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Abstract—Contactless smart card systems have gained univer-
sal prevalence in modern metros. In addition to its original goal
of ticketing, the large amount of transaction data collected by
the smart card system can be utilized for many operational and
management purposes. This paper investigates an important prob-
lem: how to extract spatiotemporal segmentation information of
trips inside a metro system. More specifically, for a given trip, we
want to answer several key questions: How long does it take for a
passenger to walk from the station gantry to the station platform?
How much time does he/she wait for the next train? How long does
he/she spend on the train? How long does it take to transfer from
one line to another? This segmentation information is important
for many application scenarios such as travel time prediction,
travel planning, and transportation scheduling. However, in real-
ity, we only assume that only each trip’s tap-in and tap-out time
can be directly obtained; all other temporal endpoints of segments
are unknown. This makes the research very challenging. To the
best of our knowledge, we are the first to give a practical solution
to this important problem. By analyzing the tap-in/tap-out event
pattern, our intuition is to pinpoint some special passengers whose
transaction data can be very helpful for segmentation. A novel
methodology is proposed to extract spatiotemporal segmentation
information: first, for nontransfer trips, by deriving the boarding
time between the gantry and the platform, and then, for with-
transfer trips, by deriving the transfer time. Evaluation studies
are based on large-scale real-system data of the Shenzhen metro
system, which is one of the largest metro systems in China and

Manuscript received May 6, 2014; revised December 6, 2014; accepted
February 27, 2015. Date of publication March 13, 2015; date of current version
March 10, 2016. This work was supported in part by the China National
Basic Research Program (973 Program) under Grant 2015CB352400; by the
National Natural Science Foundation of China under Grant 61202107, Grant
U1401258, and Grant 61202303; by the Natural Science Foundation under
Grant CCF-1016966; by the National High Technology Research and Devel-
opment Program of China (863 Program) under Grant 2014AA01A702; by the
Natural Science Foundation of Hubei Province under Grant 2014CFB1007; by
the National Key Technology Research and Development Program of China
under Grant 2012BAH46F03; and by the Fundamental Research Funds for the
Central Universities. The review of this paper was coordinated by Dr. P. Lin.
(Corresponding author: C. Tian.)

F. Zhang and J. Zhao are with the Shenzhen Institute of Advanced Technol-
ogy, Chinese Academy of Sciences, Shenzhen 518055, China, and also with
Shenzhen College of Advanced Technology, University of Chinese Academy
of Sciences, Shenzhen, China.

C. Tian is with the School of Electronic Information and Communications,
Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: alexandretian@gmail.com).

C. Xu is with the Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, China, and also with the Department
of Electrical and Computer Engineering, Wayne State University, Detroit, MI
48202 USA.

X. Liu is with the School of Computer Science, McGill University, Montreal,
QC H3A 0E9, Canada.

L. Rao is with General Motors Research Laboratories, Warren, MI 48090-
9055 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2015.2409815

serves millions of passengers daily. Onsite investigations validate
that our algorithm is accurate and that the average estimation
error is only around 15%.

Index Terms—Intelligent transportation systems, metro sys-
tems, smart card, smart city, trip segmentation.

I. INTRODUCTION

NOWADAYS, metro systems [1] have become one of
the most preferred public transit services [2]. Compared

with other services, metro has the benefits of high efficiency,
large volume, and fast speed. Recently, contactless smart card
systems have gained universal prevalence in modern metros.
Compared with traditional magnetic cards or paper tickets,
the smart card is a more secure and convenient method for
authentication and fare collection.

The transaction data collected by the smart card system can
be utilized for many operational and management purposes.
For metro systems, both the tap-in and tap-out records for each
trip are usually saved in the database. Each record contains at
least the time, the station, and the card’s ID of the transaction.
With these data, we can measure user travel behaviors and their
possible variances for the purpose of customer management
[3]–[5]. We can also analyze the access data to improve transit
planning or scheduling [6]–[8].

