
Scheduling Coflows of Multi-stage Jobs to
Minimize the Total Weighted Job Completion Time

Bingchuan Tian, Chen Tian, Haipeng Dai, and Bingquan Wang
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China

{bctian,wangbingquan}@smail.nju.edu.cn, {tianchen,haipengdai}@nju.edu.cn

Abstract—Datacenter networks are critical to Cloud com-
puting. The coflow abstraction is a major leap forward of
application-aware network scheduling. In the context of multi-
stage jobs, there are dependencies among coflows. As a result,
there is a large divergence between coflow-completion-time (CCT)
and job-completion-time (JCT). To our best knowledge, this
is the first work that systematically studies: how to schedule
dependent coflows of multi-stage jobs, so that the total weighted
job completion time can be minimized. We present a formal
mathematical formulation. We also prove that this problem
is strongly NP-hard. Inspired by the optimal solution of the
relaxed linear programming, we design an algorithm that runs
in polynomial time to solve this problem with an approximation
ratio of (2M + 1), where M is the number of machines.
Evaluation results demonstrate that, the largest gap between our
algorithm and the lower bound is only 9.14%. We reduce the
average JCT by up to 33.48% compared with Aalo, a heuristic
multi-stage coflow scheduler. We reduce the total weighted JCT
by up to 83.31% compared with LP-OV-LS, the state-of-the-art
approximation algorithm of coflow scheduling.

I. INTRODUCTION

Motivation: Datacenter networks are critical to Cloud com-

puting. In modern datacenters, data-parallel frameworks (e.g.,
MapReduce [1], Hadoop [2], Spark [3]) are widely used to run

distributed computing jobs, such as querying and data mining.

Data transfer has a significant impact on job performance. For

example, a MapReduce/Hadoop job is scheduled by a master

process to execute m mapper tasks and r reducer tasks. Each

mapper task reads files from the underlying distributed file

system (DFS), performs user-defined computations, and writes

the outputs back to DFS. Each reducer task reads the output

data of mappers, merges them and writes the final results to

DFS. This data transmission phase is called as shuffle, where

totally m × r flows are generated for the job. It is reported

that sometimes, 50% of the job time is spent on transferring

shuffle data across the networks [4].

The coflow abstraction is a major leap forward of

application-aware network scheduling. Traditional network

metrics, such as the average flow-completion-time (FCT),

ignore application semantics of data-parallel jobs. For a shuffle

in MapReduce/Hadoop, the completion time of the slowest

flow (instead of the average FCT) dominates the start of

reducer computation. Minimizing the average FCT does not

necessarily minimize the job-completion-time (JCT). Being

aware of this problem, a coflow is defined as the collection

of all flows in a shuffle, and coflow-completion-time (CCT) is

the completion time of the slowest flow in a certain coflow [5].

Current work focus on minimizing the average CCT. For
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Minimized CCT Minimized JCT

(b) Two schedules

Fig. 1. A motivation example

jobs with a single shuffle phase (e.g., Terasort), minimizing

the average CCT usually results in faster jobs, because there

are only one coflow and time spent on computation can be

considered as nearly constant [6], [7], [8].

In the context of multi-stage jobs, there are dependencies

among coflows. In modern datacenters, it is common that

a job contains more than one stages with dependencies.

For example, each TPC-DS query (of distributed database

applications) is a directed-acyclic-graph (DAG) of multi-stage

dataflow [9]. As a result, a coflow C2 can be dependent

on another coflow C1 in the same job if the consumer

computation stage of C1 is the producer of C2. There are

two kinds of dependencies: Starts-After and Finishes-Before.

Starts-After represents the existence of explicit barriers (e.g.,
the write barriers in Hadoop). In this case, C2 cannot start

until C1 has finished. Finishes-Before is common for pipeline

based frameworks (e.g., Spark), where C2 can coexist with

C1 but it cannot finish until C1 has finished. In this paper we

focus on scheduling coflows of Starts-After type multi-stage

jobs, and leave Finishes-Before type jobs to future work.

There is a large divergence between CCT and JCT for multi-

stage jobs. Consider a motivation example in Fig. 1. There

are two equal-weight jobs J1 and J2 arrived and waiting to be

scheduled. J1 has 2 coflows C1 and C2 with a dependency that

C2 cannot start until C1 has finished (i.e., Starts-After), while

J2 has only one coflow C3. C1/C2/C3 each has 4 flows. The

flows are of 1/3/2 unit(s) size for C1/C2/C3 respectively as

shown in Fig. 1(a). The total sizes of these coflows are 4/12/8

units, respectively. The topology is non-blocking, and each
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input/output port can accept one unit flow size in one time

step. It takes 2/6/4 steps for C1/C2/C3 to pass the network

bottleneck if occupied exclusively. The minimal average CCT

is
2+(2+4)+(2+4+6)

3 ≈ 6.67 if we schedule coflows in the

order of (C1, C3, C2). The corresponding average JCT is
(2+4+6)+(2+4)

2 = 9. However, if we schedule the coflows

in the order of (C3, C1, C2), the average CCT increases to
4+(4+2)+(4+2+6)

3 ≈ 7.33, while the average JCT decreases

to
4+(4+2+6)

2 = 8. Note that in this example we assign

equal weights to J1 and J2. Usually in production systems,

important jobs are prioritized by setting a larger weight value.

