
This paper is included in the
Proceedings of the 18th USENIX Symposium on

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the
18th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

When Cloud Storage Meets RDMA
Yixiao Gao, Nanjing University and Alibaba Group; Qiang Li, Lingbo Tang,

Yongqing Xi, Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu,
Lei Yan, Fei Feng, Yan Zhuang, Fan Liu, Pan Liu, Xingkui Liu, Zhongjie Wu,
Junping Wu, and Zheng Cao, Alibaba Group; Chen Tian, Nanjing University;

Jinbo Wu, Jiaji Zhu, Haiyong Wang, Dennis Cai, and Jiesheng Wu, Alibaba Group
https://www.usenix.org/conference/nsdi21/presentation/gao

When Cloud Storage Meets RDMA

Yixiao Gao♠♥, Qiang Li♥, Lingbo Tang♥, Yongqing Xi♥, Pengcheng Zhang♥, Wenwen Peng♥, Bo Li♥,
Yaohui Wu♥, Shaozong Liu♥, Lei Yan♥, Fei Feng♥, Yan Zhuang♥, Fan Liu♥, Pan Liu♥, Xingkui Liu♥,

Zhongjie Wu♥, Junping Wu♥, Zheng Cao♥, Chen Tian♠, Jinbo Wu♥, Jiaji Zhu♥, Haiyong Wang♥, Dennis
Cai♥, and Jiesheng Wu♥

♠Nanjing University, ♥Alibaba Group

Abstract
A production-level cloud storage system must be high per-
forming and readily available. It should also meet a Service-
Level Agreement (SLA). The rapid advancement in storage
media has left networking lagging behind, resulting in a major
performance bottleneck for new cloud storage generations.
Remote Direct Memory Access (RDMA) running on lossless
fabrics can potentially overcome this bottleneck. In this paper,
we present our experience in introducing RDMA into the
storage networks of Pangu, a cloud storage system developed
by Alibaba. Since its introduction in 2009, it has proven to be
crucial for Alibaba’s core businesses. In addition to the perfor-
mance, availability, and SLA requirements, the deployment
planning of Pangu at the production scale should consider
storage volume and hardware costs. We present an RDMA-
enabled Pangu system that exhibits superior performance,
with the availability and SLA standards matching those of
traditional TCP-backed versions. RDMA-enabled Pangu has
been demonstrated to successfully serve numerous online
mission-critical services across four years, including several
important shopping festivals.

1 Introduction
Alibaba Group [12] is a China-based multinational technology
company specializing in e-commerce, e-finance, and cloud
computing. Numerous companies, including Alibaba, have
moved their core business systems onto clouds. As a funda-
mental part of information technology (IT) infrastructure, a
cloud storage provides a storage service to tenants both inside
and outside the cloud provider. In 2009, Alibaba introduced
Pangu [18], a cloud storage system that has subsequently
played a crucial role in many Alibaba core businesses. As of
2020, Pangu has been deployed in hundreds of clusters, and
it has been managing hundreds of thousands of storage nodes.
Furthermore, it supports the real-time access to exabyte-level
data in numerous production environments.

In order to ensure comparability to local physical storage
clusters, a cloud storage system must meet the following
requirements:

(i) High performance: Small latency and high throughput
provide competitive advantages across many scenarios.

(ii) High availability: System disruptions incur significant
financial/reputation loss for both tenants and their cloud
providers.

(iii) Service-Level Agreement (SLA): A cloud storage system
must be resilient, and thus its performance should
gracefully downgrade when various software/hardware
failures happen.

The rapid advancement in storage media has left net-
working lagging behind, resulting in a major performance
bottleneck for new cloud storage generations. Networking
is not a problem for traditional storage systems built with
Hard Disk Drives (HDDs). However, the access latency
of current Non-Volatile Memory Express (NVMe) disks
is at the microsecond level [50] and the total throughput
of a storage node can exceed 100Gbps. In contrast, the
latency of traditional network stacks (e.g., TCP/IP) can reach
milliseconds [13], while the bandwidth per kernel TCP thread
is only tens of Gbps at most [51].

Remote Direct Memory Access (RDMA) running on
lossless fabrics offers a promising solution to the network
bottleneck in cloud storage. By implementing its entire
protocol stack on host NICs, RDMA is able to provide
both microsecond level access latency and a per-connection
throughput of approximately 100Gbps with almost zero
CPU consumption [23]. The application of RDMA over
Commodity Ethernet (RoCE) in data centers relies on the
Priority Flow Control (PFC) mechanism to provide a lossless
fabric.

In this paper, we present our experience in introducing
RDMA into Pangu’s storage networks (i.e., the network
among storage nodes). Our objective is to provide an RDMA-
enabled Pangu system that exhibits superior performance,
with availability and SLA standards equal to that of traditional
TCP-backed versions. Our experience spans 4 years and
will continue with the development of RDMA. We faced

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 519

a number of challenges specifically related to cloud storage,
with additional problems associated with RDMA. We have
developed a number of solutions to allow for RDMA to
function in a production-level cloud storage, several of which
are engineering-level work-arounds. However, overcoming
the aforementioned RDMA issues proves to be a complicated
task. Here, we expose the practical limitations of the pro-
duction systems in order to facilitate innovative research and
applications in this area.

In addition to the performance, availability, and SLA
requirements, the deployment planning of Pangu at the
production scale should consider storage volume and hard-
ware costs. Following the availability-first principal, RDMA
communication is enabled only inside each podset [13]. Such
a podset contains a group of leaf switches, and all Top-of-Rack
(ToR) switches connected to these leaf switches. The podsets
are connected via spine switches. This setting is currently the
optimal balance between application demands, performance,
and availability/SLA control. Storage node configurations
are carefully planned to match the disk throughput with the
network bandwidth. We adopt the hybrid deployment of
RDMA/TCP in Pangu to exploit TCP as the last resort for the
system (§3).

The performance optimization aims to minimize la-
tency while maximizing throughput. We leverage software-
hardware co-design to minimize performance overhead. We
build a software framework in Pangu that integrates RDMA
with Pangu’s private user-space storage platform designed
for new storage media. By eliminating data-copy operations,
the latency of a typical block service request is reduced
to tens of microseconds. We observed that the memory
bandwidth becomes a bottleneck when upgrading Pangu to
a 100Gbps network. By exploiting the RDMA features and
offloading critical computations, Pangu is able to saturate the
underlying networks. Furthermore, we leverage a new thread
communication mode in Pangu to reduce the performance
pitfall caused by a large number of Queue Pairs (QPs, RDMA
connection abstraction) per node (§4).

Previous studies have reported the risks of large-scale
RDMA deployment [13]. RDMA-enabled Pangu clusters do
encounter such problems, including PFC deadlocks [13], PFC
pause frame storms, and head-of-line blocking [27, 44]. We
determined several PFC storms to be attributed to a previously
unexplored source that consequently invalidates an earlier
solution [13]. In order to guarantee availability, we apply the
escape-as-fast-as-possible design principle to handle PFC
storms. We bring up a fine-grained switching mechanism
between RDMA/TCP traffic in Pangu and it handles PFC
storms regardless of their causes (§5).

In order to meet the SLA standards, we adopt the design
principal of exploiting storage semantics whenever useful
in Pangu. By taking advantage of its ability to control the
application layer, Pangu performs the real-time checking and
alarming for a large number of storage service and network

BlockMasterBlockMaster PanguMasterPanguMaster

BlockServerBlockServer

ChunkServer

Disk 1Disk 1 Disk 2Disk 2 Disk 3Disk 3

ChunkServer

Disk 1 Disk 2 Disk 3

BlockServer

ChunkServer

Disk 1 Disk 2 Disk 3
OSD1OSD1 OSD2OSD2 OSD3OSD3OSD1 OSD2 OSD3

Ceph block service

Ceph MonitorCeph Monitor

librbd

librados

Client Node

librbd

librados

Client Node Client Node
(Computing)
Client Node
(Computing)

RDMA
User-space TCP

cluster info

OSD info

Master Cluster Nodes

data

replication 2

 replication 1

 BlockServer info

replication 2&3

to other
ChunkServers

Disk 1 Disk 2 Disk 3

replication 3 To other
OSDs

Storage Cluster Nodes request

 ChunkServer info

Master Clusters

Storage Cluster

Data Flow

Control Flow

Data Flow

Control Flow

TCP

 block mapping

Figure 1: Pangu block storage service framework.

metrics. With the help of the dual-home topology feature,
we optimize the fail-over performance of Pangu by reducing
the connection recovery time. We also fix network problems
by exploiting application controls, for example, blacklisting
problematically connected nodes (§6).

