
Minimizing Content Reorganization and
Tolerating Imperfect Workload Prediction for
Cloud-Based Video-on-Demand Services

Chen Tian,Member, IEEE, Yi Wang, Yan Luo,Member, IEEE, Hongbo Jiang,Member, IEEE,

Wenyu Liu,Member, IEEE, Jie Wu,Member, IEEE, and Hao Yin,Member, IEEE

Abstract—Video-on-demand (VoD) services historically rely on commercial content distribution networks (CDNs) for on-demand

capacity provisioning. Content providers gradually prefer a self-managed content infrastructure because of its full control and

customization. However, such a dedicated physical infrastructure could be costly in initial capital investment, and complex in

management. It has become a promising alternative to host VoD services on pay-as-you-go cloud platforms, on which using dynamic

server provisioning to reduce server rental cost is the key objective of content providers. In this paper we address two major challenges

to reducing cost: to minimize content reorganization and to tolerate imperfect workload prediction. We first present a practical VoD

servicing system design based on a pay-as-you-go cloud. We prove that previous works, focusing exclusively on cost savings, cause

significant content reorganization and are vulnerable to imperfect workload prediction. To address such issues, we propose a novel

idea called workload absorber, and design a provisioning algorithm called Absorb Window based on the idea. Workload absorbers

eliminate the bandwidth wastage and significantly reduce content reorganization. We conduct extensive evaluations with real VoD

access traces, and demonstrate the superior scalability of the proposed algorithm by producing highly optimized provisioning in

seconds for thousands of servers.

Index Terms—Dynamic server provisioning, video-on-demand, cloud computing

Ç

1 INTRODUCTION

ONLINE streaming has already dominated nowadays
Internet traffic [1], [2], [3], [4], and its main form is

video-on-demand (VoD). There are dedicated online VoD
providers (e.g., NetFlix, Hulu, Youku); there also exists
large websites which need to service a significant amount of
VoD requests everyday (e.g., MSN, SINA). Historically,
most VoD services rely on commercial content distribution
networks (CDNs) (e.g., Akamai, Limelight) for on-demand
capacity provisioning [5].

However, from a provider’s perspective, a self-managed
content infrastructure is more preferable than commercial
CDNs. For example, link stealing is a serious problem in
China [6]: a pirate VoD software could first stream an adver-
tisement to a user, then redirect all subsequent VoD requests
to the official provider’s video links; in this way, the pirate
software could get the advertisement income, while without

the burden of video servicing. Our conversation with a
major provider reveals that: even though its technical team
manages to change the URL of each video segment every
10 minutes, link stealing would only be temporarily dis-
abled, but not completely resolved. As a result, many video
content providers in China (e.g., Youku, Sohu, Tencent)
choose to build their own hosting infrastructures [7].

A dedicated physical infrastructure comes with costly
capital investment and complexity in operation and man-
agement. An alternative is to build a dedicated virtual infra-
structure based on a pay-as-you-go cloud platform.
Infrastructure-as-a-service (IaaS) cloud platforms, such as
Amazon AWS, enable on-demand virtual server provision-
ing billed hourly. The management operations of the VoD
platform become turning on/off (virtual) servers through
APIs of the Cloud platform. An example in this trend is Net-
flix: Netflix used to host contents in commercial CDNs [8];
recently, it shifts most of its traffic from Akamai and Lime-
light to its own AWS-based infrastructure [9], [10].

Minimizing servicing cost (i.e., resource cost paid to
Cloud provider) is essential to such a Cloud-based VoD sys-
tem. It is well-known that the workload of a typical web sys-
tem exhibits a periodical access pattern on a daily basis [11].
For a VoD service, the bandwidth cost is almost fixed: every
user request should be fulfilled, otherwise the quality-of-
service (QoS) is compromised. The major opportunity of
cost reduction is to save server rental cost through dynamic
server provisioning or DSP, that is, to dynamically configure
the number of active servers in response to the temporal
fluctuation of VoD requests [12], [13], [14], [15].

