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Abstract— Today’s cellular core relies on a few expensive and
dedicated hardware racks to connect the radio access network
and the egress point to the Internet, which are geographically
placed at fixed locations and use the specific routing policies.
This inelastic architecture fundamentally leads to increased
capital and operating expenses, poor application performance
and slow evolution. The emerging paradigm of Network Function
Virtualization (NFV) and Software Defined Networking (SDN)
bring new opportunities for cellular networks, which makes it
possible to flexibly deploy service chains on commodity servers
and fine-grained control the routing policies in a centralized
way. We present a two-stage optimization framework Plutus. The
network-level optimization aims to minimize the service chain
deployment cost, while the server-level optimization requires to
determine which Virtualized Network Function (VNF) should be
deployed onto which CPU core to balance the CPU processing
capability. We formulate these two problems as two optimization
programs and prove their hardness. Based on parallel multi-block
ADMM, we propose a (δ, 2)-bicriteria approximation algorithm
and a learning-based algorithm to address two cases whether the
flow information and the resource consumption can be known as
a priori, respectively. Large-scale simulations and DPDK-based
OpenNetVM platform show that Plutus can reduce the capital
cost by 84% and increase the throughput by 36% on average.

Index Terms— Software Defined Networking (SDN), Net-
work Function Virtualization (NFV), approximation algorithm,
ADMM.

I. INTRODUCTION

A. Motivation

CELLULAR core is a critical piece of the infrastructure
and provides fundamental cellular-specific functions such
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as user authentication, mobility management and session man-
agement, etc. It also requires to support various middlebox
services to implement per-user accounting and charging rules
of voice calls [2]. However, today’s cellular infrastructure are
experiencing explosive growth in mobile connected devices.
A Report from Cisco suggested that there would be 3 bil-
lion IoT devices and around 11.6 billion mobile connected
devices by 2020 [3]. In the meantime, the growth rate of
signal traffic is more than 50% faster than that of data
traffic [4], which together creates huge stresses on the cellular
core.

On one hand, in order to response the rapid growth of
cellular traffic, the providers have to purchase and deploy more
expensive and dedicated hardware racks, which inevitably
leads to unfavorable capital and operating expenses. On
the other hand, current architecture heavily relies on these
dedicated middleboxes [5] to connect the radio access net-
work and the egress point to the Internet, which are geo-
graphically placed at fixed locations and use the specific
routing configurations. They cannot perfectly react to the
changing traffic volume and dynamic policies. The renewal
cycles of service innovation have to be prolonged and hin-
dered by vendor support. Furthermore, with more and more
hardware racks are deployed, the cellular network protocols
become complex and intractable, leading to high management
overhead.

Existing works attempt to address these issues above from
different angles. CleanG [6] and LTE-Xtend [7] design a sim-
plified control protocol in SDN-based cellular architecture to
support emerging mobile devices and services. Usually a set of
cellular-specific functions can be virtualized as a service chain,
which consists of a sequence of VNFs. The work [8]–[11]
consider service chain embedding problem, i.e., determining
which VNF can be deployed onto which commodity server
such that the packets can be sequentially processed by these
VNFs and comply with the service chain constraints. However,
the routing selection and VNF deployment are optimized
separately, which leads to suboptimal deployment cost in
nature. In addition, the traffic has to route from an upstream
VNF located on one server to the downstream VNF located
in another server to perform a specific function defined by a
service chain, which takes up expensive bandwidth resource
due to the traffic transmission between two servers. To save the
network bandwidth consumption, NFVnice [12] and NFP [13]
integrate the whole service chain into a server with multiple
physical CPU cores, where one VNF can be fine-grained
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deployed onto one physical CPU core and different VNFs can
share the same one [14]. However, the optimization framework
of such service chain deployment with multiple CPU cores has
not been explored in the existing literature.

In this paper we initiate the study of orchestrating the
service chain deployment with multiple CPU cores, aiming
to minimize the provisioning cost, which has the potential
to overcome the drawbacks above. The novelty of our work
lies in a comprehensive exploration and design based on the
multi-core CPU framework, which to our knowledge has not
been done before. The cellular traffic in our framework can be
dynamically managed by a logically centralized controller in a
fine-grained manner. By virtualization techniques, the operator
can accelerate the innovation by shortening the renewal cycles
of service chain deployment, reducing the capital cost and
improving the scalability. In the first stage, we focus on a
joint optimization of traffic routing and the service chain
deployment. We can address two cases whether the flow
information and the resource consumption can be known as
a priori or not. Furthermore, for each VNF in a service chain,
we seek to determine which VNF should be deployed onto
which CPU core in the second stage, in order to balance the
processing capacity and improve the throughput.

B. Our Contributions

Firstly, we propose a two-stage optimization framework
Plutus for Minimum Provisioning Cost Problem (MPCP) and
Multi-Core Deployment Problem (MCDP). The optimization
program in the first stage aims to minimize the total provision-
ing cost of service chains, where the required CPU resource
and cost for each service chain are given, such that each link’s
load cannot beyond its capacity and each server’s resource
cannot be overbooked. The service chain consists of a set of
VNFs. The program in the second stage needs to determine
which VNF should be placed onto which CPU core to balance
the CPU processing capacity.

Our second contribution is a set of algorithms to solve
MPCP and MCDP. We prove that MPCP and MCDP are
both NP-hard, and thus focus on designing provably algo-
rithms. Based on the multi-block ADMM, we first propose a
(δ, 2)-bicriteria approximation algorithm to solve MPCP and
prove that it yields a constant approximation ratio of δ, while
overbooking the CPU resource capacity at each server by at
most a factor of 2, where δ is the number of pre-defined
paths between source and destination. Further, we design a
learning-based algorithm to address the case that the flow
information and the resource consumption cannot be known
as a priori. Finally, we propose a local search algorithm to
solve MCDP with a constant approximation ratio of 2, which
improves upon the results of randomized rounding by greedily
moving each VNF at each CPU core.

Our third contribution is a comprehensive performance
evaluation of our algorithms. Large-scale simulations using
synthetic cellular network topologies show that our algorithms
can reduce the total provisioning cost by 84%. Meanwhile,
our algorithms run faster compared to state of the art and can
provide the near optimal solution. We also develop a prototype

on the DPDK-based OpenNetVM platform [15]. Experimental
results show that our solution can increase the throughput by
36% on average.

II. RELATED WORK

A. SDN-Based Cellular Core

SoftCell [16] and SoftMoW [17] both present a SDN-based
cellular core architecture, where the signal and data traffic
are explicitly managed by a logically centralized controller.
The main difference between them is that the former aims to
minimize the number of forwarding rules in the core switches,
while the latter focuses on improving the performance for
latency-sensitive applications. Another line of this work advo-
cate to improve the design of control plane protocols. For
example, CleanG [6] develops a novel protocol customized
for emerging IoT services. LTE-Xtend [7] extends the exist-
ing protocols to support M2M communication. ProCel [18]
increases the EPC capacity by optimizing the interaction
between eNBs and EPC.