We share our experience in adopting the RDMA-enabled
Pangu system and discuss several potential research directions
(§7). This system has successfully served numerous online
mission-critical services under the scope of Alibaba over the
past four years, including several important shopping festivals
(e.g., Double-11 [8]). Sharing our experience in integrating
RDMA into Pangu can be helpful for other RDMA-enabled
systems.

2 Background
2.1 Pangu in Alibaba Cloud
Pangu Framework. Pangu is a distributed file system
developed by Alibaba Cloud. Released in 2009, it plays a
major role in the core Alibaba businesses (e.g., e-business and
online payment, cloud computing, enhanced solid state drive
backed cloud disk, elastic compute service, MapReduce-like
data processing, and distributed database). In this paper, we
focus on the network features of Pangu.

Pangu provides numerous storage services, including
elastic block service, object storage service, store service,
etc. We take the block service as an example to demonstrate
the system framework. Fig. 1 presents the I/O workflows
of Pangu. Virtual block devices contain continuous address
spaces that can be randomly accessed by applications. A
Pangu client in a computing node organizes data into fixed-
sized (e.g., 32 GB) segments, while the BlockServers and
ChunkServers run on storage nodes. Each segment is aligned
to a BlockServer for I/O processing. On the BlockServers,
a segment is divided into blocks and replicated to the
ChunkServers, which are in charge of the standalone back-end
storage of the blocks and device management.

The BlockMasters manage metadata such as the mapping
between a segment and its located BlockServer and the Block-
Server’s living states. The PanguMasters manage the states
of the ChunkServers. These master nodes are synchronized

520 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

using consistent protocols, such as Raft [36].
All data communication in Pangu is in the form of Remote

Procedure Calls (RPCs). Each ChunkServer initiates the RPC
clients/servers, and storage operations are performed by issu-
ing pre-registered RPCs. An RPC client can simultaneously
use different RPC channels (i.e., connections via RDMA,
kernel TCP, user-space TCP, or shared memory)according to
the required RPCs.
Cloud Storage Requires RDMA. The principal perfor-
mance metrics for storage services are read/write throughput
and access latency. Low latency and high throughput prove to
be advantageous for numerous application scenarios. Many
customers expect similar performance of the cloud storage to
that of the local physical storage. For example, the Alibaba
e-commerce database requires extremely low latency in order
to ensure fast responses due to the potentially large peak
number of transactions per second (e.g., 544,000 orders per
second at peak hours [8]). Moreover, the enhanced SSD
service promises 1 million IOPS, 4GB/s throughput, and
200µs latency for 4KB random writes [17].

The latency of traditional network stack (e.g., TCP/IP)
is generally within hundreds of microseconds [13]. The
maximum achievable TCP bandwidth per kernel thread can
reach tens of Gbps [51]. In contrast, the access latency
of current NVMe SSDs is only at the microsecond level,
while the read/write bandwidth of a single device is at the
GB/s level [49]. The total throughput of each storage node
(generally with 8-16 NVMe disks) can exceed 100Gbps and
the incoming Storage Class Memory (SCM, e.g., Intel 3D-
XPoint) can even achieve nanosecond level latency [35]. Thus,
networking is currently the primary performance bottleneck
for cloud storage.

RDMA is an alternative networking choice for cloud stor-
age. By implementing its entire protocol stack on host NICs,
RDMA provides both microsecond level access latency and
a per-connection throughput close to 100Gbps with almost
no CPU consumption [23]. RDMA has successfully been
integrated into numerous network-bottlenecked systems, for
example, key-value stores [22,33], distributed transactions [6,
24, 48], and graph queries [40], demonstrating an improved
performance compared with non-RDMA predecessors.

2.2 Challenges
Besides performance, availability and SLA are also critical
for a successful cloud storage system.
Availability. System disruptions incur significant finan-
cial/reputation loss for both tenants and their cloud providers.
In 2018, Amazon S3 experienced a system disruption that
lasted for 4 hours [2], affecting Amazon Elastic Compute
Cloud , Amazon Elastic Block Store volumes, and AWS
Lambda [3]. This disruption also had an impact on tens
of thousands of websites built on the Amazon storage
service, including Netflix [34], Spotify [43], Pinterest [37],
and Buzzfeed [5]. Similar events have occurred with Google

Cloud and Microsoft Azure [4, 9].
Service-Level Agreement. Software and hardware failures
are extremely common in distributed systems. A cloud storage
system should exhibit graceful performance downgrade with
the occurrence of various failures. Distributed storage systems
include mature node monitoring and fail-over mechanisms.
A single storage node failure has a minimal impact on the
service quality. In our experience, the most challenging aspect
of ensuring a stable performance lies in the storage networks.
Network failures generally result in a larger affected range
compared to storage node failures.

In addition to its superior performance, customers of our
RDMA-enabled Pangu require the same levels of availability
and SLA standards to that of traditional TCP-backed versions.

2.3 State-of-the-art Work Do Not Fit
Unknown PFC Storm Sources. PFC runs under a hop-by-
hop mechanism, with the possibility of PFC storms, spreading
into the whole cluster. A PFC storm can seriously affect
cluster availability and is the most well-known issue of
RDMA. In 2016, Microsoft presented its experience in the
deployment of RDMA [13], where they revealed that a
bug in the receiving pipeline of an RDMA-capable NICs
(RNICs) causes PFC storms. The problem was fixed by
building watchdogs on the NICs and switches. However, we
identified an additional type of PFC storms that originates
from switches, implying the complexity of PFC storms with
multifarious sources. The Microsoft solution [13] fails to
solve this new problem (§5).
Practical Concerns that Limit Design Options. We are
not able to simply treat RDMA as a black-box and wait for
future research and technical advances to solve the current
problems. Despite the large number of recent studies [10, 22,
29, 33, 40, 48], a production-level comprehensive PFC-free
solution is still premature. The application of RDMA over
lossy Ethernet has been explored in previous work [7, 11, 15,
26], allowing for the bypass of the PFC mechanism. However,
such solutions rely on new hardware features.

The deployment of new hardware is a long process, with
several months or even years of testing, followed by the
subsequent introduction to business applications. For example,
the process of testing Pangu with CX-4 RNICs, a joint
collaboration with NIC providers, lasted for over two years.
There is a tension between the fast growth of new RDMA
demands and the long update cycles of new hardware. To date,
these PFC-free proposals are not mature enough for large-
scale business deployment, particularly for the availability
and SLA standard requirements of cloud storage systems.

Furthermore, large-scale industry deployment is generally
associated with multiple generations of legacy RDMA NICs.
For example, we have already deployed several Mellanox
NIC generations (e.g., CX-4, CX-5), with the number of
each reaching tens of thousands. It is operationally infeasible
and costly to replace all legacy NICs in the running nodes,

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 521

......

Spine

Leaf

ToR

Servers
Computing Nodes Storage Nodes

Podset

Figure 2: Topology of Pangu.
Hardware 25Gbps 100Gbps

CPU Xeon 2.5GHz, 64 cores Xeon 2.5GHz, 96 cores
Memory DDR4-2400, 128GB DDR4-2666, 128GB ×3
Storage 1.92TB SSD×12 3.84TB SSD×14
Network CX-4 Lx Dual-port CX-5 Dual-port

PCIe PCIe Gen 3.0 PCIe Gen 3.0

Table 1: Example configurations of 25/100Gbps nodes.
while upgrading the firmware of tens of thousands of running
servers is both time-consuming and error-prone. Thus, the
need for new hardware features or firmware should be
minimized.
Domain Knowledge of Distributed Storage Should be
Exploited. Existing work largely ignores potential help
from the application layer. Storage service metrics, rather
than networking metrics, are a key concern for cloud service
applications. We take into account such storage semantics in
the design of Pangu when improving the engineering trade-
off and the decision making process for various networking
problems.

3 RDMA Deployment
3.1 Consideration in Deployment Planning
The deployment planning of storage clusters governs the
network topology, RDMA communication scope, storage
node configurations, etc. Multiple factors must be considered,
including matching the storage volume with demands, control-
ling hardware costs, optimizing performance, and minimizing
availability and SLA risks. The final outcome is a trade-off
among all these factors.

For example, Microsoft deploys RDMA at the scale of
an entire Clos network [13]. Thus, if not prevented, PFC
storms could spread across the whole network and bring down
an entire cluster. This amount of risk is unacceptable in a
production-level storage system.

3.2 Deployment Choices of Pangu
The key principle employed by our RDMA deployment is
availability-first.
Network and Node Configurations. Fig. 2 displays the
Clos-based network topology of Pangu. Consistent with the
common dual-home practice, we deploy Mellanox CX series
dual-port RNICs to connect a host with two distinct ToR
switches. In particular, two physical ports are bonded to a
single IP address. Network connections (e.g., QPs in RDMA)
are balanced over two ports following a round-robin fashion.

