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Abstract—In memory computing and high-end distributed storage demand low latency, high throughput, and zero data loss

simultaneously from datacenter networks. Existing reactive congestion control approaches cannot both minimize queuing latency and

ensure zero data loss. A token-oriented proactive approach can achieve them together by controlling congestion even before sending

data packets. However, state-of-the-art token-oriented approaches only strive to optimize network-level metrics: maximizing

throughput while achieving flow-level fairness. This article answers the question of how to support objective-aware traffic scheduling in

token-oriented approaches. The novelty of Token-Oriented in-network Prioritization (TOP) is that it prioritizes tokens instead of data

packets. We make three contributions. Via simulations over a hypothetical TOP system, our first contribution is demonstrating the

potential performance gain that can be brought by TOP. Second, we investigate the applicability of TOP. Although the overhead of

enabling necessary TOP features in switches is trivial, we find that mainstream commodity datacenter switches do not support them.

We hence propose a readily-deployable remedy to achieve in-network prioritization by pushing both switch and end-host hardware

capacity to an extreme end. Lastly, we implement a running TOP system with Linux hosts and commodity switches, and evaluate

TOP in testbeds and with large-scale simulations for various scenarios.

Index Terms—Token-oriented proactive congestion control, datacenters
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1 INTRODUCTION

MOTIVATION. Datacenters have evolved rapidly over the
past few years. In-memory computing [1], [2] and high-

end distributed storage [3], [4] demand low latency, high
throughput, and zero data loss simultaneously from datacen-
ter networks. Catering to this trend, new kernel-bypassing
technologies such as Data Plane Development Kit (DPDK)
and Remote Direct Memory Access (RDMA) become promis-
ing [5], [6], [7], [8], [9], [10], [11], [12].

End-to-end latency consists of network delay and host
protocol stack’s processing time. Network delay consists of
transmission delay, propagation delay and queuing delay. By
implementing the whole protocol stack in user-space or host
NICs, DPDK/RDMA etc. provide both lower host latency and
higher per-connection throughput with reduced CPU con-
sumption [13], [14], [15], [16], [17], [18]. Under this circum-
stance, the end-to-end latency is dominated by network delay.
In datacenter networks, transmission and propagation delays

are almost negligible. However, how to reduce in-network
queuing delay remains a problem, which requires a clever
congestion control mechanism in end-host, together with
switches’ coordination. Most datacenter networks are over-
subscribed [19] and congestion is not uncommon: packet
drops due to congestion can be observed when the whole net-
work utilization is around only 25 percent [20].

Existing large body of reactive congestion control appro-
aches cannot both minimize queuing latency and ensure zero
data loss. To control data queue length, the mainstream
approach is to react to congestion signals such as ECN [15],
[21], [22] or network delay [17], [23]. This approach alone is
not lossless when there are bursty flow arrivals or incast traf-
fic [24]. Thus, the Priority Flow Control (PFC) feature of
Ethernet switches/NICs needs to be enabled to prevent
packet loss. Consequently, when congestion happens, data
queues can build up and PFC pause frames can be propa-
gated. They both significantly increase network latency [14].

A token-oriented proactive approach can achieve low
queuing latency and zero data loss together by controlling
congestion even before sending data packets [24]. We illus-
trate the contribution chains from mechanisms to features,
and from features to benefits in Fig. 1. With receiver proactive
congestion control, a receiver sends per-flow tokens to each
sender in an end-to-end fashion. These tokens are carefully
paced by the receiver to interleave the arrival time of incom-
ing data packets on the last downlink. With switch proactive
congestion control, a switch rate-limits and paces all passing
tokens on each link, so that the aggregated bandwidth of
reverse direction data packets is no more than the available
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capacity. A sender strictly follows the token allocation and
sends one full-length data packet when receiving a new valid
token. Incast problem is elegantly solved. And ideally, there
should be nearly zero queuing latency and data loss. While,
a queue can build up when passing flows have different
round-trip time (RTT). Network topologies, host characteris-
tics and the maximum sojourn time of tokens in each queue
all affect RTT difference. By capping the length of token
queues, per-queue sojourn time can be limited. Then per-hop
data delay can be bounded. This bound can be used to calcu-
late per-hop buffer requirement to ensure zero data loss.

State-of-the-art token-oriented approaches (e.g., Express-
Pass [24]) only optimize network metrics: maximizing
throughput while achieving flow-level fairness. Meanwhile,
various objective-aware data packet scheduling approaches
have been proposed. Some reduce Flow Completion Time
(FCT) [17], [21], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]; some add deadline awareness [28], [35], [36], [37]; some
even schedule at the granularity of coflow [38], [39], [40].

This paper answers the question of how to support objec-
tive-aware traffic scheduling in token-oriented approaches.
The novelty of Token-Oriented in-network Prioritization
(TOP) is that it prioritizes tokens instead of data packets. Each
switch can perform scheduling over all passing tokens so
that the system can determine the priorities of reverse direc-
tion flows on each link, hence improving application perfor-
mance (Fig. 1).

Our Contributions. Existing commodity switches usually
support 8 physical priority queues. To support objective-
aware traffic scheduling, TOP should classify tokens into dif-
ferent queues and perform preemptive scheduling among
all queuing tokens through the Strict Priority (SP) mode.
Note that without in-network prioritization, proactive con-
gestion control and limit per-hop sojourn time are feasible
with commodity hardware (as demonstrated by ExpressPass
[24]). While to support TOP, there are new challenges. First,
TOP needs to rate-limit all output tokens, in a certain group
of queues of a port, as a whole. Otherwise, proactive conges-
tion control is compromised. Second, TOP needs to bound
token latency caused by prioritization. Without care, a naive
design may block a token in a low priority queue for an arbi-
trarily long time in SP mode. This situation pushes token
delay unbounded and in turn compromises the zero data
loss goal (Section 2).

Via simulations over a hypothetical TOP system, our first
contribution is demonstrating the potential performance
gain that can be brought by TOP. We assume a hypothetical
switch that can meet the two requirements mentioned above.
Compared with state-of-the-art approaches, TOP can reduce

the average FCT by 44.24 percent, the deadline missing ratio
by 79.18 percent, and the average coflow completion time by
58.88 percent. It is close to the upper bound of performance,
where an ideal switch supports an infinite number of priori-
ties (similar to pFabric [31]) (Section 3).

Second, we investigate the applicability of TOP. An inter-
esting observation is that although the overhead of enabling
necessary TOP features in switches is trivial, mainstream
commodity datacenter switches do not support them. We
thus propose a readily-deployable remedy solution to
achieve in-network prioritization by pushing both switch
and end-host hardware capacity to an extreme end. With a
novel combinatorial configuration of existing switch capabil-
ities, TOP can accurately rate-limit all tokens from multiple
priority queues in a port, with a single rate-limiter. By trans-
lating multi-hop queuing latency to an end-to-end one-way
latency threshold, a sender can drop tokens if their arrival
time exceed a given threshold to bound token latency.
Design details such as packet loss and optional unscheduled
packets are also discussed to complete the whole picture
(Section 4).

