
Error Recovery of RDMA Packets in Data Center
Networks

Yi Wang
School of Electronic Information and Communications

Huazhong University of Science and Technology
Wuhan, China, 430074

Email: ywang@hust.edu.cn
Phone: +86-027-87543236

Kexin Liu
State Key Laboratory for Novel Software Technology

Nanjing University
Nanjing, China, 210023

Email: kxliu@smail.nju.edu.cn
Phone: +86-25-89681372

Chen Tian
State Key Laboratory for Novel Software Technology

Nanjing University
Nanjing, China, 210023

Email: tianchen@nju.edu.cn
Phone: +86-25-89681372

Bo Bai
Future Network Theory Lab

Huawei
Hong Kong, China, 999077
Email: baibo8@huawei.com

Phone: +852-3547-2722

Gong Zhang
Future Network Theory Lab

Huawei
Hong Kong, China, 999077

Email: nicholas.zhang@huawei.com
Phone: +852-3547-2722

Abstract—Modern data center applications need high through-
put (40Gbps) and ultra-low latency (<10us per hop), along with
low CPU overhead. Remote Direct Memory Access (RDMA),
which can be deployed in RDMA over commodity Ethernet
(RoCEv2) protocol, has the potential to satisfy the requirements.
RoCEv2 needs a lossless environment to achieve high perfor-
mance. RoCEv2 provides Priority-based Flow Control (PFC) to
prevent packet loss caused by buffer overflow. But packet loss
can still happen in today’s data centers due to other reasons
such as switch configuration error. There are two retransmission
algorithms dealing with the packet loss recovery: Go-Back-0
and Go-Back-N. Unfortunately, by simply applying Go-Back-N
algorithm to RoCEv2, the relative throughput will drop to nearly
zero when the packet loss rate exceeds 1%. This is mainly caused
by the improper triggering mechanism of generating NAK. This
paper proposed an Improved Go-Back-N algorithm to solve this
problem, which involves two mechanism. The Improved Go-Back-
N is easy to be deployed in today’s data centers because it makes
no changes on switches. It can improve the relative throughput
to about 60% when the packet loss rate increases to 1%.

Index Terms—RDMA, Loss recovery, Data Center Networks.

I. INTRODUCTION

Large-scale data centers are built around the world for
increasing online services, in which data center networks are
critical to data center infrastructure [6], [18], [30], [17], [7].
Modern data center applications such as cloud computing need
high bandwidth (40Gbps) and ultra-low latency (<10us per
hop) to meet increasing demands. Traditional TCP/IP stacks
cannot meet these requirements because it suffers from high
CPU overhead [14], [1], [13], [12]. As a promising technology,
Remote Direct Memory Access (RDMA) [4], [22] is capable
of achieving the stringent performance requirements. RDMA
is implemented entirely on the network interface cards (NICs),
bypassing the host networking stack, which reduces CPU
overhead and latency significantly.

RDMA can be deployed by using InfiniBand Architecture
(IBA) [8], [10]. InfiniBand (IB) supports RDMA with single-
sided operations. Specifically, a server registers a memory
buffer in advance, then clients read (write) from (to) it without
further involvement of the server’s kernel. Thus CPU overhead
is reduced. However, the IB networking stack cannot be
deployed in traditional data centers, because traditional data
centers are built with IP and Ethernet technologies. To enable
RDMA over Ethernet and IP networks, i.e., making use of
traditional data center equipments, RDMA over Converged
Ethernet (RoCE) [9] and RDMA over commodity Ethernet
(RoCEv2) [11] have been proposed. RoCEv2 replaces IB
link layer with Ethernet link layer, and replaces IB network
layer with UDP and IP. The UDP header is used for ECMP
and IP header is used for routing. Similar to IB, RoCEv2
must be deployed over a lossless link layer to enable high
performance, so that Priority-based Flow Control (PFC) [5] is
used. PFC helps the switch to avoid buffer overflow by forcing
the upstream switch and host NIC to pause data transmission,
when the occupancy of buffer exceeds the threshold. PFC
propagates from the congestion point to the source, while
there may be several hops from the source server to the
destination server. This can result in unfairness and victim
flow [31]. Besides, PFC has many other side effects such as
head-of-line blocking and potential for deadlock [21], [23]. In
order to reduce the side effects, flow based congestion control
mechanisms such as QCN [26], DCQCN [31], [2], [32], and
TIMELY [25] have been proposed. DCQCN requires only the
standard RED [15] and ECN [28], [27], [29] support from the
data center switches. It provides fast convergence to fairness,
achieves high link utilization, ensures low queue buildup and
low queue oscillations. However, PFC should still be deployed
when DCQCN is used.