Total bandwidth TCP bandwidth ratio TX pauses
25Gbps 40% 0
30Gbps 45% 1Kpps
32Gbps 50% 8Kpps
35Gbps 46% 15Kpps

Table 2: TX pauses in hybrid RDMA/TCP traffic.

When one port is down, the connections on this port can be
migrated to another port.

Table 1 reports typical hardware configurations for 25Gbps
and 100Gbps RNIC storage nodes. The number of SSD per
node is determined by the total RNIC bandwidth versus the
throughput of a single SSD, allowing the I/O throughput to
match the network bandwidth. Note that the SSD types in the
25Gbps and 100Gbps configurations are distinct, resulting
in disproportional numbers. Computing and storage nodes
are deployed in different racks within a single podset. The
numbers of computing and storage nodes are then calculated
according to the computational demands.
RDMA Scope. In order to minimize the failure domain,
we only enable RDMA communication within each podset
and among storage nodes. The communication between
computing and storage nodes is performed via a private
user-space TCP protocol (Fig. 1). This is attributed to the
complex hardware configurations of computing nodes, which
update rapidly. Thus, TCP can be effectively applied as a
hardware-independent transport protocol. User-space TCP
is more convenient for upgrade and management compared
to kernel TCP, while kernel TCP is selected for cross-podset
communication due to its generality.

The production deployment is an additional concern
for podset-level RDMA. In many datacenters, podsets are
located in different buildings. For cross-building RDMA
links, the base link delay is much larger, while the PFC
mechanism requires much larger headroom buffer. In order to
enable RDMA, the PFC/ECN thresholds located on the spine
switches must be carefully adapted and tested. This is a tough
task and at present, does not result in sufficient gains.
RDMA/TCP Hybrid Service. To the best of our knowledge,
previous research on RDMA deployment does not explore
RDMA and TCP hybrid services. We keep TCP as the last re-
sort in Pangu following the availability-first principal. Despite
current progress, RDMA devices are far from flawless. Thus,
when either availability or SLA are threatened, switching
affected links from RDMA to TCP can maintain the available
bandwidth. This escape plan does not impact the unaffected
RDMA links.

However, during the hybrid deployment process, we deter-
mined that coexistent TCP traffic provoked a large number
of TX pauses (i.e., PFC pause frames sent by NICs), even
if RDMA/TCP traffic are isolated in two priority queues.
Table 2 reports the TX pause generation rate in Pangu under
different loads with approximately 50% TCP traffic. The tests
are performed on Mellanox CX-4 25Gbps dual-port RNICs.
Such a large number of TX pauses are detrimental to the

522 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20 30 40 50 60 70 80
Time (Minutes)

0

5

10

15

Th
ro

ug
hp

ut
 (G

bp
s)

BlockServer
TCP
RDMA

(a) Throughput of RDMA/TCP/BlockServer.

0 10 20 30 40 50 60 70 80
Time (Minutes)

0

200

400

600

800

A
ve

ra
ge

 L
at

en
cy

 (u
s)

(b) Latency of BlockServer requests.

0 10 20 30 40 50 60 70 80
Time (Minutes)

0

0.5

1

1.5

2

2.5

TX
 P

au
se

 D
ur

at
io

n(
us

)

(c) Average TX pause duration.

Figure 3: RDMA/TCP hybrid deployment tests at different ratios (from 0% to 100% TCP).

performance and may result in PFC storms. We investigated
this problem together with Mellanox and determined that
the processing of TCP in the Linux kernel is highly I/O-
intensive. Kernel TCP initiates too many partial writes on
NICs’ PCIe bus. As the PCIe bandwidth is consumed, the
receiving pipeline of a NIC is slowed down. The buffer
overflows and the NIC subsequently begins to transmit PFC
pause frames.

In order to optimize the memory access of TCP, we make
several adjustments on the data access procedure. First,
disabling the Large Receive Offset (LRO) can reduce the
memory bandwidth usage. This is attributed to the access of
multiple cache lines when the LRO is enabled. Furthermore,
enabling NUMA also improves the efficiency of memory
accesses, which subsequently aids in relieving the pressure
of PCIe. We also allocate a larger buffer on the RNICs
for RDMA traffic to prevent TX pauses. Finally, making
application data cacheline-aligned is a common optimization
practice that improves memory efficiency [23].

3.3 Evaluation
We test several RDMA/TCP traffic ratios to investigate the
effects of RDMA/TCP hybrid deployment. Each computing
node runs FIO with 8 depths (inflight I/O requests), 8 jobs
(working threads), and 16 KB block size in order to write
virtual disks. Note that one write request on a BlockServer
generates three data replicas. We enable all optimizations
approaches detailed in §3.2 for the TCP kernel.

Fig. 3(a) depicts the BlockServer bandwidth with varying
RDMA/TCP ratios. The workload starts at 10 minutes with
100% RDMA traffic. Afterwards, in every 5 minutes, the
workload contains 10% more TCP traffic and 10% less
RDMA traffic. At 60, 65, 70 minutes we change the TCP
traffic ratio to 0%, 100%, and 0% respectively in order to
explore the performance of Pangu with quick traffic switching
between RDMA and TCP. The average BlockServer through-
put exhibits minimal reduction as the RDMA traffic ratio
decreases.

Fig. 3(b) presents the BlockServers’ average request
latency for the same workload as that in Fig. 3(a). The average

latency under 100% RDMA traffic is approximately half of the
latency under 100% TCP traffic, while the tail latency under
100% TCP is more than 10× larger compared to 100% RDMA
traffic. RDMA presents great latency advantages compared to
TCP. Fig. 3(c) demonstrates the average TX pause duration
per second for this workload. Only a limited number of TX
pauses are observed. When the TCP bandwidth ratio is around
50% at 30 minutes, the pause duration reaches a peak value.

Overall, these results demonstrate the stable performance
of our RDMA/TCP hybrid mechanism.

4 Performance Optimization
4.1 Performance Hurdles
The performance optimization of Pangu aims to minimize
latency while maximizing throughput.
RDMA-Storage Co-Design. Integrating the RDMA proto-
col stack with the storage backend is challenging. It must
cover key performance points such as thread modeling,
memory management, and data serialization. The thread
model directly affects latency due to communication costs
among threads. Well-designed memory management and
data serialization are key to achieving zero-copy during data
access. Here we present a brief introduction on the design of
these components for storage purposes.

The User Space Storage Operating System (USSOS) is
a unified user-space storage software platform that aims to
support new storage media such as NVMe SSD and persistent
memory. Its design principles (e.g., memory management,
shared memory mechanism, and user-space drivers) are based
on well-known user-space technologies (e.g., DPDK [19]
and SPDK [42]). Related tests reveal that enabling USSOS
in Pangu can improve CPU efficiency by more than 5× on
average.

As a central part of USSOS, the User Space Storage File
System (USSFS) is a high-performance local file system
designed for SSDs. By running in the user space, USSFS
is able to bypass the kernel to avoid user-/kernel-space-
crossing overhead. USSOS divides disks into “chunks” which
ChunkServer uses in its APIs (e.g., create, seal, and delete).

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 523

Components Average Utilization Peak Utilization Maximum Physical Capacity
Physical CPU utilization ratio 66% 70% 100%
Memory read/write throughput 28GB/s / 29GB/s 33GB/s / 32GB/s 61GB/s in total (1:1 read/write)

SSD PCIe throughput (socket 0 + socket 1) 550MB/s + 550MB/s 1000MB/s + 1000MB/s 3.938GB/s + 3.938GB/s
Network PCIe RX throughput 10GB/s 11GB/s 15.754GB/s
Network PCIe TX throughput 8GB/s 9GB/s 15.754GB/s

Table 3: Measured resource utilization of Pangu in 100Gbps network with 1:1 read/write ratio.

data
4048B

data
4048B

crc
4B

gap
44B

data
4048B

crc
4B

gap
44B

data
4048B

RDMA buffer

I/O buffer

crc
4B

gap
44B

data
4048B

crc
4B

gap
44B

data
4048B

data
4048B

data
4048B

crc
4B

gap
44B

data
4048B

RDMA buffer

I/O buffer

crc
4B

gap
44B

data
4048B

Figure 4: Potential triggering of data copying by CRC.

USSOS directly writes data and metadata to disks and uses
polling to perceive completion events. For different block
sizes, USSFS is able to improve IOPS by 4-10× compared to
the Ext4 file system.

