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Abstract—One critical issue for wireless power transfer is
to avoid human health impairments caused by electromagnetic
radiation (EMR) exposure. The existing studies mainly focus
on scheduling wireless chargers so that (expected) EMR at any
point in the area doesn’t exceed a threshold Rt. Nevertheless,
they overlook the EMR jitter that leads to exceeding of Rt

even if the expected EMR is no more than Rt. This paper
studies the fundamental problem of RObustly SafE charging for
wireless power transfer (ROSE), that is, scheduling the power of
chargers so that the charging utility for all rechargeable devices
is maximized while the probability that EMR anywhere doesn’t
exceed Rt is no less than a given confidence. We first build our
empirical probabilistic charging model and EMR model. Then, we
present EMR approximation and area discretization techniques
to formulate ROSE into a Second-Order Cone Program, and
the first redundant second-order cone constraints reduction al-
gorithm to reduce the computational cost, and therefore obtain a
(1−ε)-approximation centralized algorithm. Further, we propose
a (1− ε)-approximation fully distributed algorithm scalable with
network size for ROSE. Simulations and field experiments show
that our algorithms can outperform comparison algorithms by
480.19%.

I. INTRODUCTION

Wireless Power Transfer (WPT) technology, which enables
a wireless charger to transmit power to a rechargeable device
across the air gap, has drawn increasing attention from both
industrial and academic circles due to its merits of no wiring,
reliability, ease of maintenance, etc. As per a recent report,
wireless power transmission market is estimated to rise to
17.04 billion till 2020 [1]. Nevertheless, WPT typically incurs
high electromagnetic radiation (EMR), which causes risks of
tissue impairment, brain tumor, miscarriage, and detrimental
impact on children that can be ten times greater than adults
[2]. Therefore, it is a critical issue for WPT technology to
avoid human health impairments caused by EMR exposure.

In this paper, we for the first time consider the jitter
phenomenon of EMR aroused by wireless chargers. For il-
lustration, Figure 1 shows that the measured charging power
(which is exactly proportional to the EMR there) that a
wireless rechargeable sensor node harvested from an off-
the-shelf TX91501 power transmitter produced by Powercast
[3] varies in a range, rather than keeping constant, for a
fixed distance between 0.5m and 1.8m. Figure 2 shows the
charging power histogram for the distance of 0.9m. We can
see that the charging power distribution basically matches
a Gaussian distribution. Our quantitative evaluation based
on Anderson-Darling test and Kolmogorov-Smirnov test also
supports this observation. Essentially, EMR jitter is mainly
due to the fading effect [4] caused by multipath propagation,
shadowing from obstacles, etc. Thereby, the resulted EMR
is indeed the superposition of multiple copies of that for

0.5 0.7 0.9 1.1 1.3 1.5 1.7
 Distance (m)

5

10

15

20

25

 P
ow

er
 D

is
tri

bu
tio

n

Fitting

Fig. 1: Charging power distri-
bution with distance
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Fig. 2: Charging power for dis-
tance of 0.9m with one single
charger

the transmitted signal, each traversing a different path with
different attenuation, delay and phase shift, resulting in either
constructive or destructive interference. Thus, we argue that
it is not sufficient to guarantee the traditional EMR safety,
which we call deterministic EMR safety, as done by most
existing wireless charging schemes; that is, the (expected)
EMR intensity anywhere should not exceed a threshold, say
Rt. The main reason is that even if the expected EMR is no
more than Rt, it is always possible that EMR exceeds Rt and
the corresponding probability can be up to 50%; and traditional
schemes cannot distinguish between the harmful levels of two
EMR distributions with different jitter amplitudes but same
average value, which are definitely different. One may argue
that why not take the maximum observed EMR in history for a
charger to build a new “maximum EMR model”, and therefore
directly use existing schemes for ensuring deterministic EMR
safety. Our answer is no for the following reasons. First, due
to the probabilistic nature of EMR, one can never guarantee
that the maximum EMR in the future must not surpass the
maximum one in history; rather, using a confidence level for
future prediction based on a probabilistic model built upon
history data should be more appropriate. Second, the maximum
endurable intensity for instantaneous or short-term EMR is
shown to be much higher than the average endurable EMR.
As per the standards published by ICNRP [5] in Europe and
the regulation GB8702-2014 in China [6], for example, the
maximum allowed instantaneous electric field intensity is 32
times of its corresponding maximum allowed average value.
Thus, occasional violation of traditional EMR threshold is not
unacceptable; instead, the issue matters here is to control the
frequency of occurrence of such violation. Third, this solution
might be too conservative to use in practical applications,
as to satisfy the more stringent EMR constraints, chargers
need to be scheduled at lower levels, yielding lower charging
utility. Consequently, to better characterize the EMR safety
extent given its probabilistic nature, we propose the notion
of probabilistic EMR safety that requires the probability that
EMR intensity anywhere does not exceed a given threshold Rt

should be no less than a given confidence η (0 < η ≤ 1).
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We are concerned with the problem of RObustly SafE
charging for wireless power transfer (ROSE) in this paper. We
first propose probabilistic charging and EMR models to capture
their jitter nature. By defining charging utility of a device to
be proportional to its received power, our optimization goal is
to maximize the aggregated (expected) charging utility for all
devices. Formally, given a number of static wireless chargers
and rechargeable devices on a 2D plane, our problem is to
schedule the power of chargers so that the overall charging
utility for all the devices is maximized while the probability
that EMR intensity at any point in the plane does not exceed
a given threshold Rt is no less than a given confidence η.

Though there have emerged some works [2], [7]–[14]
considering EMR safety, none of them considers the jitter
property of EMR and thus cannot apply to address ROSE.
Moreover, their solutions are essentially based on either dis-
crete optimization or linear programming methods, which are
fundamentally different from ours. The other works consider
charging efficiency issues for wireless charger networks [15]–
[17], but none of them takes into account the EMR safety.

