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A B S T R A C T

Machine learning has seen a significant surge and uptake across many diverse applications. The high flexibility,
adaptability, and computing capabilities it provides extend traditional approaches used in multiple fields
including network operation and management. Numerous surveys have explored machine learning algorithms
in the context of networking, such as traffic engineering, performance optimization, and network security.
Many machine learning approaches focus on clustering, classification, regression, and reinforcement learning.
The innovation of this research, and the contribution of this paper lies in the detailed summary and comparison
of learning-based congestion control approaches. Compared with traditional congestion control algorithms
which are typically rule-based, capabilities to learn from historical experience are highly desirable. From the
literature, it is observed that reinforcement learning is a crucial trend among learning-based congestion control
algorithms. In this paper, we explore the performance of reinforcement learning-based congestion control
algorithms and present current problems with reinforcement learning-based congestion control algorithms.
Moreover, we outline challenges and trends related to learning-based congestion control algorithms.
1. Introduction

As a fundamental component of computer networks, congestion
control (CC) plays a significant role in improving the network resource
utilization to achieve better performance. With the development of a
large number of widely used technologies, e.g., data centers (DCs),
WiFi, 5G, and satellite communications, the complexity and diver-
sity of network transmission scenarios and protocols have increased
dramatically. This has brought significant challenges to transmission
protocol design. A rich variety of CC algorithms have been designed
for specific scenarios. However, the variety of network scenarios and
more importantly the intrinsic dynamics of the network, make it ex-
tremely difficult to design efficient generic CC algorithms. Therefore,
CC algorithms based on machine learning (ML) have been proposed
to provide a generic CC mechanism that could potentially underpin
different network scenarios. In this paper, we provide a background
analysis of traditional CC. Based on this, we investigate current works
and research challenges in the application of ML in the field of CC.
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1.1. Traditional congestion control

The Internet transmission protocol is based on packet switching over
best-effort network forwarding [1]. End-to-end transmission control is
required to provide a reliable service for applications. To avoid network
degradation caused by congestion, CC algorithms are typically em-
ployed to improve reliable transmission over the network. Congestion
is a state of the network in which it is not capable to deliver the
service it was designed for. Network congestion occurs when excessive
numbers of data packets are sent over the network by hosts [2]. The
objective of CC algorithms is to achieve higher network throughput
while avoiding packet loss caused by network overload. CC should
ideally also guarantee fairness between end-to-end sessions.

The traditional CC algorithms can be categorized into two types:
end-to-end CC [3–5] and network-assisted CC [6–8]. End-to-end ap-
proaches only require the collaboration of senders and receivers, and
hence they do not rely on any explicit signals from the network.
Network-assisted approaches require the support of network devices,
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e.g. congestion information from routers. These are essential to achieve
fairness and responsiveness in complex networking scenarios.

For end-to-end CC, one of the main challenges is to identify net-
work congestion from implicit session signals, including packet loss
and transmission delays. There are three main types of end-to-end CC
approaches: loss-based CC, delay-based CC, and hybrid CC.

Generally, loss-based approaches such as HighSpeed [9], Hybla
[10], and Binary increase congestion control (Bic) [11] adjust the
sending rate when a given sender has not received a corresponding
acknowledgment (ACK) over a given time, which typically indicates
packet loss. Losses are generated when the buffer in a given network
device is overloaded, thus loss-based approaches are supposed to attain
high throughput by making use of the link bandwidth. However, for
some delay-sensitive applications, lower transmission time cannot be
guaranteed. Besides, the packet loss may not be triggered by network
congestion (e.g., random packet dropping), which may mislead CC
decisions.

Therefore, delay-based approaches such as Timely [12] have been
proposed. Delay-based approaches rely on detected transmission de-
lays caused by the network. Compared with loss-based approaches,
delay-based approaches are more suitable for high-speed and flexible
networks such as wireless networks, as they are not influenced by
random packet loss. However, calculating the exact transmission delay
remains a significant challenge. For example, if there exists a slight
change when the packet is processed in the Linux stack, the measured
transmission delay will be biased. Thus, the sending rate which is based
on the measured delay cannot be controlled precisely.

To take full advantage of both loss signals and delay signals, hybrid
approaches such as Veno [13] and an adaptive and fair rapid increase
rule for scalable transmission control protocol (Africa TCP) [14] have
been put forward. It is noted that these approaches cannot identify the
network status precisely based on implicit signals related to packet loss
and transmission delay.

To solve this problem, network-assisted CC approaches such as the
technique of explicit congestion notification (ECN) [15] have been
proposed. The network devices provide explicit signals related to the
network status for hosts to make sending rate decisions. When the
network device is congested, some packets will be marked with an ECN
signal. The receiver will send back the ECN signal in the ACK and the
sender will adjust the sending rate accordingly. The ECN signal for
congestion is employed in [16]. To further improve CC performance,
multi-level ECN signals for congestion are employed in [17], which
provides finer-grained CC.

With the dramatically increased complexity and diversity of net-
works, there are more challenges to conduct CC. Whilst traditional CC
approaches may work well in one scenario, they may not guarantee the
performance in diverse network scenarios. Furthermore, the changing
traffic patterns in one network scenario may also affect the performance
of the algorithm. Therefore, an intelligent CC approach is required.

1.2. Learning-based congestion control

The dynamic nature, diversity, and complexity of network scenarios
have brought significant challenges for CC. As such, it is difficult to
design a generic scheme for all network scenarios. Furthermore, the
dynamic nature of even the same network can make the performance
of CC unstable. Current network environments may also include both
wired networks and wireless networks, making the detection of packet
loss more difficult [18–20].

To solve the aforementioned problems, learning-based CC algo-
rithms have been proposed. Different from traditional CC algorithms,
learning-based schemes are based on real-time network states to make
control decisions instead of using predetermined rules. This allows
them to have better adaptability to dynamic and complex network
scenarios.

With regards to learning-based CC algorithms, ML techniques are
2

used to train the model including supervised learning techniques,
unsupervised learning techniques, and reinforcement learning (RL)
techniques. Supervised and unsupervised learning techniques have
been widely employed to improve the performance of network CC [18,
20,21]. These two techniques are mainly used to estimate the network
status, such as congestion signals and queue length. However, these
schemes are only partially successful because they are trained offline
and are not capable of classifying realistic wireless and congestion
loss [19]. While RL has more advantages in dealing with realistic
congestion in networks with dynamic and sophisticated state space [22,
23]. Therefore, RL techniques are beneficial for CC because of the
higher online learning capability [24,25]. At present, much research
focuses on RL-based CC schemes.

However, learning-based CC is still in its infancy. Most learning-
based CC algorithms adjust the congestion window (CWND) to control
the sending rate instead of adjusting the sending rate directly. There-
fore, burstiness is still a problem in high-speed networks because the
CWND can increase sharply when multiple ACKs arrive [26]. Current
learning-based CC algorithms such as [27,28] generally focus on end-
to-end CC instead of network-assisted CC. Moreover, current RL-based
CC algorithms are not suitable for realistic networks due to time
overhead. Thus, designing a general learning-based CC scheme that can
work in real network scenarios is still a major goal of both academia
and industry.

1.3. Overall analysis

Although learning-based CC algorithms have been a hotspot in
research, there is no comprehensive survey on this aspect. There are
some related surveys on the combination of ML and network issues.
In [29], a survey is conducted to summarize that ML provides amounts
of techniques to improve the ability of wireless sensor networks to
adapt to the dynamic behavior of network environments. These net-
work issues include scheduling, localization, data aggregation, and so
on. This survey provides a detailed summary of the application of ML-
based algorithms in wireless sensor networks. Some other surveys on
specific network environments related to ML techniques are proposed
as well. In [30], a survey is presented to review various ML methods
that have been employed for cognitive radios. In [31], the survey
gave an overview of the most ML techniques encountered in cellular
networks. In particular, there is a comprehensive survey that discussed
the common issues, such as routing, CC, resource management, and
QoS management when ML techniques are applied [32]. Though this
survey covers abundant aspects related to networking, it only gives
a rough introduction of CC algorithms. In our survey, we discuss
current learning-based CC algorithms and provide systematic analysis
and comparison. Moreover, we conduct comprehensive experiments of
learning-based CC under dynamic networks and compare them with
traditional algorithms. Thereby, this survey of learning-based CC al-
gorithms gives readers exhaustive insight and lays the foundation for
subsequent research.

In realistic networks, the implementation of learning-based CC algo-
rithms has shown that they are not efficient as supposed to be because
intelligent learning decisions cannot be made fast enough. Therefore, to
judge the pros and cons of decision models, we conduct comprehensive
experiments of various schemes by using the NS3 emulator [33].

In the simulation, we compare the RL-based CC algorithms of Deep
Q Learning (DQL) [34], Proximal Policy Optimization (PPO) [35],
and Deep Deterministic Policy Gradient (DDPG) [36] with traditional
CC algorithms including NewReno [37], Cubic [38] and Bottleneck
Bandwidth and Round-trip Propagation Time (BBR) [39]. We design
three different scenarios with different configurations of bandwidth
and delay. The network with high bandwidth and low delay simulates
a typical data center network. The network with low bandwidth and
high delay simulates typical wide area networks. The network with low

bandwidth and low delay simulates ad hoc wireless networks (AWNs).
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These three network environments represent the diverse environments
needed for learning-based CC algorithms.

To fully evaluate the performance of learning-based CC schemes,
we generate the DC traffic which includes bulk data transfer which
can be called elephant flows, and short-lived data exchange which
is also called mice flows. Typical elephant flows are generated by
data backup and virtual machine migration while classic mice flows
are web browsing and search queries. In DCs, elephant flows account
for approximately 80% of total traffics [40]. In our experiments, we
enerate network traffic traces with 80% elephant flows and 20% mice
lows for experiments as well.

The experimental results show that learning-based CC algorithms
re more suitable for dynamic environments with higher Bandwidth
elay Product (BDP). For networks with low BDP, i.e. the link band-
idth is low or the link delay is low, learning-based CC algorithms are

oo aggressive to learn with great stability. Moreover, the performance
f these three learning-based CC algorithms shows no difference in our
imulated environments because the complexity of the environments is
imited. Therefore, all of them can handle these network scenarios.

In realistic scenarios, RL-based CC algorithms are influenced by
he computation time needed for RL. This impacts the feasibility of
hese schemes. Therefore, we propose three potential solutions to deal
ith this problem. Firstly, design lightweight models based on map-
ing tables of states and actions to decrease the time consumption
f learning decisions. Secondly, decrease the frequency of decisions
o provide better feasibility under low-dynamic network scenarios.
inally, asynchronous RL can improve the speed of the decision-making
rocess in RL-based CC algorithms.

Based on this analysis, we further explore the challenges and trends
or future works in the area of learning-based CC. Current challenges
f learning-based CC algorithms are mainly focused on engineering-
elated issues such as parameter selection, high computational com-
lexity, high memory consumption, low training efficiency, hard con-
ergence, incompatibility and fairness. Based on the understanding and
nalysis of the current learning-based CC solutions, we identify trends
n learning-based CC. Firstly, because of their capability for dealing
ith network congestion with dynamic and sophisticated state spaces,
L-based CC will be a significant research trend moving forward.
econdly, the programmable switches can be used in learning-based CC
lgorithms to give end hosts better insights into network status. Third,
iven the excessive time and cost of learning decisions, lightweight
earning-based CC will be a key research direction. Finally, an open
latform that provides massively differentiated dynamic network sce-
arios to support the exploration and verification of learning-based CC
echanisms, is supposed to be designed.

The rest of the paper is structured as follows. In Section 2, we
resent related background knowledge. In Sections 3–5, we consider su-
ervised learning-based CC algorithms, unsupervised learning-based CC
lgorithms, and RL-based CC algorithms respectively as representatives
f three main groups of learning-based CC algorithms. In Section 6,
e provide an overview of the setup of simulations. In Section 7, we

onduct simulations and compare performances between RL-based CC
lgorithms and traditional CC algorithms. In Section 8, we outline the
hallenges and trends of learning-based TCP. Finally, in Section 9, we
onclude the paper.

. Background

In this section, we will introduce relevant domain knowledge in
he field of CC including the mechanism of CC algorithms, classic CC
lgorithms, and the performance metrics.

.1. Congestion control mechanisms

CC mechanisms typically involve four key parts: slow start, conges-
ion avoidance, retransmission, and fast recovery [41]. To illustrate the
rocedure of CC, we adopt the window-based CC.
3

Slow start. In the classic slow start process, each time a good
CK is received, it means that the sender can send twice the numbers
f packets last sent, which will cause the sender’s window to grow
xponentially over time.
Congestion avoidance. In the slow start phase, the CWND can

row rapidly, to a given threshold. Once the threshold is reached, it
eans that only limited network resources are available. Once the slow

tart threshold is established, TCP will enter the congestion avoidance
hase, and increase the value of CWND each time based on the size
f the successfully transmitted packets. The increasing speed is much
lower than the exponential growth rate during the slow start.
Retransmission. Retransmission includes timeout retransmission

nd fast retransmission. Timeout retransmission starts a timer after
ending a given packet. If no acknowledged packet of the datagram is
ent within a certain time, the data is retransmitted until the transmis-
ion is successful. Fast retransmission requires the receiver to send a
uplicate ACK immediately after receiving an out-of-sequence segment
o that the sender knows as soon as possible that a segment has
ot reached the designated server, rather than waiting to send data
onfirmation. The retransmission mechanism in CC ensures that data
an be transmitted from the sender to the receiver.
Fast recovery. Fast recovery means that when the sender receives

hree duplicate ACKs in succession, it executes a multiplication reduc-
ion algorithm and halves the slow start threshold to prevent network
ongestion. The CWND increases in an accumulative manner, causing
he CWND to increase slowly and linearly. The fast recovery algorithm
an avoid congestion and make use of network resources efficiently.

Among traditional CC algorithms, the above four mechanisms make
p the basic approaches while learning-based CC algorithms do not
dopt strict rules to control congestion. To guarantee the flexibility
or different scenarios, learning-based CC algorithms can learn different
trategies to adjust the CWND instead of following fixed rules.

