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ABSTRACT

Datacenter networks have attracted a lot of research interest in the past few years. BCube is proved 
to be a promising scheme due to its low cost. By using a recursive construction scheme, BCube 
can exponentially scale a datacenter. Industry experiences, however, articulate the importance 
of incremental expansion of datacenter. In this article, the authors show that BCube’s expanding 
scheme suffers low utilization of switch ports. They propose IBCube, a novel economical design for 
incrementally building datacenter networks. The insight is that: by letting the number of switches in 
each BCube layer equal the number of the building blocks, the authors can enable the switch ports to 
be fully utilized to support the total number of network interface cards of the deployed servers in the 
datacenters. Accordingly, their IBCube designs a novel automatic port allocation scheme. Simulation 
results show that the IBCube design reduces the budget for the datacenter networks by 94% as well 
as improves the packet delay and throughput by 10.3% and 11.5%, respectively, compared to the 
previous partial BCube design.

Keywords
Data Center, Data Center Networks, Incremental Data Center Networks, Routing, Topology

1. INTRODUCTION

With the emergence of cloud services and applications, how to efficiently build datacenters becomes 
an important issue (Liu et al. 2016). Maximizing the profits of datacenters is a major concern of 
datacenter operators for economical consideration (Zhan et al. 2016). Among the budget of a fully 
functional datacenter, a fraction of 15% goes to networking, i.e., the network equipments and the 
wires (Greenberg et al. 2008). In recent years, there have been a number of proposals for efficient 
datacenter networks (Lee et al. 2016; Ports et al. 2015; Zhu et al. 2015; Perry et al. 2014). Existing 
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systems adopt quite different approaches for constructing datacenter networks (Al-Fares et al. 2008; 
Guo et al. 2009; Guo et al. 2008).

Existing datacenter network architectures can be classified into three styles, switch-centric, server-
centric and hybrid designs (Popa et al. 2010). The switch-centric architecture utilizes switches for 
packet forwarding (e.g., the fat-tree based architecture (Al-Fares et al. 2008) uses switches for packet 
forwarding; Arjun et al. (2015) propose to use Clos topologies for connecting the switches to achieve 
good scalability). Different from the switch-centric design, the server-centric architecture relies on 
servers for packet forwarding, i.e., packets are forwarded between servers instead of switches. For 
instance, Abu-libdeh et al. (2010) design an architecture which connects servers using a 3D torus 
structure. By considering hybrid architectures, Guo et al. propose the DCell (2008) and BCube (2009) 
structures. DCell (Guo et al. 2008) and BCube (Guo et al. 2009) architectures forward packets using 
a combination of switches and servers. To evaluate the cost efficiency of existing diverse datacenter 
networking designs, Stoica et al. (2010) propose a high-level model to quantify and compare the 
cost of a datacenter network. Stoica’s results show that BCube achieves the lowest cost among those 
architectures (Popa et al. 2010).

In BCube, a server with multiple network ports connects to multiple layers of Commodity Off-
The-Shelf (COTS) mini- switches (Guo et al. 2009). The servers in BCube act as not only the end 
hosts, but also relay nodes for network communication. Formally, BCube is a recursively constructed 
structure, where a BCube0 is constructed by connecting n servers to an n-port switch, while a 
BCubek (k≥1) is constructed from n BCubek−1s and a new switch layer with nk n-port switches for 
connecting those BCubek−1s (In Section 2, we will review the BCube design in more detail). Thus, 
a BCubek has nk+1 servers, where the number increases exponentially with the value of k. However, 

Figure 1. The port utilization in partial BCubek with n=8 (N ∈ [2, 512])
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industry experiences articulate the importance of incremental expansion in datacenters. For example, 
Facebook’s datacenters add capacity on a dailybasis by incrementally expanding existing facilities 
(Datacenterknowledge, n.d.); SGI’s IceCube modular datacenter expands four racks at a time (SGI-
Products, n.d.). To support an arbitrarily incremental structure, a datacenter requires its network 
capacity to increase on demand.

In practice, for constructing a BCubek, the design first builds the needed BCubek−1s and then 
connects those BCubek−1s using level-k switches. It is not difficult to see that a par- tial BCube suffers 
from the problem of low utilization of network equipment. If the BCubek−1s in a partial BCubek are 
complete BCubek−1 structures, the switches in level-k of the partial BCubek are commonly not fully 
utilized and the increasing granularity of this partial BCubek with n-port switches is nk. To support 
incremental expansion, a partial BCubek needs to be built with a number of (less than n) complete 
BCubek−1s and a possible partial BCubek−1. It is clear that such a design may have much lower switch 
port utilization than the BCubek which is built with complete BCubek−1s. For example, the switch 
port utilization in a partial BCube1 with two BCube0s and 8-port switches is only 40%. Figure 1 
illustrates the utilization of switch ports based on the analysis on BCube with different number of 
servers. The low utilization of the switch ports in partial BCubek leads to a serious waste of network 
equipment investment.

