
Preventing “Bad” Content Dispersal in
Named Data Networking

Yi Wang
Huawei Future Network Theory Lab

Hong Kong
wy@ieee.org

Zhuyun Qi
Shenzhen Key Lab for Cloud

Computing Technology &
Applications (SPCCTA), School of

Electronics and Computer
Engineering, Peking University,

Shenzhen, China 518055
qizy@pkusz.edu.cn

Kai Lei∗
Shenzhen Key Lab for Cloud

Computing Technology &
Applications (SPCCTA), School of

Electronics and Computer
Engineering, Peking University,

Shenzhen, China 518055
leik@pkusz.edu.cn

Bin Liu
Tsinghua National Laboratory for

Information Science and Technology,
Department of Computer Science and

Technology, Tsinghua University
Beijing, China 100084
liub@tsinghua.edu.cn

Chen Tian
State Key Laboratory for Novel
Software Technology, Nanjing

University
Najing, China 210023
tianchen@nju.edu.cn

ABSTRACT
Named Data Networking (NDN) improves the data delivery effi-
ciency by caching contents in routers. To prevent corrupted and
faked contents be spread in the network, NDN routers should verify
the digital signature of each published content. Since the verifica-
tion scheme in NDN applies the asymmetric encryption algorithm
to sign contents, the speed of content verification is too slow to
satisfy the high speed requirement. In this paper, we propose two
schemes to improve the verification performance of NDN routers
to prevent content poisoning. The first content verification scheme,
called “user-assisted”, leads to the best performance, but can be by-
passed if the clients and the content producer collude. To prevent
the aforementioned collusion attack, we improve the user-assisted
content verification scheme and propose the second content veri-
fication scheme, named “Router-Cooperation”, in which the edge
routers verify the contents independently without the assistance of
users and the core routers no longer verify the contents. The Router-
Cooperation verification scheme reduces the computing complexity
of cryptographic operation by replacing the asymmetric encryption
algorithm with symmetric encryption algorithm. The simulation re-
sults demonstrate that this Router-Cooperation scheme can speed
up 145.5× (in hardware) and 18.85× (in software) of the original
content verification scheme with merely extra transmission over-
head.

∗Corresponding author: Kai Lei, leik@pkusz.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM TUR-C ’17, May 12-14, 2017, Shanghai, China
© 2017 ACM. ISBN 978-1-4503-4873-7/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3063955.3063993

CCS CONCEPTS
•Networks → Packet scheduling; Network experimentation;

KEYWORDS
Named Data Networking, Router, Content Verification, Encryption
Algorithm

1 INTRODUCTION
In the conventional IP network, security is a function of the con-
nection between hosts. By contrast, Named Data Networking [30]
(NDN) incorporates security into data itself by forcing the content
providers to sign every content with its private key. The signature of
a content, implying the data provenance, allows the security of this
content to be decoupled from where and how the data is obtained.

In theory, content signatures provide an effective and simple means
to detect content poisoning attacks, since “bad” content can be eas-
ily identified via signature verification. In other words, NDN should
be immune to content poisoning attacks which includes two means:
corrupted content, i.e., the content cannot conform its signature;
and faked content, i.e., the private key of the signature is forged.
However, this assertion might not hold in practice. Though a con-
sumer can afford to verify all content signatures, NDN routers, caching
contents to improve network performance, face two challenges: (1)
signature verification overhead; and (2) public key management.
An effective public key cryptography has been considered by Lixia
Zhang et al. [29]. This paper focuses on reducing the overhead of
signature verification.

1.1 Problem Statement
When a router receives a Data packet, as described in the NDN
proposal [30], the router should systematically verify the content
signature to avoid content poisoning attacks before forwarding and
caching the content. The signature binds the content with its name,

1

Content Name

Selector
(order preference, publisher

filter, scope, ...)

Nonce

Interest Packet

Content Name

Signature
(digest algorithm, witness, ...)

Signed Info
(publisher ID, key locator,

stale time, ...)

Data Packet

Data

Figure 1: Two kinds of packet in NDN.

and provides original authentication no matter how, when or from
where the content is retrieved. However, for NDN routers, the com-
putations of content verification are too expensive to be executed
against all the incoming Data packets. Previous work [8] showed
that an optimized software implementation of RSA1024 signature
verification running on Intel Core 2 Duo 2.53 GHz CPU allows a
router to verify about 150 Mbps of traffic, assuming 1,500 Bytes
per content packet, or even worse with smaller-sized packets. NDN
routers with multiple Gigabit-speed interfaces would need an un-
realistic amount of computing power to verify signatures of Data
packets at wire speed.

Participants: 1) End users request content by generating Inter-
ests; 2) Content Providers produce content by generating data in
response to Interests; 3) Network Devices forward Interest and Data
packets.

Assumptions: Routers systematically verify the signatures of the
contents that they receive. Routers cache verified contents which
can be directly response to the requires from users. Routers in the
network are trustworthy and can identify each other. Users are trust-
less. And some users are the attackers or adversaries.

Attack: Adversaries disguise themselves as content providers to
produce corrupted and faked contents to routers and users.