Previous works only focus on minimize the cost [16],
[17], however overlook two major challenges to cost

� C. Tian is with State Key Laboratory for Novel Software Technology,
Nanjing University, China. E-mail: tianchen@nju.edu.cn.

� Y. Wang, H. Jiang, and W. Liu are with the School of Electronic Information
and Communications, Huazhong University of Science and Technology,
Wuhan, China. E-mail: {ywang, hongbojiang, liuwy}@hust.edu.cn.

� Y. Luo is with the Department of Electrical and Computer Engineering,
University of Massachusetts Lowell, Lowell, MA 01854.
E-mail: yan_luo@uml.edu.

� J. Wu is with the Department of Computer Science, Fudan University,
Shanghai, China. E-mail: jwu@fudan.edu.cn.

� H. Yin is with the Department of Computer Science, Tsinghua University,
Beijing, China. E-mail: h-yin@mail.tsinghua.edu.cn.

Manuscript received 14 July 2014; revised 9 Feb. 2015; accepted 17 Mar. 2015.
Date of publication 26 Mar. 2015; date of current version 9 Dec. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2015.2416733

926 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2016

1939-1374� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

minimization. First, the cloud based VoD system should
minimize content reorganization, which refers to the change
of stored content in servers. As the content requests
change dynamically, it is inevitable to adjust the storage
organization to serve the new requests. Moving content
around causes management overhead: (a) a daemon pro-
cess needs to guarantee the completion of the reorganiza-
tion operations; (b) the service could be temporally
impaired due to content changes; and (c) the network
bandwidth is consumed to copy the content. Dynamic
server provisioning should also strive to minimize the
number of content storage organization changes. Second,
the system should tolerate imperfect workload prediction.
Despite extensive analysis of past workloads patterns,
the uncertainty of new requests cannot be completely
eliminated. A common approach is “safety margin”: over-
provisioning servers beyond the expected workload to
absorb unpredictable surges. However, providing mar-
gins blindly would unnecessarily increase the number
of active servers hence the cost. The dynamic server pro-
visioningshould strive to minimize the degree of over-
provisioning under imperfect prediction scenarios.

To the best of our knowledge, we are the first to give a
practical solution to cloud based VoD by minimizing the
servicing cost and content reorganization, and tolerating
imperfect workload prediction. The contributions of this
paper include:

� We propose a practical VoD servicing system based
on a pay-as-you-go Cloud. Specifically, we present
an industrial practice of video content consolidation
scheme, which significantly improves the scalability
of management (Section 2).

� We mathematically define dynamic server provi-
sioning and solve a two-dimensional-splittable packing
problem, with respect to the requirements of mini-
mizing content reorganization and tolerating imperfect
workload prediction (Section 3).

� We prove that previous works, although could
achieve near optimal cost saving, cause significant
content reorganization and are vulnerable to imper-
fect workload prediction (Section 4).

� We propose a novel workload absorber idea (Section 5),
and design an absorb window (AW) approach based it.
We extend the design to handle important practical
issues such as heterogeneous servers, merging newly
added contents, etc (Section 6).

� We conduct extensive evaluations with real trace
data and demonstrate that the approach is highly
scalable: producing high-quality provisioning in
seconds for thousands of servers (Section 7).

The rest of paper is organized as follows. Section 8 pro-
vides the algorithm extension to support heterogeneous
cloud servers. Section 9 discusses the related work.
Section 10 concludes the paper.

2 A CLOUD-BASED VOD SYSTEM

VoD content distribution platforms follow different archi-
tecture. There are primarily two CDN design philosophies
[18]. The first is to enter deep into ISPs: by deploying surro-
gate servers inside ISP point of presence (PoP), the cached

content is close to users. The leading CDN provider Akamai
is of this type. Another philosophy is to bring ISPs to home,
which builds large data centers and peering these centers
extensively with ISPs. The cloud-based VoD system focused
on in this paper belongs to the latter type as VoD streaming
is sensitive to throughput, instead of latency, between serv-
ers and users. Although there exist commercially available
Cloud-based content delivery services [19] such as Amazon
CloudFront, we study a self-managed, highly customizable,
cloud-based content delivery infrastructure for VoD due to
the content ownership and needs to protect revenues from
“link stealing”.

