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Abstract—The advent of more accurate synchronization in
Software-Defined Networks (SDNs) in general and the notion of
timed updates in particular, enables operators to fully exploit
the potential of the more fine-grained and adaptive traffic
engineering, by avoiding disruptions and inconsistencies during
the update. However, little is known today about how to schedule
the update of multiple flows in such timed SDNs: As flows
compete for limited resources, implementing a congestion-free
update remains algorithmically challenging, even in timed SDNs.

This paper initiates the study of the fundamental problem
of how to reroute the update of multiple network flows in a
synchronized SDN in a congestion-free manner. We show that
that the problem is NP-hard already for flows of unit size and
network links with unit delay. Our main contribution is a first
solution for this problem: Chronicle. Our approach is based on
a time-extended network construction and resource dependency
graph, which is implemented by Openflow 1.5 using the scheduled
bundles feature. Evaluation results show that Chronicle can
reduce the makespan by 63% and reduce the number of changed
rules by 50% compared to state-of-the-art.

I. INTRODUCTION

Motivation: The more fine-grained and adaptive traffic engi-

neering enabled by Software-Defined Networks (SDN), is one

of the key benefits of this new networking paradigm [11].

However, reaping the benefits of a more adaptive network

control is still challenging in practice due to the inherent

asynchrony in the communication between SDN controller and

switches, and also in the switches themselves [17]. Indeed,

many potential disruptions, (transient or even permanent)

inconsistencies, and instabilities, have been identified and

studied empirically and analytically over the last years, making

the SDN update problem an active area of research [13], [6].

Network updates are not only relevant in the context of a

more adaptive and fine grained traffic engineering (typically,

for minimizing network loads), but the ability to quickly

and consistently reroute flows is crucial for the correctness,

availability, and performance more generally. For example,

network update problems arise due to changes in the network’s

(security) policy, upon link failures, or during maintenance

work.

The recent introduction of a notion of time in SDNs and

the resulting more accurate synchronization, enabled timed
updates in OpenFlow [24]: updates which can be scheduled

accurately in time and hence allow to mitigate, or even avoid

entirely, the above problems. In particularly, it has been shown

that so-called flow swaps [24], results in significantly less

packet loss during updates.

However, while synchronized SDNs enable a faster and

more consistent network update, they still pose a challenging

algorithmic problem which is hardly understood today: on

the one hand, it is desirable that the update, respectively

rerouting of flows is completed fast. On the other hand, it

is important that the update is congestion-free, which implies

that the update schedule of flows needs to be jointly optimized:

due to capacity constraints and given link latencies, flows may

temporarily interfere, which results in packet loss and harms

performance.

Our contributions: This paper initiates the study of the fun-

damental problem of how to schedule the update of multiple
network flows in a synchronized SDN in a congestion-free
manner. We show that the problem is NP-hard already for

flows of unit size and network links with unit delay. We

also show that a greedy approach to update the network can

delay the update significantly. Our approach is based on a

time-extended network construction and resource dependency

graph. We implement our system in Openflow 1.5 using

the scheduled bundles feature, and evaluate its feasibility

and efficiency on a small-scale testbed and using large-scale

simulations.

First and foremost, the scheduling of multiple flow updates

raises the question of the to be considered time horizon. We

use the time-extended network to capture the dynamic process

of flow transmission during the network updates. Based on

this, we ask for accurate time schedules—specifying for each

switch and flow an update time point—such that the total

update time (the makespan) is minimized and congestion-

freedom is ensured at any moment in time. We formulate

this problem as an optimization program in the time-extended

network and prove its hardness.

Our second contribution is Chronicle, a heuristic scheduling

algorithm. The key idea is to first divide all network update

instances into small update blocks, then build the dependen-

cy relations among blocks. Based on the constructed time-

extended network, we adjust the update time and merge the

common update blocks accordingly. Finally we construct a

resource dependency graph among the update blocks and

schedule these blocks in time domain.

We evaluate Chronicle using both a prototype implementa-

tion and large-scale simulations. We develop a prototype using
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the new scheduled bundles feature of Openflow 1.5. We

use OFSoftSwitch and Dpctl [5] as Openflow switches and

the controller. Our evaluation results show that Chronicle can

reduce the update time by 63% and reduce the number of

changed rules by 50% compared to state-of-the-art. At the

same time, Chronicle can avoid transient congestion, save flow

table space and provide near optimal solution.

Novelty: The need for fast and consistent network update

mechanisms has been articulated well in the literature in

various contexts, for security [22], performance [16], and

dependability [20], [21], [31] reasons. Most existing literature

focuses on “interactive” update mechanisms, involving the

controller which monitors the progress of the update (e.g.,

using acknowledgements) before deciding to start the next

stage of the update. In particular, existing approaches can be

roughly classified into (1) two-phase protocols [28], [21], [15],

[8] in which the controller first installs the new rules before

tagging packets with the new path at the ingress port, ensuring

that each packet either takes the old or the new route, but

never a combination of both; (2) node-ordering protocols [17],

[12] where the controller updates (subsets of) switches one-by-

one, such that transient inconsistencies are avoided (without

the need for tagging). While solutions between the two worlds

are emerging [29], these approaches have in common that they

need to rely on interactions with the controller to implement

synchronization.