A run-to-completion model is considered as the optimal
approach for the integration of the RDMA network stack with
the storage stack. This model has previously been explored
in studies discussing disaggregated storage (e.g., Reflex [25],
i10 [16]). However, these studies were published after the
introduction of RDMA to Pangu in 2017. Reflex and i10
focus on remote direct I/O while a ChunkServer in Pangu
is applied as a local storage engine for distributed storage.
Google’s Snap [31] leverages a separate network process
to unify network functionalities and reduce the number of
network connections.
Memory Bottleneck with 100Gbps networks. Deploying
100Gbps networks can achieve lower latency and higher
throughput. With faster network, now the memory throughput
becomes a bottleneck in our system.

In order to obtain the upper bounds of the memory
access throughput, we test the memory throughput using the
Intel Memory Latency Checker (MLC) tool [20]. Table 3
details the measured usage of the hardware resources. In
our test, the maximal achievable memory bandwidth is
61GB/s with a 1:1 read/write ratio. However, the aver-
age memory throughput with Pangu’s workload is already
29GB/s+28GB/s = 57GB/s. This indicates the memory to
be the bottleneck rather than the network.

By monitoring the memory usage in Pangu, we determined
that both the verification and data copy processes require
optimization. Data integrity is one of the most significant
features of distributed storage. We adopt Cyclic Redundancy
Check (CRC) for application-level data verification in Pangu.
As shown in Fig. 4, the received data is split into chunks
of 4KB, with a 4B CRC value and a 44B gap added to
each chunk. This operation is a memory- and computation-

RNIC

RX or TX

RPC
Framework

Chunk
Server

NVME
SSD

User space

Kernel

Hardware

DMA
(2)

Network

Polling
(3)

Call Back
(4)

USSFS

User Space
Driver

USSOS

API
(5)

DMA
(6)

Request
(1)

Figure 5: Integrated network/storage processing.

intensive operation as the calculations are applied to the entire
dataset. The data are also copied when they are written into
the disks in order to include CRC footers. Copying is not
performed in other components due to the remote-memory
access semantic of RDMA.

Large Number of QPs. We used to adopt the full-mesh link
mode among running threads in Pangu in order to maximize
throughput and minimize latency (Fig. 6(a)). Assume that
each ChunkServer has 14 threads, each BlockServer has
8 threads, and each node contains both ChunkServers and
BlockServers. For the full-mesh mode in a cluster of 100
storage nodes, there could be 14×8×2×99 = 2,2176 QPs
in each node. RNICs’ performance drop dramatically for
large numbers of QPs due to cache miss [21]. In particular,
the number of RX pauses (i.e., PFC pause frames received) is
very high.

Previous studies have demonstrated the same issue [10,
23, 47]. In order to solve this problem, FaSST [24] shares
QPs among threads, which subsequently lowers the CPU
efficiency and performance due to the lock contention of
QPs between threads. An alternative heuristic is the inclusion
of a dedicated proxy thread that manages all receive and send
requests [41]. However, switching to/from a dedicated proxy
thread increases latency. Furthermore, it is difficult to saturate
the full network bandwidth with a single thread. Moreover,
the proxy solution is not transparent to the underlying RDMA
libraries.

524 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Thread 0

Client

Thread 1

Thread 2

Thread 0

Server

Thread 1

Thread 2

(a) Full-mesh mode

Thread 0

Client

Thread 1

Thread 2

Thread 0

Server

Thread 1

Thread 2

0->0 0->1 0->2

1->0 1->1 1->2

2->0 2->1 2->2

0->1

0->2

1->2

(b) Shared-link mode
Figure 6: Different link modes for send/receive RPC requests

4.2 Designs

The designs related to performance in Pangu are based on
the principle of software-hardware co-design to minimize
performance overhead.
Storage-RDMA Unified Run-to-Completion Stack. We
adopt a run-to-completion thread model for both storage and
network to achieve low latency. Fig. 5 demonstrates the
procedure used to process requests. When a write RPC is
received by a node, the RNIC posts it to the user space via
DMA. The RPC framework obtains the request using polling
and subsequently hands it over to a ChunkServer module for
processing. The ChunkServer then informs USSFS to allocate
a “chunk” resource to the request. Finally, a user-space driver
interacts with NVMe SSDs to store the data. These operations
are generally performed in a single server thread without
thread switching. This run-to-completion model minimizes
the latency. In order to reduce the blocking time caused by
large jobs, large I/O requests are split into smaller requests
when submitted by applications. This optimization ensures a
quick response to I/O signals. An additional optimization
strategy for large I/O requests involves the passing of
auxiliary work (e.g., formatting and CRC calculation) to non-
I/O threads, where they are subsequently processed. These
optimizations reduce the average latency of a typical storage
request (e.g., 4KB size) to less than 30µs.

The data formats are unified as I/O vectors. An I/O vector
is transmitted without copying via a single RDMA verb
using scatter-gather DMA (the transfer of discontinuous data
through a single interruption) in network. Serialization is not
necessary due to RDMA semantics.
Zero-Copy & CRC Offloading. As discussed in §4.1, in
Pangu, data has to be copied once on the I/O path as each 4KB
chunk is verified and attached with a CRC footer. Here, we
leverage the User-Mode Memory Registration (UMR) [32]
feature of RNICs to avoid such data copy. UMR can scatter
RDMA data on the remote side through the definition of
appropriate memory keys. Thus, data can be formatted and
organized according to storage application formats. We use
UMR to remap the continuous data from the sender into an I/O

buffer at the receiver, which contains 4KB data, a 4B footer,
and a 44B gap in each unit. Following the CRC calculation,
the filled I/O buffer can be directly applied for disk writing.
Besides, the CRC calculation is able to be offloaded to
capable RNICs (e.g., Mellanox CX-5), thus lowering CPU
and memory usage. The 4KB data are posted to the RNIC
and the 4B CRC checksum is then generated.
Shared Link. We adopt the shared link mode, an effective
solution for reducing the number of QPs in Pangu. The shared
link mode is implemented in the application layer and leaves
RDMA libraries untouched. A correspondent thread in the
destination node is assigned to each thread in the source node
(Fig. 6(b)). The thread’s requests to the node are sent to its
correspondent thread, which subsequently dispatches requests
to correct target threads.

Consider a daemon with N threads, each thread polls N
request/response queues to obtain the requests/responses.
Note that there is only a single producer/consumer for each
request/response queue. Thus we use lock-free queues for
each request/response queue to avoid contention. According
to our test, this design adds approximately 0.3 µs latency.

In the shared link mode, there is resource overhead at
the correspondent thread during request dispatching when
the source thread sends too many requests. Pangu supports
shared groups, where threads in a node can be divided into
several groups. A correspondent thread only relays requests
for its group members. Returning to the previous example,
the number of QPs in the All Shared mode is now reduced to
(8+8)×99 = 1,584. If the threads are divided into 2 shared
groups, the number of QPs will be (8× 2+ 8× 2)× 99 =
3,168.

4.3 Evaluation
Zero-Copy & CRC Offloading. We use FIO with 16 jobs
and 64 I/O depth to test a virtual I/O block device on a single
ChunkServer. Fig. 7(a) demonstrates the memory bandwidth
usage (including read/write tasks) when UMR zero copy and
CRC offloading are used. The memory bandwidth usage is
reduced by more than 30%, revealing that these measures are
able to relieve the pressure of memory usage. Fig. 7(b) depicts

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 525

fio: 8 jobs, 8 depth

32KB 64KB 128KB
0

10

20

30

40

50

M
em

or
y

B
an

dw
id

th
(G

B
/s

)

No Optimization
UMR + CRC offload

(a)

FIO: 16 jobs, 64 depth

32KB 64KB 128KB
0

5

10

15

Th
ro

ug
hp

ut
 (G

B
/s

)

No Optimization
UMR + CRC offload

(b)
Figure 7: Performance of UMR zero copy + CRC offloading

the improvement in throughput following the optimization.
The throughput of a single ChunkServer thread is improved
by approximately 200% for a block size of 128KB.
Shared Link. We tested the shared link mode with several
shared QP groups in a cluster of 198 computing nodes and
93 storage nodes. The background workload compromises
4KB random writes with 8 threads and 8 I/O depths. Fig. 8(a)
presents the throughput in the All Shared, 2 Shared Groups,
and 4 Shared Groups modes, whereby a performance trade-off
can be observed. The All Shared mode exhibits slightly lower
throughput but generates the lowest number of PFC pauses.
Note that the reduction in bandwidth at 5 and 24 minutes in
the All Shared mode is attributed to the garbage collection
mechanism in Pangu. Fig. 8(b) presents the TX pause duration
with 1, 2, and 4 Shared Groups, respectively. The lower the
number of groups, the fewer the PFC pauses are generated
due to the reduction in QP number. We use the All Shared
Group mode in our scale and configuration framework.