.2. Classic congestion control algorithms

As mentioned before, traditional CC algorithms include end-to-end
C algorithms and network-assisted CC algorithms. In this section, we
ill discuss some representatives among these algorithms.

.2.1. End-to-end congestion control algorithms
Among end-to-end CC algorithms, loss-based CC algorithms, delay-

ased algorithms, and hybrid CC algorithms show different strengths
nd weaknesses. The summary of these algorithms is presented in
ables 1, 2, and 3 respectively.
Loss-based CC algorithms are early versions of CC techniques and

ahoe [42] is the earliest version of TCP. The main architecture of
ahoe includes Slow Start, Congestion Avoidance, and Fast Retransmit.
n the basis of Tahoe, Reno [43] adds a fast recovery mechanism.
hen three repeated ACKs are received or the Recovery Time Objective

RTO) has expired and an ACK for a certain data packet has not
een received, the fast recovery mechanism will consider the packet
o be lost and determine that there is congestion in the network. The
ast recovery algorithm proposed by Reno improves the throughput
nd robustness after packet loss, but the drawback is that it only
onsiders the situation where only one packet is lost. As long as one
acket is lost, it is considered congestion. Therefore, NewReno [3] is
roposed to deal with this problem, which mainly improves the fast
ecovery mechanism. In the Neweno algorithm, only when all the lost
ackets are retransmitted and received confirmation will the sender
xit. Although NewReno can solve the problem of a large number of
acket losses, NewReno can only have one packet loss error per RTT
ime. In order to deal with the loss of a large number of data packets
ore effectively, a selectvie ACK (SACK) algorithm [44] is proposed.

ACK adds mechanisms of selective ACKs and selective retransmission
o Reno. Therefore, the sender can know which data has been received
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Table 1
Loss-based CC algorithms.

Algorithm Details of the algorithm Improved performance Limitations

Tahoe [42] Define the basic structure of CC
algorithms including slow start,
congestion avoidance, and fast
retransmit.

Fast network resource discovery and
high efficiency.

Strain the network with
high-amplitude periodic phases.

Reno [43] Add a fast recovery mechanism. Optimize the slow start mechanism. Suffer performance degradation when
the consecutive packet losses and
random losses exist.

NewReno [3] Modify the fast recovery algorithm by
incorporating a response to partial
ACKs.

Reduce packet losses and delay if
multiple packet losses occur
simultaneously.

Limit the throughput due to the
prolonged recovery mechanism.

SACK [44] More information is added in the
feedback messages by increasing
mechanisms of selective ACKs and
selective Retransmission.

More information provided in ACKs. The length of the option of TCP
header is limited and thus the
algorithm is not universal.

Westwood [45] Estimate bandwidth as the feedback of
losses information, which satisfies
wireless scenarios where losses are
random or sporadic.

Throughput and fairness in wireless
networks.

Unfair if the network has limited
buffering capacity because the
estimate of bandwidth gives
inaccurate results.

Bic [11] Combine additive increase scheme and
binary search increase scheme, which
satisfies different sizes of CWND
respectively.

Scalability and TCP-friendliness. RTT-fairness cannot be guaranteed.

Cubic [38] Modify the linear window growth
function to adjust to the fast and
long-distance network environment.

Scalability, stability, and fairness. More packet losses are produced.

HighSpeed [9] Modify the TCP response function to
adapt the scenarios with large CWND in
TCP connections.

Throughput in high-speed long-delay
networks.

Cannot guarantee fairness if flows
have different RTTs.

Hybla [10] Adopt the SACK option, timestamps,
and packet pacing to reduce the impact
of losses, inappropriate timeouts and
burstiness.

Fairness and friendliness in
long-delay networks.

Unable to work effectively in
high-speed networks with a relatively
small delay.
Table 2
Delay-based CC algorithms.

Algorithm Details of the algorithm Improved performance Limitations

Vegas [4] Modify the slow start mechanism to
control the number of extra buffers in
the network.

Convergence speed and higher
throughput.

Suffer low link utilization ratio compared
with aggressive algorithms such as Cubic.

LoLa [46] Present a fair flow balancing mechanism
for high-speed wide-area networks.

Utilization, throughput, and fairness. Cannot coexist with loss-based CC
algorithms fairly.

FAST [47] Present an equation-based algorithm and
use queuing delay as feedback to check
congestion.

Proportional fairness and not penalize
flows with large RTTs.

Available network resources cannot be
allocated fairly.

Timely [12] Use timestamps and fast ACK based on
precise RTT measurements to control
congestion.

Throughput and latency. The performance depends on the
hardware technology of the network
interface card

LEDBAT [48] Monitor queuing delay and consider the
fluctuation of the delay as an early
signal of congestion.

Queuing delay for latency-sensitive
applications.

Suffer from issues related to incorrect
propagation delay estimation such as
unfairness and latecomer advantage
problems.

Copa [49] Use the observed evolution of one-way
delay to evaluate the target sending rate,
and then increase or decrease the CWND
depending on whether the current rate is
lower or higher than the target rate.

Lower delay without harming
throughput and robust to
non-congestive loss and large
bottleneck buffers.

Suffer from low throughput when
competing with loss-based CC algorithms.
i
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by the receiver. In summary, these four algorithms represent the early
development of loss-based CC algorithms.

However, in some specific network scenarios, optimized CC algo-
rithms are required. In high-speed networks, basic CC algorithms are
not efficient to make use of the bandwidth resources. Some algorithms
are designed to deal with this issue. Bic [11] is an example. Bic uses
the idea of binary search. When a packet loss occurs, indicating that
the optimal window value should be smaller than this value, then
Bic sets the CWND at this time to 𝑚𝑎𝑥_𝑤𝑖𝑛, and the value after the

ultiplication is reduced to 𝑚𝑖𝑛_𝑤𝑖𝑛. The optimal value of the CWND
4

T

s expected to be found between 𝑚𝑎𝑥_𝑤𝑖𝑛 and 𝑚𝑖𝑛_𝑤𝑖𝑛. But Bic harms
airness and Cubic [38] is proposed to optimize Bic. Cubic uses a cubic
unction to replace the growth function of Bic. Also, the most critical
oint in Cubic is that the growth function of CWND only depends on
he time interval between two consecutive congestion events, so the
rowth rate of the CWND is completely independent of the network
TT. Thus, fairness is ensured.

HighSpeed [9] and Hybla [10] are suitable for high-speed networks
s well. HighSpeed modifies the reaction function of the standard
CP protocol, which is affected by the combined effect of the growth
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Table 3
Hybrid-based CC algorithms.

Algorithm Details of the algorithm Improved performance Limitations

Veno [13] Monitor congestion level based on RTT and
packet losses and determine whether
congestion occurs for the networks with
random packet loss.

Throughput. Not address the issue of bursty packet
loss in wireless networks.

Africa [14] Use delay information as an indicator
towards an adaptive fair rapid increase for
links with high BDP.

Throughput and fairness of high-BDP
networks.

Not been implemented in real networks.

Compound [50] Propose a compound TCP, which adds a
delay-based component into Reno algorithm
for high-speed and long distant networks.

Scalability and fairness in high-speed
and long-delay networks.

Suffer fairness and latecomer advantage
issues when base RTT is wrongly
estimated.

Libra [51] Optimize the utility function, which is
independent of RTT, to balance TCP fairness
and stability.

Stability and fairness. Not guarantee the performance due to
the estimation biases.

GCC [52] Predict the bandwidth at the receiving end
based on the input bit rate and adjust the
rate according to the congestion of the link,
and the congestion of the link is reflected
by the change in the increment of the
arrival time interval.

Reduce network delay and smooth data
transmission.

Difficult to deploy due to the complex
framework.

Remy [53] Present a computer-generated algorithm,
which makes control rules for independent
endpoints.

Throughput and delay. The performance depends on the training
data set.

BBR [39] Detect instantaneous link available
maximum bandwidth and minimum RTT.

Throughput and delay in networks with
shallow buffers and random losses.

Perform poorly when competing with
other CC algorithms such as Cubic
because Cubic tends to fill up buffers.

SCP [54] Send real data packets in the data channel
and detect the path condition by sending a
stand-in packet in the control channel.

Zero packet loss, full utilization, and
zero buffer occupancy are achieved
simultaneously.

Not suitable for mice flows and light
traffic loads because the overall duration
of the concurrent flows is too short for
the rate adjustment algorithm.

PCC [55] Send a rate for a short time, and observe
the results such as loss and latency, and
calculate the value of utility which is used
to update the latter sending rate.

Fairness, stability and
stability-reactiveness trade-off compared
with TCP such as Cubic.

The delay cannot be optimized well and
the convergence speed is too slow.

PCC Vivace [56] Based on PCC, a gradient-based no-regret
online optimization algorithm is used to
adjust the sending rate.

Convergence speed and the speed of
response in dynamic networks.

Limited flexibility.

PCC Proteus [57] Extend the utility function of PCC Vivace
with three types: scavenger, primary and
hybrid.

Flexibility and robustness. The switching mechanism of utility
functions is very rough.
function and the packet loss reduction function. As for Hybla, it makes
use of the SACK option, timestamps, and packet pacing to reduce losses
and improve throughput.

In order to improve the throughput in wireless networks, West-
wood [45] estimates the available bandwidth of the network based on
Reno and makes appropriate adjustments to achieve a faster recovery.
However, Westwood cannot distinguish between wireless packet loss
and congestion loss. While the measurement of delay can also be
used to infer the network congestion, which can compensate for the
impact of the random packet loss. Thus, delay-based CC algorithms are
presented.

Delay-based CC algorithms mainly include Vegas [4], Fast ac-
tive queue management scalable TCP (FAST) [47], Low latencies TCP
(LoLa) [46], and Timely [12].

The main topic of delay-based TCP is to optimize the measurement
of delay such as RTT, the one-way delay, and queue delay to obtain
a more fine-grained model, which can fully represent the congestion
in the networks. For instance, Vegas records the system clock when
a segment is sent. Then read the clock again when an ACK arrives
and calculate RTT based on the timestamp recorded [4]. However, the
fairness of Vegas is hard to achieve. LoLa [46] is an enhanced Vegas
that is based on the growth function of Cubic by using a fair flow
balancing mechanism. Though LoLa has better inter-flow RTT fairness
and better RTT estimation, it cannot coexist fairly with loss-based CC
algorithms due to the aggressiveness of loss-based CC algorithms.

FAST is another [47] optimized Vegas, which uses queuing delay as
a congestion signal. Specifically, FAST estimates the number of packets
5

in queues by measuring the difference between the observed RTT and
the base RTT. Thus, FAST makes larger steps when the system has not
reached equilibrium and smaller steps near equilibrium. While Vegas
makes fixed size adjustments to the rate. As a result, the policy of
rate adjustments is independent of how far the current rate is from the
target rate. Therefore, the speed of convergence based on FAST is faster
compared with Vegas.

However, in DCs, the RTT is relatively small, and software time-
stamping is too inaccurate to measure RTT. Thus, hardware time-
stamping is provided by modern Network Interface Cards (NICs) to
obtain more precise microsecond RTT measurements, which is applied
in Timely [12].

Instead of measuring RTT, Low Extra Delay Background Transport
(LEDBAT) [48] adopts a one-way delay to measure the congestion of
networks. The advantage of the one-way delay over RTT is that it does
not need to consider the loop delay experienced when ack returns.
Based on LEDBAT, when there is no other flow in the bottleneck
link, the flow can occupy the full bandwidth and make full use of
the network resources. At the same time, LEDBAT can ensure low
queuing delay. When Cubic competes for bandwidth, LEDBAT actively
grants bandwidth to reduce the sending rate. Therefore, LEDBAT is very
friendly to Cubic flows.

Copa [49] uses the one-way delay to measure the congestion as well.
In Copa, not only low latency is achieved, but the balance of throughput
and latency can also be configured. The larger the parameter, the
more sensitive to latency. Copa uses the competitive mode to solve the
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same radical problem. Once it detects abnormal traffic, it will make
adjustments to make itself less and less aggressive. Therefore, when
used with QUIC, Copa provides higher quality and lower latency for
mobile live broadcast than Cubic and BBR. Moreover, Copa has lower
transmission RTT and lower loss overhead.

Hybrid CC algorithms use loss and delay to jointly evaluate con-
estion. In this way, High throughput and low latency may be achieved
t the same time. There are some typical hybrid CC algorithms such
s Veno [13], Africa [14], Compound [50], Libra [51], and Google
ongestion Control (GCC) [52], the first four of which are based on
eno.

Veno combines Vegas and Reno. Vegas can measure the number of
ata packets belonging to this connection in the network bottleneck
outer. Veno uses this variable to distinguish random packet loss from
ongestion packet loss and takes different actions. Veno also improves
he growth function of CWND that is the basic part of Reno. When
he number of packets belonging to this connection in the network
ottleneck router exceeds a certain value, the growth rate of CWND will
e slowed down and thus packet losses will be reduced. Experiments
how that Veno can improve throughput significantly without adversely
ffecting other concurrent TCP connections compared with Vegas and
eno [13].

Africa [14] is based on Reno as well, which can switch modes
ccording to network congestion. When bandwidth resources are suffi-
ient, Africa uses an aggressive, scalable window increase mechanism.
TT is used to measure congestion as well. If the congestion level shows

hat bandwidth resources are highly utilized, Africa will adopt Reno’s
ongestion avoidance mechanism. Therefore, Africa not only achieves
igh throughput but also ensures fairness.

