network configuration verification.Many efforts were proposed

to verify the correctness of network configuration—i.e., whether
a given network configuration meets the operation specification.

These efforts can be classified into two groups: control plane verifi-

cation [4, 13, 15, 19, 20, 38, 42, 47, 51, 52, 55, 56], and data-plane for-

warding verification [5, 23–25, 28, 29, 31, 37, 49, 50]. These systems

focused on checking the properties such as routing equivalence

and packet reachability, which are different from Aquila’s goal.

Data plane program synthesis. The state-of-the-art efforts in

synthesizing data plane program for programmable switchingASICs

are mainly focused on building compilers for chip-specific code

generation. For example, Lyra [16] and 𝜇P4 [46] propose high-

level languages for engineers to easily express their programs and

the compilers generate chip-specific code such as P4 and NPL.

Domino [45] was built to support stateful processing, enabling a

wide class of data plane algorithms; as an enhancement effort, Chip-

munk [17, 18] leverages the synthesis technique to generate more

cases than Domino, and the generated code needs fewer resources

than Domino. Dejavu [54] targets compiling a hyper-converged

function-chain into a single ASIC.

11 CONCLUSION
This paper presents Aquila, the first-ever reported practically usable

verification system for programmable data planes in Alibaba. To

achieve the practical usage goal, Aquila makes four contributions:

(1) a language for engineers to express intent with ease; (2) a new

encoding approach making verification scalable to production-scale

data planes; (3) a bug localization approach capable of accurately

finding bugs resulting in violation; and (4) a self-validator for iden-

tifying issues in Aquila. Aquila has been used to verify Alibaba’s

programmable edge networks for half a year, and it successfully

prevented many potential failures resulting from data plane bugs.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We thank our shepherd, Stefano Vissicchio, and SIGCOMM review-

ers for their insightful comments. Bingchuan Tian and Chen Tian

are supported in part by the National Natural Science Foundation

of China under Grant Numbers 61772265 and 62072228. Jiaqi Gao

and Minlan Yu are supported in part by NSF grant CNS-1834263.

28

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] Vera old version: P4 program verification. https://github.com/dragosdmtrsc/

oldvera.

[2] Vera2: P4 program verification. https://github.com/dragosdmtrsc/vera2.

[3] An, S., Singh, R., Misailovic, S., and Samanta, R. Augmented example-based

synthesis using relational perturbation properties. Proc. ACM Program. Lang. 4,
POPL (2020), 56:1–56:24.

[4] Beckett, R., Gupta, A., Mahajan, R., and Walker, D. A general approach to

network configuration verification. In ACM SIGCOMM (SIGCOMM) (2017).
[5] Beckett, R., Mahajan, R., Milstein, T. D., Padhye, J., and Walker, D. Don’t

mind the gap: Bridging network-wide objectives and device-level configurations.

In ACM SIGCOMM (SIGCOMM) (2016).
[6] B.Kahn, A. Topological sorting of large networks. Commun. ACM 5, 11 (1962),

558–562.

[7] Christakis, M., Heizmann, M., Mansur, M. N., Schilling, C., and Wüstholz,

V. Semantic fault localization and suspiciousness ranking. In 25th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (2019).

[8] Dang, H. T., Sciascia, D., Canini, M., Pedone, F., and Soulé, R. Netpaxos:

Consensus at network speed. In ACM SIGCOMM Symposium on SDN Research
(SOSR) (2015).

[9] de Moura, L. M., and Bjørner, N. Z3: An efficient SMT solver. In 14th Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) (2008).

[10] Dijkstra, E. W. Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM 18, 8 (1975), 453–457.
[11] Dumitrescu, D., Stoenescu, R., Negreanu, L., and Raiciu, C. bf4: towards

bug-free P4 programs. In ACM SIGCOMM (SIGCOMM) (2020).
[12] Dumitrescu, D., Stoenescu, R., Popovici, M., Negreanu, L., and Raiciu, C.