Our approach is enabled by technologies such as

Time4 [24], [26] which allow to synchronize network updates

using accurate time [25]. To the best of our knowledge, the

only algorithmic study of the netwok update problem in timed

SDNs is by Zheng et al. [30], which however focuses on a

single flow. While constituting an interesting first step, we

anticipate many situations in which multiple flows need to

be updated simultaneously, e.g., upon a policy change or link

failure, but also due to a new traffic engineering optimization.

Scheduling multiple flow updates simultaneously however is

significantly harder as different flows can interfere in complex

(potentially combinatorial) ways at different links.

II. BACKGROUND AND MOTIVATION

We consider a network where a controller updates the

forwarding rules at the switches whenever a route changes.

Fig. 1(a) illustrates a simple example: there are five switches

v1, . . . , v5 in the network. The link capacity of 〈v2, v5〉 is as-

sumed to be two units and the rest is one unit. The propagation

delay of link 〈v3, v4〉 is assumed to be three time units and the

rest is one time unit. That is, if one unit of flow leaves switch

u at time t on the link 〈u, v〉, one unit of flow arrives at switch

v at time t+σu,v , where σu,v is the propagation delay between

u and v. We use the notion of dynamic flow to represent

the propagation of packets of a flow in time domain [14].

In our example, the demand of two “dynamic flows” colored

as red and green are both one unit, which are both routed

from the source v1 to the destination v5. The initial routing

are depicted as two solid red and green lines and the final

routing are depicted as two dashed red and green lines. With

dynamic flows, the utilization of a link varies over time. As

discussed before, prior work on the network update problem

usually relies on one of two fundamental update techniques:

two-phase update protocols and node ordering protocols.

Two-phase update protocols: In the first phase, new rules—

whose matching fields use the new version tag that corresponds

to the second stage—are added. During this phase, flows are

still forwarded according to existing rules as packets are still

stamped with the old version tag of the first stage. Once the

update is done for all switches, the protocol enters the second

phase, when we stamp every incoming packet with the new

version tag. At this point the new rules become functional,

and old rules are removed by the controller. Reitblatt et

al. [28] initiated this line of resarch by introducing a two-phase

commit protocol that preserves consistency when changing

between two different routing configurations. Based on this,

SWAN [15] and zUpdate [21] try to find a congestion-free

two-phase update plan. SWAN shows that if each link has

a certain slack capacity, there always exists a congestion-free

update sequence. This condition is too strong to always hold in

practice. Furthermore, Brandt et al. [8] analyze the condition

that a congestion-free update sequence exists. As the update

plan is not unique, Dionysus [17] seeks to determine a fastest

update sequence according to different runtime conditions of

switches.

A two-phase update procedure in our example of Fig. 2(b)

is: the route of new version tag for red and green flows are

updated in the first phase; in the second phase, we change

the version tag at the source switch v1 and swap the red and

green flows into their final path. Fig. 2(c) shows a possible

asynchronous update case, where the time difference between

two phases is assumed to be one time unit. We can observe

that the congestion happens at the link 〈v4(t4), v5(t5)〉 as one

unit capacity of link 〈v4, v5〉 cannot accommodate two flows

at the same time.

Node ordering protocols: At each round, the controller waits

until all the switches have completed their updates, and only

then invokes the next round. Ludwig et al. [23] aim to mini-

mizing the number of sequential controller interactions when

transitioning from the initial to the final update stage. The

authors prove that finding a shortest node ordering sequence

that avoids forwarding loops is NP-hard. Furthermore, they

introduce a notion of relaxed loop-freedom, which provides

an interesting consistency-runtime tradeoff. Another work by

Ludwig et al. [22] considers secure network updates in the

presence of middleboxes [27]. The authors try to find a node

ordering sequence that preserves a specific security policy.

A possible node ordering sequence in our example of

Fig. 2(b) is: Fig. 1(c1) → (c2). In the first round, v2 (the route

for red flow), v3 (the route for green flow) and v4 (the route for

green flow) are updated asynchronously. Then v1 (the route for

both red and green flows) and v2 (the route for green flow)

are updated in the second round. Due to the asynchronous

nature of the data plane, the new route for v2 (green flow)

may become functional earlier than that for v1 (red and green

flows) in the second round as shown in Fig. 1(c2). At this
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Fig. 1. Illustration of the network update problem considered in this paper. In this example topology, v1 is the source and v5 is the destination of both the
old (initial) route and the new (final) route. There are two flows in the network, which are depicted as green and red, respectively. The initial routing for the
two flows are illustrated as two solid lines with green and red, while the final routing are represented as two dashed lines with green and red. The solid links
represent that the load on the link is greater than zero, which indicates that the dynamic flow is passing through this link. In our example, the link capacity
of 〈v2, v5〉 is assumed to be two units and the rest is one unit. The link propagation delay of 〈v3, v4〉 is assumed to be three units and the rest is one unit.
The timed update sequence is: Fig. 1(d1) → (d2) → (d3) → (d4) → (d5) → (d6).

point, the red and green flows are routed through the path

〈v1, v3, v4, v5〉 and 〈v1, v2, v4, v5〉 respectively. Here the red

and green flows together would result in a transient congestion

on the link 〈v4, v5〉 as the sum of flow demand is two units,

which are beyond the one unit link capacity (Fig. 2(b)).

Timed update protocols: Mizrahi et al. [24], [26] propose

a time synchronization protocol between controller and data

plane, which uses accurate timing to trigger network updates.