The main technical challenges for ROSE are four-folds.
The first challenge is that the ROSE problem is nonlinear
and NP-hard. ROSE is nonlinear because both the charging
power and EMR for chargers are probabilistic and nonlinear;
the probabilistic EMR safety requirement is imposed on ev-
ery point in the plane which implies an infinite number of
constraints. The second challenge is due to the high compu-
tational cost of the centralized algorithm. Even if we could
approximately transform the infinite constraints of the problem
into limited ones, their number is still huge and causes high
computational cost. The third challenge is to design a fully
distributed algorithm. As generally neighboring chargers have
overlapping area for power transfer and caused EMR, the
optimization of power scheduling for all chargers is inevitably
correlated. We need to decouple such correlation, and make
the treatments of the nonlinear problem distributed. The fourth
challenge is to bound the performance for the distributed
algorithm. We need to evaluate the caused performance loss
when we reduce its infinite nonlinear constraints to finite ones
and when we make the algorithm distributed.

We propose both centralized and distributed algorithms
by addressing the four challenges one by one. First, we
transform the probabilistic constraint of ROSE into a second-
order cone one, and propose EMR approximation and area
discretization techniques to reformulated ROSE as a traditional
Second-Order Cone Program (SOCP), which can be optimally
addressed by convex optimization techniques such as interior
point methods [18]. Second, we propose the first redundant
second-order cone constraints reduction scheme to effectively
remove the redundant constraints. Third, we present an area
partition scheme which basically divides the area into many
subareas and considers the optimization problem in each sub-
area independently. This is the first fully distributed algorithm
for SOCP that is scalable with network size. Note that we
also propose the first distributed redundant second-order cone
constraints reduction scheme to reduce computational cost.
Fourth, by controlling the error for the EMR approximation
and area discretization, and the granularity of the distributed
area partition scheme, we prove that our distributed algorithm
achieves (1− ε)-approximation ratio.

We conducted both simulations and field experiments to
evaluate our proposed algorithms. The results show that our al-
gorithms can outperform comparison algorithms by 480.19%.

II. RELATED WORK

To the best of our knowledge, we are the first to study
the robustly safe charging problem that considers the jitter
of aroused EMR of wireless chargers. First, there exist some
works [2], [7]–[14] studying on wireless charging issues with
EMR safety concern, but none of them considers the EMR
jitter phenomenon. For example, Dai et al. initiated the study of
safe charging by first taking the detrimental effect of high EMR
into consideration in [2]. They investigated how to schedule
unadjustable chargers [2], [7] and adjustable chargers [8], [9]
to maximize the overall charging utility of all rechargeable
devices. Dai et al. also proposed the first charger deployment
scheme for wireless chargers with EMR safety concern [11],
and considered radiation constrained scheduling of wireless
charging tasks in [12], [13]. All these schemes merely consider
deterministic EMR safety and cannot be applied to address our
problem. Besides, their solutions are essentially based on either
discrete optimization or linear programming methods, which
differ from ours that relies on quadratic programming.

Second, some other works study charging efficiency issues
for wireless charger networks but overlook the EMR safety
[15]–[17]. For example, Dai et al. presented the directional
charging problem where both the charging area for chargers
and receiving area for devices can be modeled as sectors, and
studied omnidirectional charging using directional chargers in
[16], and the wireless charger placement problem in [17].

III. PROBLEM FORMULATION

A. Preliminaries
Suppose there are n identical wireless chargers S =

{si}ni=1 and m identical rechargeable devices O = {oj}mj=1
located in a 2D plane Ω. With a little abuse of notation,
we still use si (and oj) to denote the position of wireless
charger si (and device oj). We build our probabilistic charging
model based on the omnidirectional charging model proposed
in [2], [15] for chargers and devices, that is, both of the power
charging area of chargers and the power receiving area of
devices are in the shape of a disk. We stress that our analytical
results can be directly extended to the directional charging
models [16], [17]. Table I lists the notations used in this paper.

We establish our probabilistic model based on the field ex-
periments using the off-the-shelf TX91501 power transmitters
and wireless rechargeable sensor nodes produced by Powercast
[3]. We used a sensor node to receive power from a single
TX91501 power transmitter at a distance from 0.5m to 1.8m.
We first fit the distribution of the node’s received power at a
certain distance into a Gaussian distribution, and then fit the
distribution of the expectation (and the standard deviation) of
the fitted Gaussian distribution at all measured distances to a
nearly inverse-square function. Figure 1 and 3 show the fitting
results of the expectation and standard deviation of the received
power for the node. In addition, to qualitatively measure the
goodness of Gaussian distribution fitting, we use Anderson-
Darling test (A-D test) and Kolmogorov-Smirnov test (K-S
test), which are statistical tests of whether a given sample
of data is drawn from a given probability distribution [19].
Our experimental results show that the probability value, or
p-value, for both the tests can be up to 0.0624, which is
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TABLE I: Notations

Symbol Description
si i-th wireless charger (or its position)
oj j-th rechargeable device (or its position)
n Number of wireless chargers
m Number of rechargeable devices

P (.) Charging power function
α1, β1 Constants in the expression of charging power ex-

pectation
α2, β2 Constants in the expression of charging power stan-

dard deviation
D Charging radius for wireless chargers
xi Adjusting factor of the i-th wireless charger

P (d), σP (d) Expectation and standard deviation of charging pow-
er with distance d

e(d), σe(d) Expectation and standard deviation of EMR with
distance d

ce Constant in the EMR model
cu Constant in the charging utility model
U(.) Utility function
Rt EMR threshold
η Confidence

P̃ iz , σ̃P,iz Approximated expectation and standard deviation of
EMR in subarea Az from si