Figure 2. The network structure of BCubek

Figure 3. The network structure of BCube1 with n = 4



International Journal of Web Services Research
Volume 15 • Issue 1 • January-March 2018

30

To solve the problem, we design an novel structure, called IBCube (incremental BCube). Our 
observation is that in BCube structure if the number of switches in each layer equals the number 
of the building blocks (i.e., BCube0s), the ports can be fully utilized. Based on the observation, we 
design a novel port allocation scheme which elaborately utilizes the ports to achieve a minimal 
number of required switches. We further design a routing algorithm to exploit the merits of IBCube 
design. Compared to the previous BCube expanding design (Guo et al. 2009), IBCube achieves 
three advantages. First, IBCube supports the network structure with an arbitrary number of servers. 
Second, the switch ports in each layer are fully utilized to minimize the expenses. Third, IBCube 
minimizes the rewire tasks to further reduce the cost. We conduct comprehensive simulations based 
on real world system configurations to evaluate this design. The results show that our IBCube design 
significantly cuts down the budget for datacenter networking as well as achieves better latency and 
throughput than the previous partial BCube design (Guo et al. 2009).

The rest of the paper is organized as follows. Section 2 introduces the background of the BCube 
and the problem in a partial BCube. Section 3 presents the design of our IBCube and the routing 
algorithm. Section 4 evaluates the performance of our design. Section 5 concludes the paper.

2. RELATED WORK

In this section, we first review the related work of datacenter networks. Then we introduce the 
background information of the BCube (Guo et al. 2009) architecture, which is most related to our 
design. At last we present the problem of the partial BCube and the motivation of this design in detail.

2.1. Datacenter Networks
The network plays more and more important role in today’s datacenters. They have recently attracted 
a lot of research interest in the community (Lee et al. 2016; Ports et al. 2015; Zhu et al. 2015; Perry 
et al. 2014; Gyarmati et al. 2013). Among the existing designs, the most fundamental work mainly 
focuses on improving the scalability and cost-effectiveness of the datacenter network architecture. 
Generally, existing datacenter network architectures can be classified into three types, switch-centric, 
server-centric and hybrid designs (2010). The switch- centric architecture relies on switches for packet 
forwarding. Traditional switch-centric designs, such as VL2 (Greenberg et al. 2008) and etc., use tree 
structures to inter-connect the switches in the datacenter network. Mohammad et al. (2008) organize 
the switches using a fat-tree structure to improve the capacity of the root of a tree. Recently, Arjun et 
al. (2015) use Clos topologies to inter-connect the switches. Such a scheme achieves good scalability 
for different datacenter sizes by adding stages to the topology. Different from the switch-centric 
design, the server-centric datacenter architecture relies on servers for both server inter-connecting 
and packet forwarding. Different from the switch-centric designs, the packets of the server centric 
datacenter network are forwarded between servers instead of switches. For example, Abu-libdeh et 
al. (2010) design an architecture which connects servers using a 3D torus structure. By considering 
hybrid architectures, Guo et al. propose DCell (2008) and BCube (2009) structures. In such designs, 
servers and switches are combined for the function of inter-connection and packet forwarding.

2.2. Background of BCube Design
BCube is a novel network structure for datacenter (Guo et al. 2009). The BCube design employs the 
server-centric architecture, rather than the switch-centric architecture. Following the server-centric 
design philosophy, BCube builds a novel interconnection structure as well as the routing protocol. 
BCube connects servers with a small number of network ports to multiple COTS mini-switch layers 
and puts routing intelligence at the server side. In BCube, the multiple parallel paths between any pair 
of servers provide high one-to-one bandwidth and achieve good fault tolerance. Such a design also 
accelerates one-to-several and one-to-all traffic. The low diameter of BCube provides high network 
capacity for all-to-all traffic. Thus, BCube supports various bandwidth-intensive applications. In the 
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following, we follow the framework pro- posed by Guo et al. (2009) and briefly introduce the structure 
of BCube and its routing algorithm and the problem of the partial BCube design.

There are two types of devices in BCube: servers with multiple ports and n-port COTS mini-
switches. BCube is a recursively defined structure. A BCube0 includes n servers connecting to an 
n-port switch, and a BCube1 is constructed with n BCube0s and n n-port switches. Generally, a BCubek 
(k ≥ 1) is constructed with n BCube s

k
 

−1
 and nk n-port switches. In a BCubek structure, each server 

has k+1 ports, which are numbered from level-0 to level-k. Thus, a BCubek has nk +1  servers and 
k+1 level of switches, where each switch level has nk n-port switches.

The network structure of BCubek is illustrated in Figure 2. The n BCubek−1s are numbered from 
0 to (n-1) and the servers in each BCubek−1 are numbered from 0 to (n -1). In BCubek, the i-th (i ∈ 
[0, n-1]) port of the j-th (j ∈ [0, nk -1]) level-k switch connects to the level-k port of the j-th server in 
the i-th BCubek−1. For instance, the network structure of a BCube1 with n = 4 is shown in Figure 
3, which is constructed with four BCube0s and four 4-port switches.

In BCubek, the address of a server is denoted by an array b b
k k −1 0…

 (bi∈ [0, n-1], i∈ [0, k]). 

Equivalently, the ID of a BCube server bsID b n
i

k

i
i=

=
∑
0

 can also be used to denote a server. The 

address of a switch is denoted by < >
− −

l s s s
k k

,
1 2 0…

 (si∈ [0, n-1], i∈ [0, k-1]), where l is the number 
of the switch level. According to the construction principle of BCubek, we can achieve that the i-th 
(i∈ [0, n-1]) port of a switch < >

− −
l s s s
k k

,
1 2 0…

(l∈ [0, k]) connects to the level-l port of the server 

s s is s
k l l− −1 1 0… …

  .

2.3. Routing in BCube
The BCube routing is based on the hamming distance (Hamming, 1950) of the server addresses. The 
hamming distance of two servers is the number of different digits of their address arrays. Specially, 
when two servers in a BCube connect to the same switch, the two servers are neighbors and the 
hamming distance of them is one.