Dataplane equivalence and its applications. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2019).

[13] Fayaz, S. K., Sharma, T., Fogel, A., Mahajan, R., Millstein, T., Sekar, V., and

Varghese, G. Efficient network reachability analysis using a succinct control

plane representation. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2016).

[14] Flanagan, C., and Saxe, J. B. Avoiding exponential explosion: Generating

compact verification conditions. In 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL) (2001).

[15] Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Maha-

jan, R., and Millstein, T. A general approach to network configuration analysis.

In 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI) (2015).

[16] Gao, J., Zhai, E., Liu, H. H., Miao, R., Zhou, Y., Tian, B., Sun, C., Cai, D., Zhang,

M., and Yu, M. Lyra: A cross-platform language and compiler for data plane

programming on heterogeneous ASICs. In ACM SIGCOMM (SIGCOMM) (2020).
[17] Gao, X., Kim, T., Varma, A. K., Sivaraman, A., and Narayana, S. Autogenerating

fast packet-processing code using program synthesis. In 18th ACM Workshop on
Hot Topics in Networks (HotNets) (2019).

[18] Gao, X., Kim, T., Wong, M. D., Raghunathan, D., Varma, A. K., Kannan, P. G.,

Sivaraman, A., Narayana, S., and Gupta, A. Switch code generation using

program synthesis. In ACM SIGCOMM (SIGCOMM) (2020).
[19] Gember-Jacobson, A., Viswanathan, R., Akella, A., and Mahajan, R. Fast

control plane analysis using an abstract representation. In ACM SIGCOMM
(SIGCOMM) (2016).

[20] Giannarakis, N., Beckett, R., Mahajan, R., and Walker, D. Efficient veri-

fication of network fault tolerance via counterexample-guided refinement. In

International Conference on Computer Aided Verification (2019), Springer.

[21] Gulwani, S. Automating string processing in spreadsheets using input-output

examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL) (2011).

[22] Handley, M., Raiciu, C., Agache, A., Voinescu, A., Moore, A. W., Antichi, G.,

and Wójcik, M. Re-architecting datacenter networks and stacks for low latency

and high performance. In ACM SIGCOMM (SIGCOMM) (2017).
[23] Horn, A., Kheradmand, A., and Prasad, M. R. Delta-net: Real-time network

verification using atoms. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI) (2017).

[24] Jayaraman, K., Bjørner, N., Outhred, G., and Kaufman, C. Automated analysis

and debugging of network connectivity policies. In Technical Report MSR-TR-
2014-102 (2014).

[25] Jayaraman, K., Bjørner, N., Padhye, J., Agrawal, A., Bhargava, A., Bisson-

nette, P. C., Foster, S., Helwer, A., Kasten, M., Lee, I., Namdhari, A., Niaz, H.,

Parkhi, A., Pinnamraju, H., Power, A., Raje, N. M., and Sharma, P. Validating

datacenters at scale. In ACM SIGCOMM (SIGCOMM) (2019).
[26] Jin, X., Li, X., Zhang, H., Soulé, R., Lee, J., Foster, N., Kim, C., and Stoica,

I. Netcache: Balancing key-value stores with fast in-network caching. In 26th
Symposium on Operating Systems Principles (SOSP) (2017).

[27] Jose, M., and Majumdar, R. Cause clue clauses: error localization using maxi-

mum satisfiability. In 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI) (2011).
[28] Kazemian, P., Varghese, G., and McKeown, N. Header space analysis: Static

checking for networks. In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI) (2012).

[29] Khurshid, A., Zhou, X., Zhou, W., Caesar, M., and Godfrey, P. B. VeriFlow:

Verifying network-wide invariants in real time. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2013).

[30] Liu, J., Hallahan, W. T., Schlesinger, C., Sharif, M., Lee, J., Soulé, R., Wang,

H., Cascaval, C., McKeown, N., and Foster, N. p4v: Practical verification for

programmable data planes. In ACM SIGCOMM (SIGCOMM) (2018).
[31] Lopes, N. P., Bjørner, N., Godefroid, P., Jayaraman, K., and Varghese, G.