B. EPC Network Function Virtualization

The work in [19]–[22] virtualize the cellular-specific func-
tions and guarantee that they can provide backward compat-
ible function. SCALE [23] re-organizes the MME function-
ality into a front-end load balancer and back-end virtualized
processing cluster to improve scalability. KLEIN [10] routes
the traffic to the available EPC instances located in geo-
graphically distributed data centers and manages virtualized
EPC resources. PEPC [11] decomposes the traditional EPC
functions into different components and reduces frequent
communication by eliminating the duplicated device states.

C. VNF Deployment and Scheduling

VNF-P [24] propose a hybrid VNF deployment model
to allocate physical resources, i.e., network services can
be provided by a mixture of traditional dedicated hard-
ware and VNFs. As for the fully virtualized environ-
ment, Ghaznavi et al. [25] present a model to minimize the
operational cost and provide elastic services. Furthermore,
Cohen et al. [8] develop an approximation algorithm to mini-
mize the distance cost between the clients and VNFs such that
the capacity constraint of single resource should be satisfied.
To reduce the CPU overhead, E2 [26] integrates network
functions into a shared address space and executes VNFs
in a run to completion manner by one thread. NFP [13]
accelerates the packet processing by orchestrating VNFs in a
parallel manner. NFVnice [12] proposes a network functions
scheduling framework on the shared CPU cores to achieve
rate-cost fairness.

D. Reinforcement Learning-Based VNF and Service
Chain Deployment

Recent solutions to VNF and service chain deployment
have integrated with reinforcement learning technologies.
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Fig. 1. Today’s cellular network architecture.

Fig. 2. Legacy hardware devices can be virtualized into multiple software
instances (virtualized network functions).

Kim and Kim [27] propose a dynamic service function chain-
ing algorithm through reinforcement learning. They can pre-
dict the physical resources usage in each node and virtual
resource usage consumed by each service function. However,
they only take resource usage into consideration. To maximize
the benefit of the service provider, Sun et al. [28] investigate
service function chain deployment in a dynamic network,
which uses Q-learning to learn the network topology and
resource usage and produces the output for the alternative
paths. Combining deep learning with reinforcement learning,
Khezri et al. [29] aim to minimize the placement cost while
maximizing the number of admitted services. They consider
the reliability requirement of the service in the formula-
tion and propose a deep Q-Network method for dynamic
reliability-aware VNF placement problem.

Today’s cellular network architecture [30] is briefly shown
in Fig. 1. The dotted lines and solid lines represent signaling
traffic and data traffic, respectively. It mainly consists of the
Radio Access Network (RAN) and the Evolved Packet Core
(EPC). The RAN is a radio interface that connects User
Equipment (UE) and eNodeBs (i.e., base stations). Once the
traffic from UE arrives at eNodeBs, it will be forwarded
to the EPC, where the EPC consists of a set of hardware
racks such as Mobility Management Entity (MME), Serving
Gateway (SGW), PDN Gateway (PGW), Home Subscriber
Database (HSS) and Policy Charging Rules Function (PCRF).
The MME handles all the signaling traffic from the UEs
and the eNodeBs, and is responsible for user authentication,
mobility management and session management. The SGW and
PGW process all the data traffic. The SGW forwards the data
traffic from the eNodeBs to the PGW, and PGW queries PCRF
for setting the charging rules. The PGW then forwards the data
traffic to a specific egress switch to the Internet.

This inelastic architecture suffers from poor scalability [31],
high management complexity [32] and capital costs [33]. To
address these issues, the legacy hardware devices can be
virtualized into multiple software instances as shown in Fig. 2.
Based on this, we propose a two-stage optimization frame-
work. The network-level optimization in the first stage is

Fig. 3. The network-level optimization in the first stage of Plutus.

Fig. 4. The server-level optimization in the second stage of Plutus.

based on SDN architecture shown in Fig. 3, where a logically
centralized controller has a global view and is responsible for
directing the mobile traffic passing through a service chain in
the data plane. Given the flow demand and the pre-defined
service policies, the controller requires to install the optimal
routing and determine the service chain deployment with
the objective of minimizing the total cost, such that each
link’s load in the network cannot beyond its capacity and
each server’s CPU resource cannot be overbooked. Also the
controller can use machine learning techniques to predict the
flow information and the possible resource consumption to
make this framework practical. Furthermore, the server-level
optimization in the second stage needs to determine which
VNF should be placed onto which CPU core to balance the
CPU processing capacity and improve the throughput.

III. AN OPTIMIZATION FRAMEWORK

A. Provisioning Model and Problem Formulation

Before formulating the problem, we first present our net-
work model. A network is a directed graph G = (V ∪ L, E),
where V is the set of switches, L is the set of servers and E
the set of links with capacities be. Each flow f is associated
with a demand df , splitted at the ingress switch v+

f among
the possible path set Pf and routed to the egress switch v−f .
Before going out to the egress switch, each flow f should pass
through a specific service chain i deployed at least a server. In
the first stage of Plutus, the flow demand df and the service
policy αf,i (which flow should pass through which service
chain) is known, and which service chain should be placed
onto which server needs to be determined. In the second stage
of Plutus, we need to determine which network function is
required to be placed onto which CPU core so as to balance the
processing capability of multiple CPU cores. For convenience,
we summarize important notations in Table I. What’s new in
the cellular core is that the request of application flows may
involve both signaling function and data-plane function. For
this type of requests, the traffic transmission starts only if the
deployment of both the signaling functions and the data-plane
functions are ready. Otherwise, it will result in incorrectness.
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TABLE I

KEY NOTATIONS IN THIS PAPER

Based on the above model and definition, we first formu-
late the Minimum Provisioning Cost Problem (MPCP) as a
program to solve the network-level optimization in the first
stage of Plutus. The formulation is shown in (1) and that in
the second stage is shown in (2). We will discuss them soon.

minimize
∑
l∈L

∑
i∈SC

ci,l · xi,l (1)

subject to (1a), (1b), (1c), (1d), (1e), (1f).

The objective of formulation (1) aims to minimize the sum
of provisioning cost ci,l in the whole network. Basically,
we seek to find an optimal routing and service chain deploy-
ment schemes so as to minimize the total provisioning cost,
such that each link’s load cannot beyond its capacity and the
CPU resource at each server cannot be overbooked.∑

i∈SC

xi,l · ri,l ≤ Rl, ∀l ∈ L, (1a)

For each server l ∈ L, constraint (1a) indicates that the sum
of provisioning resource for each service chain must be less
than or equal to the total resource Rl. The zero-one integer
variable xi,l equals one when the service chain i is placed at
the server l, and equals zero otherwise.∑

f∈F

df

∑
p∈Pf :e∈p

yf,p ≤ be, ∀e ∈ E, (1b)

The LHS of constraint (1b) characterizes the load of total
flows at link e, which must be less than or equal to its capacity.
This optimization variable yf,p determines that the fractional

flow demand for flow f on path p.∑
i∈SC

∑
l∈p

αf,i · xi,l ≥ yf,p, ∀f ∈ F, ∀p ∈ Pf , (1c)

Constraint (1c) ensures that if the flow is routed on the path
p, the service chain i corresponding to the flow f should be
placed onto at least one of the servers on this path.∑

p∈Pf

yf,p = 1, ∀f ∈ F, (1d)

Constraint (1d) is the flow demand conservation constraint.
The sum of all fractional flow demand among all the possible
paths should equal to df .

xi,l ∈ {0, 1}, ∀i ∈ SC, ∀l ∈ L, (1e)

yf,p ≥ 0, ∀f ∈ F, ∀p ∈ Pf , (1f)

The zero-one integer variable xi,l indicates if service chain i
can be placed onto the server l or not.

