
Supporting Multi-dimensional and Arbitrary
Numbers of Ranks for Software Packet Scheduling

Jiaqi Zheng, Yanan Jiang, Bingchuan Tian, Huaping Zhou, Chen Tian, Guihai Chen, Wanchun Dou
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Abstract—Compared with hardware implementation, the soft-
ware packet scheduler uses the packet queuing data structure and
a ranking function according to different dimensions to flexibly
determine the packet dequeue order, which can significantly
shorten the renewal cycles and increase the function deployment
flexibility. The key data structure in prior work either bounds
the number of rank or suffers from high computation overhead.
In addition, they only support a single dimension and do
not scale well. In this paper, we present Proteus, a software
packet scheduling system that supports multi-dimensional and
arbitrary numbers of ranks. We design a k-dimension heap
data structure and develop “push” and “pop” algorithms to
perform “enqueue” and “dequeue” operations. Furthermore, we
implement a prototype of Proteus in software switch. Extensive
experiments on BESS and numerical simulations show that
Proteus can decrease the computation overhead, save the storage
space and run much faster than state of the art.

I. INTRODUCTION

Packet scheduling plays an important role on improving the
application performance. For example, some network applica-
tions are latency-sensitive [1], [2], some of them are deadline-
sensitive [3], [4] and others impose explicit constraints on
the flow completion time [5], [6]. Packet scheduling [7]–[10]
can provide differentiated services and optimize the service-
level objective e.g., minimizing the flow completion time,
minimizing the deadline missing ratio, etc. According to a
predefined dimension and the corresponding ranking function,
the enqueued packets can be reordered based on the queuing
data structure (i.e., binary tree, AVL tree or queue, etc.).
This procedure involves in a specific scheduling policy. When
packets are dequeued, the scheduler can keep the current
packet order or use a new dimension and ranking function
to reorder the remaining packets in the queuing data structure.

Tab. I summarizes state-of-the-art hardware and software
packet schedulers. Although the performance of software
implementation like Eiffel [13] may be not as fast as that
with hardware implementations such as pFabric [11] and
PIFO [12], the software packet scheduling still presents its
advantages. Say a commercial switch with eight physical
queues per port [14], [15], these queues indicate different
priorities, ranging from low to high. Once a packet arrives,
it should be mapped to one of priority queues so that the
switch can provide appropriate services. However, the possible
number of the priorities in the packet header may be greater
than that of priority queues. The hardware packet scheduler
cannot implement more finer-grained classifications, especially

978-1-7281-6887-6/20/$31.00 ©2020 IEEE.

for large number of applications in data centers [11], [16].
The short renewal cycles and deployment flexibility makes the
software packet scheduler to replace hardware scheduler [11],
[12] a promising approach.

Prior work such as pFabric [11] can only schedule packets
according to one ranking function [12], [13], [17]. The rank
value can be set to be the ToS (type of service) of a packet,
enqueue time or others. Say a schedule requirement is that
the packets with the highest ToS should be sent out firstly.
However, there may be more than one packet sharing the same
ToS. At this point, the scheduler requires sending the packet
with the earliest deadline, which indicates that we want to
schedule the most urgent one among the packets that share
the same ToS. This requirement cannot be satisfied by pFabric
since it only supports one dimension. Different from pFabric,
the implementation of PIFO [12] relies on a priority queue,
where the enqueued packet can be pushed into an arbitrary
position and the dequeued packet can be popped from the
head. PIFO can support arbitrary number of ranks, but it
cannot reorder the buffered packets. Eiffel [13] extends the
function of PIFO and adopts a fixed number of buckets as its
data structure. The buffered packets among different buckets
can be reordered and those in one bucket follow in a FIFO
fashion. Although the ranking function of Eiffel for enqueue
and dequeue operations can be two different ones, it cannot
support arbitrary number of ranks.

In this paper we present Proteus, a software packet schedul-
ing system that supports multi-dimensional and arbitrary
numbers of ranks. We make three novel contributions in
designing Proteus. First, we design a novel data structure — k-
dimension heap — to support multi-dimensional and arbitrary
numbers of ranks, where k is the number of dimensions.
Based on this data structure, we develop “push” and “pop”
algorithms to maintain the heap’s property (i.e. reorder the
buffered packets) during the packet queuing procedure. We
prove that the time complexity of our algorithms is O(k log n)
and O(k · (n+log n), respectively, in the worst case, where k
is the number of dimensions and n is the number of packets.

Our second contribution is a set of algorithms to apply k-
dimension heap to the packet queuing system. Based on the
k-dimension heap data structure, we fix one dimension as the
enqueue time, where it stores the enqueued packet according
to the order of arrival time. We modify the k-dimension heap
data structure such that its corresponding algorithm can fit the
ordered key index. Here delete the complexity.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

978-1-7281-6887-6/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

TABLE I
STATE-OF-THE-ART PACKET SCHEDULER COMPARISONS.

Scheduler HW
/SW Data structure Efficiency

(enqueue)
Efficiency
(dequeue)

Arbitrary
numbers
of ranks

Change the order of
buffered packets

Multiple
dimensions

pFabric [11] HW Push packet at the tail of the queue
Pop packet at an arbitrary position O(1) O(n) Yes Support for each packet No

PIFO [12] HW Push packet at an arbitrary position
Pop packet at the head of the queue O(n) O(1) Yes No No

Eiffel [13] SW One priority queue with N buckets O(1) O(1) No Support between buckets No
Proteus SW k-dimension heap O(logn) O(logn) Yes Support for each packet Yes

Our third contribution is a concrete implementation and
evaluation of Proteus. We develop a prototype of Proteus based
on the software switch [18]. We evaluate the Proteus prototype
using BESS [19] with continuous traffic. We also conduct
extensive simulations especially for incast scenarios using 15
senders and one receiver to evaluate our algorithms. Extensive
experiments show that Proteus can decrease the computation
overhead, save the storage space and run much faster than
state-of-the-art.

II. RELATED WORK

We briefly review prior art on supporting multi-dimensional
and arbitrary numbers of ranks.

Arbitrary number of ranks: Supporting arbitrary number
of ranks requires the scheduler to provide differentiated service
for any packets with different ranks. Originally, the first three
bits of the ToS field [20]–[23] in the IP header were defined
as IP precedence, which can support at most eight different
services. Later, the first six bits of ToS was redefined as the
DSCP (differentiated services code point) field in RFC 2474
[23]. The DSCP value can range from 0 to 63 and support
64 different services. However, the switches typically have
eight priority queues and cannot provide more fine-grained
packet scheduling [24]–[26]. pFabric [11] proposed to use two
queues to support arbitrary number of ranks. One is used for
storing the actual packets and the other holds the dimension
information like priorities of those packets.