978-1-7281-1856-7/19/$31.00 ©2019 IEEE

While IB provides PFC to prevent packet loss, the packet
loss can still happen in today’s data center. There are many
other reasons for packet loss besides buffer overflow, such as
frame check sequence (FCS) errors, bugs in switch hardware
and software, and network configuration errors [20]. When
packet loss occurs, retransmission mechanism should be in-
volved. There are two retransmission algorithms dealing with
the packet loss in RDMA: Go-Back-0 and Go-Back-N. In Go-
Back-0, when packet loss errors, the sender will resend the
entire message to the receiver, i.e., resend from the very first
packet of the message. It will waste much network bandwidth.
In Go-Back-N, retransmission starts from the first dropped
packet and the previous received packets are not retransmitted.
Go-Back-N is almost as simple as Go-Back-0, it can be
implemented on the NIC, and it can save much bandwidth
compared to Go-Back-0 and avoid livelock [19]. RoCEv2
does not support selective packet retransmission or the out-of-
order reception of packets since the memory of NIC is small,
i.e., complex algorithm such as Selective acknowledgement
(SACK) [16] cannot be implemented on it.

However, when Go-Back-N is applied, we find that the
network throughput will decrease to nearly zero when the
packet loss rate increases to 1%, which will hurt the appli-
cation performance badly [31]. The reason of this problem is
that ACK timeout, i.e., timeout retransmission, is triggered.
And the main root cause of ACK timeout is that negative
acknowledgement (NAK) can only be triggered by the unex-
pected packets and there is no timer mechanism for NAK.

We propose an Improved Go-Back-N algorithm, which in-
volves sending twice of the last packet and checking expected
packet sequence number (PSN) mechanisms, to handle the low
throughput problem in lossy RDMA network environment.
In our paper, we also discussed about the ACK timeout
setting issues. We can also change the ACK timeout value
to improve the throughput, however, it’s hard and challenging
to be general. By using our improved Go-Back-N algorithm,
the throughput is increased significantly. When the loss rate
is less than 0.1%, the throughput is only about 2.8% lower
than the lossless situation. And the relative throughput can
recover to about 60% when the loss rate increases to 1%. The
Improved Go-Back-N is easy to be deployed in today’s data
centers because it requires only the settings on the end hosts
and makes no changes on switches.

II. BACKGROUND AND MOTIVATION

A. Retransmission Algorithm in RoCEv2

There are two retransmission algorithms dealing with the
packet loss in RoCEv2: Go-Back-0 and Go-Back-N. We now
introduce these algorithms in details.

Consider a scenario, where two hosts are connected through
a switch. After establishing a reliable connection between
these hosts, the sender begins to send data to the receiver.
The sender will set the Opcode in the Base Transport Header
(BTH) of the first packet (PSN=0) to “First”, indicating that
this is the first packet sending to the receiver. The Opcode
of the middle packets is set to“Middle”. The Opcode of the

last packet is set to “Last”. In the last packet, the sender will
set the ACK Request bit to true, indicating that it requests
the reply from the receiver. As for middle packets, sender
will request the reply by a specific interval, such as 64/128.
Besides, the sender and receiver will negotiate an ACK timeout
value when establishing the connection. When the timeout
expires as well as the receiver doesn’t receive the desired reply,
the retransmission mechanism will be triggered.