Impact: By fully exploiting the expensive computations of con-
tent verification, an adversary can attack the router and lead it to
be out-of-service ultimately [12]. As a result, NDN routers sample
a small set of received Data packets to verify their signatures, and
leave a loophole which can be employed by adversaries to fill the
caches of NDN routers with corrupted or faked contents.

Countermeasures: Routers can improve the performance of con-
tent verification.

Risk: High. Corrupted and faked contents will be spread in the
network when the routers cannot verify all contents.

1.2 Our Contribution
To prevent content poisoning in NDN, in this paper, we propose
two verification schemes to improve the content verification perfor-
mance:

(1) The user-assisted content verification scheme (described
in Section 3) no longer verifies the content itself, instead it
verifies the content provider to guarantee the correctness.
By bypassing the content verification in NDN routers, this
scheme can achieve perfect performance. But this scheme

CS

(Bloom Filter)

PIT

(ID)
FIB

Drop Interest Packet

Return Data

Interest

 Packet

Forward

Add Request Port

CS

Data Packet

Process

Interest Packet

Process

Data

Packet

Miss Hit

PIT

(ID)

Update Bloom Filter

Create PIT Entry

Content

Verify

Figure 2: Packets forwarding processes in NDN.

is under the threat of a scenario that customers and attack-
ers collude in requesting and providing poison contents.

(2) To prevent the aforementioned collusion attack, we im-
prove the user-assisted content verification scheme and pro-
pose the Router-Cooperation content verification scheme.
The Router-Cooperation content verification scheme (de-
scribed in Section 4) lets the edge routers verify the con-
tent provider independently without the assistance of users.
By replacing the asymmetric encryption operation with
symmetric encryption operation, this Router-Cooperation
scheme can effectively reduce the consumption of com-
puting resource for cryptographic operation and improve
the content verification performance. The simulation re-
sults demonstrate that this Router-Cooperation scheme can
speed up 18.85× of the original content verification scheme
used in NDN [30].

The rest paper is organized as follows. Section 2 introduces the
packet categories and the original content verification scheme in
NDN. The user-assisted content verification scheme and the Router-
Cooperation content verification scheme are described in Section 3
and Section 4, respectively. Then we present the simulation results
in Section 5. After reviewing the related literatures on NDN secu-
rity in Section 6, we conclude our work in Section 7.

2 BACKGROUND: CONTENT VERIFICATION
MECHANISM IN NDN

2.1 Packet categories in NDN
NDN is a request-driven networking architecture. Different with the
sole IP packet in the conventional IP network, packets in NDN have
two categories: Interest packet and Data packet. Interest packets
are used to request contents, and Data packets are used to carry
contents back. As depicted in Figure 1, an Interest packet consists
of the required content name, a selector, and a nonce; a Data packet
carries the required data with the name, the signature and the signed
information. When a data is returned to the client, the client will
verify the signature to confirm that whether this content is the exact
one.

2

2.2 Packets forwarding processes in NDN
The forwarding processes in a router’s data plane for these two kind
of packets are different, as shown in Figure 2.

Interest Packet Forwarding: 1) When a router receives an In-
terest packet, it first searches (exactly match) the content name in
the Interest packet header against the Content Store (CS). If hit,
this means the router has cached the requested content, then a Data
packet with the required content is returned; 2) If not hit, the router
looks up the content name in the Pending Interest Table (PIT). If
matched, this means this router has received Interest packet(s) re-
questing the same content, but not responded yet. Then, the arrival
interface is appended to the PIT entry, and this Interest packet is
discarded and would not be forwarded to upper routers; 3) If not
matched in the PIT, the router looks up the content name against the
Forwarding Information Base (FIB) complying with the Longest
Prefix Matching. If this name is found in the FIB, the router for-
wards this Interest packet to the corresponding next-hop interface,
and creates associative PIT entry; otherwise, discards it.

Data Packet Forwarding: 1) When a Data packet arrives at a
router, the router must verify the content at first. If the signature in
the packet is forged, the packet will be dropped. 2) After verifying
the content, the router looks up the content name in the Data packet
against PIT based on exact match [9, 10]. If matched, forward Data
packet to the interfaces in the matched PIT entry; otherwise, discard
this Data packet.

2.3 Content verification mechanism
To prevent polluted data from being spread out in the network, NDN
routers should verify every content sent to the networks by the con-
tent providers or other clients. Figure 3 illustrates the content veri-
fication process in NDN.

(1) When the router receives the Data packet, it parses the
Data packet and extracts the content D′, the signature Kpri(Hash(D)),
and other information;

(2) The router calculates the hash value Hash(D′) of the con-
tent D′ by applying the message-digest algorithm (e.g.,
MD5, CRC32);

(3) The router uses the content provider’s public key to de-
crypt the signature of this content to obtain the original
message-digest Kpub(Kpri(Hash(D)));

(4) The router compares the message-digest Hash(D′) of the
sent content with the original message-digest
Kpub(Kpri(Hash(D))) of the required content, if these
two message-digests are equal, this Data packet will be
sent upstream; otherwise, it will be dropped.

The content verification mechanism in NDN can work well in the
low speed networks, but it cannot work in the high speed networks
due to its poor verification performance.