In the second stage of Plutus, we focus on server-level
optimization. A service chain consists of a set of VNFs. The
packets are sequentially processed from upstream VNF to
downstream VNF. The maximum throughput of one service
chain depends on that of the bottleneck VNF. Which service
chain is deployed onto which server has been fixed in the
first stage, we need to determine which VNF should be
deployed onto which CPU core in the second stage. Given
the solution xi,l and the computation cost (the product of
packet arrival rate and consumed CPU cycles per packet)
of different VNFs, the objective is to balance the processing
capability of multiple CPU cores and improve service chain
throughput. Once the server-level deployment is complete,
the OS scheduler will assign CPU time for each running VNF
proportional to its computation cost. Now we formulate the
Multi-Core Deployment Problem (MCDP) as an optimization
program shown in (2).

minimize max
k∈Kl,j∈NFl

wj · qj,k (2)

subject to wj = yf,p · df · αf,i · βi,j · σj , ∀j ∈ NFl, (2a)∑
k∈Kl

qj,k = 1, ∀j ∈ NFl, (2b)

qj,k ∈ {0, 1}, ∀j ∈ NFl, ∀k ∈ Kl. (2c)

The objective of formulation (2) aims to minimize the max-
imum CPU load on a physical core. The CPU load wj is
defined by the product of yf,p · df and σj .

wj = yf,p · df · σj

where yf,p · df is the flow rate (packet arrival rate) and
σj is the consumed CPU cycles per packet. The constant
parameters αf,i and βi,j in constraint (2a) describes the
correlation among the flow f , service chain i and network
function j. The zero-one integer variable qj,k indicates that
which network function j should be placed onto which CPU
core k.

The majority of VNFs in the cellular core is stateful, which
need to maintain different state information even for the
same VNF. An example of such service chain is Non-Access
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Stratum (NAS) procedures [30]: MME → HSS → MME →
SGW → PGW → PCRF → PGW → SGW → MME →
SGW → PGW → SGW → MME. There are multiple
instances especially for MME, PGW and SGW, where dif-
ferent instances hold for different session information. The
required number of VNF instances of a service chain depends
on the specific interactive procedure in the cellular core. In
addition, we need to handle both control traffic and data traffic.
For example, the control traffic originates from the source
node s and traverses NAS service chain. After the traversal,
the control traffic reaches back to the source node s to notify
that data path is setup. Then the data traffic can transmit
traffic from the source s to the destination t. This is the main
difference compared with traditional traffic engineering and
VNF placement.

B. Hardness Analysis

We establish the hardness of MPCP and MCDP below.
Theorem 1: MPCP is NP-hard.

Proof: Consider a special case of MPCP that is illustrated
in Fig. 5(b), where white nodes in the left side represent
the sources, white nodes in the right side represent the des-
tinations, and gray nodes represent the servers. All n flows
from the source to the destination share one common path
(connected by a string of gray nodes) and each server on
this path has the identical resource capacity R. Each flow
is associated with one service chain i, which is required to
be deployed onto at least one server l (l ∈ {1, 2, · · · , m})
to perform virtualized network functions. If the service chain
i is deployed onto the server l, it will incur a provisioning
cost ci,l. The required CPU resource for the service chain i at
the server l is ri,l. Our objective aims to minimize the total
provisioning cost such that the CPU resource capacity at each
server cannot be overbooked.

We construct a reduction with polynomial time from the
Generalized Assignment Problem (GAP) [34] to the special
case of MPCP. As shown in Fig. 5(a), the GAP aims to
assign n jobs to m machines, where each job can only be
assigned to exactly one machine. If the job i is assigned to the
machine l, the processing time units and the incurred cost in
machine l is ri,l and ci,l respectively. A processing time bound
T for each machine is given to limit the total processing time.
The objective of GAP is to find a cost-minimizing assignment
such that the total processing time on each machine is less
than or equal to T . The job i, machine l and processing time
bound T in GAP correspond to the service chain i, server l
and CPU resource capacity R, respectively. Therefore, any
feasible solution of GAP corresponds to the special case of
MPCP in Fig. 5(b), and vice versa.

Theorem 2: MCDP is NP-hard, even for a server only
consisting of two CPU cores with identical capacities.

Proof: Given a special case of MCDP, where we have only
one server consisting of two CPU cores with identical capaci-
ties, we construct a polynomial reduction from the set partition
problem [35] to it. Consider a partition instance A consisting
of n items, each with a value ai, aj ∈ R, j ∈ {1, 2, . . . , n}.
The objective is to partition A into two subsets A1 and A2

Fig. 5. Reduction from GAP to MPCP.

(A1 ∪ A2 = A and A1 ∩ A2 = ∅ ) such that |A1 − A2| is
minimized, where A1 and A2 denote the sums of the elements
in each of the two subsets A1 and A2. Accordingly, for each
item in set A we introduce one network function j, where
wj = aj . There are n items in total and thus we introduce n
network functions in MCDP.

The partition results indicate that which network function
should be placed onto which CPU cores. Therefore, any
partition with minimum difference between set A1 and A2

corresponds to MCDP with two identical CPU cores, and vice
versa. The network functions placed onto the first CPU core
forms one set of the partition, and that placed onto the second
CPU core forms the other.

IV. NETWORK-LEVEL OPTIMIZATION ALGORITHMS

In this section, we design two network-level optimization
algorithms in Plutus. The first one is a bicriteria approxima-
tion algorithm, where the flow information and the resource
consumption can be known as a priori. This algorithm can be
as the baseline to measure the performance of the second algo-
rithm. The second algorithm is a Q-learning based algorithm,
where the priori information is not required and more general
than the first one.

A. A bicriteria approximation algorithm

The mixed integer program (1) aims to minimize the total
provisioning cost, which can be relaxed to a linear program
by replacing the constraint (1e) with xi,l ≥ 0. Since con-
straint (1c) and (1d) hold, xi,l are in fact real numbers between
0 to 1. The optimal fractional solutions {x̃i,l} and {ỹf,p}
of the relaxed LP of (1) can be obtained in polynomial
time using standard solvers. However, solving this program
is time-consuming especially in large-scale production net-
works with thousands of flows. Thus we set out to find a
scalable algorithm to solve this program instead. Inspired by
the framework of multiple-block ADMM [36], we develop a
proximal Jacobian ADMM algorithm that can converge to an
optimal solution at the rate of o(1

t ) in Algorithm 1, where t
is the number of iteration times. As parts of the constraints in
program (1) are inequalities and the variables xi,l are coupled
together, we require to transform program (1) to program (5)
in order to apply 5-block ADMM (line 1). The detailed
transformation is illustrated in Appendix A. Furthermore,
we initialize the original variables y, the introduced auxiliary
variables α, β, γ, x̂, and multipliers θ, ϕ, σ to zero (line
2) and solve each subprogram in parallel (lines 3-5).