N(si) Neighbor set of charger si

larger than the commonly used significance level of 0.05 and
thus passes both the tests. For similar experiments with two
chargers, Figure 4 shows that the p-value for both the tests
is dramatically improved, and its mean value becomes larger
than 0.13. This indicates that our Gaussian distribution fitting
is more appropriate for realistic cases with multiple chargers.
Note that though some works claim that WPT channels can be
characterized by log-normal fading in some cases [20], [21],
our empirical results show that Gaussian distribution fitting
achieves comparable or higher p-value compared with log-
normal distribution fitting. After all, Gaussian distribution can
well approximate log-normal distribution if μ > 6σ [22], while
we have μ > 16σ in our case. To sum up, the maximum
charging power for a single charger at distance d is:

P (d)

⎧⎨⎩∼ N
(

α1
(d+β1)2

,
[

α2
(d+β2)2

]2)
, 0 ≤ d ≤ D

= 0, d > D

where α1, β1, α2, and β2 are four constants, d is the distance
between si and oj , and D is the charging radius. For conve-
nience, we define P (d) = E[P (d)] = α1

(d+β1)2
and σP (d) =√

Var[P (d)] = α2

(d+β2)2
, and then P (d) ∼ N (P (d), σP (d)

2)

for 0 ≤ d ≤ D, and P (d) = 0 for d > D. Moreover, we define
adjusting factor xi (0 ≤ xi ≤ 1) for charger si as the ratio of
the adjusted working power to the maximum power, then the
charging power at distance d becomes P (d)xi. Further, we
adopt the power addictive model for multiple chargers [23],
i.e., the received power of a device oj is the sum of the received
power from all its surrounding chargers.

We adopt the electromagnetic radiation (EMR) model pro-
posed in [2], [8], that is, the accumulated EMR at a point is the
sum of the EMR caused by each charger which is proportional
to the corresponding charging power.

e(p) = ce

n∑
i=1

P (d(si, p))xi. (1)
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Fig. 3: Fitting result for stan-
dard deviation of power
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where ce is a predetermined constant and d(si, p) is the
distance from charger si to point p.

For the charging utility model, we adopt the linear model
proposed in [8], namely

U(x) = cu · x, (2)

where cu is a predetermined constant and x denotes the
received power.

B. Problem Statement
Let d(si, oj) be the distance from charger si to device

oj . Considering the jitter of the received power of device
oj from charger si, i.e., P (d(si, oj))xi, we take the ex-
pected charging utility over time E[U(P (d(si, oj))xi)] =
E[cuP (d(si, oj))xi] = cuP (d(si, oj))xi for optimization.
Therefore, the optimization goal for ROSE is to maximize
the aggregate expected charging utility of all devices, i.e.,
cu

∑n
i=1

∑m
j=1 P (d(si, oj))xi. As for the constraint, we re-

quire that for any point p ∈ R
2, the probability that the

aggregated EMR there doesn’t exceed a given threshold Rt

is not less than a given confidence η (0 < η ≤ 1), i.e.,
Prob(ce

∑n
i=1 P (d(si, p))xi ≤ Rt) ≥ η. To sum up, the

problem of RObustly SafE charging for wireless power transfer
(ROSE) can be defined as follows

(P1) max
xi

cu
∑n

i=1

∑m

j=1
P (d(si, oj))xi

s.t. ∀p ∈ R
2, Prob(ce

∑n

i=1
P (d(si, p))xi ≤ Rt) ≥ η,

0 ≤ xi ≤ 1 (i = 1, . . . , n). (3)

Note that xis are the optimization variables. Because the sum
of independent Gaussian random variables also follows Gaus-
sian distribution and its expectation and variance is exactly the
sum of the expectation and variance of all the Gaussian random
variables, respectively [24], we let P =

∑n
i=1 P (d(si, p))xi

and σ2
P =

∑n
i=1 σ

2
P (d(si, p))x

2
i , and introduce an assistant

zero mean unit variance Gaussian variable, the constraint in
the former formulation can be rewritten as

Prob
(
P − E[P ]

σP
≤ Rt/ce − E[P ]

σP

)
=Prob

(
P − E[P ]

σP
≤ z

)
≥ η. (4)

Suppose Φ(z) = 1√
2π

∫ z

−∞ e−t2/2dt is the cumulative distri-

bution function of a zero mean unit variance Gaussian random
variable, then we have

Rt/ce−E[P ]
σP

≥ Φ−1(η). By rearranging
the inequality and plugging in the expressions of P and σP ,
we have∑n

i=1
P (d(si, p))xi + Φ−1(η)

√∑n

i=1
σ2
P (d(si, p))x

2
i ≤ Rt

ce
,

(5)
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which is exactly in the form of second-order cone constraint,
a special type of quadratic constraints [18]. Consequently, the
formulation P1 can be equivalently transformed into

(P2) max
xi

cu
∑n

i=1

∑m

j=1
P (d(si, oj))xi

s.t.
∑n

i=1
P (d(si, p))xi + Φ−1(η)

√∑n

i=1
σ2
P (d(si, p))x

2
i ≤ Rt

ce
,

∀p ∈ R
2, 0 ≤ xi ≤ 1 (i = 1, . . . , n). (6)

Since the constraint of P1 is nonlinear and continuous, ROSE
falls in the realm of nonlinear programs, which are generally
NP-hard [25]. Then we have the following theorem. Note that
we omit some proofs in this paper to save space.

Theorem 3.1: The ROSE problem is NP-hard.

