
P-PFC: Reducing Tail Latency with Predictive
PFC in Lossless Data Center Networks

Chen Tian , Bo Li, Liulan Qin, Jiaqi Zheng , Jie Yang, Wei Wang , Guihai Chen , and Wanchun Dou

Abstract—Remote Direct Memory Access(RDMA) technology rapidly changes the landscape of nowadays datacenter applications.

Congestion control for RDMA networking is a critical challenge. As an end-to-end layer 3 congestion control mechanism, Datacenter

QCN (DCQCN) alleviates the unfairness and head-of-the-line blocking problems of Priority-based Flow Control (PFC). However, a

lossless network does not guarantee low latency even with DCQCN enabled. When network congestion happens, switch queues still

build-up due to the response latency of end-to-end solutions. In this article, we propose Predictive PFC (P-PFC) to reduce tail latency

in RDMA networks. P-PFC monitors the derivative of buffer occupation, predicts the happening of PFC trigger in the future, and

proactively triggers PFC pause in advance. The benefit is that buffer usage can be maintained at a low level, hence the tail latency

can be controlled. Preliminary evaluation results demonstrate that P-PFC can reduce tail latency by more than half of that in standard

PFC in many scenarios, without hurting the throughput and average latency. P-PFC can also protect innocent flows compared with

standard PFC according to our experiments. To our best knowledge, this is the first work of using derivative to improve PFC in

lossless RDMA networks.

Index Terms—Data center networks, congestion control, PFC, RDMA

Ç

1 INTRODUCTION

REMOTE Direct Memory Access (RDMA) technology rap-
idly changes the landscape of nowadays datacenter

applications [1], [2], [3], [4], [5], [6]. By implementing the
protocol stack on the host NIC(s), RDMA provides lower
latency and higher per-connection throughput with nearly
zero CPU consumption.

Congestion control is a critical challenge for RDMA net-
working. RDMA demands a lossless network, where there
is no packet loss due to buffer overflow at the switches.
RDMA over Converged Ethernet v2 (RoCEv2) [7], [8] stan-
dard supports RDMA over the converged enhanced Ether-
net and IP networks. To prevent buffer overflow, its
Priority-based Flow Control (PFC) mechanism can pause
the upstream Ethernet port (or a particular priority class)
when buffer occupancy reaches a specified threshold. By
inverting the congestion level by level to the upstream node
until the network terminal devices, PFC shifts the conges-
tion from the network center to the edges. As a coarse-
grained, hop-by-hop layer 2 congestion control mechanism,
PFC has fundamental problems such as unfairness and
head-of-the-line blocking [9], [10], [11], [12]. To solve these
two problems, [Data Center Quantized Congestion Notifica-
tion (DCQCN)] uses an end-to-end layer 3 approach which
can perform congestion control and suppress the PFC

mechanism [10]. DCQCN requires standard [Random Early
Detection (RED)] [13] and [Explicit Congestion Notification
(ECN)] [14] support from switches to encode congestion
information into packets. At the receiver, it uses the existing
Congestion Notification Packet (CNP) mechanism [15]
defined in RoCEv2 to notify the senders. A sender uses
explicit rate control, and decreases/increases an individual
flow’s rate based on the received CNP packets.

A key issue for end-to-end congestion control schemes is
that the convergence process is not fast enough in certain
scenarios such as incast. It leads to high buffer occupation
during the converging process. The high buffer occupation
further leads to increased latency, which is critical for RPC-
like (Remote Procedure Call) data center applications [11].
Although RDMA technology can eliminate the large latency
with bypassing the host network stack, the large latency
incurred by the long queue (up to milliseconds) in switches
will also hurt latency-sensetive applications. Because the
FCT (Flow Completation Time) of these applications can be
only several microseconds. Note that increased latency
increases the control loop of end-to-end schemes which can
further slow down the convergence.

To illustrate the buffer overflow problem, we perform sim-
ulations of incast [16] scenarios on an NS3 RDMA simula-
tor [10]. Each host is connected to a 40 Gbps PFC-enabled
switch with link propagation latency of 1 ms. The size of the
shared buffer in the switch is 4 MB (marked by the black dot-
ted lines in Fig. 1). We mark the queue length as red lines and
the time points when senders receive a CNP packet as green
short vertical lines. First, we demonstrate a 16:1 incast scenario
in Fig. 1a. Please notice that in RDMA environment, each host
sends packets at line rate (at 40 Gbps) rather than window-
based. While DCQCN is enabled and functioning correctly in

� The authors are with the State Key Laboratory for Novel Software
Technology, Nanjing University, Nanjing, Jiangsu 210008, China.
E-mail: alexandretian@gmail.com, {245939069, liulan_q, 467287824}
@qq.com, {jzheng, ww, gchen, douwc}@nju.edu.cn.

Manuscript received 7 Oct. 2019; revised 29 Dec. 2019; accepted 21 Jan. 2020.
Date of publication 23 Jan. 2020; date of current version 11 Feb. 2020.
(Corresponding author: Jiaqi Zheng.)
Recommended for acceptance by J. Zhai.
Digital Object Identifier no. 10.1109/TPDS.2020.2969182

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020 1447

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0001-8403-9655
https://orcid.org/0000-0002-9882-2090
https://orcid.org/0000-0002-9882-2090
https://orcid.org/0000-0002-9882-2090
https://orcid.org/0000-0002-9882-2090
https://orcid.org/0000-0002-9882-2090
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
mailto:alexandretian@gmail.com
mailto:245939069@qq.com
mailto:liulan_q@qq.com
mailto:467287824@qq.com
mailto:jzheng@nju.edu.cn
mailto:ww@nju.edu.cn
mailto:gchen@nju.edu.cn
mailto:douwc@nju.edu.cn

this scenario, the occupied buffer size quickly grows to the
capacity of shared buffer and there is a congestion phase
marked as the black square in Fig. 1a. As a result, the PFC
mechanism is triggered repeatedly. After several rounds of
CNP packets generation in the receiver and the DCQCN con-
gestion control in the senders, the occupied buffer size starts
decreasing. Nevertheless, any passing-through flow that
shares either the in-port or the out-port with these incast flows
would suffer frommaximum tail latency of around 830ms.

To understand the PFC patterns, we draw the PFC frames
received by an upstream port during 75 ms and 95 ms
in Fig. 1b. Each rectangular represents a received PFC packet
with a fixed pause time of 5 ms. We observe that these rectan-
gles overlap with each other which means that an upstream
port receives PFC pauses continuously during the conges-
tion phase. The upstream port is thus paused for a long time,
which eventually can lead to cascading PFC pauses in
upstream switches. We next consider a less severe conges-
tion scenario, a 10:1 incast, in Fig. 1c. In this case, the maxi-
mum buffer size is about 3.4MB, which is below the capacity
of shared buffer. Although this case will not trigger the PFC
mechanism, the queue length still builds up and the tail
latency is 685ms.