Based on the fractional solution in Algorithm 1, we design
a (δ, 2)-bicriteria approximation algorithm that rounds the
fractional solution to a feasible integer solution. The complete
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Algorithm 1: A Proximal Jacobian ADMM Algorithm

Input : Network graph G = (V ∪ L, E); the set of flow
f ; the set of service chain i.

Output: A fractional solution {x̃i,l} and {ỹf,p} to the
relaxed LP of (1)

1 Transform the program (1) to the program (5).
2 Initialize the variables α, β, γ, x̂, y and multipliers θ,

ϕ, σ to zero.
3 for t = 1, 2, · · · do
4 Update α, β, γ, x̂, y from programs (7), (8),

(9), (10), (11) in parallel.
5 Update θ, ϕ, σ from equations (12), (13), (14).

algorithm is shown in Algorithm 2. We now explain the
high-level working of this algorithm. We first obtain the
optimal fractional solution {x̃i,l} and {ỹf,p} to the relaxed
LP of (1) (line 1). For the solution {ỹf,p}, it is already a
feasible solution, while for the solution {x̃i,l}. For the solution
{x̃i,l}, it indicates that the service chain i can be fractionally
placed onto all servers l on its path p (l ∈ p), and accordingly
the required CPU resource is proportional to the fractional
solution. We require to round it to an integer solution by
constructing a complete bipartite graph (S, U, E′) (lines 7-31).
Initially, the set S and U are both empty set (line 2). We first
add each solution ỹf,p into the set S (lines 3-6). And then, for
each server, we assign kl slots to accommodate the fractional
solution {x̃i,l} one by one according to its required resource
ri,l (line 8). Next we add uj

l into set U , whose cardinality is the
product of the number of servers l and the number of assigned
slots kl (line 11). Note that x̃i,l could be split into two adjacent
slots, and we use notation uj

i,l to represent the corresponding
parts. The value of uj

i,l is calculated from a loop procedure
(lines 13-21). If uj

i,l is greater than zero, we add an edge
(ỹf,p, u

j
l ) with weight ci,l into E′ and finish the construction

procedure of complete bipartite graph (S, U, E′) (line 22-26).
Based on this graph, we compute a complete matching M with
the minimum total weight (line 27). If there exists an edge in
the matching M , we set x̂i,l is equal to one that indicates the
service chain i can be placed onto server l; otherwise, we set
it to zero (lines 29-31).

Now we analyze the performance of the algorithm by
introducing the related definition.

Definition 1: Let OPT1 be the optimal solution to (1),
which gives a lower bound of total provisioning cost.

Theorem 3: Algorithm 2 is a (δ, 2)-bicriteria approximation
algorithm, which has a constant approximation ratio of δ,
while overbooking the resource capacity at each server by at
most a factor of 2, where δ is the number of pre-defined paths
between ingress and egress switch.

The proof can be found in Appendix B.

B. A Q-learning based algorithm

The bicriteria approximation algorithm requires all network
flow’s information and resource consumption as a priori,

Algorithm 2: A Bicriteria Approximation Algorithm

Input : Network graph G = (V ∪ L, E); the set of
flow f ; the set of service chain i.

Output: A solution {x̂i,l} and {ỹf,p} to (1).

1 Obtain the optimal fractional solution {x̃i,l} and
{ỹf,p} to the relaxed LP of (1).

2 S = U = ∅
3 for each f ∈ F do
4 for each p ∈ Pf do
5 if ỹf,p > 0 then
6 S = S ∪ ỹf,p

7 for each l ∈ L do

8 kl =
⌈∑

i∈SC x̃i,l

⌉
9 Sort x̃i,l in descending order according to ri,l into

set X
10 for j = 1 to kl do
11 U = U ∪ uj

l

12 Φ = 1
13 repeat
14 Get the first element x̃i,l from set X
15 Δ = max(x̃i,l, x̃i,l − Φ)
16 Φ = Φ − Δ
17 uj

i,l = Δ
18 x̃i,l = x̃i,l − Δ
19 if x̃i,l = 0 then
20 Remove x̃i,l from set X

21 until Φ = 0;

22 for each ỹf,p ∈ S do
23 Determine service chain i corresponding to flow f

24 for each uj
l ∈ U do

25 if uj
i,l > 0 then

26 Add an edge (ỹf,p, u
j
l ) with weight ci,l into

E′

27 Construct a bipartite graph (S, U, E′) and compute a
complete matching M with the minimum total weight.

28 if there exists an edge in the matching M then
29 x̂i,l = 1

30 else
31 x̂i,l = 0

which cannot always hold in practice. In this part, we design
a reinforcement learning [37] based service chain deploy-
ment algorithm. In our model, each flow enters the network
unpredictably, which also means that we need to deploy the
required service chain for each flow with the time horizon.
In addition, the consumed CPU resource and provisioning
cost by a certain service chain cannot be known until it is
deployed on a server. The agent in reinforcement learning
learns the provisioning cost and the resource usage actively
and makes service chain deployment decision in an dynamic
manner.
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Reinforcement learning is one of the most important
approach in machine learning [38]. What distinguishes rein-
forcement learning from supervised and unsupervised learning
lies in its interaction with the environment. Unlike most of
other machine learning methods, it discovers the optimal
strategy independently. Through trial-and-error and receiving
feedback from the environment, the goal of the agent is to
maximize the value of the reward function. The basic principle
of reinforcement learning is that, if the agent’s action results
in the positive reward from the environment, the tendency of
the agent to produce this action will be strengthened in the
future. Otherwise, it will be weakened. This technology has
already been proved to be applicable in many fields.

Here we choose Q-learning [39], a common reinforce-
ment learning algorithm to solve our dynamic service chain
deployment problem. Q means a matrix with M rows and
N columns, which stores the expectation of gains by taking
action a (a ∈ A) in state s (s ∈ S) at a certain time, where
the notation M and N represent the number of states in S and
the actions in A, respectively. Q-table is used to evaluate the
reward of taking an action in a specific state. It actually stores
the memory of agent. The goal of the training phase is to make
the Q-table converge. Q-table has been proved to converge
for continuous decision making problems in environment that
satisfies the requirements of reinforcement learning [39].

The reasons why we use Q-learning are as follows. Firstly,
most machine learning algorithms are time-consuming in
the training phase. Whereas Q-learning can greatly reduce
the training time and it’s also easier to understand. Most
importantly, the reinforcement learning usually uses Markov
decision process as a mathematical description model. Since
the arrival of flows is unpredictable in our problem, the state
transition matrix in Markov decision process of system mod-
eling is unknown. Q-learning uses value iteration algorithm to
determine the optimal strategy. There is no need to know the
state transition matrix in advance.

When using Q-learning algorithm, what’s the most impor-
tant is to transform our problem into a Q-learning model.
That’s to say, we need to define the state set, action set and
reward function. Based on our model, we define our own state
set, action set and reward function as follows.

State Set: Since the provisioning cost for different service
chains at a certain server is different. It depends on the type
of service chains. When there is a new flow f arrives, with
a required service chain i to pass through, the key to choose
which server to deploy the service chain i is the provisioning
cost and resource capacity on each server. So we use the
service chain i that the current flow f needs to pass through as
the current state. Suppose there are M types of service chain
to deploy, there are M states in total. Concretely,

S = {s1, s2, s3, . . . , sM}.
Action Set: For a given flow f with a required service

chain i to pass through, the service chain i should be placed
onto which server needs to be determined. In our problem,
the action means that how to choose a server for service chain
placement at a certain state. For a topology G = (V ∪ L, E)
with g nodes including servers and switches totally, suppose

v represents the number of switches. There are N actions in
total, where N = g − v.