This paper investigates an important emerging problem:
Given the smart card tap-in and tap-out data, how do we ex-
tract spatiotemporal segmentation information of metro trips?
Shown in Fig. 1(a) is an example of a metro user, e.g., Alice’s
nontransfer trip in Line 1 (the dotted line): After tap-in at the
metro gantry, Alice takes L1 s to walk to the tap-in platform;
before the departure of the next available train, Alice waits
L2 s; she travels on the train for L3 s (including the dwell
time at the intermediate stations) and arrives in the tap-out
platform; walking from the platform to the tap-out gantry takes
L4 s; she waits at the tap-out gantry for L5 s, due to passenger
congestion, before she finally leaves the system. Fig. 1(b) is
Alice’s one-transfer trip from Line 1 to Line 2 (the wide line),
and there are more segments: L6 s for transferring to a Line-2
platform; L7 s have passed before the next Line-2 train departs;
Alice also spends L8 s on the second train. Spatiotemporal
segmentation of trips with multiple transfers can be modeled
similarly. In this model, L1, L4, and L6 are of particular
importance. They are dominated by the building structures of
each metro station, hence independent of moving passengers
or trains. For convenience of presentation, we use the term
boarding time to refer to both L1 and L4 and the term transfer
time for L6.
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Fig. 1. Spatiotemporal segmentation of Alice’s (a) nontransfer trip and
(b) one-transfer trip.

More specifically, for a given trip, we want to segment it
to several travel segmentations, with both location and time
information. This spatiotemporal segmentation information is
important in many application scenarios. With successfully
deduced L1, L4, and L6 values of every station, we have
developed several exciting motivation cases (see the details in
Section II).

For most modern metro systems, only each trip’s tap-in and
tap-out time can be directly obtained, and all other temporal
endpoints of the segments are unknown. By subtracting the
tap-in time from the tap-out time, the whole trip duration is
composed of L1 + L2 + L3 + L4 + L5 for a nontransfer trip or
L1 + L2 + L3 + L6 + L7 + L8 + L4 + L5 for a one-transfer
trip or even more segments for a multitransfer trip. Given
only the start and end time, the problem is how to deduce the
boundaries between two consecutive segments. To solve this
problem, we provide an efficient yet effective spatiotemporal
segmentation solution.

The intuition of our solution is as follows: There are some spe-
cial passengers (termed as Border-Walkers in the paper) in the
system, and we utilize their transaction data for segmentation.
To the best of our knowledge, we are the first to give a practical
solution to this important problem. The contributions of this
paper include the following.

• We define the role and illustrate the special functions of
Border-Walkers; a set of novel algorithms is proposed to
identify Border-Walkers by analyzing the tap-in/tap-out
event pattern (see Section IV).

• We further propose a novel methodology to extract spa-
tiotemporal segmentation information, first for nontrans-
fer trips by deriving the boarding time between the gantry

Fig. 2. Spatiotemporal passenger density of Line-4 trains from 7:00 A.M. to
10:00 A.M.

and the platform and then for with-transfer trips by deriv-
ing the transfer time (see Section V).

• We study our approach using large-scale data collected
from the Shenzhen metro system, which is one of the
largest metro systems in China; it serves millions of
passengers daily. We also present the detailed system
design, which realizes our algorithm (see Section VI).

• We perform a large-scale onsite investigation (i.e., we
manually take measurements and acquire the trip segmen-
tation information). The measured results validate that our
algorithm is accurate and that the average estimation error
is only around 15% (see Section VII).

Section III presents the overview of our solution.
Sections IV–VII discuss in detail each challenge and solution.
Section VIII discusses related work. Section IX concludes this
paper.

II. MOTIVATING APPLICATIONS

Here, we present several exciting use cases, as the motivation
example for this paper. They are all our ongoing projects, with
the objective of transforming our designed algorithms to real
applications that benefit the public transportation.

A. Real-Time Train Density Estimation

Many passengers care more about comfort than travel du-
ration [9], [10]. In a metro system, if the passengers waiting
on the platform can be informed of the real-time crowding
information of the following (several) trains (e.g., via the in-site
LED display), some might change their travel plans by getting
on an earlier or later and more comfortable train with fewer
people aboard.

Currently, this service is just unavailable. With only the
tap-in and tap-out information, the authority has no method
yet to figure out the approximated population in each running
train. Shown in Fig. 2 is the passenger spatiotemporal density
of Line 4 from a typical day: between morning peak hours
(i.e., 7:00 A.M. to 10:00 A.M.) and between stations BSC and
SNG; the deeper the red color, the more people on a train.
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Fig. 3. Waiting time in the tap-in platform and before the tap-out gantry.