3 THE USER-ASSISTED CONTENT
VERIFICATION SCHEME

As described in Section 2.3, the computational complexity of the
content verification is too high for an NDN router to handle wire
speed traffic. Therefore, in this section, we propose the user-assisted

Clients

Content

ProviderRouter

A

B

Kpub(Kpri(Hash(D)))

=Hash(D’)

A

B
Kpub(Kpri(Hash(D)))

 Hash(D’)

Figure 3: The content verification process in NDN.

Clients

Content

ProviderRouter

A

B

KA(SA)

KA(SA)=KA’(SA)

A

B KA(SA) KA’(SA)

Figure 4: The content provider verification process.

content verification scheme to improve the performance by bypass-
ing the content verification in NDN routers. Similar to the client
verification in current IP network, the user-assisted content verifica-
tion scheme no longer verifies the content itself, but it verifies the
content provider to guarantee the correctness.

The process of the user-assisted content verification, demonstrated
in Figure 4, has 4 steps.

(1) The Interest packet, sent by the user A, carries 3 extra data
to help routers verify the content provider:
(a) Kpub(KA). KA is the temporary symmetric key for

the content provider to encrypt the verification mes-
sage; Kpub is the public key of the content provider;
and Kpub(KA), the ciphertext of encrypting KA with
Kpub, can only be decrypted by the content provider
with its private key.

3

(b) SA, a token, is a 64-bit random integer.
(c) KA(SA), the ciphertext of encrypting SA with KA,

is used to verify whether the content provider can ob-
tain KA correctly by decrypting Kpub(KA).

(2) When the edge router receives this Interest packet, it ex-
tracts KA(SA) from the Interest packet before forwarding
it to the content provider. The rest two data Kpub(KA)
and SA will be still forwarded.

(3) The content provider decrypts Kpub(KA) with its private
key Kpri to obtain K

′
A=Kpri(Kpub(KA)) when it receives

the Interest packet. Then the content provider encrypts
SA with K

′
A and returns the ciphertext K

′
A(SA) in Data

packet to the edge router.
(4) After receiving the Data packet, the edge router extracts

K
′
A(SA) and compares it with KA(SA) to validate the

content provider. If K
′
A(SA)=KA(SA), it means the con-

tent provider is the exact one that publishes the required
content, and then the edge router will remove K

′
A(SA)

from this Data packet and forwards it upgrade according to
the reverse path that the Interest packet forwarded; other-
wise, the content provider is a fake, hence this Data packet
will be dropped.

For the Interest packets with the same required content name,
routers in NDN can merge these Interest packets to one, regardless
of whether these Interest packets have different tokens and different
temporary symmetric keys. For example, in Figure 4, user A and
user B send the Interest packets with (SA, KA) and (SB , KB),
respectively. These two Interest packet are converged in the edge
router, and only one of them is sent to the content provider.

Note that any in-path router can return the Data packet without
K

′
A(SA) whenever it caches the required content, since routers trust

each other and contents cached in routers have been verified.
Meanwhile, in the user-assisted scheme, routers must identify

the roles of the upstream nodes. If the upstream node is a router,
the token KA(SA) will be forwarded to it; otherwise, the token
KA(SA) will be removed from the Interest packet.

The correct Data packet is sent back to all the users that required
this content. Meanwhile, the edge router caches the content to fast
reply the same request and reduce the traffic.

4 THE ROUTER-COOPERATION CONTENT
VERIFICATION SCHEME

In the process of user-assisted content verification scheme, the cal-
culation of a content, including the hash calculation of the content
and the decryption of its signature, is eliminated since routers ver-
ify content providers to guarantee the correctness of their contents.
Consequently, the router can achieve wire speed content verification
with fewer resources and performance overhead.

The user-assisted content verification scheme, however, is vul-
nerable. The malicious user and the counterfeit content provider
can collude on the temporary symmetric key KA and the token SA

to deceive the edge router and publish polluted contents. First, the
malicious client sends an Interest packet with Kpub(KA), KA(SA),
and SA as usual. When the counterfeit content provider receives
this Interest packet, it sends the Data packet carrying the polluted

Core

Router

Content

Provider

Edge

RouterClients

A

A

KA(Hash(D’))=KA’(Hash(D))

KA(Hash(D’)) KA’(Hash(D))

Figure 5: The process of Router-Cooperation content verifica-
tion.

Edge

Router

Content

Provider

Edge

Router
Clients

A

A

KAS1(Hash(D’))=KAS1’(Hash(D))

AS 1AS 2

Figure 6: The process of Router-Cooperation content verifica-
tion crossing multiple mutual distrust ASes.

content and KA(SA) to the edge router directly without decrypting
Kpub(KA). The edge router cannot detect this polluted content as
KA(SA) extracted from the Interest packet is equal to K

′
A(SA) ex-

tracted from the Data packet. As a result, the counterfeit content
provider can publish any polluted content in the network.

4.1 Router-Cooperation Scheme in One AS
To prevent the aforementioned collusion attack, we improve the
user-assisted content verification scheme and propose the Router-
Cooperation content verification scheme, in which the edge routers
verify the contents independently without the assistance of users
and the core routers no longer verify the contents. As illustrated in
Figure 5, the edge router produces the token SA and the temporary
symmetric key KA. The verification process works as follows:

(1) The client sends out the Interest packet to require the con-
tent.

4

(2) When the edge router receives this Interest packet, the edge
router generates the symmetric key KA and then adds the
ciphertext Kpub(KA) to this Interest packet.