A = {a1, a2, a3, . . . , aN}.
Reward function: The design of the reward function char-

acterizes the optimization objective in the system. In the fist
stage, we aim to minimize the total provisioning cost of service
chains. For different actions, we will set different reward
values. When the required CPU resource for a service chain
i exceeds the resource capacity of the server it choose, R is
set to a fixed negative value (we set it to be −100 in our
experiments). When the action a in state s does not exceed
the resource capacity of the server it choose, we have

R(s, a) =
∑

l∈L

∑
i∈SC ci,l · x̂i,l

count
− ci,l

where the variable count represents the number of service
chains that have been successfully deployed before. In this
way, the variable R is doomed to increase its value if the
agent chooses a server with a relatively low provisioning cost.

In Q-learning algorithm, the key point is to produce the
state-action Q-table. When the agent belongs in a certain
state s, the next action a is chosen from Q-table as the
following equation.

a = argmax
â∈A

Q(s, â). (3)

Since this behavior may be easy to fall into a local optimum,
we explore the next action using ε-greedy policy. This policy
randomly and uniformly chooses an action with a small
probability ε, and select a best current action according to
Q-table according to equation (3) with probability 1− ε. This
mechanism is able to jump out of local optimum by exploring
the environment with a small probability. Note that the para-
meter ε is not fixed and unchanged all the time in our online
algorithm. We set ε equals 1

count , where count represents the
number of service chains that have been successfully deployed
before. The parameter ε will get larger at the beginning and
decreased gradually, which is good for a better exploration
in the earlier stage of learning, while depending more on
experience in the later stage.

After a certain action a is selected, the agent will execute
this decision. And then it enters into a new state s′. Meanwhile,
it will get a reward R(s, a) from the environment to evaluate
action a in state s. Next the agent updates Q-table as follows:

Q(s, a) = Q(s, a) + α[R(s, a) + γ · Q′ − Q(s, a)] (4)

where Q′ = maxa′ Q(s′, a′), α is the learning rate and γ is a
discount factor. Generally speaking, a larger α indicates less
impact from the previous training results, while a smaller γ
represents the function pays more attention to current benefit
R(s, a) and ignores experience. Note that any two states are
independent each other in our problem due to the independent
arrival of flows. Here we set the parameter γ to be zero.

The complete algorithm is shown in Algorithm 3. Now
we explain the main idea of the algorithm. We first initialize
key variables before the arrival of flows (lines 1-2). For each
arrived flow, we first determine the current state s according
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Algorithm 3: A Q-Learning Based Deployment Algo-
rithm

Input : Network graph G = (V ∪ L, E); the set of
arrived flows f ; their required service chain
i; the state set S, action set A and reward
function R.

Output: A solution {x̂i,l} and {ỹf,p} to (1).

1 Initialize the value in Q(s, a) as zero, for all
s ∈ S, a ∈ A

2 Initialize ε = 0, count = 0
3 for each arrival of flow f do
4 Determine a current state s corresponding to the

service chain i
5 Obtain {ỹf,p} by routing the flow f on its available

paths and the demand of flow f on each path is
proportional to the vacant capacity

6 Construct the path set P̃f = {p|ỹf,p > 0}
7 for each p ∈ P̃f do
8 Generate a random number r uniformly in the

interval between 0 and 1
9 if r ≤ ε then

10 Choose an action a randomly, i.e., select an
arbitrary server l ∈ p to deploy the service
chain i

11 else
12 a = arg maxâ∈A Q(s, â)

13 Find the corresponding server l for action a
14 if ri,l ≤ Rl then
15 count = count + 1
16 ε = 1

count

17 R(s, a) =
�

l∈L

�
i∈SC ci,l·x̂i,l

count − ci,l

18 x̂i,l = 1
19 Rl = Rl − ri,l

20 P̃f = P̃f \ p

21 else
22 Reject to deploy service chain i for flow f ;
23 R(s, a) = −100

24 update Q(s, a) according to (4)

to the type of the service chain that this flow requires to pass
through (line 4). We split the flow on its pre-defined paths
and the demand on each path is proportional to the remaining
capacity (line 5). This can be implemented by the weighted
ECMP [40] and supported by today’s commercial switches.
Next we determine the action a to be taken using ε-greedy
policy (lines 8-12). Action a will match a server l to deploy
the service chain i (line 13). If the remaining resource on
the server l is more than the required, this service chain
can be placed on the server l (lines 14-20). At the same
time, we compute the reward (line 17) and update Rl and
P̃f (lines 19-20). Otherwise, the service chain will not be
deployed successfully, the agent will get a negative reward
(lines 21-23). At last, we update Q-table (line 24) and the
algorithm begins to process the next flow.

V. SERVER-LEVEL OPTIMIZATION ALGORITHMS

In this section, we design server-level optimization
algorithms in Plutus. Given the routing configurations and
the resulting flow rate from the network-level optimization
algorithms, the server-level optimization seek to find a net-
work function deployment solution to balance the processing
capability of multiple CPU cores.

Algorithm 4: A Randomized Algorithm

Input : The set of CPU cores at the server l; the
consumed CPU cycles for network function j;
the indicator variables αf,i and βi,j ; the
fractional flow demand ỹf,p for flow f on path
p.

Output: A solution {q̂j,k} to (2).

1 Obtain the optimal fractional solution {q̃j,k} to the
relaxed LP of (2).

2 for each j ∈ NFl do
3 K ′

l = ∅
4 for each k ∈ Kl do
5 q̂j,k = 0
6 K ′

l = K ′
l ∪ k

7 lj,k =
∑

k′∈K′
l
q̃j,k′

8 Generate a number r in (0,1] uniformly at random
9 Find p̂ such that r ≤ lj,k and lj,k − r is minimum

10 q̂j,k = 1

As shown in Algorithm 4, we first obtain the optimal
fractional solution {q̃j,k} to the relaxed LP of (2) by replacing
the constraint (2c) with qj,k ≥ 0 (line 1). For each j ∈ NFf ,
we apply randomized rounding to obtain an integer solution
{q̂j,k} (lines 2–10). To ensure that only one CPU core is
chosen for a network function j ∈ NFf , the optimal fractional
solution can be viewed as partitioning the interval [0, 1] to
intervals of lengths {q̃j,k} (lines 4–7). A real number is
generated uniformly at random in (0, 1] and the interval in
which it lies determines the CPU core (lines 8–10).

Before analyzing the performance of Algorithm 4, we intro-
duce the following definition.

Definition 2: Let OPT2 be the optimal solution to (2),
which gives a lower bound of maximum CPU load.

Theorem 4: [34] Algorithm 4 outputs a feasible solution
with maximum CPU load bounded by O(log |Kl|)·OPT2 with
the probability 1 − 1

|Kl|2 , where |Kl| is the number of CPU
cores at the server l.

