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Abstract—ECN is a powerful tool that can achieve low latency
and high throughput simultaneously. Support ECN for multi-
queue scenarios is an industry trend in datacenter networks.
However, ECN schemes developed for per-port marking cannot
be applied directly to the multi-queue scenarios. It hurts at least
one metric among latency, throughput, and the scheduling policy.
State-of-the-art multi-queue ECN marking schemes each has its
own limitations. In this paper, we present per-Port Marking with
Selective Blindness (PMSB). The intuition is that: if a flow is
found to be a victim of per-port marking, we can either revoke
the marking or cancel the flow back-off even if its packets qualify
the per-port threshold (i.e., selective blindness). By breaking the
fixed causal relationship between ECN marking and flow back-
off, flows from un-congested queues can be protected. We evaluate
PMSB with large-scale NS-3 simulations. Our results demonstrate
that PMSB can preserve a given scheduling policy. Compared
with the current practice, PMSB can reduce the average/99%
completion time for small flows by 64.49%/72.89% respectively
while delivering a slightly better performance for large flows.

I. INTRODUCTION

In nowadays data centers, ECN is a powerful tool that can

achieve low latency and high throughput simultaneously [1],

[12], [16], [17], [13], [14], [15], [9]. It requires both ECN-

enabled switches in the network and ECN-based transport

protocols at end hosts. A switch puts an ECN mark on

a passing packet if the average/instantaneous buffer length

exceeds a marking threshold. Meanwhile, a transport protocol

increases/decreases the congestion window (e.g., DCTCP [1]

and D2TCP [16]) or transmission rate (e.g., DCQCN [18])

according to the occurance/ratio of ECN-marked packets.

Usually, the buffer length can be kept around the marking

threshold without sacrificing throughput.

Support ECN for multi-queue scenarios is an industry trend

in data centers. Commodity switches usually support 4-8

service queues per port. The current practice is to isolate

different services to different queues so that differentiated

performance can be provisioned [8], [4], [11], [7].

However, ECN schemes developed for per-port marking

cannot be applied directly to the multi-queue scenarios. It

hurts at least one metric among latency, throughput, and the

scheduling policy [5]. Per-queue marking with the standard

ECN threshold ensures high throughput but incurs high latency

when most queues are active. Dividing the threshold among

queues according to their weights ensures low latency but in-

curs throughput loss when there are few active queues. Directly

using per-port ECN marking maintains the performance of

both latency and throughput, but may violate the scheduling

policy (e.g., weighted fair sharing).

State-of-the-art multi-queue ECN marking schemes each

has its own limitations (Section II). MQ-ECN [5] dynamically

calculates ECN marking threshold for each queue. It only

works for round-based schedulers (e.g., WRR and DWRR) and

does not support others (e.g., WFQ and SP) that do not possess

the concept of “round”. Instead of buffer length, TCN [3] uses

each packet’s sojourn time as the threshold metric. Due to

its duration-based nature, it cannot accelerate the delivery of

congestion information via dequeue ECN marking [17]. As a

result, its performance is also sub-optimal.

We take one step back and ask a fundamental question: can
we enable ECN support in multi-queue datacenter networks
via per-port marking? Let’s revisit the hurt to the scheduling

policy (e.g., weighted fair sharing) brought by per-port ECN

marking. It is claimed that “...packets from one queue may get

marked due to buffer occupancy of the other queues belonging

to the same port...” [5].

In this paper, we present per-Port Marking with Selective
Blindness (PMSB). The intuition of PMSB is that: if a flow is

found to be a victim of per-port marking, we can either revoke

the marking or cancel the flow back-off even if its packets

qualify the per-port threshold (i.e., selective blindness). Here,

a victim means a flow that does not experience congestion, but

the packets of this flow are marked due to buffer occupancy

from other queues of the same port. By breaking the fixed

causal relationship between port marking and back-off, flows

from un-congested queues can be protected. With PMSB, a

switch marks ECN only if both conditions hold: (1) the port

buffer length is larger than a per-port threshold (i.e., port

marking), and (2) the queue buffer length is also no less than

a per-queue filter threshold (i.e., selective blindness).

The challenge is how to achieve the best trade-off point of

a selective blindness algorithm by determining the per-queue

threshold. If the algorithm is too aggressive to accept ECN

marking, there could be false positive decisions (i.e., a flow

accepts marking while its queue is actually not congested)

which would hurt the scheduling policy. If the algorithm is

too conservative to accept ECN marking, there could be false
negative decisions (i.e., a flow refuses marking while its queue

is actually congested) which could hurt latency.

Through extensive experiments, we find that the necessary
condition for the hurt (to happen) is that victim flows should

be extensively marked. Otherwise, victim flows with a low
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ECN marking ratio would not back-off too much, and the

scheduling policy may still get respected. Thus, a selective

blindness decision can be relatively aggressive to trade a

small probability of false positive for the elimination of false

negative.