This section presents an overview of our target cloud-
basedVoD System. Section 2.1 gives the background of Cloud
pricing and resource limitation of each virtual server type.
In Section 2.2, we discuss the design choice of content storage.
Section 2.3 defines the dynamic server provisioning problem.
Section 2.4 presents the industrial practice of content
consolidation. The system diagram is shown in Section 2.5.

2.1 Cloud Pricing

A pay-as-you-go cloud platform provides a collection of on-
demand computing, networking and storage services. Com-
puting, together with networking, is provided in the granu-
larity of a virtual server. Table 1 is a partial list of the
current Amazon elastic compute cloud (EC2) pricing for on-
demand general purpose virtual servers in US East region
[20], [21]. A virtual server is charged based on per-whole-
hour usage; each server has a resource limitation in comput-
ing, memory, instance storage and bandwidth. Note that the
bandwidth capacity metrics are not published by Amazon;
one of our recent work obtains these values via large-scale
measurements [22].

There are two networked storage options in Amazon:
S3 [23] and EBS [24]. Amazon S3 is designed to make web
access easier for developers via a simple web-service
interface that can be used to store and retrieve data.
Amazon EBS provides persistent storage volumes for use
with Amazon EC2 instances in the AWS Cloud. EBS is
superior compared with S3, in terms of latency and
throughput, since it targets intra-datacenter usage [25].
There are three EBS volume types: General Purpose (SSD),
Provisioned IOPS (SSD), and Magnetic. Their pricing is
listed in Table 2. Among them, only Provisioned IOPS is
designed for I/O-intensive applications with workloads.

2.2 Design Choice of Content Storage

To service the requests to our cloud based VoD system,
there are two options: one is that servers directly fetch the
content from the networked storage (i.e., EBS Provisioned

TABLE 1
EC2 Pricing per Machine-Hour

Type Small Medium Large

Linux/UNIX Price $0.060 $0.120 $0.240
Virtual CPU 1 2 4
Memory (GiB) 1.7 3.75 7.5
Storage (GB) 1�160 1�410 2�420
Bandwidth (Mbps) 300 900 1,200

TIAN ET AL.: MINIMIZING CONTENT REORGANIZATION AND TOLERATING IMPERFECT WORKLOAD PREDICTION FOR CLOUD-BASED... 927

IOPS volume) to serve; another is that a server preloads the
content into its local instance storage, and fetches from the
instance storage when requests come.

Directly using the networked storage has two major
shortcomings. First, such networked storage incurs unnec-
essary cost: every I/O request counts for networked storage.
As a comparison, the access to instance storage of a virtual
server is essentially free. Second, the network throughput
between networked storage and servers is not guaranteed.
For intra-datacenter networks [26], [27], [28], [29], [30], [31],
[32], currently there is no guarantee for bandwidth [33],
[34], [35]. It is reported that the throughput of both S3 and
EBS could be compromised during heavy intra-datacenter
network load period [25]. In contrast, the instance storage is
physically collocated with the virtual server and is free
from intra-datacenter network contention. The drawbacks
of instance storage are: (1) it is limited in capacity on a single
server and (2) it is not persistent or robust against failures.

To achieve robustness, our VoD system chooses to store all
original video contents in persistent networked storage EBS
inside exactly the same data center. To achieve performance
guarantee and cost reduction, the content is served from
instance storage instead of from networked storage directly.
Specifically, when a server is scheduled to service a specific
content, the assigned contents would be copied from EBS to
the server’s instance storage ahead of the service. Then the
server could serve subsequent requests to the same content.