IV. (1− ε)-APPROXIMATION CENTRALIZED ALGORITHM

In this section, we present a centralized algorithm that
achieves (1−ε)-approximation ratio to address ROSE. First, we
use two piecewise constant functions to approximate the non-
linear expectation and standard deviation of EMR value with
distance, respectively, and thus partition the whole 2D plane
into multiple subareas and the aggregated EMR for any point
in a given subarea is the same. Consequently, we reformulate
ROSE into a traditional Second-Order Cone Program (SOCP),
which can be optimally addressed. Second, considering the
high time complexity caused by the huge number of second-
order cone constraints in the reformulated SOCP, we propose
a centralized algorithm to eliminate the redundant constraints
that can be safely removed without hurting the final results.

A. Piecewise Constant Approximations for EMR and Area
Discretization

We use two piecewise constant functions to approximate
the nonlinear expectation and standard deviation of EMR,
which are denoted by e(d) and σe(d), respectively. Note that
we have e(d) = ce

α1

(d+β1)2
and σe(d) = ce

α2

(d+β2)2
. The sets

of endpoints of the piecewise constant line segments for these
two functions are exactly the same, which are denoted by
	(1), ..., 	(Q) (	(0) = 0, 	(Q) = D) in order of distance.
Next, we plot Q concentric circles with radii of 	(1), ..., 	(Q),
respectively, for each charger, and thereby partition the whole
2D plane into multiple subareas that are shaped by these
concentric circles. One key observation here is that for each
formed subarea, either the approximated expectation or the
standard deviation of EMR generated by a charger is the same
for any point in the considered subarea, and so is the case for
aggregated EMR from multiple chargers. Figure 5 shows an
example for which we draw two concentric circles for three
chargers with radius 	(1) and 	(2), and obtain 12 subareas.

Given two established error thresholds, say ε1 and ε2, we
can set the values of Q and 	(1), ..., 	(Q) as follows.

Lemma 4.1: By setting 	(0) = 0,

�(q) = min{√1 + ε1 ·[�(q−1)+β1],
√
1 + ε2 ·[�(q−1)+β2]}, (7)

where q = 1, ..., Q− 1 and 	(Q) = D where Q satisfies

�(Q−1) < D ≤ min{√1 + ε1·[�(Q−1)+β1],
√
1 + ε2·[�(Q−1)+β2]},

(8)

and using the following piecewise constant functions ẽ(d)

ẽ(d) =

⎧⎪⎨⎪⎩
e(0), d = 0

e(�(q − 1)), �(q − 1) < d ≤ �(q) (q = 1, ..., Q)

0, d > D,
(9)

and

σ̃e(d) =

⎧⎪⎨⎪⎩
σe(0), d = 0

σe(�(q − 1)), �(q − 1) < d ≤ �(q) (q = 1, ..., Q)

0, d > D,
(10)

the approximation errors of EMR expectation and standard
deviation by a single charger from distance d satisfy

1 ≤ ẽ(d)

e(d)
≤ 1 + ε1. (11)

and

1 ≤ σ̃e(d)

σe(d)
≤ 1 + ε2. (12)

B. Problem Reformulation
Consequently, let P̃ iz and σ̃P,iz be the corresponding

approximated expectation and standard deviation of charging
power at the z-th subarea in all Z subareas when the adjusting
factors for all chargers are 1, P2 can be reformulated as

(P3) max
xi

cu
∑n

i=1

∑m

j=1
P (d(si, oj))xi

s.t.
∑n

i=1
P̃ izxi + Φ−1(η)

√∑n

i=1
σ̃2
P,izx

2
i ≤ Rt

ce
, (z = 1, . . . , Z)

0 ≤ xi ≤ 1, (i = 1, . . . , n). (13)

The above formulation falls exactly into the realm of
Second-Order Cone Program (SOCP), which can be optimally
addressed by convex optimization techniques such as interior
point methods [18]. We have the following lemma.

Lemma 4.2: Any feasible solution to problem P3 is also
feasible to problem P2.

Apparently, the time complexity of solving problem P3
is positively related to the number of its second-order cone
constraints. To alleviate the computational cost, we will discuss
how to eliminate useless constraints in the next subsection.

C. Centralized Redundant Constraint Reduction
To begin with, we give the following formal definition.

Definition 4.1: (Redundant second-order cone constrain-
t) Consider the system with n variables and m second-order
cone constraints:

||Aix+ bi||2 ≤ cTi x+ di, i ∈ {1, . . . ,m} (14)

where Ai ∈ R
ni×n, bi ∈ R

ni , x ∈ R
n, and di ∈ R. The

feasible region S associated with the system is defined as

S � {x ∈ R
n | ||Aix+ bi||2 ≤ cTi x+ di, i ∈ {1, . . . ,m}}. (15)

Moreover, for any fixed k ∈ {1, . . . ,m}, define the feasible
region by

Sk � {x ∈ R
n | ||Aix+bi||2 ≤ cTi x+di, i ∈ {1, . . . ,m}\k}. (16)
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Then, the k-th constraint ||Akx+ bk||2 ≤ cTk x+ dk (1 ≤ k ≤
m) is a redundant constraint if and only if Sk = S.