Accordingly, we extend the optimization objective from the

average JCT to the total weighted JCT.

Our contributions: To our best knowledge, this is the first

work that systematically studies: how to schedule dependent
coflows of multi-stage jobs, so that the total weighted job
completion time can be minimized (Section II).

We present a formal mathematical formulation. We also

prove that this problem is strongly NP-hard. We relax it to

a linear programming, so that lower bound can be obtained

for performance evaluation (Section III).

Inspired by the optimal solution of the relaxed linear pro-

gramming, we design an algorithm that runs in polynomial

time to solve this problem with an approximation ratio of

(2M +1), where M is the number of machines (Section IV).

Evaluation results demonstrate that, the largest gap between

our algorithm and the lower bound is only 9.14%. We reduce

the average JCT by up to 33.48% compared with Aalo, a

heuristic multi-stage coflow scheduler. We reduce the total

weighted JCT by up to 83.31% compared with LP-OV-LS, the

state-of-the-art approximation algorithm of coflow scheduling,

while our algorithm runs over 20× faster (Section V).

II. RELATED WORK

Existing work, including heuristics and approximation al-

gorithms, focus on scheduling coflows of single-stage jobs.

The only exception is Aalo [8], which uses one small section

to discuss a straight forward coflow heuristics to reduce the

average JCT of multi-stage jobs.

Single-stage heuristics: Several work aim at developing

heuristic coflow scheduling systems to minimize the average

CCT. The coflow concept firstly appeared in Orchestra [4],

which shows that even a simple FIFO discipline can sig-

nificantly reduce the average CCT. The formal definition

was presented later [5]. Varys uses the smallest-effective-

bottleneck-first (SEBF) and minimum-allocation-for-desired-

duration (MADD) heuristics to schedule coflows to minimize

either the average CCT or deadline missing ratio [6]. Barrat

exploits multiplexing to prevent head-of-line blocking to small

coflows [7]. Stream aims at decentralized coflow scheduling

[10]. These algorithms do not consider dependent relation-

ships among coflows of multi-stage jobs. Explicitly handling

dependency, our coflow scheduling algorithm has a bounded

approximation ratio for multi-stage jobs.

Single-stage approximation algorithms: There are also

some theoretical works aim at minimizing the total weighted

TABLE I
NOTATIONS OF CONSTANTS

Symbol Definition
N the number of jobs
K the total number of coflows
M the number of machines

N = {1, 2, · · · , N} the job set
K = {1, 2, · · · ,K} the coflow set
M = {1, 2, · · · ,M} the machine set

Jn ∈ 2K, n ∈ N the n-th job
wn, n ∈ N the weight of the n-th job
rn, n ∈ N the release time of the n-th job

fk
ij , k ∈ K, i, j ∈ M the flow (i → j) in coflow k

pkij , k ∈ K, i, j ∈ M the total bytes of flow fk
ij

CCT with approximation algorithms. The first polynomial-

time deterministic approximation algorithm has an approx-

imation ratio of 67
3 by relaxing the problem to a time-

indexed linear programming [11]. Khuller et al. proposed

a 12-approximation algorithm by building a bridge towards

concurrent open shop problem [12]. Luo et al. announced

a 2-approximation algorithm [13]. Unfortunately, it has an

incorrect relaxation and has been proven inaccurate later by

a quite simple counter-example [14]. Recently, Shafiee et al.
proposed a 5-approximation algorithm by relaxing the problem

to a linear programming [14], [15]. Again, all these algorithms

focus on minimizing CCT while ignore its divergence to JCT

in the context of multi-stage jobs.

Multi-stage heuristics: Aalo developed a local queueing

system in sender ends with the heuristics of discretized

coflow-aware least-attained service (D-CLAS) to minimize

the average CCT. To handle multi-stage scenarios, the simple

heuristics is to prioritize coflows based on their dependency

orders [8]. It has neither formal formulation nor analysis.

Minimize the average JCT is just a special case of minimize

the total weighted JCT, where all jobs have an equal weight.

III. FORMULATION AND ANALYSIS

We first present the original formulation of multi-stage

coflow scheduling problem and prove its strong NP-Hardness.

We relax it to a linear programming, which is essential for the

construction of our approximation algorithm.

A. Settings
We abstract the network topology as a non-blocking big

switch with M ports, each of which connects with a machine

via a link of unit bandwidth; coflow property are known as

a priori, such as the source, destination and bytes of each

flow in it, just as what prior works do [6], [8], [11], [12],

[15]. Recent advances in datacenter fabrics [16], [17] make

it practical. Link-sharing and preemptions are allowed. We

focus on network scheduling thus the computation duration of

each reducer is ignored in the mathematical analysis. We use

this abstraction to simplify our analysis; we do not require or

enforce this in our evaluation.