In this paper, we propose Predictive PFC (P-PFC) to
reduce tail latency in lossless datacenter networks. Our key
observation is: the switch can predict that congestion will hap-
pen by monitoring the derivatives of buffer change. Unlike the
traditional PFC mechanism, P-PFC proactively triggers PFC
pause by monitoring the derivative of the buffer occupation.
Therefore, P-PFC can quickly react to the ephemeral conges-
tion before the queue length actually builds up. This quick
reaction buys time for the more accurate end-to-end
schemes, such as DCQCN. The benefit is that buffer usage
can be maintained at a low level during the congestion
period, hence the tail latency can be controlled. Moreover,

P-PFC uses a conservative prediction algorithm so that it
has low false alarm rate, i.e., it will not generate a pause
message unless the pause message will be generated in a
near future by the traditional PFC with high probability. To
avoid hurting the throughput and average latency, P-PFC
uses carefully designed algorithms to determine the condi-
tion for predictive PFC pauses, the upstream ports that
should be paused, and the duration of each pause. Prelimi-
nary evaluation results demonstrate that P-PFC can reduce
tail latency by more than half of that in standard PFC in
many scenarios, without hurting the throughput and aver-
age latency. According to our experiments, P-PFC can also
protect innocent flows compared with standard PFC. Com-
pared with total reduced tail latency, the total pause time
caused by P-PFC does look negligible.

The rest of paper is organized as follows. Section 2 intro-
duces the relative background knowledge and explains the
some intuitions of P-PFC. Section 3 analyzes the perfor-
mance of P-PFC compared with standard PFC theoretically.
Section 4 provides the detailed designs of algorithms in
P-PFC. In Section 5, we evaluate the performance of P-PFC
with DCQCN and TIMELY [11] in a variety of scenarios. In
Section 6, we give some interesting discussions about
P-PFC. Section 7 concludes the paper.

2 BACKGROUND AND INTUITION

2.1 PFC Mechanism

PFC is a hop-by-hop layer 2 congestion control mechanism.
Downstream switches can send PFC pause packets to
upstream switches to control the traffic. Once an upstream
port receives a pause message, it should stop data transmis-
sion for a given priority class based on the priority and pause
duration specified in the pause message. After the pause
duration expires (or reception of a new pause message with a
pause duration of zero), the upstream port resumes data
transmission. According to the standard IEEE 802.3x Pause
and PFC frame format [17], each priority has its own indepen-
dent pause duration, which can be set to a numeric value. PFC
is triggered by the usage of the switch ingress buffer, which is
actually a counter. All packets are buffered at the central
memory. Each packet is counted in both ingress and egress
ports. Shared buffer switch divides buffer into two logic parts,
i.e., the reserved buffer and the shared buffer. A reserved buffer is
exclusively owned by the ingress queue of a port (or a prior-
ity). Take the Mellanox switch SN2700 as an example. It
divides shared buffer into several pools and each priority of a
port can be mapped to a specific pool. A pool can be config-
ured in the dynamic mode, where it uses a configurable
parameter a to define the maximal buffer space for a priority,
which is less than a � free pool space. Each ingress port first
uses the shared buffer, which is usually controlled by the a

value. When the shared buffer is going to be used up, the
ingress port begins to use its own reserved buffer. When a
small threshold value (e.g., 17 KB) of the port reserved buffer
is exceeded, it generates pause to the given upstream port/
priority. The rest of the port reserved buffer is used to absorb
on-flight packets on the wire before a pause message reaches
the upstreamport and takes effect.

PFC Drawbacks. [Suppose two flows come in a switch
from the same in-port. One flow’s out-port is severely

Fig. 1. Latency increases due to (a), (b) 16:1 incast with PFC generation,
and (c) 10:1 incast with queue built up.

1448 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

congested. Its packets accumulate then the in-port sends
PFC pause frames to block the source port of the link. Now
the other flow, although targets a different out-port, is also
blocked. This is the Head-Of-Line (HOL) problem caused
by PFC. PFC also leads to unfairness problem [10]. When
multiple flows from different in-ports cause congestion at
an out-port, all ports can be suspended regardless of their
fair share of bandwidth.]

2.2 Incast is a Tough Nut in RDMA Network

[Incast is a many-to-one communication pattern [18] that
typically occurs in high-performance data centers, espe-
cially for distributed storage (e.g., Ceph [19]) and computing
applications (e.g., Key-value store [1]). When a client
machine sends query requests to a set of servers, the servers
may respond at almost the same time. The large amount of
traffic generated by these nodes accumulate at the switch’s
out-port to the client machine. When the egress buffer is
full, PFC generation is inevitable.]

Incast control has been studied for many years in TCP
networks [20]. The solutions can be generally divided into
two categories: window-based solutions [18], [21] and
recovery-based solutions [16], [22]. While both of two kind
of these solutions have some important drawbacks and it’s
hard to apply them to RDMA network directly. First, the
incast problem only worsens with shallow buffered com-
modity switches that only provide 100 KB of packet buffer
per 10 Gbps port [23] as well as in high-speed network (e.g.,
100 Gbps) where switch buffer per port per Gbps decreases
as link speeds go up. Second, even if congestion control
algorithms like DCQCN and TIMELY estimate each flows
fair-share correctly, bursty flow arrival [21], [24] still causes
unbounded queue build-up and tail latency, this is deadly
enough for many applications like online business, storage,
games, videos, etc. According to Fig. 1a, we can find the del-
uge of packets in high-bandwidth network can fill shallow
buffer of switch when the first signal packet like CNP just
comes back. PFC is a hop-by-hop congestion control mecha-
nism and it can react fast enough to deal with incast conges-
tion although it has so many notorious problems. What
P-PFC wants to do is to fully leverage the quick reaction of
PFC and avoid its drawbacks as far as possible at the same
time by carefully designed algorithm. We believe P-PFC is a
good start to face and improve the traditional PFC mecha-
nism instead of escaping from it.

2.3 Buffer Control With Predictive PFC

A key idea of P-PFC is to send the PFC message in advance
that the traditional PFC will eventually send with high
probability. To illustrate this and how predictive PFC
pauses can help control the buffer size, consider the exam-
ple shown in Fig. 2a. The switch has three data input ports
P1, P2 and P3 attached with sender hosts X, Y and Z
respectively. They all forward data packets to output port
P4 which is attached with a receiver host O. The propaga-
tion delay is 1 time unit for all physical links. Suppose that
X and Y each sends one unit of data per time unit to O and
Z periodically sends packets to O each with a negligible
size. Also suppose that O can only receive 1 unit of data per
unit time. As the total sending rate of P1 and P2 is higher

than the receiving rate of P4, the queue in the switch builds
up with a speed of 1 unit per time unit. Let’s assume that
shared buffer has a size of 3 data units, reserved buffer is 1
data unit, and the pause duration is 4 time units. [In Figs. 2b
and 2c, the green squares represent the accumulated pack-
ets in the buffer. The black arrows represent data packets
sent from hosts X, Y and Z. The red arrows represent PFC
pause frames sent to hosts X, Y and Z.] Therefore, standard
PFC mechanism may use up all shared buffer as shown in
Fig. 2b. It waits until the start of time slot 4 to send PFC
pauses to X and Y respectively. With one time unit for the
message to be received by X/Y , the buffer size reaches its
peak of 4 data units at the end of time slot 4. While the
buffer gradually drains from 4 units to 0 during the follow-
ing slots, the high buffer occupancy leads to higher latency
for packets from Z. From Z’s point of view, the average
latency is ð1þ 2þ 3þ 4þ 3þ 2þ 1Þ=8 ¼ 2 time units, and
the tail latency is 4 time units.

