
Computer Networks 158 (2019) 193–205

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Scheduling dependent coflows to minimize the total weighted job

completion time in datacenters

�

Bingchuan Tian, Chen Tian

∗, Bingquan Wang, Bo Li, Zehao He, Haipeng Dai, Kexin Liu,
Wanchun Dou, Guihai Chen

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

a r t i c l e i n f o

Article history:

Received 3 March 2019

Accepted 14 May 2019

Available online 17 May 2019

Keywords:

Coflow scheduling

Approximation algorithm

Datacenter

a b s t r a c t

Datacenter networks are critical to cloud computing. The coflow abstraction is a major leap forward

of application-aware network scheduling. In the context of multi-stage jobs, there are dependencies

among coflows. As a result, there is a large divergence between coflow-completion-time (CCT) and job-

completion-time (JCT). To our best knowledge, this is the first work that systematically studies: how to

schedule dependent coflows of multi-stage jobs, so that the total weighted job completion time can be min-

imized . We present a formal mathematical formulation. Inspired by the optimal solution of the relaxed

linear programming, we design an algorithm that runs in polynomial time to solve this problem with

an approximation ratio of (2 M + 1) in general case, and 3 in special case, where M is the number of

hosts. Evaluation results demonstrate that, the largest gap between our algorithm and the lower bound

is only 9.14%. In testbeds, we reduce the JCT by up to 81.65% comparing with pure DCTCP. In simulations,

we reduce the average JCT by up to 33.48% comparing with Aalo, a heuristic multi-stage coflow sched-

uler; we reduce the total weighted JCT by up to 83.58% comparing with LP-OV-LS, the state-of-the-art

approximation algorithm of coflow scheduling.

© 2019 Elsevier B.V. All rights reserved.

1

d

[

s

i

i

r

d

a

o

t

t

t

a

(

h

(

a

t

t

c

d

e

(

l

i

C

a

u

a

s

h

1

. Introduction

Datacenter networks are critical to cloud computing. In modern

atacenters, data-parallel frameworks (e.g. , MapReduce [2] , Hadoop

3] , Spark [4]) are widely used to run distributed computing jobs,

uch as querying and data mining. Data transfer has a significant

mpact on job performance. For example, a MapReduce/Hadoop job

s scheduled by a master process to execute m mapper tasks and

 reducer tasks. Each mapper task reads files from the underlying

istributed file system (DFS), performs user-defined computations,

nd writes the outputs back to DFS. Each reducer task reads the

utput data of mappers, merges them and writes the final results

o DFS. This data transmission phase is called as shuffle , where to-

ally m × r flows are generated for the job. It is reported that some-

imes, 50% of the job time is spent on transferring shuffle data

cross the networks [5] .
� This paper is an extended version of Tian et al. [1] in INFOCOM’18.
∗ Corresponding author.

E-mail addresses: bctian@smail.nju.edu.cn (B. Tian), tianchen@nju.edu.cn

C. Tian), 773854936@qq.com (B. Wang), libo_nju16@small.nju.edu.cn (B. Li),

ezehao@qq.com (Z. He), haipengdai@nju.edu.cn (H. Dai), kxliu@small.nju.edu.cn

K. Liu), douwc@nju.edu.cn (W. Dou), gchen@nju.edu.cn (G. Chen).

a

c

e

d

s

s

d

F

ttps://doi.org/10.1016/j.comnet.2019.05.010

389-1286/© 2019 Elsevier B.V. All rights reserved.
The coflow abstraction is a major leap forward of application-

ware network scheduling. Traditional network metrics, such as

he average flow-completion-time (FCT), ignore application seman-

ics of data-parallel jobs. For a shuffle in MapReduce/Hadoop, the

ompletion time of the slowest flow (instead of the average FCT)

ominates the start of reducer computation. Minimizing the av-

rage FCT does not necessarily minimize the job-completion-time

JCT). Being aware of this problem, a coflow is defined as the col-

ection of all flows in a shuffle, and coflow-completion-time (CCT)

s the completion time of the slowest flow in a certain coflow [6] .

urrent work focuses on minimizing the average CCT. For jobs with

 single shuffle phase (e.g. , Terasort), minimizing the average CCT

sually results in faster jobs, because there is only one coflow

nd time spent on computation can be considered as nearly con-

tant [7–9] .

In the context of multi-stage jobs, there are dependencies

mong coflows. In modern datacenters, it is common that a job

ontains more than one stage with dependencies. For example,

ach TPC-DS query (of distributed database applications) is a

irected-acyclic-graph (DAG) of multi-stage dataflow [10] . As a re-

ult, a coflow C 2 can be dependent on another coflow C 1 in the

ame job if the consumer computation stage of C 1 is the pro-

ucer of C 2 . There are two kinds of dependencies: Starts-After and

inishes-Before [9] . Starts-After represents the existence of explicit

https://doi.org/10.1016/j.comnet.2019.05.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.05.010&domain=pdf
mailto:bctian@smail.nju.edu.cn
mailto:tianchen@nju.edu.cn
mailto:773854936@qq.com
mailto:libo_nju16@small.nju.edu.cn
mailto:hezehao@qq.com
mailto:haipengdai@nju.edu.cn
mailto:kxliu@small.nju.edu.cn
mailto:douwc@nju.edu.cn
mailto:gchen@nju.edu.cn
https://doi.org/10.1016/j.comnet.2019.05.010

194 B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205

Fig. 1. A motivating example.

s

p

o

(

2

r

e

s

j

h

C

s

d

l

a

t

l

o

i

d

i

b

t

a

t

r

K

a

a

b

S

t

g

J

t

l

h

c

m

s

h

3

s

l

a

3

w

u

t

p

r

t

b
barriers (e.g. , the write barriers in Hadoop). In this case, C 2 cannot

start until C 1 has finished. Finishes-Before is common for pipeline

based frameworks (e.g. , Spark), where C 2 can coexist with C 1 but

it cannot finish until C 1 has finished. In this paper we focus on

scheduling coflows of Starts-After type multi-stage jobs, and leave

Finishes-Before type jobs to future work.

There is a large divergence between CCT and JCT for multi-

stage jobs. Consider a motivating example in Fig. 1 . There are two

equally-weighted jobs J 1 and J 2 arrived and waiting to be sched-

uled. J 1 has 2 coflows C 1 and C 2 with a dependency that C 2 cannot

start until C 1 has finished (i.e., Starts-After), while J 2 has only one

coflow C 3 . C 1 / C 2 / C 3 each has 4 flows. The flows are of 1/3/2 unit(s)

size for C 1 / C 2 / C 3 , respectively, as shown in Fig. 1 (a). The total sizes

of these coflows are 4/12/8 units, respectively. The topology is non-

blocking, and each input/output port can accept one unit flow size

in one time step. It takes 2/6/4 steps for C 1 / C 2 / C 3 to pass the net-

work bottleneck if occupied exclusively. The minimal average CCT

is 2+(2+4)+(2+4+6)
3 ≈ 6 . 67 if we schedule coflows in the order of

〈 C 1 , C 3 , C 2 〉 . The corresponding average JCT is (2+4+6)+(2+4)
2 = 9 .

However, if we schedule the coflows in the order of 〈 C 3 , C 1 , C 2 〉 ,
the average CCT increases to 4+(4+2)+(4+2+6)

3 ≈ 7 . 33 , while the av-

erage JCT decreases to 4+(4+2+6)
2 = 8 . Note that in this example we

assign equal weights to J 1 and J 2 . Usually in production systems,

important jobs are prioritized by setting a larger weight value. Ac-

cordingly, we extend the optimization objective from the average

JCT to the total weighted JCT.

Our contributions: To our best knowledge, this is the first work

that systematically studies: how to schedule dependent coflows of

multi-stage jobs, so that the total weighted job completion time can

be minimized (Section 2). We present a formal mathematical for-

mulation. We relax it to a linear programming, so that lower bound

can be obtained for performance evaluation (Section 3). Inspired

by the optimal solution of the relaxed linear programming, we

design an algorithm that runs in polynomial time to solve this

problem with an approximation ratio of (2 M + 1) for both non-

oversubscribed and oversubscribed networks, where M is the num-

ber of hosts (Sections 4 and 5). With a special kind of coflow pat-

terns, the approximation ratio can be reduced to 3. We design and

implement a scheduling framework in our testbeds (Section 6).

Evaluation results demonstrate that, the largest gap between our

algorithm and the lower bound is only 9.14%. In testbeds, we re-

duce the average/total weighted JCT by up to 81.65%, comparing

with pure DCTCP. In simulations, we reduce the average JCT by

up to 33.48% comparing with Aalo, a heuristic multi-stage coflow
cheduler. We reduce the total weighted JCT by up to 83.58% com-

aring with LP-OV-LS, a state-of-the-art approximation algorithm

f coflow scheduling, while our algorithm runs over 20 × faster

 Section 7).

. Related work

Existing work, including heuristics and approximation algo-

ithms, focus on scheduling coflows of single-stage jobs. The only

xception is Aalo [9] , which uses a small section to discuss a

traight forward heuristic to reduce the average JCT of multi-stage

obs.

Single-stage heuristics: Several work aims at developing

euristic coflow scheduling systems to minimize the average

CT. The coflow concept firstly appeared in Orchestra [5] , which

hows that even a simple FIFO discipline can significantly re-

uce the average CCT. The formal definition was presented

ater [6] . Varys uses the smallest-effective-bottleneck-first (SEBF)

nd minimum-allocation-for-desired-duration (MADD) heuristics

o schedule coflows to minimize either the average CCT or dead-

ine missing ratio [7] . Barrat exploits multiplexing to prevent head-

f-line blocking to small coflows [8] . Stream aims at decentral-

zed coflow scheduling [11] . These algorithms do not consider

ependent relationships among coflows of multi-stage jobs. Explic-

tly handling dependency, our coflow scheduling algorithm has a

ounded approximation ratio for multi-stage jobs.