Essentially, the redundant second-order cone constraints are
those constraints that can be safely removed without affecting
the feasible region of the SOCP problem. As there is no
algorithm available for redundant second-order cone constraint
identification and reduction, we propose the first scheme to ad-
dress this problem. In particular, this method consists of three
steps: (1) It identifies and eliminates those trivial constraints
that can be always satisfied even all xis set to be 1; (2) it
compares each pair of constraints, and removes the constraint

that has both the coefficients of P̃ iz and σ̃P,iz being less than
that of the other constraint, respectively, for each optimization
variable xi (i = 1, . . . , n); (3) it picks the constraints one
by one; and for each constraint, it takes the formula at the
left-hand side (L.H.S.) of the constraint as the optimization
function and uses the other constraints to compute an optimal
solution. If the solution is no more than the constant at the
right-hand side (R.H.S.) of the considered constraint, which
means the constraint will always be satisfied in the presence
of the other constraints, then the constraint is redundant and
can be removed; otherwise cannot. In our problem, suppose
the k-th constraint is chosen, and the optimization program is
shown as below.

max
xi

∑n

i=1
P̃ ikxi + Φ−1(η)

√∑n

i=1
σ̃2
P,ikx

2
i

s.t.
∑n

i=1
P̃ izxi + Φ−1(η)

√∑n

i=1
σ̃2
P,izx

2
i ≤ Rt

ce
,

(z = 1, . . . , Z; z �= k)

0 ≤ xi ≤ 1, (i = 1, . . . , n). (17)

The above formulation is hard to deal with, so we introduce
an assist variable y and rewrite the formulation as

max
xi

∑n

i=1
P̃ ikxi + y

s.t.
∑n

i=1
P̃ izxi + Φ−1(η)

√∑n

i=1
σ̃2
P,izx

2
i ≤ Rt

ce
,

(z = 1, . . . , Z; z �= k)

Φ−1(η)

√∑n

i=1
σ̃2
P,ikx

2
i − y = 0,

0 ≤ xi ≤ 1, (i = 1, . . . , n). (18)

This formulation is slightly different with the traditional ex-
pression of SOCP [18] because it has equality constraints.
Nevertheless, we can equivalently transform each second-order
constraint to a quadratic one, and then use KKT conditions [18]
to compute an optimal solution. After obtaining the optimal
solution, we check whether it exceeds Rt

ce
. If not, we identify

the constraint as a redundant one and remove it.

For simplicity, we still use P3 to express the problem after
the redundant constraint reduction if no confusion arises.

D. Theoretical Analysis
Theorem 4.1: Setting ε1 = ε2 = ε, the centralized algo-

rithm for ROSE achieves (1− ε)-approximation ratio, and its
time complexity is O(n5ε−3).

V. (1− ε)-APPROXIMATION FULLY DISTRIBUTED

ALGORITHM

In this section, we develop a (1−ε)-approximation algorith-
m for ROSE. First, we make the area discretization algorithm
in the centralized algorithm distributed. Second, we propose
the first distributed redundant second-order cone constraint
reduction algorithm to remove redundant constraints. Third,
we present a distributed algorithm to address SOCP. To the
best of our knowledge, it is the first fully distributed algorithm
for SOCP that is scalable with network size.

A. Distributed EMR Approximation, Area Discretization, and
Redundant Constraint Reduction

Assume that each charger already knows the parameters
regarding probabilistic charging model, EMR model, and ap-
proximation error threshold, it is then able to independently
conduct the EMR approximation. Further, let neighbor set
N(si) be the set of chargers having non-empty intersected cov-
erage area with si. Apparently, each charger can communicate
with the chargers in its neighbor set for their position infor-
mation to implement area discretization. Next, as there are no
prior works regarding distributed redundant second-order cone
constraint reduction, we develop the first algorithm to address
this problem. We only sketch the algorithm due to space limit.
A charger running this algorithm first locally removes trivial
constraints by using the centralized redundant second-order
cone constraint reduction algorithm. Then, it exchanges the
obtained constraints with neighbors in two-hops, picks out the
constraints that involve itself, and then performs the centralized
redundant second-order cone constraint reduction algorithm
one more time. We can prove that this algorithm achieves the
same performance as its centralized version.

B. Distributed SOCP Algorithm
We propose a distributed algorithm to address SOCP in

this subsection. The key intuitions of the algorithm are as
follows. First, to decompose the problem into multiple minor
ones that can be locally addressed, we propose a new area
partition scheme to partition the whole area into many smaller
subareas. Especially, we preserve “blank strips” between the
subareas by switching off the chargers in these strips so that the
impact of charging power together with EMR from chargers in
neighboring subareas can be eliminated. By this means, we can
safely consider each subarea independently of others. Second,
to avoid unexpected performance loss caused by adopting a
specific area partition strategy and thus bound the overall
performance, we enumerate all area partition strategies to
forge a solution that is globally feasible and has performance
guarantee. The whole distributed framework needs only one-
round information gathering and one-round dissemination that
involves chargers within a certain constant distance.

Algorithm 1 shows the details of the whole distributed algo-
rithm running at each charger si. After initialization, Algorithm
1 first partitions the whole area into multiple uniform grid cells
with side length of 2D where D is the charging radius for
wireless chargers, and further groups these cells into larger
squares called M -Clusters, each of which contains M ×M

cells where M =

⌈
1+

√
1−ε/2

ε/2

⌉
. This process can be imple-

mented locally at each charger si based on its geographical
location. Further, each charger participates in electing a cell
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Algorithm 1: Distributed Algorithm for ROSE at Charg-
er si

Input: Charger set S, device set O, EMR threshold Rt, confidence
η, and error threshold ε

Output: Adjusting factor xi

1 Apply distributed area discretization technique based on the collected
information from neighbor set N(si) with approximation error
thresholds for EMR expectation and standard deviation of ε/2, and

then compute the approximated expectation P̃kz and standard
deviation σ̃P,kz in each subarea Az for each charger
sk ∈ si ∪ N(si);

2 Apply distributed redundant second-order cone constraint reduction
algorithm to remove redundant constraints;

3 Set M =

⌈
1+

√
1−ε/2

ε/2

⌉
;

4 Identify itself as a member of a certain cell based on its stored
geographical information;

5 Take part in electing a cell head in its cell;
6 if si itself is a cell head then
7 Participate in electing the cluster heads for all

(M − 1)-Clusters for different turn-off policies that is related
to itself;

8 for All (M − 1)-Clusters for all turn-off policies that are
related to it do

9 if si itself is a cluster head then
10 Collect all related information from all cell heads in the