Checking beliefs in dynamic networks. In 12th USENIX Symposium on Networked
System Design and Implementation (NSDI) (2015).

[32] McKeown, N., Talayco, D., Varghese, G., Lopes, N., Bjørner, N., and Ry-

balchenko, A. Automatically verifying reachability and well-formedness in P4

networks. Tech. rep., 2016.

[33] Milner, R. An algebraic definition of simulation between programs. In Proceed-
ings of the 2nd International Joint Conference on Artificial Intelligence (San Fran-

cisco, CA, USA, 1971), IJCAI’71, Morgan Kaufmann Publishers Inc., p. 481–489.

[34] Necula, G. C. Translation validation for an optimizing compiler. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation (New York, NY, USA, 2000), PLDI ’00, Association for Computing

Machinery, p. 83–94.

[35] Neves, M. C., Freire, L., Filho, A. E. S., and Barcellos, M. P. Verification of P4

programs in feasible time using assertions. In 14th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT) (2018).

[36] Nötzli, A., Khan, J., Fingerhut, A., Barrett, C. W., and Athanas, P. p4pktgen:

Automated test case generation for P4 programs. In Symposium on SDN Research
(SOSR) (2018).

[37] Panda, A., Argyraki, K., Sagiv, M., Schapira, M., and Shenker, S. New

directions for network verification. In LIPIcs-Leibniz International Proceedings in
Informatics (2015), vol. 32.

[38] Panda, A., Lahav, O., Argyraki, K. J., Sagiv, M., and Shenker, S. Verifying

reachability in networks with mutable datapaths. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2017).

[39] Park, D. Concurrency and automata on infinite sequences. In Theoretical Com-
puter Science (Berlin, Heidelberg, 1981), P. Deussen, Ed., Springer Berlin Heidel-

berg, pp. 167–183.

[40] Pavlinovic, Z., King, T., and Wies, T. Finding minimum type error sources. In

Proceedings of ACM International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA) (2014).

[41] Pnueli, A., Siegel, M., and Singerman, E. Translation validation. In Tools and
Algorithms for the Construction and Analysis of Systems (Berlin, Heidelberg, 1998),
B. Steffen, Ed., Springer Berlin Heidelberg, pp. 151–166.

[42] Quoitin, B., and Uhlig, S. Modeling the routing of an autonomous system with

C-BGP. IEEE Network 19, 6 (2005), 12–19.
[43] Ruffy, F., Wang, T., and Sivaraman, A. Gauntlet: Finding bugs in compilers

for programmable packet processing. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2020).

[44] Sahoo, S. K., Criswell, J., Geigle, C., and Adve, V. S. Using likely invariants for

automated software fault localization. In Architectural Support for Programming
Languages and Operating Systems, (ASPLOS) (2013).

[45] Sivaraman, A., Cheung, A., Budiu, M., Kim, C., Alizadeh, M., Balakrishnan,

H., Varghese, G., McKeown, N., and Licking, S. Packet transactions: High-level

programming for line-rate switches. In ACM SIGCOMM (SIGCOMM) (2016).
[46] Soni, H., Rifai, M., Kumar, P., Doenges, R., and Foster, N. Composing dataplane

programs with 𝜇p4. In ACM SIGCOMM (SIGCOMM) (2020).
[47] Steffen, S., Gehr, T., Tsankov, P., Vanbever, L., and Vechev, M. Probabilistic

verification of network configurations. In ACM SIGCOMM (SIGCOMM) (2020).
[48] Stoenescu, R., Dumitrescu, D., Popovici, M., Negreanu, L., and Raiciu, C.