Figure 4. The connecting way of BCubek
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BCubeRouting provides single-path routing in BCube architecture to find a path from a source 
server to a destination server. Formally, the address of the source server is S = sksk − 1…s0 while the 
address of the destination server is D d d

k k
=

−1
…d0. BCubeRouting builds a path from S to D by 

continually “correcting” one digit of the current server each time until no different digits are remained. 
The digit correcting order is determined by a predefined permutation ∏, which is a permutation of 
the set {k, k-1, ?, 1, 0}. For example, the path between S(01) and D(10) in a BCube1 is 01→11→10 
with the permutation [1, 0]. The intermediate switches are not shown in the path, which can be 
determined by its two neighboring servers. It is easy to see that the diameter in BCubek is k +1. Since 
k is a small integer, BCube is a low-diameter network.

According to different permutations of the set {k, k-1, ?, 1, 0}, BCubeRouting can achieve 
different paths from the source server to the destination. Specifically, we have k + 1 parallel paths 
for any two servers in a BCubek. Here, two parallel paths between a pair of servers mean that the 
intermediate servers and switches on one path do not appear on the other. The permutation ∏ of 
each path in those k + 1 parallel paths is [ij, (ij - 1)mod(k + 1), ?, (ij - k)mod(k + 1)] (ij∈ [0, k]), which 
starts from different locations of the address array and corrects the digits sequentially. For example, 
there are two parallel paths between S(01) and D(10) in a BCube1. One path of the parallel ones is 
01→11→10 with ∏ = [1, 0] and the other is 01→00→10 with ∏ = [0, 1].

It is not difficult to see that if we build a partial BCubek with BCubek − 1s and use partial level-k 
switches to interconnect those BCubek − 1s, the corresponding partial BCubek will encounter the 
unreachable problem. That is to say, BCubeRouting does not work for some pairs of servers. Consider 
a simple example that we build a partial BCube1 with n = 4 using two BCube0s and the two switches 
<1, 0> and <1, 1> of level-1 switches for connecting those BCube0s. It is not difficult to see that 
no matter which permutation is used, we can not find a path from the server with the address 02 to 
the server with the address 13 using BCubeRouting. The root cause of the unreachable problem is 
that some servers do not connect to any level-1 switch. To use the BCubeRouting in a partial BCube 
structure, the only effective way to build a partial BCubek is to first build the required BCubek − 1s 
and then use full level-k switches to connect those BCubek − 1s.

Based on the above analysis, a serious problem of a partial BCube is that the ports of switches 
are not fully utilized. Formally, when the number of BCube0s in a partial BCubek is N (k = ⌈lognN⌉), 
the port number of the switches is n. Correspondingly, the partial BCubek includes k + 1 level of 
switches, where the level-k switches have nk switches and the other level-i switches have m*ni (m = 
⌈N/ni⌉) switches. In the partial BCubek, the number of actually used switch ports are k + 1 times the 
number of servers. The port utilization of the switches in the partial BCubek is quantified as U(N,n),

U N n
N log N

n n
N

n
n
N

n

n

log N log N

log N
n n

n

,( ) =
+( )

+ + +−( )
−( )

1

1

1

0

0
�

	 (1)

According to Equation (1), we can achieve the switch port utilization of a partial BCubek. As 
aforementioned, Figure 1 shows the port utilization of switches in a partial BCubek with the switch 
port n equaling eight and N varying from two to 512. Figure 1 illustrates that the utilization of switches 
can be quite low (e.g., 30.3% when the value of N is nine), resulting in a serious waste of network 
equipment investment.

N n m n
i

k

i
i* − =

=
∑1

0
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In BCubek, the number of network ports of a server is k + 1. As servers in current datacenters are 
equipped with a constant number of network ports to support a larger datacenter with the same value 
of k, the number of switch ports should be as large as possible. BCube can use the COTS switch to 
reduce the cost of a datacenter. In the current market, the switches up to 48/64 ports are at a fixed 
per-port price with the same trend extending to 100-150 ports (Popa et al., 2010). The BCube can let 
the value of n to be as large as possible to support a larger datacenter. For example, the BCube can 
support 4,096 servers with n = 8 and k = 3 while it can support 331,776 servers with n = 24 and k 
= 3. However, choosing a switch with a larger number of ports to support a larger scale datacenter 
results in lower utilization. For example, the partial BCube2 consisting of 25 BCube0s with 24-port 
switches has an extremely low port utilization of 11.6%, i.e., U(25,24) = 11.6%, which brings a huge 
waste of equipment cost and space cost.

3. IBCUBE DESIGN

In this section, we present our IBCube structure, which supports the construction of datacenter with 
an arbitrary number of building blocks (i.e., BCube0).