2.3 Dynamic Server Provisioning

Minimizing servicing cost is central to a Cloud-based sys-
tem. The major chance is to save server rental cost via
dynamic server provisioning, which dynamically config-
ures the number of active servers in response to the fluctuat-
ing VoD workload. For a virtual server in Cloud, two
resources are limited for servicing streaming requests: disk
storage and network bandwidth. Storage usage depends on
the content stored in the server; bandwidth usage depends
on the assigned requests for those stored contents. Each
server has a pre-defined instance storage upper-bound sim-
ply because it is impossible to store all video contents within
every single server. Each server also has a pre-defined band-
width upper bound as it is impossible to serve all the
requests from a single server. Server provisioning hence can
be transformed to a two-dimensional bin packing problem:
each server is a bin with two dimensions; each content is an
item with two dimensions; the objective is to pack all the
items with the minimum number of bins.

An optimized dynamic server provisioning should, in
every schedule slot, minimize the number of active servers.
Asmentioned in Section 1, for a practical dynamic server pro-
visioning approach in a production VoD system, there are
two major challenges need to be considered together with
cost minimization: minimize content reorganization and

tolerate imperfect workload prediction. Besides, dynamic
server provisioning should also consider other practical
issues, for example, incrementally merge newly added con-
tent is a daily job; reach acceptable algorithm execution time
etc. Note the assumption here is that all servers have the
same capacity. We notice the possibility of cases where a
group of heterogeneous server instances are required. There-
fore we have an extension of the approach to handle hetero-
geneous servers in later part of the paper (Section 8).

2.4 Industrial Practice of Content Consolidation

It is unscalable to manage content at a per-video granular-
ity. First, the number of videos is too large for scheduling
algorithms. Second, it causes difficulties for management
operations such as replacing one video with another, since
the file sizes of two videos are very likely to be different.
Third, it is hard to have a stable popularity prediction for
every single video.

The industrial practice we learned from the pre-Cloud
era is to group videos into separate channels, and use a chan-
nel as the finest management granularity. All channels have
the same nominal size, usually several hundred gigabytes;
each channel could contain hundreds, sometimes thou-
sands, of videos. The advantages are three-fold:

� The number of managed units is greatly reduced.
� The management is scalable since one can directly

replace one channel in the storage with another.
� The workload prediction at channel level is more

accurate and stable due to the effect of aggregation.
However, the disadvantage of channel level manage-

ment is that server provisioning is now even more challeng-
ing. Assume that the bandwidth demand of every channel
is smaller than the minimum value of each server’s band-
width constraint. Combined with the storage constraint, the
cost optimization can be formulated as a two-dimensional
bin-packing problem, and a simple two-dimensional First-
Fit algorithm could be used to approximate the optimal
solution [36]. However, this assumption is hardly true for
large-scale VoD systems: a single hot channel alone could
require multiple servers together to serve its peak workload.
In other word, the same channel might have multiple copies
of videos in multiple servers; the bandwidth demand sched-
uling must be splittable among servers.

To summarize, after content consolidation to channels,
we formally define dynamic server provisioning to solve a
two-dimensional-splittable packing problem, with respect to
both minimizing content reorganization and tolerating imperfect
workload prediction.

Fig. 1 gives an illustration of how the cloud based VoD
system works. Fig. 1a shows the configuration during an
peak hour: instances of four different channels (x, y, z and
w, labeled as “CH x”, “CH y”, “CH z” and “CH w”, respec-
tively) are consolidated across four servers (A, B, C and D).
Assume that the total workload greatly decreases at the
non-peak hour; more specifically, the workloads of channel
y and z decrease significantly. Then dynamic server provi-
sioning schedules the instance of channel z in server B being
replaced by an instance of channel w, as shown in Fig. 1b.
Meanwhile server D is stopped hence the cost in the non-
peak hours is minimized.

TABLE 2
EBS Pricing

Type Storage I/O requests

General Purpose $0.100 per GB-month 0
Provisioned IOPS $0.125 per GB-month $0.065 per IOPS-month
Magnetic Volumes $0.05 per GB-month 0.05 per million

928 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2016

2.5 System Overview

Fig. 2 shows our dynamic server provisioning control loop
in a Cloud based VoD system. The system is composed of
the following components: Request Router, Workload Estima-
tor, Instance Placement Controller, Placement Executor, as well
as back-end Servers.