Multiple dimensions: There are vast literatures on schedul-
ing strategies in modern switches. SP (strict priority) is one of
the strategies that can guarantee that the flow with the higher
priority would be scheduled before that with the lower one.
WRR (weight round robin) and WFQ (weight fair queuing)
can schedule packets according to a weight [27]. Recent works
only use a single rank function to determine the scheduling
order. PIFO [12] provides a priority queue which permits
packets to be pushed into an arbitrary position based on its
computed rank and dequeues from head. Eiffel [13] uses a
fixed number of buckets which are ordered in FIFO fash-
ion. OpenQueue [17] allows the operators to specify packet
buffering architecture and policies through the customized
language. Although these works only use a single rank, the
rank functions always are diverse due to different schedule
strategies. The work in [28] divided these works as two
categorizes: priority queues that is used to determine the order
of packets and calendar queues that is used to determine
the departure times. For those common scheduling strategies,
the rank can be priority, deadline, remaining flow size or

11

12 13

1514 16 17

3

5 4

69

70 82

81

Time sequencePriority Deadline

5 11 70

3 12 81

4 13 69

4 14 81

5 15 82

5 16 82

3 17 69

Packets

3 12 81

5 11 70 4 13 69

4 14 81 5 15 82 5 16 82 3 17 69

3-D heap

Fig. 1. Packets are organized as K-D heap (K = 3). All packets have
three dimensions: priority, enqueue time sequence and deadline, which can
be represented in yellow field (key1), blue field (key2) and red field (key3),
respectively. In this 3-D heap, the node (3, 12, 81) in the first level has
the smallest key1 among its descendants; the nodes (5, 11, 70) and (4, 13,
69) in the second level have the smallest key2 among their descendants
respectively; the nodes in the third level should have the smallest key3 among
their descendants if they are not leaves.

arrival timestamp, which depends on the specific requirements
in switches. The combination of all these dimension values
can provide more flexible schedule strategies. For example,
we can schedule the packet with the earliest deadline among
the packets with the same priority. Furthermore, to solve
the problem of sorting packets among multiple dimensions,
the work in [29] proposed a data structure K-D heap that
can achieve an efficient multi-dimensional priority queue. In
a K-D heap, nodes at level i has the smallest key (i.e.,
keymod(i−1,K)+1) in its own subtree. In order to determine the
smallest keyi, it needs to compare all the nodes in the highest i
levels. For example, there are seven packets in Fig. 1 where the
first yellow field indicates the packet priority, the second blue
field indicates the timestamp, and the third red field indicates
the deadline. These seven packets are organized as a 3-D heap.
The root node has the highest priority; the nodes in the second
level have the smallest timestamp and the nodes in the third
level have the earliest deadline in each subtree. To determine
the packet with the highest priority, we can first get the root
node. However, if we plan to find the packet with the smallest
time sequence or deadline, we need compare 2K − 1 nodes at
most. Furthermore, many packets will share the same key like
priority. In this case, the scheduler needs another dimension
information to make an accurate decision. If the scheduler
wants to send the packet with the earliest deadline among
the packets with the same priority, then the packet (3, 17, 69)
should be scheduled first. In a K-D heap, the nodes with the
same key value can be located in different levels, which makes
an efficient schedule hard to design. Also the insertion and
deletion operations are very frequent during the scheduling
procedure. The most important thing is to determine the packet
with the smallest or largest key value at each time. Hence,

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

1

32

64 5

123456

Actual queue

Logical structure

2

34

6 5

24365

Actual queue

123456 12345

Logical structure

(a) (b)

Pkt
11

Pkt
12

Pkt
13

Pkt
14

Pkt
15

Pkt
16

Pkt
17

Pkt
18

Pkt
11

Pkt
12

Pkt
13

Pkt
15

Pkt
16

Pkt
17

Pkt
18

Fig. 2. Comparison using k-dimension heap, where k equals one and this
dimension represents the priority. The schedule policy is that the packets with
high priority (the smaller number) will be send out firstly.

sorting all packets incurs more time overhead and thus is not
necessary [30].

Our work is complementary to previous work. The novelty
lies in a novel data structure that supports multi-dimensional
and arbitrary numbers of ranks, which can support more flex-
ible strategies. This novel data structure enables the operators
to specify multiple dimensions as their rank functions and can
be integrated to OpenQueue to make the management more
powerful.

III. PROTEUS OVERVIEW

Traditional switches with 8 priority queues are not enough
to support arbitrary number of ranks. Creating more fixed
number of priority queues is not a scalable choice since the
total number of different ranks for scheduling cannot be a
prior. The simplest implementation is to put all packets into a
single queue and rely on scheduling policies to differentiate the
ranks like pFabric and PIFO. Since all the packets are buffered
in a single queue, dimensions such as priority, deadline, flow
size, and waiting time etc. are collected by the switch to make
a dequeue decision. For example, the packets with the highest
priority should be sent out first. If two packets carry the same
priority, the packet with earlier arrival time will be sent out.
This case requires two dimensions, one for priority and the
other for arrival time. In particular, we develop a new data
structure — k-dimension heap — to support arbitrary number
of ranks and multiple dimensions.

We use the example of k-dimension heap shown in Fig. 2
to illustrate how Proteus works, where k equals one, i.e. there
are only one dimension and the packets dequeue operation
only depends on the priority. In our example, when a new
packet arrives, the packet will be pushed back at the tail of
the packet queue Then the rank value (here is the priority) will
be added into the heap. For dequeue operation in Fig. 2(a), the
packet with time sequence “14” has the highest priority “1”
and can be directly determined to dequeue. After the heap re-
adjusting procedure, the data structure is shown in Fig. 2(b).
Then the packet with time sequence “12” and the priority “2”
is selected to dequeue. The duplicate data (the node numbered
as priority “2” and “3”) in the heap can be only stored once in
Fig. 2. We use pointers to direct corresponding data packets,
which can avoid redundant comparisons. For more dimensions,
there should be an individual heap for each dimension so that
Proteus can efficiently pick the smallest key value directly.

11

12 13

1514 16 17

3

5 4

69

70 82

81

Time sequencePriority Deadline

Fig. 3. Illustration of a 3-dimension heap. There are three dimensions: priority,
deadline and time sequence.

The central challenge in designing Proteus is how to design
a data structure to maintain the dynamic relationships among
each individual heap and the corresponding algorithms to
support multi-dimensional and arbitrary numbers of ranks,
which is our focus in the following sections.

IV. PROTEUS DESIGN

In this section, we first design a new data structure — k-
dimension heap — to support multi-dimensional and arbitrary
numbers of ranks, where k is the number of dimensions. And
we further propose a set of algorithms and analyze their time
complexity. Finally, we apply the proposed algorithms to the
queue.

A. Basic structure

The k-dimension heap is a generalization of the classic heap,
which includes k subheaps and each subheap can represent
one dimension. There is at least one subheap (dimension)
selected as the primary subheap, where the nodes have one-
to-one mappings with packets. Without loss of generality, we
use the “time sequence” (the enqueue timestamp) as the nodes
in the primary subheap as it can uniquely identify the packets.
Hence, the number of nodes in the primary subheap is equal
to the number of packets in the queue, while may not hold
in other subheaps due to duplicate elements. For example,
many packets have the same priority and thus the number
of nodes in the subheap with priority type may be less than
the number of packets. The dimensions (i.e. priority, deadline,
time sequence, etc.) of a packet are distributed to different
subheaps and connected by a set of dashed lines. Each node in
the primary subheap records the location of all relevant nodes
in other subheaps (dimensions). The node in the non-primary
subheap only keeps a pointer vector to record the relationship
between the primary subheap and the non-primary subheap.

Let us first introduce the following definition and property.

Property IV.1. Each subheap is a binary tree, for each node
in which, its value is unique and should be less than that of
its left child and right child.