Debugging P4 programs with Vera. In ACM SIGCOMM (SIGCOMM) (2018).
[49] Stoenescu, R., Popovici, M., Negreanu, L., and Raiciu, C. Symnet: Scalable

symbolic execution for modern networks. In ACM SIGCOMM (SIGCOMM) (2016).
[50] Tian, B., Zhang, X., Zhai, E., Liu, H. H., Ye, Q., Wang, C., Wu, X., Ji, Z., Sang,

Y., Zhang, M., Yu, D., Tian, C., Zheng, H., and Zhao, B. Y. Safely and automat-

ically updating in-network ACL configurations with intent language. In ACM
SIGCOMM (SIGCOMM) (2019).

[51] Velner, Y., Alpernas, K., Panda, A., Rabinovich, A., Sagiv, M., Shenker, S.,

and Shoham, S. Some complexity results for stateful network verification. In

22nd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (2016).

[52] Wang, A., Jia, L., Zhou, W., Ren, Y., Loo, B. T., Rexford, J., Nigam, V., Scedrov,

A., and Talcott, C. L. FSR: Formal analysis and implementation toolkit for

safe interdomain routing. IEEE/ACM Transactions on Network (ToN) 20, 6 (2012),
1814–1827.

[53] Wong, W. E., Gao, R., Li, Y., Abreu, R., and Wotawa, F. A survey on software

fault localization. IEEE Trans. Software Eng. 42, 8 (2016), 707–740.

29

https://github.com/dragosdmtrsc/oldvera
https://github.com/dragosdmtrsc/oldvera
https://github.com/dragosdmtrsc/vera2

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tian et al.

[54] Wu, D., Chen, A., Ng, T. S. E., Wang, G., and Wang, H. Accelerated service

chaining on a single switch ASIC. In 18th ACM Workshop on Hot Topics in
Networks (HotNets) (2019).

[55] Ye, F., Yu, D., Zhai, E., Liu, H. H., Tian, B., Ye, Q., Wang, C., Wu, X., Guo, T.,

Jin, C., She, D., Ma, Q., Cheng, B., Xu, H., Zhang, M., Wang, Z., and Fonseca,

R. Accuracy, scalability, coverage - A practical configuration verifier on a global

WAN. In ACM SIGCOMM (SIGCOMM) (2020).
[56] Zhai, E., Chen, A., Piskac, R., Balakrishnan, M., Tian, B., Song, B., and Zhang,

H. Check before you change: Preventing correlated failures in service updates.

In 17th USENIX Symposium on Networked Systems Design and Implementation
(NSDI) (2020).

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A HYPER-CONVERGED DATA PLANE
EXAMPLE

In Figure 2, we showed an example of our hyper-converged data

plane that contains four different network functions. Different from

software-based network functions, the hardware implementation is

constrained by the hardware limitation. First of all, the switch uses

a pipeline architecture, the packet can only be processed in one

direction. This limits the total length of the installed program. Sec-

ondly, one switch have multiple pipelines, there are four pipelines

in Figure 2. To fit all programs in the switch, we have to program

each pipeline individually. Thirdly, due to the pipeline architecture,

there are only two ways to redirect the packets: (1) the traffic man-

ager connecting the ingress and egress of all pipelines and (2) the

internal loopback that sends the packet from one egress pipeline

to its ingress. As a result, the engineers have to carefully allocate

the program in each pipeline to make sure the program can fit into

the switch without sacrificing performance. For example, given

that the packet has to go through the switch pipeline first, we

have to allocate the first half of the load balancer program to the

egress pipeline and second half on the ingress pipeline. Because

we have no way to force one packet traverse two ingress pipelines

sequentially without touching one egress pipeline. If we install the

first half load balancer program in the egress pipeline, the packet

has to be recirculated once more, which has additional processing

throughput overhead.

In deployment, we rely on the port loopback configuration and

table entries to allow different packets traverse different paths.