The densities are unevenly distributed: We can clearly find that
red and blue density interleave among consecutive trains. After
investigation, we find that interzone trains are added for the
morning peak between the SZB and FTKA stations; they in-
terleave with the normal scheduled trains and are much less
populated since they skip the first several stations. However,
passengers on a platform are uncertain about the real-time
crowdness of the next coming train and the next next coming
train. Mostly, people just choose to board on the next train: To
them, without information, the next train might be even more
crowded; if this is the case, then waiting is just a waste of time;
as a result, most people simply take the next available train.

By travel segmentation, we can already accurately estimate
the historic spatiotemporal density of every operating train from
the records (as shown in Fig. 2). More importantly, combined
with passengers’ origin–destination (OD pair) prediction [11],
[12], we can predict the destination of each passenger when
he/she gets into the system; with that information and the
historical segmentation results, we then can perform real-time
passenger density estimation for each running train. We leave
the details of this ongoing project to future works.

B. Personalized Travel Planning

The exact spatiotemporal status of a passenger actually also
depends on other factors: the physical condition of a passenger
(e.g., disabled or not), peak or low traffic hours, etc. With the
help of the algorithms in this paper, we can perform Person-
alized Travel Planning, instead of the general travel planning
service currently provided (e.g., Bing Map and Google Map).

Our algorithms can extract information whose value is gen-
erally stable: for example, the average L1 (walk-in), L4 (walk-
out), and L6 (transfer) values of every station for normal people
under nonpeak hours. We can then analyze the variability of
every segmentation in the time domain. In Fig. 3, based on our

Fig. 4. Individual factors.

algorithms, we demonstrate the extra waiting time in the tap-
in platform and before the tap-out gantry for a typical day in
two stations. The average expected waiting time (blue line) in
the tap-in platform is calculated as half the interval between
consecutive trains. Some parts of the average line are lower
(usually at peak hours), since extra trains are added; hence, the
intervals are reduced.

In LongSheng station, the derived waiting time in the tap-
in platform (red line) is always higher than expected, since
this station is crowded, and many passengers have to wait for
several trains before getting on. Only in the evening peak does
the waiting line matches the average line, due to the effects of
added trains. As a comparison, the derived waiting time of the
FuMin station is almost the same as the expected time: This
station has extra trains for both morning and evening peaks. As
a comparison, tap-out waiting in the LongSheng station (green
line) seldom exists for almost the whole day because passengers
getting off at this station are few, whereas for the Fumin station,
there is extra waiting time before the tap-out gantry for almost
the whole day, particularly for morning and evening peaks.

We also analyzed the difference among individual passen-
gers, by segmenting each individual’s travels in nonpeak hours.
For each person, we sum up the numbers of trips he/she
misses a train, which a passenger at normal speed should get
in. Fig. 4 shows that 80% of passengers seldom miss any
train. However, nearly 1% of passengers are clearly slower in
action compared with the average: some even with a missing
probability as high as 50%.

With all these factors extracted, we are developing a project
that could provide Personalized Travel Planning based on both
hour consideration and historical individual record.

C. Metro Acquaintance

A social phenomenon is called “The Familiar Stranger.” For
example, Alice and Bob have different OD pairs; they live in
different districts and work in different districts. However, they
happen to transfer at the same station at approximately the same
time every workday; they are familiar with each other, and they
have feelings about each other, while none of them dare to make
the first contact [13].
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Fig. 5. System model from a train’s view.

“Metro Acquaintance” is an ongoing project with the objec-
tive of establishing such a special social network. Directly from
historical records, by travel segmentation, we calculate the meet
probability, when and where, that each pair of passengers have
met each other, either in the same platform, or in the same train.
By entering their card ID in the web entry, people can establish
a metro social network; the connection recommendation of the
social system is mostly based on the meet probability deduced
by the travel segmentation algorithms in this paper.

III. OVERVIEW

A. Modeling

We model the system from a train’s point of view. As shown
in Fig. 5, let us suppose n is a station of a metro line; we
also suppose that a specific train m travels in one direction and
stops by n; let us denote the time of its arrival and departure as
A(m,n) andD(m,n), respectively. Note here that we abuse the
term train m to represent, instead of a physical entity, a logical
entity as the combination of three attributes: line, direction, and
train sequence number.

We assume that the walking speed is constant for all pas-
sengers: In this case, L1 and L4 are station dependent, which
we can denote as L1(n) and L4(n), respectively. As a compar-
ison, L2 and L5 are passenger dependent; we denote them as
L2(passenger) and L5(passenger), respectively.

We illustrate the trajectories of four fictional passengers in
Fig. 5 as follows.