Property IV.2. Each node represents a value corresponding
to one dimension. If two nodes in two subheaps are connected
by a dashed line, then the corresponding values of different
subheaps belong to the same packet.

Definition IV.1. The k-dimension heap is composed of
k subheaps, where the property of each subheap satisfies

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

Property IV.1. There is a unique primary subheap with one-
to-one mapping for real packets, the relationship among
subheaps and primary heap satisfies Property IV.2.

Taking Fig. 3 as an example, we can see that it is a 3-
dimension heap, where the nodes in each subheap represent the
time sequence, priority and deadline, respectively. Note that
the time sequence forms a one-to-one mapping to the nodes
and thus it is a primary subheap. Specifically, the node with
time sequence “11” has the priority “5” and deadline “70”.
The dashed lines are established to capture their relationships.
The k-dimension heap structure supports arbitrary number
of ranks and multiple dimensions, satisfying the diverse
requirements of using different scheduling strategies. Note that
a single heap storing ordered tuples (i.e. priority, deadline,
time sequence, etc.) cannot work since the order varies with
the different dimensions. Next we introduce the “push” and
“pop” operations for k-dimension heap, which are summarized
in Algorithm 1 and Algorithm 2, respectively.

The “push” operation. When a new packet arrives, the
switch obtains the priority, deadline and other dimension
information and assigns a unique sequence number to this
packet. Accordingly a new node with this sequence number
will be created and added to the primary subheap. Other
subheaps do not need to create a new node if the value in this
dimension already exists. Finally we need to connect the nodes
in subheaps and the primary heap. The entire procedure for
the “push” operation is shown in Algorithm 1. We denote h[p]
as the pth subheap, where p = 1, 2, · · · , k. Accordingly, we
can access the ith node in the pth subheap by h[p][i] directly.
Without loss of generality, we set the first heap (i.e., h[1]) as
the primary subheap. Each node in the subheap stores a value
for a specific dimension and a pointer vector that is used to
record other relevant nodes. Specifically, the pointer vector in
the nodes of the primary subheap keeps k pointers, where the
jth pointer directs to the relevant node in h[j]. For example,
in Fig. 3, we assume that the time sequence subheap is h[1],
the priority subheap is h[2] and the deadline subheap is h[3].
The node in time sequence subheap h[1] maintains the pointer
vector with three elements. The first one can be a null pointer.
The second pointer points to the node with value 5 in the
priority subheap, and the third one points to the node with
value 70 in the deadline subheap. As for the nodes in h[2] or
h[3], they only record the pointers that direct to h[1], where the
size of the pointer vector is dynamic. In the priority subheap,
the node with value 4 has two pointers in its pointer vector,
and the node with value 5 has four. On a high level, the switch
first obtains the k values corresponding to k dimensions for
the new arrival packet and puts them into a vector. Then the
newly created node nodePtr[1] as the first element is pushed
to the tail of the primary subheap h[1]. For all other subheaps
h[p] (p 6= 1), the value of the new node could be duplicated
with existing nodes. If this condition holds, we cannot add
this new node nodePtr[p] into the subheap. Otherwise, we
push it to the tail of the subheap, recorded as nodePtr[p]
and readjust the subheap to satisfy Property IV.1. Finally, we

Algorithm 1: The push operation in k-dimension heap
Input: The vector v with k elements, each element represents the value

of a dimension.
1 n← n+ 1;
2 nodeP tr[1]← createNode(v[1], k);
3 h[1].push back(nodeP tr[1]);
4 i← n;
5 while i 6= 1 and h[1][i].value < h[1][bi/2c].value do
6 swap(h[1][i], h[1][bi/2c]);
7 i← bi/2c;
8 for p = 2 to k do
9 nodeP tr[p]← h[p].getNodePtr(v[p]);

10 if nodeP tr[p] is NULL then
11 nodeP tr[p]← createNode(v[p], 0);
12 h[p].push back(nodeP tr[p]);
13 i← h[p].size();
14 while i 6= 1 and h[p][i].value < h[p][bi/2c].value do
15 swap(h[p][i], h[p][bi/2c]);
16 i← bi/2c;

17 nodeP tr[p]→ recordV ector.push back(nodeP tr[1]);
18 (nodeP tr[1]→ recordV ector[p])← nodeP tr[p];

3

5 5

4

7

10 8

9

Priority Deadline

3

5 5

7

10 8

Priority Deadline

3

4 5

5

7

10 8

9

Priority Deadline

3

4 5

5

7

9 8

10

Priority Deadline

(a) (b)

(c) (d)

PriorityTime sequence

(a)
12

11

13 5

3

4

PriorityTime sequence

(b)
12

11

13 5

3

4

14

PriorityTime sequence

(c) 12

11

13 5

3

4

14

PriorityTime sequence

(d) 12

11

13 5

3

4

14

PriorityTime sequence

(c)

12

11

5

3

PriorityTime sequence

(a) 11 5

PriorityTime sequence

(b)

2

1
5

PriorityTime sequence

(b)

12

11

3

5

PriorityTime sequence

(d)

12

11

5

3

PriorityTime sequence

(e)

2

1

5

3

Fig. 4. Illustration of push operation in the 2-dimension heap where the first
dimension is the time sequence and the second dimension is the priority. The
vector information of the first packet is 〈11, 5〉 and that of the second packet
is 〈12, 3〉. The subheap with the time sequence is the primary subheap.

update the pointer vector of both nodePtr[1] and nodePtr[p]
to maintain the relationship among subheaps.

At the beginning of Algorithm 1, the variable n records
the total number of vectors stored in the k-dimension heap
(i.e., the number of nodes in the primary subheap h[1] where
its value is unique). For every push operation, the variable n
increases by one (line 1). The pointer vector nodePtr records
the node information from vector v for each dimension. In the
primary subheap h[1], since its value is unique, we can always

3

5 5

4

7

10 8

9

Priority Deadline

3

5 5

7

10 8

Priority Deadline

3

4 5

5

7

10 8

9

Priority Deadline

3

4 5

5

7

9 8

10

Priority Deadline

(a) (b)

(c) (d)

PriorityTime sequence

(a)
12

11

13 5

3

4

PriorityTime sequence

(b)
12

11

13 5

3

4

14

PriorityTime sequence

(c) 12

11

13 5

3

4

14

PriorityTime sequence

(d) 12

11

13 5

3

4

14

PriorityTime sequence

(c)

12

11

5

3

PriorityTime sequence

(a) 11 5

PriorityTime sequence

(b)

2

1
5

PriorityTime sequence

(b)

12

11

3

5

PriorityTime sequence

(d)

12

11

5

3

PriorityTime sequence

(e)

2

1

5

3

Fig. 5. Illustration of push operation in the 2-dimension heap where the first
dimension is time sequence and the second dimension is priority. The vector
information of the first packet is 〈11, 5〉, that of the second packet is 〈12, 3〉,
that of the third packet is 〈13, 4〉 and that of the fourth packet is 〈14, 4〉. The
subheap with time sequence is the primary subheap.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

create a new node from the information of v[1] (line 2) and
push the new node to the tail of the h[1] (line 3). After a new
node is added into the subheap h[1], we need to readjust this
subheap (lines 4-7). For each non-primary subheap h[p], we
need to check whether the value of the new node exists or not
(line 9). If the value of the new node does not exist, we can
do the same procedure as in the primary subheap h[1] (lines
10-16). Otherwise, we do not need to add a new node and just
record the pointer of the existing node in nodePtr[p] directly.
Finally, the pointer nodePtr[p] will be added to record the
relationship to nodePtr[1] in h[1] (line 17). At the same time,
the pointer nodePtr[1] in the primary subheap updates the pth
pointer to establish the relationship to the pointer nodePtr[p]
in the non-primary subheap (line 18).