Though the idea of timed update has surfaced in the literature

recently, the only algorithmic study of the timed update is by

Zheng et al. [30], which however focuses on a single flow. To

this end, Zheng et al. prove that minimizing the makespan is

NP-hard, and design a heuristic algorithm to perform network

update for a single flow. The novelty of our work lies in the

first study and comprehensive exploration of the design of

timed scheduling algorithms for multiple flows. We also extend

the hardness results of Zheng et al. [30] to the case of multiple

flows, in particular we show that it is NP-hard even for flows

of unit size and network links with unit delay.

A timed update schedule (Fig. 1(d1) → (d2) → (d3) → (d4)

→ (d5) → (d6)) can effectively solve our problem. Firstly,

the route of v1 for both red and green flows are updated at

t0. And then v3 for green flow is updated at t1. Finally the

route of v2 and v4 for green flow is updated simultaneously at

t3. The congestion-free condition are ensured at any moment

in time as shown in the time-extended network of Fig. 2(d).

This timed schedule can be acceptable in practice because the

flow table rules can be updated accurately on the order of one

microsecond [25]. In addition, the controller can send all the

update commands at a time and the update behavior for each

switch is triggered by a pre-defined time instant, which can

significantly decrease the time overhead resulting from wait-

invoke mechanism of node ordering protocols. Also we only

modify the action in the flow table during the update process,

where we do not require additional flow table space headroom

and overcome the drawback of two-phase update protocols.

TABLE I
KEY NOTATIONS IN THIS PAPER.

F The set of dynamic flow f
V The set of switches v
E The set of links 〈u, v〉
G The acyclic directed network graph G = (V,E)
ti The time point. ti+1 > ti
T The set of time point. T = {t0, t1, . . . , tn}

FT The set of flows in the time-extended network

V T The set of switches v(t), where v ∈ V and t ∈ T
ET The set of links 〈u(ti), v(tj)〉
GT The time-extended network GT = (V T , ET )

Cu,v The capacity of link 〈u, v〉
pfinit The initial path for the dynamic flow f

pffin The final path for the dynamic flow f
df The demand of the dynamic flow f
n The number of the switches. n = |V |

σu,v The transmission delay for the link 〈u, v〉.

III. AN OPTIMIZATION FRAMEWORK

A. Dynamic Flow Model and Problem Formulation

Before formulating the problem, we first present our net-

work model. A network is a directed graph G = (V,E), where

V is the set of switches and E the set of links with capacities

Cu,v and transmission time σu,v for each link 〈u, v〉 ∈ E. For

each flow f , the network contains two paths: pfinit and pffin.

The former is the old routing path which is depicted as a

solid line in our example and the latter is the new routing

path depicted as a dashed line. We use different colors to

distinguish different flows. Both of pfinit and pffin have a

common source v+ and destination v−. For convenience, we

summarize important notations in Table I. Let us introduce

three related notations first.

Definition III.1. Dynamic flow [14]: A dynamic flow on G is
a function f : E×T → Z+ (Z+ represents the set of positive
integers) that satisfies the following conditions for ∀v ∈ V −
{v−, v+} and ∀t ∈ T .
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(a) The time-extended network model that represents whether there exists
a congestion-free update schedule for the red and green flows within six
time steps, where T = {t0, t1, t2, t3, t4, t5}. The value of link capacity and
propagation delay are the same as the setting in Fig. 1(a).
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(b) A possible update sequence in the time-extended network resulting from
node ordering protocols shown as Fig. 1(c1) → (c2). We assume the time
difference between the first round and the second round is one time step. The
congestion happens at the link 〈v4(t2), v5(t3)〉 and 〈v4(t4), v5(t5)〉.
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(c) A possible update sequence in the time-extended network resulting from
two-phase update protocols. We assume the time difference between the
first phase and the second phase is one time step. We can observe that the
congestion happens at the link 〈v4(t4), v5(t5)〉.
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(d) We first update switch v1 (red and green flows) and v2 (red flow) at t0.
Then we update v3 (green flow) at t1. Finally we update v2 (green flow) and
v4 (green flow) at t3. The whole procedure is congestion-free at any moment
in time. For simplicity, we do not draw the links once the update is done.

Fig. 2. Illustration of two-phase update protocols, node ordering protocols and our timed schedule shown in the time-extended network.

∑
(u,v)∈E+(v),t−σu,v≥0

xu,v(t− σu,v)−
∑

(u,v)∈E−(v)

xu,v(t)

=

⎧⎪⎨
⎪⎩

−df v = v−, ∀t ∈ T

0 ∀v ∈ V − {v−, v+}, ∀t ∈ T

df v = v+, ∀t ∈ T
(1)

The conservation condition (1) indicates that if one unit

of dynamic flow leaves switch u at t − σu,v on link 〈u, v〉,
one unit of flow arrives v at t. Here E+(v) and E−(v)
represent the set of links incoming and outgoing to the switch

v, respectively. The notation df is the flow demand, which

is a positive integer. The set T is measured in discrete steps,

where T = {t0, t1, . . . , tn}. xu,v(t) characterizes the load on

the link 〈u, v〉 at t, which cannot go beyond the link capacity

at each moment in time.

0 ≤ xu,v(t) ≤ Cu,v, ∀〈u, v〉 ∈ E, ∀t ∈ T (2)

Condition (2) ensures that the link capacity Cu,v cannot be

violated for ∀t ∈ T .