Lastly, we implement a running TOP system with Linux
hosts and commodity switches, and evaluate TOP in test-
beds and with large-scale simulations. TOP works well in
a wide-range, such as symmetric-routing and multi-path
topologies, incast scenarios, high-fan in networks etc.
(Section 5).

2 BACKGROUND AND MOTIVATION

We start with a review of state-of-the-art objective-aware
packet scheduling designs (Section 2.1). We then describe
the key aspects and problems of token-oriented approaches
(Section 2.2).

2.1 Objective-Aware Packet Scheduling

Instead of traditional network-level metrics such as maxi-
mizing throughput and achieving flow-level fairness, data-
center networks can be optimized for different objectives to
meet applications’ requirements better. Note that this paper
prefers distributed scheduling approaches. The applicabil-
ity of a centralized scheduling approach to nowadays large
and high-speed networks is yet to be proven [33].

FCT-Oriented. For many applications, we need to mini-
mize the average Flow Completion Time (FCT) to maximize
application throughput [21]. For tiny flows (i.e., less than
tens of packets), one-way network latency is critical. Some
works strive to keep switch queue length at a low level to
reduce packet latency [21], [25], [26], [27]. For other flows,
their network throughput dominate their FCT. To mimic
the Shortest-Job-First (SJF) or Shortest-Remaining-Time-First
(SRTF) principals, existing approaches usually prioritize
small flows over large flows to reduce the average FCT [28],
[30], [31], [32], [34].

Deadline-Oriented. For a partition-aggregate workflow, flow
deadline missing ratio directly impacts the quality of data
processing results [35]. D3 pioneers the idea of incorporat-
ing deadline awareness into network scheduling [35]. To
mimic the Earliest-Deadline-First (EDF) principal in a single
bottleneck, existing approaches usually prioritize flows
with earlier deadlines over flows with later deadlines.

Fig. 1. From mechanisms to features then to benefits.
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Coflow-Oriented. The coflow abstraction considers the all-
or-nothing application semantics for all flows in a commu-
nication stage of a given job [41]. Following the SJF/SRTF or
EDF principals, we can also minimize the average Coflow
Completion Time (CCT) [38], [39], [42] or minimize the
deadline missing ratio of coflows [38].

2.2 Token-Oriented Work

Token-oriented approaches [24], [43], [44], [45] are promising
because of their proactive congestion control. A token (or,
credit in ExpressPass, grant in Homa and PULL packet in
NDP) is a special control packet sent from a receiver to a
sender. A typical token-oriented flow proceeds as follows
(e.g., pHost [43] and ExpressPass [24]). On the arrival of a
new flow, a dedicated signal packet is sent from the sender to
the receiver as a notification together with flow information
such as flow size and/or deadline. Or, new flow information
can be embedded in the first several kick-start data packets
(i.e., NDP [44] and Homa [46]). After this hand-shaking pro-
cedure, all remaining packets are scheduled by the receiver.
Upon reception of a token, the sender can correspondingly
send a full-length data packet to the receiver.

There are three available scheduling dimensions along a
specific token’s processing procedure. Receiver: when there
exist multiple incoming flows, a receiver can choose which
flow to allocate the next token. Switches: when there exist
multiple token packets in the queue, a switch can choose
which token to be paced out first. Sender: when there exist
multiple tokens for different outbound flows, a sender can
choose which token to be consumed for the next sending
slot. Note that sender scheduling can be invalidated if
switches already rate-limit the tokens for the last downlink
to a sender: the sender just needs to response to every incom-
ing token.

ExpressPass. To provide proactive congestion control, a
switch rate-limits and paces all passing tokens on each link,
so that the aggregated bandwidth of reverse direction data
packets is no more than the available capacity [24]. Symmet-
ric routing ensures the corresponding token flow is on the
exact reverse direction of each data flow. The token queue
rate is limited to around 5 percent of the link capacity, calcu-
lated by the length of a token versus a full length data packet.
Each switch queue builds up when passing flows have dif-
ferent round-trip time (RTT). Three factors can contribute to
flow RTT differences: 1) the difference in path lengths, 2)
the variance in token processing time at the host and 3) the
sojourn time difference of token queuing in switches. The
first two factors are bounded by network topologies and host

characteristics. ExpressPass limits the length of each token
queue to 8, which is a trade-off point among utilization, con-
vergence time, and data queue occupancy. Thus, the third
factor is also bounded. Zero data loss can be ensured by allo-
cating an amount of packet buffer corresponding to the
bounded delay.

Fig. 2 illustrates the problem of lacking support to in-net-
work prioritization. There are two flows RA ! S and
RB ! S. All links have equal capacity. RA’s flow has a
higher application priority than the flow of RB. Assuming
in each time window, two packets can be transmitted by the
sender to receivers. RA and RB each generates two tokens.
Switch rate-limiter drops tokens A2 and B2 to match the
capacity of the reverse link capacity (shown in Fig. 2a).
Then the sender generates exactly one data packet for each
receiver that can go through the bottleneck link during the
time window (shown in Fig. 2b). If in-network token priori-
tization exists, we can drop token B1 instead of A2. Thus,
without changing the completion time of flow RB ! S, flow
RA ! S’s completion time can be significantly reduced.
Hence the application performance can be improved.

In this paper we focus on lossless token-oriented appro-
aches such as ExpressPass. There are other approaches. We
list the comparison of previous approaches in Table 1.

pHost and Homa. A non-blocking network core is assumed
to provide full bisection bandwidth. Thus, the receiver and
the sender are two scheduling points for each flow [43]. To
improve short flows’ performance, each flow also has a few
“free tokens” assigned so that the first several data packets
can be sent without waiting for scheduling from the receiver.
A token expires if the sender has not used it within 1.5�
MTU-sized packet transmission time after its reception.
pHost does consider optimization for FCT and deadline sce-
narios by also following SJF/SRTF/EDF principals.

In a practical oversubscribed network, pHost generates
tokens without considering core congestion. Under medium
to heavy load scenarios, packets accumulate in core switch
queues. Eventually, it leads to packet loss. Also, large queue
length effectively negates the latency benefit brought to
short flows by free tokens. More specifically, pHost faces
the incast problem as free tokens belong to many concurrent
flows can cause collision at a common receiver.

Built on pHost, Homa targets RPC-like scenarios, where
most bytes are from extremely small flows with several KBs.
The major difference is that Homa uses priorities for unsched-
uled/scheduled packets. Still, it requires non-blocking topolo-
gies and it does not handle incast and core congestion.

NDP. NDP [44] builds on several existing technologies.
The first is Cut-Payload [47], which trims the payload of a
dropped packet and uses the header to precisely inform the
receiver about the loss event. The second is per-packet load
balancing over a non-blocking network core. NDP allows
each flow to start sending a Bandwidth-Delay-Production

Fig. 2. ExpressPass has no in-network prioritization.