Based on this observation, we derive bounds for per-queue

filter threshold. We then perform steady state analysis for

the algorithm. As PMSB requires switch modification, we

also develop an heuristic end-host version PMSB(e) as an

immediately-deployable alternative. With PMSB(e), a flow

compares its current round-trip-time (RTT) with the base RTT

and decides whether it should accept a marking ECN signal.

We evaluate PMSB with large-scale NS-3 simulations. Our

results demonstrate that PMSB can preserve a given schedul-

ing policy, at the same time achieve both low latency and

high throughput. Compared with TCN with generic packet

scheduling, PMSB can reduce the average/99% completion

time for small flows by 64.49%/72.89% respectively while

delivering a slightly better performance for large flows. When

compared with MQ-ECN, the performance gain is smaller

but still significant. The average/99% completion time for

small flows can be reduced by 40.00%/41.21% respectively.

Although the performance of PMSB(e) is lower than that

of PMSB, its improvement of average/99% completion time

for small flows can be 25.03%/25.81% respectively when

compared with MQ-ECN.

II. MOTIVATION

We begin by introducing the background of ECN marking

and scheduling policies of multiple queues supported by exist-

ing commodity switching chips. Then, we briefly introduce the

challenges to multi-queue ECN marking. At last, we present

existing solutions and discuss their limitations.

A. Background

ECN marking: In current data centers, DCTCP [1] is

widely used for port-level ECN marking [15], [9]. DCTCP

uses a special parameter setting of RED [6] ECN marking.

Specifically, an ECN marking threshold K (i.e., standard ECN

marking threshold) is given in a switch. A switch puts an

ECN mark on a passing packet if the instantaneous occupied

buffer length of this port exceeds K. At end hosts, DCTCP

increases/decreases the congestion window of each connection

according to its ratio of ECN-marked packets. Usually, the

buffer length can be kept around the marking threshold without

sacrificing throughput.

To fully utilize the link bandwidth and keep low latency,

prior works [17], [2] suggest:

K = C ×RTT × λ. (1)

The theoretical model considers synchronized flows with iden-

tical round-trip times sharing the only queue of a bottleneck

link. Here C is the link bandwidth, RTT is the average round-

trip time, and λ is a tunable parameter that decided by conges-

tion algorithms. Note that in production datacenter networks,

RTT is relatively stable and can be measured through large-

scale measurements.

Multi-queue scheduling: Existing commodity switching

chips support multiple (typically 4-8) physical queues per port.

Datacenter operators usually use multiple queues to isolate

different services to provide Quality-of-Service differentiation.

Typical multi-queue scheduling policies include Weighted Fair

Queuing (WFQ), Strict Priority (SP), Weighted Round Robin

(WRR), and Deficit Weighted Round Robin (DWRR) etc.
Commodity switching chips provide per-queue, per-port,

and per service pool ECN markings capability. The main

difference among them is that they use different buffer entities

to decide marking or not. In per-queue ECN marking, each

queue is assigned a threshold Queue-K independently to other

queues, and marking packet when the length of queue buffer

occupancy exceeds Queue-K. In per-port ECN marking, each

port is assigned a single threshold Port-K, and marking packet

when the length of port buffer occupancy exceeds Port-K.

Similarly, in per service pool ECN marking, packets are

marked when total buffer occupancy in a shared buffer pool

exceeds per service pool marking threshold.

B. Challenges to multi-queue ECN support

Given weight values to each queue, how to choose marking

strategy is challenging. To confirm these observations, we

perform experiments of weighted share among queues similar

to that in MQ-ECN [5].

Per-queue ECN with standard threshold: We can configure

each queue with a standard threshold to achieve high through-

put, e.g., C×RTT ×λ. We run a small simulation. We set the

per-queue standard threshold to 16 packets, and start 8 flows

from 8 senders to the same receiver. We vary the number of

switch queues from 1 to 8, and classify flows into these queues

evenly by setting Differentiated Services Code Point (DSCP)

IP field. The link capacity of the bottleneck link is 10 Gbps.

Figure 1 shows the distribution of RTT. With the in-

creasement of the number of queues, the RTT also increases

rapidly. This is because if there are many active queues with

relatively large threshold, the queuing delay increases highly.

This confirms the conclusion that per-queue ECN marking

with standard threshold can cause high latency [5].

Per-queue ECN with fractional threshold: In contrast to

per-queue ECN with standard threshold, we can apportion the

standard threshold among all the queues according to their fair

share weights to achieve low latency. For example, suppose

each switch port has N queues, and the weight of queuei is

Wi. So the fractional threshold Ki of queuei is set as follows:

Ki =
Wi∑N
j=1 Wj

× C ×RTT × λ. (2)

Apparently, this configuration ensures low latency, because

it maintains a small buffer occupancy in switch. In this

experiment, we configure per-queue ECN threshold as 2 and

16 packets respectively. We start only one flow, and observe

its throughput.
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Fig. 1. Per-queue marking (standard threshold)
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Fig. 2. Per-queue marking (fractional threshold)
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Fig. 3. Per-port marking (1 flow v.s. 8 flows)

Figure 2 shows the throughput. When we set per-queue

ECN threshold as 16 packets, the throughput of this flow can

reach about 10 Gbps. However, when we set per-queue ECN

threshold as 2 packets, the throughput of this decrease about

6%. Thus, we can confirm that per-queue ECN marking with

fractional threshold can degrade the utilization of link when

there are few active queues.