Now using the running example as shown in Fig. 4 and
Fig. 5, we illustrate how the “push” operation in Algorithm 1
works. Initially, each subheap contains only one node, and the
nodes keep the pointers of each other, as shown in Fig. 4(a).
When the second packet arrives, the switch obtains its priority
with value “3” and assigns a sequence number with value
“12”. For the primary subheap, we create a new node with
value “12” and the size of the pointer vector is 2 (k = 2). We
push the new node at the tail of the primary subheap, i.e. time
sequence subheap. There is no need to change its position
since value “12” is larger than value “11”. For the priority
subheap, there is only one node with value “5” and the value
“3” is not a duplicate element. Hence we create a new node
with value “3” and an empty pointer vector, pushing it into the
tail of the priority subheap as in Fig. 4(b). Since value “3” is
smaller than value “5”, we need to exchange their positions to
satisfy Property IV.1. Accordingly, the priority subheap should
be readjusted from Fig. 4(b) to Fig. 4(c). Finally given the
pointer of the new nodes, we establish the relationship between
the node with value “12” in the time sequence subheap and the
node with value value “3” in the priority subheap, as shown
in Fig. 4(d).

Fig. 5 shows a special case that the new node shares a
value with an existing node. The vector information of the
fourth packet is 〈14, 4〉, which indicates that the value “4” has
existed in the priority subheap and we can only add the value
“14” into the time sequence subheap as shown in Fig. 5(b).
Since the node with value “4” already exists in the priority
subheap, we only need to update the pointer of the node with
value “4” to establish the relationship to the new node in the
time sequence subheap. Finally, we update the pointer vector
as shown in Fig. 5(d). For more dimensions, since the non-
primary subheaps only connect with the primary subheap, the
operations of other non-primary subheaps can be the same as
that of the priority heap in our example.

The “pop” operation. When the switch performs the
dequeue operation, its decision is based on one or more
dimensions. For example, the packet with higher priority is
usually sent out first. If the priority of two packets is identical,
the packet with earlier arrival time is sent out first. We use m,
m′, m′′, · · · to denote the first, second, third, · · · dimension in
the switch’s decision. However, one node in a subheap h[m]

Algorithm 2: The pop operation in k-dimension heap
Input: The sequence m,m′,m′′, · · · ∈ {1, 2, · · · , k} which indicates

the decision standard among dimensions.
Output: The vector v that needs to be popped.

1 if m == 1 then
2 nodeP tr[1]← h[1][1];
3 r[1]← 1;
4 else
5 nodeP tr[1]← the node pointer in the primary subheap;
6 r[1]← getLocation(nodeP tr[1]);

7 swap(h[1][r[1]], h[1][n]);
8 i← r[1];
9 Readjust(i,1);

10 v[1]← h[1][n].value;
11 for p = 2→ k do
12 nodeP tr[p]← h[1][n].recordV ector[p];
13 r[p]← getLocation(nodeP tr[p]);
14 v[p]← h[p][r[p]].value;
15 if h[p][r[p]].recordV ector.size() > 1 then
16 removeP tr(h[p][r[p]].recordV ector, nodeP tr[1]);
17 else
18 size[p]← h[p].size();
19 swap(h[p][r[p]], h[p][size[p]]);
20 i← r[p];
21 Readjust(i,p);
22 h[p].pop back();
23 h[1][n].recordV ector[p]← null;
24 deleteNode(nodeP tr[p]);

25 h[1].pop back();
26 deleteNode(nodeP tr[1]);
27 n← n− 1;
28 return v;

may map several nodes in the primary subheap since the node
value in the non-primary subheap may not be unique. This
indicates that we cannot remove a node in the non-primary
subheap if it has more than one pointer. In general, we first
obtain the pointer of node in the primary subheap to be deleted
and determine the index r[1] in its subheap. We exchange
the r[1]th node with the last one in the primary subheap
and readjust the heap structure. For the other subheaps, we
determine the relevant nodes via the pointer vector of the
node in the primary subheap and the position r[p] of the pth
subheap is recorded. We check whether the node pointer in the
primary subheap is the only one of the r[p]th node or not. If
this condition holds, we exchange the r[p]th node with the last
one in the pth subheap and readjust the heap from the r[p]th
position. When its value is recorded, we delete the last one and
free the space. Otherwise, we only remove the pointer from
the pointer vector for the r[p]th node in the primary subheap.
When the check operation for all non-primary subheaps is
done, we delete the last one in the primary subheap.

At the beginning of Algorithm 2, the vector r records the
index of the nodes in each subheap that needs to be popped
and the nodePtr records the pointer of the corresponding
nodes. We first determine the node to be popped in the
primary subheap as this node has all the pointers to the other
subheaps. If the input dimension m is the primary subheap,
the nodePtr[1] and r[1] can be set to be h[1][1] and 1 directly
(lines 2-3). Otherwise, the nodePtr[1] can be determined
by the dimension sequence m,m′,m′′, · · · step by step. The

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Readjust (index i, heap p)
Input: The index of node i and the heap that node i belongs to.

1 repeat
2 t← 2i;
3 if t+ 1 < size[p] and h[p][t+ 1].value < h[p][t].value then
4 t← t+ 1;

5 if h[p][t].value < h[p][i].value then
6 swap(h[p][t], h[p][i]);
7 i← t;

8 until 2i ≥ size[p] or i 6= t;

value of r[1] can be determined from the nodePtr[1] (lines
5-6). Next in subheap h[1], we need to exchange the node
nodePtr[1] with the tail of this subheap and readjust the
subheap structure without the last one (lines 7-9). For the
remaining non-primary subheaps, we obtain the node pointer
nodePtr[p] by the record information stored in nodePtr[1]
and then determine the index r[p] (lines 12-13). For the nodes
in the non-primary subheap, some of them point to more
than one nodes in the primary subheap. In this case, the
node nodePtr[p] cannot be popped. We should only remove
the pointer nodePtr[1] from the recordVector (lines 15-16).
As in the subheap h[1], we exchange the node nodePtr[p]
with the tail node and readjust the subheap without the last
one (lines 19-21). Since the value of nodePtr[p] is already
recorded (line 14), we remove the node in subheap h[p] (line
22), delete the pointer of nodePtr[p] to the node nodePtr[1]
in the primary subheap (line 23) and finally free the storage
space of nodePtr[p] (line 24). When all the nodes in the non-
primary subheap complete the pop operations, we remove the
node nodePtr[1] in subheap h[1] and free the storage space
(lines 25-26). Accordingly, the variable n should be decreased
by one (line 27).