Definition III.2. Congestion-free condition: The congestion-
free condition holds if and only if condition (2) always holds
for ∀t ∈ T throughout the update process.

Our model and approach can be visualized nicely with a

time-extended network concept: a network in which there is a

copy of each switch for every time step ti ∈ T and the links

are redrawn between these copies to express their transmission

delay. Succinctly:

Definition III.3. The time-extended network: The time-
extended network GT is a directed graph G with switches
v(t) for all v ∈ V and t ∈ T . For each link 〈u, v〉 ∈ E with
transmission delay σu,v and capacity Cu,v , the network GT

has link 〈u(t), v(t+ σu,v)〉 with capacity Cu,v .

The time-extended network captures the dynamic process

of flow transmission in the network. Fig. 2(a) gives a time-

extended network example of Fig. 1(a), where t−1, . . ., t−3

and t−4 represent the past time steps, t0 represents the current

time step, t1, t2, · · · represent the future time steps. The green

flow on the link 〈v1(t0), v2(t1)〉 starts at current time step

t0, while the green flow on the link 〈v2(t0), v5(t1)〉 and the

red flow on the link 〈v3(t0), v4(t3)〉 both start at past time

step t−1. The red solid line between v3 and v4 strides over

three time steps as its link transmission delay we assumed in

Fig. 1(a) are three time units. The rest only stride over one

time step as its link transmission delay is one time unit. We can

only update the switches in the current and future time steps

and cannot update them in the past steps. The reason why we

illustrate the past time steps there is that we require to check

the congestion-free condition defined in (III.2). In Fig. 2(a),

the red flow starting at past time step t−4 will occupy the

link bandwidth between v4(t0) and v5(t1), which makes a

difference to the updates at current time step t0.
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Based on the above model and definition, we formulate the

Minimum Update Time Problem for Multiple Flows (MUTP-
MF) as an integer linear program (3) in the time-extended

network, where the initial (solid lines) and final (dashed lines)

routing paths for each flow f are given. We seek to find an

optimal timed update sequence so as to minimize the total

update steps, such that the congestion-free condition holds at

any moment in time.

minimize |T | (3)

subject to
∑
f∈F

df · yfu(ti),v(tj) ≤ Cu(ti),v(tj),

∀〈u(ti), v(tj)〉 ∈ ET , (3a)

(3b), (3c), (3d), (3e), (3f).

The formulation of the minimum update time problem for

multiple flows is shown in (3). The objective aims to minimize

the number of elements in set T , i,e., the time steps during

the update. At the beginning, the element of set T is t0. We

iteratively add one time step ti into the set T each time until

we find a feasible solution or the number of elements in T
reaches a pre-defined threshold. The upper bound analysis

about the number of elements in T will be discussed soon in

Theorem III.3. The LHS of constraint (3a) in the formulation

characterizes the load of total flows at link 〈u(ti), v(tj)〉,
which must be less than or equal to its capacity in order to

meet the congestion-free condition defined in (III.2).

xf
u(ti)

∈ {0, 1}, ∀f ∈ F, ∀u(ti) ∈ V T\tn , (3b)

xf
u(tn)

= 1, ∀f ∈ F, ∀u(tn) ∈ V T . (3c)

The zero-one integer variable xf
u(ti)

equals one when the

routing configuration of switch u for flow f is updated at ti
in the time-extended network, and equals zero otherwise. This

optimization variable determines that which switch should be

updated at which time point. The optimization variables xf
u(ti)

(ti ∈ {T \ tn}) need to be determined, while the variable

xf
u(tn)

(tn is the last time step in set T ) is known to be one

as formulated in Constraint (3c) since all updates should be

complete before the last time steps tn.

yfu(ti),v(tj) = 1− xf
u(ti)

, ∀f ∈ F, 〈u(ti), v(tj)〉 ∈ pfinit,
(3d)

The zero-one integer variable yfu(ti),v(tj) in Constraint (3d)

indicates that whether the flow f is routed through the link

〈u(ti), v(tj)〉 belong to the initial path pfinit. Obviously, it

equals zero when the switch u is updated at ti, and equals

one otherwise.

yfu(ti),v(tj) = xf
u(ti)

, ∀f ∈ F, 〈u(ti), v(tj)〉 ∈ pffin, (3e)

On the contrary, the zero-one integer variable yfu(ti),v(tj)
in Constraint (3e) indicates that whether the flow f is routed

through the link 〈u(ti), v(tj)〉 belong to the final path pffin.

It equals one when the switch u is updated at ti, and equals

zero otherwise.

xf
u(ti)

≥ xf
u(tj)

, ∀f ∈ F, ti ≥ tj , (3f)

Constraint (3f) captures a fact that the routing configuration

at a specific switch for the flow f remains unchanged once

the update is complete. That is to say, we can only update the

route from the initial to final path, nor the other. For example

in Fig. 2(d), once the route of switch v1 for red flow is updated

at t0 (xf
u(t0)

= 1), it will stay the same at the next time steps

(xf
u(t1)

= 1,xf
u(t2)

= 1,· · · ).
Note that the switchs processing delay for updating a

forwarding rule in TCAM [4] can influence the accuracy of

our model. However, recent work [7] shows that the update

time can be predictable and a constant. This suggests that we

can subtract a corresponding time offset from the outputs of

our model, indicating that the time point triggerring the update

should be earlier than the resulting update time calculated from

our model.