Compound [50] is also a hybrid algorithm used to solve the prob-
em of poor RTT fairness among loss-based CC algorithms. Compound
aintains two CWNDs, one is a standard window similar to the Reno
echanism and the second is a scalable delay window based on Vegas.
he CWND is calculated based on the summation of these two windows.
hus, Compound combines a scalable delay-based component with a
tandard loss-based component. When the network is congested, the
elay-based component will reduce the sending rate significantly. But
he throughput will be lower bounded by Reno. Therefore, there is
imited RTT unfairness due to delay-based schemes, and the throughput
s guaranteed because of the loss-based schemes. As for the issue of
TT unfairness, Libra [51] uses non-linear optimization to guarantee

airness among TCP flows regardless of RTT.
Different from the above algorithms, GCC [52] is applied in We-

RTC which uses UDP-based RTP to transmit media data instead of
CP. In GCC, the rate control based on the packet loss rate runs on
he sender and relies on RTCP RR messages to work. WebRTC receives
he RTCP RR message from the receiver at the sender and dynamically
djusts the code rate at the sender according to the packet loss rate
nformation carried in its Report Block. Delay-based rate control runs
n the receiving end.

Besides, there are some innovative hybrid algorithms that have
eceived extensive attention including Remy [53], BBR [39], Stand-in
ontrol Protocol (SCP) [54], Performance-oriented Congestion Control
PCC) [55], PCC Vivace [56], and PCC Proteus [57].

In Remy [53], the utility function consists of throughput and delay.
o maximize the expected value of the utility function, Remy finds
he mapping based on a pre-computed lookup table. Thence, the corre-
ponding sending rate is estimated. To converge to the optimal sending
ate and fully utilize the network, BBR estimates the available band-
idth based on the probing mechanism [39], which is representative
f adjusting the sending rate by detecting the network status. Learning
rom the probing mechanism of BBR, researchers proposed Stand-in
ontrol Protocol (SCP) in [54]. To achieve fast convergence, SCP parti-
ions a physical link into control and data channels. Before determining
he actual sending rate in the data channel, SCP sends stand-in packets
6

n the control channel to probe the network condition. Based on the
feedback from the control channel, thus data channel is possible to
achieve full network utilization. Similar to BBR, the PCC algorithm
family is also a method of dynamically adjusting the rate by detecting
available network resources including PCC [55], PCC Vivace [56], and
PCC Proteus [57]. They show great performance based on carefully
designed utility functions that cover basic performance metrics such
as round-trip time (RTT). Compared to BBR, PCC converges slower
because of PCC’s conservative increasing mechanism.

2.2.2. Network-assisted congestion control algorithms
Network-assisted CC algorithms require the coordination of the

sender and receiver, and require routers to perform specific process-
ing on packets. Typical algorithms consist of ECN-based CC algo-
rithms [58] and Quantized Congestion Notification-based (QCN-based)
algorithms [59]. The summary of network-assisted CC algorithms is
presented in Table 4.

ECN is an extension to the Internet Protocol and Transmission
Control Protocol. ECN allows end-to-end notification of CC to avoid
packet loss and requires specific support from the Internet layer and
the transport layer. Generally speaking, TCP/Internet Protocol (IP)
networks indicate channel congestion by dropping data packets. In the
case of successful ECN negotiation, the ECN-aware router can set a
mark in the IP header instead of discarding the packet to indicate that
congestion is about to occur. The receiving end of the data packet
responds to the sending end’s indication, reducing its transmission rate
as if it had detected packet loss in the usual way. There are many
ECN-based CC algorithms such as DCTCP [26] and High-bandwidth
Ultra-Low Latency (HULL) [60]. The advantage of ECN is that it can
reduce the number of discarded data packets in a TCP connection to
avoid retransmission and reduce waiting time, especially network jitter.

QCN is a set of end-to-end congestion notification mechanisms
applied to L2. Through an active reverse notification, the packet loss
rate and delay in the network are reduced, thereby improving net-
work performance. QCN includes two parts: Congestion Point (CP) and
Reaction Point (RP). CP means that the congested network switching
equipment samples the data frames that are being sent in the sending
buffer. If congestion occurs, it will generate a Congestion Notification
Message (CNM) to the RP of the sampled data frame. When the RP
receives the CNM information, it will limit the sending rate of the
corresponding message. At the same time, the RP will slowly increase
its sending rate to detect the available bandwidth and recover the rate
due to congestion. In [61], DCQCN is designed based on QCN and
DCTCP. The proposed algorithm dramatically improves the throughput
and fairness of the traffic. Though QCN is efficient in controlling the
queue length and assists the CC, QCN cannot be deployed and used
in large-scale IP networks since QCN cannot be used in IP routing
networks.

2.3. Performance metrics of congestion control algorithms

CC algorithms are expected to achieve various goals and objectives
as shown in Table 5.

Throughput represents the amount of data that passes through a net-
work (or channel, interface) in a given time interval. High throughput
means high link utilization. Maximizing throughput is crucial. Given
the link bandwidth, high throughput indicates high efficiency in trans-
ferring data. For instance, Bic is aimed to achieve higher throughput
based on a more aggressive mechanism compared with Reno [11].

RTT measures the time including the transmission time, the propa-
gation time, the queue time, and the processing time. Flow completion
time (FCT) indicates the time required to transfer the flows. RTT and
FCT are expected to be small. For users, RTT and FCT show the delays
that they may have to tolerate. However, it may be the case that
maximizing throughput and minimizing RTT or FCT can be orthogonal.
High throughput means making use of the link bandwidth as much

as possible, which can give rise to an increased queue length that
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Table 4
Network-assisted CC algorithms.

Algorithm Details of the algorithm Improved performance Limitations

ECN [58] Allow end-to-end notification of CC to avoid
packet loss, and require specific support from the
Internet layer and the transport layer.

Avoid retransmission and reduce waiting
time, especially network jitter.

Performance depends on the accuracy of
the AQM used.

QCN [59] Include CP which is used to generate congestion
notification message and send to RP and RP is
responsible to deal with it and controls the
sending rate.

Ensure low queue buildup and low
queue oscillations.

Cannot be deployed and used in
large-scale IP networks since QCN
cannot be used in IP routing networks.
Table 5
Objectives of learning-based CC algorithms.

Objective Description

Maximizing throughput [11] To maximize throughput, bandwidth utilization is supposed to be high. High
throughput contradicts low RTT or flow completion time since high throughput
means the environment tolerates high queue lengths, which may cause long
delays.

Minimizing RTT or flow
completion time [4]

Minimizing RTT or flow completion time is a basic requirement expected to be
met. For each task, the flow completion time reflects the delay, which is
supposed to be as small as possible.

Minimizing packet loss rate
[54]

Minimizing the packet loss rate is a basic goal of CC algorithms. Low packet loss
rate means that there. is a stable network environment and low delay.

Fairness [9,10] Fairness is important for multiple users. Resource allocation should be as fair as
possible between users and consider diverse applications.

Responsiveness [56] Updating the frequency and adjustment policy of CWND can influence the
responsiveness of algorithms. High responsiveness is expected, which implies high
resource-consumption as well. Therefore, responsiveness needs to be balanced
based on different scenarios.
may cause delays. In Vegas [4], the crucial insight is to predict the
congestion level based on measured RTT. Moreover, the lower RTT and
FCT can be realized in Vegas due to the delay-based mechanism.

The packet loss rate indicates the efficiency of the data transmission.
For CC, minimizing the packet loss rate is important as it shows the
control capability and stability of the network. SCP [54] is an example.
By designing two channels, zero packet loss is possible.

Fairness is a measure of equality of the resource allocation of the
network. Increased fairness requires CC algorithms to fairly allocate
resources between flows to user satisfaction and in turn improve the
Quality of Service (QoS). Many algorithms regard fairness as one of
the crucial performance metrics like HighSpeed [9] and Hybla [10].

Responsiveness reflects the speed of the CC to deal with real-
time flows. A high responsiveness level means that the algorithms
can detect the congestion quickly and rapidly adjust the CWND to an
optimal value. Compared with PCC [55], the kernel improvement of
PCC Vivace [56] is the improved speed of response.

These objectives are important for all CC algorithms, but they are
hard to achieve simultaneously. In different scenarios, the targets may
also have different priorities, and hence trade-offs are necessary. Based
on the previous literature, different CC research focuses on different
performance metrics including throughput, RTT, the packet loss rate,
and fairness. In our simulations, we measure these four parameters in
detail.

3. Supervised learning-based congestion control algorithms

In this section, we introduce supervised learning-based CC algo-
rithms. Supervised learning techniques train given samples to obtain
an optimal model, and then use this model to map all inputs to corre-
sponding outputs. By performing judgments on the outputs, supervised
learning techniques have the ability to perform data classification.
Classic supervised learning methods include decision trees, random
forests, Bayes, regression, and neural networks.

In the network field, supervised learning methods are used to im-
plement many network functions, such as traffic classification, CC,
resource management, and network security. Among these functions,
7

because optimal traffic classification policies can promote the reason-
able allocation of network resources and reduce the probability of
network congestion, traffic classification occupies a very significant
position and has an important impact on a wide range of network
operation and management activities including CC. Therefore, traffic
classification based on supervised learning can also be regarded as the
application of supervised learning algorithms in the field of CC.

There is a huge amount of supervised learning techniques used
for traffic classification. In [62], packet-level information and flow-
level information are used as states. Nearest Neighbor and Linear
Discriminant Analysis are employed to classify flows into four classes:
the interactive class, the bulk data transfer class, the streaming class,
and the transactional class. Based on the high-precision classifier, IP
network operators are able to provide differentiated QoS for various
applications. However, the error rate is up to 9.4%, which is relatively
high. In [63], a Naive Bayes Estimator is applied to categorize traffic by
application, which improves the accuracy significantly. In this paper,
the accuracy is about 95%. The insight provided in this research is that
the algorithm proposed is sensitive to its initial assumptions. Moreover,
breaking the Gaussian assumptions and improving the quality of dis-
criminators as input led to significant improvements in the accuracy.
In [64], more features are taken into consideration such as the size and
the number of ‘‘burst’’ packets. The burst feature is supposed to provide
fantastic discriminant power among distinctive classes. To reduce the
computation cost, a Support Vector Machine (SVM) is proposed [65]. In
the presented model, multiple binary SVM classifiers are organized into
a tournament structure, which can dramatically decrease the number of
training samples. Moreover, the feature selection and parameter choice
for individual SVM are different. These optimizations can further im-
prove accuracy and reduce computational cost. The simulation shows
that the designed algorithm can reduce computation cost by up to 7.65
times.

To sum up, the extensive application of supervised learning models
in traffic classification plays an important role in crucial engineering
issues such as classification accuracy and computation cost. Except
for traffic classification, supervised learning methods can be used to
predict congestion signals for end-to-end networks and manage queue
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length for network-assisted networks, which affect the performance of
CC directly.

Congestion signal prediction consists of loss classification and delay
prediction. As mentioned before, congestion is detected implicitly based
on packet loss or delay when congestion occurs in traditional CC
algorithms. In supervised learning-based CC algorithms, congestion is
estimated in advance based on current and previous network states
such as the packet arrival interval and the network delay. The key basis
for this approach is that network states form a continuous time series,
where the future state can be predicted by past states. As for queue
length management, supervised learning methods play an important
role in the accurate and efficient prediction of queue length. In the next
two parts, a more detailed description will be shown.

3.1. Congestion detection in end-to-end networks

3.1.1. Loss classification
Loss is a crucial but indirect signal used to detect congestion. It

gives nodes feedback in networks only when congestion has already
happened. In addition, basic loss-based CC algorithms cannot distin-
guish the cause of packet loss. Therefore, the classification of loss is
essential to understand CC.

Wireless networks provide many classic scenarios required to distin-
guish the wireless loss and congestion loss. In wireless networks, losses
may be caused by erroneous wireless links, user mobility, channel
conditions, and interference. There has been a body of research related
to loss classifications in wireless networks based on traditional CC
algorithms. In [66], the proposed algorithm (Biaz) uses the packet inter-
arrival time to classify wireless loss and congestion loss. If the packet
inter-arrival time is confined to a range, the missing packets are lost
due to wireless loss. Otherwise, the loss is considered a congestion loss.
In [67], Spike, a newly designed loss classifier for relative one-way trip
time (ROTT) was used to differentiate loss types. If the connection of
ROTT was relatively higher, the loss was supposed to be caused by
congestion. In other cases, the loss was assumed to be a wireless loss.
In [68], the number of losses and ROTT were used to distinguish the
types of losses. The presented algorithm called ZigZag is more efficient
than the above two algorithms.

These loss classifiers are effective in some specific scenarios but
have their limitations. Biaz [66] is suitable for wireless last hop topol-
ogy instead of the wireless bottleneck links with competitive flows
while Spike [67] shows better performance in wireless backbone topol-
ogy with multiple flows. ZigZag [68] is relatively more general, and
hence is able to satisfy different topology scenarios but it is sensitive
to the sending rate.

Considering the limitations of traditional loss classifiers for wireless
networks, supervised learning techniques offer several advantages. To
fully understand the loss information, multiple parameters can be taken
into consideration. In [69], the multi-layer perceptron technique is used
as the classifier. The minimum RTT value and the current RTT value are
regarded as input states. While in [70], the arrival time interval of ACK
and minimum RTT are chosen as features and the AdaBoost algorithm is
used to classify the loss into wireless loss and congestion loss for satel-
lite networks. In [18], the one-way delay and inter-packet times were
used as states to predict loss categories. In [19], the queuing delay,
the inter-arrival time, and lists of packets were used as inputs. Besides,
diverse supervised learning techniques were applied. In [71], decision
trees, decision tree ensembles, bagging, random forests, extra-trees,
boosting, and multi-layer perceptrons were used to classify the types of
loss. Simulations show that these intelligent loss classifiers achieve high
accuracy in different network scenarios. In conclusion, when classifying
the wireless loss and the congestion loss, delay information is the kernel
state.

Beyond wireless loss, contention loss is common in Optical Burst
Switching (OBS) networks. OBS provides an advanced network, which
saves the sources due to wavelength reservation. However, because of
8

Fig. 1. Loss classification based on supervised learning algorithms.

the lack of buffers in OBS, contention loss is generated when there is
a burst at the core nodes. There are some supervised learning-based
CC algorithms designed to tackle this. In [72], some classic contention
resolutions are discussed and measured including wavelength conver-
sion, deflection routing selection, and buffering with shared feedback
fiber delay line. To measure the efficiency of these strategies, burst
loss probability, and burst probability were considered. These strate-
gies show good performances related to OBS contention issues. While
in [73], a Hidden Markov Model was used to classify contention loss,
congestion loss, and control congestion separately. Simulations showed
the effectiveness of loss classifiers in different network scenarios.