Per-port and per service pool ECN: Per-port ECN with

standard threshold can achieve both high throughput and

low queuing latency. In this experiment, we set the per-port

threshold to 16 packets, and we build 9 flows from 9 senders

to the same receiver. We classify these flows into 2 switch

queues with 1:1 weight. Here Queue 1 has 1 flow, and Queue

2 has 8 flows.

Figure 3 shows the throughput of queues. The throughput

of Queue 1 and Queue 2 are about 2.49 Gbps and 7.51 Gbps

respectively. Obviously, the flow of Queue 1 is the victim. Per-

port ECN marking can violate weighted fair sharing among

different queues belonging to the same port. It cannot ensure

isolation between queues of the same port. Packets from one

queue may be marked due to shared buffer occupied by other

queues of the same port.

We believe per service pool will also violate weighted

fair sharing, because queues belonging to different ports may

interfere with each other.

C. Related Work
Cater to these challenges, MQ-ECN and TCN have been

proposed. MQ-ECN [5] and TCN [3] can achieve high

throughput, low latency simultaneously, but each has its own

limitations.

MQ-ECN: Per-queue ECN with standard/fractional threshold

keeps a static threshold. MQ-ECN instead keeps a dynamic

threshold Ki for each queue respectively as follows:

Ki = min(
quantumi

Tround
, C)×RTT × λ, (3)

where RTT and λ are known, quantumi is the weight of queue

i that is used to keep weighted fair sharing. Tround is the total

time to serve all queues once. In one Tround time, the size

of data that dequeued by queuei cannot exceed quantumi.

Thus, quantumi

Tround
indicates the drain rate of queuei, and the

drain rate of queuei should not exceed link capacity C.

Tround balances throughput and latency automatically.

When there are more queues whose input rates exceed their
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Fig. 5. TCN cannot accelerate

weighted fair share rates, Tround becomes larger, then Ki

becomes smaller to keep low latency. When there are fewer

queues whose drain rates reach their weighted share rates,

Tround becomes smaller, then Ki becomes larger to achieve

high throughput. Since the threshold of each queue is dynami-

cally changing, it can achieve high throughput and low latency.

However, MQ-ECN only supports round-based schedulers

like WRR and DWRR. It does not support other schedulers

such as WFQ and SP that do not possess the concept of

“round”.

TCN: The goal of TCN is to enable ECN over generic

packet schedulers, and maintain good network performance.

It changes Equation (3) as follows:

Ki

min( quantumi

Tround
, C)

= RTT × λ. (4)

The left side of Equation (4) means the largest sojourn time

that packets can experience if they would not be marked. Thus,

TCN use RTT ×λ as threshold Tk. If the sojourn time of one

packet exceeds Tk, it will be marked. In order to calculate

sojourn time, TCN attaches a time stamp t1 to each packet

at the enqueue time. At the dequeue time, TCN uses current

time stamp t2 minus t1 to get its sojourn time. Obviously,

TCN does not limit itself to round-based schedulers, and it

can be used over generic schedulers.

However, TCN cannot accelerate the delivery of congestion

information with dequeue marking. This is because TCN finds

congestion only when packets experience congestion. While

dequeue-based ECN/RED can deliver congestion information

earlier.
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TABLE I
COMPARE MQ-ECN, TCN AND PMSB.

MQ-ECN TCN PMSB PMSB(e)
Generic scheduler × √ √ √

Round-based scheduler
√ √ √ √

Early notification
√ × √ √

No switch modification × × × √

To understand this drawback, we start 4 flows from 4

senders to the same receiver, and we set the threshold as 16

packets for DCTCP and 19.2 μs for TCN. As the bandwidths

of all links are 1Gbps, draining 16 packets(1502 Bytes/packet)

needs 19.2μs for switch. All traffic is classified into the same

switch queue. Figure 4 shows the buffer occupancy of DCTCP.

At the beginning, there are peak buffer occupancies. This is

because TCP congestion window grows exponentially during

the slow start phase before ECN takes effect. The peak value

of DCTCP reaches 87 packets when marking CE codepoint at

enqueue time. As a comaprison, when marking CE codepoint

at dequeue time, the peak value of DCTCP decreases about

25%. This is because when marking CE codepoint at dequeue

time, the sender of DCTCP can receive congestion feedback

earlier. However, TCN has a duration-based nature. Figure 5

shows the buffer occupancy of TCN which confirms that TCN

can not deliver congestion information earlier.

III. PMSB OVERVIEW

Intuition: Let’s first revisit the hurt to the scheduling policy

(e.g., weighted fair sharing) brought by per-port ECN marking.