Now suppose that we use P-PFC to predict the buffer
occupation before sending PFC. As the switch finds that its
shared buffer is increasing at a speed of 1 units per time
slot, it can predict that the buffer will be used up in the next
few slots. Therefore, it can proactively send out PFC pause
at the end of time slot 1. The pause duration can be calcu-
lated by the expected buffer draining rate when X/Y are
paused. In this case, the pause is set to be 2 time units as
shown in Fig. 2c. At the end of time slot 2, the buffer occu-
pancy reaches its peak of 2 data units and the pause frame
reaches X/Y . By repeating this process, the predictive PFC

Fig. 2. PFC-based buffer control (a) Topology, (b) Fixed PFC threshold,
and (c) Predictive PFC generation

TIAN ETAL.: P-PFC: REDUCING TAIL LATENCY WITH PREDICTIVE PFC IN LOSSLESS DATA CENTER NETWORKS 1449

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

can control the buffer size before the end-to-end congestion
control takes effect. Note that P4 is still sending at its full
rate during the whole process so that the throughput is not
harmed. Compared with the traditional approach, the aver-
age latency is only ð1þ 2þ 1Þ � 2=8 ¼ 1 time units, and the
tail latency is 2 time units. Both the average and tail latency
are reduced by half. In this way, P-PFC provides a quick
reaction mechanism to ephemeral congestions.

Note that P-PFC is different fromQCN [7]. QCNonly reacts
to the derivation of egress queues, while P-PFC considers both
ingress and egress buffer usage. Besides ingress queues,
CaPFC [25] monitors the length of egress queues. CaPFC sets a
fixed threshold of egress queue length to trigger PFC proac-
tively. As a comparison, P-PFC takes the consumption rate of
the ingress buffer into account.

2.4 Simply Reduce Shared Buffer?

An interesting question is: Is P-PFC equivalent to simply
reducing the allowed usage of shared buffer? For example, if we
simply reduce the shared buffer to 1 data unit in Fig. 2, we
can control the buffer size similar to P-PFC. However, there
is a fundamental difference between P-PFC and the straight
forward approach of reducing shared buffer. The prediction
made by P-PFC is based on both the current buffer occupa-
tion and the derivative of the buffer occupation. By predict-
ing the future buffer size, P-PFC only reacts to sudden
buffer surges that cannot be timely handled by end-to-end
schemes. If the buffer occupation increases slowly, P-PFC
would not over-react by triggering the PFC at an early stage.
Instead, P-PFC would allow the buffer to increase to a mod-
erate size and let end-to-end schemes to handle the conges-
tion with a fine-grained way.

To compare P-PFC with reduced shared buffer, we per-
form experiments on a 16:1 incast scenario. We first measure
the peak buffer occupation of P-PFC and then reduce the
shared buffer of a standard PFC algorithm to the same value
(i.e., around 1.1 MB). In this way, the peak buffer occupation
for P-PFC and reduced shared buffer approach are the
same. We also run the same simulation without modifying
the PFC threshold and purely use DCQCN to control the

traffic. From Fig. 3, we observe that P-PFC generates much
less PFC messages than both the other two approaches. If
reduce shared buffer, the system generates a large amount
of PFC due to the false alarming when the buffer occupation
exceeds the reduced value. For the unmodified approach,
the system generates more PFC messages because it needs
to use short pauses to repeatedly control the buffer size
before DCQCN takes effect. The total upstream pause time
for the reduced shared buffer approach is also much longer
than the others by over 1000 ms. This might hurt the
upstream flows as well as the throughput. The P-PFC
approach has similar total pause time as the unmodified
case, showing that it is mostly harmless to the throughput.

3 THEORETICAL ANALYSIS

In this section, we theoretically analyze the performance of
P-PFC compared with standard PFC. We first present our
network model. Without loss of generality, our model cap-
tures the n : 1 incast network scenario, where n sources si
communicate with one destination r simultaneously via a
single switch. The sending rate of each source is viðtÞ and
the receiving rate of the destination is vrðtÞ. The queue in
the switch begins to build up when

Pn
i¼1 viðtÞ � vrðtÞ > 0.

The delay between the sender si and the switch is di. The
queue size is assumed to be Q, beyond which the packets
will be dropped. We denote the current queue length by
qðtÞ, which varies with the time t. For traditional PFC mech-
anism, the switch starts to send PFC pause frame once the
queue length is larger than the pre-defined threshold Kmax,
and resume the transmission when the queue length
decreases to Kmin. For convenience, we summarize impor-
tant notations in Table 1.

Let us introduce three related notations first.

Definition 3.1 The queue length varying rate. The queue
length varying rate vðtÞ at t can be defined as the difference
between the total sending rate and the receiving rate: vðtÞ ¼Pn

i¼1 viðtÞ � vrðtÞ.
Definition 3.2 The changes of queue length. The changes

of queue length during the time intervals Dt can be defined asR Dt
0 vðtÞ dt.
From the definition above, we can conclude that the cur-

rent queue length qðtÞ begins to increase when vðtÞ > 0,

Fig. 3. Number of PFC messages and pause time.

TABLE 1
Key Notations in This Paper

n The number of the senders in our model.
si The ith sender. There are n senders in our model.
viðtÞ The sending rate of sender si at time t.
r The receiver r. There are only one receiver in our model.
vrðtÞ The receiving rate of receiver r at time t.
ci The link capacity corresponds to the sender i. viðtÞ � ci
di Delay between the sender si and the buffer.
d Delay between the buffer and the receiver r.
qðtÞ The current queue length at t.
Q The queue size.
Kmin The minimum PFC threshold.Kmin < Q
Kmax The maximum PFC threshold.Kmax < Q
Tthres The threshold for the remaining time, which is used for

P-PFC

1450 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

begins to decrease when vðtÞ < 0 and keeps the same when
vðtÞ ¼ 0.

Definition 3.3 The remaining time. The remaining time T
can be defined as the division between the vacant queue size and

the varying rate of queue length: T ¼ Q�qðt�Þ
vðt�Þ

The remaining time captures that how fast the total
queue space will be used up. It’s a reasonable metric to
determine when to send PFC pause frame. Compared with
the static threshold Kmax for PFC, P-PFC dynamically send
PFC pause frame based on the remaining time and can flexi-
bly adjust the sending time instant.

Theorem 3.1. The tail latency of P-PFC is less than or equal to
that of PFC if the following condition holds.

Tthres >
Q�Kmax

vðtÞ : (1)

Proof. Assume the initial time is t0 in which the switch
queue is empty. The queue length increases to Kmax at
t0 þ Dt, and the switch begins to send PFC pause frame to
si. We have the following:

Kmax ¼
Xn
i¼1

Z t0þDt

t0

viðtÞ dt�
Z t0þDt

t0

vrðtÞ dt:

Due to the transmission delay of PFC pause frame, the
sending rate viðtÞ for si cannot be reduced to zero imme-
diately and the queue length will go on increasing for a
short time. The maximum queue length Lpfc for PFC can
be given by

Lpfc ¼ Kmax þ
Xn
i¼1

Z t0þDtþd�

t0þDt

viðtÞ dt�
Z t0þDtþd�

t0þDt

vrðtÞ dt:

where d� ¼ argminidi
For P-PFC, let t� denotes the time point in which the

equation below holds.

Q� qðt�Þ
vðt�Þ ¼ Tthres: (2)

Combining (1) and (2), we obtain,

t0 � t� � t0 þ Dt (3)

The current queue length qðt�Þ can be formulated as

qðt�Þ ¼
Xn
i¼1

Z t0þt�

t0

viðtÞ dt�
Z t0þt�

t0

vrðtÞ dt:

P-PFC proactively sends PFC pause frame at t�. Tak-
ing the transmission delay into account, the maximum
queue length LPPFC for P-PFC can be given by

Lppfc ¼ qðt�Þ þ
Xn
i¼1

Z t0þt�þd�

t0þt�
viðtÞ dt�

Z t0þt�þd�

t0þt�
vrðtÞ dt

¼
Xn
i¼1

Z t0þt�þd�

t0

viðtÞ dt�
Z t0þt�þd�

t0

vrðtÞ dt:

(4)

From (3) and (4), we have,

Lppfc �
Xn
i¼1

Z t0þDtþd�

t0

viðtÞ dt�
Z t0þDtþd�

t0

vrðtÞ dt ¼ Lpfc:

The inequation Lppfc � Lpfc concludes the proof. tu
Theorem 3.2. P-PFC cannot result in the throughput loss if the

pausing time satisfies the following condition.