TABLE 1
Feature Comparison
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(BDP) worthy of packets at full link rate without tokens. As
a result, NDP can save one RTT delay for tiny flows. By lim-
iting the length of data packet queues, NDP can constrain
the one-way delay for either a data packet or its header
(after loss). If dropped, a data packet needs to be pulled by
the receiver again or wait for retransmission timeout. All
control packets, including ACK/NACK/PULL packets, are
sent with a high packet priority. NDP sets the length of a
control packet queue larger than 1,000.

As a clean-slate solution, NDP significantly changes switch
behavior hence it is not readily-deployable. The unscheduled
first RTT packets from new flows may repetitively cause
scheduled data packet drops of a victim flow for a (theoreti-
cally) arbitrary long time. NDP’s performance severely
degrades in an oversubscribed network. The reason is that
NDP can generate overwhelming amount of control packets
including trimmed headers in fan-in networks. This large
number of trimmed headers can still overflow large control
packet queues. The lost of ACK/NACK packets causes con-
trol deadlock which significantly affects the throughput.

Other Works. There are other works aimed at utilizing the
bandwidth [48], offloading packet processing [49] and ensur-
ing fast interactive response time [50]. These approaches are
valuable complementary works to our token-oriented design.

2.3 Reactive Works

Reactive congestion control approaches react to congestion
signals such as ECN [15], [21], [22] or network delay [17],
[23]. In other words, these approaches begin taking into
effect after congestion happens, which usually causes long
queueing delay and even packet loss. Thus the Priority Flow
Control (PFC) needs to be enabled to prevent packet loss.
Unfortunately, PFC has some essential limitations like head-
of-line blocking and deadlock. Long queueing delay and
PFC both introduce network latency thus affecting the flow
completion time.

HPCC. HPCC is a state-of-art reactive congestion control
approach leveraging in-network telemetry (INT) to obtain
more precise link load information. Like other reactive
approaches, HPCC allows each flow to send one RTT at first.
During the propagation of the data from the sender to the
receiver, each switch along the path leverages INT to insert
link information to the data. The information is sent back by
ACK. After the sender receives ACK, it uses the network
information to adapt the flow rate.

HPCC does not prioritize small flows. And any returned
measurement information takes no effect on such small
flows. Overreaction is also found in HPCC thus wasting
bandwidth and hurting the performance of large flows.

3 POTENTIAL GAIN OF TOP

The first part presents a hypothetical TOP system that meets
our requirements (Section 3.1). Details of performance eval-
uation methodology are given in the next part (Section 3.2).
Via simulations over the hypothetical system, we demon-
strate the potential performance gain (Section 3.3).

3.1 A Hypothetical TOP System

Overview. TOP is built on top of ExpressPass by prioritizing
tokens of different flows to enforce objective-aware packet

scheduling. We first introduce some terms in Table 2.
Volume of signal packets is usually negligible. Network
traffic is mainly composed by two kinds of packets: token
packets, and data packets. Each full-length data packet is
a ONE-TO-ONE response to a token packet. To make fully
use of link, the rate of token packets must be at least

Stoken
StokenþSdata

� 5% of link bandwidth, where Stoken and Sdata rep-
resent the average sizes of token packets and data packets,
respectively. On the other hand, the rate of token packets
cannot exceed 5 percent, otherwise certain switches must be
congested by returned data packets.

TOP prioritizes tokens instead of data to ensure zero data
loss. If data is prioritized as that in HOMA, lower priority
data can be blocked by higher priority data. The unbounded
queuing delay eventually leads to packet drop. Because of
strict priority queuing, fast retransmission can not be used.
It requires a large timeout (usually a few milliseconds) to
start retransmission. The completion time of lower priority
flows can be largely delayed.

A Hypothetical Switch. Shown in Fig. 3 is such a switch.
We use the highest priority queue Q7 for signal packets. We
keep one priority (e.g., Q6 in Fig. 3a or Q0 in Fig. 3b) for
data packets, and 6 priorities can be used by applications to
differentiate tokens for different flows. We briefly discuss it
later in Section 3.2. There are two features required for this
switch.

R1: queue group rate-limiter. For each port, there are two
rate-limiters, one for tokens, the other for data packets (the
volume of signal packets is negligible). Similar to Express-
Pass, 5 percent/95 percent bandwidth are reserved for
tokens/data respectively. Once every packet transmission
time, a highest priority token is selected from all queuing
tokens and paced to the link.

Because not all priorities are used at the same time, if we
split the bandwidth to each token priority separately, the
returning data packet will not use up 95 percent bandwidth.
This will waste the bandwidth seriously. So credit of differ-
ent priority should share the total 5 percent bandwidth.

R2: Discard expired tokens. In order to bound sojourn time,
expired tokens must be dropped. Otherwise, in the worst case,
the end-to-end latency of a packet can be arbitrarily large, thus
many data packets can return a switch at the same time, which
makes queuing delay unbounded (see Appendix A, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2019.
2958899). As a result, data packet loss is a much severe event
than token packet loss.

TABLE 2
Term Definition

Signal packet
e.g., Ready-To-Send sent from sender to
receiver with flow information when
establishes a connection.

Token/Credit/
Grant/PULL

a special packet from receiver to sender to
control the sending rate of data, used in
token-oriented protocols.

Sojourn time
time duration of which a packet enters and
leaves a queue.

Obsolete/Expired
token

a token whose sojourn time exceeds a
predefined threshold.

1226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 5, MAY 2020



We set the sojourn time threshold to be a fixed number
(e.g., 8) of packet transmission time. As a hypothetical
switch, a queuing token is automatically dropped if its queu-
ing time exceeds the threshold. Intuitively, this model meets
all expected features for TOP listed in Table 1.

Transport Protocol. TOP uses similar token feedback con-
trol as that in ExpressPass. The target token loss rate is also
10 percent for each flow.

3.2 Methodology

We evaluate TOP by large-scale NS-3 simulations. The
described methodology is used throughout the whole paper.

Topologies. We use dumbbell/leaf-spine topologies for
single-path/multi-path evaluations. The dumbbell topol-
ogy has 2 rack switches connected to each other, and each
is connected with 40 servers. The leaf-spine topology has 8
rack switches connected by 4 core switches, and each is
connected with 16 servers. For both topologies, each server
is connected via a 10 Gbps link, and the default oversub-
scription ratio is 4:1. We use the single-path topology as
the default topology. And the non-blocking dumbell topol-
ogy with no oversubscription is also used to conduct
simulations.