• Charlie enters station n, walks L1(n) s, boards train m,
and waits for L2(Charlie) s before train m departs.

• Alice enters station n later, also walks L1(n) s but boards
train m exactly at the departure time D(m,n).

• Bob alights from train m exactly at time A(m,n) when
trainm stops at station n, walks L4(n) s, and goes through
the station gantry immediately before all other travelers.

• David alights the train, also walks L4(n) s but waits
for L5(David) s in the tap-out list before he leaves the
station.

B. Intuition and Challenges of Solution

Charlie and David represent normal passengers: They spend
extra time in the system waiting, both at the platform, and
before the tap-out gantry. As a comparison, Alice does not
waste extra time waiting at the platform, i.e., L2(Alice) = 0;
Bob do not waste extra time waiting before the tap-out gantry,
i.e., L5(Bob) = 0. Alice and Bob are the special passengers we

Fig. 6. Solution scheme.

termed Border-Walkers in the paper; their transaction data can
be very helpful for segmentation.

Suppose for each (m,n) pair, there are two transaction
records in the smart card data: Alice’s tap-in time Tin(m,n)
and Bob’s tap-out time Tout(m,n). As shown in Fig. 5, we can
derive (1), which relates Border-Walkers data with train timing
A(m,n) and D(m,n), for each (m,n) pair. Thus

(i) Tout(m,n) =A(m,n) + L4(n)

(ii) Tin(m,n) =D(m,n)− L1(n). (1)

We already have Tin(m,n) and Tout(m,n); if A(m,n) and
D(m,n) can be fixed, then we can derive L1(n) and L4(n) for
station n. With all the values of A(m,n), D(m,n), L1(n), and
L4(n), it seems straightforward, at least for nontransfer trips, to
perform spatiotemporal segmentation information.

However, there are challenges to be overcome: first, how
to find these Border-Walkers (i.e., Bob and Alice) from all
the transaction records. Second, even with their data, the seg-
ment calculation cannot directly rely on published train arrival/
departure schedule. In many cases, only the schedules of the
first/last trains of each line are available to the public. Moreover,
there is no guarantee that each train would be punctual at
a second level, e.g., an unexpected contact between a train
gate and a passenger’s body can delay the scheduled departure
time for 10 s. In other words, A(m,n) and D(m,n) cannot
be directly fixed from public source; instead, they should be
derived as well.

The solution architecture is shown in Fig. 6. The deduction
first focuses on the nontransfer tap-in/tap-out data: From all the
records, we find the Border-Walkers for each (m,n) combina-
tion (step 1). With this information, we then derive the boarding
time for each station (step 2). Now, we incorporate tap-in/tap-
out data with one-transfer: The transfer time for each station
pair can be derived (step 3). Eventually, we can segment the
trips in our data set (step 4).
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Fig. 7. Tap-out events. (a) Busy time. (b) Idle time. (c) Temporal pattern.

IV. PINPOINT BORDER-WALKERS

A. Finding Bob

Bob can be found by mining the tap-out events. The key
insight here is that tap-out events usually form a periodical
idle–busy–idle pattern. As shown in Fig. 7(a), when a train m
arrives, there can exist many passengers that leave the train
together; they walk the same distance to the gantry and tend
to congest right in front of it; the resulting tap-out events are
relatively very frequent in the time domain. As a comparison,
the tap-out events are sparsely distributed between two such
busy times, as shown in Fig. 7(b).

Theoretically, it is straightforward to find Bob. All tap-out
events in the station are mapped to the time axis, as shown in
Fig. 7(c); the classic DBSCAN algorithm is adopted to cluster
the points [14]; the dense clusters, which are almost evenly
spaced in the time domain (due to the evenly-spaced train
schedule), can be identified. Each dense cluster corresponds
to the arrival of a train, and we consider in each cluster the
passenger with the earliest tap-out time as the special Bob for
which we are looking.

B. Finding Alice

Alice can be found after Bob. After identifying Bob, all pas-
sengers inside this dense cluster are correlated with a specific
train. Suppose there is a train m that travels in one direction and
stops by station n. For all the subsequent stations n+ 1, n+
2, . . . , N , tap-out passengers that belong to train m can be
identified. Among them, the subset of passengers tapping in at
station n are grouped together. We consider that with the latest
tap-in record as the special Alice for which we are looking.