Now we use the running example of Fig. 6 and Fig. 7 to
illustrate how the “pop” operation in Algorithm 2 works. We
assume that the switch performs dequeue operation by two
dimensions — priority and time sequence, i.e. the packet with
high priority will be sent out first. If two packets have an
identical priority, the packet with earlier arrival time (smaller
time sequence number) will be sent out first. The initial heap
structure is shown in Fig. 6(a), which has the same setting as
that of Fig. 5(d). Here the switch needs to perform dequeue
operation to determine the packet with priority “3” and time
sequence “12”. The pointer of node with value “3” in the
priority subheap and that of the node with value “12” in
the time sequence subheap points to each other and no other
pointers point to them. Hence we can remove these two nodes
directly. We first obtain the node with value “12” in the time
sequence subheap (primary subheap) via the pointer of node
with value “3” in the priority subheap. Once the node with
value “12” in the time sequence subheap is determined, we
exchange the second node with the last node (i.e. the node with
value “12” and the node with value “14”) in the time sequence
subheap. Accordingly, we record the index to be removed
as r[1]. When the exchange operation in the time sequence
subheap is done, the heap structure is shown in Fig. 6(b).

3

4 5

5

7

9 8

10

Priority Deadline

(a) (b)

(c) (d)

5

4 5

3

7

9 8

10

Priority Deadline

5

4 5

3

10

9 8

7

Priority Deadline

4

5 5

3

10

9 8

7

Priority Deadline

(e) (f)

4

5 5

3

8

9 10

7

Priority Deadline

4

5 5

8

9 10

Priority Deadline

PriorityTime sequence

(a) 12

11

13 5

3

4

14

PriorityTime sequence

(b)

12

11

13 5

3

414

PriorityTime sequence

(c)

12

11

13 5 3

4

14

PriorityTime sequence

(d)

12

11

13 5

4

14

3

PriorityTime sequence

(e)

12

11

13 5

4

14

PriorityTime sequence

(f)

11

13 5

4

14

PriorityTime sequence

(a)

11

13 5

4

14

PriorityTime sequence

(b)

1

3 5

4

4

PriorityTime sequence

(b)

11

5

4

14

Fig. 6. Illustration of the pop operation in the 2-dimension heap where the
first dimension is time sequence and the second dimension is the priority. The
vector information to be popped is 〈12, 3〉. The subheap with time sequence
is the primary subheap.

3

4 5

5

7

9 8

10

Priority Deadline

(a) (b)

(c) (d)

5

4 5

3

7

9 8

10

Priority Deadline

5

4 5

3

10

9 8

7

Priority Deadline

4

5 5

3

10

9 8

7

Priority Deadline

(e) (f)

4

5 5

3

8

9 10

7

Priority Deadline

4

5 5

8

9 10

Priority Deadline

PriorityTime sequence

(a) 12

11

13 5

3

4

14

PriorityTime sequence

(b)

12

11

13 5

3

414

PriorityTime sequence

(c)

12

11

13 5 3

4

14

PriorityTime sequence

(d)

12

11

13 5

4

14

3

PriorityTime sequence

(e)

12

11

13 5

4

14

PriorityTime sequence

(f)

11

13 5

4

14

PriorityTime sequence

(a)

11

13 5

4

14

PriorityTime sequence

(b)

1

3 5

4

4

PriorityTime sequence

(b)

11

5

4

14

Fig. 7. Illustration of the pop operation in the 2-dimension heap where the
first dimension is time sequence and the second dimension is the priority. The
vector information to be popped is 〈13, 4〉. The subheap with time sequence
is the primary subheap.

For the priority subheap, the exchange operation between the
node with value “3” and that with value “4” cannot violate the
Property IV.1 as well. We record the index to be removed as
r[2] and the heap structure is shown in Fig. 6(c). Then we can
pop the node out of the subheap as shown in Fig. 6(d). Next we
clear the pointer recorded by the node in the priority subheap
and free the occupied space (Fig. 6(e)). Finally, we pop the
node in the time sequence subheap and free its occupied space.
The final heap structure is shown in Fig. 6(f).

Fig. 7 shows another example when performing pop opera-
tion. Here the head node with value “4” in the priority subheap
maps two nodes with value “13” and value “14” in the time
sequence subheap in Fig. 7(a). According to the rules that
the packet with the earlier arrival time (smaller time sequence
number) will be sent out first, we obtain the first pointer of
node with value “4” in the priority subheap and determine the
node with value “13” in the time sequence subheap. The node
with value “13” is already the last one in the time sequence
subheap so that we do not need to readjust its structure. For the
node with value “4” in the priority subheap, we cannot directly
remove it since another mapping relationship exists (the node
with value “14” in the time sequence subheap) Instead, we

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

only delete the pointer pointing to the node with value “13”
in the time sequence subheap. Finally, we pop the node with
value “13” in the time sequence subheap and free its space as
well. When all is done, the heap structure is shown in Fig. 7(b).
Note that for more dimensions, the operations of other non-
primary subheaps perform the same as that of the priority heap
before the node in the primary subheap is popped.

Theorem IV.1. The time complexity of Algorithm 1 and
Algorithm 2 are O(k · (n+ log n)).

Proof. For a k-dimension heap, the total number of nodes in
each subheap is at most n, where n is the number of the
packets in the switch. In general, a push or pop operation
in one subheap requires log n comparisons and swaps on the
worst case. And all k subheaps need at most k log n times
when all subheaps need to perform addition or deletion oper-
ation. In Algorithm 1, the time complexity largely depends on
the function getNodePtr (line 9) that may cause O(n) time
complexity in our k-dimension heap. Note that this function
needs to be called in all k−1 non-primary subheaps, and thus
the total time complexity of Algorithm 1 is O(k ·(n+log n)).

For Algorithm 2, to determine a node to be deleted in the
primary subheap, the worst case is O(n) time complexity. If
we need multiple dimensions to make a decision together, we
need to obtain the packet set that shares the smallest value for
the first dimension m and check all of them. In practice, if the
size of set is very large (e.g., larger than n/2), we can use other
dimensions (m′,m′′, · · ·) to determine the packets and check
whether it has the smallest value in dimension m to reduce
computation overhead. When a node in the primary heap is
deleted, we need to remove the corresponding pointer in the
non-primary heap (line 16 in Algorithm 2). The corresponding
node can be deleted only if the node in the primary heap and
the corresponding node in the non-primary heap have one-to-
one mappings. The procedure of determining to be removed
point also needs O(n) time complexity. Hence, the total time
complexity of Algorithm 2 is O(k · (n+ log n)) as well.

B. Apply k-dimension heap to the queue in parallel

In this subsection, we discuss how to apply the k-dimension
heap to the queue in the switch. It’s intuitive to use the time
sequence as the primary heap, as the sequence number is
unique and increases by one once a new packet arrives. For
this kind of dimension in the primary heap, we slightly modify
the heap data structure to queue data structure since the value
in the time sequence dimension is monotonically increasing.
Fig. 8 and 10 presents two examples, where the primary
subheap becomes a queue and other subheaps keep unchanged,
a flag field added to each node in the primary subheap to
indicate whether the node is available or not. A node is
available means that the corresponding packet is still in the
queue. In the modified k-dimension heap data structure, once
obtaining a new dimension vector, the node in the primary
dimension is simply added to the tail of the queue, where the
flag field is set to be true. The nodes in other dimensions
perform the same as that in the k-dimension heap. When

performing pop operation, it should first determine the node
in the primary subheap (queue), and obtain the node pointers
of other dimensions. After the operations in all subheaps is
done, we set the flag field to be false, which indicates that
this vector has already logically removed. At the end of pop
operations, we check each node in the primary subheap, and
delete all the nodes whose flag fields are false at the head of
the queue. Fig. 9 shows an example of popping the second
packet in Fig. 8. The grey node with time sequence “12” in
the queue will be removed when all previous nodes (the node
with time sequence less than “12”) are marked gray.