Workloads. For FCT-oriented and deadline-oriented objec-
tives, we use the following production traces to evaluate our
algorithms: web search, data mining and IMC10. Their cumu-
lative distribution functions and descriptions can be found
in [43]. We generate flows from these traces using Poisson
process with load r similar to previous works [31], [43]. We
set r ¼ 0:6 by default and evaluate our algorithms with
0:3 � r � 0:8. For coflow-oriented objectives, we use Fack-
book logs [38] as our workloads, which has been widely
accepted as a benchmark for coflow scheduling [38], [40],
[51]. We scale down the size and arrival time of coflows to
match our topologies when necessary.

Metrics. For FCT-oriented objectives, we choose average/
tail FCT and average slowdown [31], [43] as main metrics.
Slowdown is defined as the ratio of observed FCT to optimal
FCT (when there is only one flow in networks). Although
both metrics are frequently used to evaluate the performance
of scheduling algorithms, they are quite different. For heavy-
tailed flow distribution, the average FCT is not sensitive to
small flows. As a comparison, slowdown is not sensitive to
large flows, and throughput loss cannot be revealed by slow-
down. Besides them, the bottleneck throughput, the average
queuing delay for data packets, the maximum data queue
occupancy in switches, and the average data packet loss ratio
are shown for certain evaluations. For deadline-oriented and
coflow-oriented objectives, we choose deadline missing ratio
and the average coflow completion time (CCT) as the met-
rics, respectively.

Flow Priority. Now we discuss how to assign priority to
flows. Suppose we are minimizing average FCT. When
there are K physical queues for tokens and a flow may con-
tain at most p packets, we need to decide K � 1 thresholds
to partition the interval ½1; p� into K segments. Flows in each
priority should have the same capacity in total. If a priority
is too idle, this priority is likely to be wasted, because few
flows benefit from this priority; if a priority is too busy, a
large number of flows will share this priority, which can
also lead to a bad result. So we calculate the queue threshold
value so that their total size are equally split to queues.

Denote the flow size distribution in a datacenter traffic as
fðxÞ; x > 0. For a heavy-tailed distribution, we use an
inverse proportional function, e.g., 1

x ln p x 2 ½1; p�ð Þ, to
approximate the probability density function, where ln p is
the normalization factor. To guarantee balanced capacities
among all physical queues, for the ith threshold, we haveR ti
1

dx
x ln p ¼ i

K, which indicates that ti ¼ p
i
K . Thus given a flow

with size x, its priority can be calculated as bKlog pxc. Practi-
cally, we will use bKlog pðax þ bÞc for a better performance,
where a and b are adjustable parameters. For a light-tailed
distribution, we may use an exponentially decreasing func-
tion to approximate it, and its thresholds can be obtained in a
similar way.

Therefore, a large flow has a lower priority, while a short
flow has a higher priority.

In non-clairvoyant scenarios where the size of each flow is
not known until the connection is closed, a flow is assigned
with a priority according to the number of received data
packets. This approach is an approximation of the Least-
Attained-Service (LAS) principal, which is widely used in non-
clairvoyant scheduling. For deadline-oriented and coflow-ori-
ented objectives, priority thresholds are chosen in similar
ways as that of the FCT-oriented objective.

Compared with. The performance of an ideal switch with
an infinite number of priorities are presented as the upper
bound. Besides, we also implement ExpressPass, pHost,
NDP and Homa in the simulations.

3.3 Comparison Results

For each experiment, 10,000 flows are generated using the
Poisson process. Unless otherwise specified, we use default
settings. Results are listed and analyzed as follows.

FCT. We first evaluate both ideal and TOP under default
settings and topology, together with ExpressPass, pHost,
NDP, Homa and HPCC for comparison. Results are parti-
tioned into small intervals for the average and tail FCT and
slowdown, as shown in Fig. 4. Note that in some figures, the
y-axis is plotted in log scale. The performance of NDP and
Homa are the worst. As analyzed in Section 2.2, the main
reason of NDP’s performance is that under severe conges-
tion, an overwhelming number of control packets are gener-
ated. These packets overflow signal packet queues and
cause control deadlocks. Homa suffers from blind packets’
transmission with high priority. In fan-in networks (e.g.,
our default topology), it causes buffer overflow, and in turn
causes retransmission. Note that Homa performs better for
small flows, benefiting from blind packets transmission in
the first RTT round. Shown in Fig. 4g, Homa also suffers
from throughput problems. This is because packet loss
occurs in Homa, as shown in Fig. 4i.

Fig. 3. Two work modes of a switch.
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Generally speaking, TOP performs much better than
ExpressPass and pHost. Compared with ExpressPass, TOP
has a smaller FCT and slowdown for most flows. Clearly, the
goal of priority scheduling is effectively achieved with only 6
priority levels. However, for some large flows in the last
interval, the FCT of TOP is slightly larger (shown in Figs. 4a
and 4b). The tail 95 percent latency of TOP is smaller than
ExpressPass and pHost. However, the tail 99 percent latency
is slightly larger. These are caused by the conflict between
priority scheduling and high throughput [52]. Shown in
Fig. 4g, there exists throughput gap. Compared with pHost,
TOP has better performance for medium and large flows.
For small flows pHost is better, as it is in Homa. Note that
pHost uses free tokens to transmit data packets in the first
RTT before hand-shaking, thus the performance of small
flows can be significantly improved. For example, in data
mining workload, about 75 percent of the flows has less than
10 KB data to transmit, which leads to an extremely small
slowdown,1 as shown in Fig. 4e.

Shown in Fig. 4g, pHost suffers from throughput prob-
lems. pHost has no in-network limits for tokens. A large per-
centage of bandwidth can be occupied by tokens, instead of

data packets. For data packets, Oð100 msÞ average queuing
delay (Fig. 4h), unbounded buffer growth and packet losses
(Fig. 4i) are observed. On the contrary, TOP suffers none of
these problems. It is a good approximation of the ideal
switch. The FCT/slowdown differences between them are
only 3.54 percent/9.7 percent on average.

We also compare TOP with HPCC, a state-of-art proactive
congestion control protocol. TOP also has a smaller FCT and
slowdown for most flows. In HPCC, the meta-data carried
by the ACK takes no effect on small flows, especially which
size is smaller than one RTT. And the overreaction of the
micro burst of small flows hurts the bandwidth utilization,
as shown in Fig. 4g. The throughput of HPCC is slightly
smaller than TOP.

To sum up, compared with ExpressPass, pHost, NDP,
Homa and HPCC, the average FCT is reduced by 44.24, 29.39,
37.62, 59.8 and 47.1 percent respectively. The average slow-
down is reduced by 81.40, 49.28, 81.01, 86 and 74.03 percent
respectively.

In our evaluations, the maximum occupied queue length
is quite small for TOP. It is only slightly larger than that of
ExpressPass, as is shown in Fig. 4i. These results suggest that
the theoretical bound (see Appendix A, available online.

For generality, simulations under a non-blocking net-
work are also conducted. The results are shown in Fig. 5. The

Fig. 4. Overall performance comparison.