5 Availability Guarantee
5.1 PFC Storms
A New Type of PFC Storm. The PFC storm previously
discussed in [13] originates from the NICs, with a bug in the
receiving pipeline acting as the root cause. Fig. 9(a) depicts
the phases of this PFC storm: (1) The bug slows down the NIC
receive processing, filling its buffer; (2) the NIC transmits
the PFC pauses to its ToR switch in order to prevent packet
drop; (3) the ToR switch pauses the transmission; (4) the ToR
switch’s buffer becomes full and starts to transmit the PFC
pauses; and (5) the victim ports are paused and are unable to
transmit.

We encountered a different type of PFC storm when
operating RDMA in Pangu. The root cause is a bug in the
switch hardware of a specific vendor. The bug reduces the
switching rate of the lossless priority queues to a very low
rate. Fig. 9 compares the two types of PFC storms. As an
example, we assume that the bug occurs in a down port of a
ToR switch: (1) due to the low transmitting rate, the switch’s
buffer becomes full; (2) the switch transmits the PFC pauses
to the connected ports; and (3) the additional switches and
NICs stop the transmissions. The leaf switches and NICs

connected to this ToR switch receive continuous pause frames
and thus the storm spreads.
State-of-the-Art Solutions. Guo et al. [13] built a NIC-
based watchdog to continuously monitor transmitted pause
frames, disabling the PFC mechanism if necessary. In
addition, watchdogs were also deployed on the switches
for disabling the PFC mechanism when switches receive
continuous pause frames and are unable to drain the queuing
packets. The switches can subsequently re-enable PFC in the
absence of pause frames over a specific period of time. Thus,
PFC storms can be controlled via these two watchdogs during
phase (2).

However, this solution is unable to completely solve the
PFC storms originating from switches. In particular, the TX
pause watchdogs on the NICs will not work since the NIC
only receives PFC storms from the switches. Furthermore,
current switch hardware does not support the monitoring of
pause frame transmissions. If a storm occurs on a ToR switch,
even though the watchdogs on other switches are able to
stop its spread, the ToR switch will continue to send pauses
to end-hosts in the rack. The RDMA traffic via this ToR is
consequently blocked.
Challenges. This new type of PFC storms invalidates
Guo et al.’s solution, which focuses on insulating the PFC
pause sources to prevent the storm from spreading. This
methodology fails when the source is a ToR switch as all the
hosts in the ToR are paused by the storm. Therefore, in order
to achieve high availability, a general solution is required in
Pangu to handle all PFC storm types, particularly those with
unknown causes.

Ensuring the service quality of Pangu while simultaneously
solving PFC storms is challenging. PFC storm detection must
be timely and accurate to rapidly protect network traffic. In
terms of availability, the overall convergence time of the PFC
storm should be controlled to at most the minute level.

5.2 Design
Our design principle of handling PFC storms is escaping as
fast as possible. Despite new PFC storm solutions [11, 21,
26], we still resort to engineering-level work-arounds due to
practical considerations (§2.3).

In Pangu, each NIC monitors the received PFC pause
frames. For continuous pause frames, the NIC determines
the presence of a PFC storm. Two work-around solutions are
available for administrators in the case of a PFC storm.
Workaround 1: Shutdown. This solution, denoted as the
“shutdown” solution, shuts down NIC ports affected by PFC
storms for several seconds. The dual-home topology provides
an emergency escape for PFC storms, whereby QPs will
disconnect and connect again via another port. This method
works together with the optimization to reduce the length
of the QP timeout. This optimization is discussed further
in §6.2. Although this solution is simple and effective, it is
sub-optimal due to the loss of half of the bandwidth.

526 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25
Time (Minutes)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s)

All Shared (1 Shared Group)
2 Shared Groups
4 Shared Groups

(a) Throughput in different thread groups.

0 5 10 15 20 25 30
Time (Minutes)

0

5

10

15

TX
 P

au
se

 D
ur

at
io

n
(u

s)

104

All Shared (1 Shared Group)
2 Shared Groups
4 Shared Groups

(b) Pause time in different thread groups.
Figure 8: Throughput and pause for different types of thread groups.

1.NIC slow Rx
2.NIC Tx PFC to switch
3.Switch Tx full
4.Switch Rx full and Tx PFC
5.New NICs/Switches are paused

1.Switch slow Tx and Tx full
2.Switch Rx full and Tx PFC
3.New NICs/Switches are paused

TX RXTX RXTX RX TX RXTX RXTX RX

1.

2.

5. Host

PFC storm caused by NIC in CLOS PFC storm caused by switch in Dual Home CLOS

RX TXRX TXRX TX RX TXRX TXRX TX
3. 4. ToR

TX RXTX RXTX RX TX RXTX RXTX RX

RX TXRX TX RX TXRX TX
3. 4. ToR

TX RXTX RX TX RXTX RX

RX TXRX TXRX TX RX TXRX TXRX TX
Leaf

TX RXTX RXTX RX TX RXTX RXTX RX

RX TXRX TXRX TX RX TXRX TXRX TX RX TXRX TXRX TX RX TXRX TXRX TX

TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX

1.2.

RX TXRX TX RX TXRX TX RX TXRX TX RX TXRX TX

TX RXTX RX TX RXTX RX TX RXTX RX TX RXTX RX

1.2.

TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX

3.

TX RXTX RX TX RXTX RX TX RXTX RX TX RXTX RX

3.

RX TXRX TXRX TX RX TXRX TXRX TX RX TXRX TXRX TX RX TXRX TXRX TX

TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX

Fault Port

Paused Port

Healthy Port

Fault Port

Paused Port

Healthy Port

5'. 3'.

PFC frames
Paused link
Healthy link

4'. 2'.

(a) The PFC storm originates in NICs.

1.NIC slow Rx
2.NIC Tx PFC to switch
3.Switch Tx full
4.Switch Rx full and Tx PFC
5.New NICs/Switches are paused

1.Switch slow Tx and Tx full
2.Switch Rx full and Tx PFC
3.New NICs/Switches are paused

TX RXTX RXTX RX TX RXTX RXTX RX

1.

2.

5. Host

PFC storm caused by NIC in CLOS PFC storm caused by switch in Dual Home CLOS

RX TXRX TXRX TX RX TXRX TXRX TX
3. 4. ToR

TX RXTX RXTX RX TX RXTX RXTX RX

RX TXRX TX RX TXRX TX
3. 4. ToR

TX RXTX RX TX RXTX RX

RX TXRX TXRX TX RX TXRX TXRX TX
Leaf

TX RXTX RXTX RX TX RXTX RXTX RX

RX TXRX TXRX TX RX TXRX TXRX TX RX TXRX TXRX TX RX TXRX TXRX TX

TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX

1.2.

RX TXRX TX RX TXRX TX RX TXRX TX RX TXRX TX

TX RXTX RX TX RXTX RX TX RXTX RX TX RXTX RX

1.2.

TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX

3.

TX RXTX RX TX RXTX RX TX RXTX RX TX RXTX RX

3.

RX TXRX TXRX TX RX TXRX TXRX TX RX TXRX TXRX TX RX TXRX TXRX TX

TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX TX RXTX RXTX RX

Fault Port

Paused Port

Healthy Port

Fault Port

Paused Port

Healthy Port

5'. 3'.

PFC frames
Paused link
Healthy link

4'. 2'.

(b) The PFC storm originates in switches.
Figure 9: Different types of PFC storms.

Workaround 2: RDMA/TCP Switching. In this solution,
the affected RDMA links in a PFC storm are switched to TCP
links. It compromises a more complex procedure compared to
the shutdown solution, yet it is able to maintain the available
bandwidth. We adopt a method similar to PingMesh [14] to
detect the RDMA links affected in PFC storms. At each T ms,
every worker thread picks a server and separately pings all
its threads via the RDMA and TCP links. If the RDMA ping
fails and the TCP ping succeeds for more than F times, the
traffic on this RDMA link is switched to the TCP link. Once
the RDMA ping has succeeded more than S times, the traffic
on the switched TCP link is switched back to the RDMA
link. For T = 10 ms and F = 3, bad RDMA links can be
detected in approximately 10 seconds in a podset of 100
storage nodes. By switching the RDMA traffic to the TCP
connections, the throughput can recover to more than 90% in
less than 1 minute.

5.3 Evaluation
We simulate PFC storms by injecting the aforementioned bug
into a switch for several cases, including the uplink/downlink
ports on the ToR and Leaf switches. The RDMA/TCP
switching solution exhibits strong performance for all cases.
Fig. 10 displays the results for a PFC storm originating from

a ToR switch downlink port. Note that the nodes inside the
ToR behave differently from nodes outside the ToR. We
choose two nodes (inside and outside the ToR) in order to
demonstrate the difference. In such a case, the pause frames
are transmitted to NICs and leaf switches directly connected
to the given ToR switch.