According to the predicted workload of each channel pro-
vided by Load Estimator, the Instance Placement Controller
periodically makes decisions on how many servers of the
whole system should be active in the next timeslot (a timeslot
here is the time unit of scheduling, e.g., one hour), outputs a
placement solution which optimizes certain objective func-
tions, and then passes the solution to the Placement Executor
to start/stop servers and/or migrate channel instances
accordingly. The Request Router receives external requests
and forwards them to the instances based on the calculated
workload dispatching decisions.

This paper focuses on the approach used by the Instance
Placement Controller, which has significant influence on
server costs. The specific workload estimation methodology
is out of the scope of this paper. Instead, the workload pre-
diction values, as well as their variances, are assumed to be
given as system inputs in our work, as many previous stud-
ies use real-time profiling and data regression to dynami-
cally estimate the workload [11], [37], [38].

3 PROBLEM FORMULATION

We formulate the problem by modeling the resource con-
straints of individual servers and subsequently the cloud
environment consisting of a set of servers. Table 3 lists sym-
bols used in this paper. The inputs to the placement control-
ler include: the current placement matrix I�, the bandwidth
and storage capacities of each server (Bn and Cn), and the
predicted bandwidth demands of each channel (vm) in the
next time slot. The outputs of the placement controller are
the updated server active matrix J , placement matrix I and
the workload distribution matrix Q.

The optimization objectives are prioritized as below:

ðiÞ Minimize:
X

t2T

X

n2N
Jn;tEn

ðiiÞ Minimize: cðtÞ ¼
X

m2M

X

n2N
Im;n;t � Im;n;ðt�1Þ
�� ��; 8t 2 T:

(1)

Objective ðiÞ specifies the minimize cost goal; ðiiÞ specifies
the minimum reconfiguration rule.

We start from a homogeneous system where all servers
have the same bandwidth capacity B and storage capacity
C. This is consistent with our baseline cloud VoD scenarios.
The objectives and constraints are as follows:

ðiÞ Minimize:
X

t2T

X

n2N
Jn;t

ðiiÞ Minimize: cðtÞ ¼
X

m2M

X

n2N
Im;n;t � Im;n;ðt�1Þ
�� ��; 8t 2 T

ðaÞ Jn;t ¼ 0) Qm;n;t ¼ 0; 8m 2 M; 8n 2 N; 8t 2 T

ðbÞ Im;n;t ¼ 0) Qm;n;t ¼ 0; 8m 2 M; 8n 2 N; 8t 2 T

ðcÞ
X

m2M
Im;n;t � C; 8n 2 N; 8t 2 T

ðdÞ
X

m2M
Qm;n;t � B; 8n 2 N; 8t 2 T

ðeÞ
X

n2N
Qm;n;t ¼ vm; 8m 2 M; 8t 2 T

ðfÞ Qm;n;t � 0; Im;n;t 2 f0; 1g; Jn;t 2 f0; 1g;
8m 2 M; 8n 2 N; 8t 2 T:

(2)

Fig. 1. Dynamic server provisioning by content consolidation (a) peak
(b) non-peak.

Fig. 2. Control loop.

TABLE 3
Symbols Used

N The set of customized video servers.

n One server in the setN .
M The set of content channels.
m One channel in the setM.
T The sequential set of time slots.
t One time slot in the set T .
I The content instance placement output of the algorithm.

Im;n;t ¼ 1 if an instance of channelm is running on machine
n in timeslot t; Im;n;t ¼ 0 otherwise. I� ¼ Iðt� 1Þ is the place-
ment matrix in the previous slot.

Q The workload dispatching output of the algorithm. Qm;n;t is
the bandwidth resource allocated on server n for channelm
in timeslot t.

J The dynamic provisioning output of the algorithm. Jn;t ¼ 1 if
server n is active in time slot t; Jn;t ¼ 0 otherwise.

Cn The storage resource capacity of server n.
Bn The bandwidth resource capacity of server n.
En The per server per hour cost of server n.
vm The predicted bandwidth demand of channelm.
c the calculated number of needed placement change.

TIAN ET AL.: MINIMIZING CONTENT REORGANIZATION AND TOLERATING IMPERFECT WORKLOAD PREDICTION FOR CLOUD-BASED... 929

4 LIMITATIONS OF EXISTING ALGORITHMS

Similar problems related to VoD dynamic server provision-
ing have been investigated in theoretical computer science
community as the class constrained bin packing problem
(CCBP) [16], [17]. Specifically, the most common CCBP for-
mulation is that: there are unit-sized items of M distinct
classes, which have to be packed into N knapsacks; the
objective is to find an allocation which minimizes N . Here
in our context, a class is semantically equivalent to a chan-
nel, and a knapsack is semantically equivalent to a server. It
is proved that CCBP is NP-hard [16].

A near-optimal polynomial time approximation scheme
called moving window (MW) has been proposed in [16].
However, this algorithm only minimizes the cost by mini-
mizing the number of servers; it does not consider minimiz-
ing content reorganization or tolerating imperfect workload
prediction. The details of MW will be given in Section 4.1.
In Section 4.2, we demonstrate the shortcomings of this
approach to motivate the necessity of a new algorithm. In
Section 7, we compare with MW algorithm to demonstrate
the superior performance of our proposed algorithm.

4.1 Class Constrained Bin Packing

Regards the CCBP form of dynamic server provisioning, the
input is the total workload v, which consists of M distinct
classes, given as the subsets v1, . . ., vM ; there are vm items
of class m, 1 � m � M, and v ¼ v1 [v2 [. . . [vM . There
areN knapsacks, each having a limited volume B and a lim-
ited number C of compartments, in which the items can be
placed. Accordingly, in each server we can place items of at
most C different channels.

The output is a placement strategy, which specifies how
to allocate compartments for each server n, and how many
items of each class m are placed in n. A placement is called
legal if n is allocated at most C compartments, and the over-
all size of the items placed in n does not exceed B, for all
1 � n � N . The objective is to find a legal placement, thereby
minimizing the number of knapsacks.

There exists approximation algorithms for CCBP prob-
lem. In [16], Shachnai and Tamir presented the moving win-
dow approximation scheme for CCBP. The algorithm keeps
a vector R ¼ ðR½1�; R½2�; . . . ; R½M�Þ where R½m� is the num-
ber of remaining items to be packed of a class m. The vector
is maintained in non-decreasing order of the values R½m�
during the execution of the algorithm. At any given
moment, it tries to pack C different classes to obtain a pack-
ing of a new bin. To that end, the algorithm keeps a window
of C classes. At first, the window encompasses items from

R½1� to R½C�. If PC
m¼1 R½m� � B, the algorithm packs the cor-

responding classes of R ¼ ðR½1�; R½2�; . . . ; R½j�Þ, where j � C

is the first index such that
Pj

m¼1 R½m� � B. Notice that R½j�
may be partially packed. The totally packed classes are

removed from the vector. If
PC

m¼1 R½m� < B, the algorithm
moves the window to the right, until that for the first time
the window has C classes such that their sizes are greater or
equal than B. If this is the case, the C classes are packed and
the vector R is reordered (if the last considered set was par-
tially packed). Then the algorithm restarts. If in some itera-
tions, the window reaches the end of the vector R, i.e., the C

largest classes have total size smaller than B, the algorithm
generates bins by packing entirely C classes in each bin,
except that the last bin may have less than C classes.

4.2 Shortcomings of CCBP

However, MW algorithm incurs significant instance recon-
figuration between consecutive time slots although it can
obtain a near optimal channel consolidation. An example is
shown in Fig. 3a, where each column denotes a channel and
its height (the number above the column) denotes the work-
load. There are five channels < r; s; t; u; v > in the figure,
and every server has the same capacity of B ¼ 20; C ¼ 3.
Suppose in timeslot t1, the workloads of channels are
< 9; 11; 12; 13; 15 > respectively; all workloads are
decreased at the next timeslot t2 (shown in Fig. 3b) to
< 5; 7; 8; 9; 11 > respectively.