1. Slowdown can be less than 1 if all data packets are successfully
received before hand-shaking finished.
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average and tail FCT of TOP are comparable with other
approaches. The FCT of small flows with size between 1 and
10 K is largely reduced by TOP. The average slowdown of
TOP are greatly improved. This benefits from the in-network
prioritization. Queue length is shown in Fig. 5c. It indicates
that pHost and Homa suffer from a long queueing delay and
packet loss.

Deadline & Coflow. Finally, we demonstrate the results of
other scheduling objectives: deadline-aware scheduling and
coflow-aware scheduling. We choose ExpressPass as the
baseline, and results are shown in Fig. 6. For deadline-aware
scheduling, the deadline missing ratio is reduced by 79.18
percent, calculated as 0:197�0:041

0:197 .
Coflow scheduling is much challenging for transport pro-

tocols, because hundreds or thousands of flows may start
almost at the same time when a large coflow arrives. Com-
pared with the baseline, the average CCT is reduced by 58.88
percent, while the queuing delay and maximum data queue
occupancy is only about 1

3 of ExpressPass.

4 FROM REQUIREMENTS TO REALITY

4.1 Investigating Requirements

Here comes a natural question: is TOP readily-deployable? We
perform a comprehensive investigation of user manuals of
main vendors’ switches. We discuss the requirement discard-
ing expired tokens waiting in queues (i.e., R2 in Section 3.1) first.
To support it, each token should be attached with a timestamp
metadata when the token enters a switch. The switch needs to
periodically scan all tokens to remove expired ones, so that
buffer is available to new incoming tokens. To our best knowl-
edge, no existing switch supports such complex operation.
Our ongoing prototyping on NetFPGA suggests that its cost
is non-trivial.

The requirement rate-limiter for a group of queues (i.e., R1
in Section 3.1) is more complicated. The answer can be Yes,
and No.

Yes for High-End Enterprise and Core Switches. There are
several high-end switches do support this. Examples are
Huawei CE6800 [53] and CE12800 [54] series. They support
802.1Qaz Enhanced Transmission Selection (ETS) [55]. With
priority grouping feature, several queues in a port, instead of
a single queue or the whole port, can be regarded as a
group, and a single rate-limiter can be applied on such
group. Thus we could treat all token queues as a group and
rate-limit it.

The main problem is that such switches are not cost-effec-
tive. They are not designed for datacenters and mostly target
enterprise and telecom scenarios. They implement abundant
other features hence they are usually very expensive. The
quotation price of a 48-port 10 Gbps CE6855 switch is tens of
thousands dollars, excluding optical transceivers. As a com-
parison, a mainstream 32-port 100 Gbps datacenter switches
(e.g., Arista 7060X) has a quotation of only half of them.

No for Mainstream Datacenter Switches. We analyze capabili-
ties of widely-deployed datacenter switches by digging into
their manuals (e.g., Arista 7060X [56] and Mellanox SN2700
[57]). They claim to support ETS. However, their rate-limiters
can be only applied to a queue or the whole port, instead of
several queues (of a port) together. We verified this with real
Arista and Mellanox switches.

We have tried several walk-around ideas to rate-limit all
tokens to 5 percent of link capacity, while none of them
works. Here we show some bad examples.

Shown in Fig. 3a, we may let data packets occupy the sec-
ond highest priority queue, e.g., Q6. If the data load is not
high enough to use up all 95 percent of link capacity, the
available bandwidth to tokens can be larger than 5 percent.
This is unacceptable since reverse flows can be larger than
95 percent of link capacity, which in turn renders data loss.
It is the same if we let data packets occupying the lowest
priority queue Q0, shown in Fig. 3b. Residing in higher pri-
orities, tokens can occupy bandwidth larger than 5 percent
unless we can limit the capacity of all 6 queues.

Fig. 5. Non-blocking results.

Fig. 6. Two objectives: deadline and coflow.
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One option is to rate-limit each token queue such that
their capacities sum up to 5 percent. For example, we may
rate-limit each of 6 token queues to 5%

6 � 0:83% of the link
capacity. However, it’s a fact that at most time, some token
queues can be idle (i.e., have no token to transmit) due to
imbalanced traffic pattern. We cannot automatically adjust
hardware configurations timely to match the fast-changing
flows, thus the actual bandwidth used by tokens can be less
than 5 percent, and the throughput of returning data pack-
ets is hurt.

One may think of combining egress prioritization and
ingress rate-limiter together. Imaging tokens with mixed pri-
orities arrive at an ingress port with a large rate. The ingress
rate-limiter would drop token packets randomly, regardless
of their priorities, hence compromise prioritization.

Overhead of Adding Group Rate-Limiters. From the point of
hardware cost, the overhead of implementing a group rate-
limiter is trivial. Our ongoing prototyping on NetFPGA sug-
gests that several counters can meet the requirements. We
have a private discussion with an architect from a market-
leading switch chip vendor. The comment is that: the
company’s obsolete generations of chips actually have this
function of group rate-limiters. However, during their life-
cycles there exist almost no application scenarios for this fea-
ture. Let’s cite his original words: “...if you show me how to use
this feature, I am happy to bring it back.”

We are currently trying to persuade switch chip vendors
to add this feature. As a temporary remedy solution, we
also propose a readily-deployable approach to achieve in-
network prioritization by pushing existing datacenter
switch and end-host hardware capacity to an extreme end.

4.2 Rate-Limiting All Token Queues

The key intuition is to separate the priority grouping feature
in ETS into two steps: grouping and prioritizing. Forward-
ing rules are ingeniously configured to make each token
enter a switch twice thus the two steps can be done one by
one. We use Fig. 7 as an example to illustrate an innovative
design which combines per-port rate-limiter and breakout
cables [58] together.

With breakout cables, a single physical Quad-lane Small
Form-factor Pluggable (QSFP) port can be split into four sin-
gle-lane sub-ports and each sub-port now functions as an
independent port. In this example, we use a 40 Gbps leaf
switch for rate-limiting and prioritization, and split port 2
into four sub-ports (i.e., port 2/1, 2/2, 2/3, 2/4), each with
10 Gbps bandwidth. An additional low-end 10 Gbps switch
(assistant switch) is used to route tokens back. A 40 Gbps
port in leaf switch is connected to four 10 Gbps ports in
assistant switch via a breakout cable.

TOP uses different VLAN IDs for data packets and token
packets, thus even from the same ingress port, the two kinds
of packets can be forwarded to different egress ports.
Assuming some packets enter the leaf switch at port 1 and
finally leave at port 3. Simply speaking, data packets will be
forwarded to port 3 directly via VLAN A, while token pack-
ets will be forwarded to port 2/2 via VLAN B and finally
forwarded to port 3 via VLAN C. The trace of token packets
are marked as (1)-(4) in Fig. 7.

Rate-Limiting Configuration. In this example, we integrate
one 40 Gbps physical port and two logical sub-ports (i.e.,

port 3 and sub-port 2/1, 2/2 in leaf switch) together to emu-
late the function of a single TOP virtual port. In the leaf
switch, all tokens enter port 1 are forwarded to a sub-port 2/
2 first. Exploiting the per-port rate-limiting capability, TOP
limits outbound traffic of port 2/2 to 2 Gbps (i.e., 5 percent of
40 Gbps physical port capacity). In port 2/2, tokens are
mapped to 6 priority queues and compete for the outbound
bandwidth. Then the survived token packets enter port a1 in
assistant switch. Following the forwarding table in assistant
switch, the token packets are then forwarded to port a10. Fur-
ther, all token packets go back to sub-port 2/1 in leaf switch
via the break-out cable again. Finally, the leaf switch for-
wards the tokens (distinguished by VLAN) to port 3. In port
3, all token packets are mapped to a single queue directly
since all tokens are already prioritized and rate-limited by
port 2/2. Again, outbound data packets enters one queue
using the remaining 95 percent of link capacity.

To sum up, we trade-off the number of ports for TOP
token rate-limiting and prioritization. For a 40/100 Gbp
switch, each virtual port in TOP consums 1+1/2 physical
ports in leaf or spine switches and 2 ports in the assistant
10 Gbps switch.

Forwarding Configuration. A switch has a forwarding table
in the form of ðVLAN; destMACÞ ! Port. Packets with the
same VLAN ID and destination MAC address are for-
warded to the same port. For our example, a token should
be forwarded twice in leaf switch: port 1 ! port 2=2 and
port 2=1 ! port 3.

TOP uses VLANs globally to distinguish data and token
packets. Three VLANs are configured globally in all leaf and
spine switches. VLAN A is always for data packets, VLAN B
and C are always for token packets. We use two VLAN IDs
for token packets to support multi-hop networks. From bot-
tom up, we use ðB; MACÞ ! subport 2=� and ðC; MACÞ !
port 3 for switches in odd-numbered levels (e.g., leaf level).
While in even-numbered levels (e.g., spine level), We use
ðC; MACÞ ! subport 2=� and ðB; MACÞ ! port 3 for switches.

In addition, to forward tokens correctly in the assistant
switch, we need additional VLAN IDs. We need to config-
ure the VLAN mode of sub-ports to VLAN access mode

Fig. 7. Using commodity switch to emulate TOP port.
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and other ports to VLAN trunk mode. Note that hosts can
process data/token packets regardless of their VLAN IDs.

For each MAC destination, 3 forwarding entries are stati-
cally configured. A typical switch such as Mellanox SN2700
has 256 K L2 entries. It can support over 85 K servers. For a 48
ports assistant switch, it need to consume 48/2 = 24 VLAN
IDs in total. We can reuse these 24 VLAN IDs if we have sev-
eral assistant switches. To sum up, TOP needs 27 VLAN IDs
in total: 3 for leaf and spine switches and 24 for assistant
switches. For example, if we have a 32 ports 40 Gbps switch,
we can use it to emulate about 32*2/3 = 21 virtual TOP ports.
We need to consume extra 42 ports in an assistant switch and
3 + 21 = 24 VLAN IDs. Notice that we just need a very basic
packet relay function for the assistant switch, thus we can
even replace the assistant switch with a SFP media converter
to do such reroute, which usually costs only $20 per port.

In conclusion, TOP uses different VLAN IDs to rate-limit
all token queues in mainstream datacenter switches. The
overhead of it will be discussed later in Section 4.4.

4.3 Bounding Per-Token Delay

The key idea is to move the responsibility of bounding token
delay from switches to end-hosts. Our observation is that
precise time synchronization is achievable in datacenter net-
works. The Precision Time Protocol (PTP) is an IEEE protocol
used to synchronize clocks throughout a network [59]. On a
local datacenter network, PTP can achieve clock accuracy in
the sub-microsecond range. Whenever a token reaches a
sender, the sender can calculate its sojourn time along the
whole path. If a token has been blocked for an overly long
time, the sender can drop this obsolete token to bound valid
token latency. We follow the token queue length setting in
ExpressPass, i.e., 8 tokens per queue. TOP can set the thresh-
old of maximum path sojourn time as Number Of Hops � 8
token pacing time. Thus, TOP tokens observe exactly the
same maximum latency as that of ExpressPass.

Note that due to the existence of multiple priority queues,
maximum per-hop token sojourn time can be as large as the
path sojourn time. A two-hop example is shown in Fig. 8a.
There are only tokens of 1 priority in the network, and queue
length per-hop is set to 2 tokens. The maximum token delay
is 4 units (1 unit is one token’s pacing inteval). In the case of
Fig. 8b, there are tokens of two priorities. A low priority
token can have 4 units delay and is valid. It has been blocked
in switch 1 by tokens in both the higher queue and the same
queue. In this case, the observed data RTT difference in
switch 1 can be doubled. This affects the calculation of maxi-
mum data queue occupancy for zero data loss. We leave
detailed analysis and discussion to appendix (Section A),
available in the online supplemental material.

4.4 Putting Together

Now we put the above two techniques together and com-
plete the whole picture of the readily-deployable solution.
We assume a flow’s information such as size and deadline
are known by the sender. With TOP, a flow is treated as a
sequence of full-length data packets (except the last one).
Each data packet is assigned a sequence ID. The transport
protocol works as follows:

� When a new flow arrives, the sender sends a SYNC
signal packet with flow information to the receiver.

� In each pacing slot, the receiver chooses a flow’s
token, attaches it with the corresponding priority,
timestamps it, and paces it out to the link.

� The sender receives the token and checks the
timestamp.

� For every token that has a sojourn time larger than
the threshold, drops it.

� For every token that is not timed out, a data packet
with ID from the corresponding flow is sent back.

� Receiver checks ID of the received data packet, closes
the connection if all data received.

There are other design details.
Packet Loss. Normally, zero data packet loss is guaranteed

by our design. In quite occasional cases such as a switch fail-
ure, a packet loss can still occur. When the receiver realizes
that a packet is lost (if received packets have much larger
IDs), the missing ID is sent to the sender by a dedicated sig-
nal packet. The sender then retransmits this packet as soon
as it receives a token from this flow. Note that the sender
only retransmits a specific packet at most once in each RTT.

Routing and Reorder. In multi-path leaf-spine/Clos net-
works, we use symmetric ECMP by default to ensure tokens
and data packets of a flow follow exactly reverse paths. If
per-packet multi-path load-balancing is supported (e.g.,
Drill [60]), hot-spots can be mostly eliminated. With flow
size information, handling flow packet-reorder is trivial.
Under this circumstance, switch proactive congestion con-
trol is pacing tokens for all switches in the same tier of its
aggregation/spine block [20]. Our evaluation suggests that
per-packet multi-path does improve performance, at the
same time does not noticeably increase maximum queue
occupancy (Section 5).

Low-Priority Unscheduled Packets (Optional). The free tokens
mechanism in pHost, NDP and Homa can save one RTT and
significantly reduce the FCT for tiny flows when network
load is low. However, it also causes the incast problem at
receivers (in pHost and Homa) or hurts scheduled packets
(in NDP). The lesson we learnt is that: unscheduled packets and
scheduled packets should not equally compete. We propose a
novel unscheduled packets approach to solve the problem at
the cost of reducing a physical queue for token packets.

In Fig. 3, we can reserve the lowest priority queue Q0 for
unscheduled packets, and Q1 for scheduled packets. Now
tokens can only use Q2-Q6. We limit the queue length of Q0
to exactly 1 full-length packet. With 1 packet queue length,
TOP enables unscheduled packets to be forwarded. While
they cannot be queued unless their sizes are less than full-
length, which are very rare cases. Now all of them are trans-
mitted opportunistically. Easy to see that the end-to-end
data delay is still bounded. The SYNC signal should inform

Fig. 8. Bound token delay.
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the receiver about the existence of unscheduled packets in a
flow. Not all flows are allowed to send unscheduled packets.
Unscheduled packets are designed for latency-sensitive
short flows to save the first RTT, not for large flows. Only
short flows with no more than m packets can send at most m
unscheduled packets, where m is an adjustable parameter
(e.g., Bandwidth-Delay-Production is around 6 packets in a
40 Gbps network).

Low-priority unscheduled packets are optional in our
design. Only when latency-sensitive flows compose the
majority, should we consider trading a physical queue for
unscheduled packets. Otherwise, reducing token queues
from 6 to 5 may hurt the performance, since smaller number
of queues shrink the gap among different flows. Also,
unscheduled packets compromise the zero data loss goal. Cer-
tain application scenarios such as distributed storage may not
prefer this option.

Non-Clairvoyant Cases. To prioritize non-clairvoyant flows,
the protocol workflow should be revised. When a flow ends,
the sender should send a FIN signal packet with the final
flow size. This FIN signal usually arrives before the last data
packet. The receiver should wait until all data are received
before close the connection. Note that unscheduled packets
should not be used in non-clairvoyant scenarios, since TOP
cannot judge whether a flow is small or large.

Overhead of Remedy. As mentioned above, our remedy solu-
tion integrates 1 + 1/2 physical ports to a virtual TOP port.
One may concern that trading physical ports for token prior-
ity wastes throughput, and such waste may be worthless.
We conduct an extra simulation. For ExpressPass, we add
50 percent extra bandwidth by setting the capacity of server
to 15 Gbps and the capacity between switches to 150 Gbps.
Results are shown in Fig. 9. Because of our priority based

design, small flows’ FCT of TOP is better than that of Express-
Pass, and the average FCT of TOP is comparable to that of
ExpressPass. Large flows’ ( > 10M) FCT is a little larger than
that of ExpressPass because large flows benefit from extra
bandwidth. The average slowdown of TOP is also better than
that of ExpressPass.

To sum up, the remedy solution brings some benefits at
some cost. It could be a reasonable trade-off in necessary
scenarios to benefit small flows.

5 TOP PROTOTYPING AND DEEP DIVE

5.1 Implementation

Testbeds. We build two small-scale testbeds for evaluating
TOP versus pHost, ExpressPass and our ideal approach. We
haven’t implemented NDP and Homa yet. Instead they are
evaluated in our NS-3 simulations. All testbeds use the same
dumbbell topology shown in Fig. 10. All hosts are Dell
PowerEdge R730 with two 8-core Intel E5-2630 2.40 GHz
CPU, 128G memory, a 4 TB hard disk. Each server has a 4-
port Intel X710 10 Gbps NIC and a dual-port CX-5 100 Gbps
NIC. Server OS is Ubuntu 14.04.3 LTS. For our hypothetic
and ideal approaches in testbed 1, we use two servers to
emulate 4-port token-preemptive switches. For all other
approaches in testbed 2, we use Mellanox SN2700 and a $400
assistant switch.

Sender/Receiver Prototype. We implement ExpressPass,
pHost and TOP as three independent modules inside
SoftNIC. All senders/receivers use the CX-5 NIC. SoftNIC is
a framework based on DPDK technology which can bypass
the kernel and achieve high performance. For all experi-
ments, we use 10 Gbps mode. This is the maximum band-
width our end-host prototype can support.

Hypothetic/Ideal Switch Prototypes. SoftNIC is also used to
emulate 4-port hypothetic/ideal switch. The hypothetic/
ideal switch has functions such as finding a token with the
highest priority, drop timeout tokens, etc. To achieve high
performance, we use the rte_llring queue in DPDK as the
basic queue type. We pin each SoftNIC worker thread to a
distinct CPU core, which processes one port each. Using
Tcpdump tool to capture the packets, we verify that the soft-
ware switch can schedule packets with microsecond level
accuracy in 10 Gbps mode.

TOP Switch Configuration. We enable the bandwidth
shaping function on corresponding ethernet ports on Mella-
nox switches. The CX-5 NIC of each server enables PTP sup-
port by linuxptp. One server is chosen as the PTP master
clock and switches forward PTP messages among servers.
The measured synchronization error is around 100 ns. Mel-
lanox SN2700 has 32 ports. We can use them to emulate
about 21 virtual ports to support TOP operations.

The topology shown in Fig. 10 has a baseline one-way
delay of about 10 ms. The maximum token queue length is
set as 6 packets, and the maximum per-hop queuing delay
can be calculated as 6�84Byte

10Gbps�5% � 8 ms. Therefore, the token
timeout threshold T ¼ 10 ms þ 2� 8 ms ¼ 26 ms.

We summarize our experimental results as answers to
the following questions.

� How does TOP perform in real testbeds? The performance
of TOP is close to the ideal approach. The average FCT

Fig. 9. Remedy TOP solution versus extra bandwidth.
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is reduced by 35.58 and 48.96 percent, and the average
slowdown is reduced by 83.35 and 91.56 percent,
compared with ExpressPass and pHost, respectively.
No data packet loss is observed. In addition, we find
that it is hard to implement pHost with real system
constraints.

� Does TOP perform well in different scenarios?Yes. We
evaluate TOP with large-scale simulations over all
kinds of scenarios, including different workloads,
network loads, topologies and fan-in factors. We also
evaluate TOP in non-clairvoyant scenarios. The per-
formance of TOP is close to ideal in most cases.

Besides, we also explore the impact of parameter settings.

5.2 Testbed Results

We use two small-scale testbeds to evaluate our algorithms.
Unscheduled packets are disabled thus 6 physical queues
are used for token packets. For each experiment, 1,000 flows
are generated using Poisson process with load of 0.6.
Results are shown in Fig. 11.