The proof of Theorem 4 can be found in [34].
In spite of the guaranteed approximation ratio in

Algorithm 4, it occasionally produces a bad solution with the
probability 1

|Kl|2 . Hence, we develop a local search algorithm
that improves upon the randomized solutions of Algorithm 4
by greedily moving each network function to another CPU
core with less load. The local search algorithm achieves a
constant approximation ratio of 2.

We are now ready to describe our local search algorithm
shown in Algorithm 5. We first run Algorithm 4 and obtain
an initial solution {q̂j,k} (line 1). Next we iteratively move
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Algorithm 5: A Local Search Algorithm
Input : The set of CPU cores at the server l; the

consumed CPU cycles for network function
j; the indicator variables αf,i and βi,j ; the
fractional flow demand ỹf,p for flow f on
path p.

Output: A solution {q̂j,k} to (2).

1 Apply Algorithm 4 to obtain the initial solution {q̂j,k}.
2 repeat
3 w+ = maxk∈Kl

{∑j wj · q̂j,k}
4 w− = mink∈Kl

{∑j wj · q̂j,k}
5 g+ = |K+|, where K+ = {k|∑j wj · q̂j,k = w+}
6 g− = |K−|, where K− = {k|∑j wj · q̂j,k = w−}
7 ∀k− ∈ K−

8 for each k+ ∈ K+ do
9 for each j ∈ NFl do

10 if qj,k+ = 0 then
11 continue

12 Move network function j from k+ to k−

13 Re-calculate w+ and g+

14 if the w+ value or the g+ value decreases
then

15 qj,k+ = 0
16 qj,k− = 1
17 NFl = NFl \ {j}

18 until NFl = ∅;

network function to another CPU core with less load to
balance the CPU processing capability until we cannot find a
better solution (lines 2-18). The notation w+ and w− indicate
the maximum and minimum CPU load corresponding to the
current solution {q̂j,k} (lines 3-4), while g+ and g− indicate
the number of CPU cores with maximum and minimum load,
respectively (lines 5-6). For each network function j, we try
to move it to CPU k− since CPU k− has the least CPU load
currently (line 12). If this movement results in the decrease
of w+ value or g+ value, we move network function j from
CPU k+ to k− (lines 15-16). Finally we remove the network
function j from the set NFl and the algorithm enters into
the next loop (line 17). Based on the analysis above, we have
Theorem 5 and its proof can be found in [34].

Theorem 5: [34] After at most |NFl| iterations,
Algorithm 5 terminates and approximates MCSP with a
factor of 2, where |NFl| is the number of network functions
at server l.

VI. EXPERIMENTAL EVALUATION

We evaluate our two-stage optimization algorithms using
both prototype implementation and large-scale simulation.

Benchmark schemes: We compare the following schemes
with our algorithm.

• HW: The network function of each type relies on tradi-
tional hardware middleboxes.

• Greedy: Each service chain is greedily deployed onto the
server with the minimum cost.

TABLE II

THE THROUGHPUT WITH DIFFERENT PACKET ARRIVAL RATES

TABLE III

THE THROUGHPUT WITH DIFFERENT NUMBER OF VNFS

• Random: For a service chain consisting of a set of VNFs,
each VNF is randomly deployed onto one of the CPU
cores.

• BAA: Our bicriteria approximation algorithm shown in
Algorithm 2.

• ODA: Our Q-learning based algorithm shown in
Algorithm 3.

• LSA: Our Local Search algorithm shown in Algorithm 5.
• OPT: The optimal solutions OPT1 and OPT2 for MPCP

and MCDP in the integer program (1) and (2) obtained
using branch and bound.

Unless stated otherwise, we configure ρ, w and ι to be 0.1,
0.02 and 1.0 respectively in Algorithm 1 as suggested in [36].

A. Implementation and Testbed Emulations

1) Implementation: We develop a prototype of our algo-
rithms on the DPDK-based OpenNetVM platform [15], where
the polling mechanism is used in RX and TX threads for
receiving and sending packets from NIC. Now we describe
how to perform VNF deployment in the service chains in our
experiments. We first obtain solutions to MPCP and MCDP
using Algorithm 2 and 5 respectively. According to these
solutions, we bind each VNF to a dedicated CPU core. The
CORELIST parameter in OpenNetVM specify the index of
CPU core, and the index parameters SERVICE_ID and DST
indicate two adjacent VNFs in a service chain, i.e., once the
packets have already been processed by an upstream VNF
indexed by SERVICE_ID, they would be forwarded to a
downstream VNF indexed by DST.

2) Testbed Setup: In our experimental setup, we use two
severs, each of which has dual Xeon(R) E5-2630 @ 2.40GHz
CPUs (2x8 physical cores), an Intel 82599ES 10G dual
port NIC and 128GB memory. Each server runs Ubuntu
14.04.3 with kernel version 3.19.0. We use pktgen to gener-
ate different UDP flows with 64-byte packet size in each run,
where all of them are required to pass through a pre-defined
ordered VNFs deployed onto different CPU cores. The VNFs
we used perform forwarding and monitor functions, which
form a linear service chain.

3) Experiment Results: We study the throughput variations
with different packet arrival rates and different number of
VNFs in Table II and Table III. In Table II, the number of
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Fig. 6. Total provisioning cost comparison.

running VNFs is fixed at 64. The 100% arrival rate corre-
sponds to around 7 Gbps in our testbed. We can observe that
the achieved throughput of LSA consistently outperforms that
of Random by 31.5% on average when the packet arrival rate
becomes larger. Specifically, LSA can improve the throughput
by 48.5% compared with Random when the number of packet
arrival rate is 100%. The improvement of LSA is more
significant compared with Random. The reason is that the
VNF deployment using LSA can better balance the resource
consumption on each CPU core. Unbalanced VNF deployment
leads to packet loss and hurts the throughput. Table III shows
the throughput variations with different numbers of VNFs.
Intuitively, more VNFs will consume more CPU resources.
We vary the number of VNF from 23 to 27 at the increment
of double times. LSA can reduce the throughput loss by
39.5% compared with Random. This demonstrates that LSA
can mitigate the resource competition on a single CPU core.

B. Simulation

We also conduct extensive simulations to thoroughly eval-
uate our algorithms at scale.

1) Setup: In addition to the OpenNetVM experiments in our
testbed, here we use a large-scale synthetic cellular network
topology [41]. The topology can be divided into access layer,
aggregation layer and core layer, where each layer includes a
set of switches and servers. The access layer includes the base
station clusters, each of which has ten base stations intercon-
nected into a ring. The aggregation and core layer are complete
graphs with τ and τ2 servers respectively. In the aggregation
layer, the τ

2 switches are connected to τ
2 clusters in the access

layer respectively. The remaining switches in the aggregation
layer are connected to the switches in the core layer one
by one. We generate different numbers of flows to measure
the performance in our experiments. We run our algorithms
on a server with Intel(R) Xeon(R) CPU E5-2650 and 64 GB
memory. Each data point is an average of at least 30 runs.