Tp <
qðt�Þ þ vðt�Þ � d�

vrðt�Þ

where t� satisfies the Equation (2).

Proof. The PFC pause frame is triggered by the switch at t�,
the current queue length is qðt�Þ. When the PFC pause
frame arrives each source si, the queue length becomes
qðt�Þ þ vðt�Þ � d�. Since the sending rate has already reduced
to zero, the queue will become empty after qðt�Þþvðt�Þ�d�

vrðtÞ . Thus

the necessary and sufficient condition without throughput

loss for P-PFC is Tp < qðt�Þþvðt�Þ�d�
vrðt�Þ . tu

4 SYSTEM DESIGN

4.1 Design Overview

P-PFC works on switches (congestion point) without changes
to end hosts. Fig. 4 shows P-PFC generation procedure. P-PFC
first checks whether the length of egress queue exceeds the
ECN threshold of Kmax and only performs prediction when
there is congestion. This is to allow the end-to-end congestion
schemes to get enough congestion signals like ECN tagged
packets while P-PFC is working. We will explain why to use
egress queue in detail later. Under congestion, P-PFCperforms
the following these steps repeatedly with an interval of 1 ms:
(1) predicts whether PFC should be proactively triggered, if it
is true thendo (2) chooses the ports to send the PFCpause, and
(3) calculates the pause time.

4.2 Prediction

To predict whether we should send the PFC pause or not, P-
PFC first monitors the consumption speed of the shared

Fig. 4. [P-PFC procedure.]

TIAN ETAL.: P-PFC: REDUCING TAIL LATENCY WITH PREDICTIVE PFC IN LOSSLESS DATA CENTER NETWORKS 1451

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

buffer. This is done by counting the buffer increase for each
ingress queue with an interval of 1 ms. [increment½port�
½priority� represents the buffer increase for each ingress
queue and each priority.] We then sum up the counts for
individual ports to get Incrementtotal, the increase of the
whole switch memory. With the size of the free space in the
shared buffer, switch spaceleft, we can calculate the time
required for the shared buffer to be used up. If the remain-
ing time is smaller than a given threshold of T , P-PFC will
consider sending a predictive PFC pause message, as shown
in Algorithm 1. Note that the predictive PFC is based on the
prediction of future buffer size, rather than the current
buffer size. This allows P-PFC to react for a predefined time
interval of T before the standard PFC. In the meanwhile, if
it still takes some time to use up the shared buffer, P-PFC
would wait to see if other congestion control mechanisms
would help.

Algorithm 1. Prediction

Require: Increment of each port and priority
Ensure:Whether to send PFC message
1: for each port and priority do
2: Get increment½port�½priority�
3: Incrementtotal += increment½port�½priority�
4: end for
5: remainingtime =

switch spaceleft
Incrementtotal

6: if remainingtime < T then
7: Run Algorithm 2 and Algorithm 3
8: else
9: exit
10: end if

Algorithm 2. Choosing the Ports to Pause

Require: Composition of the egress queue, Increment of each
port and priority
Ensure: A group of ports that should be paused
1: while fractiontotal < R do
2: Choose ports randomly according to their fraction in egress

queue
3: if increment½port�½priority� > 1 then
4: Mark the port
5: fractiontotal += fraction½port�½priority�
6: end if
7: end while

4.3 Choosing the Ports to Pause

After P-PFC determines that PFC message should be sent,
the next step is to determine the ports that we should tem-
porally pause. When selecting the ports to pause, we should
not hurt the innocent flows and find out the ringleader of
the congestion.

To protect innocent flows, we first rule out ports that
have a decreasing buffer occupation. This can be done by
finding out ingress queues with negative buffer increase
speeds. Second, we choose ports with a probability that is
proportional to its buffer occupation in a similar way as in
RED. Considering the example shown in Fig. 5, the port A
accounts for 80 percent of the egress queue, port B and port

C accounts for 10 percent respectively. In this example, port
A will be paused with a probability of 80 percent. Third, we
will only pause a fraction of candidate ports. As shown in
Algorithm 2, we iteratively select ports to be paused until
the group of paused ports account for a fraction of buffer
occupation larger than a given threshold of R.

4.4 Calculating the Pause Time

Now we need to decide how long to pause the upstream is
appropriate. According to IEEE 802.3x PFC frame format,
numeric values can be used directly to describe the
requested duration of PAUSE for each CoS. The PAUSE
duration for each CoS is a 2-byte value that expresses time
as a number of quanta, where each represents the time
needed to transmit 512 bits at the current network speed.
While typical implementations will not try to set a specific
duration for PAUSE, instead relying on the X-ON and
X-OFF style behavior that can be obtained by setting PAUSE
for a large number of quanta and then explicitly resuming
traffic when appropriate. But we think leveraging this dura-
tion wisely rather than using simple X-ON and X-OFF style
is more meaningful. The algorithm of how to calculate the
pause duration of each port is shown in Algorithm 3.
[packets½port�½priority� denotes packets number in the egress
queue and each priority.] According to Algorithm 3, the
pause time contains two parts which correspond to
packets½port�½priority�
Transmissionspeed

and increment½port�½priority�
Transmissionspeed

respectively. The first

part of the pause time is used to empty the packets buffered
in the egress queue and the second part is used to absorb
the packets in flight.

Algorithm 3. Calculate Pause Time

Require: A group of ports that should be paused, Composition
of the egress queue, Increment of each port and priority
Ensure: The time that the port should be paused
1: for each port and priority that should be paused do
2: Get packets½port�½priority� in the egress queue

3: duration½port�½priority� = packets½port�½priority�þincrement½port�½priority�
Transmissionspeed

4: end for

Reconsider the example in Fig. 5, port A should be
paused longer as it has more packets than the others in the
egress queue. We also take the increment of the port into
consideration. If the increment of the port is more than other
ports, it should be also paused longer and this can help miti-
gate the upcoming congestion.

5 EVALUATION

In this section, we evaluate the performance of P-PFC with
DCQCN and TIMELY in a variety of settings using NS-3. At

Fig. 5. [Example of packets in an egress queue.]

1452 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

the same time, P-PFC is compared with Congestion Aware
Priority Flow Control (CaPFC) proposed in [25] to compare
the influence on tail [latency]. We set the speed of each link to
40Gbps, the delay of each link to 1ms, the size of shared buffer
to 4MB and the total size of the buffer to 9MB, the size of each
packet to 1 KB and the throughput of each flow to 40 Gbps in
all the experiments. To induce incast scenarios, we create the
burst of flows that similar to the flows generated by files copy
in distributed storage systems like Ceph [26].

5.1 P-PFC Benefits DCQCN and TIMELY

We use the 6:1 and 16:1 incast scenarios to study the perfor-
mance of P-PFC in terms of the switch queue length and tail
latency. Simulation parameters for DCQCN are listed in
Table 2. T and R (marked with star) are new parameters
introduced in P-PFC. We will discuss them in section 6.1.
The value of all other parameters are borrowed from
DCQCN and TIMELY paper [11] directly.