(3) After receiving this Interest packet, the content provider
first decrypts the ciphertext Kpub(KA) with its private key
Kpri to obtain K

′
A; then it hashes the content to get the

message-digest Hash(D); finally, it encrypts Hash(D)

with K
′
A, and appends K

′
A(Hash(D)) to the Data packet.

(4) When the edge router receives this Data packet, it hashes
the content to get Hash(D′) and encrypts Hash(D′) with
KA to get the verification message KA(Hash(D′)). Then
the router compares KA(Hash(D′)) with
K

′
A(Hash(D)) to verify the content provider and check

the content’s integrity. Only the content, passing this veri-
fication, will be cached and forwarded to upstream.

(5) The core routers directly forward the Data packets without
verifying the contents any more since the all contents have
been verified by the edge routers.

4.2 Router-Cooperation Scheme crossing multiple
mutual distrust ASes

Data packets may pass through multiple ASes. The symmetric
key KA can be shared in a group of mutual trust ASes, therefore
one group uses one KA, i.e., one Kpub(KA) is attached in the
corresponding Interest packet. In the case of data packets cross-
ing multiple mutual distrust ASes, each group needs one KAi. N
Kpubi(KAi) need to be added in the Interest packet, where N is
the number of groups of mutual distrust ASes. Figure 6 illustrates
the packets forwarding process in two mutual distrust ASes.

4.3 Performance analysis
Compared to the user-assisted content verification scheme, the Router-
Cooperation content verification scheme consumes more resources.
In the path of Interest packets, an edge router in the Router-Cooperation
content verification scheme has to produce the temporary symmet-
ric key KA for every Interest packet that is forwarded by this edge
router. Besides that, the edge router needs to encrypt KA with the
provider’s public key Kpub to set up Router-Cooperation commu-
nication. Fortunately, KA and Kpub(KA) can be precalculated of-
fline, and even more the edge router can replace allocating one tem-
porary symmetric key KA for each Interest packet with allocating
one symmetric key KA for each content provider that directly con-
nects this edge router.

In the path of Data packets, an edge router in the Router-Cooperation
content verification scheme needs to hash the content to get the
message-digest Hash(D′) and encrypts this message-digest with
the symmetric key KA to encrypt the verification message KA(Hash(D′)).
The verification message KA(Hash(D′)) should be computed on-
line, since the above calculation process is correlation with the con-
tent. In summary, the computing overhead of the Router-Cooperation
content verification scheme consists of one hash calculation and
one symmetric encryption computation. Compared with the orig-
inal content verification scheme in NDN, the Router-Cooperation
content verification scheme can effectively improve the verification
performance since it replaces the asymmetric decryption computa-
tion with the symmetric encryption computation. Meanwhile, the

verification message is only transferred once, i.e., from the con-
tent provider to the edge router. The edge router can directly for-
ward the content to upstream routers without verification informa-
tion (KA(Hash(D′))) as routers trust each other and contents in
the edge router have been verified. In the other cases, a router can
directly response the Interest packet and sends back the Data packet
without KA(Hash(D′)) whenever the required content is cached
in the router.

4.4 Preventing symmetric key attacks
In the Router-Cooperation scheme, the edge router can offline gen-
erate the temporary symmetric key Kpub(KA) for one content provider
and reuse the key Kpub(KA) for all Interest packets that require
the same provider’s contents. An adversary may collect enough seg-
ments of KA(Hash(D′)) to crack the symmetric key KA by listen-
ing the path from the edge router to the content provider. Therefore,
we should regenerate the temporary symmetric key KB for the con-
tent provider after using the key KA after some time. Assuming a
node, in-between the edge router and the content provider, caches
the requested content with the key KA. If the edge router uses the
KA as the symmetric key, this copy will be valid; otherwise, this
copy will be invalid, and the content from the original provider will
be sent back. Since one content provider is only assigned one sym-
metric key KA over a period of time, the situation that the copy’s
key cannot match the original content’s key happens in the interval
of replacing the old key KA with the new key KB .

5 SIMULATION RESULT
In this section, we evaluate the performance of the aforementioned
3 content verification schemes via simulation. The verification speed
and the transfer overhead are the major metrics to evaluate the con-
tent verification schemes. In brief, the original content verification
scheme is named as NDN-Verify; the user-assisted content verifica-
tion scheme is named as User-Verify; and the Router-Cooperation
content verification scheme is named as Router-Verify.

The basic performances [5] of the message-digest algorithms, the
symmetric cryptographic algorithms, and the asymmetric crypto-
graphic algorithms are listed in Table 1 and Table 2. All algorithms
are coded in C++, compiled with Microsoft Visual C++ 2005 SP1,
and run on an Intel Core 2 1.83 GHz processor under Windows
Vista in 32-bit mode. X86/MMX/SSE2 assembly language routines
are used for integer arithmetic and SHA-256. OpenMP [15] is dis-
abled so that only one core of the CPU is used for this benchmark.

In the message-digest algorithms, CRC32, MD5 and SHA-256
can achieve 253 MB/s, 258 MB/s and 111 MB/s, respectively. Com-
pared to SHA-256, MD5 is 2.32× faster. On the other hand, CRC32
produces a 32-bit hash value, MD5 produces a 128-bit hash value,
and SHA-256 produces a 256-bit hash value. After considering
both the performance and the application situation, in practice we
choose MD5 as the message-digest algorithm.