2) Experiment Results: We first investigate the total provi-
sioning cost during the service chain deployment generated
by Greedy, ODA and BAA compared with HW — the tra-
ditional hardware middlebox cost. In addition, we compare
our algorithms against a branch and bound method that solves
the program (1) optimally, denoted as OPT1. The hardware
middlebox cost used in our simulation comes from [42]. The
VNF provisioning cost is the product of the baseline cost [33]

TABLE IV

THE NORMALIZED CPU CAPACITIES IN GOOGLE’S CLOUD [43], [44]

and normalized CPU capacities. Tab. IV shows the normalized
CPU capacities for five types used in our experiments.

We can see that in Fig. 6(a), as the number of flows
increases, HW and Greedy yield significant cost, while that
of BAA is below 2.0× 106 all the time and can achieve near
optimal. Making the deployment decision in an online manner,
ODA performs worse than BAA. Specifically, the provisioning
cost for HW, Greedy, BAA, ODA and OPT1 is 1.25 × 107,
6.30×106, 1.92×106, 2.50×106, 1.92×106 and 1.90×106,
when the number of flows is 5000. Furthermore, BAA can
reduce the provisioning cost by 84.6% and 69.6% respectively,
compared to HW and Greedy. This demonstrates that our
algorithms take full advantage of virtualization and reduce the
provisioning cost by flexibly deploying different VNFs.

Fig. 6(b) shows the additive optimality gap for different
schemes — BAA, ODA and Greedy compared to OPT1. For
this simulation we vary the number of flows from 1000 to
5000. Intuitively, a larger additive optimality gap indicates
more provisioning cost resulting from a worse solution. We
can see that, as the number of flows increases, Greedy yields
significantly larger optimality gap compared to BAA and
ODA, where BAA can guarantee that the additive optimality
gap is less than 1.3 × 104 and its provisioning cost is always
less than 2.0 × 106. ODA can guarantee that the additive
optimality gap is less than 4.3× 105 and its provisioning cost
is always less than 2.4 × 106, even though the number of
flows become larger. Furthermore, we evaluate our algorithms
in large-scale networks in Fig. 6(c), where the value of x-axis
represents the number of switches and that of y-axis represents
the provisioning cost. We fix the length of service chain at
ten in this setting. We can see that BAA can reduce the
provisioning cost by 86.0% and 72.4% compared to HW and
Greedy respectively. And ODA can also reduce the provision-
ing cost by 72.6% and 45.9% compared to HW and Greedy
respectively. Fig. 6(d) shows that the provisioning cost varies
with the length of service chain. We can see that the cost of
HW and Greedy increases significantly and that of BAA and
ODA increases slowly. The reason is that BAA relies on the
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Fig. 7. Overload resource percentage.

Fig. 8. Overbook ratio CDF.

weighted matching algorithm and ODA takes the advantage
of Q-learning, which is essentially better than Greey and can
achieve near optimal.

We measure the overload resources percentage of BAA
in Fig. 7. We define this percentage Ε as the ratio between
the number of overload resources and that of total resources
among all servers, i.e., the ratio between the number of
violated constraints η′ and that of total constraints η,

Ε =
η′

η

In this setting, the length of VNF service chains is set to ten
on average. The overload percentage becomes larger when the
number of flows increases since large number of running VNFs
requires more resources. Specifically, the overload percentage
for BAA is at most around 6%, when the number of flows is
4000. We can reduce the flow demand or increase the resource
capacity in practice to guarantee no overload event happens.

Fig. 8 shows the CDFs of normalized overbook ratio when
the consumed resource is larger than the resource capacity. We
define the overbook ratio Ψ as the following equation.

Ψ =
∑

i∈SC x̂i,l · ri,l − Rl

Rl

The resource violation for BAA is provably bounded and
we can see that its overbook ratio is always less than 1.0%
in our experiment. Note that the traffic we generated aims
to maximize the network throughput. This indicates that the
resource violation is relatively small even though the net-
work becomes congested. In practice, we can scale down the
resource capacity as an input to guarantee that our solution
cannot beyond the physical resource capacity, which can be
applied to the scenarios that the application performance can
be significantly degraded once the resource is overloaded.

We now look at the percentage of solvability for OPT1 and
the number of solver iterations. In Fig. 9, the number of flows
varies from 1000 to 5000 at the increment of 1000 for each

Fig. 9. Solvable percentage for OPT1 and numbers of iterations.

Fig. 10. Running time.

Fig. 11. Number of supported flows.

run. We found that the number of solvable instances decreases
when the number of flows becomes larger. Specifically, when
the number of flows is 5000, around 8% instances cannot be
solved by the standard solver. This demonstrates that OPT1

cannot perfectly solve all instances, and it’s going to get worse
especially when the number of flows is large. Fig. 9 also
shows the number of solver iterations for different schemes.
We can see that the number of iterations for OPT1 increases
significantly than that for BAA, when the number of flows
become large. The convergence rate of BAA in general can
be faster than that of OPT1. This is due to its polynomial-time
complexity.

We evaluate the running time of our algorithm which is
illustrated as CDFs in Fig. 10, when the number of flows is
fixed at 5000. We can see that most cases (90%) using BAA
finish within 3200 seconds while OPT1 takes 4800 seconds.
The running time of OPT1 can be around twice than that of
BAA in the worst case. We can observe that BAA is able to
offer near equivalent performance and has more faster running
time compared to OPT1.

Finally, we measure the number of supported flows
in Fig. 11. We randomly generate a large number of flows
with different source and destination pairs and produce the
number of supported flows when using BAA, ODA and
Greedy. Essentially this measures the efficiency for different
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deployment schemes. We observe that BAA and ODA can
support more flows than Greedy as the number of service
chains increases. The reason is that the probability of the
successful deployment for BAA and ODA is higher than that
for Greedy. Specifically, when the number of service chains
is 500, the number of supported flows of BAA, ODA and
Greedy is around 3100, 2350 and 760, respectively. We can
see that the number of supported flows for BAA is almost four
times as that of Greedy and even ODA can support three times
numbers of flows as that for Greedy, when the total number
of service chains is 500.

VII. CONCLUSION

We studied the problem of orchestrating service chain
deployment in cellular networks. We proposed a two-stage
optimization framework: the network-level optimization aim-
ing to minimize the service chain deployment cost and the
server-level optimization with the objective of balancing the
CPU processing capability. We developed a set of algorithms
— a multi-block ADMM algorithm, a bicriteria algorithm,
a learning-based algorithm and a local search algorithm — to
solve our problems. Large-scale simulations and DPDK-based
OpenNetVM platform results show that our algorithms can
reduce the capital cost and increase the throughput.

APPENDIX A
A PROXIMAL JACOBIAN ADMM ALGORITHM

Now we reformulate the program (1) in order to apply
ADMM. We first introduce slack variables αl, βp and γp

to transform the inequality constraints (1a), (1b) and (1c) to
equality constraints (5a), (5b) and (5c) required by ADMM.
Second, all variables in the constraints of ADMM problem
must be separable for each group of variables. To comply with
this condition, we introduce auxiliary variables x̂i,l and rewrite
the constraints based on each pre-defined path. Towards this
end, we add the original constraint (1d) and reformulate the
program (1) to program (5) as follows.

minimize
∑
l∈L

∑
i∈SC

ci,l · x̂i,l (5)

subject to Rl −
∑

i∈SC

x̂i,l · ri,l − αl = 0, ∀l, (5a)

bp − df · yf,p − βp = 0, ∀f, p, (5b)∑
l∈p

x̂i,l − yf,p − rp = 0, ∀f, p, (5c)

(1d),

x̂i,l, yf,p, αi, βp, γp ≥ 0, ∀i, l, f, p. (5d)

The new program (5) is equivalent to the original program (1).
The variables x̂i,l in constraint (5c) ensure that the service
chain i should be deployed onto server l (l is one of the nodes
in path p) if and only if the flow f passes through the path p.