The IBCube uses the same devices as BCube architecture including servers with multiple ports 
and switches with a constant number of ports to connect servers. The expansion style of IBCube is 
to build the BCube0s first and then connect the servers in those BCube0s. With IBCube design, we 
can incrementally expand the existing datacenter with additional BCube0s on demand. That is to say 
the increasing granularity of IBCube is a BCube0 with n servers. For simplicity, we denote an IBCube 
constructed with N BCube0 and n-port switches as IBCube (N, n). In IBCube (N, n), the address of 
a server can be represented as the array bkbk − 1…b0 (bi∈ [0, n - 1], i∈ [0, k]). The value of k can be 
obtained from the expression nk − 1 < N < =nk, i.e., k = ⌈lognN⌉. Equivalently, an IBCube server is 

also denoted by the server ID S b n
i

k

i
i=

=
∑

0

. Since there are at most N * n servers in IBCube (N, n), 

the IBCube server ID S belongs to [0, N * n - 1]. We can obtain the upper bound mkmk − 1…m0 (mi∈ 
[0, n-1], i∈ [0, k]) of the server address b b

k k −1
 …b0 from Equation (2),

To connect the servers in IBCube, we should decide the number of switch layers in IBCube and 
the number of switches in each switch layer first. Assuming that the number of network ports in each 
server is the same, it is not difficult to see that the number of switches in each layer should be N in 
IBCube (N, n); otherwise those switches will not be fully utilized. As the switches in IBCube are 
used to realize the connection among servers, the number of switch layers in an IBCube can be 
determined according to the function of each layer in the structure. To achieve a high network capacity, 
the connecting function of each switch layer in IBCube is in accordance with BCube. In the BCube 
structure, the level-0 switches realize the connection of servers in the same BCube0. The level-k 
switches realize the connection of the servers in different BCubek − 1 but in the same BCubek. More 
generally, level-l (l∈ [1, k]) switches realize the connection of servers in different BCube

l −1
 but in 

the same BCubel.
Based on the above analysis, we define the connecting function of level-l (l∈ [1, k]) switches in 

IBCube as: 1) connecting the servers in different BCube
l −1

 but in the same BCubel; 2) using the 
level-0 switches in each building block to connect the servers in the same BCube0. To realize the 
connection among servers in IBCube, we should have corresponding level-l (l∈ [0, k]) switches, as 
the absence of any layer may incur unreachable problem between some pairs of servers. Thus, the 
number of the switch layers needed in IBCube (N, n) is k+1 (k = ⌈lognN⌉). Correspondingly, the 
number of ports needed by each server in IBCube (N, n) is k + 1. The switch address in IBCube is 
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the same as BCube, which is denoted as < >
− −

l s s s
k k

,
1 2 0…

 (l∈ [1, k]) and l indicates the level of the 
switch.

To realize the full utilization of the switches, we define a different connecting way between 
switches and servers for the IBCube structure. In Section 3.2, we further design a novel routing 
algorithm for the IBCube structure. We define the corresponding connecting way for IBCube to 
realize the connecting function of each switch layer. Specifically, we achieve the connecting way of 
IBCube by regarding BCube0 as a vertex as the building block in IBCube, i.e., the n servers in a 
BCube0 is regarded as a unit. The address of a BCube0 can be denoted as b b b

k k −1 1…
* , where * 

represents b0 of all the servers’ address in the BCube0 and the value of * is actually in [0, n-1]. As 
the connection function of the level-0 switches in IBCube is realized, we further analyze the connecting 
way of the level-l (l∈ [1, k]) switches in BCube. As BCube0 is regarded as a vertex, a switch connecting 
to one server of a BCube0 means the switch connecting to the BCube0.

In BCubek, those level-k switches numbered from zero to (n-1) realize the connection of the first 
BCube0 in different BCube

k −1
through a complete bipartite graph, where every switch of the n 

switches is connected to every BCube0 of the n BCube0s. In the perspective of BCube0, the level-k 
switches can be grouped according to their connecting BCube0, where each switch group includes n 
level-k switches. The address of a level-k switch group connecting to the bk − 1bk − 2…b1*th BCube0 
of each BCubek − 1 in the BCubek, i.e., the ibk − 1bk − 2…b1*th BCube0 (i∈ [0, n-1]), is denoted as <k, 
bk − 1bk − 2…b1*> (* = [0, n-1]). The connecting way of BCubek which regards BCube0 as a vertex 
is shown in Figure 4. More generally, the switch group <l, bkbk − 1…bl + 1bl − 1…b1*> (l∈ [1, k], * 
= [0, n-1]) connects to the bl − 1…b1*th BCube0 in each BCubel − 1 of the bkbk − 1…bl + 1 BCubel, i.e., 
the bkbk − 1…bl +  + 1ibl − 1…b1*th BCube0 (i∈ [0, n-1]).

From the above analysis, the BCube structure realizes the connection of BCube0s by using a 
complete bipartite graph between the corresponding switch group and those BCube0s to be connected. 

Figure 5. The connection of level-2 switches in IBCube (6, 4)
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In the same way as BCube, IBCube realizes the connection between those BCube0s in the same 
position of each BCubek − 1 using a level-k switch group with a complete bipartite graph. As the 
number of switches in level-k is the same as the number of BCube0s in IBCube, the number of switches 
in a switch group should be the same as the number of its connecting BCube0s. To obtain the switch 
number of the level-k switch group in IBCube (N, n) which realizes the connection between the bk −

1bk − 2…b1*th BCube0 of each BCubek − 1, we only need to obtain the number of BCubek − 1 which 
has the bk − 1bk −  2…b1*th BCube0 denoted as M (k, bk − 1bk − 2…b1*).