It is claimed that “...packets from one queue may get marked

due to buffer occupancy of the other queues belonging to

the same port...” [5]. This gives us the intuition: what if we
can identify a victim flow and ignore the faulty ECN marking
signals appear in its packets?.

We present per-Port Marking with Selective Blindness
(PMSB). If a flow is found to be a victim of per-port marking,

we can either revoke the marking or cancel the flow back-off

even if its packets qualify the per-port threshold (i.e., selective

blindness). By breaking the fixed causal relationship between

port marking and back-off, flows from un-congested queues

can be protected.

PMSB design: With the basic switch version of PMSB,

a switch marks ECN only if two conditions both hold: (1)

the port buffer length is larger than a per-port threshold (i.e.,

port marking), and (2) the queue buffer length is also no less

than a per-queue filter threshold (i.e., selective blindness). The

challenge is how to determine the per-queue threshold so that

the best trade-off point of a selective blindness algorithm can

be achieved. Following we present the key observations to this

question, and leave design details to the next part (Section IV).

Per-port ECN deep dive: As mention above, per-port ECN

marking violates the weighted fair sharing due to the interfer-

ence between queues belonging to the same port. We change

the port threshold to 65 packets, and repeat the simulation in

Figure 3. Figure 6 shows that by increasing port threshold,
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TABLE II
PARAMETERS USED IN OUR ALGORITHMS.

Parameter Description
port_length The buffer occupancy of port p.

port_threshold The threshold of port p.
queue_length_i The buffer occupancy of queuei.

queue_threshold_i The threshold of queuei.
weight_i The weight of queuei.

weight_sum The sum of all queues’ weights in
port p.

is_mark A boolean variable indicates that if
the packets will be marked or not.

cur_rtt The current RTT.
rtt_threshold The RTT threshold used to deter-

mine if the senders ignore ECN’s
congestion information or not.

ignore_mark A boolean variable indicates that if
the senders ignore ECN’s conges-
tion information or not.

even per-port marking can keep weighted fair sharing. This

is because increasing port threshold can decrease the number

of packets being marked. Without extensively marking signal,

victim flows with a low ECN marking ratio would not back-off

too much, and the scheduling policy may still get respected.

Note that increasing the port threshold cannot entirely solve

this problem. If the crossing flow number increases, the stable

buffer point would eventually exceed a fixed threshold, then

flows get extensively marked. Figure 7 shows the result when

the flow number reaches 40, where weighted sharing fair

sharing is again violated. We cannot arbitrarily increase the

port-level threshold, as increasing port threshold will also

result in high latency. The observation is that a selective
blindness decision can be relatively aggressive to trade a
small probability of false positive for the elimination of false
negative.

We also develop an heuristic end-host version PMSB(e) as

an immediately-deployable alternative. With PMSB(e), a flow

compares its current round-trip-time (RTT) with the base RTT

and decides whether it should accept a marking ECN signal

(Section V). Table I presents the comparison among existing

approaches and PMSB.

IV. DETAILED DESIGN AND ANALYSES

In this section, we first give our design goals and introduce

algorithm about PMSB, then we discuss the implementation,

finally, we give the steady state analysis of PMSB.
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Algorithm 1: PMSB

Input: port length, port threshold,

queue length i, weight i, weight sum
Output: is mark

1 if (port length < port threshold) then
2 is mark ← false;

3 return is mark;

4 queue threshold i← weight i
weight sum × port threshold;

5 if (queue length i ≥ queue threshold i) then
6 is mark ← true;

7 return is mark;

8 is mark ← false;

9 return is mark;

A. Design Goals
We highlight our design goals as following:

1) Weighted fair sharing: Obviously, in order to achieve

weighted fair sharing, each queue requires to maintain an

independent threshold that is proportional to the queue’s

weight.

2) High throughput and low latency: To achieve high

throughput and low latency simultaneously, PMSB keeps a

per-port threshold for each port and a per-queue filter threshold

for each queue.

3) Deliver congestion information early: As TCN uses

sojourn time to determine if the packets will be marked

or not, it cannot indicate the congestion in advance. If the

senders received congestion notification information earlier,

they would reduce the degree of the network congestion. When

marking ECN at dequeue time, PMSB can tell senders early

about the network congestion.

4) Serviceable over generic packet schedulers: MQ-ECN

only supports round-based schedulers such as WRR and D-

WRR, which cannot be generalized to other schedulers. Unlike

MQ-ECN, PMSB can support generic packet schedulers and

does not rely on round-based schedulers.

B. Algorithm

Algorithm 1 shows pseudo-code for PMSB. And Table II

describes the parameters used in algorithm 1. PMSB not

only takes full advantage of per-port ECN, but also achieves

weighted fair sharing that per-port ECN cannot achieve.

We use parameter port threshold to capture the certain

port’s threshold shared by all queues, and use parameter

queue threshold i to represent the threshold of queuei.

port threshold = C ×RTT × λ (5)

queue threshold i =
weight i

weight sum
× port threshold (6)

where the parameter weight sum is the sum of all queues’

weights in the same port, and weight i indicates the weight

of the ith queue that need to judge marking packets or not.