The shutdown solution shuts down the NICs via the
watchdogs in the occurrence of a fault due to excessive RX
pauses. RDMA links subsequently reconnect through another
NIC port, thus recovering traffic. Note that the counters of
Congestion Notification Packet (CNP) and PFC frames gradu-
ally increase since the system load (at 0 minutes) is larger than
the available bandwidth of a single port (25Gbps). The system
then reaches a new balance in approximately 30 minutes.
However, the shutdown solution has several limitations. For
example, computing node requests may not respond within
1 minute (known as I/O hang sensed by applications). The
downlink breakdown of a leaf or ToR switch can result in tens
to hundreds of hang requests. Furthermore, the shutdown of
ports is itself an aggressive action. Hundreds of ports may
be shut down due to unexpected pauses. This risk may itself
influence the availability of a large number of nodes.

The RDMA/TCP switching solution switches the RDMA
traffic that passes through the broken-down switch to TCP.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 527

0 2 4 6 8 10
Time (min)

0

5

10

15

20

Th
ro

ug
hp

ut
 (G

bp
s)

In-ToR TCP
In-ToR RDMA
Out-ToR TCP
Out-ToR RDMA

(a) Throughput of RDMA/TCP switching.

0 2 4 6 8
Time (min)

100

102

104

106

C
N

P
Se

nt
/H

an
dl

ed

In-ToR CNP sent
In-ToR CNP handled
Out-ToR CNP sent
Out-ToR CNP handled

(b) CNP of RDMA/TCP switching.

0 2 4 6 8
Time (min)

100

102
103
104
105
106

Pa
us

e
D

ur
at

io
n

(u
s)

In-ToR TX Pause
In-ToR RX Pause
Out-ToR TX Pause
Out-ToR RX Pause

(c) PFC Pause of RDMA/TCP switching.

0 5 10 15 20 25
Time (min)

0

10

20

30

Th
ro

ug
hp

ut
 (G

bp
s)

(d) Throughput of shutdown.

0 5 10 15 20
Time (min)

101
102
103
104
105
106

C
N

P
Se

nt
/H

an
dl

ed

(e) CNP of shutdown.

0 5 10 15 20
Time (min)

101
102
103
104
105
106

Pa
us

e
D

ur
at

io
n

(u
s)

(f) PFC Pause of shutdown.
Figure 10: Performance of two different solutions for PFC storms.

The RDMA links are then disconnected due to timeout. The
QPs are separately distributed over the server’s two NIC
ports, thus the RDMA links may need several attempts to
reconnect successfully. Note that although the pause storm
in the ToR is not terminated, it will not spread further as the
neighboring switch ports are transformed into the lossy mode
via the RX pause watchdogs. The traffic throughput is not
impacted during the migration to the TCP, and I/O hangs are
not present.

6 SLA Maintenance
6.1 SLA in Pangu
It is commonly-known that network failures are hard to locate
and repair. Network failure causes include mis-configuration,
hardware/software bugs, and link errors. For example, the
mis-configuration of the switch Access Control List (ACL)
may only affect a specific flow while other flows behave
normally [28, 45]. As a comparison, malfunctions occurring
at storage devices or nodes can generally be easily located.

Sometimes network failures may not be explicit. Ideally,
when a node breaks down, the heartbeat mechanism should en-
sure that the unavailability of service daemons (BlockServers
and ChunkServers) on the node are informed to their masters
(BlockMasters and PanguMasters). However, real situations
can be more complicated, failing to be detected with just
heartbeats. Connections may suffer intermittent packet loss
or long latency rather than simple break downs. We also

identified an interesting failure type involving a small number
of links that flap between up and down states for a short period
of time (e.g., several seconds). This results in an extremely
high tail latency for I/O requests, denoted as slow I/O (e.g.,
over 1 second for storage clients). Hundreds of slow I/Os
are observed daily for numerous reasons. Root causes of
link flapping include optical ports covered with dust, loose
physical interfaces, aging hardware, etc.
Previous Research on Network Failures. The majority of
previous studies focus on determining the location of network
failures (e.g., Pingmesh [14] and 007 [1]). These solutions
focus on the system network and can achieve the timely
discovery of network errors. However, it may still take hours
for engineers to manually check, fix, and replace the failed
switches and links. Cloud storage calls for a methodology
that integrates the storage and network function modules to
ensure stable service quality in failed cases.

6.2 Design
Our SLA design principle aims to exploit storage semantics
whenever useful. Distributed storage is designed with a
redundancy mechanism and its performance is measured via
the storage semantics. These semantics, such as data replicas
and distributed placements, can be leveraged during a failure
to improve system performance.
Network-Integrated Monitoring Service. Monitoring is
a necessary component of distributed systems. A compre-
hensive monitoring system is key for the safe deployment

528 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of RDMA in production storage systems, as well as reliable
performance.

Both configurations and counters must be monitored. NIC
configurations include system environments, PFC/ECN/QoS
configurations, and several link configurations. Pangu au-
tomatically checks, collects, and reports suspicious terms.
Inspecting potential mis-configurations can reduce configura-
tion and environment errors. For example, accidental reboot
and software upgrades may reset the QoS, PFC, DCQCN [52]
configurations and affect system performance. Monitoring
can discover such cases and help fix them in advance.

Counters include storage system performance coun-
ters (e.g., IOPS/latency) and network counters (e.g., CNP
sent/handled, TX/RX pauses, and RDMA errors on NICs).
Congestion control counters that exceed thresholds can result
in monitor daemons sending alarms to engineers for diagnosis
and repair. Monitoring both storage and network indexes
is crucial for the diagnosis of errors and for predictable
performance. Storage indexes such as tail latency, slow I/O,
and queuing time can directly reflect the status of a system.
Moreover, monitoring system performance also help locate
errors. For example, network features are unable to quickly
reflect the flapping problem described in §6.1. However, this
problem can be easily located by monitoring slow I/Os on the
endpoints of storage applications.
Faster Timeout for Connection Failures. The basic
solution to network failures is to reconnect through an
alternative path. Since we use dual-home topology, each
single point failure of the network can be bypassed using
a different path. Thus, the timeout duration of the QPs
is crucial in improving the system performance during a
failure. In the NIC manual, the timeout duration of QPs is
calculated as 4µs× 2timeout × 2retry_cnt, where timeout and
retry_cnt denote the retransmission timeout value and the
retransmission retry times respectively. Initially, this value
was a constant (approximately 16 seconds) configured in the
hardware and cannot be changed. In a combined effort with
the NIC providers, we were able to fix this bug. By using a
smaller timeout value for QPs, the action time required for
reconnecting during network failures was reduced by 4×.

An alternative work-around involves altering the connec-
tion path by modifying the source ports of the QPs (rather than
a direct reconnection). This can accelerate the link recovery
during a fail-over. However, effectively changing the QP
source port requires a more recent NIC firmware (MLNX
OFED 4.7 or newer) than what is currently deployed in Pangu.
We leave this challenge to future work.
Blacklist. We adopt blacklist in Pangu to further improve
the service quality in fail-over cases. BlockMasters collect
information on I/O errors (including timeout) and slow
I/Os from clients. If a BlockServer has a large number
of slow/error I/Os from multiple clients, the masters adds
it to the blacklist for a short period of time. The number
of clients and slow/error I/Os that triggers the blacklist is

configured according to the scale of the cluster. In order to
ensure reliability, the maximum number of BlockServers in
the blacklist is usually small (e.g., 3 hosts). This blacklist
mechanism temporarily isolates the BlockServers that provide
a poor service. The system performance is not affected and
engineers have sufficient time to fix the problems.

6.3 Daily Operation Scheme of Pangu
The daily operations of Pangu rely on these modules to
work together. The monitoring system collects and reflects
the status of Pangu. If abnormal network indicators or I/O
metrics are observed, the monitoring system attempts to locate
and report them to the administrators. For accidental failures
such as link errors, the small QP timeout shortens the time
required for failure recovery. The blacklist mechanism is able
to determine and isolate nodes with poor service quality. By
following these design and operator framework specifications,
our RDMA-enabled Pangu system has not experienced any
major faults in the last two years.

7 Experiences and Future Work

Monitoring NACK in Lossless RDMA. The operation of
RDMA over a lossless fabric is difficult due to PFC risks.
However, the lossless fabric increases the effectiveness of
NACK events as indicators of the network error location since
NACK is usually rare in a lossless fabric.