B. Original Formulation
The multi-stage coflow scheduling problem can be formu-

lated as follows, and the notations we used are shown in Table

I and Table II.
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TABLE II
NOTATIONS OF VARIABLES

Symbol Definition
Jn the completion time of the n-th job
Ck the completion time of the k-th coflow

Fk
ij the completion time of flow fk

ij

fk
ij(t) the instantaneous transmission rate of flow fk

ij at time t

(O) min

N∑
n=1

wnJn (1)

s.t. Jn = max
k∈Jn

Ck, ∀n ∈ N; (2)

Ck = max
i,j∈M

F k
ij , ∀k ∈ K; (3)

∫ Fk
ij

rn

fk
ij(t)dt = pkij , ∀i, j ∈ M, n ∈ N, k ∈ Jn; (4)∫ rn

0

fk
ij(t)dt = 0, ∀i, j ∈ M, n ∈ N, k ∈ Jn; (5)∫ Ck′

0

fk
ij(t)dt = 0, ∀i, j ∈ M, n ∈ N, k′ ≺ k ∈ Jn; (6)∑

j∈M

∑
k∈K

fk
ij(t) ≤ 1, ∀i ∈ M, t ∈ [0, T ]; (7)

∑
i∈M

∑
k∈K

fk
ij(t) ≤ 1, ∀j ∈ M, t ∈ [0, T ]; (8)

fk
ij(t) ≥ 0, ∀i, j ∈ M, n ∈ N, k ∈ Jn, t ∈ [0, T ]. (9)

Eq. (1) is the objective of our problem, i.e., minimizing the

total weighted JCT, while all of the others are constraints.

JCT and CCT are defined by Eq. (2)(3), respectively. Eq. (4)

guarantees that all bytes of each flow must be transmitted

within proper time intervals and gives the definition of flow

completion time in addition. Eq. (5) describes the constraints

of release time, that is to say, a flow is allowed to transmit

bytes only after the job it belongs to has been released. Eq. (6)

describes the precedence constraints to guarantee that a flow

cannot transmit any byte before all of its dependent coflows

have finished. Eq. (7)(8) guarantee that for each port, the total

data rate cannot exceed the port capacity (normalized to 1)

at each time. Finally, Eq. (9) guarantees a non-negative data

rate for each flow, which implies that preemptions are allowed

(i.e., the event that data rate turns to 0 is indeed a preemption).

Theorem III.1. (O) is strongly NP-Hard.

Proof. We will prove it by reducing (O) to the problem of

coflow scheduling to minimize total weighted coflow com-

pletion time, which has proven to be strongly NP-Hard [11].

Given an arbitrary instance of Coflow Scheduling Problem

(CSP), we construct a corresponding instance of (O) as

following: supposing there are n coflows in CSP with release

time ri and weight wi, we construct n jobs and each job has

exact one coflow; for each job, the release time and weight

are just those of the coflow in it. Thus, the solution of the

constructed instance is exactly the solution of the given CSP

instance. Therefore, if we could solve the constructed instance

in polynomial time, we can also solve the CSP instance in

polynomial time, which implies (O) is strongly NP-Hard even

there is only one coflow in each job and no coflow dependency

exists.

C. Relaxed Formulation
Note that the original formulation (O) is a complicated

nonlinear programming with infinite variables, which is hard

to analyze and even harder to approximate. Thus we choose

to relax (O) to an integer linear programming (ILP) firstly.

We derive the constraints of (ILP) as following.

(1) Load Constraints. Denote J = {J1, J2, · · · , JN} as the

job set and it’s clear that J is a partition of coflow set K,

which indicates that ⋃
n∈N

Jn = K; (10)

Jn ∩ Jn′ = ∅, ∀n, n′ ∈ N, n 
= n′. (11)

Thus Eq. (7) can be transformed into∑
n′∈N

∑
k∈Jn′

∑
j∈M

fk
ij(t) ≤ 1. (12)

For a specific Job n, let

Nn � {n′ ∈ N : Jn′ ≤ Jn} (13)

and thus, Eq. (9)(12) indicate that∑
n′∈Nn

∑
k∈Jn′

∑
j∈M

fk
ij(t) ≤ 1. (14)

Now let’s integrate the both sides of Eq. (14) from 0 to Jn
and we can obtain that∫ Jn

0

∑
n′∈Nn

∑
k∈Jn′

∑
j∈M

fk
ij(t)dt ≤ Jn. (15)

Swap the order between the integration and summations. By

combining Eq. (4)(5)(6)(13), we can transform Eq. (15) into∑
n′∈Nn

∑
k∈Jn′

∑
j∈M

pkij ≤ Jn. (16)

Note that Eq. (16) is not a linear inequality, because the symbol

Nn in the first summation is also a variable. Next we will

introduce an order matrix X = [xij ] to linearize the inequality.