DES algorithms uniformly use the CTR mode. The encryption
speed of DES, DES-XEX3 and DES-EDE3 can achieve 32MB/s,
29MB/s and 13MB/s, respectively. Through overall consideration,
we choose DES-XEX3 as the symmetric cryptographic algorithm.

5

Table 1: The basic performances of different algorithms.

Algorithm Lookup Speed
MByte per Second Cycles per Second

CRC32 253 6.9
MD5 258 6.8

SHA-256 111 15.8
DES/CTR 32 54.7

DES-XEX3/CTR 29 60.6
DES-EDE3/CTR 13 134.5

Table 2: The basic performances of asymmetric cryptographic
algorithms.

Algorithm Lookup Speed
Operation
per Second

Cycles
per Operation

RSA1024 Encryption 12,500 140,000
RSA1024 Decryption 684.93 2,680,000
RSA2048 Encryption 6,250 290,000
RSA2048 Decryption 164.47 11,120,000

Asymmetric cryptographic algorithms, e.g. RSA shown in Ta-
ble 2, is 2∼3 orders of magnitude slower than symmetric crypto-
graphic algorithms. Meanwhile, the processes of encryption and
decryption are different in an asymmetric cryptographic algorithm.
Generally, the encryption is 1∼2 orders slower than the decryption.
For example, as illustrated in Table 2, RSA1024 can encrypt 12,500
keys per second or decrypt 684.93 keys per second, the encryption
is 18.25× faster than the decryption. Furthermore, the speed gap
between decryption and encryption of RSA increases as the length
of ciphertext grows. In our simulation, we apply RSA1024 as our
asymmetric cryptographic algorithm.

5.1 The speed of content verification
Time, cost by content verification, consists of two parts: the time for
calculating hash value and the time for encryption and decryption.
The time for calculating hash value of a content will increase as
the content itself grows, and the time for encryption and decryption
varies as using different cryptographic algorithms. In this section,
therefore, we evaluate the verification speeds of different schemes
with different content sizes. Among these simulations, we use MD5
as the message-digest algorithm, RSA1024 as the asymmetric cryp-
tographic algorithm, and DES-XEX3/CTR as the symmetric cryp-
tographic algorithm.

Table 3 illustrates the speeds of different schemes to verify a
1000 Bytes content. NDN-Verify costs 0.0839 ms to verify this con-
tent, which consists of 0.0039 ms to calculate the hash value of the
content, and 0.08 ms to decrypt the digital signature. Since User-
Verify assigns all computing tasks to users and content providers,
the computing cost of the content verification in the edge router is
0. In online work mode, Router-Verify should encrypt the sym-
metric key KA with the content provider’s public key, hash the
receiving content, and encrypt the hash value to confirm the con-
tent’s correctness. Hence Router-Verify with online work mode
costs 1.46445 ms to verify a 1000 Bytes content. In offline work
mode, however, Router-Verify only needs to hash the content and

Table 3: The speeds of different schemes to verify a 1000 Bytes
content.

Scheme
Hash Time

(ms)

Encryption and
Decryption
Time (ms)

Total Time
(ms)

NDN-Verify 0.0039 0.08 0.0839
User-Verify 0 0 0

Router-Verify
(Online)

0.0039 1.46055 1.46445

Router-Verify
(Offline)

0.0039 0.00055 0.00445

encrypt the hash value to verify the content, it only costs 0.0045 ms.
In summary, Router-Verify only needs one content verification in
the first edge router that receives the Data packet from the content
provider, and Router-Verify with offline work mode can achieve
18.85× speedup of NDN-Verify by replacing the asymmetric cryp-
tographic algorithm with the symmetric cryptographic algorithm in
the edge router.

To verify a content with 1000 Bytes, Router-Verify (offline) costs
0.0039 ms to hash the content, and 0.00055 ms to encrypt the hash
value. Therefore, hash calculation occupies 87.64% of the total time
and becomes the bottleneck of the content verification. Figure 7
clearly demonstrates the trend of verification speeds of different
schemes as the content size grows. From Figure 7, we can conclude
that the time of different schemes costing on content verification are
linearly increasing as the content size grows. In NDN-Verify, with
the content size varying from 64 Bytes to 1472 Bytes, the time of
MD5 costs from 0.31% to 0.67% of the total time. Hence RSA1024
is the bottleneck of the system. After replacing RSA1024 with DES-
XEX3, in Router-Verify, the time of MD5 costs 31.09% of the total
time to verify a content with 64 Bytes, and 91.21% of the total time
to verify a content with 1472 Bytes. Therefore, MD5 becomes the
system’s bottleneck as the content size grows.

However, the verification speed can be improved by applying the
hardware module to accelerate the hash calculation in a hardware
router. For example, CRC32 (hash calculation) is implemented by
hardware in commercial routers. In this case, Router-Verify can
improve 145.5× of the original NDN content verification.