In order to detect and locate network problems, we build
a subsystem based on packet loss in Pangu. In particular,
Out-Of-Sequence (OOS) counters on RNICs and packet drop
counters on switches are gathered. A packet loss is classified
as either explicit or implicit based on whether it is recorded
by switch counters. The former is easy to locate by checking
the switch counters. However, determining the location of
the latter is complex as RNIC counters do not distinguish
between flows. By monitoring NACK in the networks, we can
extract flows’ five tuples and locate the root of a problem.
Building a System-Level Benchmark. To evaluate the
system network performance and SLA, a representative
benchmark must be constructed. Building the benchmark
based on just the network metrics is simple. However, storage
features such as replica completion time, slow I/O, and failure
recovery should not be ignored. To measure the storage
system performance and the SLA, we build a benchmark at the
storage service level. The system evaluation indexes include
FIO latency, IOPS, SLA with network errors, etc. Each
upgrade in Pangu (for network and other components) is
evaluated with the benchmark, allowing us to measure the
overall system performance.
Congestion Control for Fail-Over Scenarios. In §3, we
introduced the dual-home topology adopted in Pangu. Dual-
home topology is also crucial to fail-over cases since it
provides a backup path on NICs. However, we encounter
a problem when deploying dual-home topology in practice.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 529

According to our test, when one ToR switch is down, the
RX pause duration can increase to 200ms per second. This
is due to the transfer of the traffic from the broken ToR
switch to the other switch. DCQCN handles the traffic burst
poorly under this asymmetric topology. We adapt several
DCQCN parameters as a temporary solution and leverage the
fluid models [53] to analyze the available choices, including
canceling the Fast Recovery stage and extending the rate
increase duration. When removing the Fast Recovery stage
in DCQCN, the pause can be eliminated yet the flow tail
latency increases due to the slow recovery of the flow rate. In
contrast, extending the duration of the rate-increase can result
in a sharp reduction in the pause but only slightly increases
the flow tail latency. In our experience, extending the rate-
increase duration in DCQCN is effective for storage traffic
patterns. The bandwidth drops slightly while the number of
RX pauses is dramatically reduced.

This problem of DCQCN in fail-over scenarios (e.g., asym-
metric topology and traffic burst) indicates their important
role when designing congestion control. We adopt parameter
tuning to fix this problem at the price of a slight performance
loss. The storage network still requires a flexible, robust
and well-implemented congestion control mechanism that
functions well in all scenarios. In 2019, Alibaba designed
HPCC [30], a novel congestion control algorithm for the
RDMA network. Adapting and integrating HPCC with the
storage networks is left for future work.
Slow Processing of RDMA Read. The majority of large
RPCs in Pangu are transferred via RDMA READ. We
observed that when a NIC receives too much RDMA requests
within a short period, it will send out many PFC frames. This
is due to the slowed receiving process that results from cache
misses. When a NIC is preparing for an RDMA READ, it
accesses the QP context in its cache. Processing many RDMA
READs consumes an excessive amount of cache resources.
For slow RX rates, the NIC sends out PFC pause frames
to prevent packet drops. We are currently working with the
RNIC provider to solve this problem.
Lossy RDMA in Storage. Lossy RDMA is supported by
Mellanox CX-5 and CX-6 RNICs. Note that CX-6 supports
Selective Repeat (SR) retransmission. SR might be the
ultimate step required to effectively eliminate PFC. The
construction of lossy RDMA is a focal point for all RDMA-
based systems. We tested lossy RDMA with Pangu over an
extensive period and will deploy it for new clusters.

However, enabling the lossy feature with early generation
RNICs (e.g., CX-4) that have limited hardware resources and
do not support SR is hard, and many production RDMA-based
systems still host early generations RNICs.
NVMe-Over-Fabric. The ChunkServer data flow in Pangu
is processed by CPUs. However, with NVMe-Over-Fabric,
NICs can directly write the received data into NVMe SSDs.
This CPU-bypass solution can save CPU costs and reduce
latency. We are currently building our specialized storage

protocol (and corresponding hardware) based on NVMe-
over-Fabrics. A customized storage protocol for Pangu with
hardware support can allow for more flexibility and control.

8 Related Work
PFC in RDMA PFC storm is the most well-known issue
of RDMA. Several studies [11, 30, 52] focus on controlling
network congestion to reduce the numbers of generated PFC
pauses. DCQCN [52] is integrated in Mellanox RNICs. In
Pangu, we tune several parameters in DCQCN to improve its
performance in fail-over scenarios. However, PFC storms
still occur due to hardware bugs [13]. In this paper, we
present a different hardware bug that originates from switches.
Existing solutions to remedy PFC storms include deadlock
elimination [38] and performance optimization [46]. These
solutions require switch modification. In Pangu, we combat
PFC storms by switching affected links from RDMA to TCP
without the need for any switch changes.
System & Network Co-Design. Recently, there have been
increasing amount of work that adopts system and network co-
design, including RPC systems [21, 47], distributed memory
systems [39], key-value stores [22], distributed databases and
transaction processing systems [6], and graph-processing
systems [40]. We co-design our storage system and RDMA
in Pangu. To our best knowledge, we are the first to share
the experience of employing RDMA networks in large-scale
distributed storage systems.

9 Conclusions
As a distributed storage system, Pangu has provided storage
services to tenants both inside and outside of Alibaba for
over a decade. In order to overcome the challenges of rising
high-speed storage media and growing business requirements,
we integrate RDMA into the storage network of Pangu,
providing a common solution to different types of PFC storms.
This allows for the safe deployment of RDMA. Pangu has
successfully moved to a 100Gbps network by solving several
new problems, such as the memory bandwidth bottleneck and
QP number explosion. Furthermore, we improve the system
performance of Pangu in fail-over cases.

Acknowledgment
We are really grateful to Yiying Zhang for shepherding
our paper. We also thanks anonymous reviewers for their
constructive suggestions. Yixiao Gao and Chen Tian are
supported in part by the National Key R&D Program of China
2018YFB1003505, the National Natural Science Foundation
of China under Grant Numbers 61772265, 61802172, and
62072228, the Fundamental Research Funds for the Central
Universities under Grant Numbers 14380073, the Collab-
orative Innovation Center of Novel Software Technology
and Industrialization, and the Jiangsu Innovation and En-
trepreneurship (Shuangchuang) Program.

530 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo,
and Geoff Outhred. 007: Democratically finding the
cause of packet drops. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 419–435, Renton, WA, April 2018. USENIX
Association.

[2] Amazon AWS. Summary of the amazon s3 service
disruption in the northern virginia (us-east-1) region.
s https://www.usatoday.com/story/tech/news

/2017/02/28/amazons-cloud-service-goes-dow
n-sites-scramble/98530914/, 2020.

[3] Amazon AWS. Summary of the amazon s3 ser-
vice disruption in the northern virginia (us-east-1)
region. s https://aws.amazon.com/cn/message/
41926/, 2020.

[4] Microsoft Azure. Azure status history. s https://
status.azure.com/status/history/, 2020.

[5] Buzzfeed. Buzzfeed website. s https://www.buzz
feed.com/, 2020.

[6] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using rdma and htm. In Proceedings of the Eleventh
European Conference on Computer Systems, page 26.
ACM, 2016.

[7] Inho Cho, Keon Jang, and Dongsu Han. Credit-
scheduled delay-bounded congestion control for data-
centers. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
239–252. ACM, 2017.

[8] Alibaba Cloud. How does cloud empower double 11
shopping festival. s https://resource.alibabacl
oud.com/event/detail?id=1281, 2020.

[9] Google Cloud. Google cloud networking incident
no.19005. s https://status.cloud.google.com/
incident/cloud-networking/19005, 2020.

[10] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. Farm: Fast remote memory.
In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, pages
401–414, 2014.

[11] Yixiao Gao, Yuchen Yang, Tian Chen, Jiaqi Zheng, Bing
Mao, and Guihai Chen. Dcqcn+: Taming large-scale
incast congestion in rdma over ethernet networks. In
2018 IEEE 26th International Conference on Network
Protocols (ICNP), pages 110–120. IEEE, 2018.

[12] Alibaba Group. Alibaba group website. s https:
//www.alibabagroup.com/en/global/home, 1999-
2020.

[13] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of the
2016 conference on ACM SIGCOMM 2016 Conference,
pages 202–215. ACM, 2016.

[14] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, et al. Pingmesh: A large-scale
system for data center network latency measurement
and analysis. In ACM SIGCOMM Computer Communi-
cation Review, volume 45, pages 139–152. ACM, 2015.

[15] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 29–42.
ACM, 2017.

[16] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. TCP = RDMA: Cpu-efficient remote storage
access with i10. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 127–140, Santa Clara, CA, February 2020.
USENIX Association.

[17] Alibaba Inc. Block storage performance. s
https://www.alibabacloud.com/help/doc-deta
il/25382.html?spm=a2c5t.10695662.1996646101
.searchclickresult.458e478fYtRYOO, 2018.