Let

xij � 1 {Ji < Jj} (17)

and ties between Ji and Jj are broken arbitrarily. 1{·} is the

indicator function, which implies

xn′n ∈ {0, 1}, ∀n, n′ ∈ N, n 
= n′. (18)

Note that the order matrix is indeed a representation of the

strictly totally ordered relation among the job completion

time, and the asymmetry and transitivity are equivalent to the

following two linear constraints:

xnn′ + xn′n = 1, ∀n, n′ ∈ N, n 
= n′; (19)
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xnn′ + xn′n′′ ≥ xnn′′ ,

∀n, n′, n′′ ∈ N, n 
= n′, n 
= n′′, n′ 
= n′′. (20)

Now Eq. (16) can be written as∑
k∈Jn

∑
j∈M

pkij +
∑

n′:xn′n=1

∑
k∈Jn′

∑
j∈M

pkij ≤ Jn, (21)

which implies∑
k∈Jn

∑
j∈M

pkij +
∑
n′∈N

n′ �=n

∑
k∈Jn′

∑
j∈M

pkijxn′n ≤ Jn,

∀n ∈ N, i ∈ M (22)

instantly due to the property of indicator function. Similarly,

we have ∑
k∈Jn

∑
i∈M

pkij +
∑
n′∈N

n′ �=n

∑
k∈Jn′

∑
i∈M

pkijxn′n ≤ Jn,

∀n ∈ N, j ∈ M. (23)

(2) Release Time Constraints. Eq. (7)(9) indicate that for

a specific Job n, we have∑
k∈Jn

∑
j∈M

fk
ij(t) ≤ 1. (24)

Integrating the both sides of Eq. (24) from rn to Jn and finally,

we have

Jn − rn ≥
∑
k∈Jn

∑
j∈M

pkij ≥ 0, ∀n ∈ N. (25)

Combining the derived constraints and properties, we obtain

the relaxed formulation (ILP) as follow:

(ILP) min

N∑
n=1

wnJn (26)

s.t. (22)(23)(25)(19)(20)(18).

For integer linear programming is strongly NP-hard in general,

we further relax (ILP) to a linear programming (LP):

(LP) min

N∑
n=1

wnJn (27)

s.t. (22)(23)(25)(19)(20);

xn′n ≥ 0, ∀n, n′ ∈ N, n 
= n′. (28)

Easy to see that (LP) is a relaxation of (ILP). Denote the

optimal solution of (O), (ILP) and (LP) as OPT , OPTILP

and OPTLP , respectively. Due to the property of relaxation,

we have

OPTLP ≤ OPTILP ≤ OPT (29)

for a minimization problem, which concludes that OPTLP is

a lower bound of the optimal solution of (O).
IV. APPROXIMATION ALGORITHM

In general, the coflow scheduling problem can be re-

duced to a corresponding concurrent open shop problem [11],

[18]. Multi-stage coflow scheduling problem is close to the

PDm|rj , pmpt, prec|∑wjCj problem1, but few work aimed

1Represented in improved α|β|γ notation [19], [20].

Algorithm 1: MCS algorithm

1 Solve the linear programming (LP) and denote the job

completion time in the optimal solution as J̃n, n ∈ N.

2 Sort and reindex all jobs such that

J̃1 ≤ J̃2 ≤ · · · J̃N . (30)

3 repeat
4 call Update when a job released.

5 until all jobs finished
6

7 function Update

8 Suspend all active coflows.

9 List all released but not finished coflows in table L.

10 Sort the coflows in L with a topological-sorting

algorithm according to their dependencies.

11 Sort the coflows in L with an arbitrary stable
sorting algorithm (e.g., merge sorting) according

to the jobs they belong to in the order of Eq. (30).

12 for i = 1 → |L| do
13 Decompose coflow Li into k slices with

Algorithm 2 and transmit them one by one

with backfilling.

at this problem in the past. To the best of our knowledge,

there are only approximation algorithms for this problem

dealing with quite special cases, e.g., the cases with at most

two dependency chains [21]. Moreover, our problem is much

knottier for two reasons: (1) Coflow scheduling is more

complicated inherently due to coupled resource constraints [6];

(2) tree dependencies (even DAG dependencies) are common

in current data parallel frameworks [5], [8], thus aiming at

special type of dependencies is meaningless.

In this section, we proposed an event-driven approximation

algorithm for Multi-stage Coflow Scheduling, namely MCS.

To make it clear, we use matrix C = [cij ] ∈ RM×M to

represent a coflow, where cij is the transmitted bytes from

machine i to machine j in this coflow. Correspondingly, we

denote ||C|| = max{||C||1, ||C||∞} as the bottleneck bytes

of coflow C, where || · ||p is the p-norm.

A. Algorithm Design
To approximately solve (O) in polynomial time, we de-

signed an event-based algorithm MCS, shown as Algorithm

1. At the beginning, we solve the linear programming (LP),
then sort and reindex all jobs according to their completion

time in (LP). For each job, the new index is regarded as

its transmission priority, and a job with smaller index has a

higher priority. The priority of a coflow is the priority the job

it belongs to.