C. Handling Exceptions

In practice, there are more challenges. We present in
Fig. 8 the tap-out event data of a metropolitan metro system in
China. The graph shows a partial set of stations of one line, with
four time periods in the same day; the time duration are all 15
min. Fig. 8(a), from 08:15 to 08:30, shows a part of the morning
peak; Fig. 8(b), from 16:15 to 16:30, is the normal state of the

system; Fig. 8(c), from 18:30 to 18:45, is the evening peak;
Fig. 8(d), from 22:15 to 22:30, shows the low hours of a day.

Overall, the periodical idle–busy–idle pattern is quite clear
in most cases. There are more implications that can be found.
First, the interval between consecutive trains is time dependent:
Compared with Fig. 8(b) and (d), Fig. 8(a) and (c) have more
clusters in 15 min, which implies shorter train intervals (this is
reasonable for morning/evening peaks).

Second, there are some types of exceptions that hinder the
clustering step as follows.

• (Type 1) There are too many events in some cases. The
train arrivals can be extremely frequent in the morning
peak, such as at station XiangMiHu shown in Fig. 8(a).
It is clear that the clustered long line of events contains
passengers from several consecutive trains.

• (Type 2) There are too few events in some cases. Station
DaXin demonstrates regular clusters in Fig. 8(a), whereas
it is almost impossible to identify any reasonable cluster
in Fig. 8(b)–(d).

• (Type 3) There are passengers moving in abnormal pat-
terns. A passenger Ethan in haste can run from the gantry
to the platform; as a result, he might get on train m,
instead of on m+ 1 if he moves at a normal speed.

Let us denote Bob’s tap-out time of train m at station n
as Tout(m,n). A whole day’s Tout(m,n) values thus form an
M ×N matrix (see Fig. 9). Type 1 and Type 2 exceptions cause
missing entries in the matrix.

The matrix has hidden structures: For example, Tout(m,
n)− Tout(m,n− 1) and Tout(m− 1, n)− Tout(m− 1, n−
1) are correlated since they are both dominated by the travel
time from station n− 1 to n; moreover, Tout(m+ 1, n)−
Tout(m,n) and Tout(m+ 1, n+ 1)− Tout(m,n+ 1) are cor-
related since they are both dominated by the interval between
train m and m+ 1. Leveraging the presence of these certain
types of structures and redundancy in collected data, compres-
sive sensing [15] can be used to interpolate the matrix to handle
Type 1 and Type 2 exceptions.

Type 3 exceptions are handled by anomaly detection [16].
Sticking to the Ethan example, we can analyze the relationship
between the tap-in time and the belonging train of passengers;
Ethan can be identified as an anomaly, instead of being treated
as Alice.

V. DERIVE BOARDING AND TRANSFER TIME

Using these special passengers’ data, we propose a novel
methodology to extract spatiotemporal segmentation informa-
tion, both for nontransfer trips by deriving the boarding time
between the gantry and the platform and for with-transfer trips
by deriving the transfer time.

A. Segment Nontransfer Trips

The challenge is to derive the boarding time L1(n) and
L4(n) for each station n. From (1), we could get

Tout(m,n)− Tin(m,n)

= L1(n) + L4(n)− (D(m,n)−A(m,n)) . (2)
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Fig. 8. Tap-out event pattern. (a) Morning peak. (b) Normal. (c) Evening peak. (d) Low hours.

Fig. 9. Tap-out value matrix.

Two characteristics can be exploited to solve (2). First, for
almost all metro lines in one direction, the passengers’ route to
the platform and the route from the platform in the same station
are the same. It is safe to assume that L1(n) is equal to L4(n);
hence, we approximate both L1(n) and L4(n) to be Lp(n).

Second, to reduce operational complexity, the dwell time
(i.e., D(m,n)−A(m,n)) is generally fixed for each station;
for the same reason, the value options are also limited. Com-
pared with Lp(n), dwell time values are relatively smaller.
Our interactions with transit agencies reveal that the typical
dwell time is around tens of seconds for small stations and is
estimated at a larger value for large stations. It is safe to approx-
imate dwell time by a fixed value Lw(n). In our system (see
Section VI), we use onsite investigations to estimate Lw(n).

Now, we have

Lp(n) = (Tout(m,n)− Tin(m,n) + Lw(n)) /2. (3)

If Tout(m,n), Tin(m,n), andLw(n) can be fixed, then for each
line station, the segment length Lp(n) between the gantry and
the platform can be derived. The timing for each train can be
calculated by

A(m,n) =Tout(m,n)− Lp(n)

D(m,n) =Tin(m,n) + Lp(n). (4)

Now, we have the estimated time values for each A(m,n)/
D(m,n) pair.