B. Theoretical Analysis

We establish the hardness of our problem MUTP-MF below.

Theorem III.1. The feasibility of MUTP-MF is NP-hard.

Proof: Consider a special case of MUTP-MF as shown in

Fig. 3. The capacity of all links is C units, and the delay of all

links is one unit. There are k green flows each with demand

di and
∑

i∈{1,2,··· ,k} di = C. They are routed through the

initial path 〈s1, v, w, t〉 and will be moved into their final path

〈s1, u, t〉. The red flow with demand C
2 is routed through the

initial path 〈s2, u, t〉 and will be moved into the final path

〈s2, w, t〉. The objective is to assign a update time point for

k + 1 flows such that the congestion-free condition holds at

any moment in time. The only way is that we firstly update

the green flows with total demand C
2 at t0 and keep half of

the link capacity at 〈w, t〉 vacant. Finally we update the red

flow and the rest green flows simultaneously at t1, where the

time difference between t1 and t0 is one time unit.

We construct a polynomial reduction from the set partition

problem [9] to it. Consider a partition instance consisting of

k items, each with a value ai and
∑

i∈{1,2,··· ,k} ai = C. Each

item i corresponds to one of k green flows in the example

of Fig. 3, where ai = di, i ∈ {1, 2, · · · , k}. Therefore, any

feasible partition of the items corresponds to the updates of

k green flows in two time steps, and vice versa. The routing

update in the first time step forms one set of the partition, and

that in the second time step forms the other.

vs1 w

s2 tu

Fig. 3. Topology used for the reduction from Partition to MUTP-MF.

16



sx1

vwp q

tx1

t x1s x1

flow from 
clause that 
contains x1

flow from 
clause that 
contains x1

flow from 
clause that 
contains x1

flow from 
clause that 
contains x1

sc1,x1

sc1,x2

sc1, x1

tc1,x1

tc1,x2

tc1, x1

p q

s tvu

s twu

x2 is true 

x1 is true 

x1 is false 

k
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The hardness of Theorem III.1 relies on different flow sizes,

but even for unit size flows, MUTP-MF is NP-hard as well.

Theorem III.2. MUTP-MF is NP-hard, already for flows and
delays of unit size.

Proof: Our reduction from 3-SAT [18] will feature

four gadgets, called blocking-gadget (Fig. 4(a)), delay-

gadget (Fig. 4(b)), variable-gadget (Fig. 4(c)), clause-gadget

(Fig. 4(d)). The demand of all flows and the delay of all links

will be of unit size in this proof.

A blocking-gadget consists of a flow where the only update

is performed at the source, with the old and new path being

link-disjoint. By adjusting the length of the old path, we can

block one unit of capacity on a link for any desired time.

As such, for the other (gadget-) constructions, we can assume

any capacity restrictions for new paths, as the new paths will

become eventually feasible once the blocking flows leave.

A variable-gadget consists of two flows (truth assignments)

that share a path to their destination on the old path of capacity

two, but the new paths are split into a “true” and a “false” path,

merging into a joint path to their destination, all of capacity

one. As such, only either the true or the false flow can update

for now, as they collide on the joint path of capacity one.

A clause-gadget consists of three flows (literals) that share

an old path to their destination of capacity three, but on the

new path, they first share a link of capacity one, and then

split their paths, each traversing the corresponding true or false

path of their variable-gadget for one link, then reaching their

destination. By making the true and false paths sufficiently

long enough in the variable-gadget, the paths of literal-flows

from different clause-gadgets will not overlap.

Observe that only one literal-flow of each clause can update,

but if no flow from a variable-gadget updates, every clause-

gadget can update one literal-flow without eventual congestion.

To prevent this, we introduce the delay-gadget with one flow,

where the old path has a length of three and the new path has

a length of two, but they share only the last link. Updating the

flow introduces twice the utilization of the last link for one

time unit, after one time unit. We add a delay-gadget each to

the end of the old paths of the variable- and clause-gadgets,

only sharing the last link, increasing that link’s capacity by

one. As the old paths are fully utilized, the delay-gadget cannot

update until a flow from the respective gadgets updates.

Hence, all delay-gadgets can’t update for now, unless one

literal-flow from each clause and one flow from each variable

updates. However, finding such an update is equivalent to

solving the corresponding 3-SAT instance. Let t be the earliest

time when the last delay-gadget can update in case the 3-SAT

instance is satisfiable and the blocking-gadgets have infinite

path lengths. By adjusting the blocking-gadgets appropriately

to “free” their blocked capacity for time t, it is NP-hard to

decide if all nodes can update by time t.

Theorem III.3. The maximum time steps in set T are bounded
by

∑
f∈F

∑
v∈pf

init∩pf
fin

argmaxp:v∈p,v∈B φ(p), where pfinit

and pffin represent initial and final path for flow f , function
φ(·) refers to the sum of link transmission delay.