When a new job is released, all of the active jobs will be

suspended and rescheduled. Specifically, we first sort all of

the active coflows according to their priority, ties are broken

according to their dependencies. Next, we schedule the coflows

one by one, and each coflow is scheduled with our proposed
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Algorithm 2: IBvN decomposition algorithm

Input: nonnegative matrix Ã = [aij ] ∈ Rn×n

Output: weights c̃l, incomplete permutation matrices

P̃l = [p
(l)
ij ] ∈ Rn×n, l = 1, 2, · · · , k′

1 Augment Ã to ||Ã||A, where A is a doubly stochastic

matrix. // see [11]
2 Decompose A into permutation matrices such that

A =
∑k

i=1 ciPi. // see [23]
3 for i = 1 → n do
4 for j = 1 → n do
5 Find the index m such that∑m−1

l=1 clp
(l)
ij < aij ≤

∑m
l=1 clp

(l)
ij .

6 For all l > m, p
(l)
ij ← 0.

7 if aij <
∑m

l=1 clp
(l)
ij then

8 Transform cmPm into cm1Pm1 + cm2Pm2,

where cm2 =
∑m

l=1 clp
(l)
ij − aij and

cm1 = cm − cm2, Pm1 = Pm2 = Pm.

9 p
(m2)
ij ← 0.

10 Rearrange all weights and all incomplete permutation

matrices such that Ã =
∑k′

i=1 ciP̃i.

Incomplete Birkhoff-von Neumann (IBvN) decomposition al-

gorithm, inspired by the famous Birkhoff-von Neumann (BvN)

theorem:

Theorem IV.1. [22] (BvN theorem) Doubly stochastic matrix
A ∈ Rn×n can be decomposed as A =

∑k
i=1 ciPi, where

ci ∈ (0, 1) and Pi is a permutation matrix for each i,∑k
i=1 ci = 1, k ≤ n2 − 2n+ 2.

For a specific coflow C, if C
||C|| is a doubly stochastic

matrix, i.e., the bytes are uniformly distributed in each ingress

and egress port, we may decompose it into k weighted

permutation matrix and scheduling them directly. Two polyno-

mial decomposition algorithms are given by [23]. Under this

condition, there is no link-sharing thus no congestion, and each

link can be fully-used.

However, in most cases, C
||C|| is far away from a doubly

stochastic matrix. To deal with this situation, we propose the

IBvN decomposition algorithm to decompose a nonnegative

matrix into k weighted incomplete permutation matrix2 ,

shown as Algorithm 2. The following theorem guarantees the

feasibility and polynomial time of this algorithm.

Theorem IV.2. Nonnegative matrix Ã ∈ Rn×n can be de-
composed as Ã =

∑k′

i=1 c̄iP̃i, where c̄i ∈ (0, ||Ã||) and P̃i is
an incomplete permutation matrix for each i,

∑k′

i=1 c̄i = ||Ã||,
k′ ≤ 2n2 − 2n+ 1.

2We define a binary matrix P = [pij ] ∈ Rn×n as an incomplete
permutation matrix if there is at most one entry of 1 in each row and each
column.

Proof. By [11], nonnegative matrix Ã can be augmented

to matrix ||Ã||A, where A is a doubly stochastic matrix.

According to Theorem IV.1, A can be decomposed into k
permutation matrices P1, · · · ,Pk with corresponding weights

c1, · · · , ck ∈ (0, 1) such that
∑k

i=1 ci = 1, which implies that

c̃1, · · · , c̃k′ ∈ (0, 1) and
∑k′

i=1 c̃i = 1. Noting that ||Ã||A
is augmented from Ã, we have c̄i = ||A||c̃i for each i,

which concludes that c̄i ∈ (0, ||Ã||) and
∑k′

i=1 c̄i = ||Ã||. It’s

clear that Line 8 in Algorithm 2 can be executed by at most

n2− 1 times, which generates at most n2− 1 new incomplete

permutation matrices. As a result, k′ ≤ (n2−2n+2)+(n2−
1) = 2n2 − 2n+ 1, which completes the proof.

Theorem IV.3. MCS algorithm runs in polynomial time.

Proof. We first prove the following lemma.

Lemma IV.1. IBvN decomposition algorithm runs in polyno-
mial time.

Proof. We omit the proof due to space limitation. See [11],

[23] for reference.

For the preprocessing phase of MCS algorithm, the linear

programming (Line 1 in Algorithm 1) can be solved in

polynomial time using ellipsoid algorithm [24] or projective

algorithm [25], while sorting and reindexing (Line 2 in Algo-

rithm 1) run in the time of O(n log n).
When a job is released, the Update function is called. By

digging into the Update function, we can see that Line 8-11 in

Algorithm 1 runs in polynomial time, while from Lemma IV.1,

we know that the IBvN decomposition algorithm (Line 13 in

Algorithm 1) runs in polynomial time, and so does the Update

function. Note that the MCS algorithm runs in polynomial

time. This completes the proof.

B. Performance Analysis
The following theorem indicates the performance of our

proposed algorithm.

Theorem IV.4. MCS is a (2M +1)-approximation algorithm,
where M is the number of machines.

Proof. First let’s derive the lower bound of the optimal so-

lution, i.e., OPTLP . Note that OPTLP is the summation of

weighted job completion time, thus we investigate the lower

bound of the job completion time.