The performance of our TOP design is quite close with Ideal
in most cases. On average, the differences of FCT/slowdown
between two designs are only 14.79 percent/13.66 percent,
respectively. Besides, compared with ExpressPass and pHost,
the average FCT is reduced by 35.58 and 48.96 percent, and the

average slowdown is reduced by 83.35 and 91.56 percent,
respectively. Meanwhile, we observed that the maximum data
queue occupancy of all evaluated algorithms, except pHost, is
quite small, thus zero data packet loss is guaranteed.

Note that the performance of pHost in our implementa-
tion is not as good as it in simulations. In pHost, a sender
can only use unexpired tokens. It is hard to implement
pHost with real system constraints. First of all, Linux has
CPU interrupts. Tokens are accumulated in NICs during
interrupts. After an interrupt, a batch of tokens arrived
together while most of them are dropped by the sender due
to timeout of 1.5� MTU transmission time. This leads to a
significant throughput loss. Second, tokens can occupy the
switch buffers and consumes most of the bandwidth due to
the lack of in-network rate-limiting. Again, the bandwidth
available to data packets is hurt.

5.3 Miscellaneous Scenarios

The Incast Problem. Due to uncontrolled free tokens in the
first RTT, pHost and Homa still has the incast problem. We
use a simple topology, where n servers directly connects to
a single big switch, to evaluate the incast performance. The
first n � 1 servers start at the same time to send flows to the
last server and each sender host sends exactly one flow with
50 packets. Results are shown in Fig. 12, which indicates
that pHost suffers a serious incast problem as the number of
concurrent flows growing, while other algorithms suffers
no obvious incast problem.

Traffic Load. We evaluate our algorithms under various
network loads from 0.3 to 0.8. TOP performs well under
both light and heavy load. Results are shown in Fig. 13.

Fig. 11. Testbed results.

Fig. 10. Dumbbell topology of testbeds.

Fig. 12. The incast performance.

Fig. 13. The impacts of traffic loads.
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Note that for some light workloads, pHost performs slightly
better than TOP, e.g., 0.3, as shown in Fig. 13a. This is the
benefit of free tokens. Under light loads, the network is not
so busy, thus data packets sent in the first RTT have a high
probability of being received successfully. Besides, the
incast problem is not likely to occur and these packets are
not likely to disturb the transmission of scheduled data
packets. However, when load r 	 0:4, TOP performs better
than all other algorithms for all workloads.

To sum up, the average FCT is reduced by 46.07 percent
compared with ExpressPass, and by 29.72 percent com-
pared with pHost. The average queuing time for data pack-
ets is reduced by 98.42 percent compared with pHost, and
zero data packet loss is guaranteed.

Multi-Path Topologies. To verify the performance in a
multi-path environment, we evaluate our algorithms with
both symmetric per-flow routing and asymmetric per-packet
routing. We use the suffix F and P to distinguish the two
routing approaches in our results, respectively. Besides, we
use symmetric per-flow routing for ExpressPass and per-
packet routing for pHost, Homa and NDP, as clarified in
their papers. Results are shown in Fig. 14.

In all workloads, TOP has better performance in per-
packet routing, because packets are load-balanced to each
core switch pseudo-uniformly even in a small time scope.
However, per-flow routing does not have this advantage.
Among different workloads, the larger the average flow size
is, the bad the per-flow routing performs. The difference of

TOP’s performance between two routing approaches are 6, 6
and 29 percent for IMC10, web search and data mining work-
loads, respectably. As expected, data mining workload has
the largest flow size on average. To sum up, compared with
ExpressPass, pHost, NDP and Homa, the average FCT is
reduced by 40.47, 33.08, 56.77 and 33.9 percent, and the aver-
age slowdown is reduced by around 61.71, 63.70, 67.71 and
89.4 percent, respectively.

Fan-in Factors. We evaluate our algorithms in oversub-
scribed networks with fan-in factors from 1:1 to 5:1, and
results are shown in Fig. 15. TOP performs well over in all
cases, and the performance improvement increases as the
fan-in factor increases. Clearly, priority scheduling plays an
important role in highly-oversubscribed networks. Due to
unlimited tokens, pHost and Homa become worse as the fan-
in factor increases. With 5:1 fan-in factor, the average FCT is
reduced by 40.12, 32.87, 31.71 and 32 percent, compared with
ExpressPass, pHost, NDP and Homa, respectively.

Non-Clairvoyant. Non-clairvoyant scenarios are shown in
Fig. 16. Too many priority levels lead to fair sharing for
LAS [34], [40], thus we only use 8 priority levels for ideal case.
Recalling the results in Fig. 4b and 4e, the performance of TOP
in non-clairvoyant scenarios is still comparable even with
pHost in clairvoyant scenarios, and is better than ExpressPass.

5.4 Algorithm Parameters

Token Timeout Threshold. Senders drop tokens if they time-
out. The drop threshold T can be chosen as d þ Pj jth (about

Fig. 14. Multi-path scenarios.

Fig. 15. The impact of fan-in factors.

Fig. 16. Non-clairvoyant scheduling.

Fig. 17. The impacts of token timeout threshold.

Fig. 19. The impacts of # physical queues.

Fig. 18. The impacts of unscheduled packets.
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45 ms in evaluated topologies), as illustrated in Section A,
available in the online supplemental material. In this part,
we want to evaluate what will happen if clocks on hosts are
not well-synchronized, i.e., the scenarios that synchroniza-
tion precision D > 0. We scan the token timeout from 45 ms
to 95 ms, which corresponds to a 0-50 ms synchronization
precision. Shown in Fig. 17a, the drop threshold has no sig-
nificant influence on the average FCT. As expected, shown
in Fig. 17b, a larger threshold leads to a slightly larger queu-
ing delay, which matches our theoretical results.

Unscheduled Packets. As analyzed before, only when small
flows are majority of the whole workload should we consider
trading a priority queue for unscheduled packets. Therefore,
we only evaluate the impacts of unscheduled packets in data
mining workloads. Results in Fig. 18 indicate that, only 4-8
unscheduled packets for small flows are enough, and we
cannot benefit more with a larger number of unscheduled
packets.

Physical Queues. Finally, we discuss the impact of physical
queues, including the number of physical queues (Fig. 19) and
the length of each token-queue (Fig. 20). The average FCT
decreases as the number of physical queues increasing,
benefiting from fine-grained priority assignments. As the
length of each token-queue growing, the average FCT has a
decreasing tendency, while the average queuing delay slightly
increases in most cases. Due to bounded end-to-end delay, the
impact of the token-queue length is negligible. However, it
should be limited to prevent token packets from occupying
too much switch buffer, especially for shared-buffer switches.

6 CONCLUSION

Token-oriented approaches are promising. They can pro-
vide lossless network service without requiring the Priority
Flow Control feature. In this paper, we explore the gain
and applicability of TOP, i.e., Token-Oriented in-network
Prioritization, which provides in-network prioritization in
a readily-deployable way. With a maximum queue occu-
pancy comparable to ExpressPass, TOP can achieve supe-
rior performance across different optimization objectives
and scenarios. We are currently in the process of supporting
TOP in real switches.
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