In the k-dimension heap structure, all the non-primary
subheaps only connect with the primary subheap. It makes
possible that the comparison and swap operations in different
non-primary subheaps are computed in parallel. Taking the
push operation of k-dimension heap as an example, while the
nodes in the primary subheap have already been added, the
nodes in other dimensions can be added or stored in parallel
since the memory space for nodes and pointers that they access
are different. The function getNodePtr in “push” operation
may cause O(n) time complexity, which is used to check
whether the corresponding value exists or not. In practice, we
can implement it in parallel. Specifically, we can compare the
given value with the value in the root node firstly. If this value
is smaller than that in the root node, then the pointer returns
empty. If these two values are equal, it returns the pointer
of the root node. Otherwise we compare this value with two
subheaps. Checking the subheaps can be performed in parallel
and searching range is at most log n. Hence, Algorithm 1 can
be finished in O(log n) time complexity. In the pop operation,
the computation in the non-primary subheaps can be done in
parallel in a similar way. Since these subheaps are independent
to each other both in logical (different subheaps) and physical
spaces (different memory space), it is feasible to implement
them with multi-thread programs.

V. EXPERIMENTAL EVALUATION

We have conducted extensive experiments to evaluate our
algorithms. In this section we report our performance evalu-
ation using the software switch implementation and the NS3
simulations.

Benchmark Schemes: We compare the following schemes
with our algorithms.
• Proteus: Our proposed algorithms using the k-dimension

heap data structure.
• AVL Tree [31]: The buffered packets are organized by

the AVL tree, i.e. the height difference of two subtrees is
always less than or equal to one. If the difference is more
than one due to an insertion or deletion, the AVL tree will
perform rotation operations to keep this property.

• RB Tree [32]: The buffered packets are organized by the
RB Tree. Each node in the red-black tree has a color —
red or black, where the root node must be black. If a node
is red, both children are black. Furthermore, every path
from a given node to any of leaf nodes contains identical
number of black nodes.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

Ptr

Ptr Ptr

PtrPtr Ptr Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Priority

Time sequence
Queue discipline

Queue discipline Priority：5

Time seq：1

Flag：true

Priority：3

Time seq：2

Flag：true

Priority：5

Time seq：7

Flag：true

·
·
·

Packets
TC Root Queue Discipline

Ptr

Ptr Ptr

PtrPtr Ptr Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Priority

Time sequence

Priority：5

Time seq：1

Flag：true

Priority：3

Time seq：2

Flag：true

Priority：5

Time seq：7

Flag：true

·
·
·

Packets
TC Root Queue Discipline

3

5 4

Priority
Time sequence

Pkt
Pkt
Pkt
Pkt
Pkt
Pkt
Pkt

11： flag true
12： flag true
13： flag true
14： flag true
15： flag true
16： flag true
17： flag true

3

5 4

Priority
Time sequence

11： flag true

12： flag true

13： flag true

14： flag true

15： flag true

16： flag true

17： flag true

69

70 82

81

Deadline

3

5 4

Priority
Time sequence

Pkt

Pkt

Pkt

Pkt

Pkt

Pkt

Pkt

11： flag true

12： flag true

13： flag true

14： flag true

15： flag true

16： flag true

17： flag true

TC Layer

Fig. 8. Apply the 2-dimension heap to the
queue.

5

4

Priority
Time sequence

Pkt

Pkt

Pkt

Pkt

Pkt

Pkt

11： flag true

12： flag false

13： flag true

14： flag true

15： flag true

16： flag true

17： flag true

Fig. 9. The pop operation for the second
packet in 2-dimension heap.

Ptr

Ptr Ptr

PtrPtr Ptr Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Priority

Time sequence
Queue discipline

Queue discipline Priority：5

Time seq：1

Flag：true

Priority：3

Time seq：2

Flag：true

Priority：5

Time seq：7

Flag：true

·
·
·

Packets
TC Root Queue Discipline

Ptr

Ptr Ptr

PtrPtr Ptr Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Priority

Time sequence

Priority：5

Time seq：1

Flag：true

Priority：3

Time seq：2

Flag：true

Priority：5

Time seq：7

Flag：true

·
·
·

Packets
TC Root Queue Discipline

3

5 4

Priority
Time sequence

Pkt

Pkt

Pkt

Pkt

Pkt

Pkt

Pkt

11： flag true

12： flag true

13： flag true

14： flag true

15： flag true

16： flag true

17： flag true

3

5 4

Priority
Time sequence

11： flag true

12： flag true

13： flag true

14： flag true

15： flag true

16： flag true

17： flag true

69

70 82

81

Deadline

3

5 4

Priority
Time sequence

Pkt

Pkt

Pkt

Pkt

Pkt

Pkt

Pkt

11： flag true

12： flag true

13： flag true

14： flag true

15： flag true

16： flag true

17： flag true

TC Layer

Fig. 10. Apply the 3-dimension heap to the
queue. For simplicity, we do not show the
structure storing the real packets

• K-D Heap [29]: The buffered packets are organized by
K-D Heap that uses one single heap to implement a
multi-dimensional priority queue.

• pFabric [11]: pFabric can push a packet to the tail of the
queue and pop the packet at an arbitrary position.

• PIFO [33]: PIFO can push a packet at an arbitrary
position and pop a packet at the head of the queue.

• Eiffel [13]: Eiffel uses a fix number of buckets to store
the buffered packets, where each one is a FIFO queue
and has a limited range of rank values.

A. Implementation and Testbed Emulations

Implementation: We implement Proteus in the software
switch, where the time sequence is the primary subheap in the
k-dimension heap data structure. We detail our implementation
both in the host and the switch. (i) The host TC layer. Linux
offers a rich set of functions to perform traffic control, that
can determine which packet can be enqueued or dropped.
The traffic control layer lies in the position between the
NetDevices (L2) and network layer (L3). We implement the
k-dimension heap in the traffic control layer (as shown in
Fig. 11) and do not modify the net card code. Once a new
packet arrives, the TC layer performs the enqueue operation.
The function in the TC layer collects all dimension information
as a vector for this new packet and pushes the dimension
vector to the heap. For the dequeue operation, we obtain all
index elements from the k-dimension heap as a vector by
the sequence m,m′,m′′, · · · ∈ {1, 2, · · · , k}. We determine
the corresponding packet in the TC layer via the vector v.
According to the pre-defined schedule policy, the function in
the TC layer can make the choice of sending the packet out
of the net card or dropping it. (ii) The switch. The switch
has limited memory and thus we need to avoid the redundant
storage. It is obvious that the order of data packets is the same
as that of time sequences. Here, we use the packet queue as the
primary subheap in switch. Note that the node in the primary
subheap will be deleted after performing dequeue operations,
while the packet in the host cannot be deleted. The reason is
that, besides the TC layer, the packet may be used in other
layers. The k-dimension heap is located at each egress port
of switch, as shown in Fig. 11. For the enqueue operations,
when a new packet arrives, the switch collects the dimension
information as a vector. Then we set the primary subheap
as the packet itself. Finally we push the nodes into the k-
dimension heap. For the dequeue operations, before removing
a packet, we need an input sequence to determine which packet