Lemma IV.2. In (LP), the job completion time of the l-th job
J̃l ≥ 1

2M

∑l
n=1

∑
k∈Jn

∑
i∈M

∑
j∈M

pkij .

Proof. For simplicity, we define

μin =
∑
k∈Jn

∑
j∈M

pkij , ∀i ∈ M, n ∈ N. (31)

Thus, Eq. (22) can be written as

μin +
∑
n′∈N

n′ �=n

μin′xn′n ≤ J̃n, (32)
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which indicates that

μ2
in +

∑
n′∈N

n′ �=n

μin′μinxn′n ≤ μinJ̃n, (33)

and thus,

l∑
n=1

μ2
in +

l∑
n=1

∑
n′∈N

n′ �=n

μin′μinxn′n ≤
l∑

n=1

μinJ̃n

≤
(

l∑
n=1

μin

)
J̃l,

(34)

where the last inequality comes from Eq. (30). Note that for

any n ≤ l and n′ > l, we have xn′n = 0, thus

l∑
n=1

∑
n′∈N

n′ �=n

μin′μinxn′n =

l∑
n=1

l∑
n′=1
n′ �=n

μin′μinxn′n

=
1

2

(
l∑

n=1

μin

)2

− 1

2

l∑
n=1

μ2
in.

(35)

Combining Eq. (34)(35), we have

1

2

l∑
n=1

μ2
in +

1

2

(
l∑

n=1

μin

)2

≤
(

l∑
n=1

μin

)
J̃l, (36)

which indicates that

J̃l ≥ 1

2

l∑
n=1

μin =
1

2

l∑
n=1

∑
k∈Jn

∑
j∈M

pkij , ∀l ∈ N, i ∈ M. (37)

Similarly, we have

J̃l ≥ 1

2

l∑
n=1

∑
k∈Jn

∑
i∈M

pkij , ∀l ∈ N, j ∈ M. (38)

Combining Eq. (37)(38), we have

J̃l ≥ 1

2
max

⎧⎨
⎩max

i∈M

l∑
n=1

∑
k∈Jn

∑
j∈M

pkij ,max
j∈M

l∑
n=1

∑
k∈Jn

∑
i∈M

pkij

⎫⎬
⎭

≥ 1

2M
max

⎧⎨
⎩
∑
i∈M

l∑
n=1

∑
k∈Jn

∑
j∈M

pkij ,
∑
j∈M

l∑
n=1

∑
k∈Jn

∑
i∈M

pkij

⎫⎬
⎭

=
1

2M

l∑
n=1

∑
k∈Jn

∑
i∈M

∑
j∈M

pkij ,

(39)

which completes the proof.

Next, we investigate the job completion time in our approx-

imation algorithm.

Lemma IV.3. In MCS algorithm, the job completion time of
the l-th job Jl ≤ (2M + 1)J̃l.

Proof. Let’s consider an easier case for which all jobs release

at the same time, in another word, for all l ∈ N, rl = 0. The

total idle time caused by precedence constraints and the total

actual transmission time for all of the jobs l′ < l compose the

job completion time Jl. Thus

Jl ≤
l∑

n=1

∑
k∈Jn

max

⎧⎨
⎩max

i∈M

∑
j∈M

pkij ,max
j∈M

∑
i∈M

pkij

⎫⎬
⎭

≤
l∑

n=1

∑
k∈Jn

max

⎧⎨
⎩
∑
i∈M

∑
j∈M

pkij ,
∑
j∈M

∑
i∈M

pkij

⎫⎬
⎭

=
l∑

n=1

∑
k∈Jn

∑
i∈M

∑
j∈M

pkij ≤ 2MJ̃l.

(40)

Note the first inequality in Eq. (40) is tight and the equality

holds when all of the coflows in each job have strict linear

dependencies, while the last inequality comes from Lemma

IV.2. When jobs have arbitrary release time, Eq. (40) can be

written as

Jl ≤ rl + 2MJ̃l, (41)

because the idle time introduced by release time can be upper-

bounded by rn. Taking Eq. (25) into consideration, we have

Jl ≤ J̃l + 2MJ̃l = (2M + 1)J̃l, (42)

which completes the proof.

From Lemma IV.3, the solution of our approximation algo-

rithm can be represented as

SOL =
N∑
l=1

wlJl ≤ (2M + 1)
N∑
l=1

wlJ̃l

= (2M + 1)OPTLP

(43)

and thus the approximation ratio

α =
SOL

OPTLP
≤ 2M + 1, (44)

which completes the proof.

However, this bound is not tight, because for the last

inequalities in Eq. (39)(40), equalities can never hold simul-

taneously due to the property of max operator. It seems an

unavoidable problem, because the completion time can be

hardly bounded by their bytes directly when dependencies

exist.

C. Extension Results
There are two extensions of our algorithm. In special cases,

our algorithm has a constant approximation ratio.

Corollary IV.1. When bytes are uniformly distributed in
each ingress and egress port for each coflow, MCS is a 3-
approximation algorithm.