5.2 The transfer overhead
Different schemes append different data (token, signature, etc.) to
implement content verification. The transfer overheads of different
schemes are listed in Table 4, where K is the number of hops from
the user and the content provider, M1 and M2 are the ciphertexts
of symmetric and asymmetric encryption algorithms respectively
(M1 = 16, M2 = 21 in our experiments), and the token length is
64 bits in user-assisted content verification scheme.

NDN-Verify appends the signature of the content to the Data
packet, and it costs 64K Bytes after transferring K hops. To verify
the content provider, the Interest packet in User-Verify carries the
token SA, the symmetric key KA and the ciphertext Kpub(KA),
and the Data packet in User-Verify carries the identification mes-
sage K

′
A(SA) in addition to the signature of the content. Since

the identification message is removed by the edge router, the total
6

Table 4: The transfer overheads of different schemes (K is the number of hops from the user and the content provider, M1 and M2

are the ciphertexts of symmetric and asymmetric encryption algorithms respectively, and the token length is 64 bits in user-assisted
content verification scheme.

Scheme
Interest Packet

(Byte)
Data Packet

(Byte)
Total transfer overhead

(Byte)
NDN-Verify 0 K ×M2 K ×M2

User-Verify K × (M1 +M2 + 8) K × (M1 +M2) 2K × (M1 +M2 + 4)

Router-Verify (One AS) M2 K ×M2 +M1 K ×M2 +M1 +M2

Router-Verify (Mutual Distrust ASes) K
2
M2 +M2 K ×M2 +M1 +

K
2
M1 M1 +M2 +

3K
2
M2 +

K
2
M1

0 128 256 384 512 640 768 896 1024115212801408

0.001

0.010

0.100

1.000

Ti
m

e
(m

s)

Content Size (Byte)

 NDN-Verify
 Router-Verify (Offline)
 Router-Verify (Online)

Figure 7: The trend of verification speeds of different schemes
as the content size grows.

transfer overhead of User-Verify is 2K × (M1 + M2 + 4) which
is 2(M1+M2)

M2
× of NDN-Verify’s transfer overhead. In addition

to NDN-Verify in one AS, Router-Verify only sends a ciphertext
Kpub(KA) and an identification message K

′
A(Hash(D)), hence

the transfer overhead of Router-Verify is K×M2+M1+M2. Com-
pared with NDN-Verify, Router-Verify merely costs extra M1+M2

Bytes to implement 18.85× speedup whatever the number of hops
between the user and the content provider.

6 RELATED WORK
Nowaday, the research of NDN in industry and academia mainly
focus on the wire speed name lookup [19–24], effective cache strat-
egy [13, 17, 25], fast forwarding mechanism [27, 28], NDN applica-
tions [9, 31]. These research has demonstrated the scalability, feasi-
bility and practicality of NDN, and has promoted the development
of NDN.

Security mechanism, as an important part of NDN, has attracted
widespread attention. Custom private protection [1, 7] and detec-
tion of cache missing attack [4, 26] as the two major security mech-
anisms have been studied. Custom private leakiness is introduced
by the cache mechanism in NDN, i.e., the contents cached in routers
can leak the privacy of users. Specifically, a malicious cracker
can detect a user’s privacy through the response time of some spe-
cific Interest packets, since the response time of a required content
cached in the router is smaller than the fresh content’s response time.

Gasti et al. [1, 7] propose a few mechanisms to protect custom’s pri-
vate by increasing the response time. The purpose of cache missing
attack is to reduce the cache hit ratio in an NDN router. An attacker
sends a large amount of unpopular Interest packets to the router to
increase the traffic and speed up the frequency of cache replacement.
The protection mechanisms, proposed in paper [4, 26], detect the at-
tackers by counting the number of Interest packets and measuring
the popularity of Interest packets sent by the user. When a user is
deemed as an attacker, the router will drop all Interest packets come
from this attacker to prevent cache missing attack. Different from
the custom private protection, our work focuses on preventing cor-
rupted and faked contents be spread in the network by improving
the content verification speed.

NDN applies content-based [18], rather than connection-based,
security mechanism which allows users to authenticate the returned
content regardless of where it comes from – the original source,
or the cache in a route. Decoupling the content from the content
provider, i.e., decoupling “what” from “where” requires security
and network primitives that can refer to, and authenticate content it-
self, rather than the host and file containers where it resides. Similar
to prior works [3, 11, 16], NDN authenticate the linkage between a
name and a content, rather than authenticating the content or its pub-
lisher. The signature of both the name and the content represents
their linkage. Users or in-path routers can authenticate the name
and the content by verifying their signature. The verification pro-
cess is complex and time-consuming, and is much slower than the
line rate [6]. Based on this observation, Giuseppe et al. [2] devise
a simple analytical approach which permits to assess performance
of an LRU caching strategy storing a randomly sampled subset of
requests. This work is orthogonal with our work.

LIVE [14] allows content providers to control content access in
NDN nodes by selectively distributing integrity verification tokens
to authorized nodes. LIVE is effective and helpful for the autho-
rized nodes to verify the specified contents. However, LIVE is help-
less and opaque for the other contents that are free to be cached
in routers. Our fast content verification mechanisms complement
LIVE by improving the verification performance of all contents.

To our best knowledge, we first propose the Router-Cooperation
content verification scheme to improve the performance of content
verification in NDN routers. By replacing the asymmetric decryp-
tion with symmetric decryption, Router-Verify can speed up 18×
of NDN-Verify with negligible extra transfer overhead.

7

7 CONCLUSION
In this paper, we propose two content verification schemes to im-
prove the verification performance of NDN routers to prevent con-
tent poisoning. The user-assisted content verification scheme veri-
fies content providers to guarantee the correctness of contents. By
bypassing the content verification in NDN routers, the user-assisted
scheme can achieve perfect performance. However, this scheme
can only be applied in the environment that all consumers can be
trusted.

The Router-Cooperation content verification scheme verifies the
content provider independently without the assistance of users. By
replacing the asymmetric encryption operation with symmetric en-
cryption operation, the Router-Cooperation scheme can effectively
reduce the computing resource for cryptographic operation and im-
prove the content verification performance. The simulation results
demonstrate that this Router-Cooperation scheme can achieve 18.85×
speedups of the original content verification scheme used in NDN.

To verify a content with 1000 Bytes, the Router-Cooperation
scheme costs 0.0039 ms on hashing the content, and 0.00055 ms
on encrypting the hash value. Therefore, hash calculation occupies
87.64% of the total time and becomes the bottleneck of the content
verification. In our further work, we can implement the message-
digest algorithm in hardware to improve the total performance of
the Router-Cooperation content verification scheme.

ACKNOWLEDGMENTS
The work is supported by the Shenzhen Key Fundamental Research
Projects (No. JCYJ20160330095313861), Huawei Innovation Re-
search Program (HIRP), NSFC (61602271, 61373143, 61432009),
China Postdoctoral Science Foundation (No. 2015T80089, 2016M591182),
the Specialized Research Fund for the Doctoral Program of Higher
Education of China (20130002110084).

REFERENCES
[1] Gergely Acs, Mauro Conti, Paolo Gasti, Cesar Ghali, and Gene Tsudik. 2013.

Cache Privacy in Named-Data Networking. In Distributed Computing Systems
(ICDCS), 2013 IEEE 33rd International Conference on. 41–51.

[2] Giuseppe Bianchi, Andrea Detti, Alberto Caponi, and Nicola Blefari Melazzi.
2013. Check Before Storing: What is the Performance Price of Content Integrity
Verification in LRU Caching? SIGCOMM Comput. Commun. Rev. 43, 3 (July
2013), 59–67. DOI:https://doi.org/10.1145/2500098.2500106

[3] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. 2000.
Freenet: A Distributed Anonymous Information Storage and Retrieval System.
46–66 pages. DOI:https://doi.org/10.1007/3-540-44702-4 4

[4] Mauro Conti, Paolo Gasti, and Marco Teoli. 2013. A lightweight
mechanism for detection of cache pollution attacks in Named Data Net-
working. Computer Networks 57, 16 (2013), 3178 – 3191. DOI:
https://doi.org/10.1016/j.comnet.2013.07.034

[5] Wei Dai. 2017. Crypto++ 5.6.0 Benchmark. (2017).
http://www.cryptopp.com/benchmarks.html

[6] A. Detti, A. Caponi, G. Tropea, G. Bianchi, and N. Blefari-Melazzi. 2013. On
the interplay among naming, content validity and caching in Information Centric
Networks. In Global Communications Conference (GLOBECOM), 2013 IEEE.
2108–2113. DOI:https://doi.org/10.1109/GLOCOM.2013.6831386

[7] Steve DiBenedetto, Paolo Gasti, Gene Tsudik, and Ersin Uzun. 2011. AN-
DaNA: Anonymous Named Data Networking Application. CoRR abs/1112.2205
(2011).

[8] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang. 2012. DoS and DDoS in Named-
Data Networking. ArXiv e-prints (Aug. 2012). arXiv:cs.NI/1208.0952

[9] Van Jacobson, Diana K. Smetters, Nicholas H. Briggs, Michael F. Plass, Paul
Stewart, James D. Thornton, and Rebecca L. Braynard. 2009. VoCCN: voice-
over content-centric networks. In Proceedings of the 2009 workshop on Re-
architecting the internet (ReArch ’09). ACM, New York, NY, USA, 1–6.

[10] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. 2009. Networking named con-
tent. In Proceedings of the 5th international conference on Emerging networking
experiments and technologies (CoNEXT ’09). ACM, 1–12.

[11] John Kubiatowicz, David Bindel, Yan Chen, Steven E. Czerwinski, Patrick R.
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean C. Rhea, Hakim Weather-
spoon, Westley Weimer, Chris Wells, and Ben Y. Zhao. 2000. OceanStore: an
architecture for global-scale persistent storage. Sigplan Notices 35 (2000), 190–
201. Issue 11. DOI:https://doi.org/10.1145/356989.357007

[12] Tobias Lauinger. 2010. Security & Scalability of Content-Centric Networking.
(September 2010). http://tuprints.ulb.tu-darmstadt.de/2275/

[13] Jun Li, Hao Wu, Bin Liu, Jianyuan Lu, Yi Wang, Xin Wang, YanYong Zhang, and
Lijun Dong. 2012. Popularity-driven Coordinated Caching in Named Data Net-
working. In Proceedings of the Eighth ACM/IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS ’12). ACM, New York, NY,
USA, 15–26. http://doi.acm.org/10.1145/2396556.2396561

[14] Qi Li, Xinwen Zhang, Qingji Zheng, R. Sandhu, and Xiaoming Fu. 2015. LIVE:
Lightweight Integrity Verification and Content Access Control for Named Data
Networking. Information Forensics and Security, IEEE Transactions on 10, 2
(Feb 2015), 308–320. DOI:https://doi.org/10.1109/TIFS.2014.2365742

[15] OpenMP. 2017. The OpenMP API specification for parallel programming.
(2017). http://openmp.org

[16] Bogdan C. Popescu, Maarten Van Steen, Bruno Crispo, Andrew S. Tanenbaum,
Jan Sacha, and Ihor Kuz. 2005. Securely Replicated Web Documents. In Inter-
national Parallel and Distributed Processing Symposium/International Parallel
Processing Symposium. DOI:https://doi.org/10.1109/IPDPS.2005.395

[17] E.J. Rosensweig, D.S. Menasche, and J. Kurose. 2013. On the steady-state of
cache networks. In INFOCOM, 2013 Proceedings IEEE. 863–871.

[18] Diana Smetters and Van Jacobson. 2009. Securing Network Content. (2009).
https://www.parc.com/content/attachments/securing-network-content-tr.pdf

[19] Yi Wang, Huichen Dai, Junchen Jiang, Keqiang He, Wei Meng, and Bin Liu.
2011. Parallel Name Lookup for Named Data Networking. In IEEE Global
Telecommunications Conference (GLOBECOM). 1 –5.

[20] Yi Wang, Huichen Dai, Ting Zhang, Wei Meng, Jindou Fan, and Bin Liu. 2013.
GPU-accelerated name lookup with component encoding. Computer Networks
57, 16 (2013), 3165 – 3177.

[21] Yi Wang, Keqiang He, Huichen Dai, Wei Meng, Junchen Jiang, Bin Liu, and Yan
Chen. 2012. Scalable Name Lookup in NDN Using Effective Name Component
Encoding. In IEEE 32nd International Conference on Distributed Computing
Systems (ICDCS). 688–697.

[22] Yi Wang, Tian Pan, Zhian Mi, Huichen Dai, Xiaoyu Guo, Ting Zhang, Bin Liu,
and Qunfeng Dong. 2013. NameFilter: Achieving fast name lookup with low
memory cost via applying two-stage Bloom filters. In INFOCOM 2013 mini con-
ference, IEEE.

[23] Yi Wang, Dongzhe Tai, Ting Zhang, Jianyuan Lu, Boyang Xu, Huichen Dai,
and Bin Liu. 2013. Greedy Name Lookup for Named Data Networking. In Pro-
ceedings of the ACM SIGMETRICS/International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’13). ACM, New York, NY,
USA, 359–360. http://doi.acm.org/10.1145/2465529.2465741

[24] Yi Wang, Yuan Zu, Ting Zhang, Kunyang Peng, Qunfeng Dong, Bin Liu,
Wei Meng, Huichen Dai, Xin Tian, Zhonghu Xu, Hao Wu, and Di Yang.
2013. Wire Speed Name Lookup: A GPU-based Approach. In Proceed-
ings of the 10th USENIX Conference on Networked Systems Design and Im-
plementation (nsdi’13). USENIX Association, Berkeley, CA, USA, 199–212.
http://dl.acm.org/citation.cfm?id=2482626.2482647

[25] Hao Wu, Jun Li, Yi Wang, and Bin Liu. 2013. EMC: The Effective Multi-Path
Caching Scheme for Named Data Networking. In Computer Communications
and Networks (ICCCN), 2013 22nd International Conference on. 1–7.

[26] Mengjun Xie, I. Widjaja, and Haining Wang. 2012. Enhancing cache robustness
for content-centric networking. In INFOCOM, 2012 Proceedings IEEE. 2426–
2434.

[27] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Be-
ichuan Zhang, and Lixia Zhang. 2013. A case for stateful forward-
ing plane. Computer Communications 36, 7 (2013), 779 – 791.
http://www.sciencedirect.com/science/article/pii/S0140366413000236

[28] Haowei Yuan, Tian Song, and P. Crowley. 2012. Scalable NDN Forwarding:
Concepts, Issues and Principles. In International Conference on Computer Com-
munications and Networks (ICCCN). 1–9.

[29] Lixia Zhang, Deborah Estrin, Jeffrey Burkeand, Van Jacobson, James D.
Thornton, Ersin Uzun, and Baichuan Zhang. 2013. Named Data
Networking (NDN) Project 2011 - 2012 Annual Report. (2013).
http://named-data.net/wp-content/uploads/2013/08/ndn-proj-pub.pdf

[30] Lixia Zhang, Deborah Estrin, Van Jacobson, and Baichuan Zhang. 2010. Named
Data Networking (NDN) Project. http://www.named-data.net/

[31] Zhenkai Zhu, Sen Wang, Xu Yang, Van Jacobson, and Lixia Zhang. 2011. ACT:
Audio Conference Tool over Named Data Networking. In Proceedings of the
ACM SIGCOMM Workshop on Information-centric Networking (ICN ’11). ACM,
New York, NY, USA, 68–73. http://doi.acm.org/10.1145/2018584.2018601

8