We can achieve the value of M (k, bk − 1bk − 2…b1*) in the IBCube (N, n) according to the network 
structure. From Equation (2), we can find that the IBCube (N, n) has mk complete BCubek − 1s 
(numbered from zero to (mk-1)) and the mkth complete or incomplete BCubek − 1. Here, a complete 
or an incomplete BCubek − 1 in IBCube represents that all or a fraction of the servers of the BCubek −

1 are in the structure. We can obtain the number of servers in the mkth complete/incomplete BCubek − 1 
through Equation (2). Those mk complete BCubek − 1s have the bk − 1bk − 2…b1*th BCube0 without 
doubt. If the mkth complete/incomplete BCubek − 1 has more than bk − 1bk − 2…b1* BCube0, the mkth 

Figure 6. The connecting way of level-1 switches in IBCube (6, 4)

Figure 7. The connection of some servers in IBCube (3,4)
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BCubek − 1 will have the bk − 1bk − 2…b1*th BCube0. If not, there are only mk BCubek − 1s having the 
bk − 1bk − 2…b1*th BCube0. M(k, bk − 1bk − 2… b1*) can be calculated according to Equation (3),

M k b b b
m b b b m m m

m bk k
k k k k k

k

, *
,

,− −
− − − −…( ) =

… > …
+1 2 1

1 2 1 1 2 1

1
kk k k k
b b m m m− − − −… ≤ …






 1 2 1 1 2 1

	 (3)

Correspondingly, the number of switches in the switch group used to connect the bk − 1bk − 2…
b1*th BCube0 of each BCubek − 1 in IBCube (N, n) is M (k, bk − 1bk − 2…b1*) and the address of the 
switch group is <k, bk − 1bk − 2…b1*> (* = [0, M (k, bk − 1bk − 2…b1*) -1 ]). According to Equation 
(2), we can see that the number of BCube1 which have the 3*th BCube0 in an IBCube (6, 4) is one, 
i.e., M (2, 3*) = 1. Thus, the switch number of the level-2 switch group used to connect the 3*th 
BCube0 of each BCube1 in the IBCube (6, 4) is only one. By using the complete bipartite graph, the 
connecting way of the level-2 switches in IBCube (6, 4) is shown in Figure 5.

More generally, we use M (l, bkbk − 1…bl − 1bl − 1…b1*) (l∈ [1, k]) to denote the number of 
BCubel − 1 which have the bl − 1…b1*th BCube0 and in the bkbk − 1…bl + 1th BCubel. If the bkbk − 1…
bl + 1 BCubel is the last BCubel in IBCube (N, n), i.e., bkbk − 1…bl + 1 equals mkmk − 1…ml + 1, the 
BCubel has the first ml complete BCubel − 1s numbering from zero to (ml-1) and the mlth complete/
incomplete BCubel − 1. Those first ml BCubel − 1s definitely have the bl − 1bl − 2…b1*th BCube0 without 
doubt. If the last mlth BCubel − 1 has more than bl − 1bl − 2…b1* BCube0, the mlth BCubel − 1 will have 
the bl − 1bl − 2…b1* BCube0. If not, the bkbk − 1…bl + 1th BCubel only has ml BCubel − 1 which have 
the bl − 1bl − 2…b1*th BCube0. If bkbk − 1…bl + 1 BCubel is not the last BCubel in IBCube (N, n), the 
bkbk − 1…bl + 1 BCubel is a complete BCubel. Thus, the bkbk − 1…bl + 1 BCubel has n BCubel − 1 which 
has the bl − 1…b1*th BCube0. M (l, bkbk − 1…bl + 1bl − 1…b1*) can be computed by Equation (4),

M l b b b b b
k k l l

, *− + −… …( ) =1 1 1 1
	

m b b m m b b m m
l k l k l l l
, &… = … … > …+ + − −1 1 1 1 1 1 	

m b b m m b b m m
l k l k l l l
+ … = … … ≤ …+ + − −1

1 1 1 1 1 1
, & 	

Figure 8. The structure of IBCube (3,4)
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k l k l

, ��� … ≠ …+ +1 1
	 (4)

In IBCube (N, n), the number of switches in the switch group used to connect the bl − 1…b1*th 
BCube0 of each BCubel − 1 in the bkbk − 1…bl + 1 BCubel is M (l, bkbk − 1…bl + 1bl − 1…b1*) and the 
address of the switch group is <l, bkbk − 1…bl + 1bl − 1…b1*> (* = [0, M (l, bkbk − 1…bl + 1bl − 1…
b1*)-1]). The connecting way of the level-1 switches using the complete bipartite graph in IBCube 
(6, 4) is shown in Figure 6.

In the following, we will try to obtain a connecting way between switches and servers in the 
IBCube structure to realize the complete bipartite graph between the switch group and its connected 
BCube0s. Realizing a complete bipartite graph is possible because there are n servers in a BCube0 
and the switch number of a switch group that a BCube0 connects to is less than or equal to n.

It is clear that the rewiring is inevitable when an existing datacenter needs to be expanded by 
adding additional BCube0s and switches. As rewiring in a datacenter is costly, we should minimize the 
scale of the rewiring when a datacenter needs to be expanded. We have two goals in the connecting 
design between servers and switches in IBCube. The first goal is to realize the complete bipartite graph 
between switch group and its connected BCube0s. The second goal is to minimize the rewiring scale.