Proof. When bytes are uniformly distributed in each ingress

and egress port for each coflow, i.e.,∑
j∈M

pkij =
∑
i∈M

pkij = ck, ∀i, j ∈ M, k ∈ K, (45)
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Eq. (39) can be transformed into

J̃∗
l ≥ 1

2

l∑
n=1

∑
k∈Jn

ck, (46)

while Eq. (42) can be transformed into

J∗
l ≤ rl +

l∑
n=1

∑
k∈Jn

ck ≤ J̃∗
l + 2J̃∗

l = 3J̃∗
l . (47)

Thus

α∗ =
SOL∗

OPT ∗
LP

=

∑N
l=1 wlJ

∗
l∑N

l=1 wlJ̃∗
l

≤ 3, (48)

which completes the proof.

Corollary IV.2. When all of the jobs have the same release
time, MCS is a 2M -approximation algorithm in general cases,
and is a 2-approximation algorithm when bytes are uniformly
distributed in each ingress and egress port for each coflow.

Proof. Easy to see by setting rl = 0 for all l ∈ N, without

loss of generality.

V. EVALUATIONA. Methodology
Simulator: We evaluate our algorithm with an event-based

flow simulator by performing a replay of the collected Face-

book logs, which are widely accepted as a benchmark in
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Fig. 6. Influence of average coflow computation delay

both system works and theoretical works [6], [8], [11], [15],

[26]. For there is no prior work aimed at multi-stage coflow

scheduling to minimizing the total weighted JCT, we validated

our algorithm by comparing with two closest algorithms: Aalo

and LP-OV-LS. Aalo is the only algorithm that considers

multi-stage coflow scheduling, however, it cannot handle the

weighted scenarios and has no performance guarantees [8].

LP-OV-LS is the state-of-the-art approximation algorithm for

coflow scheduling to minimize the total weighted CCT, how-

ever, it can hardly face with multi-stage scenarios [14], [15].

We enable work conservation for all algorithms to guarantee

the fairness.

Workload: The coflow information in Facebook logs is

incomplete. For each coflow, the Facebook logs contain its

sender machines, receiver machines, and transmitted bytes in

receiver level, instead of in flow level, thus we partition the

bytes in each receiver to each sender pseudo-uniformly with

a small popple to generate flows. Besides, the Facebook logs

contain only coflow information instead of job information,

thus we randomly partition these coflows into some jobs such

that each job contains α coflows in expectation, and DAG de-

pendencies among coflows are randomly generated; the release

time of the jobs follows a Poisson process with parameter θ;

the weights of the jobs follow a uniform distribution, and are

normalized such that all of the weights sum up to 1.

Metrics: We evaluate these algorithms with two metrics by

default: the total weighted JCT and actual running time of

these algorithms. The lower bound of our algorithm is also

taken into consideration by solving (LP). All of the data

points are collected from 100 runs with random workload,

as is aforementioned.

Summary: We summarize our experimental results as an-

swers to the following questions.

• How close is MCS to its lower bound? We evaluate our

algorithm in both weighted and non-weighted scenarios,

and the largest gap between our algorithm and LP lower

bound is 9.14%, which implies that our algorithm finds

a quite good solution in practice.

• Does MCS perform better that state-of-the-art algo-
rithms? For multi-stage coflow scheduling, we compare

our algorithm with the only existing (heuristic) algorithm,

and our algorithm reduces the average JCT by up to

33.48%; for coflow scheduling, we compare our algorith-

m with the state-of-the-art approximation algorithm, and

our algorithm reduces the average JCT by up to 83.31%,

while our algorithm runs over 20× faster.

• How does MCS perform in a large parameter space?
We further investigate the influence of the number of

machines (M ), the average interval of job arrival (θ) and

the average number of coflows in each job (α). Results

show that our algorithm works well consistently.

B. Special Cases
In order to compare MCS with Aalo, we first evaluate our

algorithm in special cases, i.e., all jobs have the same weights,

namely non-weighted scenarios. In this case, the optimization

objective is indeed equivalent to minimizing the average JCT.
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We choose M = 30, θ = 30, α = 20 as the default parameters,

and results are shown in Fig. 2 and Fig. 3.

As illustrated, all of the jobs are randomly combined by the

coflows in Facebook logs with random dependencies, while

their release time is randomly generated, thus it’s necessary to

investigate the cumulative distribution function (CDF) of the

average JCT and the time spent on scheduling. As shown in

Fig. 2(a), our algorithm has a much stabler performance than

Aalo: for our algorithm, the average JCT varies from about

15 to 26, with coefficient of variation CVMCS = 0.1077; for

Aalo, it varies from about 17 to 40, and the coefficient of

variation CVAalo = 0.1462. However, our algorithm is slower

than Aalo. As a heuristic algorithm, Aalo schedules coflows

with simple rules rather than complex computation, thus its

execution time concentrates on about 0.08 s; by contract, our

algorithm has to solve a linear programming in preprocessing

phase, which takes more than 95% of the execution time, as

a result, our algorithm needs about 2 s on average.