Reordering loss cannot be ignored in networks with multi-channel
paths. In networks, when packets are reordered, reordering loss occurs.
Supervised learning-based CC algorithms are able to deal with the
associated classification issues. In [74], out-of-order delivery causes
variations of RTT. Therefore, RTT related to reordering and RTT re-
lated to congestion show different distributions. In [20], a Bayesian
algorithm was used to represent the distributions of RTT for two types
of losses. The proposed algorithm showed high prediction accuracy.

In conclusion, wireless loss, contention loss, and reordering loss
impact the detection of congestion loss. Supervised learning techniques
show advantages in classifying types of losses in different network
scenarios. The mechanism is shown in Fig. 1 and Table 6 summarizes
the studies related to loss classifiers based on supervised learning
methods. However, there are some issues related to these supervised
learning-based CC algorithms.

Misclassification is one issue. In wireless networks, predefined pa-
rameters determine the errors in classifying congestion loss and wire-
less loss. If the congestion loss is more easily classified than wireless
loss, the classifier shows bad performances in wireless networks since
the network is supposed to react when a loss is detected. However,
due to the misclassification, the network considers congestion loss as
wireless loss and does not control the sending rate quickly. Therefore,
congestion cannot be reduced. Therefore, parameters in the algorithms
need to be considered carefully to balance performance in different
network scenarios.

The balance between computational complexity and prediction ac-
curacy is another issue. As shown in [71], compared with decision
trees, boosting algorithms achieve higher accuracy but consume much
more network resources. Therefore, considering the limited improve-
ments in the accuracy of boosting, the technique of decision trees shows
more advantages due to its simplicity.

3.1.2. Delay prediction
As a congestion signal, the delay of transmissions reflects the

amount of in-flight data, which shows the overall load on the network.
There are some classic delay-based CC algorithms such as Vegas that
measures delay accurately [4]. However, in dynamic networks, tradi-
tional delay-based CC algorithms are not flexible enough. As Fig. 2
shows and Table 7 concludes, supervised learning techniques have high
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Table 6
Supervised Learning: Loss Classification in End-to-end CC Algorithms.

Algorithms Scenarios Input Output

Decision tree boosting [18] Wireless networks One-way delay, inter-packet times Link loss or congestion loss

Bayesian [20] Networks with reordered events RTT of lost packets Reordering loss or
congestion loss

Hidden Markov model [73] OBS Number of bursts successfully received at
an egress between any two bursts

Contention loss or
congestion loss

DT, Bagging, Boosting, Neural
networks [19]

Wireless networks Queuing delay, inter-arrival times, lists
of packets

Wireless loss or Congestion
loss

Multi-layer Perceptron [69] Wireless networks Minimum RTT, current RTT Wireless loss or Congestion
loss

AdaBoost [70] Satellite networks Minimum RTT, the arrival time interval
of ACK

Wireless loss or Congestion
loss

Decision trees, Decision tree
Ensembles, Bagging, Random forests,
Extra-trees, Boosting, Multilayer
perceptrons, K-Nearest neighbors [71]

Wireless networks Standard deviation, minimum, and
maximum of one-way delay, inter-packet
time for the packets

Wireless loss or Congestion
loss
Fig. 2. Delay prediction based on supervised learning algorithms.

learning capabilities and are efficient in predicting future delays and
reacting quickly to avoid congestion.

RTT prediction is a major topic in delay prediction. Based on the
measured RTT, other parameters can be calculated such as RTO. There
has been a body of research exploring the prediction of RTO based
on RTT. In [75], the estimation of RTT was dynamically changed to
estimate RTO in wireless networks. In [76], RTT was used to predict
RTO and bandwidth utilization. In [77], a fixed-share expert was used
to compute the RTO in mobile and wired scenarios relying on RTT
estimations. In addition, in [78] and [79], the fixed-share leveraged
exponentially weighted moving average technique demonstrates a more
accurate algorithm.

Moreover, there has been various research measuring RTT based on
other parameters in the network. In [80], linear regression was used to
establish the relationship between RTT and the sending rate. In [81],
a Bayesian technique was used to simulate the distribution between
delay and the sending rate and then to predict delay based on the
sending rate. This is needed in real-time video applications and wireless
networks.

Delay prediction is also significant for delay-sensitive networks
that require networks with increased responsiveness. Several intelligent
algorithms for the prediction of RTT using limited parameters and
simple techniques to guarantee the low computational complexity and
high responsiveness have been proposed. Further research is needed to
push the boundary and deal with more complex related parameters and
techniques to improve delay predictions.

3.2. Queue length management in network-assisted networks

Queue length management is a key focus for network-assisted CC
algorithms. There has been a body of research related to the Active
queue management (AQM) family of ECN techniques. However, the
9

Fig. 3. Queue length management based on supervised learning algorithms.

original AQM algorithms detect the current queue length and react to
the environment. Some research has shown that the future queue length
can be predicted. The prediction process is shown in Fig. 3. Moreover,
Table 8 summarizes some related research. [88] and [89] showed the
long-range dependence between previous traffic patterns and future
queuing behavior. Multiple supervised learning techniques have been
applied including Linear Minimum Mean Square Error Estimation [85],
Normalized Least Mean Square Algorithm [86], Neural Networks [82,
83], Deep Belief Networks [87], and Neural-fuzzy [84].

These algorithms share similar features in that they employ the
time series of previous traffic as input without considering diverse
parameters in the network. As a result, these algorithms leave space
for further exploration of dependencies between related parameters and
the queue length.

4. Unsupervised learning-based congestion control algorithms

In this section, another category of learning-based CC algorithms
is presented: unsupervised learning-based CC algorithms. Unsupervised
learning techniques are used when the category of data is unknown,
and the sample set needs to be clustered according to the similarity
between samples in an attempt to minimize the intra-class gap and
maximize the inter-class gap. In some situations, the network infor-
mation cannot be fully provided, the unsupervised learning techniques
can be alternatives, where the training data is not labeled. Thus,
unsupervised learning methods can be employed as traffic classifiers
as well. Thus, based on clusters generated by unsupervised learn-
ing methods, more network optimizations can be conducted such as
CC. Clustering methods among unsupervised learning techniques in-
clude K-means [90], Hierarchical Clustering [91], Density-based Mean
Shift [92], Density-based DBSCAN [93], and Expectation Maximization
(EM) [94].
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Table 7
Supervised learning: Delay measurement in End-to-end CC algorithms.

Algorithms Scenarios Details of the algorithms

Fixed-share experts [77] Delay-sensitive networks Employ the experts’ framework to predict the RTT
and then adjust the network environment to
improve the goodput

Fixed-share with exponentially
weighted moving average without
increasing computational complexity
[78]

Networks with fluctuating time
scales

Propose a technique to estimate the RTT in
scenarios with diversified RTT.

Bayesian theorem [81] Real-time video applications and
wireless networks

Adapt the sending rate based on the estimated
delay

Linear regression [80] Interactive video applications Build a statistical function between the sending
rate and RTT and adjust the sending rate based on
the linear regression given the estimated RTT
Table 8
Supervised learning: Queue management in network-supported CC algorithms.

Algorithms Scenarios Details of the algorithms

Neural networks [82,83] ATM networks Predict the future value of the traffic based on
the past traffic flows

Neural-fuzzy [84] ATM networks Use the estimated average queue length to
calculate loss and then control the sending rate

Linear minimum mean square
error estimation [85]

Networks supporting
AQM

Establish a relationship between long-range traffic
flows to estimate the future traffic based on past
traffic flows

Normalized least mean square
[86]

Networks supporting
AQM

Employ adaptive techniques to estimate the
instantaneous queue length

Deep belief networks [87] NDN Calculate the average queue length based on the
prediction of pending interest table entries
Table 9
Unsupervised Learning: Loss Clustering in End-to-end CC algorithms.

Algorithms Scenarios Details of the algorithms

Hidden Markov Models [21],
[95]

Wired/wireless networks Uses delay-loss pairs to cluster data into
several groups and assign the specific sending
rate for each group

EM Clustering [73] Optical burst switching networks Cluster loss into contention loss and
congestion loss and adjust the environment
separately
K-means is easy to implement but it requires the user to specify
he number of clusters in advance. Moreover, the clustering result is
ensitive to the selection of the initial cluster center. In [90], K-means
s used as a basic clustering method. The features selected in this work
nclude the number of total packets, the number of actual data bytes,
he number of the pushed data packets, etc. Based on K-means, the
uthors adopt the feature selection to find an optimal feature set and
og transformation to improve the accuracy. The experiments show that
he proposed method can obtain up to 80% overall accuracy.

Compared with K-means, EM is generally used for Gaussian Mixture
odel. In K-means, an unknown data point must belong to a single

luster, while a data point can be mapped into multiple clusters based
n EM. In [94], the authors use an AutoClass approach which is an
M model to cluster traffic based on statistical flow properties. In this
esearch, a feature selection technique is used for finding the optimal
low attributes. The experiments show that the average accuracy is
6.5%. However, the performance of clustering depends on the particu-
ar application. This research shows that EM has more advantages than
-means in complex data sets, but this advantage is limited.

To compare different clustering methods, in [93], the authors com-
are K-means, AutoClass, and DBSCAN models to classify traffic by
xploiting the distinctive characteristics of applications in the network
ommunication. The experiments show that both K-means and DBSCAN
ork well and have faster training speed than AutoClass. As for the
ccuracy, K-means and AutoClass achieve high accuracy than DBSCAN.
10
However, DBSCAN can produce better clusters than K-means and Au-
toClass. As a result, it is shown that in the situation of this research,
these three algorithms have different advantages.

As for the detection of congestion, unsupervised learning algorithms
are used to cluster loss groups and delay characteristics. In the next
parts, more details will be presented.

4.1. Congestion detection in end-to-end congestion control algorithms

4.1.1. Loss clustering
In networking, unsupervised learning techniques are used to cluster

loss into several groups and allocate resources for each group to achieve
CC as shown in Fig. 4. The sender will collect data on the network side,
such as RTT, and use an unsupervised learning algorithm to cluster
the lost packets. The model will cluster the packet loss into congested
packet loss and non-congested packet loss. When the current result is
congested packet loss, a congestion signal will be triggered, and the
sender will consider that congestion has occurred, and take correspond-
ing measures to control the sending rate. A detailed summary is shown
in Table 9.

According to previous literature, the packet delay variations reflect
the available bandwidth and loss types. Thus, loss-delay pairs can be
used to cluster the loss in networks [97]. In [21], the observation
is that wireless losses and congestion losses can be differentiated by
delays around losses. The distributions of round-trip delays around
different types of loss have different features that can be used to classify
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Table 10
Unsupervised learning: Delay clustering in End-to-end CC algorithms.

Algorithms Scenarios Details of the algorithms

K-means [96] Vehicular ad hoc networks Cluster the data into groups based on message size, the
validity of messages, the distance between vehicles and
RSUs, the types of message, and the direction of
message and assign a sending rate for each cluster
Fig. 4. Loss clustering based on unsupervised learning algorithms.

Fig. 5. Delay clustering based on unsupervised learning algorithms.

losses. The observation is that the delay distribution around wireless
losses is different from the one around congestion losses. Based on
the observation, in wireless networks, losses can be classified into
congestion loss and wireless loss. In this research, the distribution of
loss-delay pairs can be captured by a Hidden Markov Model (HMM).
The HMM is trained to associate the type of losses with a state based on
the delay features it captures. The experiments show that the proposed
model is more efficient than Vegas predictors.

In addition to using the HMM to construct the conditional delay dis-
tribution caused by congestion or wireless channel errors, the Bayesian
method is also added in [95] to train an effective classifier. In this
research, the losses clustering problem is formulated as a statistical
hypothesis testing. Besides, the Maximum Likelihood Ratio test is used
as well. The analytical simulations show that as long as there are
enough statistical data about the losses, a simple Bayesian method
can be used to construct an effective classifier. If HMM is added, the
clustering results will be more accurate, but the computational cost will
be higher.

Except for the wireless losses mentioned above, unsupervised learn-
ing algorithms are used to cluster contention losses and congestion
losses as well. In OBS, the authors in [73] find that the number of
bursts between failures can be used to differentiate congestion and
contention losses because the number of bursts’ failures follows a
Gaussian distribution with different parameters for contention and
congestion losses. As for the models, HMM and EM are employed as
clustering methods. Moreover, the authors modify the TCP with these
two clustering methods to improve the performance of CC. In the
11
experiments, results show that HMM-TCP and EM-TCP have higher
throughput and goodput compared with traditional CCs including TCP
NewReno, TCP SACK, and Burst TCP. Compared with HMM-TCP, EM-
TCP performs slightly better among all metrics because the EM model
has a higher degree of intra-cluster similarity.

As mentioned above, unsupervised learning algorithms are widely
used for loss clustering. Though unsupervised learning techniques are
simple and easy to implement, compared with loss classification based
on supervised learning algorithms, the research related the loss cluster-
ing based on unsupervised learning algorithms is still relatively much
less. For instance, the related techniques only cover EM and HMM.
Network states mainly consist of loss-delay pairs and the number of
bursts between failures. Thus, more research is required to broaden this
field.

4.1.2. Delay prediction
There are only a limited number of unsupervised learning-based CC

algorithms suitable for delay prediction because of the high processing
demands for delay calculation. Typical algorithms such as k-means [96]
and the associated mechanisms are presented in Fig. 5 and Table 10.
As shown in Fig. 5, the sender obtains the states in networks such as
the message size. Then, delay clustering is conducted based on unsuper-
vised learning methods. The generated clusters can be used to adjust the
sending rate based on the given policy. Specifically, Data such as the
message size, the validity of messages, the distance between vehicles
and RUSs, and the type of message is divided into different groups
and the lowest delay in each group is selected as the communication
parameter for each cluster. Based on the communication parameter, a
specific sending rate will be assigned to each cluster. Therefore, based
on the measurement of delay, CC can be achieved. Similar to loss
clustering based on unsupervised learning techniques, the research of
delay prediction relying on unsupervised learning methods is limited
as well.