Host

Application

TCP/UDP

IP

K-dimension heap

NIC

Linux TC

User
Kernel

L3 Switch

Physical
layer

Data link layer

Ingress
port

Egress
port

 Proteus

Network layer

Fig. 11. Software stack of Proteus’s implementation.

should be dequeued or dropped. We obtain the dimension
information from the k-dimension heap according to the input
sequence m,m′,m′′, · · · as the decision standard, and the
pointer of the packet to be removed is the first element in
the vector.
Testbed Setup: Our testbed contains one server which sends
loopback data to test the performance of Proteus. The server
is a DELL PowerEdge R730, equipped with a 24-core Intel
Xeon E5-2650V4 CPU, 64GB RAM. The server runs Ubuntu
Server 18.04. We implement Proteus, pFabric, PIPO and Eiffel
based on the BESS [19] at the server, which is the state-of-
the-art software switch implementation. We have a source to
generate packets, which pass through the queue structure and
then forward to a receiver. We measure the CPU consumption
via observing the CPU cycles from this four data structures
when the switch performs dequeue operations.
Experiment Results: We first investigate the CPU cycles
variations using monitor tc command in Fig. 12. The
CPU cycles consumption of Proteus is stable and slightly less
than that of pFabric. The essential reason is that the search
operations dominate the computation overhead, which heavily
depend on the number of the buffered packets. In general,
the more buffered packets, the more CPU cycles will be
consumed. However, Proteus only compares the nodes of the
parent and the child in the heap, and the search operations
cannot be significantly affected by the number of arriving
packets. The CPU cycles consumption of PIFO and Eiffel are
relatively low for the dequeue operation since they do not
require comparison operations for the buffered packets.

We evaluate the comparison times and the occupied storage
space for Proteus , pFabric, PIFO, Eiffel. The maximum queue
size in the switch is set to be 100 packets in this setting (Eiffel
is set to be 100 buckets). The CDF of the comparison times
for enqueue and dequeue operation are shown in Fig. 14(a)
and Fig. 14(b). Suppose that there are n buffered packets
in the switch, we can know that the enqueue operations
for Proteus require at most log n times comparisons. pFab-

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE RUNNING TIME COMPARISONS FOR DIFFERENT NUMBERS OF

BUFFERED PACKETS.
Different numbers
of buffered packets 2000 4000 6000 8000 10000

Enqueue

Proteus 0.3 0.4 0.4 0.4 0.4
K-D Heap 0.3 0.4 0.4 0.4 0.4
AVL Tree 13.7 21.8 25.6 39.6 48.5
RB Tree 8.2 17.1 22.4 38.0 40.0

Dequeue

Proteus 0.6 0.7 0.8 0.9 1.2
K-D Heap 12.4 15.5 18.0 25.8 33.2
AVL Tree 2.4 2.6 2.7 2.9 2.9
RB Tree 1.0 1.0 1.1 1.2 1.2

ric does not need comparison operations and PIFO needs
n − 1 times comparison [33]. As for Eiffel, it only needs to
lookup operations for a bucket. The dequeue operations for
Proteus also requires at most log n times comparisons, while
pFabric needs n − 1 times, PIFO does not need comparison
operations and Eiffel uses the bucket bitmap to get the packet.
The occupied storage space of dimension data comparison is
shown in Fig. 13. In this figure, Proteus can save the storage
space by 80% compared with pFabric. The reason is that the
duplicate elements in Proteus can only occupy one unit storage
space using our heap structure. PIFO does need to store the
dimension data, and Eiffel only needs to store the bitmap for
only a few bytes.

B. Simulation

Setup: We have implemented all schemes in C/C++ and have
simulated the enqueue and dequeue operations in NS3 to show
the performance. Here we use 15 sending hosts with one
receiving host, transmitting 100M data totally. The maximum
queue size of each switch is set to be 1000 packets. We
compare the running time, the consumed CPU cycles and the
occupied storage space for enqueue and dequeue operations.
Each point is at least an average of ten runs.
Experiment Results: We first investigate the running time for
different schemes — Proteus, K-D heap, AVL Tree and RB
Tree. The results are shown in Fig. 15(a) and Fig. 15(b) for
enqueue and dequeue operations when we vary the number
of dimensions k. For the enqueue operation in Fig. 15(a),
we can observe that the total running time of Proteus, K-
D heap, AVL Tree and RB Tree with 100K operations is 4
ms, 10 ms, 463 ms, and 299 ms when k equals 2, which
indicates that Proteus can save 40% running time compared
with K-D heap, and significantly better than AVL Tree and
RB Tree. For the dequeue operation in Fig. 15(b), we can see
that the total running time of Proteus, K-D heap, AVL Tree
and RB Tree with 100K operations is 56 ms, 311 ms, 204 ms
and 220 ms, when k equals 2, which means that Proteus can
save 81% running time compared with K-D heap, and save
74% compared with AVL Tree and RB Tree. In addition,
we can observe that the running time of K-D heap, AVL
Tree and RB Tree increases significantly when the number of
dimensions becomes larger, while that of Proteus with parallel
almost keeps the same. The reason is that both AVL Tree
and RB Tree are operated in serial, and the running time
of each operation increases significantly when the number of

dimensions k becomes large. Although K-D heap only keeps
one heap as its data structure, the running time to determine
the smallest key in the dequeue operation is exponentially
proportional to the number of dimensions, which incurs more
time overhead especially with a larger k. The running time of
Proteus with parallel increases slightly as the computation can
be speeded up among the k − 1 non-primary subheaps.

Fig. 16(a) and Fig. 16(b) show the CDF of running time
for the enqueue and dequeue operations when the number
of dimensions k equals 2. Here we cannot introduce parallel
computation among non-primary subheaps in Proteus. We
totally use 100 thousand data points to plot the CDF curve. In
Fig. 16(a) and Fig. 16(b), the distribution of Proteus and K-D
heap is very close. Both Proteus and K-D heap show faster
running time than the AVL and RB tree. The reason is that the
additional functions like locating an arbitrary element required
by the AVL or RB tree and re-balancing the structures make
the factor of log n larger, leading to the degraded performance.

Finally, we measure the running time for each operation for
Proteus, K-D heap, AVL Tree and RB Tree when congestion
happens. Table II shows the running time variations for these
four data structures, which is evaluated by the CPU clock
count via QueryPerformanceCounter() API. Each data
point is an average of at least ten times. The number of already
buffered packets ranges from 1000 to 10000 at the increment
of 1000. For enqueue operation, AVL Tree and RB tree take
more running time, while for dequeue operation, K-D heap
takes more. Both heap and tree data structure are fixed at log n
times. A larger n will increase the times of comparison and
swap operations. Table II shows that Proteus performs more
stable compared with K-D heap, AVL tree and RB tree. This
result also shows that the Proteus can schedule packets quickly
even for a large number of buffered packets (i.e., congestion
happens). All above results show that heap structure is more
efficient for packet scheduling in switches, and sorting all
packets in K-D heap incurs more time overhead and is always
unnecessary. In a word, Proteus is a perfect choice in the
packet scheduling.

