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Abstract— As the rapid development of Electric Vehicles
(EV), how to strategically deploy charging stations becomes
an emerging and challenging question to EV communities.
However, the cease operation of charging stations and the
consequent impacts have been discussed little. In this paper,
by analyzing a large scale electric taxi GPS data, we make the
first attempt to investigate this problem. A case in Shenzhen is
analyzed in this paper, where a core charging station ceases
operation due to the security consideration, offering us a
real situation. We develop a regression model to predict load
increments of charging stations based on the analysis of EV
taxi drivers’ recharging behavior patterns. Based on the model,
an allocation strategy of charging resources is proposed to
minimize the average waiting time at charging stations, and
maximize the charging resources utilization at the same time. To
evaluate the performance of our proposed strategy, we conduct
experiments on half-year real EV taxi GPS data. The evaluation
results demonstrate that our suggested strategy can achieve a
32%-88% reduction rate on average waiting time at charging
stations, over baseline methods. Moreover, our strategy can
perform better in charging resources utilization.

I. INTRODUCTION

Electric Vehicles (EV) are more and more popular, due

to the strengthen public willingness of contributing to en-

vironment protection. Compared with Internal Combustion

Engine Vehicles (ICEV), EVs have less air pollution.

However, as charging infrastructure putting into market for

EVs, charging stations (CS) will probably cease operation

due to some reasons. For example, a CS needs maintenance

after a long time operation, or it will be pulled down

considering power line aging and security issues. All these

will lead to the cease operation of CSs, and it can be

commonly observed in cities where EV mode is adopted.

Cease operation of CSs means EVs can’t be charged

at these CSs. In that case, EV drivers will rush to those

normal CSs for recharging, leading to a load increment in

normal CSs, thus making EV drivers queue a long time for

waiting to be charged. This phenomenon will directly affects

satisfaction of EV drivers, moreover, it will hinder the further

development of EVs. Therefore, the cease operation problem

of CSs deserves to be studied.

Measures should be taken to address the issue. More

EV recharging events will be finished in those normal CSs

via dispatching mobile charging vehicles or building more

charging points to tackle with the load increment. Due

to the cease operation of a CS, other different CSs will

suffer from different load increment. Therefore, given a

certain number of charging resources and with a objective

of reducing waiting time at normal CSs, how to allocate

charging resources to those normal CSs will be discussed in

this paper.

Obtaining the value of load increment of a CS is the basis

for the above discussed allocation. The more load increment

a CS suffers, the more charging resources will be allocated

to it. However, the value of load increment is not easy to

predict. Which factors will impact the load increment of a

normal CS? How to predict the value of the load increment

by modeling? Such questions challenge us when faced with

charging resource allocation problem.

To solve this, we use real taxi GPS records data from a

fleet with about 800 EV taxis operating in Shenzhen, China

since there exists a CS suffering maintenance due to security

consideration. The load increment of other normal CSs is

based on a real situation. The main contributions of this paper

include:

• Recharging behavior patterns of EV taxi drivers have

been classified and analyzed according to their past visit

frequency to the maintaining CS. Those drivers having

high visit frequency incline to choose CSs sitting around

the maintaining one as a substitution, while those drivers

with low visit frequency change little compared with

their former recharging behaviors.

• The load increment of a normal CS has direct relation-

ship with its distance away from the maintaining CS and

the number of charging points it possesses. Besides, a

new concept named Relevancy has been proposed to

illustrate the relevance degree between two different

CSs. Relevancy also has a significant impact in the load

increment of a normal CS.

• A regression model has been proposed to predict the

load increment of a normal CS by utilizing the features

selected from recharging behavior pattern analysis. Be-

sides, the model has been evaluated based on the real

recharging event data generated in Shenzhen. Simula-

tion results show that depending on our prediction, the

allocation will perform better to minimize the waiting

time of EV taxi drivers at those normal CSs compared

with some baseline methods.

This rest of the paper is organized as follows. In Section II,
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the related works are discussed. Then in Section III, we

describe the data sets and the case study analyzed in this

paper. Section IV depicts the features related with CSs’

load increments and model the increments by utilizing a

regression model. In Section V, we evaluate the experiments

results. And finally, we conclude the paper in Section VI.