5. RL-based congestion control algorithms

RL algorithms typically include a value function and a policy func-
tion. The value function is responsible for measuring the value of
specific actions given the network state, to determine if a given action
can be chosen. The policy function is used to choose the action based
on a given set of rules. In a given iteration, the system chooses an
action based on the policy and the system provides feedback. The
value function then calculates the value of the action and updates it
accordingly. Based on different mechanisms, RL algorithms are divided
into value-based schemes and policy-based schemes. Typical value-
based schemes include Q Learning and DQL. Typical policy-based
schemes include Policy-Gradient, Actor-Critic (AC), PPO, DDPG, and
Asynchronous Advantage Actor-Critic (A3C). The difference between
value-based schemes and policy-based schemes is that policy-based
schemes estimate the policy for actions and whether they can satisfy
scenarios with different actions, while value-based schemes predict the
value of actions directly.

In the network communication, RL is widely used in specific sce-
narios such as 5G and edge computing to optimize network functions.
In [105], a DRL approach is applied to deal with the issue of resource
allocation in Millimeter-wave (mmWave) which is a key technology of
fifth-generation wireless systems to achieve a high data rate. Due to
the large bandwidth of mmWave and the high cost of infrastructure
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Table 11
RL: Window Updating in End-to-End CC Algorithms (States, Actions, and Rewards)

Algorithms Scenarios States Actions Rewards

AC [98] ATM networks Taped delay-value of the number of the cells, and
taped delay values of the feedback control signal

The coding
rate

The input multiplexer buffer overflow,
and the level of the coding rate of the
input source

Q learning and Sarsa
[99]

SDN Link’s occupied bandwidth The sending
rate

The threshold of congestion, and the
occupied bandwidth of the link

DQL [34] NDN The prefix of requesting content, the priority,
CWND, the total number of Interest packets sent,
the total number of Data packets received, the
total number of packets retransmitted, the
average size of packets, the average RTT of
packets, the time of monitor interval, and the
time of decision interval

CWND Throughput, RTT, loss, and reordering
level

DDPG [36] MPTCP in satellites
communications

CWND, RTT, the number of packets failing to
receive the ACK packet, and the cumulative rate
number of retransmissions

CWND CWND, RTT, the number of packets
failing to receive the ACK packet, and
the cumulative rate number of
retransmissions

Fuzzy Kanerva-based
Q Learning [100]

IoT A moving average of the inter-arrival time
between newly received ACKs, a moving average
of the inter-arrival time between packets sent by
the sender, the ratio between current RTT and
the best RTT found, and the slow start threshold

CWND Throughput and delay

Q learning [101] Disruption tolerant
networks

The input rate, the output rate, and available
buffer space

CWND The congestion level

Finite action-set
learning automata
[102]

AWNs The inter-arrival times of ACK and DUPACK
packets

CWND The current inter-arrival time and the
mean which computed over the
inter-arrival times of the ACK packets
arrived in the previous RTT

Continuous action-set
learning automata
[103]

AWNs The inter-arrival times of TCP itacks CWND The mean and standard deviation of
inter-arrival times of the ACK packets

DQL [25] Wireless networks The CWND difference, RTT, the minimum RTT
over RTT ratio, the difference between RTT and
the minimum RTT, and the inter-arrival time of
ACKs

CWND RTT and goodput

DDPG [104] Network with
time-varying flows

Goodput, average RTT, the mean deviation of
RTTs and CWND

CWND Goodput

Q learning [27] Dynamic networking The average interval between sending two
packets, the average interval between receiving
two consecutive ACKs, and the average RTT

CWND Throughput and RTT

A3C [23] Network with
diversified flow size

Throughput, RTT, and losses CWND Throughput and RTT

PPO [35] The dynamic
networking

The derivative of latency concerning time, the
ratio of the current MI’s mean latency to
minimum observed mean latency of any MI in
the connection’s history, and the ratio of packets
sent to packets acknowledged by the receiver

The sending
rate

Throughput, latency, and loss
upgrade, it is difficult to enhance the capacity of backhaul links be-
tween mmWave and the core network manually. Moreover, the data
rates of mmWave users vary over time. Thus, to dynamically allocate
the resources among users in backhaul links, the authors propose a DRL
model to learn the dynamic environment. There is much research on
resource management in other network environments based on DRL
as well. For instance, in [106], DRL is regarded as the channel access
strategy to improve the probabilities of successful transmission over
multi-channel wireless networks. While in [107], DRL is used to predict
channel qualities based on different base stations and then control
handover in ultra-dense networks. Moreover, the resource management
in edge computing and edge cache also uses the DRL model such
as [108,109], and [110]. Therefore, RL, especially DRL, can play an
important role in the network field including CC.

Amongst the different ML-based CC algorithms, RL has gained the
most attention. Different from supervised learning methods, RL algo-
rithms monitor the status of the environment continuously and react
to the environment to optimize a utility function. Therefore, RL al-
gorithms are more suitable for variable and unstable network envi-
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ronments. Two main trends are related to this kind of network. First,
ubiquitous applications in data centers and cloud computing require ef-
ficient CC algorithms to deal with complicated network topologies [99].
In this context, reliability can be extremely important given the vari-
ances that can appear in the system. RL algorithms adapt to the errors
promptly based on learning from the environment. Second, mobile de-
vices such as smartphones, often connect to wireless networks including
WIFI and 4G cellular in an ad hoc fashion. Thus, more flexible network
topologies and diversified flows are a major challenge [27]. Traditional
ML approaches are not dynamic enough to cope with diverse network
environments based on trained models, unlike RL algorithms. These
two trends are driving RL-based CC algorithms. In RL-based CC algo-
rithms, the RL technique is used to update CWND based on different
scenarios in end-to-end networks and to manage the queue length in
network-assisted environments.

5.1. Window updating in end-to-end networks

Compared to supervised learning and unsupervised learning tech-
niques, RL algorithms are more responsive to environmental changes.

Instead of predicting congestion loss and delay as with supervised and
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Table 12
RL: Window updating in End-to-End CC algorithms (Pros and Cons).

Algorithms Pros Cons

AC [98] Can be a preventive CC, and the statistical
multiplexing gain is enhanced

Limited state space and performance metrics

Q learning and Sarsa [99] Routing information is considered, and the
convergence speed is faster

Not suitable for complex networks due to the
basic Q learning mode and the rough design of
the reward function

DQL [34] Comprehensive state parameters and well-designed
reward function, High link utilization with limited
packet loss, packet reordering, and latency

Heavy computational load

DDPG [36] Deal with the high-dimensional state space and
continuous action spaces with high efficiency and
feasibility

Inadequate comparative experiments

Fuzzy Kanerva-based Q
learning [100]

Dramatically reduce the memory requirements of a
learning-based protocol while maintaining the same
throughput and delay by using a function
approximation method

Lack real deployment test

Q learning [101] The delivery ratio is higher and end-to-end latency is
lower compared with some representatives of the
current DTN CC algorithms

More performance is supposed to be considered
such as fairness and the packet loss rate

Finite action-set learning
automata [102]

Not need any explicit feedback such as congestion,
link failure, and available bandwidth notifications

Only the inter-arrival time of packets are used
to measure the network conditions, and more
parameters such as current CWND are necessary
to obtain more accurate network conditions

Continuous action-set learning
automata [103]

Low computational overhead, and implement the
algorithm in a real testbed

There are many given parameters in the model
while sensitivity analysis is not provided

DQL [25] Show great performance in complex and dynamic
network environments

The computational overhead may be an issue
while there is no prototype implementation

DDPG [104] Show great capability in dynamic flows based on
LSTM, and flexible and robust to highly-dynamic
networks with time-varying flows, and friendly to
regular TCP

The convergence speed is not measured.
Because the proposed model agent controls all
active MPTCP flows, it is difficult to train a
central agent

Q learning [27] Use a small subset of sufficient information to
accurately approximate the whole state space based
on a novel generalization-based Kanerva coding
approach

Lack real deployment test

A3C [23] Fast convergence speed, high throughput, and low
response time

The reward function is coarse-grained

PPO [35] Show outstanding performance and robustness Fairness, safety, and generalization are still
challenges
unsupervised learning-based CC algorithms, RL-based CC algorithms
learn the CC rules directly based on different environment informa-
tion. Since RL algorithms can incorporate real-time network conditions
and define actions accordingly, real-time control is possible in RL
algorithms.

Various explorations have focused on RL-based CC algorithms that
use RL to update CWND for specific scenarios. The mechanism of RL-
based CC algorithms is shown in Fig. 6. the summary is shown in
Tables 11 and 12, which shows more detailed information including
states, rewards, actions, pros, cons, etc.

5.1.1. Asynchronous transfer mode networks
Asynchronous transfer mode (ATM) is a typical network suitable

for RL-based CC algorithms. ATM networks are classic networks that
support multi-media applications. For different multimedia traffic, ATM
offers different QoS such as cell loss rate (CLR) and delay. However, in
ATM, highly time-varying traffic patterns can increase the uncertainty
of network traffic. Moreover, the small cell transmission time and
low buffer sizes in ATM networks require more adaptive and high
responsive CC algorithms. In [98], an AC algorithm is applied to deal
with these problems. In the proposed CC algorithm, AC focuses on the
performance function based on the CLR and voice quality. In each step,
the algorithm measures the action according to the performance. In
this way, different traffic patterns are connected with corresponding
actions. Simulation results show that the CLR is low and voice quality is
13

maintained. Compared with classical optimal control algorithms which
rely upon a very accurate mathematical model in ATM, the proposed
algorithm can understand the dynamics of network conditions and
thus can minimize the CLR and maximize the level of the coding rate
simultaneously. Moreover, since the algorithm is used at the input
access node of the network and thus the speed of the algorithm is
not limited by the propagation delay, any control action will avoid
the potential congestion timely. Furthermore, because more sources
can be supported for each multiplexer, the statistical multiplexing gain
is enhanced. However, the limitation of this algorithm is that the
proposed algorithm is relatively simplified. Both the state space and
the feedback only consider the parameters to be optimized, without
considering other variables such as traffic characteristics, so it may not
be suitable for more complex environments.

5.1.2. Software defined networks
Software Defined Networks (SDNs) provide a new architecture for

future networks that separate the forwarding and control planes. The
control plane has the ability to manage the overall network centrally.
Efficient CC algorithms are essential for SDNs. In [99], Q learning is
used to tackle such advanced networks. In this research, a modified Q
learning algorithm is employed and the improvement is embodied in
two aspects. On the one hand, the optimized Q learning algorithm con-
siders the routes of the current flow which affect the congestion of links.
On the other hand, the authors add the congestion judgment. If the
bandwidth occupancy of the link has reached the threshold and if the

congestion has occurred, the training of the Q learning algorithm can
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be stopped. Thus, the modified Q learning algorithm converges faster.
The experimental results show that higher link utilization and lower
congestion level can be achieved. While the limitation of the algorithm
lies in the simple topology and coarse-grained reward functions. In the
experiments, the topology includes a core layer switch and five edge
layer. Because Q learning algorithms may be suitable for scenarios with
limited state space due to the limited storage capacity of Q tables, the
feasibility of the algorithm in complex networks cannot be verified.
As for the reward function, only congestion level and the bandwidth
occupancy are taken into consideration. More parameters such as one-
way delay may also be used as the evaluation parameter. Thus, further
exploration is supposed to be implemented.

5.1.3. Named data networking
Named Data Networking (NDN) is an emerging future network

architecture as well. The main characteristic of NDN is connectionless,
providing content perceptibility and in-network caching. Typical appli-
cations of NDN are mobile and real-time communications. Therefore,
CC algorithms are expected to cope with diverse and dynamic content.
In [34], the deep RL algorithm considers the diversity of different
content and adds a prefix when requesting content into the network.
Therefore, the variety of content is considered when a given action
is taken. In this algorithm, the bandwidth utilization, delay, loss rate,
and packet ordering are fully considered in the states. Moreover, in
the reward function, the throughput, losses, RTT, and the reordering
level are measured as well. Thus, the proposed algorithm can reach the
bottleneck bandwidth quickly in the initial stage with a small overshoot
compared with BBR and Iterative Closest Point algorithm. Besides, high
link utilization during the stable phase with low latency, packet loss
rate, and packet reordering can be achieved. Of course, due to the
comprehensive parameters covered, the computational load is heavy.

5.1.4. Satellite communication networks
Satellite communication networks are dynamic and have time-

varying flows. High bandwidth and high elasticity are key features.
Video streaming is one representative application. In satellite commu-
nication networks, frequent satellite handover can be a severe problem,
which may result in routing failures, packet blocking, and channel
quality impacts. To deal with these problems, [36] employs DDPG to
design a multi-path TCP. By measuring the retransmission rate of each
sub-flow, the RTT and the number of packets failing to receive the ACK
packet are considered and the algorithm degrades the possibility of
handover. In addition, the DDPG model has the capability to deal with
the high-dimensional state space and continuous action spaces in the
satellite communication networks with high efficiency and feasibility.
However, in this research, the experiments are not convincing because
the algorithm is not compared with other MPTCP algorithms. Thus,
some performances cannot be measured such as fairness.

5.1.5. Internet of things
The Internet of Things (IoT) is a product of rapidly evolving wireless

technology. Some core features of IoT are local computation, the high
variability of use, and potential computational demands. In [100],
Q learning was used to satisfy diverse IoT networks with reduced
computational needs with strong learning capabilities. The proposed
algorithm was suitable for real-time processors and memory demands
of IoT environments. In the designed model, traditional Kanerva coding
is used to reduce the memory required to store the state–action value
table. Based on the Kanerva coding, states and actions, are represented
as state–action pairs. By choosing the prototype state–action pairs,
memory requirements are dramatically reduced. In the simulations,
the algorithm shows the capability to achieve high throughput, low
delay, and good fairness. But the simulations are conducted in the
NS3 simulator. While in the IoT environment, a real deployment test
is essential to verify the performance of the learning-based algorithm
in smart devices. Thereby, the feasibility in the real IoT environment is
expected to be tested.
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Fig. 6. Window updating based on RL algorithms.