Single-stage approximation algorithms: There are also some

heoretical work aiming at minimizing the total weighted CCT with

pproximation algorithms. The first polynomial-time determinis-

ic approximation algorithm has an approximation ratio of 67
3 by

elaxing the problem to a time-indexed linear programming [12] .

huller et al. proposed a 12-approximation algorithm by building

 bridge towards concurrent open shop problem [13] . Luo et al.

nnounced a 2-approximation algorithm [14] . Unfortunately, it has

een proven inaccurate later by a counter-example [15] . Recently,

hafiee et al. proposed a 5-approximation algorithm by relaxing

he problem to a linear programming [15,16] . Again, all these al-

orithms focus on minimizing CCT while ignore its divergence to

CT in the context of multi-stage jobs.

Multi-stage heuristics: Aalo developed a local queueing sys-

em in sender ends with the heuristics of discretized coflow-aware

east-attained service (D-CLAS) to minimize the average CCT. To

andle multi-stage scenarios, the simple heuristic is to prioritize

oflows based on their dependency orders [9] . It has neither for-

al formulation nor analysis. Minimizing the average JCT is just a

pecial case of minimizing the total weighted JCT, where all jobs

ave an equal weight.

. Formulation and analysis

We first present the original formulation of multi-stage coflow

cheduling problem and prove its NP-hardness. We relax it to a

inear programming, which is essential for the construction of our

pproximation algorithm.

.1. Settings

We abstract the network topology as a non-blocking big switch

ith M ports, each of which is connected with a host via a link of

nit bandwidth; coflow properties are known as a priori, such as

he source, destination and bytes of each flow in it, just as what

rior work does [7,9,12,13,16] . Recent advances in datacenter fab-

ics [17,18] make it practical. Link-sharing and network preemp-

ions are allowed.

For some jobs, whether a reducer’s computation duration can

e neglected depends on the speed of CPU and network: when

B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205 195

Table 1

Notations of constants.

Symbol Definition

N the number of jobs

K the total number of coflows

M the number of hosts

T the maximum possible running time

N = { 1 , 2 , · · · , N} the job set

K = { 1 , 2 , · · · , K} the coflow set

M = { 1 , 2 , · · · , M} the host set

J n ∈ 2 K , n ∈ N the n th job

w n , n ∈ N the weight of the n th job

r n , n ∈ N the release time of the n th job

f k
i j
, k ∈ K , i, j ∈ M the flow (i → j) in coflow k

p k
i j
, k ∈ K , i, j ∈ M the total bytes of flow f k

i j

Table 2

Notations of variables.

Symbol Definition

J n the completion time of the n th job

C k the completion time of the k th coflow

F k
i j

the completion time of flow f k
i j

f k
i j
(t) the instantaneous transmission rate of flow f k

i j
at time t

C

q

t

n

t

m

n

i

3

a

i

(

s

C

T

E

w

o

s

t

o

s

b

s

n

i

E

t

a

fl

t

E

t

i

b

3

e

a

i

o

i

t

n

J

t

n

F

N

t

n

N

c∫

S

c

E

n

N

i

o

x

a

t

PU is faster, the received data can be processed at once without

ueuing, thus the reducer’s completion time is indeed the network

ransmission time; when network is faster, received data that can-

ot be timely processed will be buffered, thus an extra computa-

ion phase is needed after network transmission. For simplicity, in

athematical analysis, we only focus on the first scenario and ig-

ore the computation duration. We do not require or enforce this

n our evaluation.

.2. Original formulation

The multi-stage coflow scheduling problem can be formulated

s follows. Notations of constant prior information are summarized

n Table 1 , while decision variables are summarized in Table 2 .

O) min

N ∑

n =1

w n J n (1)

.t. J n = max
k ∈ J n

C k , ∀ n ∈ N ; (2)

 k = max
i, j∈ M

F k i j , ∀ k ∈ K ; (3)

∫ F k
i j

r n

f k i j (t) dt = p k i j , ∀ i, j ∈ M , n ∈ N , k ∈ J n ; (4)

∫ r n

0

f k i j (t) dt = 0 , ∀ i, j ∈ M , n ∈ N , k ∈ J n ; (5)

∫ C k ′

0

f k i j (t) dt = 0 , ∀ i, j ∈ M , n ∈ N , k ′ ≺ k ∈ J n ; (6)

∑

j∈ M

∑

k ∈ K
f k i j (t) ≤ 1 , ∀ i ∈ M , t ∈ [0 , T] ; (7)

∑

i ∈ M

∑

k ∈ K
f k i j (t) ≤ 1 , ∀ j ∈ M , t ∈ [0 , T] ; (8)

f k i j (t) ≥ 0 , ∀ i, j ∈ M , n ∈ N , k ∈ J n , t ∈ [0 , T] ; (9)

 =

∑

i ∈ M

∑

j∈ M

∑

k ∈ K
p k i j + max

n ∈ N
r n . (10)
x

q. (1) is the objective of our problem, i.e. , minimizing the total

eighted JCT; again, minimizing the average JCT is a special case

f this objective. JCT and CCT are defined by Eqs. (2) and (3) , re-

pectively. Eq. (4) guarantees that all bytes of each flow must be

ransmitted within proper time intervals and gives the definition

f flow completion time in addition. Eq. (5) describes the con-

traints of release time, that is to say, a flow is allowed to transmit

ytes only after the job it belongs to has been released. Eq. (6) de-

cribes the precedence constraints to guarantee that a flow can-

ot transmit any byte before all of its dependent coflows have fin-

shed, which implies DAG dependencies among coflows in a job.

qs. (7) and (8) guarantee that for each port (i.e. , host), the to-

al data rate cannot exceed the port capacity (normalized to 1)

t each time. Eq. (9) guarantees a non-negative data rate for each

ow, which in addition implies that preemptions are allowed (i.e. ,

he event that data rate turns to 0 is indeed a preemption). Finally,

q. (10) gives us an upper bound of the maximum possible running

ime T ; though it is quite straightforward, it does not have any bad

mpact on the following work. (O) is NP-hard, which can be proved

y reducing from the original coflow scheduling problem [7,12] .

.3. Relaxed formulation

Note that the original formulation (O) is a complicated nonlin-

ar programming with infinite variables, which is hard to analyze

nd even harder to approximate. Thus we choose to relax (O) to an

nteger linear programming (ILP) firstly. We derive the constraints

f (ILP) as following.

Load Constraints: Denote J = { J 1 , J 2 , · · · , J N } as the job set and

t’s clear that J is a partition of coflow set K , which indicates

hat ⋃

 ∈ N
J n = K , (11)

 n ∩ J n ′ = ∅ , ∀ n, n

′ ∈ N , n � = n

′ , (12)

hus Eq. (7) can be transformed into ∑

′ ∈ N

∑

k ∈ J n ′

∑

j∈ M

f k i j (t) ≤ 1 . (13)

or a specific Job n , let

 n � { n

′ ∈ N : J n ′ ≤ J n } (14)

hus Eqs. (9) and (13) indicate that ∑

′ ∈ N n

∑

k ∈ J n ′

∑

j∈ M

f k i j (t) ≤ 1 . (15)

ow let’s integrate the both sides of Eq. (15) from 0 to J n and we

an obtain that
 J n

0

∑

n ′ ∈ N n

∑

k ∈ J n ′

∑

j∈ M

f k i j (t) dt ≤ J n . (16)

wap the order between the integration and summations. By

ombining Eqs. (4) , (5), (6), (10) and (14) , we can transform

q. (16) into ∑

′ ∈ N n

∑

k ∈ J n ′

∑

j∈ M

p k i j ≤ J n . (17)

ote that Eq. (17) is not a linear inequality, because the symbol N n

n the first summation is also a variable. Next we will introduce an

rder matrix X = [x i j] to linearize the inequality. Let

 i j � 1

{
J i < J j

}
(18)

nd ties between J i and J j are broken arbitrarily. 1 { ·} is the indica-

or function, which implies

 n ′ n ∈ { 0 , 1 } , ∀ n, n

′ ∈ N , n � = n

′ . (19)

196 B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205

α

p

a

t

p

m

[

i

t

g

i

l

k

u

t

i

o

4

e

n

e

t

(

c

F

i

o

p

t

i

o
Note that the order matrix is indeed a representation of the strictly

totally ordered relation among the job completion time, and the

asymmetry and transitivity are equivalent to the following two lin-

ear constraints:

x nn ′ + x n ′ n = 1 , ∀ n, n

′ ∈ N , n � = n

′ ; (20)

x nn ′ + x n ′ n ′′ ≥ x nn ′′ ,

∀ n, n

′ , n

′′ ∈ N , n � = n

′ , n � = n

′′ , n

′ � = n

′′ . (21)

Now Eq. (17) can be written as ∑

k ∈ J n

∑

j∈ M

p k i j +

∑

n ′ : x n ′ n =1

∑

k ∈ J n ′

∑

j∈ M

p k i j ≤ J n , (22)

which implies ∑

k ∈ J n

∑

j∈ M

p k i j +

∑

n ′ ∈ N
n ′ � = n

∑

k ∈ J n ′

∑

j∈ M

p k i j x n ′ n ≤ J n ,

∀ n ∈ N , i ∈ M (23)

instantly, due to the property of indicator function. Similarly, we

have ∑

k ∈ J n

∑

i ∈ M

p k i j +

∑

n ′ ∈ N
n ′ � = n

∑

k ∈ J n ′

∑

i ∈ M

p k i j x n ′ n ≤ J n ,

∀ n ∈ N , j ∈ M . (24)

Release-time Constraints: Eqs. (7) and (9) indicate that for a

specific Job n , we have ∑

k ∈ J n

∑

j∈ M

f k i j (t) ≤ 1 . (25)

Integrating the both sides of Eq. (25) from r n to J n and finally, we

have

J n − r n ≥
∑

k ∈ J n

∑

j∈ M

p k i j ≥ 0 , ∀ n ∈ N . (26)

Combining the derived constraints and properties, we obtain

the relaxed formulation (ILP) as follows:

(ILP) min

N ∑

n =1

w n J n (27)

s.t. (23)(24)(26)(20)(21)(19) .