From the above analysis, we can see that the BCube0 bkbk − 1…b1* connecting to every switch 
of the switch group <l, bkbk − 1…bl + 1bl − 1…b1*> (* = [0, M (l, bkbk − 1…bl + 1bl − 1…b1*) - 1]). 
Here, a BCube0 connecting to a switch means that at least one server in the BCube0 connects to the 
switch where the number of the switch group <l, bkbk − 1…bl + 1bl − 1…b1*> is equal to or less than 
n. We connect the level-l port of server bkbk − 1…b1b0 (b0∈ [0, M (l, bkbk − 1…bl + 1bl − 1…b1*) - 1]) 
to the bl port of the switch <l, bkbk − 1…bl + 1bl − 1…b1b0>. This not only realizes the connection 
between the switches and BCube0s as we define above, but also minimizes the rewiring scale when 
an existing IBCube needs to be expanded. Since the switch number of a switch group (i.e., M (l, 
bkbk − 1…bl + 1bl − 1…b1*)) will not decrease when an existing datacenter expands to a larger one, 
those servers bkbk − 1…b1b0 (b0∈ [0, M (l, bkbk − 1…bl + 1bl − 1…b1*)-1]) in the existing datacenter 
will connect to the same switch in the expanded datacenter. Figure 7 shows the connection of some 
servers in IBCube (3, 4).

Having defined the connecting way of the server bkbk − 1…b1b0 (b0∈ [0, M (l, bkbk − 1…bl + 1bl −

1…b1*)-1]) of the BCube0 bkbk − 1…b1*, we design the connecting way of the bkbk − 1…b1b0 (b0∈ [M 
(l, bkbk − 1…bl + 1bl − 1…b1*), n]) server of the BCube0. It is not difficult to see that the connecting 
way has a direct impact on the network capacity of a structure. To achieve a higher network capacity 
in IBCube, we analyze the connecting way of BCube which supports bandwidth hungry services in 
more details (Ports et al. 2015). In the BCube structure, a BCube0 bkbk − 1…b1* connects to its 
corresponding switch group <l, bkbk − 1…bl +  1bl − 1…b1*> through connecting the bkbk − 1…b1b0 
(b0∈ [0, n-1]) server of the BCube0 to switch <l, bkb − 1…bl + 1bl − 1…b1b0>, where the network traffics 
of the BCube0 are distributed quite evenly among those switches of its corresponding switch group.

In IBCube, we also balance the traffic of a BCube0 among all the switches of its connected switch 
group to achieve a higher network capacity. Specifically, we achieve the balanced traffic of a BCube0 
by letting the value of b0 to determine the address of the switch that a server bkbk − 1…b1b0 connects 
to. The switch group <l, bkbk − 1…bl + 1bl − 1…b1*> connects to M (l, bkbk − 1…bl + 1bl − 1…b1*) 
BCube0s with the address bkbk − 1…b1* (bl∈ [0, M (l, bkbk − 1…bl + 1bl − 1…b1*)-1]), which only differs 
at the digit bl. If the address of the switch that a server bkbk − 1…b1b0 connects to is determined only 
by the value of b0, there will be a number of M (l, bkbk − 1…bl + 1bl − 1…b1*) servers with the same 
value of b0 connect to the same switch of the switch group. However, there are n-M (l, bkbk − 1…bl +

1bl − 1…b1*) remaining ports to be connected in each switch. Thus, we determine the address of the 
switch to which a server bkbk − 1…b1b0 connects using the values of bl and b0. Specifically, the level-l 
port of a server bkbk − 1…b0 (b0∈ [M (l, bkbk − 1…bl + 1bl − 1…b1*), n-1]) connects to the j-th port of 
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a level-l switch <l, bkbk − 1…bl + 1bl − 1…b1s0>. The value of j is b0 and the value of s0 is calculated 
by Equation (5),

s b b n M l b b b b b
l k k l l0 0 1 1 1 1

1�= + − + … …( )− + −( )% ,� * 	 (5)

Thus, those n-M (l, bkbk − 1…bl + 1bl − 1…b1*) servers in the M (l, bkbk − 1… bl + 1bl − 1…b1*) 
bkbk − 1…b1* BCube0 are fully connected to the n-M (l, bkbk − 1… bl + 1bl − 1…b1*) remaining ports 
of the switch group <l, bkbk − 1…bl + 1bl − 1…b1*> (* = [0, M (l, bkbk − 1…bl + 1bl − 1… b1*)-1]). 
According to the above analysis, we can see that the value of s0 should be determined by the value 
of b0 and bl. In Equation (5), we use the value of (1-n) to determine the value of s0 to reduce the 
rewiring scale. We compare the achieved rewiring scale with the case using the sum of b0 and bl to 
determine the value of s0.

In summary, the level-l port of a server bkbk − 1…b0 connects to the j-th port of a level-l switch 
<l, bkbk − 1…bl + 1bl − 1…b1s0>. The value of s0 is calculated by Equation (6) and the value of the j 
port is computed by Equation (7),
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In Figure 8 we obtain the structure of IBCube (3, 4) according to Equation (6) and Equation (7). 
The level-1 port of a server b1b0 connects to the j-th port of a level-1 switch <1, s0>. When b0 is less 
than three, we have s0 = b0 and j = b1. For example, 01 connects to the 0-th port of level-1 switch<1, 
1>. When b0 is not less than three, s0 = (b0+b1-3)%3 and j = b0. For example, 03 connects to the 
third port of level-1 switch <1, 0>. The red dotted lines in the example in Figure 8 clearly show the 
IBCube’s difference with that of BCube.

3.1. IBCube Routing
BCube uses the source routing to decide the path through which a packet from a source server flows 
by probing the network. The reasons for using the source routing are twofold. First, the source server 
controls the routing path without the need of coordination of intermediate servers. Second, the 
intermediate servers only need to forward the packets. As the connecting way of IBCube structure 
is obtained according to the BCube structure and the structure of IBCube including nk BCube0 is 
actually the same as BCubek, the IBCube structure also uses the source routing protocol.