P-PFC can reduce the maximum queue length and the tail
latency by about 4x when used along with DCQCN and
TIMELY. Fig. 6a shows the buffer size of both P-PFC and
the standard PFC mechanism. We observe that the maxi-
mum switch queue length of P-PFC is 1002 KB, while stan-
dard PFC uses up the whole switch buffer space. Due to

lower queue length, we find that the tail latency can also
reduce by over 2x. We observe that P-PFC reacts much ear-
lier than the DCQCN and TIMELY due to the prediction
based PFC mechanism. For 16:1 incast, the DCQCN conver-
gence time for P-PFC is reduced by 50 percent compared to
the standard PFC mechanism. This is because smaller queue
length also reduces the control loop length for end-to-end
control schemes. We can get similar results from Fig. 6b that
means P-PFC can also work well with TIMELY.

5.2 P-PFC Does Not Hurt DCQCN or TIMELY

P-PFC is robust and would not be triggered under moderate conges-
tion. To see whether P-PFC would overreact under moderate
congestion, we perform 6:1 and 16:1 incast experiments with/
without P-PFC while enabling DCQCN and TIMELY. From
Fig. 6a, we observe that the maximum queue length for both
case is 1,702KB and two curves coincide, whichmeans almost
no PFCpausemessages are sent in both cases. Similar findings
have beenmade fromFig. 6b for TIMELY. In such less conges-
tion scenarios, P-PFC behaves like standard PFC and does not
send PFC pauses. Since DCQCN is more common in RDMA
networks, we focus on the evaluation of P-PFC+DCQCN
below.

P-PFC would not over-set the pause time and hurt the user
throughput. We also test the throughput of user traffic under
different incast degrees with P-PFC and without P-PFC for
DCQCN. The result is shown in Fig. 7, the throughput for
both cases are almost the same under different incast
degrees, which proves that P-PFC does no harm to through-
put or stability at all. Each sever can still be assigned correct
throughput by DCQCN with P-PFC.

P-PFC only ignites when length of egress queue exceeds
the ECN threshold of Kmax, in other words P-PFC only
starts after DCQCN finishing its work for tagging ECN
flags. That means P-PFC will not affect the stability and con-
vergence of DCQCN that has been discussed in the fluid
model in [10].

5.3 P-PFC Could Control the False Alarm Rate

In large-scale RDMA network, PFC message is common but
dangerous cause too much PFC message could bring all
kinds of trouble [9]. So how P-PFC control the false alarm
rate to avoid sending too much unnecessary PFC message
becomes an important problem. At present P-PFC mainly
uses parameter T to guarantee low false alarm rate. For
example, the congestion degree of 4:1 and 6:1 incast scenario

TABLE 2
NS-3 Simulation Parameters

Parameter Value Description

T
?

100 ms See algorithm 1
R

?
80% See algorithm 2

Kmax 200 KB Parameters of ECN
Kmin 40 KB Parameters of ECN
Pmax 1 Parameters of ECN
g 1/256 Parameter for rate decrease
RAI 40 Mbps Rate increase step
Timer 55 ms TIMER for rate increase
Byte Counter 10 MB Byte Counter for rate increase
CNP Interval 50 ms Interval between sending CNP

Fig. 6. Performance of DCQCN and TIMELY with/without P-PFC in dif-
ferent incast scenario.

Fig. 7. Throughput under different incast degrees.

TIAN ETAL.: P-PFC: REDUCING TAIL LATENCY WITH PREDICTIVE PFC IN LOSSLESS DATA CENTER NETWORKS 1453

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

are low so they should not incur any PFC message from
standard PFC or P-PFC. As shown in Table 3, by using suit-
able value of T , P-PFC would send no PFC message. We
will discuss how to set T in Section 6.1.

5.4 P-PFC Try to Protect Innocent Flows

P-PFC does consider protecting innocent flows in [many] ways.
As shown is Fig. 4, P-PFC is different from traditional PFC,
it will only be triggered when the length of egress queues
exceeds the threshold instead of ingress queues. That means
P-PFC only pauses those flows that really cause the conges-
tion of egress port. We conduct some simple experiments to
illustrate this. The topology of this experiment is shown in
Fig. 8, all hosts are connected by one switch, host group 1
has 16 hosts, host group 2 has 4 hosts and host group 3 has
just one host. All hosts, links and switches used in these test-
beds are the same as before. Each host group sends packets
to one receiver at 40 Gbps and the path is colored differ-
ently. We find only host group 1 receives a lot of PFC mes-
sages and neither group 2 nor group 3 receives. Host group
3 receives no PFC message because its flows don’t go
through the congested egress port, they must not be paused
by P-PFC. However, even though there are multiple hosts
in host group 2 sending packets to one receiver, it also
receives no PFC message because the Kmax threshold in
Fig. 4 plays a role, the threshold can let P-PFC bear transient
slight congestion at egress port. This makes P-PFC will not
react aggressively, it won’t consider sending PFC message
until the egress queue length exceeds a threshold. There-
fore, P-PFC won’t interfere the working of ECN tagging and
can leave DCQCN largest space to take effect.

According to Algorithm 2, even for the flows that pass through
the same congested egress port, P-PFC will not simply pause them
all. P-PFC chooses ports to pause with a probability that is
proportional to its buffer occupation. In other words, P-PFC
always wants to find out which ports deserve much of the
blame for the congestion and then to pause them. We also
use a 16:1 incast scenario to illustrate this, but we let hosts
send packets at different rates shown in Fig. 9a. 3 hosts use
1 Gbps throughput, 5 hosts use 10 Gbps throughput, 4 hosts
use 20 Gbps throughput and the other 4 hosts use 40 Gbps
throughput. As shown in Fig. 9b, we snapshoot the occupa-
tion of different hosts in egress buffer. Then we can observe

that the occupation in egress buffer of each host coincides
with their throughput in Fig. 9a. From Fig. 9c, we finally
find out the occupation in egress buffer of each host results
in the number of PFC messages they received directly. Like
Algorithm 2 designed, if a host sends packets at lower rate,
it will accumulate fewer packets in egress port and P-PFC
will send less PFC messages to it.

P-PFC also tries to guarantee fairness by calculating pause
time for each host independently and dynamically. With
Algorithm 3, we calculate the pause time primarily accord-
ing to the occupation of each host in egress buffer. The key
idea is similar with Algorithm 2. If a host has more packets
in egress port then we consider it should take more respon-
sibilities for the congestion and P-PFC will naturally pause
it longer. This ensures even a host with low-speed is paused
by P-PFC with a small probability, it will not be paused for
a long time. That is why P-PFC use a dynamical pause time
instead of a fixed value. As shown in Fig. 10, we compare
using dynamical pause time and several fixed pause time in

TABLE 3
Number of PFC Message with Different T

scenarios T = 50 ms T = 100 ms T = 150 ms

4:1 incast 0 0 0
6:1 incast 0 5 43
16:1 incast 277 316 406

Fig. 9. (a) is the throughput of each host; (b) is the occupation of each
host in egress port; (c) is the number of PFC message each host
receives.

Fig. 8. Topology of the experiment for innocent flows. Fig. 10. Influence of different pause time.

1454 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

P-PFC. The max queue length can be reduced about half
when using dynamical pause time. This is because using
fixed pause time can not guarantee no congestion in core
network. The queue of switch will still build up if use small
fixed pause time. Although use large fixed pause time can
avoid this, hosts are also paused too long and throughput
are hurt seriously.