The reliable transport service uses a combination of the se-
quence number and ACK / NAK. These mechanisms are aimed
at verifying the packet delivery order, preventing duplicate
packets and out-of-sequence packets from being processed,
and detecting missing packets. If packet (PSN=n) is lost,
the receiver will observe the packet loss when it receives
the packet (PSN=n+1). Thus, the receiver generates a NAK
(PSN=n) and sends it back to the sender. This NAK not only
tells the sender that the receiver hasn’t received the packet
(PSN=n), but also delivers a signal to the sender that the
receiver has already successfully received all the packet with
PSN<n.

RoCEv2 defines a NAK interval which specifies the duration
in which the sender can generate at most one NAK, i.e., the
receiver generates a NAK when it receives the wrong packet
and won’t generate more NAK in a specific NAK interval for
the subsequent wrong packets. The NAK interval is necessary.
When packet (PSN=n) loss occurs, the receiver sends back
NAK (PSN=n) to the sender. At the same time, the sender
will continue sending packets whose sequence numbers are
not expected before it receives the NAK. If NAK interval is
not involved, the receiver will send back NAK (PSN=n) once it
receives those subsequent unexpected packets (PSN>n). This
can result in redundant NAK (PSN=n) packets so that the
network bandwidth will be wasted.

In Go-Back-0, when receiving the NAK (PSN=n), the
sender will detect the packet loss and retransmit the whole
message to the receiver, i.e., retransmit from the first data
packet. In Go-Back-0, the sender doesn’t need to save the
state for retransmission. However, Go-Back-0 will waste much
bandwidth, even may cause livelock [19].

Go-Back-0 is replaced by Go-Back-N when deploying
RDMA. In Go-Back-N, after receiving the NAK (PSN=n), the
sender will detect the packet loss. The packet (PSN=n) and all
subsequent packets will be retransmitted by the sender. Go-
Back-N is almost as simple as Go-Back-0, but avoids livelock
and achieves higher throughput.

It can be seen that in contrast to retransmission algorithm
in TCP which uses the duplicate three ACK to trigger fast
retransmission, RoCEv2 uses NAK to send back the loss
signal to the sender directly. Besides, RoCEv2 defines several
transport layer operations such as SEND and WRITE. Data
packets are encapsulated in operations to be transmitted.
Packets in an operation is called as a message.

B. Low Throughput Issue

PFC prevents packet loss caused by buffer overflow. Ro-
CEv2 needs a lossless network and assumes that the packet

Fig. 1: Network topology

0 0.002 0.004 0.006 0.008 0.01

Packet Loss Rate

0

0.2

0.4

0.6

0.8

1

n
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t Go-Back-N

Fig. 2: Impact of packet loss rate on throughput

loss is a rare event by using PFC. However, there are many
other errors that can result in packet loss in data centers such as
frame check sequence (FCS) errors, bugs in switch hardware
and software, and network configuration errors. Go-Back-N
algorithm in RoCEv2 is sufficient when the packet loss rate
is low. However, the throughput degrades rapidly when the
packet loss rate exceeds 0.1%.

Considering the simple topology as Figure 1, we use ns-
3 to simulate the performance of Go-Back-N. The result is
shown as Figure 2, which is consistent with the result in
DCQCN. When the loss rate is less than 10−5, the throughput
is not influenced. When the loss rate increases to 10−3, the
throughput decreases to 45%. When the loss rate increases to
10−2, the throughput decreases to 3%.

This problem will hurt the performance of RDMA applica-
tions. Thus it cannot meet high throughput and low latency
requirements. The performance of application which has short
flows to send or doesn’t support the pipeline mode, i.e., should
wait for the previous flows to complete before it begins to send
new flows, will be hurt badly.

Table I shows the parameter setting in this paper. ACK
Timeout is retransmission timeout (RTO). ACK Interval is
the interval that the sender requests an ACK feedback. Here
256KB implies that the sender will set the ACK Request bit
to true per 256 packets (when the payload for each packet is
1KB). NAK interval specifies the duration in which the sender
can generate at most one NAK.