In the IBCube structure, two neighboring servers connecting to the same level-l switch may differ 
at the lth digit and the 0-th digit in their address arrays. Thus, we cannot apply the BCubeRouting 
directly to IBCube. We use the BFS algorithm on the source server to find a single path for the 
destination server. In IBCube, the way to achieve parallel paths is to remove the existing parallel 
paths from the IBCube structure and then use BFS to search for another. The newly found path is in 
parallel with the existing paths. When a new flow comes, the source sends the probing packets to 
all the parallel paths to obtain the required information of each path, i.e., the available bandwidth 
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of each path. In each intermediate server, the probing packets obtain the needed information. The 
destination returns a response packet for the probing packet to the source. When the source receives 
all the responses, it selects the best path according to the obtained information of each path.

In IBCube, to handle network failures, a source server periodically performs path selection to 
adapt to the network failures. When an intermediate server finds the next hop unreachable, it sends 
a path failure message to the source server. If there are still other available paths, the source server 
will switch the flow to another available path. When it is the time to explore the path, the source will 
perform a path selection and try to achieve all parallel paths.

3.2. Rewiring in IBCube
As aforementioned, the rewiring is required when the existing datacenter needs to expand. We can 
obtain the rewiring scale of IBCube according to its connecting way. When an existing network needs 
to expand by adding additional BCube0s and switches, those cables to be rewired can be obtained by 
comparing the new structure with the original one.

For example, when we expand IBCube (3, 4) to IBCube (4, 4), we should rewire three cables and 
connect four new cables. The structure of IBCube (4, 4) is the same structure shown in Figure 3. By 
comparing the structure of IBCube (4, 4) in Figure 3 and the structure of the IBCube (3, 4) in Figure 
8, it is not difficult to see that those cables represented using red dotted lines in Figure 8 should be 
reconnected to the switch <1, 3> and the four cables of the 3* BCube0 should be connected to each 
switch of level-1 switches.

To cope with the link number scalability problem in BCube and accelerate the manual cabling 
when we build a datacenter or expand a datacenter, we can use the patch panel (Singla, 2012) so that 
we can plug cables from the switches into the panel in an easy-to-wire pattern. The total number of 
wires in the IBCube (N, n) is k*N*n, where N is a number in the set (nk − 1, nk]. The total number of 
wires in the IBCube (N, n) is a value in the set (k*nk, k*nk + 1]. When we expand an IBCube (N, n) 
(N∈ (nk − 1, nk)) by adding a BCube0 and k switches to each switch level-i (i∈ [1, k]), it is easy to see 
that the rewiring scale is less than k*n2. This is because the rewiring only happens in the complete 
bipartite graphs, where the new BCube0 will join in. When we expand an IBCube (N, n) (N = nk) by 
adding a BCube0, a layer - (k + 1) switch layer should be added to the new structure besides the k 
switches to be added to each switch layer - i (i∈ [1, k]), that is to say, a number of k + 1 + nk switches 
should be connected to those servers in the new structure with no rewiring demand.

Table 1. Experiment setups

Parameters Setups

# of switch levels 3 (k = 2)

# of nodes in BCube0 (n) 16

# of nodes in the structure 512 - 3,840

Running time 100s

Packet size 1,024bytes

Data rate for packet sending 1Mbps

Data rate for device channel 1,000Mbps

Communication pairs selection Uniform and random selection

Traffic flow pattern Exponential random traffic

Routing protocol Nix-routing



International Journal of Web Services Research
Volume 15 • Issue 1 • January-March 2018

40

The detailed rewiring of expanding an IBCube (N, n) (N∈ (nk − 1, nk)) by adding a BCube0 and 
k switch is as follows. The connecting way in the new IBCube can be obtained according to Equation 
(6) and Equation (7). In level-l switches, a new switch will be added to a switch group, which realizes 
the connection of those BCube0s whose addresses are only different at the l-th digit with the new 
BCube0. Correspondingly, the new BCube0 will connect to those BCube0s by the newly obtained 
switch group. It is easy to see that the connections of other switch groups in the new IBCube are the 
same as the original IBCube. The rewiring only happens in those switch groups where the new BCube0 
will join in.

Assuming the address of the new BCube0 to be added to the original IBCube structure is akak −

1…a1a0, the wires of those servers akak − 1…al + 1ial − 1…a1b0 with b0 = M (l, akak + 1…al − 1al − 1…
a1*) should reconnect to the new switch in level-l, and the wires of those servers with b0>M (l, akak −

1…al + 1al − 1…a1*) should reconnect to the switch with s0 = (b0+i-n+1)%(M (l, akak − 1…al + 1al −

1…a1*) + 1). When the switch to be reconnected is the same as the connecting switch in the original 
IBCube, i.e., (b0+i-n+1)% (M (l, akak − 1…al + 1al − 1…a1*) + 1) = (b0 + i-n + 1)%M (l, akak − 1… 
al + 1al − 1… a1*), the server akak − 1…al + 1ial − 1…a1b0 does not need to rewire its level-l wires. It is 
easy to see that those servers satisfying (b0+i)∈ [n-1, n-1+M (l, akak − 1… al + 1al − 1…a1*)) do not 
need to rewire its level-l wires, where the value of (b0+i) (b0>M (l, akak − 1… al + 1al − 1… a1*)) is in 
(M (l, bkbk − 1… bl + 1bl − 1…b1*), n-1+M (l, akak − 1…al + 1al − 1…a1*)]. This is the reason why we 
use (1-n) to determine the value of s0 to reduce the rewiring scale. When we only use the sum of b0 
and bl to determine the value s0, the level-l wires of those servers with b0 >M (l, akak − 1…al + 1al −

1…a1*) will need to be rewired as the value of the (b0 + i) in those servers is larger than M (l, akak −

1…al + 1al − 1…a1*). 

4. EXPERIMENT RESULTS

Since IBCube aims at reducing the expense on switches in the partial BCube, we compare the switch 
cost of a datacenter using IBCube with that of a datacenter using the partial BCube structure. We 
conduct comprehensive simulations based on ns-3 (Ns-3, n.d.), which is an open-source platform 
widely used by the research community for simulating the networks. In the evaluation, we compare the 
switch cost of the two structures using both 1Gbps switches and 10Gbps switches. After comparing the 
switch cost of IBCube with a partial BCube, we further examine the performance of IBCube structure.

To compare the cost of our IBCube structure with that of the previous partial BCube, we examine 
a datacenter which could expand to 60,000 servers. As IBCube can support 65,536 servers with 
16-port switches when the value of k is up to three, we use 16-port switches in each structure. The 
difficulty in the cost analysis is that the equipment prices vary greatly across vendors and products. 
As relatively aggressive prices, we use value of $10 per 1Gbps switch port (Chen et al. 2016).

In the following, we compare the switch cost of a datacenter which incrementally expands to 
60,000 servers using the IBCube structure with that of the partial BCube. In the two structures, 
we expand the datacenter with one BCube0 each time. Figure 9 compares the switch costs of the 
datacenters using different structures.

When a partial BCube with 4,112 servers needs to expand, the corresponding switch cost for 
expanding with the previous BCube0 structure is $699,040. The switch cost for expanding the IBCube 

(256, 16) is only $41,600. The result shows that our IBCube design needs only 1

17
 of the cost of 

network equipments of the previous partial BCube design.
As using the 10Gbps switch is more and more common in datacenter (Popa et al. 2010), we also 

compare the switch cost of our IBCube design with that of the partial BCube both using 10Gbps 
switches. We set the value of price to $450 per 10Gbps switch port. We can see that the cost for 
expanding a previous partial BCube with 4,112 servers using a BCube0 is $31,456,800, while the 
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cost for expanding our IBCube (256, 16) using a BCube0 is only $1,872,000. The result also shows 
that our IBCube design decreases the cost of network by 94%.

For a fair comparison, in the evaluation, we use the same number of servers, the same 
configurations of network devices and examine the same traffic pattern in both structures. The main 
difference in the comparison is the network structure. We also use the BFS routing as the single-path 
routing in a partial BCube. Actually, the BFS routing and the BCubeRouting make no significant 
difference in a partial BCube. Table 1 summarizes the experiment setups used for the performance 
evaluation of our IBCube and the partial BCube structure in detail. The scale of both architectures 
ranges from 512 to 3,840 servers. The traffic flow pattern for each structure follows an on-off behavior 
with exponential random distribution, which is widely accepted as a reasonable model of traffic flows 
in real datacenters (Benson et al. 2010; Fu et al. 2015; Kong et al. 2017; Wang et al. 2016).

In the performance evaluation, we consider two performance metrics, the average packet delay 
and the average throughput (Chen et al. 2016). The average packet delay is calculated according to 
Equation (8),
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∑
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Figure 9. The switch cost
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Here, the notation D represents the average packet delay; n denotes the total number of received 
packets; and di is the delay of packet i.

The average throughput is computed by Equation (9),
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where the notation Tp represents the average throughput. The value of pi is zero if packet i is lost; 
otherwise, the value of pi is one. The notation si represents the size of packet i; n is the total number 
of packets, and di is the delay of packet i.

We plot the average packet delay in Figure 10 and the average throughput in Figure 11. As 
IBCube uses fewer switches to connect the same number of servers as the partial BCube, this will 
increase the traffic load of each switch in IBCube. However, we can see that the performance of our 
IBCube design is much better than that of the previous partial BCube according to Figure 10 and 
Figure 11. The results in Figure 10 show that IBCube reduces the average packet delay by 10.3% 
compared to the partial BCube design. This is because there is a shorter average hop in IBCube due 
to the smaller number of switches. For example, the server 01 and the server 13 are neighbors in 
IBCube (3,4). However, the hamming distance of the server 01 and the server 13 is two in a partial 
BCube1 with three BCube0s. Figure 11 shows that IBCube outperforms previous partial BCube by 
11.5% in terms of throughput.

Figure 10. Average packet delay
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5. CONCLUSION AND FUTURE WORK

In this work, we propose IBCube, a novel design for economically constructing a datacenter network. 
In summary, we have achieved the contribution in threefold. First, we propose an economically 
structure which can interconnect an arbitrary number of servers. Specifically, we design a novel 
automatic port allocation algorithm which fully utilizes the switch ports to achieve a minimized 
number of required switches for datacenters with an arbitrary number of servers. Second, based on 
the IBCube datacenter network architecture, we design a routing algorithm. Third, we examine the 
efficiency and performance of the IBCube design using comprehensive simulations based on real 
world system configurations. The results show that the IBCube design significantly reduces the 
expenses on network equipments by 94% as well as achieves better latency and throughput compared 
to the previous partial BCube design.
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