5.5 Performance of P-PFC in Different Topologies

For answering this question we build two other testbeds,
dumbbell topology and spine-leaf topology. [As shown in
Fig. 13,] the dumbbell topology has 2 rack switches con-
nected to each other, and each is connected with 32 servers
or 64 servers for testing different oversubscription ratio. [As
shown in Fig. 14,] the leaf-spine topology has 6 rack
switches connected by 4 core switches, and each is con-
nected with 32 servers or 64 servers for testing different

oversubscribed ratios. For both topologies, each server is
connected via a 10 Gbps link, and the oversubscription ratio
are 8:1 and 16:1 respectively.

As shown in Figs. 11 and 12, P-PFC can reduce the maxi-
mum queue length and the tail latency by about 4x and 2x
under high and low pressure respectively. Notice that we
only use the data in the first 1700 microseconds in Figs. 11b
and 12b in order to be consistent with Figs. 11a and 12a.
According to the CDF in Figs. 11 and 12 we can also find
P-PFC will not influence DCQCN during stable phase. The
convergence process is also reduced by half when using
P-PFC. We also measure the total pause time of P-PFC and
tradition PFC (primordial DCQCN) in the these two test-
beds. According to Fig. 15, P-PFC can reduce the total pause
time than tradition PFC in these two testbeds which means
it can also reduce the collateral damages at the same time.

5.6 Influence on Tail Latency

A congestion awareness PFC (CaPFC) has been proposed in
[25]. CaPFC is designed to address the deficiency of PFC
without QCN. CaPFC also monitors egress queues to
increase congestion control awareness. CaPFC introduces a
WARN threshold at each egress buffer to measure the con-
gestion. In the 16:1 incast scenario, the influence of P-PFC

Fig. 11. Performance of DCQCN with/without P-PFC in dumbbell
topology.

Fig. 12. Performance of DCQCN with/without P-PFC in spine-leaf net-
work topology.

Fig. 13. [Dumbbell topology of testbeds.]

Fig. 14. [Spine-leaf network topology of testbeds.]

Fig. 15. Total pause time with P-PFC.

TIAN ETAL.: P-PFC: REDUCING TAIL LATENCY WITH PREDICTIVE PFC IN LOSSLESS DATA CENTER NETWORKS 1455

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

and CaPFC on tail latency (99%ile) is shown in Fig. 16.
P-PFC can reduce tail latency almost by 2x compare with
CaPFC. Although CaPFC can effectively reduce FCT with-
out DCQCN, the reduction of tail latency is not obvious
when DCQCN is enabled.

5.7 Benefits of Using P-PFC

We can find the benefits brought by P-PFC outweigh its dis-
advantages according to Figs. 12 and 15. At the same time,
we calculate the total reduced latency of packets during
congestion phase in different topologies as shown in Fig. 17.
We can find the reduced latency will increase as the topol-
ogy becomes more complex. This mainly because DCQCN
spends more time dealing with congestion when distance
between senders and receivers become longer. That makes
the degree of congestion be more serious. Notice that the
results in Fig. 17 is only for a one-time congestion process. If
there is more congestion of workload, the reduced latency
will also be more. Compared with total reduced tail latency,
the total pause time caused by P-PFC does look negligible.

To be more intuitive, we measure the FCT with different
schemes. We use data mining trace whose cumulative dis-
tribution functions and descriptions can be found in [27].
As shown in Fig. 18, mice flows (<1 M) can benefit from
P-PFC obviously. For example, FCT with different schemes
for flows (100 K-1 M) is 22 ms, 38 ms and 63 ms, respec-
tively. This is because P-PFC can prevent the length of
queues in switches from growing. Since P-PFC will not hurt
the throughput, FCT of elephant flows (>10 M) with differ-
ent schemes almost remain the same. We also find smaller

running interval can bring better performance. Overall, P-
PFC allows small flows to benefit without hurting big flows.

P-PFC not only has less flow control, but also has better
overall performance. We use the 16:1 incast scenario to study
the performance of P-PFC in terms of the average latency
when used along with DCQCN. Notice that we only use the
data in the first 1500 microseconds in Fig. 6a. [Fig. 19 shows
the average latency and 50%ile latency of the standard PFC
mechanism, P-PFC and CaPFC. P-PFC can reduce the aver-
age latency up to 83.8 percent and reduce the 50%ile latency
up to 90 percent compared to CaPFC.] Although CaPFC can
reduce tail latency, it does not help average latency.

6 DISCUSSIONS

In this section, we discuss some interesting and significant
questions of P-PFC. First we give a detailed explanation of
some innovations in P-PFC. Then we discuss how to imple-
ment P-PFC.

6.1 How to Set Parameters in P-PFC?

T and R are new parameters introduced in P-PFC. R
decides the number of ports to pause each time P-PFC
works, which is used to protect innocent flows. Actually it
is not very important to the performance of P-PFC and we
recommand 80 percent is good enough in most cases.

T is significant for P-PFC. Different T could make P-PFC
more aggressive or more conservative and make a tradeoff
between performance and stability. Assume the buffer size
of switch is B, the number of ports of switch is P and the
rate of each port is V . Then we can get the minimal time
Tmin to fill the switch buffer :

Fig. 16. Tail latency with different schemes.

Fig. 17. Total reduced tail latency with P-PFC.

Fig. 18. Flow completion time with different schemes.

Fig. 19. [Latency with different schemes.]

1456 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

Tmin ¼ B

P � V : (5)

In our experiments, B is 9 MB, P is 16 and V is 40 Gbps so Tmin

is 112.5 ms. Tmin corresponds to the most serious congestion.
Intuitively, P-PFC should launch when remainingtime
in Algorithm 1 is close to Tmin, in our experiments we set T
to 100 ms. Users can adjust T according the specific flow
pattern. Actually find the optimal T with different topologies
and flow patterns is challenging and we leave it in our
futurework.

6.2 [In Addition to Monitor Ingress Ports, Why Also
Monitor Egress Ports in P-PFC?]

As is well-known, traditional PFC is notorious in various
ways like HOL blocking and collateral damage. But it still
has some advantages such as fast reaction to congestion
compared with end-to-end congestion control. DCQCN is a
typical end-to-end congestion control protocol, it uses
egress queue length as a congestion signal. P-PFC also
reacts only when egress queue length exceeds a threshold, it
will not disturb DCQCN unless the congestion is very
urgent. If P-PFC reacts according to ingress queue length
that may be too aggressive, then less packets or even no
packet can be tagged with ECN flags, finally delay the pro-
cess of convergency. While if P-PFC pause hosts too later,
the queue length will build up rapidly. Monitor egress
queues can make P-PFC cooperate with DCQCN well and
choose an appropriate time to send PFC messages. Except
this, monitor egress queue can let us find the hosts who
should be responsible for congestion intuitively. Actually,
how to coordinate hop-by-hop congestion control protocol
with end-to-end congestion control protocol is a compli-
cated and interesting work. We leave this problem in our
future work.

6.3 Is P-PFC Easy to be Implemented
in Commodity Switch?

P-PFC only changes the part of sending algorithm of PFC
PAUSE messages, and it is easy to be integrated within the
existing PFC implementation. To enable P-PFC, switch
needs a counter for each port and priority to get the incre-
ment of the ingress queue length in the past 1 ms. Algorithm
1 is executed every 1 ms, in each execution we can get the
remaining time by making the left buffer of switch divided
by the sum of all the increment of all ports and priorities. If
remaining time exceeds threshold T , then Algorithm 1
sends signal to Algorithm 2. To choose which ports to
pause, Algorithm 2 randomly selects ports at the egress
inside and if the total increment of the selected port and pri-
ority exceeds the threshold, then the port and priority will
be marked and written into a FIFO. Algorithm 3 gets the
port and priority that needs to be paused from the FIFO and
calculates the pause time, sends them to the switch PFC
PAUSE engine finally. As we mentioned before, in IEEE
802.3x PFC frame format, numeric values can be used
directly to describe the requested duration of PAUSE. To
avoid sending PFC PAUSE messages repeatedly in a short
time, we can set up a register bit for each port and priority.
The bit is set after sending PFC messages and will be

automatically unset after a while. PFC messages sending is
only allowed when the bit is unset.