Parameter Value
Bandwidth 40GB

Propagation Delay Per Hop 1us
Message Size 4MB

Packet Payload 1KB
ACK Timeout 100ms
ACK Interval 256KB
NAK Interval 500us

TABLE I: Parameter values used in our simulation

Last
ACK

Last
packet

Packet lo
st

tw
ice

NAK

Cause of Timeout Retransmission

0

0.2

0.4

0.6

P
ro

p
o

rt
io

n
Fig. 3: Proportion for each reasons

III. SYSTEM DESIGN

A. Problem Analysis

By tracking the flow passing through the node, the key for
the low throughput is that ACK TIMEOUT is triggered, i.e.,
the timeout retransmission. The timeout becomes the critical
issues to hurt the throughput of application which has small
flows to send and the application which doesn’t support the
pipeline mode. By analysizing the root cause triggering the
ACK TIMEOUT, we find out four reasons that can result in
timeout retransmission as shown in Figure 4.

Reason 1. The Last packet of the message is lost.
Reason 2. The ACK (PSN=Last) is lost.
Reason 3. Some NAK is lost.
Reason 4. The same packet is lost twice.
We now analysize these four reasons. When the last packet

of the message is lost, as shown in Figure 4(a), the sender is
waiting for the ACK and the receiver is waiting for the data
packet. The situation will not make any progress before the
ACK Timeout running out.

When the ACK (PSN=Last) is lost, as shown in Figure 4(b),
the sender is waiting for the ACK and the receiver is waiting
for the data packet. Thus resulting in ACK Timeout.

RoCEv2 defines NAK Interval, during which the receiver
can only send at most one NAK. Consider such a situation as
shown in Figure 4(c). The NAK is lost. The receiver is waiting
for the NAK Interval to run out to generate NAK again. The
sender has sent the entire message to the receiver before it
receives NAK. Thus the sender begins to wait for the ACK
from the receiver. Since the whole message is sent, there is no

Client Sever

ACK

TIMEOUT

(a) Reason1

Client Sever

ACK

TIMEOUT

(b) Reason2

Client Sever

ACK

TIMEOUT

NAK

Interval

...

(c) Reason3

Client Sever

ACK

TIMEOUT

NAK

Interval

(d) Reason4

Fig. 4: Reason triggering the timeout retransmission

more unexpected packets to receive when the NAK Interval
runs out. Unfortunately, the NAK can only be triggered by
unexpected PSN of packets. The only way to complete this
transmission is waiting for the ACK Timeout to run out, thus
triggering the timeout retransmission.

When the same packet is lost twice, as shown in Figure
4(d). Because of the same reason as mentioned above: the
sender has sent the entire message to the receiver, while the
receiver is waiting for NAK Interval to run out to generate a
new NAK. Thus ACK Timeout is triggered.

The root cause of reason3 and reason4 is the improper trig-
gering mechanism for NAK, i.e., NAK can only be triggered
by data packets, and no timer mechanism is involved. We will
discuss the improvement of NAK triggering mechanism later.

We set the packet loss rate to 1% and repeat the simulation
100 times. The ratio of four reasons is shown as Figure 3. The
lost of last ACK (reason2) causes 1.8% timeout retransmis-
sion. The lost of last packet (reason1) causes 7.1% timeout
retransmission. The twice lost of packets (reason4) causes
33.9% timeout. The lost of NAK (reason3) owns the largest
propotion, i.e., 57.1%. It shows that reason3 and reason4
owns about 90%. It can be seen that the improper triggering
mechanism for NAK is the root cause of the low throughput
issue.

B. Design Overview

There are two solutions to improve the performance of Go-
Back-N algorithm. One way is to avoid triggering the timeout
retransmission, the other one is to reduce the ACK Timeout

Receive LPSN

EPSN LPSN

Counter

Receive Packet

EPSN LPSN

Finish

EPSN LPSN

Finish

EPSN LPSN

&&Counter

Send NAK PSN EPSN

EPSN LPSN

&& Counter

Receive LPSN

EPSN=LPSN?