For example, in Figure 2, the ingress of switch checks whether

the packet should go through the load balancer and sends it to

the corresponding egress pipeline. The port loopback function is

enabled to fit the complex load balancer program. The switch
program can also redirect the packet to the scheduler and firewall

program based on the table entry installed by the engineers.

B VERIFICATION
B.1 Sequential Encoding with Loops
The sequential encoding algorithm introduced in §4.1 relies on an

assumption that the state machine’s dependency graph is a DAG,

because it is designed in principle based on topological sorting [6].

However, loops may exist in the dependency graph. For example,

some headers (e.g., MPLS and VLAN) may contain header stacks

and require a transition to itself. Other headers may formulate a

complicated dependency graphs with multiple loops—for example,

accept

eth ipv4 tcp

next_option

next_option_2

option_end

option_sack

option_ss

option_s

option_nop

padding

Figure 12: TCP options parsing graph

the TCP option header has four loops, shown in Figure 12. Naively,

we can unroll the loops into a DAG because the packet length has

an upper bound, but this method introduces too many branches

and causes the state explosion problem.

Instead, we have three observations: for one header whose pars-

ing graph has loops, (1) the loops form a strongly connected compo-

nent (SCC). For example in Figure 12, the four loops form an SCC. (2)

The SCC has only one input transition. For example in Figure 12, the

only input transition is from state tcp to state next_option. We name

the transition’s end state the root state. So the next_option state

is the root state. (3) Each loop has one transition to the root state,

in Figure 12, all four loops have one transition to the next_option

state.

Based on the above observations, we propose the following al-

gorithm to encode the loops into one state. (1) In the SCC, remove

all the transitions to the root state, then the SCC is simplified into

a DAG. (2) Use sequential encoding to encode the DAG. (3) En-

close the encoded expression with a while loop, monitoring the

root state’s label. (4) Create the outgoing transitions of the encoded

state based on the outgoing transitions of the SCC.

For example, in Figure 12, there is one SCC with four loops

visiting states option_nop, option_ss, option_s, and option_sack re-

spectively. The next_option state is the root state. In the first step,

the four transitions to the root state is removed. Secondly, the

six states in the SCC are encoded into the right half of Figure 13.

Next, the encoded statement is enclosed by a while loop monitoring

variable Next_option. Finally, the only outgoing state option_end

$Next_option = true;

while ($Next_option) {
 $Option_end = false;
 sequential_encoder();
}

// states outside the loop
if ($Option_end == true)
 ...

next_option

next_option_2

option_nop

option_ss

option_sack

option_s

Figure 13: Merged state of TCP options

30

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

state next_option_2 {
 transition select(
 pkt.lookahead<bit<8>>())
){
 0: option_end;
 1: option_nop;
 2: option_ss;
 3: option_s;
 4: option_sack;
 }
}

tmp := tcp$s0e7;
if (tmp == end.kind)
 $option_end := true;
if (tmp == nop.kind)
 $option_nop := true;
...
if ($option_end == true){
 Assume(tcp$s0e7 == end.kind);
 end.$valid := 1;
}
...

Figure 14: The lookahead operation in TCP options

is appended to the tail of the merged state. The encoded result is

shown in Figure 13.

B.2 Lookahead
Traditionally, the transition from the current parsing state to the

next state depends on the value of the parsed field. For example, in

Figure 8, the transitions from Eth to IPv4 and IPv6 depend on the

value of eth.type, which has already been extracted into the eth

header. However, the lookahead operation allows the programmer

to first check the unparsed bits and then decide which header these

bits belong to. For example, in Figure 12, the transition from state

next_option_2 to the next five states depends on the first 8 unparsed

bits of the packet, like the left part of Figure 14.

In §4.2, we have introduced the key-value based packet encoding
in parsers and deparsers. While it reduces the verification complex-

ity, it also makes lookahead no longer trivial: constraints about the

bits looked ahead in previous states should be considered.