For integer linear programming is NP-hard in general, we further

relax (ILP) to a linear programming (LP) :

(LP) min

N ∑

n =1

w n J n (28)

s.t. (23)(24)(26)(20)(21) ;
x n ′ n ≥ 0 , ∀ n, n

′ ∈ N , n � = n

′ . (29)

Easy to see that (LP) is a relaxation of (ILP) . Denote the optimal so-

lution of (O), (ILP) and (LP) as OPT, OPT ILP and OPT LP , respectively.

Due to the property of relaxation, we have

OP T LP ≤ OP T ILP ≤ OP T (30)

for a minimization problem, which concludes that OPT LP is a lower

bound of the optimal solution of (O) .

4. Approximation algorithms

In general, the coflow scheduling problem can be reduced to a

corresponding concurrent open shop problem [12,19] . Multi-stage

coflow scheduling problem is close to (however, not the same as)

the PDm | r j , pmpt, prec | �w j C j problem, represented in improved
| β| γ notation [20,21] , but few work aimed at this problem in the

ast. To the best of our knowledge, there are only approximation

lgorithms for this problem dealing with quite special cases, e.g. ,

he cases with at most two dependency chains [22] . Moreover, our

roblem is much knottier for two reasons: (1) Coflow scheduling is

ore complicated inherently due to coupled resource constraints

7] ; (2) tree dependencies (even DAG dependencies) are common

n current data-parallel frameworks [6,9] , thus aiming at special

ypes of dependencies is meaningless.

In this section, we proposed an event-driven approximation al-

orithm for Multi-stage Coflow Scheduling, namely MCS. The basic

dea of MCS is to order coflows according to completion time in re-

axed linear programming, which is used to solve and analysis all

inds of scheduling problems [15,16,23–27] . To make it clear, we

se matrix C = [c i j] ∈ R

M×M to represent a coflow, where c ij is the

ransmitted bytes from host i to host j in this coflow. Correspond-

ngly, we denote || C|| = max {|| C|| 1 , || C|| ∞

} as the bottleneck bytes

f coflow C , where || · || p is the p -norm.

.1. Algorithm design

To approximately solve (O) in polynomial time, we designed an

vent-based algorithm MCS, shown as Algorithm 1 . At the begin-

Algorithm 1: MCS algorithm.

Input : release time r (·) and weight w (·) of each job, total

bytes of each flow f (·)
(·, ·)

1 Solve the linear programming (LP) with above inputs and

denote the job completion time in the optimal solution as
˜ J n , n ∈ N .

2 Sort and reindex all jobs such that

˜ J 1 ≤ ˜ J 2 ≤ · · · ˜ J N . (31)3

4 repeat

5 call Update when a job released .

6 until all jobs finished

7

8 function Update

9 Suspend all active coflows.

10 List all released but not finished coflows in table L .

11 Sort the coflows in L with a topological-sorting algorithm

according to their dependencies.

12 Sort the coflows in L with an arbitrary stable sorting

algorithm (e.g. , merge sorting) according to the jobs

they belong to in the order of Eq. (31).

13 for i = 1 → | L | do

14 Decompose coflow L i into k coflow-slices with

Algorithm 2 and transmit them one by one with

backfilling.

ing, we solve the linear programming (LP) . Here, total bytes of

ach flow, jobs’ release time and jobs’ weights are inputs, while

he order matrix and jobs’ completion time are decision variables

 i.e. , the outputs of (LP)). Then, we sort and reindex all jobs ac-

ording to their completion time in the optimal solution of (LP) .

or each job, the new index is regarded as its transmission prior-

ty, and a job with smaller index has a higher priority. The priority

f a coflow is the priority the job it belongs to.

When a new job is released, all of the active jobs will be sus-

ended and rescheduled. Specifically, we first sort all of the ac-

ive coflows according to their priorities, ties are broken accord-

ng to their dependencies. Next, we schedule the coflows one by

ne, and each coflow is scheduled with our proposed Incomplete

B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205 197

B

b

d

T

R
i

D

P

t

t

w

s

a

t

i

T

a

w

d

t

m

c

fi

a

fi

a

a

i

a

l

T

A

t

P

t

T

P ∑

N

e

c

t

t

2

T

P

L

g

t

w

t

i

L

L

1

d

t

4

p

T

i

P

i

p

p

L

P

μ

T

μ

w

μ

a

w

n

irkhoff-von Neumann (IBvN) decomposition algorithm, inspired

y the famous Birkhoff-von Neumann (BvN) theorem, which is fun-

amental to some network schedulers [12,28–30] .

heorem 4.1 ([31] BvN theorem) . Doubly stochastic matrix A ∈

n ×n can be decomposed as A =

∑ k
i =1 c i P i , where c i ∈ (0, 1) and P i

s a permutation matrix for each i ,
∑ k

i =1 c i = 1 , k ≤ n 2 − 2 n + 2 .

efinition 4.1 (Incomplete permutation matrix) . A binary matrix

 = [p i j] ∈ R

n ×n is defined as an incomplete permutation matrix if

here is at most one entry of 1 in each row and each column.

For a specific coflow C , if C
|| C|| is a doubly stochastic matrix, i.e. ,

he bytes are uniformly distributed in each ingress and egress port,

e may decompose it into k weighted permutation matrix and

chedule them directly. Two polynomial decomposition algorithms

re given by [32] . Under this condition, there is no link-sharing

hus no congestion, and each link can be fully-used. However,

n most cases, C
|| C|| is far away from a doubly stochastic matrix.

o deal with this situation, we propose the IBvN decomposition

lgorithm (Algorithm 2) to decompose a nonnegative matrix into k

Algorithm 2: IBvN decomposition algorithm.

Input : nonnegative matrix ˜ A = [a i j] ∈ R

n ×n

Output : weights ˜ c l , incomplete permutation matrices

˜ P l = [p (l)
i j

] ∈ R

n ×n , l = 1 , 2 , · · · , k ′

1 Augment ˜ A to || ̃ A || A , where A is a doubly stochastic matrix

[12].

2 Decompose A into permutation matrices such that

A =

∑ k
i =1 c i P i [32].

3 for i = 1 → n do

4 for j = 1 → n do

5 Find the index m such that ∑ m −1
l=1

c l p
(l)
i j

< a i j ≤
∑ m

l=1 c l p
(l)
i j

.

6 For all l > m , p (l)
i j

← 0 .

7 if a i j <

∑ m

l=1 c l p
(l)
i j

then

8 Transform c m

P m

into c m 1 P m 1 + c m 2 P m 2 , where

c m 2 =

∑ m

l=1 c l p
(l)
i j

− a i j and c m 1 = c m

− c m 2 ,

P m 1 = P m 2 = P m

.

9 p (m 2)
i j

← 0 .

10 Rearrange all weights and all incomplete permutation

matrices such that ˜ A =

∑ k ′
i =1 c i ̃ P i .

eighted incomplete permutation matrix. As a result, a coflow is

ecomposed into some coflow-slices, and each slice can be directly

ransmitted without link-sharing and preemptions.

Note that the coflow-slice is represented as an incomplete per-

utation matrix instead of a permutation matrix, thus some links

an be empty, which can harm network throughput. Here back-

lling mechanism is used to keep network busy. Specifically, for

 running coflow-slice (with highest priority), when the scheduler

nds that some links are empty, the flow in other coflow-slices is

llowed to run in advance if it can transmit data with nonzero rate

nd do not interfere with the current running coflow-slice. Flows

n jobs with higher priority are considered firstly. The feasibility

nd polynomial running time of Algorithm 2 are described in fol-

owing theorems:

heorem 4.2. Nonnegative matrix ˜ A ∈ R

n ×n can be decomposed as

˜
 =

∑ k ′
i =1 c̄ i ̃ P i , where c̄ i ∈ (0 , || ̃ A ||) and ˜ P i is an incomplete permuta-

ion matrix for each i ,
∑ k ′

i =1 c̄ i = || ̃ A || , k ′ ≤ 2 n 2 − 2 n + 1 .
roof. By [12] , nonnegative matrix ˜ A can be augmented to ma-

rix || ̃ A || A , where A is a doubly stochastic matrix. According to

heorem 4.1 , A can be decomposed into k permutation matrices

 1 , ���, P k with corresponding weights c 1 , ���, c k ∈ (0, 1) such that
 k
i =1 c i = 1 , which implies that ˜ c 1 , · · · , ̃ c k ′ ∈ (0 , 1) and

∑ k ′
i =1 ̃ c i = 1 .

oting that || ̃ A || A is augmented from

˜ A , we have c̄ i = || A || ̃ c i for

ach i , which concludes that c̄ i ∈ (0 , || ̃ A ||) and

∑ k ′
i =1 c̄ i = || ̃ A || . It’s

lear that Line 8 in Algorithm 2 can be executed by at most n 2 − 1

imes, which generates at most n 2 − 1 new incomplete permu-

ation matrices. As a result, k ′ ≤ (n 2 − 2 n + 2) + (n 2 − 1) = 2 n 2 −
 n + 1 , which completes the proof. �

heorem 4.3. MCS algorithm runs in polynomial time.

roof. We first give the following lemma. Proof is trivial.

emma 4.1. IBvN decomposition algorithm runs in polynomial time.