Timer=T

EPSN=LPSN?

Finish

Finish

Send NAK(PSN=EPSN)

N

Y

Y

Timer>0?

Timer - -

Y

N

N

Receive Packet?

Y

Fig. 5: Check EPSN

value to a lower level. However, the ACK Timeout value is
related to the network topology, switch queueing delay and so
on. Thus, we cannot generally set it to a specific low level. It’s
also an open problem in TCP/IP, too large timeout value will
waste bandwidth, increase application completion time; too
small timeout value will trigger unnecessary retransmission,
occupy bandwidth, and even cause network congestion. We
use the first way to improve the throughput under lossy
networks. We also compare its performance under different
ACK Timeout values.

C. Design Details

The Improved Go-Back-N retransmission algorithm is pro-
posed, which contains the next two mechanisms.

1. ST (Send Twice) : Send the last packet of the message
twice.

2.CE (Check EPSN) : Adding the Go-Back-N a timer
mechanism to trigger the generation of NAK besides the
unexpected packet sequence number. When receiving the last
packet of the message, if expected PSN<Last PSN, record the
left time of NAK Interval T, the expected PSN (EPSN) and the
PSN of the last packet of the message (LPSN). After time T
running out, if EPSN<LPSN, send back NAK (EPSN), set the
timer to the initial value (NAK interval), and start the timer
again. If the packet (EPSN) is received during the time T, only
set the timer to the initial value, as shown in Figure 5.

ST reduces the timeout retransmission caused by reason1
and reason2. CE reduces the timeout retransmission caused

10
-5

10
-4

10
-3

10
-2

Packet Loss Rate

0

0.25

0.5

0.75

1

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Go-Back-N

Improved Go-Back-N

Go-Back-N with CE

Go-Back-N with ST

(a) Timeout:100ms

10
-5

10
-4

10
-3

10
-2

Packet Loss Rate

0

0.25

0.5

0.75

1

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Go-Back-N

Improved Go-Back-N

Go-Back-N with CE

Go-Back-N with ST

(b) Timeout:10ms

10
-5

10
-4

10
-3

10
-2

Packet Loss Rate

0

0.25

0.5

0.75

1

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Go-Back-N

Improved Go-Back-N

Go-Back-N with CE

Go-Back-N with ST

(c) Timeout:500us

Fig. 6: Throughput comparison

by reason3 and reason4, i.e., the improper NAK triggering
mechanism.

IV. EVALUATION

In this section, we evaluate the performance of the Improved
Go-Back-N retransmission algorithm by using ns-3[3]. The
parameter setting is the same as Table I. We compare the
proposed Improved Go-Back-N algorithm, which applies the

ST and CE mechanisms at the same time, and the algorithm
applying the ST/CE mechanism separately.

A. Performance of Improved Go-Back-N

We compare the algorithm performance under different
packet loss rate settings. The results are shown as Figure 6.
When setting the ACK Timeout value to 100ms, as shown in
Figure 6(a), the Improved Go-Back-N algorithm is best. The
second is Go-Back-N with CE, and the third is Go-Back-N
with ST. The traditional Go-Back-N plays the worst. When
the packet loss rate is less than 0.1%, since the twice loss of
packet and the loss of NAK play a main role in timeout retrans-
mission, Go-Back-N with CE recovers the throughput to about
97.2% compared to that in traditional Go-Back-N. Go-Back-
N with CE plays even a little better than the Improved Go-
Back-N, because the ST mechanism applied to the Improved
Go-Back-N caused some unnecessary transmission of the last
packet. When the packet loss rate increases to 1%, the effect of
the loss of last ACK and the last packet become not negligible.
Thus the performance of Go-Back-N with CE decreases to a
low level (but still better than the Go-Back-N with ST and
the traditional Go-Back-N) . The performance of the proposed
Improved Go-Back-N is still good whose throughput is about
64%.