Aquila solves this problem by introducing a placeholder with

unassigned “havoc” value, like the right part of Figure 14. First, we

use the placeholder tcp$s0e7 to represent the first 8 bits looked

ahead. Next, encode all transitions through the placeholder. And

finally, encode all following states sequentially. In each following

state, an “assume” statement is added to guarantee that the bits

looked ahead before (i.e., the placeholder) is equal to the bits ex-

tracted here.

For more complex scenarios where a state can be transited from

multiple states via individual lookaheads, Aquila introduces a vari-

able recording the previous state, then distinguishes these place-

holders via the variable and then generates constraints accordingly.

B.3 Action BitVector (ABV)
We use the following ACL table as an example to introduce the

format of ABV:

action accept() { ... }
action deny(bit<8> reason) { ... }
action redirect(bit<16> port) { ... }
table ACL {
key = { ... }
actions = { accept; deny; redirect; }
default_action = accept;

}

The ABVs of above three actions are represented as:

0.1.............8...............16..............24
+++
|D|...LAID=0....|............PADDING............| accept
+++
|D|...LAID=1....|....REASON.....|....PADDING....| deny
+++
|D|...LAID=2....|.............PORT..............| redirect
+++

Each ABV has a fixed D field indicating if the current entry is the

default entry, and a fixed LAID field representing the local action ID.

Then the values of action parameters are appended, and a padding

field is added to align all ABVs of the table.

Aquila calculates a constant ABV value for each table entry. With

ABV, Aquila can represent table matching as:

// Without ABV: Thousands of branches and inlining
if (match_0) { accept(); }
else if(match_1) { deny(0); }
else if(match_2) { accept(); }
else if(match_3) { deny(1); }
else if(match_4) { redirect(4); }
... // omit 1k else-if statements
else { accept(); }

// With ABV: Several branches and inlining
abv = ite(match_0, abv_0,

ite(match_1, abv_1,
ite(..., // omit 1k nested ite operators
abv_default)));

if(abv[7:1] == 0) { accept(); }
else if(abv[7:1] == 1) { deny(abv[15:8]); }
else { redirect(abv[23:8]); }

Aquila uses ABV to prevent any action from being inlined more

than once. Note that the final expression size grows quadratically as

the number of branches growing [14]. Aquila in addition connects

ABVs by nested ite operators, so that branches can be represented

in an indirect way, and finally, expression size explosion is avoided.

Recall that we further provide an optimized ABV encoding method

in Section 4.2.

Another use of ABV is to encodematch-related conditions. Aquila

uses the D field to encode the if-statement such as if(acl.apply().hit){..}

or if(acl.apply().miss){..}, and uses the LAID field to encode the

switch-statement such as switch(acl.apply().action_run){..}.

B.4 More Features
This section details the data structure and new feature encoding

and optimization mentioned in §4.3.
Inter-pipeline packet passing. Similar to the input packet encod-

ing, the inter-pipeline packet passing is encoded as a sequence of

headers and their values. There are two differences: (1) the header or-

der is generated by the deparser of the previous pipeline rather than

given by the engineer: each emit statement pushes corresponding

headers into the header sequence if they are valid; (2) the unparsed

header in the previous pipeline (e.g., when its parser consumes up

to layer 3, leaving a packet’s tcp header unparsed) is merged with

the reassembled header, since the next pipeline may parse deeper

than the previous one. The output packet should be encoded as:

pkt.$order := ⟨eth ipv4 . . . ⟩︸ ︷︷ ︸
deparsed headers

+ unparsed headers

Pipeline behaviors encoding. Pipeline behaviors include mirror-

ing, resubmission, recirculation, etc. These behaviors allow packets

to traverse through the pipelinesmultiple times, which easily results

in the state explosion. Due to the aforementioned encoding, Aquila

can stitch multiple pipelines together, making GCL’s complexity

grow linearly.