Let Lρ be the augmented Lagrangian of program (5) with
dual variables θ, ϕ and σ. i.e., introducing an extra L -2 norm

term into the objective:

Lρ =
∑
l∈L

θl · Δ1 +
ρ

2

∑
∈L

Δ2
1 +

∑
f∈F

∑
p∈p(f)

ϕf,p · Δ2

+
ρ

2

∑
f∈F

∑
p∈p(f)

Δ2
2 +

∑
f∈F

∑
p∈p(f)

σf,p · Δ3

+
ρ

2

∑
f∈F

∑
p∈p(f)

Δ2
3 (6)

where ρ > 0 is the penalty parameter. Note that L0

(when ρ = 0) is the standard Lagrangian for our problem.
The reason why we introduce the penalty term is to speed up
the convergence rate [45]. In addition, to simplify the notation,
we introduce Δ1, Δ2 and Δ3.

Δ1 = Rl −
∑

i∈SC

x̂i,l · ri,l − αl

Δ2 = bp − df · yf,p − βp

Δ3 =
∑
l∈p

x̂i,l − yf,p − γp

Distributed 5-block ADMM. We initialize the variables α,
β, γ, x̂, y and multipliers θ, ϕ, σ to zero. For t = 1, 2, · · · ,
repeat the following steps.

1. α-update: Each server l solves the following subproblem
for obtaining αt+1

l :

minimize θt
l ·αl +

ρ

2

(
Rl −

∑
i∈SC

x̂t
i,l · ri,l − αl

)2

+
w

2

(
αl − αt

l

)2

(7)

subject to αl ≥ 0, ∀l ∈ L. (7a)

This per-server subproblem is a small-scale quadratic program
and can be solved efficiently.

2. β-update Each generated p of the corresponding flow f
solves the following subproblem for obtaining βt+1

p :

minimize
∑
f∈F

ϕt
f,p · βp +

ρ

2

∑
f∈F

(
bf − df · yt

f,p − βp

)2

+
w

2

(
βp − βt

p

)2

(8)

subject to βp ≥ 0, ∀p ∈ P (f). (8a)

This subproblem can be solved by the standard solvers for
quadratic program.

3. γ-update: Each generated p of the corresponding flow f
solves the following subproblem for obtaining γt+1

p :

minimize
∑
f∈F

σt
f,p · γp+

ρ

2

∑
f∈F

⎛
⎝∑

l∈p

x̂t
i,l − yt

f,p − γp

⎞
⎠

2

+
w

2

(
γp − γt

p

)2

(9)

subject to γp ≥ 0, ∀p ∈ P (f). (9a)
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This subproblem can be solved by the standard solvers for
quadratic program.

4. x̂-update: Each server l solves the following subproblem
for obtaining xt+1

i,l = (xt+1
1,l , xt+1

2,l , · · · , xt+1
|SC|,l):

minimize
∑

i∈SC

ci,l · x̂i,l + θt
l ·
∑

i∈SC

x̂i,l · ri,l

+
ρ

2

(
Rl −

∑
i∈SC

x̂i,l · ri,l − αt
l

)2

+
w

2

(
x̂i,l − x̂t

i,l

)2

(10)

subject to x̂i,l ≥ 0, ∀l ∈ L. (10a)

This subproblem can be solved by the standard solvers for
quadratic program.

5. y-update: Each generated p of the corresponding flow
f solves the following subproblem for obtaining yt+1

f,p =
(yt+1

1,p , yt+1
2,p , · · · , yt+1

|F |,p):

minimize
ρ

2

∑
f∈F

(
bp−df · yf,p−βt

p

)2

−
∑
f∈F

ϕt
f,p · df ·yf,p

+
ρ

2

∑
f∈F

⎛
⎝∑

l∈p

x̂t
i,l − yf,p−γt

p

⎞
⎠

2

−
∑
f∈F

σt
f,p · yf,p

+
w

2

(
yf,p − yt

f,p

)2

(11)

subject to (1d),

yf,p ≥ 0, ∀p ∈ P (f). (11a)

This subproblem can be solved by the standard solvers for
quadratic program.

6. Dual update: Each server j updates θ for the con-
straint (5a):

θt+1
l = θt

l + ι · ρ ·
(

Rl −
∑

i∈SC

x̂t+1
i,l · r̂t+1

i,l − αt+1
l

)
(12)

Each generated p of the corresponding flow f updates ϕ for
the constraint (5b):

ϕt+1
f,p = ϕt

f,p + ι · ρ ·
(
bp − df · yt+1

f,p − βt+1
p

)
(13)

Each generated p of the corresponding flow f updates σ for
the constraint (5c):

σt+1
f,p = σt

f,p + ι · ρ ·
⎛
⎝∑

l∈p

x̂t+1
i,l − yt+1

f,p − γt+1
p

⎞
⎠ (14)

where ι · ρ is the step size for the dual update.

APPENDIX B
PROOF OF THEOREM 3

Proof: We first introduce Theorem 6 to facilitate our proof.
Theorem 6: [34] For any bipartite graph B = (V, W, F ),

each extreme point of the feasible region has integer coor-
dinates. Furthermore, given edge cost cv,w, (v, w) ∈ F , and

a feasible fractional solution yv,w, (v, w) ∈ F , we can find,
in polynomial time, a feasible integer solution ŷv,w such that∑

(v,w)∈F

cv,w · ŷv,w ≤
∑

(v,w)∈F

cv,w · yv,w

Without loss of generality, we assume there are δ paths in
path set Pf for flow f , i.e., the common node in the path set
is at most δ. From Theorem 6, we obtain,∑

l∈L

∑
i∈SC

ci,l · x̂i,l ≤ δ ·
∑
l∈L

∑
i∈SC

ci,l · x∗
i,l = δ · OPT1

(15)

From the definition of complete matching, the provisioning
resource Φl at each server l is

Φl ≤
kl∑

j=1

r̂j
l (16)

where r̂j
l = max{ri,l|uj

l ∈ U}.
We give the upper bound of

∑kl

j=1 r̂j
l as following.

kl∑
j=1

r̂j
l = r̂1

l +
kl∑

j=2

r̂j
l ≤ r̂1

l +
kl∑

j=2

∑
i

uj−1
i,l · ri,l

≤ r̂1
l +

kl∑
j=1

∑
i

uj
i,l · ri,l

= r̂1
l +

∑
i

kl∑
j=1

uj
i,l · ri,l

= r̂1
l +

∑
i

xi,l · ri,l (17)

From constraint (1a), both (18) and (19) hold.

r̂1
l ≤ Rl (18)∑

i

xi,l · ri,l ≤ Rl (19)

Combining (17), (18) and (19), we have the following inequa-
tion and conclude the proof.

Φl ≤
kl∑

j=1

r̂j
l ≤ 2 · Rl (20)
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