(M − 1)-Cluster;
11 Use the traditional SOCP algorithm to compute a

solution;
12 Send the solution to all the cell heads;
13 else
14 Send related information to its corresponding cluster

head, and receive the adjusting factors for the
chargers in its cell from the cluster head;

15 Send the corresponding adjusting factors to all chargers located
in its cell;

16 else
17 Send related information to its cell head, and receive M ×M

adjusting factors from the cell head;

18 Compute the average value of the obtained M ×M adjusting factors
as the final solution.

head for its associated cell through methods such as voting.
Figure 6(a) shows an instance for which the area is partitioned
into 64 cells which in turn form 4 M -Clusters. Note that
black dots denote normal chargers while blue triangles denote
cell heads. Second, the algorithm further partitions the area
using a so-called turn-off policy, which is formally defined
as a tuple of < p, q >. All M -Clusters that adopt a turn-off
policy < p, q > will turn off all the chargers located in the cells
that lie in their p-th row and q-th column, and thereby, the
cells with active chargers are regrouped into new clusters with
scale of no more than (M −1)× (M −1) cells, which we call
(M − 1)-Clusters. Next, cell heads in a (M − 1)-Cluster
interacts with each other to elect a cluster head which is
responsible for the computing task for the whole cluster as well
as information collection and dissemination. Figure 6(b) and

6(c) show the obtained 9 (M −1)-Clusters after carrying out
turn-off policies < 2, 2 > and < 3, 3 >, respectively, and in the
figures red stars indicate cluster heads while directed dashed
arrows indicate information flows with directions. Third, the
algorithm enumerates all possible M × M different turn-off
policies and accordingly obtains M2 adjusting factors for each
charger. Then, each charger computes the average value of
these adjusting factors as the final solution.

Besides, though there have emerged a few distributed
algorithms for SOCP, most of them are based on dual decom-
position such as [26], and have no performance guarantee after
a fixed number of iterations or do not scalable with network
size under a given performance requirement. In contrast, our
proposed algorithm has performance guarantee with a few
constant steps, and is scalable with network size.

C. Performance Analysis
Theorem 5.1: The output of Algorithm 1 for ROSE is a

feasible solution to P3. Moreover, Algorithm 1 achieves (1−ε)-
approximation ratio in terms of the overall expected charging
utility, and its communication delay is O(ε−1).

Proof: Please see Appendix for the proof.

VI. SIMULATION RESULTS

In this section, we perform simulations to verify the
performance of our proposed ROSE algorithms.

A. Evaluation and Baseline Setup
We use the following evaluation setup unless otherwise

stated. The considered field is a 100m × 100m square area.
We set α1 = 60, β1 = 40, D = 13m, n = 30, ε = 0.15,
Rt = 0.08, η = 0.6, ce = 1, cu = 1, α2 = 50, β2 = 20, and
m = 1000, respectively. Each data point in figures indicates
an average result of 100 random topologies. We develop four
algorithms for comparison as there are no existing approaches
for ROSE. The first algorithm is Optimal, which approximates
the optimal algorithm using our centralized ROSE algorithm
with ε = 0.05. The second is Set-Cover that borrows the
idea from the traditional set-cover algorithm. Each time it
greedily picks a charger that can be turned up to achieve the
largest charging utility increment. The third (fourth) is 1/3
Approximation (1/4 Approximation) that divides the whole
area into uniform hexagons (squares) with side length of 2D
and elects a cell head in each individual hexagon (square) to
run the centralized ROSE algorithm to obtain a solution and
cut down it to 1/3 (1/4) to guarantee a global feasible solution.

B. Performance Comparison
1) Impact of Charger Number n: Our simulation results

show that on average, Centralized ROSE outperforms Set-
Cover, 1/3 Approximation, and 1/4 Approximation by 24.49%,
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118.77%, and 177.23%, respectively, in terms of n. Figure
7 shows that basically the overall charging utility of all the
algorithms increases with n, but the increasing trend slows
down with n. Set-Cover algorithm demonstrates a slight fluc-
tuation because of its heuristic charger selection strategy. The
performance gap between Centralized ROSE and Optimal is as
low as 3.07%, and Distributed ROSE has performance gain of
at least 10.57% compared with Set-Cover, 1/3 Approximation,
and 1/4 Approximation. Moreover, 1/3 Approximation and
1/4 Approximation have the worst performance due to their
conservative cutting-down operation on the obtained solution.

2) Impact of Error Threshold ε: Our simulation results
show that on average, Centralized ROSE outperforms Set-
Cover, 1/3 Approximation, and 1/4 Approximation by 16.81%,
135.67%, and 207.18%, respectively, in terms of ε. Figure 8
shows that the charging utility of all the algorithms except
Optimal gradually degrades with ε. Especially, Distributed
ROSE decreases at a faster speed than others due to its
adopted area partitioning scheme. The charging utility for both
Centralized ROSE and Distributed ROSE is always larger than
1− ε of the optimal value, while that for 1/3 Approximation
(1/4 Approximation) is larger than 1/3 (1/4) of the optimal
one, which corroborates our theoretical results. In particular,
even for ε = 0.5, the performance of Centralized ROSE
reaches 95.48% of that for Optimal.

3) Impact of Confidence η: Our simulation results show
that on average, Centralized ROSE outperforms Set-Cover, 1/3
Approximation, and 1/4 Approximation by 21.43%, 125.63%,
and 175.85%, respectively, in terms of η. Figure 9 shows that
the charging utility for all the algorithms decreases with η,
which makes sense as a more rigorous EMR safety requirement
intuitively leads to a more conservative scheduling scheme and
thus lower charger utility.