Proof: The switches in the time-extended network have to

wait some time steps in order to ensure that the congestion-

free condition holds at any moment in time. We denote by

tv,f the waiting time steps for switch v and flow f in the

time-extended network and thus we have

|T | ≤
∑
f∈F

∑
v∈B

tv,f ≤
∑
f∈F

⎛
⎝∑

v∈A
tv,f +

∑
v∈(B\A)

tv,f

⎞
⎠ (4)

where A = {v|v ∈ pfinit ∩ pffin} that represents the set of

switches both in the initial path pfinit and final path pffin, and

B = {v|v ∈ pfinit ∪ pffin} that represents the set of switches

either in the initial path pfinit or final path pffin. Obviously,

each update in set {B \ A} does not need to wait and we

obtain
∑

v∈B\A tv,f = 0, ∀f ∈ F . Combining inequation (4),

we have the following.

|T | ≤
∑
f∈F

∑
v∈A

tv ≤
∑
f∈F

∑
v∈A

argmax
p:v∈p,v∈B

φ(p)

where the function φ(p) refers to the sum of link transmission

delay on the path p. The notation p represents a mixed path

traveling through the switches either in the initial path pfinit
or final path pffin.
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Fig. 5. Four update blocks (colored blue) (a) ofr1 (t−3), (b) ofr1 (t0), (c) o
fg
1 (t0) and (d) o

fg
2 (t0) in the time-extended network for red flow fr and green

flow fg of Fig. 1(b).

Fig. 6. Illustration of the resource dependency graph.

IV. THE CHRONICLE ALGORITHM

In this section we design a scheduling algorithm to find

a feasible update sequence in polynomial time. We firstly

explain the high level working of our algorithm. To increase

the flexibility, we divide the network update instance into

small update blocks that can be scheduled individually in the

time-extended network. Taking the green flow in Fig. 1(b)

as an example, two blocks are (〈v1, v2〉, 〈v1, v3, v2〉) and

(〈v2, v5〉, 〈v2, v4, v5〉), respectively. Regarding for red flow, it

has only one block (〈v1, v3, v4, v5〉, 〈v1, v2, v5〉). The block

concept introduces more convenience as we only need to up-

date the first switch in a block. Then we put these blocks into

time-extended network (Fig. 5) and establish the dependency

relations among them, in which one’s initial path and the

other’s final path have common links. In Fig. 5, the update

of block (a) should be earlier than that of block (d) as the one

unit capacity of link 〈v4, v5〉 cannot accommodate red and

green flows simultaneously. Since the block (a) starts at the

past time point t−3, we add the offset of three time units for

each update block in order to ensure that all the blocks start at

current or further time steps. After the adjustment process is

done, we merge the common blocks and construct the resource

dependency graph as shown in Fig. 6. Based on this graph,

we can detect the deadlocks (dependency cycles) and output

a feasible update schedule.

Let us introduce three related notations first.

Definition IV.1. Update block: A update block ofj (ti) for flow
f contains two edge disjoint paths p1 and p2 starting and
ending at the common node u and v, where p1 ∩ p2 = {u, v},
p1 ∈ pfinit, p2 ∈ pffin.

Combining the motivating example in Fig. 1(b), four update

blocks (Fig. 5) in the time-extended network are (a) ofr1 (t−4),

(b) ofr1 (t0), (c) o
fg
1 (t0), and (d) o

fg
2 (t0). Each update block

starts and ends at a common switch in the initial and final

path. The → operator captures the update order between two

blocks. For example, the notation o1 → o2 represents that the

update time of block o1 should not be later than that of block

o2. Otherwise, the congestion-free condition will be violated.

Definition IV.2. Resource dependency graph: A resource
dependency graph captures the dependent relation between
the block ofj (ti) and the link 〈u, v〉.

Fig. 6 shows a resource dependency graph example cor-

responding to the update blocks in Fig. 5. There are two

types of rectangles in the graph — the link rectangle and

the update block rectangle. The number in the link rectangle

indicates the residual capacity C ′u,v on the link 〈u, v〉 at the

current time step, while that in the update block rectangle

represents the flow demand. For a specific update block ofj (t),
the incoming edges come from the links in the initial path,

while the outgoing edges point to the links in the final path.

The construction procedure is shown in Algorithm 1.

Algorithm 1: Constructing the resource dependency graph

Input: The set of all update blocks O; the initial path pfinit and

the final path pffin for each flow f ∈ F .
Output: The resource dependency graph Go.

1: G0 = ∅, C′
u,v = 0

2: for each ofj (ti) ∈ O do
3: for each 〈u, v〉 ∈ pfinit do
4: Go = Go ∪ {〈u, v〉 → ofj (ti)}
5: C′

u,v = Cu,v − df
6: for each 〈u, v〉 ∈ pffin do
7: Go = Go ∪ {Of

j (ti) → 〈u, v〉}

v

s1

u

zw

ts2

Fig. 7. A deadlock example.

18



Definition IV.3. Deadlock: A deadlock indicates that we
cannot find a feasible update schedule in the network.

A deadlock forms if two conditions τs1,w > τs2,w and

τs1,u > τs2,u hold at the same time shown in Fig. 7. On

the one hand, the condition τs1,w > τs2,w indicates that the

update time of s1 should be earlier than that of s2 to avoid the

congestion at path 〈w, z, t〉. On the other hand, the condition

τs1,u > τs2,u indicates that the update time of s1 should be

later than that of s2 in order to avoid the congestion at path

〈u,w, t〉. This is a contradiction as we cannot find a feasible

update time point for each switch.