[18] Alibaba Inc. Pangu, the high performance
distributed file system by alibaba cloud. s
https://www.alibabacloud.com/blog/pangu-
the-high-performance-distributed-file-syst
em-by-alibaba-cloud_594059, 2018.

[19] Intel. Data plane development kit. s https://www.
dpdk.org/, 2011.

[20] Intel. Intel memory latency checker. s https://soft
ware.intel.com/content/www/us/en/develop/a
rticles/intelr-memory-latency-checker.html,
2020.

[21] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter rpcs can be general and fast. In USENIX
NSDI, pages 1–16, 2019.

[22] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In
ACM SIGCOMM Computer Communication Review,
volume 44, pages 295–306. ACM, 2014.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 531

https://www.usatoday.com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/98530914/
https://www.usatoday.com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/98530914/
https://www.usatoday.com/story/tech/news/2017/02/28/amazons-cloud-service-goes-down-sites-scramble/98530914/
https://aws.amazon.com/cn/message/41926/
https://aws.amazon.com/cn/message/41926/
https://status.azure.com/status/history/
https://status.azure.com/status/history/
https://www.buzzfeed.com/
https://www.buzzfeed.com/
https://resource.alibabacloud.com/event/detail?id=1281
https://resource.alibabacloud.com/event/detail?id=1281
https://status.cloud.google.com/incident/cloud-networking/19005
https://status.cloud.google.com/incident/cloud-networking/19005
https://www.alibabagroup.com/en/global/home
https://www.alibabagroup.com/en/global/home
https://www.alibabacloud.com/help/doc-detail/25382.html?spm=a2c5t.10695662.1996646101.searchclickresult.458e478fYtRYOO
https://www.alibabacloud.com/help/doc-detail/25382.html?spm=a2c5t.10695662.1996646101.searchclickresult.458e478fYtRYOO
https://www.alibabacloud.com/help/doc-detail/25382.html?spm=a2c5t.10695662.1996646101.searchclickresult.458e478fYtRYOO
https://www.alibabacloud.com/help/doc-detail/25382.html?spm=a2c5t.10695662.1996646101.searchclickresult.458e478fYtRYOO
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.alibabacloud.com/blog/pangu-the-high-performance-distributed-file -system-by-alibaba-cloud_594059
https://www.dpdk.org/
https://www.dpdk.org/
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html

[23] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance rdma systems.
In 2016 USENIX Annual Technical Conference, page
437, 2016.

[24] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In OSDI, vol-
ume 16, pages 185–201, 2016.

[25] Ana Klimovic, Heiner Litz, and Christos Kozyrakis.
Reflex: Remote flash = local flash. In Proceed-
ings of the Twenty-Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, page 345–359,
New York, NY, USA, 2017. Association for Computing
Machinery.

[26] Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya
Akella, and Michael M Swift. Rogue: Rdma over
generic unconverged ethernet. In SoCC, pages 225–236,
2018.

[27] David Lee, S Jamaloddin Golestani, and Mark John
Karol. Prevention of deadlocks and livelocks in lossless,
backpressured packet networks, February 22 2005. US
Patent 6,859,435.

[28] Dan Li, Songtao Wang, Konglin Zhu, and Shutao Xia. A
survey of network update in sdn. Frontiers of Computer
Science, 11(1):4–12, 2017.

[29] Hao Li, Asim Kadav, Erik Kruus, and Cristian Ungure-
anu. Malt: distributed data-parallelism for existing ml
applications. In Proceedings of the Tenth European
Conference on Computer Systems, page 3. ACM, 2015.

[30] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc:
high precision congestion control. In Proceedings of the
ACM Special Interest Group on Data Communication,
pages 44–58. ACM, 2019.

[31] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve Grib-
ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,
Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A micro-
kernel approach to host networking. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, page 399–413, New York, NY,
USA, 2019. Association for Computing Machinery.

[32] Mellanox. Mellanox rdma progamming manual. s
https://www.mellanox.com/sites/default/fil
es/related-docs/prod_software/RDMA_Aware_P
rogramming_user_manual.pdf, 2015.

[33] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using one-sided rdma reads to build a fast, cpu-efficient
key-value store. In USENIX Annual Technical Confer-
ence, pages 103–114, 2013.

[34] Netflix. Netflix website. s https://www.netflix.
com/, 2020.

[35] J. Niu, J. Xu, and L. Xie. Hybrid storage systems: A
survey of architectures and algorithms. IEEE Access,
6:13385–13406, 2018.

[36] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, June 2014. USENIX Asso-
ciation.

[37] Pinterest. Pinterest website. s https://www.pinter
est.com/, 2020.

[38] Kun Qian, Wenxue Cheng, Tong Zhang, and Fengyuan
Ren. Gentle flow control: avoiding deadlock in lossless
networks. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 75–89. ACM,
2019.

[39] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of the
2017 Symposium on Cloud Computing, pages 323–337,
2017.

[40] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen,
and Feifei Li. Fast and concurrent rdf queries with
rdma-based distributed graph exploration. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 317–332. USENIX
Association, 2016.

[41] Galen M Shipman, Stephen Poole, Pavel Shamis, and
Ishai Rabinovitz. X-srq-improving scalability and
performance of multi-core infiniband clusters. In
European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting, pages 33–42. Springer,
2008.

[42] SPDK. Storage performance development kit. s ht
tps://www.spdk.io, 2020.

[43] Spotify. Spotify website. s https://www.spotify.
com/, 2020.

532 18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.mellanox.com/sites/default/files/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.netflix.com/
https://www.netflix.com/
https://www.pinterest.com/
https://www.pinterest.com/
https://www.spdk.io
https://www.spdk.io
https://www.spotify.com/
https://www.spotify.com/

[44] Brent Stephens, Alan L Cox, Ankit Singla, John Carter,
Colin Dixon, and Wesley Felter. Practical dcb for
improved data center networks. In IEEE INFOCOM
2014-IEEE Conference on Computer Communications,
pages 1824–1832. IEEE, 2014.

[45] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng Wang,
Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, Da Yu,
Chen Tian, Haitao Zheng, and Ben Y. Zhao. Safely and
automatically updating in-network acl configurations
with intent language. In Proceedings of the ACM
Special Interest Group on Data Communication,
SIGCOMM ’19, page 214–226, New York, NY, USA,
2019. Association for Computing Machinery.

[46] C. Tian, B. Li, L. Qin, J. Zheng, J. Yang, W. Wang,
G. Chen, and W. Dou. P-pfc: Reducing tail latency
with predictive pfc in lossless data center networks.
IEEE Transactions on Parallel and Distributed Systems,
31(6):1447–1459, 2020.

[47] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma
support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 306–324. ACM, 2017.

[48] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using rdma and htm. In Proceedings of the 25th
Symposium on Operating Systems Principles, pages 87–
104. ACM, 2015.

[49] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Manu
Awasthi, Tameesh Suri, Zvika Guz, Anahita Shayesteh,
and Vijay Balakrishnan. Performance characterization

of hyperscale applicationson on nvme ssds. In Pro-
ceedings of the 2015 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS’ 15, pages 473–474, New York,
NY, USA, 2015. Association for Computing Machinery.

[50] Yiying Zhang and Steven Swanson. A study of appli-
cation performance with non-volatile main memory. In
Symposium on Mass Storage Systems and Technologies,
2015.

[51] Yang Zhao, Nai Xia, Chen Tian, Bo Li, Yizhou Tang,
Yi Wang, Gong Zhang, Rui Li, and Alex X. Liu. Per-
formance of container networking technologies. In
Proceedings of the Workshop on Hot Topics in Container
Networking and Networked Systems, HotConNet ’17,
page 1–6, New York, NY, USA, 2017. Association for
Computing Machinery.

[52] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale rdma deploy-
ments. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication,
SIGCOMM ’15, page 523–536, New York, NY, USA,
2015. Association for Computing Machinery.

[53] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra
Padhye. Ecn or delay: Lessons learnt from analysis
of dcqcn and timely. In Proceedings of the 12th
International on Conference on emerging Networking
EXperiments and Technologies, pages 313–327. ACM,
2016.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation 533

	Introduction
	Background
	Pangu in Alibaba Cloud
	Challenges
	State-of-the-art Work Do Not Fit

	RDMA Deployment
	Consideration in Deployment Planning
	Deployment Choices of Pangu
	Evaluation

	Performance Optimization
	Performance Hurdles
	Designs
	Evaluation

	Availability Guarantee
	PFC Storms
	Design
	Evaluation

	SLA Maintenance
	SLA in Pangu
	Design
	Daily Operation Scheme of Pangu

	Experiences and Future Work
	Related Work
	Conclusions