6.4 Novelty of P-PFC

Actually the idea of P-PFC that uses buffer occupancy as a
signal to do congestion control has been studied before [28],
[29], [30], [31]. But we find that this approach is rarely used
in data centers. Cause the bandwidth of links in data center
network are usually above 10 Gbps, the transmission of
packets and change of queue lengths in switch are very fast.
P-PFC combines this approach and traditional PFC mecha-
nism naturally. PFC is a reactive protocol that works in the
switch. It can monitor the length of queues in real time.
P-PFC takes advantage of this and uses it to predict the
future condition and makes some countermeasures in
advance. Actually there are many other works [32] that try
to discard PFC mechanism directly to avoid the collateral
damages that PFC brings. According to our tests P-PFC can
reduce the collateral damages, it tries to improve PFC
instead of discarding it.

Traditional traffic shaping technology works on egress
queues and PFC works on ingress queues. Both of them just
consider the local knowledge. While P-PFC considers both
ingress and egress queues to do the congestion control. To our
best of knowledge, P-PFC is the first protocol that combines
buffer occupancy technology and PFC mechanism to solve
severe congestion control problem in data center networks.

7 RELATED WORK

[There exists a number of end-2-end congestion control pro-
posals (e.g., DCQCN [10], TIMELY [11], HPCC [33] and
Blitz [34]) in layer 3 recently. PFC is a per-hop flow control
in layer 2 which guarantees lossless of packets. P-PFC is an
enhanced version of PFC. They are orthogonal to those layer
3 congestion control researches. Both layer 2 per-hop mech-
anisms and layer 3 end-2-end congestion control are neces-
sary to provide high performance RDMA in Ethernet.]

[Congestion control in RDMA. DCQCN [10] takes advan-
tage of Early Congestion Notification (ECN) marks to infer
imminent congestion. TIMELY [11] uses round-trip times
(RTT) as a congestion signal for rate control. DCQCN+ [35]
improves performance for large-scale incasts in RDMA net-
works. HPCC [33] uses in-network-telemetry (INT) to
improve end-host based congestion control. Blitz [34] is a
Receiver-oriented Congestion Control (RCC) mechanism
which employs a divide-and-specialize approach to speeds
up the convergence.]

[Flow control in RDMA. Congestion Aware Priority Flow
Control (CaPFC) in [25] also observed that PFC is not effective
in many congestion cases. CaPFC monitors both ingress and
egress queues, and triggers PFC with a fixed threshold value
of per-input counters. Instead, P-PFCuses derivatives of buffer
occupancy and has better performance in reducing tail
latency.]

8 CONCLUSIONS

In this paper, we have proposed P-PFC, a predictive PFC
mechanism for RDMA networking. P-PFC predicts the
buffer occupation based on the derivative of queues. We

TIAN ETAL.: P-PFC: REDUCING TAIL LATENCY WITH PREDICTIVE PFC IN LOSSLESS DATA CENTER NETWORKS 1457

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

show that with the predictive PFC, we can control the queue
length and reduce the tail latency of RDMA packets.
Although using derivative for queue management has been
used before for TCP/IP networks [36], [37], to our best
knowledge, this is the first work of using derivative in loss-
less RDMA networks.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their valuable comments. This research was supported by
the National Key R&D Program of China 2018YFB1003505,
the National Natural Science Foundation of China under
Grant Numbers 61772265, and 61802172, the Collaborative
Innovation Center of Novel Software Technology and
Industrialization, and the Jiangsu Innovation and Entre-
preneurship (Shuangchuang) Program.

REFERENCES

[1] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to
build a fast, CPU-efficient key-value store,” in Proc. USENIX
Annu. Tech. Conf., 2013, pp. 103–114.

[2] A. Dragojevi�c, D. Narayanan, O. Hodson, and M. Castro, “FaRM:
Fast remote memory,” in Proc. 11th USENIX Conf. Netw. Syst.
Design Implementation, 2014, pp. 401–414.

[3] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA effi-
ciently for key-value services,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 44, no. 4, 2014, pp. 295–306.

[4] H. Li, A. Kadav, E. Kruus, and C. Ungureanu, “MALT: Distrib-
uted data-parallelism for existing ML applications,” in Proc. 10th
Eur. Conf. Comput. Syst., 2015, Art. no. 3.

[5] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using RDMA and HTM,” in Proc. 25th
Symp. Operating Syst. Princ., 2015, pp. 87–104.

[6] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li, “Fast and concurrent
RDF queries with RDMA-based distributed graph exploration,”
in Proc. 12th USENIX Symp. Operating Syst. Design Implementation,
2016, pp. 317–332.

[7] M. Alizadeh et al., “Data center transport mechanisms: Congestion
control theory and IEEE standardization,” in Proc. 46th Annu.
Allerton Conf. Commun. Control Comput., 2008, pp. 1270–1277.

[8] D. Cohen et al., “Remote direct memory access over the converged
enhanced ethernet fabric: Evaluating the options,” in Proc. 17th
IEEE Symp, 2009, pp. 123–130.

[9] C. Guo et al., “RDMA over commodity ethernet at scale,” in Proc.
Conf. ACM SIGCOMMConf., 2016, pp. 202–215.

[10] Y. Zhu et al., “Congestion control for large-scale RDMA
deployments,” ACM SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4, 2015, pp. 523–536.

[11] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” ACM SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4, pp. 537–550, 2015.

[12] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “ECN or delay: Les-
sons learnt from analysis of DCQCN and timely,” in Proc. 12th Int.
Conf. Emerg. Netw. Experiments Technol., 2016, pp. 313–327.

[13] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4,
pp. 397–413, Aug. 1993.

[14] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black, “The addition of
explicit congestion notification (ECN) to IP,” RFC 3168, Sep. 2001.
[Online]. Available: https://rfc-editor.org/rfc/rfc3168.txt

[15] InfiniBand Trade Association, “Supplement to infiniband archi-
tecture specification volume 1, release 1.2. 1: Annex a16: RDMA
over converged ethernet (RoCE),” Apr. 2010.

[16] V. Vasudevan et al., “Safe and effective fine-grained TCP retrans-
missions for datacenter communication,” ACM SIGCOMM Com-
put. Commun. Rev., vol. 39, no. 4, pp. 303–314, 2009.

[17] Learn What You Will, “Priority flow control build reliable layer 2
infrastructure,” 2015.

[18] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion
control for TCP in data center networks,” CoNEXT, pp. 13:1–13:12,
Jan. 2010.

[19] S. A.Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.Maltzahn,
“Ceph: A scalable, high-performance distributed file system,”
in Proc. 7th Symp. Operating Syst. Design Implementation, 2010,
pp. 307–320.

[20] W. Bai, K. Chen, H. Wu, W. Lan, and Y. Zhao, “PAC: Taming TCP
incast congestion using proactive ACK control,” in Proc. IEEE
22nd Int. Conf. Netw. Protocols, 2014, pp. 385–396.

[21] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, pp. 63–74, 2010.

[22] P. Cheng, F. Ren, R. Shu, and C. Lin, “Catch the whole lot in an
action: Rapid precise packet loss notification in data center,” in
Proc. 11th USENIX Conf. Netw. Syst. Des. Implementation, 2014,
pp. 17–28.