4) Impact of network size on delay: Our simulation results
show that on average, the delay of Distributed ROSE keeps
nearly constant as the network size scales up, and outperforms
Optimal, Centralized ROSE, and Set-Cover by 72.55%. We
fix the charger density to 0.002, and let the communication
radius of chargers be twice the charging radius D. Figure 10
shows the network delay for Optimal, Centralized ROSE, and
Set-Cover increases proportionally to the network size as they
require network-wide information communication. In contrast,
the delay for the other three algorithms keeps relatively stable
when the network size exceeds 200 as they only need local
communication within a subarea with a bounded size.

VII. FIELD EXPERIMENTS

We conducted field experiments to evaluate the perfor-
mance of our algorithms. Figure 11 shows our testbed deployed
in a 2.4m×2.4m square area that consists of eight TX91501
power transmitters and two rechargeable sensor nodes [27]–
[33] both of which are produced by Powercast [34], an AP for
data collection from sensor nodes, and a laptop connecting to

the AP for data fetching and analysis. The eight chargers are
deployed at the vertices and middle points of the edges of the
square area with orientation angles 26.56◦, 116.56◦, 153.44◦,
26.56◦, 206.56◦, 333.44◦, 243.44◦, and 206.56◦, respectively.
Note that these chargers are actually directional, whose charg-
ing area can be modeled as a sector with angle 60◦ and radius
4m. Since the power of the chargers is not adjustable, we place
a piece of copper foil tape with proper length, width, position,
and bending angle in front of each charger so that the charging
power and EMR at locations further than the tape approach to
desired levels. The two devices are placed at points (1.2 1.2)
and (1.2 1.6), respectively. Figure 12 shows the charging
utility for three algorithms for Rt = 105, 115, 125 (mW/cm2)
with η = 0.7 and ε = 0.15. On average, Centralized ROSE
and Distributed ROSE outperform Set-Cover by 480.19% and
391.09%, respectively. Such high gain is because Set-Cover
happens to tune the first charger to its maximum power
but yielding little charging utility, and leave little room to
tune the left chargers which have higher charging efficiency.
Moreover, we collected multiple samples at a location, and
found the 70-th quantile value (as η = 0.7) as its reference
EMR value. Figure 13 shows the measured reference EMR
distribution in the area for our Centralized ROSE algorithm
with Rt = 125mW/cm2. We can see that the peak EMR
value is 94μW/cm2, less than Rt.

VIII. CONCLUSION

The key novelty of this paper is on proposing the first
scheme for robustly safe charging for wireless charger net-
works considering EMR jitter. The key contributions of this
paper are establishing the empirical probabilistic charging
model, developing both centralized and distributed approxi-
mation algorithms, and conducting both simulations and field
experiments for evaluation. The key technical depth of this
paper is in proposing the EMR approximation and area
discretization methods to reformulate the problem into the
classical problem of SOCP, developing the first centralized and
distributed second-order cone constraint reduction schemes,
and presenting the fully distributed algorithm and bounding its
performance. Our simulations and experimental results show
that our proposed scheme achieves good performance and can
outperform comparison algorithms by 480.19%.
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APPENDIX

A. Proof of Theorem 5.1
Proof: Suppose the obtained adjusting factor for charger

si by our distributed algorithm is xi, and the optimal adjusting
factors for si for problem P3 or P2 (or P1) is x∗

i ; and the
overall charging utilities corresponding to the three solution-

s are U , Ũ∗, and U∗, respectively. Suppose the computed
adjusting factor for si for the turn-off strategy < p, q >
is x<p,q>

i , and its corresponding charging utility is U<p,q>.
We first prove the feasibility of the obtained solution xi

(xi =
∑M

p=1

∑M
q=1 x<p,q>

i

M2 ). Clearly, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑n

i=1 P̃ izx
<1,1>
i + Φ−1(η)

√∑n
i=1 σ̃

2
P,iz(x

<1,1>
i )2 ≤ Rt

ce
,

. . . . . .∑n
i=1 P̃ izx

<M,M>
i + Φ−1(η)

√∑n
i=1 σ̃

2
P,iz(x

<M,M>
i )2 ≤ Rt

ce
,

where z = 1, . . . , Z. By summing up L.H.S. and R.H.S. of
the M2 inequalities and dividing both of them by M2, and

plugging in xi =
∑M

p=1

∑M
q=1 x<p,q>

i

M2 , we have

∑n

i=1
P̃ izxi+

1

M2

M∑
p=1

M∑
q=1

Φ−1(η)

√∑n

i=1
σ̃2
P,iz(x

<p,q>
i )2 ≤ Rt

ce
,

(19)

where z = 1, . . . , Z. Further, as per Minkowskis Inequality
[35], for any u, v ∈ R

n and p ∈ [1,+∞), it holds that
‖u + v‖p ≤ ‖u‖p + ‖v‖p. Here ‖.‖p indicates the 	p-norm.
Therefore, we have√√√√ n∑

i=1

σ̃2
P,izx

2
i =

√√√√ n∑
i=1

σ̃2
P,iz

(
1

M2

M∑
p=1

M∑
q=1

x<p,q>
i

)2
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=

√√√√ n∑
i=1

(
M∑
p=1

M∑
q=1

σ̃P,izx
<p,q>
i

M2

)2

=

∥∥∥∥∥
M∑
p=1

M∑
q=1

(
σ̃P,1zx

<p,q>
1

M2
, . . . ,

σ̃P,nzx
<p,q>
n

M2

)∥∥∥∥∥
2

≤
M∑
p=1

M∑
q=1

∥∥∥∥( σ̃P,1zx
<p,q>
1

M2
, . . . ,

σ̃P,nzx
<p,q>
n

M2

)∥∥∥∥
2

=

M∑
p=1

M∑
q=1

√√√√ n∑
i=1

(
σ̃P,izx

<p,q>
i

M2

)2

=
1

M2

M∑
p=1

M∑
q=1

√√√√ n∑
i=1

σ̃2
P,iz

(
x<p,q>
i

)2
(20)

Note that the inequality at the fourth step in the above deriva-
tion is obtained by iteratively applying Minkowskis Inequality.
By combining (19) and (20), we obtain

∑n

i=1
P̃ izxi + Φ−1(η)

√∑n

i=1
σ̃2
P,izx

2
i

≤
∑n

i=1
P̃ izxi +

1

M2

M∑
p=1

M∑
q=1

Φ−1(η)

√∑n

i=1
σ̃2
P,iz(x

<p,q>
i )2

≤Rt

ce
(21)

where z = 1, . . . , Z. This indicates that xis is a feasible
solution to problem P3, as well as P2 as per Lemma 4.2.