For the preprocessing phase of MCS algorithm, the linear pro-

ramming (Line 1 in Algorithm 1) can be solved in polynomial

ime using ellipsoid algorithm [33] or projective algorithm [34] ,

hile sorting and reindexing (Line 2 in Algorithm 1) run in the

ime of O(n log n) . When a job is released, the Update function

s called. By digging into the Update function, we can see that

ine 8–11 in Algorithm 1 runs in polynomial time, while from

emma 4.1 , we know that the IBvN decomposition algorithm (Line

3 in Algorithm 1) runs in polynomial time, and so does the Up-

ate function. Note that the MCS algorithm runs in polynomial

ime. This completes the proof. �

.2. Performance analysis

The following theorem indicates the performance of our pro-

osed algorithm.

heorem 4.4. MCS is a (2 M + 1)-approximation algorithm, where M

s the number of hosts.

roof. First let’s derive the lower bound of the optimal solution,

.e., OPT LP . Note that OPT LP is the summation of weighted job com-

letion time, thus we investigate the lower bound of the job com-

letion time.

emma 4.2. In (LP) , the job completion time of the lth job ˜ J l ≥
1

2 M

∑ l
n =1

∑

k ∈ J n
∑

i ∈ M

∑

j∈ M

p k
i j

.

roof. For simplicity, we define

in =

∑

k ∈ J n

∑

j∈ M

p k i j , ∀ i ∈ M , n ∈ N . (32)

hus, Eq. (23) can be written as

in +

∑

n ′ ∈ N
n ′ � = n

μin ′ x n ′ n ≤ ˜ J n , (33)

hich indicates that

2
in +

∑

n ′ ∈ N
n ′ � = n

μin ′ μin x n ′ n ≤ μin ̃
 J n , (34)

nd thus,

l ∑

n =1

μ2
in +

l ∑

n =1

∑

n ′ ∈ N
n ′ � = n

μin ′ μin x n ′ n ≤
(

l ∑

n =1

μin

)

˜ J l , (35)

here the last inequality comes from Eq. (31) . Note that for any

 ≤ l and n ′ > l , we have x n ′ n = 0 , thus

l ∑

n =1

∑

n ′ ∈ N
n ′ � = n

μin ′ μin x n ′ n =

1

2

(

l ∑

n =1

μin

) 2

− 1

2

l ∑

n =1

μ2
in . (36)

198 B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205

d

l

b

4

a

C

a

P

e

E

J

w

J

t

α

w

C

M

a

i

P

5

5

l

l

t

o

t

a

t

c

i

t

i

a

s

2

a

g

w

t

a
Combining Eqs. (35) and (36) , we have

1

2

l ∑

n =1

μ2
in +

1

2

(

l ∑

n =1

μin

) 2

≤
(

l ∑

n =1

μin

)

˜ J l , (37)

which indicates that

˜ J l ≥
1

2

l ∑

n =1

μin =

1

2

l ∑

n =1

∑

k ∈ J n

∑

j∈ M

p k i j , ∀ l ∈ N , i ∈ M . (38)

Similarly, we have

˜ J l ≥
1

2

l ∑

n =1

∑

k ∈ J n

∑

i ∈ M

p k i j , ∀ l ∈ N , j ∈ M . (39)

Combining Eqs. (38) and (39) , we have

˜ J l ≥
1

2

max

{

max
i ∈ M

l ∑

n =1

∑

k ∈ J n

∑

j∈ M

p k i j , max
j∈ M

l ∑

n =1

∑

k ∈ J n

∑

i ∈ M

p k i j

}

≥ 1

2 M

l ∑

n =1

∑

k ∈ J n

∑

i ∈ M

∑

j∈ M

p k i j ,

(40)

which completes the proof. �

Next, we investigate the job completion time in our approxima-

tion algorithm.

Lemma 4.3. In MCS algorithm, the job completion time of the lth job

J l ≤ (2 M + 1) ̃ J l .

Proof. Let’s consider an easier case that all jobs are released at the

same time, in another word, for all l ∈ N , r l = 0 . The total idle time

caused by precedence constraints and the total actual transmission

time for all of the jobs l ′ < l compose the job completion time J l .

Thus

J l ≤
l ∑

n =1

∑

k ∈ J n
max

{

max
i ∈ M

∑

j∈ M

p k i j , max
j∈ M

∑

i ∈ M

p k i j

}

≤
l ∑

n =1

∑

k ∈ J n

∑

i ∈ M

∑

j∈ M

p k i j ≤ 2 M ̃

 J l .

(41)

Note that the first inequality in Eq. (41) is tight and the equality

holds when all of the coflows in each job have strict linear depen-

dencies, while the last inequality comes from Lemma 4.2 . When

jobs have arbitrary release time, Eq. (41) can be written as

J l ≤ r l + 2 M ̃

 J l , (42)

because the idle time introduced by release time can be upper-

bounded by r n . Taking Eq. (26) into consideration, we have

J l ≤ ˜ J l + 2 M ̃

 J l = (2 M + 1) ̃ J l , (43)

which completes the proof. �

From Lemma 4.3 , the solution of our approximation algorithm

can be represented as

SOL =

N ∑

l=1

w l J l ≤ (2 M + 1)
N ∑

l=1

w l ̃
 J l

= (2 M + 1) OP T LP ,

(44)

and the approximation ratio

α =

SOL

OP T LP

≤ 2 M + 1 , (45)

which completes the proof. �

However, this bound is not tight, because for the last inequali-

ties in Eqs. (40) and (41) , equalities can never hold simultaneously
ue to the property of max operator. It seems an unavoidable prob-

em, because the completion time can be hardly bounded by their

ytes directly when dependencies exist.

.3. Extensions

There are two extensions of our algorithm. In special cases, our

lgorithm has a constant approximation ratio.

orollary 4.1. When bytes are uniformly distributed in each ingress

nd egress port for each coflow, MCS is a 3-approximation algorithm.

roof. When bytes are uniformly distributed in each ingress and

gress port for each coflow, i.e. , ∑

j∈ M

p k i j =

∑

i ∈ M

p k i j = c k , ∀ i, j ∈ M , k ∈ K , (46)

q. (40) can be transformed into

˜

∗
l

≥ 1

2

l ∑

n =1

∑

k ∈ J n
c k , (47)

hile Eq. (43) can be transformed into

∗
l ≤ r l +

l ∑

n =1

∑

k ∈ J n
c k ≤ ˜ J ∗

l
+ 2 ̃

 J ∗
l

= 3 ̃

 J ∗
l
, (48)

hus

∗ =

SOL ∗

OP T ∗
LP

=

∑ N
l=1 w l J

∗
l ∑ N

l=1 w l ̃
 J ∗

l

≤ 3 , (49)

hich completes the proof. �

orollary 4.2. When all of the jobs have the same release time,

CS is a 2 M-approximation algorithm in general cases, and is a 2-

pproximation algorithm when bytes are uniformly distributed in each

ngress and egress port for each coflow.

roof. By setting r l = 0 for all l ∈ N . �

. Oversubscribed topology

.1. Oversubscription in datacenters

In datacenters, switches are usually organized into two or three

ayers, for example, core, (aggregation,) and ToR, from top to be-

ow. The term oversubscription is defined as a property that the

otal bandwidth of end hosts is larger than the total bandwidth

f core switches, and we use the term fan-in factor to describe

he ratio between them [35] . Consider a simple example: there

re 2 clusters connected via a 10Gbps link, each of which con-

ains 30 hosts connected via 1Gbps links; the fan-in factor can be

alculated as
60 ×1 Gbps
2 ×10 Gbps

= 3 : 1 , which means that when all of the

ntra-rack links are busy, at most 1
3:1 ≈ 33% of them run inter-rack

raffics.

Oversubscription is quite common in datacenters, and the fan-

n factor can vary from 2:1 to 20:1 for different datacenters with

ll kinds of traffic patterns [17,18,36,37] . The main reason for over-

ubscription is to save cost, and it’s reported that a datacenter with

0,0 0 0 hosts can save about 7,0 0 0,0 0 0 dollars on equipments with

 3:1 oversubscribed design [35] . However, oversubscribed topolo-

ies is not easy to analysis. With non-blocking hypothesis, net-

ork congestion can only occur at end hosts; but in oversubscribed

opologies, congestion can be found anywhere, including end hosts

nd in-network switches, which is hard to bi-model them. As a

B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205 199

Fig. 2. The 2-layer oversubscribed networks with fan-in factor ρ .

Table 3

Notations used in adapted formulation.

Symbol Definition

R the number of racks

H the number of hosts in each rack

R = { 1 , 2 , · · · , R } the rack set

γi ∈ R the rack that host i belongs to

ρ the fan-in factor of an oversubscribed topology

ρk
i j

the shadow size (Definition 5.2) of flow f k
i j

r

F

s

i

a

5

s

i

l

i

o

l

D

fl

t

c

w

D

s

i

d

a

t

t

o

b

o

r

s

t

(

s

T

ρ

ρ

N

i

o

e

i

e

b

C

c

P

o

i

s

a

o

6

l

t

t

fl

n

e

a

6

g

s

m

g

t

e

X

s

t

w

m

a

o

b

w
esult, none of existing theoretical works considered this scenario.

Comparing with oversubscribed topologies in production (e.g. ,

ig. 6 in [18]), we simplify the production topology by merging

ome switches as a single logical switch to avoid multi-path rout-

ng. Specifically, we regard the whole core layer as a core switch,

nd regard each pod as a ToR switch.

.2. Algorithm adaption

We abstract the oversubscribed topologies as a two-layer

witching network, and denote the fan-in factor as ρ: 1, as shown

n Fig. 2 . The notations we used in the following adapted formu-

ation are summarized in Table 3 , all of which are constant prior

nformation, instead of decision variables. Before reformulating for

versubscribed topologies, we first introduce two definitions as fol-

ows.

efinition 5.1 (η-worst-case completion time) . Considering a per-

ow fair-sharing transport protocol in oversubscribed networks,

he η-worst-case completion time is the completion time of the

oflow C = η

[
0 I (R −1) H

I H 0

]
when there is no other coflow in net-

orks, where I n ∈ R

n ×n is the identity matrix.

efinition 5.2 (Shadow size) . For a flow f k
i j

with size p k
i j
, its

hadow size is the size of a virtual flow whose completion time

s equal to the p k
i j

-worst-case completion time when host i and j

o not belong to the same rack; otherwise, its shadow size is ex-

ctly its size.

To sum up, the shadow size of a flow is a normalized size when

here are only inter-rack traffics sharing the core links, such that

he completion time of real-size flow in this oversubscribed topol-

gy is equal to that of corresponding shadow-size flow in a non-

locking topology. We use the notion ρk
i j

to denote the shadow size

f f k
i j

. Easy to see that when host i and j do not belong to the same

ack (i.e. , connected by two different ToR switches), the shadow

ize ρk
i j

= ρp k
i j

. Again, ρ is the fan-in factor of the oversubscribed
opology. The adapted formulation (A) is as follows.

A) min

N ∑

n =1

w n J n (50)

.t. (2)(3)(5)(6)(7)(8)(9) ;∫ F k
i j

r n

f k i j (t) dt = ρk
i j , ∀ i, j ∈ M , n ∈ N , k ∈ J n ; (51)

 =

∑

i ∈ M

∑

j∈ M

∑

k ∈ K
ρk

i j + max
n ∈ N

r n ; (52)

k
i j = p k i j , ∀ i, j ∈ M , k ∈ K , γi = γ j ; (53)

k
i j = ρp k i j , ∀ i, j ∈ M , k ∈ K , γi � = γ j . (54)

ow, we can relax (A) to a linear programming in a similar way, as

llustrated in Section 3.3 . To adapt the approximation algorithm to

versubscribed topologies, we just need to replace the real size of

ach flow (e.g. , p k
i j

) with the shadow size (e.g. , ρk
i j

) when calculat-

ng, then transform the shadow size to corresponding real size in

ach coflow-slice after IBvN decomposition and transmit them one

y one. The remaining things are the same as Algorithms 1 and 2 .

orollary 5.1. For oversubscribed networks, all of the theorems and

orollaries about approximation ratios in Section 4 hold.

roof. By replacing all p k
i j

in Section 3 and Section 4 with ρk
i j

. �

Discussion: The shadow size abstraction is an adaption instead

f an accurate formulation. The shadow size is an abstraction of

nter-rack traffics, but intra-rack traffics is not well modeled. For

ome workloads which contain rich intra-rack traffics, our adapted

lgorithm cannot make the best use of the bottleneck link. But

verall, it performs well in practice.

. Implementation

We have implemented our algorithm in an event-based flow-

evel simulator. Compared with real environments, protocol de-

ails is abstracted due to efficiency concerns. For example, data are

reated as continuous flows instead of discrete packets, in addition,

ow/congestion control and other guarantees provided by TCP are

eglected. To measure the difference and check the correctness, or

ven take a small step to make an offline algorithm more practical,

 testbed implementation is needed.

.1. Testbed

We build two small scale testbeds to evaluate our MCS al-

orithm in both non-oversubscribed scenarios and oversubscribed

cenarios, individually, where each testbed contains 7 hosts: one

aster host and 6 worker hosts. We use the master host as a

lobal scheduler, which runs the MCS algorithm and determines

he behaviors of the worker hosts. Each host is equipped with 2

ight-core Intel E5-2630 2.40GHz CPUs, 128GB memory, an Intel

710 NIC, an Intel CX-4 NIC, and a 4TB disk.

All of these hosts are connected by a management network; be-

ides, the worker hosts are connected by another network, namely,

he data network. Note that the two networks are independent

ith each other, thus no switching node is shared by them. The

anagement network is organized with a big switch topology, and

ll 7 hosts are connected to a switch via an 1Gbps link. For non-

versubscribed scenarios, the data network is organized with the

ig switch topology; for oversubscribed scenarios, the data net-

ork is organized with a dumbbell topology. Mellanox SN2700

200 B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205

Fig. 3. The state machine of scheduling framework.

fl

f

a

s

s

s

a

s

s

t

w

F

f

c

m

T

f

v

t

t

i

m

c

7

a

t

m

7

s

a

O

s

h

a

t

n

g

p

r

i

s

s

o

s

T

d

g

c

t

o

t

f

g

s
switches are used in data networks, and work in both 1Gbps and

10Gbps modes.

The operating system in each host is Ubuntu 14.04.3 LTS with

the 3.19.0 Linux kernel, and uses DCTCP as the transport con-

gestion control algorithm. Besides, we enable the RED queues for

data network switches to support DCTCP, while parameters recom-

mended in [38] are used. Unless otherwise specified, the per-port

switch buffer size (i.e. , the maximum queuing length of each egress

port in switches) is 1MB.

6.2. Scheduling framework

To evaluate our algorithms in testbed, we design and imple-

ment an app-layer scheduling framework that schedules coflows

and delivers control messages. Our framework is composed by 3

components: the master component that runs in the master host,

the sender component and the receiver component that run in

each worker host. The state machine can be found in Fig. 3 , and

in the next, we will introduce the details.

Our MCS algorithm is not an online algorithm, thus we assume

that the information about all coflows are known in advance by

the master host; besides, before the time that any job arrives, the

preprocessing works (Line 1 and Line 2 in Algorithm 1) have been

down. Initially, the states of all components are Idle . When a new

job arrives, the state of the master is transformed from Idle to Slic-

ing , then broadcast STOP-ALL messages to all worker hosts. Dur-

ing the period of waiting for workers’ replies, the master recalcu-

lates coflow-slices with IBvN decomposition algorithm (Line 13 in

Algorithm 1) and saves them in a slice table, then transforms its

state back to Idle . When a sender receives the STOP-ALL message,

there are two possible cases:

• If the state of the sender is Sending, i.e. , there is an active flow

that is sending data to a receiver, the state will be transformed

to Stopping and connection will be closed by senders. Mean-

while, a TX-STOPPED message will be delivered to the receiver.

After that, the sender transforms its state to Idle .

• If the state of the sender is Idle, i.e. , there is no active flows, the
STOP-ALL message will be ignored. 1
When a receiver receives the TX-STOPPED message (or a data

ow finished normally), the state of the receiver will be trans-

ormed from Receiving to Notifying . After all of the on-the-fly bytes

re correctly received, the receiver will send an RX-STOPPED mes-

age to the master, and transform its state to Idle .

The master maintains a state table that indicates whether a

ender or a receiver is idle. When receiving the RX-STOPPED mes-

age, the master will update the item of corresponding sender

nd receiver in state table. When finding an item with both idle

ender and idle receiver in slice table, the master will transform its

tate from Idle to Scheduling . After sending a FLOW-START message

o the corresponding sender and updating the tables, the master

ill transform its state back to Idle . For a sender that receives the

LOW-START message, the state of the sender will be transformed

rom Idle to Sending , and a TX-READY message will be sent to the

orresponding receiver. When the receiver receives the TX-READY

essage, it will transform its state from Idle to Receiving , then a

CP connection between them will be established to transmit data.

Except for the external mathematical tools, our scheduling

ramework is implemented in Java. We use the Socket package pro-

ided in Java for data flow generating, and use Akka [39] to deliver

he control messages. Note again that, the data flows are transmit-

ed in the data network, and the control messages are transmitted

n the management network. Akka is an implementation of the fa-

ous actor model in JVM, which is used to handle the parallel pro-

essing in datacenters.

. Evaluation

We evaluate our algorithm with both a small-scale testbed and

 large-scale event-based flow simulator by performing a replay of

he collected Facebook logs, which are widely accepted as a bench-

ark in both system works and theoretical works [7,9,12,16,40] .

.1. Methodology

Settings: For there is no prior work aimed at multi-stage coflow

cheduling to minimize the total weighted JCT, we validated our

lgorithm by comparing with two closest algorithms: Aalo and LP-

V-LS. Aalo is the only algorithm that considers multi-stage coflow

cheduling, however, it cannot handle the weighted scenarios and

as no performance guarantee [9] . LP-OV-LS is the state-of-the-art

pproximation algorithm for coflow scheduling to minimize the to-

al weighted CCT, however, it can hardly face with multi-stage sce-

arios [15,16] . We enable work conservation for all algorithms to

uarantee a fair comparison.

Workload: The coflow information in Facebook logs is incom-

lete. For each coflow, the Facebook logs contain its sender hosts,

eceiver hosts, and transmitted bytes in receiver level, instead of

n flow level, thus we partition the bytes in each receiver to each

ender pseudo-uniformly with a small jitter to generate flows. Be-

ides, the Facebook logs contain only coflow information instead

f job information, thus we randomly partition these coflows into

ome jobs such that each job contains α coflows in expectation.

o evaluate our algorithms in the scenarios of non-trivial depen-

encies, for a job with c coflows, at most c − 1 dependencies are

enerated randomly and independently to form a DAG, which may

ontain more than one connected component. The release time of

he jobs follows a Poisson process with parameter θ ; the weights

f the jobs follow a uniform distribution, and are normalized such

hat all of the weights sum up to 1.

Metrics: We evaluate these algorithms with two metrics by de-

ault: the total weighted JCT and actual running time of these al-

orithms. The lower bound of our algorithm is also taken into con-

ideration by solving (LP) . All of the data points are collected from

00 runs with random workload, as is aforementioned.

B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205 201

t

7

r

o

1

s

c

c

c

(

d

s

c

s

o

g

J

p

t

t

s

o

l

w

D

t

c

t

c

u

f

i

p

c

f

i

s

T

7

L

t

p

e

w

m

J

a

c

r

t

J

M

i

a
Summary: We summarize our experimental results as answers

o the following questions:

• How close is MCS to its lower bound? We evaluate our al-

gorithm in both weighted and non-weighted scenarios, and the

largest gap between our algorithm and LP lower bound is 9.14%,

which implies that our algorithm finds a quite good solution in

practice.

• Does MCS perform better than state-of-the-art algorithms?

For multi-stage coflow scheduling, we compare our algorithm

with the only existing (heuristic) algorithm, and our algorithm

reduces the average JCT by up to 33.48%; for coflow scheduling,

we compare our algorithm with the state-of-the-art approxima-

tion algorithm, and our algorithm reduces the average JCT by

up to 83.58%, while our algorithm runs over 20 × faster.

• How does MCS perform in a large parameter space? We fur-

ther investigate the influence of the number of hosts (M), the

average interval of job arrival (θ) and the average number of

coflows in each job (α). Results show that our algorithm works

well consistently.

.2. Testbed results

To investigate the performance of our MCS algorithm in a

ealistic environment, we use two small scale testbeds (non-

versubscribed, oversubscribed) for evaluation in both 1Gbps and

0Gbps modes, denoted as MCS(1G) and MCS(10G) in Fig. 4 , re-

pectively. We use a subset of Facebook logs that contains 40

oflows as testbed workloads to match the testbed scale, and the

oflow size are scaled by 10 × in 10Gbps mode to make the results

omparable to those in 1Gbps mode. We compare our algorithm

 i.e. , DCTCP with MCS) with pure DCTCP (i.e. , DCTCP without MCS),

enoted as DCTCP(1G) and DCTCP(10G); besides, the corresponding

imulation results and lower bounds will also be given to verify the

orrectness of our simulators, denoted as MCS(S) and MCS(LB), re-

pectively. Note that we do not implement Aalo and LP-OV-LS in

ur testbeds, instead, we leave these comparisons in simulations.

We first evaluate our algorithms in non-oversubscribed topolo-

ies, and the results of the average JCT and the total weighted

CT are shown in Fig. 4 (a) and (b), respectively. Compared with

ure DCTCP, the average or total weighted JCT is reduced by up

o 81.65% by our algorithms; besides, the performance gap in
Fig. 4. Testbed results.
wo modes is quite small (less than 4%), which implies that our

cheduling framework is robust to bandwidth. The performance in

versubscribed topologies is shown in Fig. 4 (c), which has a simi-

ar tendency with that in non-oversubscribed topologies. It is note-

orthy that the performance of DCTCP(10G) is much worse than

CTCP(1G), which is because larger workloads lead to more re-

ransmissions and longer backoff time when there are too much

oncurrent flows; however, our scheduling framework guarantees

he congestion-free property in each host, thus the number of con-

urrent flows in bottleneck link is limited. We use Fig. 4 (d) to eval-

ate this property on a 10Gbps oversubscribed topology with dif-

erent per-port switch buffer size. As the per-port buffer size grow-

ng, the performance of DCTCP(10G) becomes better due to less

acket-drops, while the performance of MCS(10G) keeps stable, be-

ause there is nearly no packet-drop all the time in our scheduling

ramework.

Note that the results in testbeds are slightly larger than those

n simulations, which is caused by the additional delays (e.g. , mes-

age transmission, TCP handshaking) and bandwidth wastes (e.g. ,

CP slow start, ACK packets).

.3. Simulation overview

We evaluate our MCS algorithm by comparing with Aalo and

P-OV-LS in non-oversubscribed topologies (i.e. the big switch

opology). Results are shown in Fig. 5 .

The objective of total weighted completion time is not sup-

orted by Aalo. Thus, in order to compare MCS with Aalo, we first

valuate our algorithm in special cases, i.e. , all jobs have the same

eights, namely non-weighted scenarios. In this case, the opti-

ization objective is indeed equivalent to minimizing the average

CT. Unless otherwise specified, we choose M = 30 , θ = 30 , α = 20

s the default parameters when comparing with Aalo.

As illustrated, all of the jobs are randomly combined by the

oflows in Facebook logs with random dependencies, while their

elease time is randomly generated, thus it’s necessary to inves-

igate the cumulative distribution function (CDF) of the average

CT and the time spent on scheduling. Shown in Fig. 5 (a), our

CS algorithm performs better than Aalo, and the performance

s more stable: for our algorithm, the average JCT varies from

bout 15 to 26, with coefficient of variation CV MCS = 0 . 1077 ; for
Fig. 5. CDF of JCT and actual execution time.

202 B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205

Table 4

Details of coflow completion time.

Average/weight CCT Reverse pairs

MCS(average) 38.93(6.43) –

Aalo 40.15(9.03) 21.15%(5.24%)

MCS(weighted) 11.71(2.99) –

LP-OV-LS 52.93(6.77) 46.05%(3.51%)

Fig. 6. The influence of cluster scale.

b

i

c

A

m

7

n

t

g

I

n

d

d

a

O

g

e

p

l

l

a

a

g

l

u

t

d

(

a

9

L

i

C

C

Fig. 7. The influence of network loads.
Aalo, it varies from about 17 to 40, and the coefficient of varia-

tion CV Aalo = 0 . 1462 . However, our algorithm is slower than Aalo.

As a heuristic algorithm, Aalo schedules coflows with simple rules

rather than complex computation, thus its execution time concen-

trates on about 0.08s; by contrast, our algorithm has to solve a lin-

ear programming in preprocessing phase, which takes more than

95% of the execution time, as a result, our algorithm needs about

2s on average.

Next, we evaluate our algorithm in general cases, i.e. , each job

has a random weight, and choose the state-of-the-art approxima-

tion algorithm of coflow scheduling LP-OV-LS for comparison. Note

that the time complexity of LP-OV-LS is related with the number

of coflows, instead of the number of jobs, thus we have to reduce

the total number of coflows to guarantee that LP-OV-LS can be fin-

ished in reasonable time. Unless otherwise specified, we choose

M = 30 , θ = 30 , α = 6 as the default parameters.

Let’s investigate the CDF of the total weighted JCT and the time

spent on scheduling. As shown in Fig. 5 (c), the total weighted JCT

of LP-OV-LS is over 5 × larger than that of our algorithm due

to improper optimization objective and the lack of consideration

on coflow dependencies, which is essential for multi-stage coflow

scheduling. Besides, LP-OV-LS runs over 20 × slower than our al-

gorithm, because it has to solve a linear programming with more

variables and more constraints, as shown in Fig. 5 (d).

Discussion: One may wonder the reason why our MCS algo-

rithm performs so closely to its lower bound, which is much bet-

ter than theoretical results. On the one hand, the factor M in ap-

proximation ratio is introduced when we analysis the lower bound

of (ILP) (namely, LB 1), but (ILP) is already a lower bound of orig-

inal formulation (O) (namely, LB 2). The lower bound LB 2 is quite

hard to analysis, so we use an easier bound LB 1 in our theoreti-

cal works. However, LB 1 is underestimated and lacks of practical

meanings, thus in evaluation, we use LB 2 as a much tighter bound,

which is computable in practice. On the other hand, MCS benefits

from backfilling (i.e. , work-conserving), which is a common mech-

anism used in datacenters to keep the network busy. With the

help of backfilling, the network throughput cannot be hurt severely

by scheduling. Again, the backfilling mechanism is enabled for all

evaluated algorithms to guarantee a fair comparison.

One may also wonder the reason why MCS algorithm can lead

to lower JCT. We investigate the completion time of coflows, and

summary the details in Table 4 : the average/weighted CCT is nor-

malized with corresponding CCT of MCS, while the reverse pair in-

dicates the percentage of coflow pairs whose completion time is

reversed compared with MCS. The CCT of MCS is similar to that of

Aalo, while more than 20% coflow pairs are reversed, which means

that the order of coflows plays an important role in minimizing

JCT. However, the CCT of LP-OV-LS is much larger (even though it

is specifically designed to minimize CCT), and the percentage of in-

verse pairs is high (due to different objectives). We have analyzed

simulation logs and tried to find out the reason why its CCT tends

to the worst case. In LP-OV-LS, a flow is allowed to transmit only

if both of its sender and receiver are all idle; meanwhile, when the

scheduler finds an idle sender-receiver pair, among flows with the

same sender and receiver, the flow with the highest priority will

be chosen to transmit. Consider a prioritized flow, only when its

sender and receiver become idle (nearly) at the same time could it
e chosen (it can hardly happen); otherwise, the one that becomes

dle firstly is very likely to match another host, thus it will be oc-

upied by another flow immediately and becomes no longer idle.

s a result, the prioritized flow can wait for a really long time in

ost cases, and effort s are brought to naught.

.4. All kinds of scenarios

The number of hosts: First, we investigate the influence of the

umber of hosts, and results are shown in Fig. 6 (a) and (b). Note

hat the total bandwidth grows linearly as the number of hosts

rowing, thus for all of the algorithms, the average JCT decreases.

t’s clear that the average JCT is not inversely proportional to the

umber of hosts, due to the non-uniformity of coflow size, time

istribution and space distribution. Comparing with Aalo, we re-

uce the average JCT by 33.48%, and the largest gap between our

lgorithm and its lower bound is only 6.44%. Comparing with LP-

V-LS, we reduce the total weighted JCT by 82.11%, and the largest

ap between our algorithm and its lower bound is only 6.63%.

Network loads: Then we investigate the influence of the av-

rage interval of network loads, i.e. the parameter θ in Poisson

rocess, shown in Fig. 7 (a). A smaller θ corresponds to a heavier

oad. When all coflows arrived at the same time, i.e. , θ = 0 , the

ink is always fully used for a long time; when θ becomes larger

nd larger, finally there will be at most only one active coflow at

ny time. Exactly, this is the reason why the gap between our al-

orithm and Aalo is firstly larger and then becomes smaller: when

ink load becomes too light or too heavy, the scheduling algorithms

sually play a quite small role. One may wonder the reason why

he JCT decreases as the load growing. In fact, this is caused by the

efinition of JCT used in formulations, shown in Eqs. (2) , (3) and

4) . Comparing with Aalo, we reduce the average JCT by 31.10%,

nd the largest gap between our algorithm and its lower bound is

.14%.

However, Fig. 7 (b) is confused that the total weighted JCT of

P-OV-LS should decrease as θ increasing. We think it’s caused by

mproper optimization objective, because when we try to optimize

CT, the behavior of JCT is out of control in multi-stage scenarios.

omparing with LP-OV-LS, we reduce the total weighted JCT by

B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205 203

Fig. 8. The influence of job structure.

Fig. 9. Influence of average coflow computation delay.

8

b

fl

e

i

c

t

a

a

t

a

s

F

t

l

w

t

w

o

c

s

a

c

m

n

7

r

A

t

t

U

w

4

O

Fig. 10. The influence of fan-in factors.

Fig. 11. The influence of racks.

a

g

m

r

m

J

l

a

a

t

i

t

l

a

b

d

a

w

o

i

o

s

8

s

f

m

a

a

s

C

3.58%, and the largest gap between our algorithm and its lower

ound is 8.79%.

The complexity of job structure: Next, let’s investigate the in-

uence of the job structure, i.e. , the average number of coflows in

ach job. From Fig. 8 (a) and (b), we can see that all of the curves

ncrease linearly with similar slopes. This is because, when a job

ontains more coflows, in general, it has more bytes to transmit,

hus the JCT becomes larger. Comparing with Aalo, we reduce the

verage JCT by 31.87%, and the largest gap between our algorithm

nd its lower bound is 5.07%. Comparing with LP-OV-LS, we reduce

he total weighted JCT by 82.78%, and the largest gap between our

lgorithm and its lower bound is 5.75%.

Computation delay: We further evaluate our algorithm in the

cenarios when each coflow has a computation phase, as shown in

ig. 9 . Firstly, we investigate the CDF of both the average JCT and

otal weighted JCT when each coflow has a 100 s computation de-

ay on average, shown in Fig. 9 (a). Then we evaluate our algorithm

ithin a large range of computation delay from 0s to 200 s, where

he time cost on computation is comparable with that cost on net-

ork transmission. Results are shown in Fig. 9 (b): as the time cost

n computation growing, the average and total weighted JCT in-

reases as expected. By comparing with Fig. 5 (a) and (c), we can

ee that even when coflow has a 200 s computation delay on aver-

ge, our algorithm still performs better than others. When the time

ost on computation is far greater than that cost on network trans-

ission, the gap among all algorithms becomes negligible, thus

etwork scheduling comes to be meaningless.

.5. Oversubscribed topologies

In oversubscribed scenarios, we evaluate our adapted algo-

ithms by comparing with Aalo and LP-OV-LS. Noting that both

alo and LP-OV-LS suppose that there is no in-network congestion

hus do not support the oversubscribed topologies, we adapt the

wo algorithms using the shadow size concept in a similar way.

nless otherwise specified, we assume there are 4 racks in the

hole network, and each rack contains 12 hosts, thus there are

8 hosts in total; besides, we choose the default fan-in factor as 4.

ther settings are the same as non-oversubscribed scenarios.
We first investigate the influence of fan-in factors, and results

re shown in Fig. 10 . As expected, the JCT of all three algorithms

rows linearly as the fan-in factor increasing. A larger fan-in factor

eans a lower core-network bandwidth, which harms the inter-

ack communications thus leads to a worse application perfor-

ance. To sum up, comparing with Aalo, we reduce the average

CT by 21.58%, and the largest gap between our algorithm and its

ower bound is 4.59%; comparing with LP-OV-LS, we reduce the

verage JCT by 82.52%, and the largest gap between our algorithm

nd its lower bound is 4.57%.

Then we evaluate the influence of the number of racks. The to-

al number of hosts is kept as a constant, thus the number of hosts

n each rack varies across the number of racks. Shown in Fig. 11 ,

he JCT decreases slightly as the number of racks growing; we be-

ieve it is caused by the inaccuracy of the shadow size abstraction,

s is discussed in Section 5 . But overall, the influence of the num-

er of racks is negligible. To sum up, comparing with Aalo, we re-

uce the average JCT by 14.96%, and the largest gap between our

lgorithm and its lower bound is 5.27%; comparing with LP-OV-LS,

e reduce the average JCT by 82.03%, and the largest gap between

ur algorithm and its lower bound is 5.45%.

Note that in oversubscribed scenarios, both the performance

mprovements and gaps are quite similar with the results in non-

versubscribed scenarios, which matches our theoretical conclu-

ions.

. Conclusion

There are dependent relationships among coflows of multi-

tage jobs in datacenters. As the first systematic work, we

ormulate coflow scheduling of multi-stage jobs as a problem to

inimize the total weighted JCT. We design an approximation

lgorithm and implement it as a scheduling framework. Evalu-

tion results show that our algorithm significantly outperforms

tate-of-the-art works in both testbeds and simulations.

onflicts of interest

None.

204 B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205

[

[

[

[

c

Acknowledgments

This work was supported in part by the National Key R&D

Program of China 2018YFB1003202, the National Natural Science

Foundation of China under 61672276 , 61602194 , 61772265 , and

61802172 , the Collaborative Innovation Center of Novel Software

Technology and Industrialization, and the Jiangsu Innovation and

Entrepreneurship (Shuangchuang) Program.

References

[1] B. Tian , C. Tian , H. Dai , B. Wang , Scheduling coflows of multi-stage jobs to
minimize the total weighted job completion time, in: IEEE INFOCOM 2018-IEEE

Conference on Computer Communications, IEEE, 2018, pp. 864–872 .
[2] J. Dean , S. Ghemawat , Mapreduce: simplified data processing on large clusters,

Commun. ACM 51 (1) (2008) 107–113 .
[3] Apache hadoop., 2019. (http://hadoop.apache.org).

[4] M. Zaharia , M. Chowdhury , T. Das , A. Dave , J. Ma , M. McCauley , M.J. Franklin ,

S. Shenker , I. Stoica , Resilient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing, in: Proceedings of the 9th USENIX confer-

ence on Networked Systems Design and Implementation, USENIX Association,
2012 . 2–2.

[5] M. Chowdhury , M. Zaharia , J. Ma , M.I. Jordan , I. Stoica , Managing data transfers
in computer clusters with orchestra, in: ACM SIGCOMM, vol. 41, ACM, 2011,

pp. 98–109 .

[6] M. Chowdhury , I. Stoica , Coflow: a networking abstraction for cluster applica-
tions, in: ACM Hotnets, ACM, 2012, pp. 31–36 .

[7] M. Chowdhury , Y. Zhong , I. Stoica , Efficient coflow scheduling with varys, in:
ACM SIGCOMM, ACM, 2014, pp. 443–454 .

[8] F.R. Dogar , T. Karagiannis , H. Ballani , A. Rowstron , Decentralized task-aware
scheduling for data center networks, in: ACM SIGCOMM Computer Commu-

nication Review, vol. 44, ACM, 2014, pp. 431–442 .
[9] M. Chowdhury , I. Stoica , Efficient coflow scheduling without prior knowledge,

in: ACM SIGCOMM Computer Communication Review, vol. 45, ACM, 2015,

pp. 393–406 .
[10] Tpc-ds., 2019. (http://www.tpc.org/tpcds).

[11] H. Susanto , H. Jin , K. Chen , Stream: decentralized opportunistic inter-coflow
scheduling for datacenter networks, in: Network Protocols (ICNP), 2016 IEEE

24th International Conference on, IEEE, 2016, pp. 1–10 .
[12] Z. Qiu , C. Stein , Y. Zhong , Minimizing the total weighted completion time of

coflows in datacenter networks, in: Proceedings of the 27th ACM symposium

on Parallelism in Algorithms and Architectures, ACM, 2015, pp. 294–303 .
[13] S. Khuller , M. Purohit , Brief announcement: improved approximation algo-

rithms for scheduling co-flows, in: Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures, ACM, 2016, pp. 239–240 .

[14] S. Luo , H. Yu , Y. Zhao , S. Wang , S. Yu , L. Li , Towards practical and near-optimal
coflow scheduling for data center networks, IEEE Trans. Parallel Distrib. Syst.

27 (11) (2016) 3366–3380 .

[15] M. Shafiee, J. Ghaderi, An improved bound for minimizing the total weighted
completion time of coflows in datacenters, arXiv: 1704.08357 (2017a).

[16] M. Shafiee , J. Ghaderi , Brief announcement: a new improved bound for coflow
scheduling, in: Proceedings of the 29th ACM Symposium on Parallelism in Al-

gorithms and Architectures, ACM, 2017 .
[17] A. Greenberg , J.R. Hamilton , N. Jain , S. Kandula , C. Kim , P. Lahiri , D.A. Maltz ,

P. Patel , S. Sengupta , Vl2: a scalable and flexible data center network, in: ACM

SIGCOMM 2009, vol. 39, ACM, 2009, pp. 51–62 .
[18] A. Singh , J. Ong , A. Agarwal , G. Anderson , A. Armistead , R. Bannon , S. Bov-

ing , G. Desai , B. Felderman , P. Germano , et al. , Jupiter rising: a decade of clos
topologies and centralized control in google’s datacenter network, in: Proc.

ACM SIGDC 2015, ACM, 2015, pp. 183–197 .
[19] T.A. Roemer , A note on the complexity of the concurrent open shop problem,

J. Scheduling 9 (4) (2006) 389–396 .

[20] R.L. Graham , E.L. Lawler , J.K. Lenstra , A.R. Kan , Optimization and approximation
in deterministic sequencing and scheduling: a survey, Ann. Discrete Math. 5

(1979) 287–326 .
[21] J.Y.-T. Leung , H. Li , M. Pinedo , Order scheduling in an environment with dedi-

cated resources in parallel, J. Scheduling 8 (5) (2005) 355–386 .
[22] A. Agnetis , H. Kellerer , G. Nicosia , A. Pacifici , Parallel dedicated machines

scheduling with chain precedence constraints, Eur. J. Oper. Res. 221 (2) (2012)

296–305 .
[23] M. Queyranne , Structure of a simple scheduling polyhedron, Math. Program.

58 (1–3) (1993) 263–285 .
[24] A.S. Schulz , Scheduling to minimize total weighted completion time: perfor-

mance guarantees of lp-based heuristics and lower bounds, in: International
Conference on Integer Programming and Combinatorial Optimization, Springer,

1996, pp. 301–315 .
[25] L.A. Hall , D.B. Shmoys , J. Wein , Scheduling to minimize average completion

time: Off-line and on-line algorithms, in: SODA, vol. 96, 1996, pp. 142–151 .

[26] Y.-A. Kim , Data migration to minimize the total completion time, J. Algorithms
55 (1) (2005) 42–57 .

[27] R. Gandhi , M.M. Halldórsson , G. Kortsarz , H. Shachnai , Improved bounds
for scheduling conflicting jobs with minsum criteria, ACM Trans. Algorithms

(TALG) 4 (1) (2008) 11 .
28] W. Rodiger , T. Muhlbauer , P. Unterbrunner , A. Reiser , A. Kemper , T. Neumann ,
Locality-sensitive operators for parallel main-memory database clusters, in:

Data Engineering (ICDE), 2014 IEEE 30th International Conference on, IEEE,
2014, pp. 592–603 .

29] C.-S. Chang , D.-S. Lee , C.-Y. Yue , Providing guaranteed rate services in the load
balanced birkhoff-von neumann switches, IEEE/ACM Trans. Netw. (TON) 14 (3)

(2006) 644–656 .
[30] J.K. Sundararajan , S. Deb , M. Médard , Extending the birkhoff-von neumann

switching strategy for multicast-on the use of optical splitting in switches,

IEEE J. Sel. Areas Commun. 25 (6) (2007) 36–50 .
[31] M. Marcus , R. Ree , Diagonals of doubly stochastic matrices, Q. J. Math. 10 (1)

(1959) 296–302 .
[32] F. Dufossé, B. Uçar , Notes on birkhoff–von neumann decomposition of doubly

stochastic matrices, Linear Algebra Appl. 497 (2016) 108–115 .
[33] L.G. Khachiyan , A polynomial algorithm in linear programming, USSR Comput.

Math. Math. Phys. 20 (80) (1979) 1–3 .

[34] N. Karmarkar , A new polynomial-time algorithm for linear programming, in:
Proceedings of the sixteenth annual ACM symposium on Theory of computing,

ACM, 1984, pp. 302–311 .
[35] M. Al-Fares , A. Loukissas , A. Vahdat , A scalable, commodity data center net-

work architecture, in: ACM SIGCOMM Computer Communication Review, vol.
38, ACM, 2008, pp. 63–74 .

36] Cisco data center infrastructure 2.5 design guide., 2019. (https://www.

cisco.com/c/en/us/td/docs/solutions/Enterprise/Data _ Center/DC _ Infra2 _ 5/DCI _
SRND _ 2 _ 5a _ book/DCInfra _ 2a.html).

[37] N. Farrington , A. Andreyev , Facebook data center network architecture, IEEE
Optical Interconnects Conf, Citeseer, 2013 .

38] M. Alizadeh , A. Greenberg , D.A. Maltz , J. Padhye , P. Patel , B. Prabhakar , S. Sen-
gupta , M. Sridharan , Data center tcp (dctcp), in: in Proc. ACM SIGCOMM 2011,

41, ACM, 2011, pp. 63–74 .

[39] Akka., 2019, (http://akka.io).
[40] Y. Li , S.H.-C. Jiang , H. Tan , C. Zhang , G. Chen , J. Zhou , F. Lau , Efficient on-

line coflow routing and scheduling, in: Proceedings of the 17th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing, ACM, 2016,

pp. 161–170 .

Bingchuan Tian received the B.S. degree in the depart-

ment of computer science and technology from Nanjing

University of Aeronautics and Astronautics, China, in 2016.
He is working towards the Ph.D. degree in the depart-

ment of computer science and technology in Nanjing Uni-
versity, China. His research interests include datacenter

networking and networked systems.

Chen Tian is an associate professor at State Key Lab-
oratory for Novel Software Technology, Nanjing Univer-

sity, China. He was previously an associate professor
at School of Electronics Information and Communica-

tions, Huazhong University of Science and Technology,

China. Dr.Tian received the BS (20 0 0), MS (20 03) and
PhD (2008) degrees at Department of Electronics and In-

formation Engineering from Huazhong University of Sci-
ence and Technology, China. From 2012 to 2013, he was

a postdoctoral researcher with the Department of Com-
puter Science, Yale University. His research interests in-

clude data center networks, network function virtualiza-

tion, distributed systems, Internet streaming and urban
omputing.

Bingquan Wang received the B.S. degrees from the De-

partment of Computer Science and Technology at the

Southeast University, China, in 2016. He is a 3rd-year M.S.
student in Nanjing University, China. His research inter-

ests include distributed networks and network architec-
ture. He is a student member of the IEEE. Bo Li received

the B.S. degree from the department of Computer Sci-
ence and Engineering at the Nanjing University of Science

and Technology, China, in 2016. He is a 3rd-year M.S. stu-

dent in Nanjing University, China. His research interests
include distributed networks and systems.

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0001
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0002
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0002
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0002
http://hadoop.apache.org
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0006
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0006
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0006
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0006
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0007
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0007
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0007
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0007
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0007
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0008
http://www.tpc.org/tpcds
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0009
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0012
http://arxiv.org/abs/1704.08357
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0013
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0016
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0018
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0019
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0020
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0021
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0023
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0024
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0026
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0026
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0026
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0026
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0028
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0028
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0028
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0029
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0030
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0030
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0031
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0031
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0032
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0032
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCI_SRND_2_5a_book/DCInfra_2a.html
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0033
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0033
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0033
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0034
http://akka.io
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)30258-0/sbref0035

B. Tian, C. Tian and B. Wang et al. / Computer Networks 158 (2019) 193–205 205

E

i

o

n

c

c

t

T

i

9

a

Bo Li received the B.S. degree from the department of

Computer Science and Engineering at the Nanjing Uni-
versity of Science and Technology, China, in 2016. He is

a 3rd-year M.S. student in Nanjing University, China. His

research interests include distributed networks and sys-
tems.

Zehao He received the B.S. degree from the Department

of Computer Science and Technology at the Shandong
University, China, in 2018. He is working toward the M.S.

degree in the Department of Computer Science and Tech-
nology at Nanjing University. His research interests in-

clude datacenter networks and systems.

Haipeng Dai received the B.S. degree in the department
of electronic engineering from Shanghai Jiao Tong Univer-

sity, Shanghai, China, in 2010, and the Ph.D. degree in the
department of computer science and technology in Nan-

jing University, Nanjing, China, in 2014. He is a research
assistant professor in the department of computer sci-

ence and technology in Nanjing University. He is an IEEE

and ACM member. He received Best Paper Award from
IEEE ICNP5, Best Paper Award Candidate from IEEE INFO-

COM’17.

Kexin Liu received the B.S. degree from the Department

of Software Engineering at Sun Yatsen University, China,
in 2017. She is working toward the M.S. degree in the

Department of Computer Science and Technology at Nan-

jing University, China. Her research interests include data-
center networks and network architecture. Wanchun Dou

received the Ph.D. degree in mechanical and electronic
engineering from the Nanjing University of Science and

Technology, China, in 2001. He is currently a Full Profes-
sor of the State Key Laboratory for Novel Software Tech-

nology, Nanjing University. From April 2005 to June 2005

and from November 2008 to February 2009, he respec-
tively visited the Department of Computer Science and

ngineering, Hong Kong University of Science and Technology, Hong Kong, as a Vis-
ting Scholar. Up to now, he has chaired three National Natural Science Foundation

f China projects and published more than 60 research papers in international jour-
als and international conferences. His research interests include workflow, cloud

omputing, and service Computing.
Wanchun Dou received the Ph.D. degree in mechanical

and electronic engineering from the Nanjing University of
Science and Technology, China, in 2001. He is currently a

Full Professor of the State Key Laboratory for Novel Soft-
ware Technology, Nanjing University. From April 2005 to

June 2005 and from November 2008 to February 2009, he

respectively visited the Department of Computer Science
and Engineering, Hong Kong University of Science and

Technology, Hong Kong, as a Visiting Scholar. Up to now,
he has chaired three National Natural Science Foundation

of China projects and published more than 60 research
papers in international journals and international con-

ferences. His research interests include workflow, cloud

omputing, and service computing.

Guihai Chen is a distinguished professor of Nanjing Uni-

versity. He earned B.S. degree in computer software from
Nanjing University in 1984, M.E. degree in computer ap-

plications from Southeast University in 1987, and Ph.D.
degree in computer science from the University of Hong

Kong in 1997. He had been invited as a visiting profes-

sor by Kyushu Institute of Technology in Japan, University
of Queensland in Australia and Wayne State University in

USA. He has a wide range of research interests with fo-
cus on parallel computing, wireless networks, data cen-

ters, peer-to-peer computing, high-performance computer
architecture and data engineering. He has published more

than 350 peer-reviewed papers, and more than 200 of

hem are in well-archived international journals such as IEEE TPDS, IEEE TC, IEEE
KDE, ACM/IEEE TON and ACM TOSN, and also in well-known conference proceed-

ngs such as HPCA, MOBIHOC, INFOCOM, ICNP, ICDCS, CoNext and AAAI. He has won
 paper awards including ICNP 2015 best paper award and DASFAA 2017 best paper

ward.

	Scheduling dependent coflows to minimize the total weighted job completion time in datacenters
	1 Introduction
	2 Related work
	3 Formulation and analysis
	3.1 Settings
	3.2 Original formulation
	3.3 Relaxed formulation

	4 Approximation algorithms
	4.1 Algorithm design
	4.2 Performance analysis
	4.3 Extensions

	5 Oversubscribed topology
	5.1 Oversubscription in datacenters
	5.2 Algorithm adaption

	6 Implementation
	6.1 Testbed
	6.2 Scheduling framework

	7 Evaluation
	7.1 Methodology
	7.2 Testbed results
	7.3 Simulation overview
	7.4 All kinds of scenarios
	7.5 Oversubscribed topologies

	8 Conclusion
	Conflicts of interest
	Acknowledgments
	References