For each nontransfer trip, we can have spatiotemporal seg-
mentation. Assume that there is a trip from station n1 to n2; the
passenger performs tap-in at t(n1) and tap-out at t(n2). We can
get his boarding time L1/L4 as Lp(n1)/Lp(n2). Based on the
tap-out event’s belonging cluster [see Fig. 7(c)], the passenger’s
train m can be identified. We can then get how long the passen-
ger waits on the tap-in platform L2 as D(m,n1)− t(n1)− L1.
The travel time L3 in train m is A(m,n2)−D(m,n1); the
waiting time L5 can be derived as t(n2)−A(m,n2)− L4.
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Fig. 10. System model from a station’s view.

B. Segment With-Transfer Trips

The challenge is to derive the transfer time L6 for each
possible transfer option. To reduce interference, we only use
one-transfer trips for derivation. Let us suppose that the tap-in/
transfer/tap-out stations are n1, n2, and n3, respectively, and
we suppose that there are two trains, i.e., m1 on the first line k1
and m2 on the second line k2. A passenger gets on train m1,
then arrives at station n2 at time A(m1, n2), and leaves n2 at
time D(m2, n2) on train m2. Note that in the context of transfer
trips, the term station is a logical entity as the combination of
three attributes: line, direction, and the physical station.

For each transfer trip, we can easily figure out the tap-
out train m2 by the same approach previously mentioned.
However, how do we figure out the passenger’s tap-in train
m1? Let us first model the system from a station’s point of
view. Fig. 10 shows time advances from left to right. Let us
also suppose that n is a station; a specific train m arrives and
departs at A(m,n) and D(m,n), respectively; the next train
m+ 1 arrives and departs at A(m+ 1, n) and D(m+ 1, n),
respectively. In our approach, passengers with tap-in time be-
tween Tin(m,n) and Tin(m+ 1, n) are assumed to enter train
m+ 1, i.e., m1 can be fixed.

The method is to group all passengers transferred from line
k1 to line k2 at station n2: For each such trip, we can get its
A(m1, n2) and D(m2, n2) values. All values of D(m2, n2)−
A(m1, n2) are calculated. It is assumed that the trip with the
least D(m2, n2)−A(m1, n2) value has no waiting time (i.e.,
L7 ≈ 0). We take this as the transfer time L6(n1, n2) for each
n1, n2 pair. Based on this, we can perform segmentation for
each transfer trip, similar to that of the nontransfer trips.

C. Postprocessing

There are many trains running one after another on each
line, and a station is visited by 100–200 trains daily. Generally
speaking, with each train’s transaction data, we can obtain a
value of the boarding time Lp(n) for each station. As a result,
for each Lp(n), we actually obtain a group of values. The
problem is how to converge this set of values to a single Lp(n)
result. The same is the situation of transfer time calculation.

For a single Lp(n), most obtained values are close enough.
We did find abnormal values, which can be several hours. The
classic DBSCAN algorithm is again adopted to cluster the
points [14]. After excluding the exceptions, the minimum value
in the cluster is chosen as the optimal candidate for boarding
time or transfer time.

Fig. 11. System architecture.

Fig. 12. Processing flowchart.

VI. PROTOTYPE AND DATA SET

A. Processing System

Our spatiotemporal segmentation algorithm processes a large
amount of data and, correspondingly, requires intensive sorting
and grouping operations. Fig. 11 shows that the implemented
system has three layers: the data layer, the model layer, and the
application layer.

• The data layer is used mainly for storage purposes and
MapReduce [17]/Hadoop [18] job processing. There are
three kinds of data: smart card transactions, metro ba-
sic information, and intermediate and final results. The
storage part uses HDFS [19] and Hbase [20], which
is a distributed, scalable, and big data store. The data
layer accepts MapReduce jobs from the model layer and
effectively accomplishes them by data processing. Some
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Fig. 13. Metro graph of Shenzhen.

software tools, such as PIG [21] and HIVE [22], are also
used. The results are sent back to the model layer or stored
to HDFS.

• The model layer is used to accept the query requests from
the application layer; a query is translated to a series of
MapReduce jobs. It uses the smart card and other data
from the data layer to build the analytical model: clus-
tering model for tap-out events, analytical model for tap-
out value matrix, analytical model for boarding time, etc.