Algorithm 2: Calculating a timed update sequence

Input: The directed acyclic network G; the initial path pfinit and

the final path pffin for each flow f ∈ F .
Output: A boolean variance that indicates whether there exists a

feasible update sequence or not.
1: Construct the set of all update blocks {ofj (t0)} starting at t0 in

the time-extended network
2: Construct the set of update blocks{ of

j( t−x)} starting at past

time steps, where ofj (t−x) → ofj (t0)

3: O = {ofj (t0)} ∪ {ofj (t−x)}
4: Adjust each element in set O such that all the update blocks

start at current or future time steps
5: Merge the common elements in set O
6: if there exists an integer α such that ofj (t− α) = ofj (t)

(ofj (t− α),ofj (t) ∈ O) then
7: return false

8: Apply Algorithm 1 to construct the resource dependency graph
G0

9: for each ti ∈ T do
10: Apply Algorithm 3 to obtain the set of independent update

block Ô at ti
11: Apply Algorithm 4 to update each block in set Ô and obtain

the return value σ
12: if σ = −1 then
13: return false
14: O = O \ Ô
15: for each ofj (t) ∈ O do
16: ofj (t) = ofj (t+ σ)
17: Finding the rest of dependent update blocks O∗ at ti
18: Apply Algorithm 4 to update each block in set O∗ and

obtain the return value σ
19: if σ = −1 then
20: return false
21: O = O \O∗

22: if Go = ∅ then
23: return true
24: return false

The complete process of our scheduling algorithm is shown

in Algorithm 2. We first calculate the set of all update blocks

{ofj (t0)} starting at time step t0 (line 1). Then we add the

set of update blocks {ofj (t−x)} at the past time steps whose

update time points should be earlier than that in {ofj (t0)} (line

2). After that, we construct the set O and adjust each update

block such that all of them start at current or future time steps

(lines 3-4). When the merge operation is done, we check that

whether the equation ofj (t − α) = ofj (t) can be established

or not. If this condition holds, the algorithm stops because a

deadlock forms, and we cannot schedule the update block ofj at

two different time points (t − α and t) simultaneously (lines

5-7). Next we apply Algorithm 1 to construct the resource

dependency graph G0 and schedule each update block step by

step (lines 8-20). In each time step, we apply Algorithm 3 to

obtain the independent set Ô and try to update them using

Algorithm 4 (lines 10-11). If all updates are feasible, we add

σ time steps for the rest of each update block, where σ is the

maximum path delay obtained from Algorithm 4 (lines 15-16).

For the rest of the dependent update block, we update using

Algorithm 4 as well (lines 17-18). When the loop terminates

and the set Go is empty, our algorithm outputs a feasible

update sequence. Otherwise, it indicates that a feasible solution

does not exists (lines 22-24). For convenience, the main steps

are illustrated in Table II.

TABLE II
MAIN STEPS FOR THE EXAMPLE SHOWN IN FIG. 1(B).

1 Calculate all update blocks: ofr1 (t−3), o
fr
1 (t0), o

fg
1 (t0), o

fg
2 (t0)

2 Establish the relation: ofr1 (t−3) → o
fg
2 (t0), o

fr
1 (t0) ↔ o

fg
1 (t0)

3 Adjust the starting time: ofr1 (t0) → o
fg
2 (t3), o

fr
1 (t0) ↔ o

fg
1 (t0)

4 Merge the common update block: o
fg
2 (t3) ← ofr1 (t0) ↔ o

fg
1 (t0)

5 Construct the resource dependency graph (Fig. 6)

6 Break the dependency cycles: o
fg
2 (t3), o

fr
1 (t0), o

fg
1 (t0)

7 Assign the update time instant for each switch

Algorithm 3: Finding the set of independent blocks

Input: The resource dependency graph Go; the set of all update
blocks O; the time step t.

Output: The set of independent update blocks Ô.
1: for each ofj (t) ∈ O do
2: for each 〈u, v〉 ∈ pffin do
3: if C′

u,v < df then
4: continue
5: Ô = Ô ∪ {ofj (t)}

Algorithm 3 describes the procedure of finding the set of

independent update blocks. For each one, if it can directly

move to the final path without link capacity violation, we add

it into set Ô and the algorithm enters into the next loop.

How to update a resource dependency graph is shown in

Algorithm 4. A possible schedule for a specific update block

is that the residual capacity C ′u,v of all links in the final path

can accommodate the flow demand. If so, the delay σmax

is returned and will be used in Algorithm 2. Otherwise, the

integer −1 is returned, indicating that the update is infeasible

(lines 11-12). When the update is done, the residual capacity

C ′u,v of all links on the initial (final) path will be increased

(decreased) by a flow demand (lines 4-10).

Based on the above, we have the following theorem.

Theorem IV.1. The timed update sequence obtained from
Algorithm 2 is congestion-free.

19



Fig. 8. Update time

500 1000 1500 2000 2500
0

100

200

300

400

500

N
um

be
r o

f c
on

ge
st

ed
 fl

ow
s

Number of flows

Chronicle
NOP
TPP

Fig. 9. Number of congested flows

500 1000 1500 2000 2500
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
um

be
r o

f c
ha

ng
ed

 ru
le

s

Number of flows

Chronicle
NOP
TPP

Fig. 10. Number of changed rules Fig. 11. Additive optimality gap

Algorithm 4: Updating the resource dependency graph

Input: The set of update blocks O; the initial path pfinit and the

final path pffin for each flow f ∈ F .
Output: The resource dependency graph Go and an indicator

variance that indicates whether the update is feasible or not.
1: σmax = σ = 0
2: for each ofj (t) ∈ O do
3: Update ofj at t

4: for each 〈u, v〉 ∈ pfinit do
5: Go = Go \ {〈u, v〉 → ofj (t)}
6: C′

u,v = C′
u,v + df

7: σ = σ + σu,v

8: for each 〈u, v〉 ∈ pffin do
9: Go = Go ∪ {ofj (t) → 〈u, v〉}

10: C′
u,v = C′

u,v − df
11: if C′

u,v < 0 then
12: return −1
13: if σ > σmax then
14: σmax = σ
15: σ = 0
16: return σmax

V. EXPERIMENTAL EVALUATION

We evaluate our scheduling algorithm using both prototype

implementation and large-scale simulation.