[23] A. Bechtolsheim, L. Dale, andH.Holbrook, “Why big data needs big
buffer switches,” 2016. [Online]. Available: https://www.arista.
com/assets/data/pdf/Whitepapers/BigDataBigBuffers-WP.pdf

[24] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in Proc. 10th ACM SIGCOMM
Conf. Internet Meas., 2010, pp. 267–280.

[25] S. N. Avci, Z. Li, and F. Liu, “Congestion aware priority flow
control in data center networks,” in Proc. IFIP Netw. Conf., 2016,
pp. 126–134.

[26] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proc. 7th Symp.Operating Syst. Des. Implementation, 2006, pp. 307–320.

[27] A. Greenberg et al., “VL2: A scalable and flexible data center
network,” in Proc. ACM SIGCOMM Conf. Data Commun., 2009,
pp. 51–62.

[28] D. Bansal and H. Balakrishnan, “Binomial congestion control
algorithms,” in Proc. 20th Annu. Joint Conf. IEEE Comput. Commun.
Societies, 2001, pp. 631–640.

[29] P. P. Mishra and H. Kanakia, “A hop by hop rate-based conges-
tion control scheme,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 22, no. 4, 1992, pp. 112–123.

[30] S. Jagannathan and J. Talluri, “Predictive congestion control of
ATM networks: multiple sources/single buffer scenario,” Automa-
tica, vol. 38, no. 5, pp. 815–820, 2002.

[31] L. Benmohamed and S. M. Meerkov, “Feedback control of conges-
tion in packet switching networks: The case of a single congested
node,” IEEE/ACM Trans. Netw., vol. 1, no. 6, pp. 693–708,
Dec. 1993.

[32] R. Mittal et al., “Revisiting network support for rdma,” pp. 313–326,
2018, arXiv: 1806.08159.

[33] Y. Li, “HPCC: High precision congestion control,” in Proc. ACM
Special Interest Group Data Commun., 2019, pp. 44–58.

[34] J. Xue,M.Chaudhry, B. Vamanan, T. Vijaykumar, andM. Thottethodi,
“Fast congestion control in RDMA-based datacenter networks,” in
Proc. ACMSIGCOMMConf. Posters Demos, 2018, pp. 24–26.

[35] Y. Gao, Y. Yang, T. Chen, J. Zheng, B. Mao, and G. Chen,
“DCQCN+: Taming large-scale incast congestion in RDMA over
ethernet networks,” in Proc. IEEE 26th Int. Conf. Netw. Protocols,
2018, pp. 110–120.

[36] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “On design-
ing improved controllers for AQM routers supporting TCP
flows,” in Proc. 20th IEEE Annu. Joint Conf. IEEE Comput. Commun.
Societies, 2001, pp. 1726–1734.

[37] J. Aweya, M. Ouellette, and D. Y. Montuno, “A control theoretic
approach to active queue management,” Comput. Netw., vol. 36,
no. 2, pp. 203–235, 2001.

Chen Tian received the BS, MS, and PhD
degrees from the Department of Electronics and
Information Engineering, Huazhong University of
Science and Technology, China, in 2000, 2003,
and 2008, respectively. He is an associate pro-
fessor at the State Key Laboratory for Novel
Software Technology, Nanjing University, China.
He was previously an associate professor at the
School of Electronics Information and Communi-
cations, Huazhong University of Science and
Technology, China. From 2012 to 2013, he was

a postdoctoral researcher with the Department of Computer Science,
Yale University. His research interests include data center networks,
network function virtualization, distributed systems, Internet streaming,
and urban computing.

1458 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 6, JUNE 2020

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

https://rfc-editor.org/rfc/rfc3168.txt
https://www.arista.com/assets/data/pdf/Whitepapers/BigDataBigBuffers-WP.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/BigDataBigBuffers-WP.pdf

Bo Li received the BSdegree from theDepartment
of Computer Science and Engineering, Nanjing
University of Science and Technology, China,
in 2016. He is working toward the MS degree at
Nanjing University, China. His research interest
includes distributed networks and systems.

Liulan Qin received the BS degree from the
Department of Computer Science and Engineer-
ing, Nanjing University of Science and Technology,
China, in 2018. She is currently working toward the
MSdegree in theDepartment ofComputer Science
and Technology, Nanjing University, China. Her
research interests include datacenter networks.

Jiaqi Zheng received the PhD degree from
Nanjing University, China, in 2017. He was a
research assistant with the City University of
Hong Kong, in 2015, and a visiting scholar with
Temple University, in 2016. He is currently a
research assistant professor with the Department
of Computer Science and Technology, Nanjing
University. His research interests include com-
puter networking, particularly, data center net-
works, SDN/NFV, and machine learning systems.
He is a member of ACM. He received the Best

Paper Award from IEEE ICNP 2015, the Doctoral Dissertation Award
from ACM SIGCOMMChina 2018, and the First Prize of the Jiangsu Sci-
ence and Technology Award in 2018.

Jie Yang received the BS degree in computer
science from Nanjing University, China. He is cur-
rently working toward the master’s degree at
Nanjing University at Computer Science Depart-
ment His research interests include networking
and computer architecture.

Wei Wang received the MS degree from the ESE
Department, Nanjing University, in 2000, and the
PhD degree from the ECE Department, National
University of Singapore, in 2008. He is currently
an associate professor with the CS Department,
Nanjing University. His research interests include
area of wireless networks, including device-free
sensing, cellular network measurements, and
software defined radio systems.

Guihai Chen received the BS degree in com-
puter software from Nanjing University, in 1984,
the ME degree in computer applications from
Southeast University, in 1987, and the PhD
degree in computer science from the University
of Hong Kong, in 1997. He is a distinguished pro-
fessor of Nanjing University. He had been invited
as a visiting professor by Kyushu Institute of
Technology in Japan, University of Queensland in
Australia and Wayne State University, USA. He
has a wide range of research interests with focus

on parallel computing, wireless networks, data centers, peer-to-peer
computing, high-performance computer architecture and data engineer-
ing. He has published more than 350 peer-reviewed papers, and more
than 200 of them are in well-archived international journals such as the
IEEE Transactions on Parallel Distributed Systems, IEEE Transactions
on Computers, IEEE Transactions on Knowledge and Data Engineering,
IEEE/ACM Transactions on Networking and ACM Transactions on Sen-
sor Networks, and also in well-known conference proceedings such as
HPCA, MOBIHOC, INFOCOM, ICNP, ICDCS, CoNext and AAAI. He has
won 9 paper awards including ICNP 2015 Best Baper Award and DAS-
FAA 2017 Best Paper Award.

Wanchun Dou received the PhD degree in
mechanical and electronic engineering from the
Nanjing University of Science and Technology,
China, in 2001. He is currently a full professor
with the State Key Laboratory for Novel Software
Technology, Nanjing University. From April
2005 to June 2005 and from November 2008 to
February 2009, he respectively visited the
Department of Computer Science and Engineer-
ing, Hong Kong University of Science and Tech-
nology, Hong Kong, as a visiting scholar. Up to

now, he has chaired three National Natural Science Foundation of China
projects and published more than 60 research papers in international
journals and international conferences. His research interests include
workflow, cloud computing, and service computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TIAN ETAL.: P-PFC: REDUCING TAIL LATENCY WITH PREDICTIVE PFC IN LOSSLESS DATA CENTER NETWORKS 1459

Authorized licensed use limited to: Nanjing University. Downloaded on February 12,2020 at 04:28:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