It can be seen that the throughput of original Go-Back-N
begins to decrease to 70% when the packet loss rate increases
to 0.01%. It decreases more sharply when the packet loss rate
continues increasing. When the packet loss rate increases to
0.1%, Go-Back-N with ST plays only a little better than the
original Go-Back-N, which is because the twice loss of data
packets and the loss of NAK occupy a large proportion.

Figure 6(b) shows that when setting the ACK timeout value
to 10ms, the Improved Go-Back-N algorithm plays the best.
When the packet loss rate increases to 1%, the throughput
maintains around 60%. The Go-Back-N with CE plays a little
worse than Improved Go-Back-N when the packet loss rate
is greater than 0.1%. Go-Back-N with CE also plays much
better than the Go-Back-N with ST and the original Go-
Back-N algorithm. In conclusion, the CE mechanism plays an
important role even when the timeout value is much smaller.

To verify that the ACK Timeout is the key to the decrease
of the throughput, we set the ACK Timeout as 500us (a little
larger than the RTT), as shown in Figure 6(c). It can be seen
that four algorithms play almost the same which is identical
to our analysis that the timeout retransmission is the critical
issue to the low throughput. The Improved Go-Back-N and
the Go-Back-N with CE play about 10% better than the Go-
Back-N with ST and the original Go-Back-N when the packet
loss rate increases to 1%. However, this timeout setting is not
general and cannot be applied to data center networks.

B. Algorithm Performance Under Different Timeout Setting

We now compare the algorithm under different timeout
values, as shown in Figure 7. Figure 7(b) shows that the
proposed Improved Go-Back-N performs almost the same

10
-5

10
-4

10
-3

10
-2

Packet Loss Rate

0

0.25

0.5

0.75

1

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

TIMEOUT 100ms

TIMEOUT 10ms

TIMEOUT 500us

(a) Go-Back-N

10
-5

10
-4

10
-3

10
-2

Packet Loss Rate

0

0.25

0.5

0.75

1

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

TIMEOUT 100ms

TIMEOUT 10ms

TIMEOUT 500us

(b) Improved Go-Back-N

10
-5

10
-4

10
-3

10
-2

Packet Loss Rate

0

0.25

0.5

0.75

1

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

TIMEOUT 100ms

TIMEOUT 10ms

TIMEOUT 500us

(c) Go-Back-N with CE

10
-5

10
-4

10
-3

10
-2

Packet Loss Rate

0

0.25

0.5

0.75

1

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

TIMEOUT 100ms

TIMEOUT 10ms

TIMEOUT 500us

(d) Go-Back-N with ST

Fig. 7: Algorithm performance under different timeout setting

under different ACK timeout values. Thus, the Improved Go-
Back-N algorithm is robust for different ACK timeout values.
Therefore, We don’t need to know the network topology or
the congestion extent in advance, when applying the Improved
Go-Back-N algorithm. However, it is not the same situation
for the other three algorithms.

The performance of original Go-Back-N is largely influ-
enced by the timeout values, as shown in Figure 7(a). When
setting the timeout value to 100ms, the throughput decreases
to nearly 0% when the packet loss rate reaches 1%. When
setting the timeout value to 10ms, the throughput begins to
decrease sharply when the packet loss rate exceeds 0.2%.
The throughput decrease to 13.2% when the packet loss rate
reaches 1%.

Go-Back-N with CE performs well whatever the ACK
Timeout value is when the packet loss rate is less than 0.1%,
as shown in Figure 7(c). When the packet loss rate continues
increasing, however, it performs not so good when setting the
timeout value to the default 100ms. The throughput decreases
to 68% when the packet loss rate is 0.2% and the throughput is
only 17.6% when the packet loss rate is 1%. In this content, the
timeout retransmission still plays an important role in affecting
the performance of the throughput. When setting the timeout

value to 10ms, the throughput is much better and just a little
worse than the case where timeout value is set to 500us.

For Go-Back-N with ST, as shown in Figure 7(d). When
setting the timeout value to 100ms and 10ms, the throughput
begins to decrease when the packet loss rate reaches 0.01%.
The throughput is nearly 0% when the packet loss rate is
1%. Thus, the Go-Back-N with ST cannot avoid the most of
the timeout retransmission. When setting the timeout value to
500us, the performance is much better.

V. RELATED WORK

Various improved Go-Back-N mechanisms propose to uti-
lize the network throughput. Most of them consider only TCP,
and cannot be directly used for RDMA. There are some related
work on RDMA mentioned the mechanism of loss recovery,
but they do not design it carefully.

IRN [4]: IRN is an improved RoCE NIC design. IRN
proposes a simplified form of selective acknowledgement. IRN
maintains a bitmap to track which packets have been cumula-
tively and selectively acknowledged. However, it cannot avoid
triggering ACK timeout. It only uses RTOmin and RTOmax

to relieve the low throughput problem caused by ACK timeout.

MP-RDMA [24]: MP-RDMA presents a multi-path trans-
port for RDMA. MP-RDMA simply retransmits unacknowl-
edged packets as new data if there is no new data to transmit
and awnd allows. However, when the proportion of small
flows is large, many duplicate packets will be induced and
the network throughput will downgrade.

VI. CONCLUSION

This paper proposed an Improved Go-Back-N algorithm,
which is very easy to deploy on current data center networks.
The proposed algorithm is almost as simple as original Go-
Back-N, i.e., requiring only the settings on the end hosts and
making no changes on switches. Our Improved Go-Back-N
makes two changes on traditional Go-Back-N retransmission
algorithm, ST (Send Twice) and CE (Check EPSN), so as
to avoid most of the timeout retransmission. The simulation
shows that it improves the throughput efficiently: when the
packet loss rate increases to 1%, the throughput can still reach
about 60% compared to lossless condition.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments. This research is supported by the
National Key R&D Program of China 2018YFB1003505, the
National Natural Science Foundation of China under Grant
Numbers 61602194, 61772265, and 61802172, the Collabo-
rative Innovation Center of Novel Software Technology and
Industrialization, and the Jiangsu Innovation and Entrepreneur-
ship (Shuangchuang) Program.

REFERENCE

[1] Hadoop. http://hadoop.apache.org/.
[2] ns3-rdma. https://github.com/bobzhuyb/ns3-rdma.
[3] The ns3 simulator. https://www.nsnam.org/.
[4] Revisiting network support for RDMA, author=Mittal, Radhika and

Shpiner, Alexander and Panda, Aurojit and Zahavi, Eitan and Krish-
namurthy, Arvind and Ratnasamy, Sylvia and Shenker, Scott, bookti-
tle=Proceedings of the ACM SIGCOMM Conference on Data Commu-
nication, Budapest, Hungary, Aug. 2018.

[5] IEEE. 802.1Qbb. Priority based flow control, 2011.
[6] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A

scalable, commodity data center network architecture. In Proceedings
of the ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Seattle,
WA, USA, Aug. 2008.

[7] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, New Delhi, India, Aug.
2010.

[8] Infiniband Trade Association. Infiniband architecture volume 1, general
specifications, release 1.2.1, 2008.

[9] Infiniband Trade Association. Supplement to InfiniBand architecture
specification volume 1 release 1.2.2 annex A16: RDMA over converged
ethernet (RoCE), 2010.

[10] Infiniband Trade Association. InfiniBand architecture volume 2, physical
specifications, release 1.3, 2012.

[11] Infiniband Trade Association. Supplement to InfiniBand architecture
specification volume 1 release 1.2.2 annex A17: RoCEv2 (IP routable
RoCE), 2014.

[12] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal
Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Abbasi,
Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali
Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett,
Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. Windows
azure storage: a highly available cloud storage service with strong
consistency. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles, SOSP, Cascais, Portugal, Oct. 2011.

[13] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In 6th Symposium on Operating System
Design and Implementation (OSDI), San Francisco, California, USA,
Dec. 2004.

[14] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. Farm: Fast remote memory. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI, Seattle, WA, USA, Apr. 2014.

[15] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on networking, (4):397–
413, 1993.

[16] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Dr. Allyn Romanow.
TCP Selective Acknowledgment Options. RFC 2018, October 1996.

[17] Yixiao Gao, Yuchen Yang, Tian Chen, Jiaqi Zheng, Bing Mao, and
Guihai Chen. DCQCN+: Taming large-scale incast congestion in rdma
over ethernet networks. In IEEE 26th International Conference on
Network Protocols, ICNP, Cambridge, UK, Sept. 2018.

[18] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen
Patel, and Sudipta Sengupta. VL2: a scalable and flexible data center
network. In Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, Barcelona, Spain, Aug. 2009.

[19] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitendra Padhye, and Marina Lipshteyn. RDMA over commodity
ethernet at scale. In Proceedings of the ACM SIGCOMM Conference,
Florianopolis, Brazil, Aug. 2016.

[20] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, David A. Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
Zhi-Wei Lin, and Varugis Kurien. Pingmesh: A large-scale system for
data center network latency measurement and analysis. In Proceedings
of the ACM SIGCOMM Conference on Special Interest Group on Data
Communication, London, United Kingdom, Aug. 2015.

[21] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jitendra
Padhye, and Kai Chen. Deadlocks in datacenter networks: Why do they
form, and how to avoid them. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks, HotNets 2016, Atlanta, GA, USA, Nov. 2016.

[22] Anuj Kalia, Michael Kaminsky, and David G Andersen. Using RDMA
efficiently for key-value services.

[23] Mark J. Karol, S. Jamaloddin Golestani, and David Lee. Prevention of
deadlocks and livelocks in lossless, backpressured packet networks. In
IEEE Conference on Computer Communications, INFOCOM, Tel Aviv,
Israel, Mar. 2000.

[24] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, Enhong Chen, and Thomas Moscibroda. Multi-
path transport for RDMA in datacenters. In 15th USENIX Symposium
on Networked Systems Design and Implementation, NSDI, Renton, WA,
USA, Apr. 2018.

[25] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily R. Blem,
Hassan M. G. Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang,
David Wetherall, and David Zats. TIMELY: RTT-based congestion
control for the datacenter. In Proceedings of the ACM Conference on
Special Interest Group on Data Communication, SIGCOMM, London,
United Kingdom, Aug. 2015.

[26] Rong Pan, Balaji Prabhakar, and Ashvin Laxmikantha. QCN: Quantized
congestion notification. IEEE802, 1, 2007.

[27] Yawen Pan, Chen Tian, Jiaqi Zheng, Gong Zhang, Hengky Susanto,
Bo Bai, and Guihai Chen. Support ecn in multi-queue datacenter
networks via per-port marking with selective blindness. In 38th IEEE
International Conference on Distributed Computing Systems, ICDCS,
Vienna, Austria, July. 2018.

[28] K. K. Ramakrishnan, Sally Floyd, and David L. Black. The addition of
explicit congestion notification (ECN) to ip. RFC, 3168:1–63, 2001.

[29] Danfeng Shan and Fengyuan Ren. Improving ecn marking scheme with
micro-burst traffic in data center networks. In IEEE Conference on
Computer Communications, INFOCOM, Atlanta, GA, USA, May. 2017.

[30] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Hong Liu, Jeff Provost, Jason Simmons,
Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin
Vahdat. Jupiter rising: a decade of clos topologies and centralized control
in google’s datacenter network. In Proceedings of the ACM Conference
on Special Interest Group on Data Communication, SIGCOMM, London,
United Kingdom, Aug. 2015.

[31] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. Congestion control for large-scale
rdma deployments. In Proceedings of the ACM Conference on Special
Interest Group on Data Communication, SIGCOMM, London, United
Kingdom, Aug. 2015.

[32] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. ECN
or delay: Lessons learnt from analysis of DCQCN and TIMELY. In
Proceedings of the 12th International on Conference on emerging
Networking EXperiments and Technologies, CoNEXT, Irvine, California,
USA, Dec. 2016.

	Select a link below
	Return to Previous View
	Return to Main Menu