Benchmark schemes: We compare the following schemes

with our algorithm.

• TPP: The two-phase update protocol [28] that we use

VLAN ID as version number in our experiments.

• NOP: The node ordering protocol [23] that avoids black

hole and forwarding loops [17].

• Chronicle: Our scheduling algorithm in Algorithm 2.

• OPT: The optimal solution of the MUTP integer program

obtained using branch and bound.

The traffic used in our evaluation is generated in [1], and

we change the flow demand to simulate traffic variations.

Given the demand, we calculate the initial and final routing to

maximize the network utilization [10].

A. Implementation and Testbed Emulations

Implementation: We develop a prototype of our algorithm

using OFSoftSwitch and Dpctl [5] as Openflow switches

and the controller. Now we describe how to perform accu-

rate timing in our algorithm. We first obtain a solution to

MUTP using Algorithm 2. Next we send update messages

to each switch. We first send an OFPBCT_OPEN_REQUEST
message to open a bundle, and then send a sequence of

OFPT_BUNDLE_ADD_MESSAGE messages in order to mod-

ify the rules. Modifications are stored in a temporary staging

area without taking effect. Next we close the bundle. Finally

when a bundle is committed, the modifications will be applied

to the switch at a specific time point.

Testbed setup: Our experiments are performed using a 5-

server testbed, equipped with two Intel E5-2650 CPUs with 12

cores and 64 GB memory. Each server runs a software-based

Openflow switch [5]. We adopt a small scale topology with 5

switches and seven 1 Gbps links as illustrated in Fig. 2. We use

the Network Time Protocol (NTP) to synchronize the clocks

of all the switches. The scheduled bundles feature [3] is

used to guarantee accurate timing. We use pktgen to generate

different numbers of UDP flows in each run. The aggregate

flow rate is 1 Gbps in total. The forwarding rules are installed

and updated via Dpctl API [5].

Experiment results: Fig. 8 shows the total update time for

different schemes. As Openflow barrier feature cannot pro-

vide accurate acknowledgments [19] to indicate the completion

of update operation, we use tcpdump—a powerful packet

analyzer—to confirm when the new rules take effect. We can

observe that the update time of TPP and NOP is around 55 ms

on average, while Chronicle is around 20 ms. Chronicle can

hence reduce the update time by 63% compared to NOP

and TPP. This demonstrates that Chronicle can leverage the

benefits of accurate timing to accelerate the update process,

reducing the time overhead resulting from the wait-invoke

pattern.

B. Simulation

We also conduct extensive simulations to evaluate our

algorithm at scale.

Setup. In addition to the small-scale topology used in our

testbed, here we use a large-scale synthetic scale-free topology

that is randomly produced by the scale_free_graph
function [2]. There are 100 switches and 586 10 Gbps links

in total. We randomly generate different numbers of flows

with demand ranging from 100 Mbps to 500 Mbps for unique

source-destination switch pairs. Accordingly, we adjust the

link capacity in order to ensure that the congestion-free

condition holds in both initial and final stages. We run the

algorithms on a server with Intel Xeon CPU and 15 GB

memory. Each data point is an average of ten runs.

Experiment results: We first investigate the number of con-

gested flows during the entire update process. We can see that

in Fig. 9, as the number of flows increases, NOP and TPP yield

significantly more congested flows, while that of Chronicle is
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zero all the time. Specifically, the number of congested flows

for NOP and TPP is 471 and 478 respectively, when the

number of flows is 2500. The congested flows for NOP and

TPP account for around 20% of the total flows in the network.

This demonstrates that Chronicle takes full advantage of

accurate timing and completely avoids congestion by assigning

different update points for each flow.

Fig. 10 shows the number of changed rules during update.

We define the number of changed rules as the number of rules

that needs to be added, modified or deleted during the update.

Essentially this measures the number of operations, as well

as the number of flow table entries required to perform the

update. We observe that TPP induces more changed rules than

NOP and Chronicle. When the number of flows is 2000, the

changed rules of TPP, NOP and Chronicle is 16569, 9069

and 9069 respectively. TPP is almost twice as that of NOP

and Chronicle. This is because TPP relies on different version

numbers to indicate two stages during the update. This process

involves more update (add/remove) operations compared with

NOP and Chronicle.

Finally, we show the additive optimality gap. Fig. 11 shows

the box plot of additive optimality gap between Chronicle and

OPT as the number of flows increases. We can see that the

additive optimality gap in the worst-case is 10 time units and

that in the average-case is 5 time units. In general, the update

time of Chronicle is near optimal compared to OPT.

VI. CONCLUSION

We studied the problem of minimizing the makespan in

timed SDNs and proved its hardness. We proposed Chroni-

cle to find a feasible update sequence in polynomial time. Our

evaluation results show that Chronicle can significantly reduce

the update makespan.
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