VI. CONCLUSION

In this paper, we proposed Proteus, supported by the k-
dimension heap structure. It is a low-overhead packets queuing
system, which also supports multi-dimensional and arbitrary
numbers of ranks. Proteus can be applied to different schedul-
ing strategies and deployed in the software switches. The
evaluation results showed that the Proteus can decrease the
consumed CPU cycles and storage space.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments. This research is supported by the
National Key R&D Program of China 2018YFB1003202, the
National Natural Science Foundation of China under Grant
Numbers 61772265, 61802172, and 61832005, the Collabo-
rative Innovation Center of Novel Software Technology and

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

Time
0

1000

2000

3000
C

PU
 c

yc
le

s
pe

r s
ec

on
d

pFabric
PIFO
Eiffel
Proteus

Fig. 12. The CPU cycles consump-
tion comparison.

Time
0

50

100

M
et

a
da

ta
 o

ve
rh

ea
d

pFabric switch
PIFO
Eiffel
Proteus

Fig. 13. The storage overhead com-
parison.

0 10020 40 60 80
omparison times

0

0.5

1

C
D

F

pFabric
PIFO
Eiffel
Proteus

(a) Enqueue operation

0 10020 40 60 80
omparison times

0

0.5

1

C
D

F

pFabric
PIFO
Eiffel
Proteus

(b) Dequeue operation

Fig. 14. The CDF of comparison times.

(a) Enqueue operation (b) Dequeue operation

Fig. 15. The total running time of 100K operations with different numbers
of dimensions.

(a) Enqueue operation (b) Dequeue operation

Fig. 16. The CDF of performing enqueue and dequeue operations when the
number of dimensions is 2.

Industrialization, and the Jiangsu Innovation and Entrepreneur-
ship (Shuangchuang) Program.

REFERENCES

[1] B. Montazeri, Y. Li, M. Alizadeh, and J. K. Ousterhout, “Homa: a
receiver-driven low-latency transport protocol using network priorities,”
in SIGCOMM, 2018, pp. 221–235.

[2] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: micro load balancing for low-latency data center networks,”
in SIGCOMM, 2017, pp. 225–238.

[3] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-aware datacen-
ter tcp (D2TCP),” in SIGCOMM, 2012, pp. 115–126.

[4] P. Veselý, M. Chrobak, L. Jez, and J. Sgall, “A φ-competitive algorithm
for scheduling packets with deadlines,” in SODA, 2019, pp. 123–142.

[5] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan, “Minimizing flow completion times in data centers,” in
INFOCOM, 2013, pp. 2157–2165.

[6] V. Jalaparti, P. Bodı́k, S. Kandula, I. Menache, M. Rybalkin, and C. Yan,
“Speeding up distributed request-response workflows,” in SIGCOMM,
2013, pp. 219–230.

[7] B. Stephens, A. Akella, and M. M. Swift, “Loom: Flexible and efficient
NIC packet scheduling,” in NSDI., 2019, pp. 33–46.

[8] B. Stephens, A. Singhvi, A. Akella, and M. M. Swift, “Titan: Fair packet
scheduling for commodity multiqueue nics,” in ATC., 2017, pp. 431–444.

[9] W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu, “Enabling ECN over
generic packet scheduling,” in CoNEXT, 2016, pp. 191–204.

[10] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal packet
scheduling,” in NSDI, 2016, pp. 501–521.

[11] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: minimal near-optimal datacenter transport,” in
SIGCOMM, 2013, pp. 435–446.

[12] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in SIGCOMM, 2016,
pp. 44–57.

[13] A. Saeed, Y. Zhao, N. Dukkipati, E. W. Zegura, M. H. Ammar,
K. Harras, and A. Vahdat, “Eiffel: Efficient and flexible software packet
scheduling,” in NSDI, 2019, pp. 17–32.

[14] “Huawei switch.” [Online]. Available: http://support.huawei.com/
enterprise/zh/doc/EDOC1000178396?section=j00s

[15] “Catalyst 2960 switch software configuration guide.” [Online].
Available: https://www.cisco.com/c/en/us/td/docs/switches/lan/
catalyst2960/software/release/12-2 37 se/configuration/guide/scg/
swqos.html#wp1028792

[16] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and
A. Vahdat, “Sincronia: near-optimal network design for coflows,” in
SIGCOMM, 2018, pp. 16–29.

[17] K. Kogan, D. Menikkumbura, G. Petri, Y. Noh, S. I. Nikolenko,
A. Sirotkin, and P. Eugster, “A programmable buffer management
platform,” in ICNP, 2017, pp. 1–10.

[18] M. T. Jones, Virtual networking in Linux., https://www.ibm.com/
developerworks/linux/library/l-virtual-networking/.

[19] “Bess overview.” [Online]. Available: https://github.com/NetSys/bess
[20] J. Postel, “Internet protocol,” RFC, vol. 791, pp. 1–51, 1981.
[21] R. T. Braden, “Requirements for internet hosts - communication layers,”

RFC, vol. 1122, pp. 1–116, 1989.
[22] P. Almquist, “Type of service in the internet protocol suite,” RFC, vol.

1349, pp. 1–28, 1992.
[23] K. M. Nichols, S. Blake, F. Baker, and D. L. Black, “Definition of the

differentiated services field (DS field) in the ipv4 and ipv6 headers,”
RFC, vol. 2474, pp. 1–20, 1998.

[24] B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of multi-
stage jobs to minimize the total weighted job completion time,” in
INFOCOM. IEEE, 2018, pp. 864–872.

[25] J. Zheng, B. Li, C. Tian, K. Foerster, S. Schmid, G. Chen, and J. Wux,
“Scheduling congestion-free updates of multiple flows with chronicle in
timed sdns,” in ICDCS. IEEE Computer Society, 2018, pp. 12–21.

[26] B. Tian, C. Tian, J. Sun, J. Yan, Y. Tang, W. Wang, H. Dai, N. Xia,
G. Chen, and W. Dou, “Using the macroflow abstraction to mini-
mize machine slot-time spent on networking in hadoop,” in APNet,
M. Chowdhury and K. Tan, Eds. ACM, 2018, pp. 36–42.

[27] “H3c acl and qos configuration guide.” [Online]. Available: http:
//www.h3c.com/cn/d 201612/963702 30005 0.htm# Toc468833743

[28] A. Sivaraman, S. Subramanian, A. Agrawal, S. Chole, S. Chuang,
T. Edsall, M. Alizadeh, S. Katti, N. McKeown, and H. Balakrishnan,
“Towards programmable packet scheduling,” in Proceedings of the 14th
ACM Workshop on Hot Topics in Networks, 2015, pp. 23:1–23:7.

[29] Y. Ding and M. A. Weiss, “The K-D heap: An efficient multi-
dimensional priority queue,” in Algorithms and Data Structures, Third
Workshop, WADS, 1993, pp. 302–313.

[30] J. I. Munro and V. Raman, “Sorting multisets and vectors in-place,” in
Algorithms and Data Structures, 2nd Workshop WADS, 1991, pp. 473–
480.

[31] R. Sedgewick, Algorithms. Addison-Wesley, 1983, ch. Balanced Trees.,
p. 199.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001, ch. Red-black tree., pp. 273–301.

[33] “Programmable packet scheduling at line rate.” [Online]. Available:
http://web.mit.edu/pifo/#instructions

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Nanjing University. Downloaded on November 02,2020 at 04:08:45 UTC from IEEE Xplore. Restrictions apply.

