
WVCC: Weighted Virtual Congestion Control for Datacenter
Networks

Jiaqing Dong
Department of Computer Science

Tsinghua University

Yi Wang*

Future Network Theory Lab
Huawei

Chen Tian
State Key Laboratory for Novel

Software Technology
Nanjing University

Bo Jin
Future Network Theory Lab

Huawei

Hao Yin
Department of Computer Science

Tsinghua University

Gong Zhang
Future Network Theory Lab

Huawei

ABSTRACT
Enforcing virtualized congestion control is a new trend for datacen-
ter networks. Virtual Congestion Control (VCC) can also enforce
differentiated Quality-of-Service (QoS) for flows. However, current
flow differentiation algorithms only provide qualitative rather than
quantitative bandwidth allocation. Weighted bandwidth allocation
is critical to enforce administrator policy. In this work, we propose
Weighted Virtual Congestion Control (WVCC) enforcement for
datacenter networks. It is a novel per-flow differentiation mechanism
capable of proportionally allocating bandwidth among flows.
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1 PROBLEM STATEMENT
Enforcing virtualized congestion control is a new trend for datacenter
networks [2, 3]. Public cloud datacenters are shared by various
tenants running Virtual Machines (VM). Guest VMs have different
TCP protocol stacks. These TCP versions could rely on different
congestion signals (e.g., ECN vs. packet drop) and exert different
control laws. Some of these mechanism might be even out-dated.
Nevertheless, they cannot peacefully share the same underlying
physical datacenter network [5]. AC/DC [3] and vCC [2] add a
translation layer which “hijacks” the congestion control function in
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Figure 1: Per-flow differentiation of AC/DC.

the datapath. This Virtual Congestion Control (VCC) mechanism
translates the legacy TCP versions in tenant VMs into a newer
congestion control algorithm. As a result, it allows guest-VM
applications continue to use their legacy TCP implementations. At
the same time, the administrator can enforce a uniform congestion
control rule throughout the whole datacenter.

VCC can also enforce differentiated Quality-of-Service (QoS)
for flows. AC/DC emulates a DCTCP-like [1] congestion control
algorithm at host virtual switch. On top of that, AC/DC proposes a
per-flow differentiation mechanism by assigning each flow with a
priority β and changes the back-off phase of DCTCP as:

rwnd ← rwnd × (1 − α (1 −
β

2
)). (1)

With Equation 1, flows with lower priority back-off more aggres-
sively than higher-priority flows.

The per-flow differentiation algorithm based on Equation 1 only
provides qualitative rather than quantitative bandwidth allocation
among flows. We use an NS3 simulation to illustrate this problem,
where four flows with β values [1, 1, 2, 3]/4.0 competing at a single
link. As shown in Figure 1, after convergence, flows with the same
priority get similar throughput. While flows with higher priority
obtain higher throughput. However, priority value β cannot provide
proportional bandwidth allocation among these flows quantitatively.
The reason is that β in Equation 1 is a priority value which only
describes the back-off strength, without considering the increase
phase. The priority parameter β cannot be translated into weight due
to failing to consider the increase phase. Detailed analysis will be
available in our future work.
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(a) Results of the fluid model
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(b) Four flows in WVCC
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(c) Flows arriving at intervals in WVCC

Figure 2: Evaluation results of WVCC.

Weighted bandwidth allocation is critical to enforce administrator
policy [5]. Seawall [4] provides proportional bandwidth allocation
among entities by forcing traffic through congestion-controlled
tunnels configured with weights. However, it cannot not support
bandwidth allocation at flow-level. Software rate limiters like
token bucket filters (TBF) cannot scale to flow-level granularity
in datacenter scenarios.

In this work we propose Weighted Virtual Congestion Con-
trol (WVCC) enforcement for datacenter networks. It is a novel per-
flow differentiation mechanism capable of proportionally allocating
bandwidth among flows. Inherited from VCC, WVCC does not
require any modifications to legacy TCP stacks in tenant-side VMs.

2 WEIGHTED VCC
Overview: WVCC is implemented in the datapath of the hyper-
visor, similar to AC/DC [3] and vCC [2]. With this architecture,
WVCC can take effect without any TCP stack modifications in
tenant-side environments. The sender and receiver modules together
enforce the per-flow weighted congestion control algorithms by
changing the receive window (RWND) field in incoming ACK
packets. Specifically, a WVCC algorithm calculates the weighted
congestion window (cwnd∗) value. RWND is modified only when
cwnd∗ is smaller than the initial RWND set by the receiver.
Algorithm: WVCC algorithm builds on top of DCTCP [1].
Switches are required to mark CE bits when packets in buffer exceeds
a destined threshold. Like DCTCP, we maintain the same variable α ,
which can be used to quantitatively measure the extent of congestion
in the network. WVCC shares same features with TCP, such as slow
start, congestion avoidance, and fast recovery. Upon receiving an
ACK, WVCC calculates new congestion window1:

cwnd∗ ←



cwnd∗ × (1 − α/2), ECE bit of ACK set;
cwnd∗ +w/cwnd∗, otherwise.

(2)

where w (w < 1) is the weight given to that flow. In implementation,
equation 2 alters into a much more simplified version:

cwnd∗ ← w × cwnd, (3)

where cwnd is the congestion window calculated by DCTCP stack
upon each ACK. After all the calculations in the stack, WVCC cal-
culates a weighted congestion window cwnd∗ as equation 3 and
leaves cwnd unchanged in the stack. As cwnd remains untouched

1Window cut happens at most once per window of data

in the stack, no modifications are required to the original DCTCP
behaviors and equation 3 naturally satisfies equation 2.
Analysis: We develop a fluid model which describes how
WVCC calculates wCWNDs for flows with different weights. Due
to space limitation, we omit the details.

3 EVALUATION
Fluid Model: We implement the fluid model in Matlab. In the
emulation, four flows are setup with weights from 1 to 4. Each flow
starts with a random initial congestion window. In Figure 2(a), it
is observed that the four flows converge to the steady state with
wCWND sizes proportional to their weights.
NS3 Simulation: We implement WVCC in NS3 and demonstrate
the flow-level proportional bandwidth allocation capability. To
compare with results of AC/DC in Figure 1, we setup four flows
weighted [1, 1, 2, 3]/4.0, starting concurrently. In Figure 2(b), these
four flows converges quickly and each of them achieves the
throughput quantitatively proportional to their weights.

Furthermore, to demonstrate the correctness of WVCC in dy-
namic scenarios, we setup three flows in different hosts with weights
[1, 2, 3]/4.0, competing on the same bottleneck link and starting
with intervals. Figure 2(c) shows that every time a new flow arrives,
all flows converge to a new steady state with bandwidth sharing
proportional to their weights.
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