TABLE III
KEY NOTATIONS IN THIS PAPER.

ni The number of flows in ith queue.
V The switch v.
c The capacity of bottleneck link l.
p The output port connected with bottleneck link l.
q The number of queues in output port p.

wi The assigned weight of ith queue.
ki The marking threshold of ith queue.

W (t) The window size of each flow at t.
Qi(t) The length of ith queue at t.
Qmin

i The minimum queue length of ith queue.
Qmax

i The maximum queue length of ith queue.
RTT The round-trip time

When the size of packets buffered in one port is smaller

than port’s threshold, PMSB does not require to mark any

packets, preserving high throughput and low latency. Once

the buffered packets exceed port’s threshold, PMSB begins to

check that if the current queue’s length beyond the queue’s

threshold or not. If these two conditions can be established at

the same time (i.e., port length is larger than port threshold
and queue length i is larger than queue threshold i), the

packets will be marked to indicate that congestion happens.

Otherwise, they remain the same.

C. Discussion

PMSB is unaware of the concept of “round” and thus

does not rely on the round-based schedulers. Besides, when

marking operation at dequeuing time, PMSB can predict the

congestion and deliver congestion notification in advance.

Since PMSB will mark packets at dequeuing time once the

length of port’s buffer exceeds port’s threshold and the

length of queue’s buffer exceeds queue’s threshold. Hence,

the senders can receive congestion information earlier. In

the typical switch implementation for ECN/RED, there is a

comparison operation between averaged queue length and a

static threshold. PMSB can directly compare instantaneous or

average queue length with threshold. MQ-ECN requires one

additional moving average register to store Tround for each

port. TCN is more complicate as it needs to perform unpacking

and packing operations for each packet to get sojourn time.

However, PMSB does not need additional registers, and keeps

the same scale implementation complexity as ECN/RED.

D. Steady State Analysis

We analyze the lower bound of the threshold in order to

avoid throughput loss. We first present our network model. We

assume
∑q

i=1 ni long-lived flows with identical RTT, passing

the bottleneck link of capacity c through port p, where the port

p is associated with q queues and ni synchronized flows share

with ith queue. For convenience, we summarize important

notations in Table III.

We first discuss the lower bound of threshold ki. The length

of ith queue at time t can be given by
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Qi(t) = ni ·W (t)− wi∑q
j=1 wj

· C ·RTT (7)

where W (t) is the window size of each flow and wi is the

assigned weight for ith queue.

From the analysis in [1], we can conclude that the maximum

length of ith queue is

Qmax
i = ni(W

∗ + 1)− γi · C ·RTT = ki + ni (8)

where W ∗ = γi·C·RTT+ki

ni
and γi = wi∑q

j=1 wj
. The notation

W ∗ represents the window size for a single flow in the sender

where the length of ith queue reaches ki.
The amplitude of ith queue oscillations is

Ai =
1

2
·
√

2 · ni · (γi · C ·RTT + ki) (9)

From equations (8) and (9), we can obtain

Qmin
i = Qmax

i −Ai

= ki + ni − 1

2
·
√

2 · ni · (γi · C ·RTT + ki)

To determine the lower bound of Qmin
i , we calculate the

derivative of the function Qmin
i (ni) as following.

∂Qmin
i

∂ni
= 1− 1

2

√
γi · C ·RTT + ki

2 · ni
= 0

We can derive that the lower bound of Qmin
i can be established

as following.

Q−i =
7

8
· ki − γi · C ·RTT

8
(10)

when the variable ni satisfies the below condition.

ni =
γi · C ·RTT + ki

8
(11)

To ensure that the queue i does not underflow and results

in throughput loss, the lower bound Q−i must be greater than

zero, i.e., Q−i > 0, which implies that

ki >
γi · C ·RTT

7
=

wi∑q
j=1 wj

· C ·RTT

7
(12)

which means that the marking threshold of ith queue must

satisfy the condition (12) such that the throughput loss can be

avoided.

Based on the analysis above, we have the following theorem.

Theorem IV.1. In order to avoid throughput loss, the thresh-
old ki of ith queue should satisfy the following condition.

ki >
wi∑q
j=1 wj

· C ·RTT

7

V. AN END-HOST HEURISTIC VERSION

In this section, we introduce another approach that we do

not need to modify switches, and we name it PMSB(e). The

goals of PMSB(e) include achieving high throughput, low

latency, weighted fair sharing, deliver congestion notification

early and support generic packet schedulers.

Algorithm 2: PMSB(e)

Input: cur rtt, rtt threshold, is mark
Output: ignore mark

1 if (is mark == false) then
2 ignore mark ← true;

3 return ignore mark;

4 if (cur rtt < rtt threshold) then
5 ignore mark ← true;

6 return ignore mark;

7 ignore mark ← false;

8 return ignore mark;

A. Basic Idea

As we mention that per-port ECN marking decision achieves

high throughput and low latency, but it violates weighted

fair sharing principle. As it cannot provide buffer isolation

among the queues in a port, packets from one queue may be

marked due to shared buffer occupied by other queues of the

same port. To achieve weighted fair sharing, per-port ECN

marking decision must avoid interference among different

queues belonging to the same port.