Hash algorithm. Hash algorithm is widely used in data plane pro-

grams such as ECMP, bloom filter, etc. The non-linear relationship
introduced by hash between the input and output slows down the

31

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Tian et al.

verification performance. Aquila solves this issue by removing this

relationship and assuming the output as an independent variable,

whose value is “havoc” and bounded by the range of the hash algo-

rithm. This assumption can introduce false positives in rare cases.

However, we find it never happened in practice, because our engi-

neers rarely care about the concrete hash value by simply assuming

that it is evenly distributed.

Stateful memories. Stateful memories such as registers, meters,

and counters are organized as arrays by P4. However, arrays can

make verification condition undecidable. Thanks to the inherent

constraints of staged-based pipelines, we can safely treat an array

as a normal field and ignore the index. Unless the initial values of

stateful memories are specified, Aquila leaves them unassigned and

considers all kinds of possibilities.

Field groups and quantifiers. Field groups are supported by LPI

to describe similar properties in batch over a group of fields, e.g., the
TCP 5-tuple. Two quantifiers, i.e., forall and exists, can be applied

to either a fields group defined in LPI or a header defined in P4 code.

Aquila translates quantifiers over finite sets into propositional logic

to reduce the complexity.

C VALIDATOR IMPLEMENTATION
Building the semantic translator for our validator is non-trivial in

reality, since alternative representation, i.e., 𝑋 (𝑃), may present a

totally different semantics from Aquila’s GCL representation, i.e.,
𝐴(𝑃). Based on our implementation experience, the majority of

these semantic difference is caused by dynamic values, e.g., header
validity and table entries, which are decided and changed in runtime

rather than re-deployment stage. We use header validity ambiguity

as an example to explain this implementation challenge.

Because the header validity semantics are hard to translate, differ-

ent representations handle their outputs in quite different ways. For

example, Aquila explicitly uses a symbolic a boolean variable, e.g.,
$valid, to denote whether a header is valid; alternatively, Gaunt-

let [43] embeds the validity in the header’s field value directly

We use an example below to illustrate different approaches to

represent header validity. Note that we focus on the output state

when ipv4 is not valid.

// P4 program
if (ipv4.isValid()) {
ipv4.ttl = ipv4.ttl - 1;

}

// Gauntlet representation
ipv4.ttl == invalid;

// Aquila representation
ipv4.ttl == @ipv4.ttl;
ipv4.$valid == 0;

Given a P4 program, if we only focus on the case that ipv4 is not

valid, as shown in the example above, Gauntlet represents the

case as invalid, and Aquila models ipv4.ttl with ipv4.$valid==0

to indicate that all fields in ipv4 should be ignored.

To match the two semantic representations of the final state, we

distinguish whether a header is valid or not. If it is valid, we require

that the field computed by Gauntlet and Aquila must be identical

to each other. Otherwise, the value computed by Gauntlet must

be invalid and the $valid flag in Aquila must be set to 0. We thus

match it with the Aquila semantics as the following post-condition:

ipv4.$valid ⇒ g == ipv4.ttl,

¬ipv4.$valid ⇒ g == invalid,

where g equals

ite(@ipv4.$valid, @ipv4.ttl - 1, invalid).

32

	Abstract
	1 Introduction
	2 Overview
	3 Specification Language
	4 Verification Approach
	4.1 Sequential Encoding
	4.2 Data Structure Encoding
	4.3 Encoding Other Features

	5 Automatic Bug Localization
	5.1 Finding Violated Assertion
	5.2 Bug Localization

	6 Self Validation of Aquila
	7 Deployment Experience
	7.1 Scenarios and Bugs
	7.2 Self Validation Experience

	8 Performance Evaluation
	8.1 Benchmark
	8.2 Scalability
	8.3 Bug Localization

	9 Lessons and Discussions
	10 Related Work
	11 Conclusion
	References
	A Hyper-converged Data Plane Example
	B Verification
	B.1 Sequential Encoding with Loops
	B.2 Lookahead
	B.3 Action BitVector (ABV)
	B.4 More Features

	C Validator Implementation