II. RELATED WORK

In recent years, the promotion of EV and deployment

of EV infrastructure have led to massive researches, which

can be divided into EV charging location problem and EV

charging schedule problem. Two models are used in EV

charging location problem: flow-based model and activity-

based model. For example, Kuby et al. [1] proposes a Flow

Refueling Location Model (FRLM) for EVs and Capar et

al. [2], Hong et al. [3] extend the raw FRLM by adding

new features to solve the siting problem of charging stations

by utilizing graph theory. Jung et al. [4] use activity-based

model to analyze queue delay of charge stations and offer

decision support for choosing locations of undeployed charge

stations aiming for minimizing EV taxi drivers’ queue time

for charging. Besides, Gharbaoui et al. [5] use activity-based

model finding that in urban areas public charge stations can

be underutilized and location selecting of charge stations

should be considered to reduce EV owners’ range anxiety.

Compared to EV charging location problem, more factors

should be considered into EV charging schedule problem.

For example, Gan et al. [6] use different decentralized charg-

ing control for reducing charging cost by avoiding charging

during the electricity-used peak hours; Lu et al. [7] propose

dispatching strategies for reducing EV charging waiting time

so that EV taxi drivers can have more operation time. Sun

et al. [8] explores how battery electric vehicle users choose

where to fast-charge their vehicles from a set of charging

stations, as well as the distance by which they are generally

willing to detour for fast-charging.

III. STUDING CASE

A. Overview of Charging Station Deployment in Shenzhen

Charging Station Distribution The studying case

used to address allocation problem is in Shenzhen, China.

By August,2016, there were in total 31 CSs deployed in

Shenzhen city. Figure 1 indicates the spatial distribution

of those CSs, with marker size indicating the number of

charging points deployed in the stations. The CS with more

than 100 charging points is the large station marked with

a large red circle symbol, where two CSs with about 50

charging points are medium stations marked with medium

blue circle symbols while other stations equipped with 6∼8

charging points are marked as small stations.

Load Increment Measurement The large station is de-

fined as the core station in this paper. Reasons for that mainly

lie in the following two aspects: on one hand, the number of

charging points deployed in the large station is much more

than other stations, on the other hand, the large station is

located in the downtown area of Shenzhen. However, this

core CS ceases to operate since March 10th,2016 due to the

Fig. 1. Distribution of charge stations in Shenzhen

considerations of security and maintenance, thus leading to

the load increments of other normal CSs.

Due to the maintenance of the core station, many EV taxis

will rush to other normal CSs for recharging, resulting in

the load increments of those CSs. The load increment of a

normal CS is decided by the number of increased recharging

events in that CS during the period of the core station

maintenance, thus recharging event detection is critical for

load increment measurement. Relative data and detective

method will be discussed in the following part.

B. Dataset Description

The major dataset is taxi GPS records. The dataset consists

of over 13,800 taxis, including around 800 EV taxis and

around 13,000 ICEV taxis. Each taxi updates a GPS record

per 30 seconds in average, together there are around 4

GB data per day and over 28 GB per week. We use the

dataset from January 1st, 2016 to June 1st,2016, lasting for

half a year. Detailed description of dataset and related data

preprocessing can be observed in our previous study [9].

IV. MODELING

To allocate the limited charging resources in an optimal

way, estimations for load increments of normal CSs should

be performed well. We firstlys extract and analyze some fea-

tures related with the load increment by utilizing recharging

event data, and then we use a regression model to predict

the load increment of a normal CS based on those selected

features.

A. Feature Selection

Charging Station Dependency It’s obviously observed

that EV taxi drivers that used to recharge at the core station

will suffer a big influence during the maintenance period,

thus it’s necessary to analyze their recharging behavior

patterns. Before that, we should distinguish those drivers

with high frequency recharging at the core station in the past

from the other drivers. A new concept of dependency degree

is proposed here to address the issue. As for an EV taxi v, its

recharging event data of two months before the maintenance

has been collected. The sum number of v’s recharging events

during these two months is notated as N, while the number of

v’s recharging events occurring at the core station is denoted
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Fig. 2. Distribution of CS Choices among Drivers with large DD

as n, then v’s dependency degree (DD) of the core station

can be computed as

DDv =
n
N

(1)

Charging station choices of EV taxi drivers with high value

of DD can be observed in Figure 2. The maintaining core

station is marked by a red box with a text note, while the

blue columns indicate the load increments of other normal

CSs caused by those drivers. Obviously, those drivers prefer

to choose CSs surrounding the core station as substitutions,

indicating that the distance away from the core station is a

factor impacting the load increment. Besides, two medium

CSs also hold a big load increment, thus the number of

charging points deployed in a CS should be also taken into

consideration.

Charging Station Relevancy For other drivers, a concept

of charging station relevancy borrowed from the traditional

relevancy theory is proposed here to analyze their choices.

Given a time period (e.g. two months), assume that N EV

taxis have visited charging station cs1 during the period,

while there are n EV taxis reaching charging station cs2 for

recharging among N, then the charging station relevancy of

cs1 and cs2 can be computed as

Rev(cs1,cs2) =
n
N
× n

M
(2)

While M refers to the number of the EV taxi fleet.

Large value of Rev(cs1,cs2) means the number of EV taxis

having visited cs1 and cs2 is big, thus when cs1 is in the state

of maintenance, cs2 will become these drivers’ first choices

for recharging, reflecting their recharging preferences to a

certain degree.

B. Modeling Process

This study adopts a traditional linear regression formula-

tion to model load increments of normal CSs. Specifically,

for a CS i, its load increment LIi can be modeled as

LIi = w0 +w1Disi +w2Numi +w3Revi (3)

Notice that the load increments of other normal CSs are

resulted from the maintenance of the core station, thus the

parameters in Equation 3 are proposed in terms of the core

station. Assuming the core station is symbolled by c, then

Revi is actually the abbreviation of Rev(i,c) while Disi
refers to i’s spatial distance from c. As for Numi, it refers

to the number of charging points deployed in i, which is

independent of c.

TABLE I

ESTIMATION RESULT OF FOLD ONE

CS Real Load Increment Estimated Load In-
crement

Relative
Error
(RE)

test1 37 42 13.5%
test2 5 4 20%
test3 184 174 5.4%
test4 52 58 11.5%
test5 22 24 9.1%
test6 7 6 14.3%

As for the CS i, we use Avgb
i to express the average number

of charging events occurred in i during two months before the

date of maintenance, while Avga
i corresponds to the average

number in two months after the maintenance, thus i’s real

load increment L̂Ii can be computed as

L̂Ii = Avga
i −Avgb

i (4)

We use a vector �W to express the regression coefficients

in Equation 3, i.e., �W = (w0,w1,w2,w3), then the modeling

process is to find a proper �W ∗ to satisfy the Equation 5.

�W ∗ = argmin
�W

N

∑
i
(LIi− L̂Ii)

2 (5)

While N refers to the number of normal CSs in Shenzhen.

The value of �W ∗ can be calculated by the gradient descent

method.

V. EXPERIMENTS AND RESULTS

A. Evaluations on Regression Model

To evaluate our regression model, we firstly collect

recharging event data occurred in normal CSs to obtain their

real load increment values. Each normal CS holds a load

increment value, thus the size of the data used in model

evaluation corresponds to the number of normal CSs. Due to

the small size of the data set, 5-fold cross validation method

is adopted for model evaluation. Specifically, for each fold,

24 CSs are used for training and 6 CSs for testing, then we

use root mean squared error (RMSE) as a metric to evaluate

the trained model. The results of fold one are shown in

Table I.

For fold one, its RMSE value can be computed as

RMSE =

√
∑6

i=1 RE2
i

6
(6)

Based on 5-fold cross validation method, the model with

minimal RMSE value can be selected for the initial charging

resources allocation problem.

B. Baseline Allocation Strategies

The core station is equipped with about 100 charging

points, thus we assume the number of charging resources

(e.g., mobile charging points or vehicles) awaiting to be

allocated is also 100. Different allocation strategies will lead

to different results. The allocation strategies to be compared
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Fig. 3. Waiting Time Comparison in Different Allocation Strategies

in this study include the results with LI-Allocation, Distance-

Allocation (Dis-A for short), Average-Allocation (Avg-A for

short) and No-Allocation (No-A for short). LI-Allocation

means the charging resources will be allocated to those

normal CSs based on their load increments estimated by

our regression model, while the baseline allocation strategies

include Dis-A, Avg-A and No-A. Dis-A strategy means CSs

near the maintained core station will obtain more charging

resources, i.e., based on their spatial distances from the

core station. And then, Avg-A strategy means the charging

resources will be allocated in a average way, that is, normal

CSs will obtain the same number of charging resources. And

finally, No-A means no charging resources are allocated to

CSs, reflecting the current situation in Shenzhen. Those four

strategies will be compared in two aspects: waiting time at

CSs and utilization of charging resources allocated to CSs.

C. Evaluations on Waiting Time

To evaluate the above different allocation strategies, we

firstly collect the recharging events of every EV taxi from

July 1st,2016 to July 7th,2016. During this week, the time

periods ranging from 2:00 A.M.-6:00 A.M. are selected for

our experiments, which covers the morning recharging peak

period. When all the charging points at a CS are occupied for

recharging, EV taxis reaching later will have to wait until an

EV taxi finishes its recharging, leading to the long waiting

time at CSs. Waiting time can be calculated in a direct way

by combining the information of charging points deployed

in CSs with recharging events occurred at those CSs, shown

as our previous work [10]. The results of waiting time under

different allocation strategies are shown in Figure 3.

We obtain the average waiting time of the EV taxi fleet

for a week and then make a everyday comparison. Figure 3

indicates the average waiting time is about 52 minutes in No-

A while other three strategies can reduce the waiting time in

different degrees. Obviously, our LI-A strategy outperforms

Dis-A and Avg-A, reducing the waiting time by more than

half. Besides, Dis-A performs better than Avg-A since the

distance away from the core station is taken into considera-

tion in Dis-A, while no factors related with load increment

is included in Avg-A.

Figure 4 indicates the waiting time distribution at every

CS in different allocation strategies. Every circle refers to

a CS. The deeper a circle’s color is, the more waiting time

the CS corresponding to the circle holds. Figure 4 (a) shows

the waiting time distribution at every CS in No-A strategy,

indicating the maintenance of the core station has a big

impact in EV taxi drivers. The position of the core station is

marked by a black arrow. Figure 4 (b) displays the waiting

time distribution in Avg-A strategy, reducing waiting time

a little for every CS. Figure 4 (c) presents the waiting time

distribution in Dis-A strategy and CSs are classified into four

zones based on their distances and directions from the core

station. It’s obviously observed that the waiting time of CSs

located in Zone A has reduced a lot compared with No-A,

due to the fact that those CSs are near the core station and

then will be allocated more charging resources. However, the

waiting time of CSs in Zone B, C and D has improved a little

since their long distance from the core station. Especially, the

waiting time of a medium CS located in Zone D has changed

little, leading to the complaints of local EV taxi drivers. And

finally, Figure 4 (d) indicates the waiting time distribution in

our LI-A strategy, reducing the waiting time of every CS

a lot. Therefore, our LI-A strategy outperforms Avg-A and

Dis-A strategies in reducing the waiting time of the entire

charging system.

D. Evaluations on Utilization of Charging Resources

Besides waiting time, the utilization of charging resources

can also reflect the performance of different allocation strate-

gies. When the amount of recharging requests is constant,

smaller number of occupied charging points means larger

number of EV taxis waiting at CSs. Thus a proper allocation

strategy for EV taxis should make more charging resources

occupied, improving the level of charging resources utiliza-

tion. We use the ratio of the number of occupied charging

resources over the number of total charging resources to de-

fine the utilization rate. The utilization ratio is evaluated with

the periods ranging from 2:00 A.M.-6:00 A.M, as the same

with the setting of waiting time experiments. We choose 30

minutes as the size of the interval because recharging events

always take up to hours. The average charging resources

utilization across all normal CSs in different allocation

strategies is presented in Figure 5.

When calculating the ratio, we assume the original charg-

ing points deployed in CSs will be the prior options for EV

taxis, that means the allocated charging resources will be

used until the original ones are all occupied for recharging.

As shown in Figure 5, the utilization achieved by our LI-

A allocation strategy outperforms Dis-A and Avg-A almost

in all periods. Meanwhile, the changing trends of curves

marked by Dis-A and LI-A can respond to time distribution

of EV taxi drivers’ recharging requests, that is, the morning

recharging peak period occurs during everyday’s 3:30 A.M.-

4:30 A.M. While the utilization in Avg-A strategy is less than
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Fig. 4. (a) Waiting Time Distribution in No-A (b) Waiting Time Distribution in Avg-A (c) Waiting Time Distribution in Dis-A (d) Waiting Time Distribution
in LI-A

Fig. 6. (a) Utilization Rate Distribution in Avg-A (b) Utilization Rate Distribution in Dis-A (c) Utilization Rate Distribution in LI-A
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Fig. 5. Utilization of Charging Resources in Different Allocation Strategies

50% even in the morning recharging peak period, indicating

its unreasonableness of charging resources allocation.

Figure 6 presents charging resources’ utilization rate dis-

tribution at every CS in different allocation strategies. It’s

evaluated still at the morning recharging peak time (i.e., 4:00

A.M.). Every circle refers to a CS. The deeper a circle’s

color is, the larger utilization rate the CS corresponding

to the circle holds. Figure 6 (a) shows the utilization rate

distribution at every CS in Avg-A strategy. Avg-A strategy

means each CS will obtain 3 charging points. Despite the CSs

in Zone A hold larger values of utilization rate, the waiting

time at those CSs is still not reduced much. Reasons for that

lie in the fact that the number of EV taxis reaching those CSs

exceeds the offered charging resources, thus EV taxis drivers

still have to wait despite of the high charging resources’

utilization rate. On the other hand, the offered charging

resources are sufficient for those CSs in Zone B since the

utilization rate at those CSs ranges from 0.2 to 0.6. It’s

obviously observed that many other CSs hold 0 utilization

rate, meaning the original charging points deployed in those

CSs are enough to meet recharging needs, thus charging

resources allocated to those CSs will be wasted.

Figure 6 (b) displays the utilization rate distribution in

Dis-A strategy, meaning CSs near the core station will obtain

more charging resources. However, utilization rate of those

near CSs is overall small, indicating that charging resources

allocated to those CSs are excessive. While some CSs far

from the core station still suffer from the long waiting time

problem since the number of charging resources allocated

to them is small due to their remote distance. There also

exists charging resources waste in Dis-A strategy, but it’s less

than Avg-A strategy. Figure 6 (c) indicates the waiting time

distribution in our LI-A strategy. Since charging resources

are allocated based on load increment of CSs, those CSs

with zero load increment will not be allocated charging

resources, and then they are removed from the figure. It’s

obviously observed that every CS in LI-A strategy holds a

large value of utilization rate, therefore, it can reduce the

overall waiting time and improve the overall utilization rate,

performing better than Dis-A and Avg-A strategies.

VI. CONCLUSION

In this paper, by utilizing GPS records of EV taxis and

information of charging stations deployed in Shenzhen, we

study the impact of core charging station maintenance in

the entire charging system. We firstly extract and analyze

some features related with the load increment, and then we

use a regression model to predict the load increment of a

normal CS based on those selected features. And finally,

a strategy based on our regression model is proposed for

charging resources allocation. Our experiments on the real

data set shows that our proposed allocation strategy can

reduce the waiting time at CSs by more than half, and

improving charging resources occupancy at the same time.

In the future, we would like to analyze the impact of

charging station maintenance in a more fine-grained way. We

should consider the chain reactions under such maintenance,

e.g., which EV taxis lead to the load increment of a normal

CS, and how the EV taxis that used to recharge at the CS

will react to the load increment.
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