Next, we investigate the influence of the number of ma-

chines, shown in Fig. 3(a). Note that the total bandwidth

grows linearly as the number of machines growing, thus for

both the algorithms, the average JCT decreases. It’s clear that

the average JCT is not inversely proportional to the number

of machines, due to the non-uniformity of coflow size, time

distribution and space distribution. Compared with Aalo, we

reduce the average JCT by up to 33.48%, and the largest gap

between our algorithm and its lower bound is only 6.44%.

Then we investigate the influence of the average interval of

job arrival, i.e. the parameter θ in Poisson process, shown in

Fig. 3(b). In fact, the link load is related to this parameter.

When all coflows arrived at the same time, i.e., θ = 0, the

link is always fully used for a long time; when θ becomes

larger and larger, finally there will be at most only one active

coflow at any time. Exactly, this is the reason why the gap

between our algorithm and Aalo is firstly larger and then

becomes smaller: when link load becomes too light or too

heavy, the scheduling algorithms usually play a quite small

role. Compared with Aalo, we reduce the average JCT by up

to 31.10%, and the largest gap between our algorithm and its

lower bound is 9.14%.

Finally, let’s investigate the influence of the job structure,

i.e., the average number of coflows in each job. From Fig. 3(c),

we can see that all of three curves increase linearly with similar

slopes. This is because, when a job contains more coflows, in

general, it has more bytes to transmit, thus the JCT becomes

larger. Compared with Aalo, we reduce the average JCT by

up to 31.87%, and the largest gap between our algorithm and

its lower bound is only 5.07%.
C. General Cases

Now we evaluate our algorithm in general cases, i.e., each

job has a random weight, and choose the state-of-the-art

approximation algorithm of coflow scheduling LP-OV-LS for

comparison. Note that the time complexity of LP-OV-LS is

related with the number of coflows, instead of the number of

jobs, thus we have to reduce the total number of coflows to

guarantee that LP-OV-LS can be finished in reasonable time.

We choose M = 30, θ = 30, α = 6 as the default parameters,

and results are shown in Fig. 4 and Fig. 5.

Let’s investigate the CDF of the total weighted JCT and

the time spent on scheduling. As shown in Fig. 4(a), the total

weighted JCT of LP-OV-LS is over 5× larger than that of our

algorithm due to improper optimization objective and the lack

of consideration on coflow dependencies, which is essential

for multi-stage coflow scheduling. Besides, LP-OV-LS runs

over 20× slower than our algorithm, because it has to solve a

linear programming with more variables and more constraints,

as shown in Fig. 4(b).
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Then we investigate the influence of aforementioned three

parameters. As shown in Fig. 5(a), the total weighted JCT of

both algorithms decreases as the number of machines growing.

However, Fig. 5(b) is really confused that the total weighted

JCT of LP-OV-LS should decreases as θ increasing. We think

it’s caused by improper optimization objective, because when

we try to optimize CCT, the behavior of JCT is out of control

in multi-stage scenarios. The influence of α in weighted

scenarios is similar with that in non-weighted scenarios, shown

in Fig. 5(c). Compared with LP-OV-LS, we reduce the average

JCT by up to 83.31%, and the largest gap between our

algorithm and its lower bound is 8.79%.
D. Further Evaluation

We further evaluate our algorithm in the scenarios when

each coflow has a computation phase, as shown in Fig. 6.

Firstly, we investigate the CDF of both the average JCT and

total weighted JCT when each coflow has a 100 s computation

delay on average, shown in Fig. 6(a). Then we evaluate our

algorithm within a large range of computation delay from 0 s

to 200 s, where the time cost on computation is comparable

with that cost on network transmission. Results are shown

in Fig. 6(b): as the time cost on computation growing, the

average or total weighted JCT increases as expected. By

comparing with Fig. 2(a) and Fig. 4(a), we can see that

even each coflow has a 200 s computation delay on average,

our algorithm still performs better than others. When the

time cost on computation is far greater than that cost on

network transmission, the gap among all algorithms becomes

negligible, thus network scheduling comes to be meaningless.
VI. CONCLUSION

There are dependent relationships among coflows of multi-

stage jobs in datacenters. As the first systematic work, we

formulate coflow scheduling of multi-stage jobs as a problem

to minimize the total weighted JCT. We design an approxi-

mation algorithm. Evaluation results show that our algorithm

significantly outperforms state-of-the-art works.
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[23] F. Dufossé and B. Uçar, “Notes on birkhoff–von neumann decomposition
of doubly stochastic matrices,” Linear Algebra and its Applications, vol.
497, pp. 108–115, 2016.

[24] L. G. Khachiyan, “A polynomial algorithm in linear programming,” Ussr
Computational Mathematics & Mathematical Physics, vol. 20, no. 80,
pp. 1–3, 1979.

[25] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proceedings of the sixteenth annual ACM symposium on
Theory of computing. ACM, 1984, pp. 302–311.

[26] Y. Li, S. H.-C. Jiang, H. Tan, C. Zhang, G. Chen, J. Zhou, and F. Lau,
“Efficient online coflow routing and scheduling,” in Proceedings of the
17th ACM International Symposium on Mobile Ad Hoc Networking and
Computing. ACM, 2016, pp. 161–170.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications


