
WVCC: Weighted Virtual Congestion Control for Datacenter
Networks

Jiaqing Dong
Department of Computer Science

Tsinghua University

Yi Wang*

Future Network Theory Lab
Huawei

Chen Tian
State Key Laboratory for Novel

Software Technology
Nanjing University

Bo Jin
Future Network Theory Lab

Huawei

Hao Yin
Department of Computer Science

Tsinghua University

Gong Zhang
Future Network Theory Lab

Huawei

ABSTRACT
Enforcing virtualized congestion control is a new trend for datacen-
ter networks. Virtual Congestion Control (VCC) can also enforce
differentiated Quality-of-Service (QoS) for flows. However, current
flow differentiation algorithms only provide qualitative rather than
quantitative bandwidth allocation. Weighted bandwidth allocation
is critical to enforce administrator policy. In this work, we propose
Weighted Virtual Congestion Control (WVCC) enforcement for
datacenter networks. It is a novel per-flow differentiation mechanism
capable of proportionally allocating bandwidth among flows.

CCS CONCEPTS
• Networks → Transport protocols; Data center networks;

KEYWORDS
Network Proportionality, Congestion Control, Virtualization

ACM Reference format:
Jiaqing Dong, Yi Wang, Chen Tian, Bo Jin, Hao Yin, and Gong Zhang. 2017.
WVCC: Weighted Virtual Congestion Control for Datacenter Networks. In
Proceedings of SIGCOMM Posters and Demos ’17, Los Angeles, CA, USA,
August 22–24, 2017, 3 pages.
https://doi.org/10.1145/3123878.3131993

1 PROBLEM STATEMENT
Enforcing virtualized congestion control is a new trend for datacenter
networks [2, 3]. Public cloud datacenters are shared by various
tenants running Virtual Machines (VM). Guest VMs have different
TCP protocol stacks. These TCP versions could rely on different
congestion signals (e.g., ECN vs. packet drop) and exert different
control laws. Some of these mechanism might be even out-dated.
Nevertheless, they cannot peacefully share the same underlying
physical datacenter network [5]. AC/DC [3] and vCC [2] add a
translation layer which “hijacks” the congestion control function in

*Yi Wang is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5057-0/17/08.
https://doi.org/10.1145/3123878.3131993

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

T
h
ro

u
g
h
tp

u
t(

M
b
p
s
)

Seconds

Flow 0
Flow 1
Flow 2
Flow 3

Figure 1: Per-flow differentiation of AC/DC.

the datapath. This Virtual Congestion Control (VCC) mechanism
translates the legacy TCP versions in tenant VMs into a newer
congestion control algorithm. As a result, it allows guest-VM
applications continue to use their legacy TCP implementations. At
the same time, the administrator can enforce a uniform congestion
control rule throughout the whole datacenter.

VCC can also enforce differentiated Quality-of-Service (QoS)
for flows. AC/DC emulates a DCTCP-like [1] congestion control
algorithm at host virtual switch. On top of that, AC/DC proposes a
per-flow differentiation mechanism by assigning each flow with a
priority β and changes the back-off phase of DCTCP as:

rwnd ← rwnd × (1 − α (1 −
β

2
)). (1)

With Equation 1, flows with lower priority back-off more aggres-
sively than higher-priority flows.

The per-flow differentiation algorithm based on Equation 1 only
provides qualitative rather than quantitative bandwidth allocation
among flows. We use an NS3 simulation to illustrate this problem,
where four flows with β values [1, 1, 2, 3]/4.0 competing at a single
link. As shown in Figure 1, after convergence, flows with the same
priority get similar throughput. While flows with higher priority
obtain higher throughput. However, priority value β cannot provide
proportional bandwidth allocation among these flows quantitatively.
The reason is that β in Equation 1 is a priority value which only
describes the back-off strength, without considering the increase
phase. The priority parameter β cannot be translated into weight due
to failing to consider the increase phase. Detailed analysis will be
available in our future work.

79

https://doi.org/10.1145/3123878.3131993
https://doi.org/10.1145/3123878.3131993

SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USAJiaqing Dong, Yi Wang, Chen Tian, Bo Jin, Hao Yin, and Gong Zhang

 0

 50

 100

 150

 200

 0 20 40 60 80 100

w
C

W
N

D
(M

S
S

)

Seconds

Flow 0
Flow 1

Flow 2
Flow 3

(a) Results of the fluid model

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

tp
u

t(
M

b
p

s
)

Seconds

Flow 0
Flow 1

Flow 2
Flow 3

(b) Four flows in WVCC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

tp
u

t(
M

b
p

s
)

Seconds

Flow 0
Flow 1
Flow 2

(c) Flows arriving at intervals in WVCC

Figure 2: Evaluation results of WVCC.

Weighted bandwidth allocation is critical to enforce administrator
policy [5]. Seawall [4] provides proportional bandwidth allocation
among entities by forcing traffic through congestion-controlled
tunnels configured with weights. However, it cannot not support
bandwidth allocation at flow-level. Software rate limiters like
token bucket filters (TBF) cannot scale to flow-level granularity
in datacenter scenarios.

In this work we propose Weighted Virtual Congestion Con-
trol (WVCC) enforcement for datacenter networks. It is a novel per-
flow differentiation mechanism capable of proportionally allocating
bandwidth among flows. Inherited from VCC, WVCC does not
require any modifications to legacy TCP stacks in tenant-side VMs.

2 WEIGHTED VCC
Overview: WVCC is implemented in the datapath of the hyper-
visor, similar to AC/DC [3] and vCC [2]. With this architecture,
WVCC can take effect without any TCP stack modifications in
tenant-side environments. The sender and receiver modules together
enforce the per-flow weighted congestion control algorithms by
changing the receive window (RWND) field in incoming ACK
packets. Specifically, a WVCC algorithm calculates the weighted
congestion window (cwnd∗) value. RWND is modified only when
cwnd∗ is smaller than the initial RWND set by the receiver.
Algorithm: WVCC algorithm builds on top of DCTCP [1].
Switches are required to mark CE bits when packets in buffer exceeds
a destined threshold. Like DCTCP, we maintain the same variable α ,
which can be used to quantitatively measure the extent of congestion
in the network. WVCC shares same features with TCP, such as slow
start, congestion avoidance, and fast recovery. Upon receiving an
ACK, WVCC calculates new congestion window1:

cwnd∗ ←

cwnd∗ × (1 − α/2), ECE bit of ACK set;
cwnd∗ +w/cwnd∗, otherwise.

(2)

where w (w < 1) is the weight given to that flow. In implementation,
equation 2 alters into a much more simplified version:

cwnd∗ ← w × cwnd, (3)

where cwnd is the congestion window calculated by DCTCP stack
upon each ACK. After all the calculations in the stack, WVCC cal-
culates a weighted congestion window cwnd∗ as equation 3 and
leaves cwnd unchanged in the stack. As cwnd remains untouched

1Window cut happens at most once per window of data

in the stack, no modifications are required to the original DCTCP
behaviors and equation 3 naturally satisfies equation 2.
Analysis: We develop a fluid model which describes how
WVCC calculates wCWNDs for flows with different weights. Due
to space limitation, we omit the details.

3 EVALUATION
Fluid Model: We implement the fluid model in Matlab. In the
emulation, four flows are setup with weights from 1 to 4. Each flow
starts with a random initial congestion window. In Figure 2(a), it
is observed that the four flows converge to the steady state with
wCWND sizes proportional to their weights.
NS3 Simulation: We implement WVCC in NS3 and demonstrate
the flow-level proportional bandwidth allocation capability. To
compare with results of AC/DC in Figure 1, we setup four flows
weighted [1, 1, 2, 3]/4.0, starting concurrently. In Figure 2(b), these
four flows converges quickly and each of them achieves the
throughput quantitatively proportional to their weights.

Furthermore, to demonstrate the correctness of WVCC in dy-
namic scenarios, we setup three flows in different hosts with weights
[1, 2, 3]/4.0, competing on the same bottleneck link and starting
with intervals. Figure 2(c) shows that every time a new flow arrives,
all flows converge to a new steady state with bandwidth sharing
proportional to their weights.

ACKNOWLEDGMENT
The authors would like to thank anonymous reviewers for their
valuable comments. This work was supported in part by the
National Key Research and Development Program under Grant
no. 2016YFB1000102, the National Science and Technology Major
Project of China under Grant Number 2017ZX03001013-003, the
Fundamental Research Funds for the Central Universities under
Grant Number 0202-14380037, the National Natural Science Foun-
dation of China under Grant no. 61672318, 61631013, 61602194,
61402198, 61321491, and the projects of Tsinghua National Labora-
tory for Information Science and Technology (TNList).

REFERENCES
[1] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010
Conference (SIGCOMM ’10). ACM, New York, NY, USA, 63–74. https://doi.org/
10.1145/1851182.1851192

80

https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1851182.1851192

WVCC: Weighted Virtual Congestion Control for Datacenter NetworksSIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

[2] Bryce Cronkite-Ratcliff, Aran Bergman, Shay Vargaftik, Madhusudhan Ravi, Nick
McKeown, Ittai Abraham, and Isaac Keslassy. 2016. Virtualized Congestion
Control. In Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM

’16). ACM, New York, NY, USA, 230–243. https://doi.org/10.1145/2934872.
2934889

[3] Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter, John Carter,
and Aditya Akella. 2016. AC/DC TCP: Virtual Congestion Control Enforcement
for Datacenter Networks. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). ACM, New York, NY, USA, 244–257. https://doi.org/10.1145/
2934872.2934903

[4] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. 2010.
Seawall: Performance Isolation for Cloud Datacenter Networks. In Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10).
USENIX Association, Berkeley, CA, USA, 1–1. http://dl.acm.org/citation.cfm?
id=1863103.1863104

[5] Chen Tian, Ali Munir, Alex X Liu, Yingtong Liu, Yanzhao Li, Jiajun Sun,
Fan Zhang, and Gong Zhang. 2017. Multi-Tenant Multi-Objective Bandwidth
Allocation in Datacenters Using Stacked Congestion Control. In INFOCOM, 2017
Proceedings IEEE. IEEE, 3074–3082.

81

https://doi.org/10.1145/2934872.2934889
https://doi.org/10.1145/2934872.2934889
https://doi.org/10.1145/2934872.2934903
https://doi.org/10.1145/2934872.2934903
http://dl.acm.org/citation.cfm?id=1863103.1863104
http://dl.acm.org/citation.cfm?id=1863103.1863104

	Abstract
	1 Problem Statement
	2 Weighted VCC
	3 Evaluation
	References