PMSB(e) is based on per-port ECN, which combines ECN

and RTT instead of only taking ECN as the congestion signal.

Algorithm 2 shows the pseudo-code of PMSB(e), and the

parameters used in PMSB(e) are shown in Table II. When

the sender receives ACK with congestion information of ECN

from the receiver, the sender may ignore this congestion

signal if the RTT is small enough. Combining ECN and RTT,

PMSB(e) can achieve weighted fair sharing.

B. Discussion

PMSB(e) has no concept of “round”, and supports generic

packet schedulers. According to the performance of per-port

ECN marking, PMSB(e) can achieve high throughput, low

latency. Due to the auxiliary judgment of RTT, PMSB(e) can

provide isolation among queues belonging to the same port to

achieve weighted fair sharing. In addition, through comparing

the occupancy of port buffer with port threshold at dequeue

time, PMSB(e) can also deliver congestion information early.

The implement of PMSB(e) is uncomplicated, as it does

not need to modify switches. PMSB(e) just needs to add a

simple judge when the sender receives packets with congestion

information of ECN. And it can coexist with other ECN-

based transports like DCTCP. The main challenge is how to

determine a time threshold that used to compare with the

baseline RTT. However, the RTT in data center is stable, and

recently work [10] has shown that RTT can be accurately

measured with advance NIC hardware.

VI. EVALUATION

In this section, we use ns-3 simulations to answer the

following questions.
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How does PMSB perform in large-scale datacenter? In

the large-scale simulations, we measure the flow completion

time to answer this question. Through extensive simulations,

we found that PMSB can reduce 95th, 99th percentile and

average completion time for small flows by up to 50.12%,

50.07% and 48.89% compared to TCN when using DWRR as

scheduler. If we use WFQ as scheduler, the improvements are

more significant: the results can reach up to 67.56%, 72.89%

and 64.49% respectively.

Does PMSB rely on a specific scheduler? The answer

is no. In static flow experiment, we test various schedulers

to evaluate PMSB. The results show that PMSB can support

Weighted Fair Queueing (WFQ), Deficit Round Robin (DRR)

and Priority Queue(SP), and PMSB can achieve excellent

performance.

Is it hard to determine the parameters for PMSB? Of

course not, we only need to configure the port’s threshold.

Besides, Theorem IV.1 gives the lower bound of queue’s

threshold to avoid throughput loss. Accordingly, we can obtain

the port’s threshold by summing up the thresholds of all queues

belonging to this port.

We use DCTCP to perform congestion control. Unless

specifically mentioned, the bandwidth of all links are set to

10 Gbps. As MQ-ECN [5] suggests, we set parameter β to 0.75

and Tidle to the transmission time of a MTU. Note that the

limitation of MQ-ECN and TCN: the former can only support

round-based schedulers, and the later only marks packets at

the dequeuing time.

A. Static Flow Experiment
We begin with some basic simulations to show that PMS-

B and PMSB(e) can achieve high throughput, low latency,

weighted fair sharing and delivering congestion information

early simultaneously.

1) Weighted Fair Sharing, High Throughput and Low
Latency: At each switch, we configure DWRR including

two queues with equal weights. The port thresholds for both

PMSB and PMSB(e) are set to 12 packets, and the RTT

threshold for PMSB(e) is set to 40μs. As for TCN, we set

the sojourn time threshold to 39μs.

• 1:4 In this setting, queue 1 has one flow and queue 2

has four flows. Figure 8 shows the weighted fair sharing

results achieved by PMSB. The throughput of queue 1

and queue 2 are both around 5 Gbps, which suggests

that PMSB can strict preserve weighted fair sharing. Fur-

thermore, the sum of throughput of these flows achieves

10Gbps that suggests that PMSB can fully utilize the link

capacity. We omit the result of weighted fair sharing for

PMSB(e) as its performance is quite similar to that of

PMSB.

We also measure the RTT of flows which classified into

queue 2. Figure 9 shows the RTT distributions achieved

by PMSB, PMSB(e), MQ-ECN, TCN and per-queue set-

ting with standard threshold. Compared to the per-queue

ECN with standard threshold, PMSB achieves 62.6% and

63.2% lower RTT in 99th percentile and average. And

PMSB(e) achieves 55.5% and 55.8% lower RTT in 99th

percentile and average, compared to the per-queue ECN

with standard threshold. In summary, these results suggest

that PMSB and PMSB(e) achieve low latency.

• 1:100 In this setting, we confirm that PMSB and PMS-

B(e) can also keep weighted fair sharing when the traffic

becomes heavy. Queue 1 has one flow and queue 2

has one hundred flows. Figure 10 shows the result of

PMSB, and PMSB(e) achieve the similar result with

PMSB. Even though we change the ratio between two

queues to 1:100, PMSB and PMSB(e) can also achieve

weighted fair sharing and high throughput. Therefore, we

can get the conclusion that PMSB and PMSB(e) achieve

weighted fair sharing and high throughput even the traffic

is heavy.

2) Deliver Congestion Information Early: We have con-

firm that TCN can not deliver congestion information early

above, because packets must experience sojourn time before

they are marked. However, PMSB and PMSB(e) can deliver

congestion information early when marking at dequeue side.

And we make another simulation to confirm that. We start

4 flows from 4 senders to the same receiver simultaneously

and these flows are classified into the same queue. Then we

measure the size of buffer occupancy of this queue. We set the

port threshold for PMSB and PMSB(e) as 12 packets. And the

RTT threshold for PMSB is set to 14.4μs.

Figure 11, 12 show the switch buffer occupancies versus

time achieved by PMSB and PMSB(e) respectively. At the

beginning, there are peak buffer occupancies. This is because

TCP windows grow exponentially during the slow start phase

before DCTCP takes effect. After these peaks, the size of

buffer occupancies fluctuate near the port threshold due to

the effect of DCTCP. When marking at enqueue side, the

peak values of PMSB and PMSB(e) reach 82 packets, this

is because congestion information need to experience a cor-
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responding sojourn time before delivered to senders, thus the

senders cannot react timely.

By contrast, when marking at dequeue side, the peak values

of PMSB and PMSB(e) decrease about 20% compared to

enqueue marking scheme. This is because senders can receive

congestion information early, then decrease their rate to relieve

the network congestion.

3) Support generic packet schedulers: We configure

switch with SP+WFQ, SP, and WFQ respectively, then we

evaluate the performance of PMSB and PMSB(e).

• SP+WFQ: At the switch, we configure SP+WFQ with

three queues: queue 1 has a strict higher priority while

queue 2 and queue 3 have equal weights in the lowest

priority. First, we start a 5 Gbps TCP flow from sender 1,

then start a flow from sender 2, finally, start 4 flows from

sender 3. The flows from sender 1, 2 and 3 are classified

to queue 1, 2, and 3 respectively. Based on the SP+WFQ

scheduling policies, we can infer that the final throughput

of queue 1, 2 and 3 should be 5Gbps, 2.5Gbps, 2.5 Gbps,

respectively.

Figure 13 shows the throughput of each queue versus

time achieved by PMSB. During this experiment, queue 1

always keeps 5Gbps throughput, matching it’s strict prior-

ity at the switch. When queue 3 is inactive, queue 2 also

keeps 5Gbps throughput. After queue 3 becomes active,

queue 2 and 3 keep the identical 2.5Gbps throughput. We

omit the performance of PMSB(e) which is similar with

that of PMSB. This suggests that PMSB and PMSB(e)

can strictly preserve the scheduling policies when we

combine SP and WFQ.

• SP: At the switch, we configure SP with three queues:

queue 1 has the highest priority and queue 3 has the

lowest priority, while the priority of queue 2 is between

that of queue 1 and queue 3. First, we start a 5 Gbps

TCP flow from sender 1, then start a 3 Gbps TCP flow

from sender 2, start a 10 Gbps TCP flow from sender 3,

the flows from sender 1, 2 and 3 are classified to queue

1, 2, and 3 respectively. Note that the bandwidth of links

are 10Gbps. Based on the SP scheduling policies, we can

infer that the final throughput of queue 1, 2 and 3 should

be 5 Gbps, 3 Gbps, 2 Gbps, respectively.

Figure 14 shows the throughput of each queue versus

time achieved by PMSB. During this experiment, queue

1 always keeps 5 Gbps throughput, matching it’s strict

priority at the switch. When queue 2 is active, queue 1

also keeps 5 Gbps throughput, and queue 2 keeps 3 Gbps

throughput. After queue 3 becomes active, queue 3 keeps

2 Gbps throughput, and queue 1, 2 remain unchanged. We

omit the performance of PMSB(e) which is similar with

that of PMSB. This suggests that PMSB and PMSB(e)
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can strict preserve the scheduling policies of SP while

achieving good throughput.

• WFQ: At the switch, we configure WFQ with two

queues: queue 1, 2 has the equal weights. First, we start

one TCP flow from sender 1, then start four TCP flows

from sender 2, the flows from sender 1, 2 are classified

to queue 1, 2 respectively. Based on the WFQ scheduling

policies, we can infer that the final throughput of queue

1, 2 should be equal to 5 Gbps.

Figure 15 shows the throughput of each queue versus

time achieved by PMSB. When queue 2 is inactive, queue

1 keeps 10 Gbps throughput. When queue 2 becomes

active, queue 1 and 2 keep the identical 5 Gbps through-

put. We omit the performance of PMSB(e) which is

similar with that of PMSB. This suggests that PMSB and

PMSB(e) can strictly preserve the scheduling policies of

WFQ while achieving good throughput.

So we get the conclusion that PMSB and PMSB(e) can

support generic packet schedulers.

B. Large-scale NS-3 Simulations

In this section, we use ns-3 simulations to evaluate the

performance of PMSB and PMSB(e) in large-scale datacenter

networks. We use Deficit Weighted Round Robin (DWRR) and

Weighted Fair Queueing (WFQ) as the schedulers of switches

respectively. Because MQ-ECN cannot support WFQ, we just

compare PMSB, PMSB(e) and TCN when using WFQ to

schedule queues.

1)DWRR Scheduler
Topology: We use 48-host leaf-spine topology with 4 leaf

(ToR) switches and 4 spine (Core) switches. Each leaf switch

has 12 10Gbps downlinks to hosts and 4 10Gbps uplinks to

spines, forming a non-blocking network. We employ ECMP

for load balancing.

Workloads: We use realistic workload for all simulations.

Since there are 48 × 47 communications in total. And we

classify those communications into 8 services evenly. We

generate 48flows in the simulations and the traffic pattern is

based on Poisson process. Among these flows, the small flows

account for 60%, and the large flows account for 10%.

Transport: We use DCTCP as congestion control protocol

and the initial window size is set to 16 packets.

Switch: According to the Theorem IV.1, we set the port

threshold of PMSB and PMSB(e) as 12 packets. And the RTT

threshold for PMSB(e) is 85.2μs. We set standard threshold

as 65 packets for MQ-ECN according to [5], and we set TCN

threshold as 78.2 μs according to [3]. All queues have the

equal weights. For PMSB, PMSB(e) and MQ-ECN, switches

mark packets at enqueue time.

Next, we give the FCT results across different flow size.

Figure 16∼21 show the results, and we omit the result of the

medium flows (100KB, 10MB) whose performance trend is

very similar to that of overall average FCT.

Overall: Figure 16 shows the results of overall average

FCT. All of these schemes achieve the similar results. This is

because most of the bytes are from a small number of large

flows that are throughput-intensive. Therefore, these large

flows determine the overall average FCT. Since the link can

be utilized fully by all schemes, the overall average FCT are

similar.

Although these schemes achieve similar overall average

FCT generally, they also exist difference at low network load.

PMSB, and PMSB(e) can reduce overall average FCT by up

to 2% at low loads.

Large Flows: Figure 17, 18 show that PMSB and PMSB(e)

can also keep good performance for large flows. At low and

high load, PMSB and PMSB(e) can reduce about 1%∼2%

FCT for large flows.

Small Flows: As for small flows, figure 19∼21 show that

PMSB and PMSB(e) achieve better performance than TCN

at any loads. Compared to TCN, PMSB can reduce 95th

percentile FCT for small flows up to 52% at low load and

reduce more than about 35% 95th percentile FCT at any other

loads. PMSB(e) can reduce up to 30% 95th percentile FCT at

high loads, and reduce more then 20% 95th percentile FCT at

most loads. Besides, we can get the similar improvement for

99th percentile FCT and average FCT.

When compared to MQ-ECN, PMSB can reduce about 40%

95th percentile FCT at low loads, and reduce more than 30%

95th percentile FCT at most loads. PMSB(e) can reduce about

25% 95th percentile FCT at high loads compared to MQ-ECN.

Besides PMSB, PMSB(e) can achieve similar good results for

99th percentile FCT and 100th percentile FCT.

2)WFQ Scheduler

Here we just replace DWRR with WFQ, and other settings

remain unchanged. Figure 22∼27 show the results of FCT

across different flow size, and we omit the result of the

medium flows (100KB, 10MB) whose performance trend is

very similar to that of overall average FCT. MQ-ECN is

excluded, because it only support round-based schedulers. For

PMSB, PMSB(e) and TCN, switches mark packets at enqueue

time.

Overall: Figure 22 shows PMSB and PMSB(e) both

achieve good performance. Compared to TCN, PMSB and

PMSB(e) just increase overall average FCT within 2% .

Large Flows: About large flows, figure 23, 24 show that

PMSB and PMSB(e) achieve similar performance with TCN.

Compared to TCN, PMSB(e) reduce about 2% FCT for large

flows at low loads. And the difference of FCT between

PMSB and TCN within 2%.

Small Flows: For small flows, figure 25∼27 show that

PMSB and PMSB(e) achieve excellent FCT. Compared to

TCN, PMSB can reduce up to 68% 95th percentile FCT at

low load and reduce exceed 40% 95th percentile FCT at high

loads. PMSB(e) can reduce up to 23% 95th percentile FCT at

most loads. In addition, PMSB and PMSB(e) can also achieve

the similar improvement for 99th percentile FCT and overall

average FCT.
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VII. CONCLUSTION

In this paper, we present per-Port Marking with Selective
Blindness (PMSB) that can achieve high throughput, low

latency and weighted fair sharing simultaneously. Evaluation

results show that PMSB can reduce the flow completion time

for small flows while delivering a slightly better performance

for large flows.
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