• The application layer performs model analysis, such as
analysis on the characteristics of passengers, boarding
time, spatiotemporal segments, transfer time, etc.

B. Flowchart

The processing flowchart is shown in Fig. 12. The details of
data preprocessing and classification steps are given below.

TABLE I
TRANSACTION RECORD FORMAT

Data Preprocessing: Every trip contains one tap-in event
and one tap-out event; this step joins them together out of the
transaction data by matching card ID and time. Moreover, the
redundancy should be removed, and the inconsistency should
be solved in smart card data.

Classification: This step is to divide the trips from step 1 into
three categories: nontransfer trips, one-transfer trips, and mul-
titransfer trips. As previously mentioned, only nontransfer and
one-transfer trips are used for boarding/transfer time extraction.
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Fig. 14. Boarding time. (a) Line 1—Green. (b) Line 2—Orange. (c) Line 3—Blue. (d) Line 4—Red. (e) Line 5—Purple. (f) Distribution.

C. Data Set

Our data set is the metro transaction data from Shenzhen,
China. There have been over ten million public transit smart
cards issued, and these smart cards can be used for both the bus
and metro systems. Metro alone has, on average, 2.5 million
transactions per day, which is estimated to be one third of the
total public transit load. Fig. 13 shows the existing five lines by
the end of 2013; there are eight more lines coming over the next
seven years.

The data set contains two months’ metro transaction records
from September 1 to October 30, 2013. Each record represents
a single card-swipe event, either tap-in or tap-out. The four
import fields are listed in Table I. The data are about 500 MB
per day or 15 GB per month.

We perform a dwell time onsite investigation for all five lines
and get the resulting Lw(n) for our algorithm. The result is that
for small stations, the dwell time is around 20 s, whereas for
large stations, it is around 35 s.
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Fig. 15. Transfer time at each station. We have to abbreviate the information on the x-axis for better presentation. For example, 1D5UBAZX (second item from
left to right in the x-axis) denotes the following: from Line 1 Downward direction, transfers to Line 5 Upward direction, in BaoAnZhongXin station.

VII. EMPIRICAL EVALUATION AND VALIDATION RESULTS

Here, we present the empirical results by applying our ap-
proach to Shenzhen metro system analysis. First, we analyze
the obtained boarding/transfer time. A large-scale onsite inves-
tigation is performed, which validates our design. Finally, we
segment the trips to show the effectiveness of our approach in
analyzing passenger travel patterns.

A. Boarding Time

For each station, the boarding time of two opposite directions
is derived separately. The obtained boarding time of five lines
is shown in Fig. 14(a)–(e). There are two bars in each station:
Each represents one direction.

First, let us observe the boarding time of Line 1. The board-
ing time pattern of Line 1 is typical, compared with other four
lines [see Fig. 14(b)–(e)].

A first observation is that the time of both directions in the
same station is mostly comparable. The reason is that most
stations have their trains, of the same line, stop at the opposite
sides of the same platform. There are also exceptions, i.e.,
LaoJie and GuoMao. We perform onsite investigation in the two
stations. The reason is that their platforms of opposite directions
are located in different layers of the same building, due to
architectural constraints. The identification of these exceptional
cases indirectly verify the accuracy of our approach.

Second, for most stations, the boarding time is less than 60 s.
Only very few stations have large boarding time, as that of
QianHaiWan and JiChangDong stations. These are large sta-
tions with transfer functions: The building design is larger,
hence resulting in prolonged walking time.

Shown in Fig. 14(f) is the total cumulative distribution
function (cdf). As we can see, for 70% stations, the boarding
time is less than 60 s; for only 5%, the boarding time is larger
than 100 s.

B. Transfer Time

Fig. 15 shows the transfer time of every possible choice.
Again, there are two bars for each n1, n2 pair: Each represents
one direction. There are several wide bars: In these stations,
there is only one-way transfer from one line to another; usually,
such a station is the end point of a line.

As we can observe, mostly, the transfer time is less than 90 s.
However, the transfer time related to the ShenZhenBei station
is extremely high, compared with others. The reason is that the
metro station itself is actually fully embedded in the Chinese
High Speed Rail station. The huge building makes the transfer
between lines a really long journey.