Fig. 7. Queue length management based on RL algorithms.

5.1.6. Disruption tolerant networks
Different from traditional networks, such as TCP Internet, Dis-

ruption Tolerant Networks (DTN) are subject to high latency due to
very long propagation delays such as interplanetary communication.
Therefore, the DTN cannot guarantee end-to-end connectivity between
nodes and extremely long latencies. The network control in DTN is done
on a hop-by-hop basis. Due to the high latency, the DTN nodes are
required to store data in persistent storage for arbitrarily long periods
before they find a suitable next-hop. Thereby, CC is significant to ensure
the data transmissions with limited congestion in DTN. While existing
DTN CC schemes do not show great performance due to their inability
to adjust to dynamic networks. In [101], Q learning is employed to
make CC decisions based on local knowledge such as buffer occupancy.
As a result, compared with some representatives of the current DTN CC
algorithms such as Storage Routing [116], the delivery ratio is higher,
and end-to-end latency is lower. The limitation of the research is that
more performance parameters are expected to be measured such as
fairness and the packet loss rate.

5.1.7. Wireless networks
The wireless network is a typical scenario in learning-based CC

algorithms. In [25], DQL is used to deal with the CC issue in wireless
networks. There are three aspects of optimizations: feature selection,
reward function, and a modified training process. To acquire the sta-
ble information as features, in this paper, the authors utilize a deep
Convolutional Neural Network (CNN) concatenated with a Long Short
Term Memory (LSTM) network as an automatically tuned filter to
extract stable information. While in the reward function, accurate
RTT measurement is important, which affects the convergence of the
training process. In this research, the authors adopt a low-pass filter
with a fixed window size for RTT measurements to remove frequent
and small latency jitters. As for the training process, on the one hand,
the model uses a relatively small experience replay buffer to mitigate
the non-stationary nature of the local experience. On the other hand,
the model has concurrent experience replay trajectories for sampling
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Table 13
RL: Queue management in network-supported CC algorithms (States, Actions, and Rewards).

Algorithms Scenarios States Actions Rewards

PID controller [111] Networks supporting AQM The queue length, and the
target buffer occupancy

The packet dropping/marking
probability

Queue length error

Adaptive neuron PID [112] Networks supporting AQM The queue length, and the
target buffer occupancy

The packet dropping/marking
probability

Queue length error

Neural network PID controller
[113]

Networks supporting AQM The queue length, and the
target buffer occupancy

The packet dropping/marking
probability

Queue length error

Neuron RL [114] Networks supporting AQM The queue length error, and the
rate error

The packet dropping/marking
probability

Queue length error

Q Learning [115] Networks supporting AQM Current queue length, and
packet drop probability

BLUE parameters Throughput, and instantaneous
queuing delay
Table 14
RL: Queue management in network-supported CC algorithms (Pros and Cons).

Algorithms Pros Cons

PID controller [111] Efficient and stable, and converge fast for long
delay networks

Only queue length is measured without
considering other performance metrics such as
throughput

Adaptive neuron PID [112] Converge to queue length target fast and
maintain a smaller queue length jitter

Limited performance metrics

Neural network PID controller [113] Have faster response speed and better
robustness compared with the typical PID and
PID based on neural networks

Not take into account multiple network
dynamics

Neuron RL [114] Improve the robustness and dynamic
performance

Limited performance is considered

Q Learning [115] The speed and accuracy are improved The computational complexity is a challenge
for routers with limited memory and
computational resources
training data. Based on the simulations in the NS3 simulator, the pro-
posed algorithm achieves superior performance over five benchmark
algorithms such as Cubic and Vegas in complex and dynamic network
environments. However, there cover many models like the deep CNN
and DQL. Thus the computational overhead may be an issue while there
is no prototype implementation to verify whether this problem exists.

Among wireless networks, there is much research about AWNs.
AWNs are a collection of mobile wireless nodes without any fixed
infrastructure. Therefore, AWNs have constrained resources, limited
processing, and unpredictable mobility. They are also highly dynamic.
In [102], Finite Action-set Learning Automat, a learning automation
whose unique feature is learning the network state faster with reduced
information and negligible computational requirements, contains a
finite number of actions. The algorithm takes effect in learning the dy-
namic wireless environment with limited consumed resources. Different
from traditional CC algorithms, the proposed algorithm does not need
any explicit feedback such as congestion, link failure, and available
bandwidth notifications. Instead, the presented algorithm observes the
occurrence of events including the arrival of ACK and duplicate ACK
packets, and updates the CWND. The limitation of the research is that
only the inter-arrival time of packets is used to measure the network
conditions. Therefore, more parameters such as the current CWND are
necessary to obtain more accurate network conditions.

While in [103], Continuous Action-set Learning Automata was ap-
plied in AWNs. The discretization of Finite Action-set Learning Au-
tomata may not be proper in all situations, e.g. the discretization can be
too coarse or too fine-grained. Therefore, Continuous Action-set Learn-
ing Automata was introduced to deal with an infinite number of actions.
It maintains an action probability distribution. The advanced algorithm
achieves great performance in real networks. Furthermore, the state
information to be maintained and the computational requirements
are significantly low. But the proposed model relies on many given
parameters that affect the performance of the model. For example,
as for the learning parameter of the step size, lower values of this
parameter improve the accuracy of learning while higher values cause
the proposed model to adapt to the changes in the network rapidly.
15

Thus sensitivity analysis is necessary in order to get a robust model.
5.1.8. Networks with dynamic traffic
The RL-based CC algorithms above focus on single scenarios, how-

ever, there are some RL-based designed for more complex (multiple)
network scenarios. For instance, [23,27,104] and [35] utilize the RL
algorithm to deal with congestion problems in networks with time-
varying flows. These algorithms have advantages in representing states
based on specific models. For instance, in [104], the authors employ
DDPG combined with LSTM to represent highly-dynamic networks with
time-varying flows. Moreover, the model is proved to be robust and
efficient in simulations. While in [27], a novel generalization-based
Kanerva coding approach is applied to approximate the whole state
space, which only uses limited storage resources. In [23] and [35], A3C
and PPO can deal with continuous states and fast convergence speed as
well due to the sophisticated model architecture.

From the above, it can be seen that RL-based CC algorithms can
satisfy diverse network scenarios with high adaptability and strong flex-
ibility. However, there are some limitations. For instance, convergence
is very hard to guarantee for continuous tasks and complex algorithms.
In addition, state abstraction is challenging. Current algorithms require
significant storage to store states and actions and demand considerable
memory resources. Moreover, their computational complexity is rela-
tively high. As a result, though RL algorithms show strong learning
capabilities, realistic applications require further exploration due to the
engineering issues identified.

5.2. Queue length management in network-assisted networks

For the queue length management of RL-based CC algorithms, RL is
used to manage the queue length based on the current state as shown
in Fig. 7. Tables 13 and 14 show the fine-grained information of these
algorithms. In queue management, Proportional Integral Derivative
(PID) is the most commonly applied RL technique. In [111–113], PID
is used to maintain the queue length given the target threshold by
calculating the dropping probability. In [111] and [112], the authors
use adaptive neurons to tune parameters in PID to control queue length.



Computer Networks 192 (2021) 108033H. Jiang et al.
Based on the designed model, the queue length can converge fast
and can be maintained at a low level with stability. However, in this
research, only the queue length is measured without considering other
performance metrics such as throughput. While in [113] and [114], a
new AQM algorithm is modified with RL techniques. In [113], the AQM
algorithm is presented based on a Fuzzy controller. The designed model
can automatically compute the learning rate according to the current
network state. The simulation shows that the model is superior to
the PID based on neural networks on the queue stability, convergence
speed, and time delay. In [114], a neuron RL model is applied to
improve the robustness of AQM.

Besides, the Q learning technique can be used to learn the optimal
parameters in CC models. For instance, in [115], the Q learning tech-
nique is applied to adjust the parameters in the BLUE which is an active
queue management algorithm. In the proposed model, the current
queue length is considered as a part of states. Based on a Q learning
technique, the modified BULE improves the speed and accuracy at the
cost of high complexity.

Compared with window updating for end-to-end networks, the
queue length management for network-assisted CC algorithms requires
more computational resources because multiple nodes can be used
to control congestion such as routers in network-assisted networks.
Therefore, it may be a burden for the network to support RL-based
CC algorithms given the larger state space and high computational
complexity. Besides, current queue length management based on RL
techniques only covers limited state parameters such as the past queue
length and buffer size. However, more parameters are required to
improve the performance of RL-based CC algorithms.

6. Simulation setup

In this section, we introduce the simulation setup for RL-based
CC algorithms as representatives of learning-based CC approaches. We
conduct experiments based on realistic network environments with
challenges caused by large delay and their high complexity. We perform
experiments based on the NS3 platform and explore the performances
of RL-based CC algorithms and traditional CC algorithms. In the NS3
platform, the computational process related to the RL algorithms is
separated from data transmission in the pipeline. As a result, the
computational complexity of RL algorithms has no impact on network
communications.

In the following sections, we compare algorithms, performance
metrics, and network environments.

6.1. Compared algorithms

In the simulation, three RL algorithms are chosen: DQL, DDPG,
and PPO, as typical examples of RL algorithms. Generally, DQL is
the simplest among these three algorithms, hence it is suitable for
relatively simple environments. DDPG and PPO have stronger learning
capabilities, and hence they can be applied in more complex scenarios.
Considering the limited complexity of our network environment, these
three algorithms are expected to perform similarly. To compare them
with a benchmark algorithm, NewReno, Cubic, and BBR are selected.
On the one hand, these three traditional CC algorithms are widely
used and robust in modern networks. On the other hand, they have
different advantages in varied network scenarios. For NewReno, it
is conservative and stable. However, it is not suitable for dynamic
networks. While Cubic is more aggressive but sensitive to random
loss. As for BBR, it satisfies flexible network environments but harms
throughput when computing with loss-based CC algorithms. Therefore,
these algorithms are highly representative.

6.1.1. DQL-based congestion control algorithms
Different from Q Learning or State–action–reward–state–action

(Sarsa) which considers the state as a discrete finite set, DQL can deal
with large-scale problems. In the DQL algorithm, the value function is
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expressed by neural networks such as CNN, Recurrent Neural Networks
(RNN), and LSTM. DQL is relatively simple compared with other
Deep RL and can deal with relatively simple networks. Except for the
convergence issue, DQL is promising because the model is lighter.

6.1.2. DDPG-based congestion control algorithms
DDPG is an optimized version of the AC algorithm, which combines

policy-based methods and value-based methods. The actor part is used
to approximate the policy function and is responsible for generating
actions that interact with the environment. AC takes advantage of both
mainstream RL algorithms, but they can be difficult to converge since
the two neural networks in AC algorithms are related to each other and
both need to update the gradient.

DDPG is another category of RL algorithm to deal with the conver-
gence issue of AC. It employs experience reply and double networks.
In satellite communications, a DDPG-based algorithm was designed
to deal with multi-path CC problems and achieved a high degree of
effectiveness [36].

Compared with DQL, DDPG has a stronger capability to train models
in more complex environments. However, it is unsuitable in random
environments. Also, training DDPG models can be more difficult.

6.1.3. PPO-based congestion control algorithms
PPO is a deep RL algorithm based on AC schemes. PPO is used

to solve problems where the traditional policy gradient method is not
good enough to determine the learning rate or step size. If the step
size is too large, the policy will keep moving and will not converge.
However, if the step size is too small, it is time-consuming. To deal
with this problem, PPO limits the updating range of new policies by
using the ratio between the new and old policy, making the policy
gradient less sensitive to slightly larger step sizes. To achieve this, PPO
uses an adaptive penalty to control the policy change. In this way,
PPO provides an optimized AC algorithm as well as improving the
efficiency of convergence. To adapt to the variable network conditions,
such as changeable link flows and end-to-end latency, PPO is presented
as an RL-guided CC algorithm [35]. Simulations show that the proposed
algorithm outperforms traditional CC algorithms in different contexts
by generating optimal policies.

PPO has proven to be an outstanding deep RL method and the
combination with CC shows the potential of PPO in a wide array of
network applications. However, there exist some challenges such as
the speed of training a policy related to the parameter structures. As
a result, the training efficiency of PPO can be a major issue.

6.1.4. NewReno
NewReno is a loss-based CC algorithm based on Reno. It offers a

slow start, congestion avoidance, retransmission, and fast recovery. In
our experiments, NewReno is used as one of the representatives of
traditional CC algorithms, which is the default CC algorithm in NS3
platform as well.

6.1.5. Cubic
Cubic is an improved version based on Bic. By replacing the concave

and convex window growth part of Bic which uses a binary search
method to determine the growth scale of the CWND with a cubic
function including concave and convex parts, the window adjustment
algorithm of Bic is greatly simplified. This function retains the ad-
vantages of Bic, such as stability and scalability. At the same time,
the window control is simplified and its TCP friendliness is enhanced.
However, the limitation is that Cubic is very susceptible to random
packet losses. In many current versions of the Linux kernel such as
Linux kernel version 2.6.19, Cubic is a commonly used CC algorithm,
so it is also used as one of the representatives of classic CC algorithms

in this research.
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6.1.6. BBR
Based on the detection of network bandwidth and delay, BBR has

complementary learning capabilities in classic CC algorithms. BBR
builds a detection model to obtain the instantaneous link available max-
imum bandwidth and minimum RTT. Compared with NewReno and
Cubic, BBR achieves higher throughput with shallow buffers and ran-
dom losses and substantially lower queuing delays with deep buffers.
But BBR does not perform well when competing with other CC algo-
rithms such as Cubic because Cubic tends to fill up buffers [39]. BBR
has been implemented in many versions of Linux kernels such as Linux
kernel version 4.9. In this research, BBR represents the algorithm with
strong adaptive capabilities among classic CC algorithms.

6.2. Performance metrics

Based on the literature, the network cares about several critical
parameters including throughput, RTT, packet loss rate, and fairness.
Therefore, in our experiments, our performance metrics focus on these
four parameters. Throughput counts the amount of data successfully
transmitted in a given unit of time, measured in Mbps. RTT measures
the data transfer time from the sender to the receiver based on the av-
erage RTT in seconds. Packet loss rate calculates the ratio of packet loss
in a given time interval. Fairness measures the capability of coexisting
with other algorithms.

6.3. Network environment

6.3.1. Internet
All simulations employ the same network topology, comprising the

same dumbbell topology with the same access delay and bandwidth.
We adopt the dumbbell topology for two reasons. On the one hand, the
dumbbell topology is widely used in many mainstream CC algorithms
including RL-based CC algorithms such as TCP-Deep ReInforcement
learNing-based Congestion control (Drinc) [25] and RL-TCP [117],
because it is simple and representative. On the other hand, a simple
dumbbell topology can also simulate a complex network environment
by dynamically adjusting the link’s random packet loss, link bandwidth,
and RTT. Moreover, this environment is more controllable, which is
convenient for evaluating the effect of the algorithm. Thus, to sim-
ulate different network environments, the bottleneck bandwidth and
bottleneck delays are varied in our experiments.

Based on previous research, learning-based CC algorithms are more
suitable for high-speed networks such as satellite communications
networks [53], ATM networks [82], and networks with time-varying
flows [104]. We speculate that learning-based CC algorithms are suit-
able in networks with high BDP since they are more aggressive in
making use of higher BDP. The BDP can be a critical parameter to
measure the network as it is used to control congestion in BBR as
well [39]. Therefore, we design three scenarios as shown in Table 15
to compare the performance of traditional CC algorithms and RL-based
CC algorithms.

In the scenarios, there are two senders and two receivers in the
dumbbell network. The access bandwidth is 1000 Mbps and the access
delay is 0.01 ms. In our experiments, high BDP and low BDP are relative
and not absolute. In Scenario I, the BDP is high and the bottleneck
bandwidth is high. However, the bottleneck delay is low. In Scenario II,
the BDP is high, but the bottleneck bandwidth is low and the bottleneck
delay is high. In Scenario III, the BDP is low, but the bottleneck
bandwidth and bottleneck delay are low.

In Scenario I, the bottleneck delay is set to 2.5 ms. The bottleneck
bandwidth changes from 100M to 140M in 5 s. More specifically, the
bottleneck bandwidth is 100M initially and incremented by 10M each
second up to a maximum of 140M.

In Scenario II, the bottleneck delay is set to 25 ms. The bottleneck
bandwidth changes from 10M to 50M in 15 s. Every three seconds, the
17

bottleneck bandwidth increases by 10M. Because the bottleneck delay
is longer, more simulation time is required in Scenario II compared to
the scenario I. This allows observing the performance of different CC
algorithms.

In Scenario III, the bottleneck delay is set to 2.5 ms, and the
bottleneck bandwidth changes from 10M to 50M in 5 s, i.e. every
second the bottleneck bandwidth increases by 10M.

6.3.2. States
States often vary in different research approaches. In DQL-based

CC algorithms, states mainly focus on CWND differences, RTT, and the
inter-arrival time of ACKs [25]. In the A3C framework, states are based
on throughput, loss, and RTT [23]. In self-learning CC algorithms rely-
ing on DDPG, states are based on CWND, RTT, ACK, and the cumulative
rate number of retransmissions of the sub-flow [118]. While in PPO,
the states are designed in three parts: the latency gradient, the latency
ratio, and the sending ratio [35]. No guaranteed rules are underpinning
RL-based CC algorithms. According to previous literature, states are
used to tackle two key areas: congestion signals including RTT, loss,
ACK, throughput, and the parameter used to control congestion such as
the CWND size and the sending rate. In CC algorithms, the environment
adjusts the sending rate or the CWND size based on the congestion
signals.

Considering the focus on performance metrics, the states considered
here are throughput, RTT, packet loss rate, and fairness.

6.3.3. Actions
In the simulations, all adjustments are window-based. By adjusting

the CWND size, there are different rules that are applied. In [117], there
are four actions: −1, 0, +1, +3. When the action is −1, the CWND will
decrease one packet size. In [27], three actions are designed: −1, 0,
+10. The increasing action is more aggressive (up to 10). In [96], the
action space is much larger. Seven actions are predefined: +1, ∗1.25,
∗1.5, 0, −1, ∗0.75, ∗0.5. When the action is ∗1.25, the size of the
new CWND is 1.25 times the original CWND. In our experiments, we
considered four actions: −1, 0, +1, +3, as aligned with [117].

6.3.4. Rewards
Similar to states, rewards can have different definitions as well. In

a DQL-based CC algorithm, the utility function of reward is defined as
shown below [96].

𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝑡) = 𝛼𝑖 ∗ 𝑙𝑜𝑔(𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑖(𝑡)) − 𝛽𝑖 ∗ 𝑅𝑇𝑇 𝑖(𝑡)

−𝛾𝑖 ∗ 𝑙𝑜𝑠𝑠𝑖(𝑡) − 𝛿 ∗ 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝑖(𝑡)
(1)

In the PPO-based CC algorithm [35], the utility function is defined
as shown below:

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 10 ∗ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 − 1000 ∗ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 2000 ∗ 𝑙𝑜𝑠𝑠 (2)

In a A3C-based algorithm [23], the utility function is given as:
𝑙𝑜𝑔(𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡∕𝑅𝑇𝑇 ). In a DDPG-based algorithm, the utility function
is more complicated [118] and given as:

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 =
∑

𝑖
(𝛼𝐶𝑊𝑁𝐷𝑡 − 𝛽𝑟𝑡𝑡𝑡 − 𝜖𝑟𝑡𝑎𝑡 − 𝑘𝑎𝑐𝑘𝑡) (3)

To define the reward, the objective of the simulation should be
defined first. The reward is used for feedback of the action given the
current state. Using this, it measures the performance of the action.
Thus the reward is a reflection of the performance of actions. From
the above, the definition of reward covers throughput, delay, and
packet loss rate. Considering these factors, the reward includes RTT
and throughput. The utility function is shown below where the value
of the utility reward is based on [96]. The bandwidth in the equation
means the bottleneck bandwidth. MinRTT means the minimum RTT of
the pipeline. P is used for the packet loss rate.

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑙𝑜𝑔(𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡∕(𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ))

−𝑙𝑜𝑔(𝑅𝑇𝑇 −𝑀𝑖𝑛𝑅𝑇𝑇 ) + 𝑙𝑜𝑔(1 − 𝑝)
(4)
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Table 15
Simulation scenarios.

Scenarios Experiment Setting BDP

Scenario I Access bandwidth: 1000M
Access delay: 0.01 ms
Bottleneck bandwidth: changing from 100M to 140M in 5 s (bottleneck bandwidth
increases by 10M every second)
Bottleneck delay: 2.5 ms

High

Scenario II Access bandwidth: 1000M
Access delay: 0.01 ms
Bottleneck bandwidth: changing from 10M to 50M in 15 s (bottleneck bandwidth
increases by 10M every three seconds)
Bottleneck delay: 25 ms

High

Scenario III Access bandwidth: 1000M
Access delay: 0.01 ms
Bottleneck bandwidth: changing from 10M to 50M in 5 s (bottleneck bandwidth
increases by 10M every second)
Bottleneck delay: 2.5 ms

Low
Fig. 8. CWND in the three scenarios.

Fig. 9. Throughput in the three scenarios.

Fig. 10. RTT in the three scenarios.

7. Simulations

In this section, we present the results of the simulations of the four
algorithms: traditional CC algorithm NewReno and the RL-based CC
algorithms, DQL, DDPG, and PPO. The simulations were conducted on
the NS3 platform.

Based on previous research, the state space considered includes
three parameters: throughput, RTT, and packet loss rate. The reward
function is given as 𝑙𝑜𝑔(𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡∕𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)− 𝑙𝑜𝑔(𝑅𝑇𝑇 −𝑀𝑖𝑛𝑅𝑇𝑇 )+
𝑙𝑜𝑔(1 − 𝑝). The action is used to adjust the CWND once a new ACK
arrives. A dumbbell network topology was adopted.
18
Fig. 11. Packet lost rate in the three scenarios.

Fig. 12. Fairness in the three scenarios.

Fig. 13. ACK interval in realistic network simulation.

Fig. 14. Timeline of CWND in Scenario I.
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Table 16
Simulation results.

Scenarios BDP CWND Throughput RTT Packet loss rate

Scenario I High Substantial increase Substantial Increase Limited Increase Limited increase
Scenario II High Substantial increase Substantial Increase Limited increase Limited increase
Scenario III Low No big difference No big difference No big difference Limited increase
Fig. 15. Timeline of CWND in Scenario II.

Fig. 16. Timeline of CWND in Scenario III.

Fig. 17. Timeline of throughput in Scenario I.

Fig. 18. Timeline of throughput in Scenario II.

Fig. 19. Timeline of throughput in Scenario III.
19
Fig. 20. CDF of throughput in Scenario I.

Fig. 21. CDF of throughput in Scenario II.

Fig. 22. CDF of throughput in Scenario III.

7.1. Simulation results

The overall simulation results are shown in Table 16 and
Figs. 8 to 43 include timeline figures showing the changes of perfor-
mances, bar figures showing the average and the variances of perfor-
mances, and cumulative distribution function (CDF) figures showing
the rough distributions of performances.

To check the performance of RL-based CC algorithms in realistic
networks, we build an actual dumbbell topology with four Intel Xeon
Gold servers and two commodity switches. Then, we use the Iperf [119]
to generate actual flows based on the traces we applied in the simula-
tion experiments. In the actual networks, the link bandwidth is 1Gbps
and there is no change of the bandwidth. The base RTT is 0.3 ms. Our
simulation time is 10 s. In order to verify the feasibility of RL-based
CC algorithms, we compare them with NewReno. The result shows
that the ACK interval is influenced by the computational complexity
of the algorithms. As shown in Fig. 13, the ACK interval of RL-based
CC algorithms is much larger than NewReno, resulting in a low growth
rate of CWND. Since RL-based CC algorithms require considerable time
to calculate and obtain the action, the ACK will not be transferred
timely. It is noted that even amongst RL-based CC algorithms, there
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Fig. 23. Timeline of RTT in Scenario I.

Fig. 24. Timeline of RTT in Scenario II.

Fig. 25. Timeline of RTT in Scenario III.

Fig. 26. CDF of RTT in Scenario I.

Fig. 27. CDF of RTT in Scenario II.

exist differences as well. Moreover, the delayed ACK influences the
measurement of real throughput and RTT. Therefore, RL-based CC
algorithms may be not applicable for realistic networks.
20
Fig. 28. CDF of RTT in Scenario III.

Fig. 29. CDF of loss rate in Scenario I.

Fig. 30. CDF of loss rate in Scenario II.

Fig. 31. CDF of loss rate in Scenario III.

Fig. 32. Timeline of fairness of NewReno and DDPG in Scenario I.

To compare performances of RL-based CC algorithms and NewReno,
we show the output based on NS3 where the delay caused by the RL
algorithms is excluded. In the following sections, the detailed perfor-
mance will be discussed including CWND and performance metrics.
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Fig. 33. Timeline of fairness of NewReno and DDPG in Scenario II.

Fig. 34. Timeline of fairness of NewReno and DDPG in Scenario III.

Fig. 35. Timeline of fairness of cubic and DDPG in Scenario I.

Fig. 36. Timeline of fairness of cubic and DDPG in Scenario II.

Fig. 37. Timeline of fairness of cubic and DDPG in Scenario III.

7.1.1. CWND
Among the three RL-based CC algorithms, there is minimal differ-

ence between them in the three scenarios as shown in Fig. 8. Moreover,
we observe that the size of CWND of RL-based CC algorithms is much
21
Fig. 38. Timeline of fairness of BBR and DDPG in Scenario I.

Fig. 39. Timeline of fairness of BBR and DDPG in Scenario II.

Fig. 40. Timeline of fairness of BBR and DDPG in Scenario III.

Fig. 41. Timeline of fairness of NewReno and Cubic in Scenario I.

Fig. 42. Timeline of fairness of NewReno and Cubic in Scenario II.

larger than rule-based CC algorithms in Scenario I and the scenario II,
which both have high BPD as expected. While in Scenario III, there is
not much difference between these six algorithms. Figs. 14 to 16 have
shown that the CWND of these three algorithms has similar changes
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Fig. 43. Timeline of fairness of NewReno and Cubic in Scenario III.

in these three scenarios. Therefore, when we show the performance of
RL-based CC algorithms later, we use DDPG among the three algorithms
as a representative in some figures.

7.1.2. Throughput
Theoretically, the throughput of RL-based CC algorithms is ex-

pected to exceed the throughput of traditional CC algorithms such as
NewReno, Cubic, and BBR due to the strong learning capability of RL-
based CC algorithms in dynamic networks. As shown in Fig. 9, our
speculation is verified. In Scenario I and the scenario II, throughput is
improved when the RL-based CC algorithms are used. While in Scenario
III, RL-based CC algorithms show no advantage. For the detailed distri-
bution and timeline of throughput, more figures from Figs. 17 to 22
augment the results and explanation.

7.1.3. RTT
The RTT of NewReno is small and stable, which represents the

benchmark of RTT. While the RTT of Cubic and BBR has a small
fluctuation. In three scenarios, compared with NewReno, RTT is higher
in networks with RL-based CC algorithms as shown in Fig. 10. From
Figs. 23 to 28, among classic CC algorithms, because the growth rate
of CWND among RL-based CC algorithms is more aggressive when the
link available bandwidth increases suddenly, it is understandable that
RTT is higher. While the RTT of these three classic algorithms is kept
at a very low level. However, from the Figs. 23 to 25, it shows that
increments of RTT are limited and bounded compared with increments
of throughput in the three scenarios.

7.1.4. Packet loss rate
As shown in Fig. 11, the packet loss rate of classic CC algorithms

is almost zero while there are minimal packet losses in networks
with RL-based CC algorithms. Moreover, the distribution information
shows the increased packet loss rate in RL-based CC algorithms from
Figs. 29 to 31. Considering the aggressiveness of RL-based CC algo-
rithms, bounded packet losses are understandable.

7.1.5. Fairness
In order to measure the fairness of RL-based CC algorithms, we

employ a DDPG-based CC algorithm to compete with other classic CC
algorithms. The benchmark experiment is the competition of NewReno
and Cubic. As shown from Figs. 32 to 43, these competitions are
conducted in three scenarios. The summary of fairness is shown in
Fig. 12. Fig. 12 shows that the DDPG-based CC algorithm shows fan-
tastic fairness compared with the benchmark experiment because the
value of fairness exceeds 0.8. Moreover, BBR and the DDPG-based CC
algorithm show excellent fairness when competing. Therefore, in terms
of fairness, the DDPG-based CC algorithm performs relatively well.
22
7.2. Analysis of results

From the simulation results, it can be seen that RL-based CC algo-
rithms can achieve high throughput with limited increased RTT and
packet loss rate in networks with relatively high BDP. Moreover, in our
network environments, three RL-based CC algorithms exhibited similar
performance. Because the space complexity was not so high and the
dynamic fluctuation was limited, these three algorithms handled these
scenarios well. Therefore, our experiments showed that RL-based CC
algorithms have advantages in high BDP networks (as simulated using
NS3).

In realistic networks, CC algorithms react to the ACK arrival time.
When a new ACK comes, the algorithm detects the delay or loss in
the network and then adjusts the CWNDs or the sending rate. For
traditional CC algorithms, there is a minor cost in time to compute the
action because the adjustment rule is pre-designed and stable, while
RL-based CC algorithms require lots of time to input the states to the
neural network; get the output; update the action value and then take
the appropriate actions. This process is time-consuming especially with
the potential size of ACK transmission rates. As such, it is hard for RL-
based CC algorithms to measure the actual transmission time of ACKs
and almost impossible to measure the real network throughput, RTT,
packet loss rate, and fairness. On the NS3 platform, these problems
are not revealed because the NS3 platform separates the computation
and transmission parts. Therefore, no matter how time-consuming the
algorithm is, there is no impact on the ACK transmission. However,
in real-world applications, such time must be considered. Thus whilst
RL-based CC algorithms are applicable in the NS3 emulator, they are
limited to realistic environments.

7.3. Proposed solutions

Based on the simulation results and analysis, it can be observed that
current RL-based CC algorithms process rewards based on the arrival
of ACKs, which are transferred and received one by one. As discussed,
these RL-based CC algorithms are feasible on the NS3 simulator which
separates the calculation and ACK transmission, however, the imple-
mentation of RL-based CC algorithms is still a problem. As a result,
there are several possible future research trends.

Firstly, design lighter models based on mapping tables to deal with
the problem of time-consuming RL-based CC algorithms. After an RL-
based model is trained in network emulators, it can save the state
and action to a table. Therefore, a mapping table can be prepared in
advance. This process can be done off-line. When the model is de-
ployed, only the mapping table is used. Given the state of the network
environment, the action is given based on the mapping table. The time
of this process is relatively small. This method can be efficient and time-
saving. However, there are some challenges. The simple mapping table
may be large and unwieldy in continuous scenarios. Therefore, more
efficient mapping tables might be explored to address these limitations.

Another solution is decreasing the frequency of decisions, such as
employing RL to select CC algorithms in a given time interval instead
of selecting CWND size based on ACK arrival intervals. This means that
the time interval for updating is much larger than the delay caused
by the calculation of RL. Therefore, the impact of the delay caused by
RL models can be ignored. Of course, the drawback is that the updat-
ing speed and responsiveness of the RL algorithm would be affected.
Advanced research is proved to achieve high performance in dynamic
environments with limited time and resource overhead [120]. Based on
the traditional CC algorithm Cubic, the proposed algorithm computes
the new CWND according to the DRL at regular intervals. Experiments
in actual scenarios show that in a variety of network environments,
such as intercontinental networks with high BDP, this algorithm has
achieved suboptimal but relatively stable effects. Therefore, reducing
the frequency of decisions of RL-based CC algorithms is a possible way
to balance overhead issues and adaptability.
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Finally, asynchronous RL algorithms are supposed to deal with
delayed ACKs due to the algorithms’ computational complexity. In an
asynchronous RL framework, there are multiple actors. These actors
take effect asynchronously, which can eliminate the effects of delayed
ACKs. Therefore, in the network thread, ACKs are not blocked by the RL
agent thread. In [121], to handle the delay of rewards, one action gen-
erates several partial actions. Therefore, each partial action can interact
with the network environment independently. In addition, in [122],
an asynchronous RL training framework, TorchBeast, combined with
Pantheon network emulators, is used to handle delayed actions. The
proposed algorithm, MVFST-RL, separates the network transmission
and RL agents in realistic network communications based on multiple
asynchronous actions. Though the algorithm eliminates the effect of
delayed actions, the high resource-demanding training process is a
problem since there are multiple actors to be trained and the state space
is larger compared to synchronous RL-based CC algorithms. Therefore,
the training process is more difficult. More research is required to
address this issue.

8. Challenges and trends of learning-based congestion control
schemes

8.1. Challenges of learning-based congestion control schemes

For traditional CC algorithms, the main issue is to detect congestion
promptly and react quickly. The challenge of this kind of algorithm is
the limited flexibility in dynamic networks. It is hard to satisfy different
scenarios with a single algorithm. For learning-based CC algorithms,
flexibility is improved but some issues need to be addressed.

Parameter selection influences the performance heavily, especially
with RL algorithms. The state space [27,100], the action space [102,
103], the reward design, [34] and other hyper-parameters related to
algorithm structures need to be considered carefully. Using reward
design as an example. In an RL-based CC algorithm, throughput and
RTT are used to calculate the reward [23]. While in other RL-based
CC algorithms, throughput, packet loss rate, and delay are considered
when calculating the reward [35]. For supervised learning, prede-
fined parameters determine potential classification errors that affect
the performance of CC [62]. For unsupervised learning algorithms,
parameters such as the number of clustering groups and initial cluster
centers influence the final clustering results [90]. Therefore, optimizing
parameters is a non-trivial activity.

High computational complexity is a significant issue for learning-
based CC algorithms. For supervised learning techniques, especially
for hybrid and complex methods such as boosting and bagging, the
prediction accuracy can be extremely high, but the computational
complexity can also be high. For RL algorithms, the computational
complexity results in delayed actions and rewards [122]. This impacts
the utilization of bandwidth.

High memory consumption needs to be taken into consideration.
The training of RL-based CC algorithms requires considerable storage
space, especially for continuous network environments. Therefore, ab-
stracting the state–action space and obtaining representative data is
needed for an efficient training process. For example, LSTM [104]
and Kanerva coding [27] are used to represent and abstract the net-
work states. Some advanced RL frameworks such as DDPG [118] and
A3C [121] have a strong capability to deal with continuous network
environments by representing the state–action space using complex
neural networks. Abstracting the representative state is thus the key.
Currently, a huge space representation is a major limitation of complex
scenarios.

Low training efficiency is related to the feasibility of deploy-
ment. For learning-based CC algorithms, the training process may be
time-consuming and resource-consuming. State abstraction is important
to improve training efficiency [27]. Optimal parameter selection can
23

be helpful to improve the training efficiency as well. Tackling this a
issue requires more research. Current learning-based CC algorithms
require significant amounts of training data to guarantee performance.
However, though diverse network topologies and traffic flows can
be simulated, the algorithms cannot always avoid over-fitting and
under-fitting problems.

Hard convergence impacts RL-based CC algorithms. Considering
complex algorithms with multiple neural networks, it can be difficult
to attain convergence [104]. Current RL algorithms propose differ-
ent approaches to contribute to convergence, however, for realistic
networking, this cannot always be guaranteed.

Incompatibility is an open question requiring further research.
urrent learning-based CC algorithms are often used as a built-in
omponent or an independent controller to control congestion [113].
here is still a long way to go for the issues related to compatibility
etween learning-based CC algorithms and traditional CC algorithms
o be resolved.
Fairness cannot be guaranteed because the performance of ML-

ased CC algorithms relies on the trained model and the feedback
rom network environments. When the flow applying the ML-based CC
lgorithm competes with other flows, the fluctuations caused by other
lows will be sensed by the ML-based CC algorithm. As a result, the
L-based algorithm may take inappropriate actions. For instance, as

or the DDPG-based CC, in datacenter networks, competing with BBR
nd competing with Cubic show different fairness, which is shown in
ur simulation experiments. As for current RL-based CC algorithms,
he flexibility of network environments is still limited [25,117]. Al-
hough these RL-based CC algorithms show good fairness in simu-
ation experiments, fairness in actual complex scenarios cannot be
uaranteed.

.2. Trends of learning-based congestion control algorithms

Considering the issues associated with learning-based CC algorithms
s mentioned above, several trends should be considered.

Firstly, engineering issues related to learning-based CC algorithms
re a key research topic due to the high online capability of RL
lgorithms. Based on the previous literature, most learning-based CC
lgorithms are based on simulations using network emulators. On the
ne hand, simulations in network emulators can eliminate unrelated
actors and are more suitable to design network scenarios. On the other
and, engineering issues can be ignored, e.g. parameter selection and
omputational complexity. In realistic network communications, such
ngineering issues are significant for learning-based CC algorithms. To
esign more applicable algorithms, simulations in realistic network
nvironments will be a primary focus. However, in real networks,
ngineering issues are difficult to deal with because the latency in mod-
rn networks is smaller and smaller [12]. Thus, the model applied in
eal networks is expected to be highly responsive and resource-saving,
hich contradicts the high complexity of ML techniques.

In addition, advanced technologies such as programmable switches
ased on Programming Protocol-Independent Packet Processors (P4)
anguage can be used to obtain network states to aid in the decision
aking in the end-host. For learning-based CC algorithms, the network

tate information is crucial. In traditional switches, the switch infor-
ation is unavailable. Luckily, programmable switches are developed

uch as P4 switches [123]. P4 switches have widely applied to deal
ith network issues relying on the programmable capability. In [124],

n the network with P4 switches, the header of the packet records the
ongestion information from the sender to the receiver, and there is
nly a small amount of bandwidth overhead. As a result, the detailed
ongestion information of the network can be obtained in advance.
n [125], P4 switches are used to obtain network congestion status
or rerouting. The P4 switches make the precise control in dynamic
etworks possible. In [126], the in-band network telemetry which is
upported by P4 switches is applied to obtain network statuses such

s the queue length and the timestamp at switches. Based on the
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statuses that are used to compute the utilization ratio of links, end hosts
can control the sending rate precisely. However, the combination of
learning-based CC algorithms and P4 switches is still rare. Thus, there
is much research space for learning-based CC algorithms combined with
P4 switches.

Moreover, lightweight learning-based CC algorithms will be a hot
topic in the future. Robust domain knowledge is needed to realize
lightweight learning-based CC algorithms. Current learning-based CC
algorithms have high complexity and can require considerable time
to make decisions, with significant demands on memory and storage.
Therefore, lighter-weight learning-based CC algorithms are required to
be more applicable and deployable. To make models lighter, domain
knowledge can be used to assist the designing of learning-based CC
algorithms. Compared with the solid foundation of traditional CC al-
gorithms which cover underlying theories such as RTT distributions in
different scenarios and reordering schemes [74], current learning-based
CC algorithms are relatively coarse-grained with limited knowledge
support. They require a complete and detailed state space to train the
model, making the model heavier. While to get lightweight models,
utilizing fewer optimally states is necessary. The challenge of the
designing of lightweight algorithms is that the ML model is more
like a black box. It is not clear how domain knowledge affects the
performance of the algorithm. Therefore, it is not easy to select effective
parameters and design the models based on domain knowledge. Thus,
simplifying the model is hard to achieve.

Finally, an open network platform that provides massively differ-
entiated dynamic network scenarios supporting the exploration and
evaluation of various learning-based CC algorithms is needed to facili-
tate further research in learning-based CC algorithms. Pantheon [127]
belongs to this kind of platform. Though this platform covers diverse
nodes, professional and specific network environments are not offered,
e.g. flexible AWNs. Therefore, there is a demand for a general platform
providing a professional and realistic simulation environment to train
learning-based CC algorithms. In this way, the development of learning-
based algorithms will be faster. This kind of platform requires amounts
of computing resources including servers and switches, and at the same
time designing stable and efficient interfaces to be suitable for various
learning-based algorithms is necessary. Therefore, whether it is from a
hardware perspective or a software perspective, the implementation of
this kind of platform is a challenge.

9. Conclusion

Due to the limitations of traditional CC algorithms in dynamic
networks, learning-based CC algorithms have seen a recent trend in
academia. In this paper, we provided a review of state of the art in
learning-based CC algorithms together with simulations focused on
different RL-based CC algorithms as representatives of learning-based
CC algorithms are conducted. In the simulations, it was shown that
RL-based CCs algorithms exhibit better performances compared to tra-
ditional CC algorithms in different scenarios such as networks with high
bandwidth and low delay. We presented and discussed limitations with
current RL-based CC algorithms for realistic deployments and outline
some approaches that may be used in future research. We identified
challenges and trends associated with learning-based CC algorithms
including dealing with engineering issues related to learning-based
CC algorithms. In the future, network environments are expected to
be increasingly complicated. Given this, there is a clear need for
addressing such complexity and flexibility. To improve the performance
and robustness, further research is required to deal with issues such
as computation time, data storage, and pre-designed parameters. We
argue that lightweight and efficient learning-based models with general
learning-based platforms are needed and will be a future research focus.
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