Next, assume we obtain in total K M -Clusters. Suppose
the aggregated charging utility for the chargers in the cell lies
in the i-th row and j-th column in the k-th M -Cluster in
the optimal solution to P3 is uijk. Moreover, suppose the
aggregated charging utility included in the optimal charging
utility to P3 achieved by the chargers that are switched on

(switched off) for the policy < p, q > is Ũ∗<p,q> (Ũ
∗<p,q>

).
Evidently, we have

Ũ
∗<p,q>

=

K∑
k=1

(
M∑
i=p

M∑
j=1

uijk +

M∑
i=1

M∑
j=q

uijk − upqk

)
. (22)

Further, as U<p,q> is optimal under the settings of the turn-off
policy < p, q >, then we have

U<p,q> ≥ Ũ∗<p,q>. (23)

As Ũ∗<p,q> + Ũ
∗<p,q>

= Ũ∗, we then obtain

U<p,q> + Ũ
∗<p,q>

≥ Ũ∗. (24)

By enumerating all M2 turn-off policies, we have
M∑
p=1

M∑
q=1

U<p,q> +

M∑
p=1

M∑
q=1

Ũ
∗<p,q>

≥ M2Ũ∗. (25)

Besides, it is clear that

M∑
p=1

M∑
q=1

Ũ
∗<p,q>

=

M∑
p=1

M∑
q=1

(
K∑

k=1

(
M∑
i=p

M∑
j=1

uijk +

M∑
i=1

M∑
j=q

uijk − upqk

))

=

M∑
q=1

(
K∑

k=1

M∑
i=1

M∑
j=1

uijk

)
+

M∑
p=1

(
K∑

k=1

M∑
i=1

M∑
j=1

uijk

)

−
M∑
p=1

M∑
q=1

K∑
k=1

upqk = (2M − 1)
K∑

k=1

M∑
i=1

M∑
j=1

uijk = (2M − 1)Ũ∗.

(26)

By combining (25) and (26), we obtain∑M
p=1

∑M
q=1 U<p,q>

M2
≥ (1− 2M − 1

M2
)Ũ∗. (27)

Therefore, the achieved utility of our solution U satisfies

U = cu
∑n

i=1

∑m

j=1
P (d(si, oj))xi

= cu
∑n

i=1

∑m

j=1
P (d(si, oj))

∑M
p=1

∑M
q=1 x

<p,q>
i

M2

=

∑M
p=1

∑M
q=1 cu

∑n
i=1(

∑m
j=1 P (d(si, oj)))x

<p,q>
i

M2

=

∑M
p=1

∑M
q=1 U<p,q>

M2
≥ (1− 2M − 1

M2
)Ũ∗

= (1− ε/2)Ũ∗. (∵ m =

⌈
1 +

√
1− ε/2

ε/2

⌉
) (28)

Further, we consider the optimal solution x∗
i to problem P2,

apparently it satisfies

∑n

i=1
P (d(si, p))x

∗
i + Φ−1(η)

√∑n

i=1
σ2
P (d(si, p))(x

∗
i )

2 ≤ Rt

ce
,

∀p ∈ R
2, 0 ≤ xi ≤ 1 (i = 1, . . . , n). (29)

Consider an arbitrary point p which lies in the z-th subarea.
Further, as per Lemma 4.1, when we set both the approxima-
tion error thresholds for EMR expectation and standard devia-

tion, i.e., ε1 and ε2, as ε/2, we have
ẽ(d)
e(d) =

P̃ iz

P (d(si,p))
≤ 1+ε/2

and
σ̃e(d)
σe(d)

=
σ̃P,iz

σP (d(si,p))
≤ 1 + ε/2, and therefore

∑n

i=1
P̃ iz

(
x∗
i

1 + ε/2

)
+ Φ−1(η)

√∑n

i=1
σ̃2
P,iz

(
x∗
i

1 + ε/2

)2

=
∑n

i=1

(
P̃ iz

1 + ε/2

)
x∗
i + Φ−1(η)

√∑n

i=1

(
σ̃P,iz

1 + ε/2

)2

(x∗
i )

2

≤
∑n

i=1
P (d(si, p))x

∗
i + Φ−1(η)

√∑n

i=1
σ2
P (d(si, p))(x

∗
i )

2

≤Rt

ce
, (30)

which implies
x∗
i

1+ε/2 is a feasible solution to the problem P3.

As Ũ∗ is the optimal solution to P3, we thus have

Ũ∗ ≥ cu
∑n

i=1

∑m

j=1
P (d(si, oj))

x∗
i

1 + ε/2

≥ 1

1 + ε/2
cu

∑n

i=1

∑m

j=1
P (d(si, oj))x

∗
i

≥ 1

1 + ε/2
U∗ ≥ (1− ε/2)U∗.

Combining Equations (28) and (31), we have

U ≥ (1− ε/2) · (1− ε/2)U∗ ≥ (1− ε)U∗. (31)

Thus, our algorithm achieves (1− ε)-approximation ratio. We
omit the communication delay analysis to save space.
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