C. Validation

To verify the correctness and reliability of the methodology
given in this paper, we have performed a large-scale onsite
investigation. Fig. 16 shows the results’ comparison between
the investigation and our approach: The x-axis is the value of
boarding/transfer time; the y-axis is the total cumulative distri-
bution function value. As shown in the figure, our approach can
effectively and accurately derive the boarding/transfer time.

The numerical results are also given in Table II. Regarding
the boarding time, our average estimation error is between 10%
and 20% for each line; on average, the error is only around
15%, which validates that our algorithm is relatively accurate.
With regard to the transfer time, the results are even better: The
average estimation error is less than 13%.

D. Segmentation

Based on the obtained boarding and transfer time, we can
extract the spatiotemporal segments of trips. The trip seg-
mentation results are shown in Fig. 17. For each trip, the
obtained L1/L2/L3/L4/L5 values are transformed into the
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Fig. 16. Onsite validation. (a) Boarding time cdf. (b) Transfer time cdf.

TABLE II
ESTIMATION ERRORS

corresponding percentile format. For each line, the percentile
values are averaged over all trips in our database.

For nontransfer trips, the onboard time L3 dominates: It
accounts for around 70%–80% of the total trip time. Notice
that L3 includes both the train travel time and the dwell time
at intermediate stations. The boarding time is similar for all
lines: L1/L4 normally takes around 3%–5% of the total trip.
The waiting time at the tap-in platform L2 is different among
lines: Less than 12% is spent for Line-1 travelers, whereas for
Line 4, this value is nearly 19%. The reason is that Line 1 is the
most crowded line, and the interval between trains is smaller.
As a comparison, the waiting time at the tap-out platform (i.e.,
L5) is negligible: only 1%–2% for every line.

The one-transfer trips’ segmentation is shown in Fig. 18. The
trips with transfers are typically longer. Boarding time (L1 and
L4) and the waiting time (L2, L7, and L5) are similar in value

Fig. 17. Spatiotemporal segmentation of no-transfer trips.

Fig. 18. Spatiotemporal segmentation of one-transfer trips.

compared with nontransfer trips; as a result, their percentiles
decrease in the whole trip. The average onboard time L3 + L6

is over 72%. The average transfer time is 84 s, which is around
4% of the trip.

VIII. RELATED WORK

Most travel behavior analyses focus on the aggregated traffic
patterns. The two peak access patterns are common during
weekdays: People go to work in the morning and go home in
the evening. As a comparison, transactions are more evenly
distributed during weekends [3], [4]. There are some existing
analyses that also used data from Shenzhen [5], [23], [24].
They focus on the aggregated temporal usage of the whole
metro system. In [24], the spatial characteristics of the station
usage model are studied. Our previous work [5] studies the
aggregated temporal and spatial travel patterns of passengers
by mining smart card data. Different from all previous works,
this paper focuses on independent trips: We plan to segment
each transaction trip into travel segments.
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One of our previous works studies the passenger density
for public bus [8]. However, unlike metro, the bus boarding
and departing time can be easily identified by the card tap
events. Sun et al. estimate the spatiotemporal density inside a
metro system. However, their system model is oversimplified:
They assume a uniform boarding time and dwell time for every
station. Furthermore, their algorithm requires physical distance
among stations as input and does not deal with the transfer time
between lines [25]. As a comparison, in our paper, the boarding
time is derived for every station separately, which is a more
practical work. We require the estimation (instead of explicit
value) of the dwell time of each station as input, which is much
easier to get via field investigation. We also derive transfer time
between lines.

There are other works dedicated to the analysis of transporta-
tion systems based on mining large-scale data, such as freight
trunks [26], taxis [27], public buses [28], and even electrical
vehicles [29].

IX. CONCLUSION

In this paper, we have investigated an important problem:
how to extract spatiotemporal segmentation information of
metro trips by only utilizing the tap-in and tap-out information.
To the best of our knowledge, we are the first to provide
a practical solution to this important problem. We first pro-
pose a set of novel algorithms to identify Border-Walkers by
analyzing the tap-in/tap-out event pattern; based on that, we
further propose a novel methodology to extract spatiotemporal
segmentation information: first for nontransfer trips by deriving
the boarding time between the gantry and the platform and then
for with-transfer trips by deriving the transfer time. We study
our approach in the case of Shenzhen metro system and perform
a large-scale onsite investigation. The onsite measured results
validate that our algorithm is accurate and that the average
estimation error is only around 15%.
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