Shown in Fig. 3a, the MW algorithm is applied to t1 first:
the first two channels < r; s > are allocated to server A and
the bandwidth resources are fully used (9þ 11 ¼ 20); next
two channels < t; u > are allocated to server B and u still
has unfulfilled demand; and then < u; v > are allocated to
server C. Then in t2 (Fig. 3b), the MW algorithm packs chan-
nels < r; s; t > to server A and < u; v > to B respectively;
server C can be stopped to save cost.

As we can observe from the figure, in both timeslots, all
active servers are fully utilized; in t2 the cost saving is maxi-
mized. Also in t2, compared with t1, channel < t > is
migrated to server A, and channels < v > are migrated to
server B. It is obvious that even one channel migration in a
prior server can subsequently cause significant changes in
instance placement on the succeeding servers.

Now let’s consider the tolerance of imperfect prediction.
Assume that different from the prediction, channel r’s
workload is 8 in slot t1; also assume channel v’s real
workload is 16. Although the total workload maintains
the same, channels < u; v > together have 21 workload,
which is larger than the capacity of server A. To maintain
QoS, the only choice is to add an extra server to provide
the safety margin.

In summary, MW algorithm is subject to content reorga-
nization in large scale systems because the Objective ðiiÞ is
not taken into consideration at all. In addition, MW could
be sub-optimal when the workload prediction is imperfect.

Fig. 3. Moving window results over two consecutive time slots.

930 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2016

5 INTUITION

5.1 Observation

Let’s observe the motivating examples in Fig. 3 again: in slot
t1, < r; s > are allocated to server A and < t; u > are allo-
cated to server B; in both A and B, there is one extra com-
partment unallocated. What if we exploit these
compartments by adding channel v?

The workload dispatching in slot t1 can be maintained
the same as that in Fig. 4a. While in slot t2, we could allocate
workload 5, 7, 8 to < r; s; v > on server A and workload 8, 9,
3 to < t; u; v > on server B. We can still stop server C in slot
t2 and save the cost.

The advantage is to eliminate the changes to channel
placement. That is, the variability of “original” channels
< r; s > from t1 to t2 can be naturally “absorbed” by assign-
ing the workload of channel v in server A; the same happens
in server B. Additionally if in slot t1, channel r’s workload is
8 and channel v’s real workload is 16, the imperfect predic-
tion could be tolerated without the need of an extra server
for safety margin: simply allocate the extra 1 workload of
v to server A.

In server A, channel v acts like an “absorber” which
absorbs the unused bandwidth (if there is any). The same is
the role of channel < v > in server B.

5.2 Workload Absorbing

Patterns of web service workloads introduce opportunities
for cost saving. Previous measurement works have proved
that the hourly workload pattern of a typical web service
takes a day as the period [11], [13]. Assume the peak work-
load of a channel in the next 24 hours can be predicted, and
we allocate servers according to this prediction, then there
could have two consequences: (a) there is no need to add
more instances for this channel, since all demands in the
next 24 hours should be satisfied and (b) since most of the
hours in a 24-hour phase are off-peak, there could be a sig-
nificant portion of “wasted” bandwidth resources unless
we fully exploit the usage of server instances.

The basic idea of workload absorbing is to use a small set of
channels as “absorbers” to consume unused bandwidth to
minimize the waste in bandwidth allocation preset accord-
ing to the access predictions. Specifically, we choose a special
group of channels to form an Absorber set, and they are called
Absorber channels; the rest of the channels are put into the
Main set, and they are called Main channels. In forming the
Absorber set, we prefer to select Absorber channels with

large peak bandwidth demand because of their role of
“absorbing” unused bandwidth by the Main channels. We
mix channels from both the Main set and the Absorber set
and divide them to a number of Main groups. For each Main
group, the bandwidth capacity allocated is only based on the
24-hour peak workload prediction of member channels from
the Main set. In each timeslot, the bandwidth in an active
server is allocated to the Main channels with priority; the
extra bandwidth, if any, is allocated to the Absorber channels
assigned to the server. Absorber channels also form extra
Absorber groups, in case that the extra bandwidth allocated to
them inMain groups is not sufficient for their demand.

The benefits of workload absorbing are three-folded.
First, the bandwidth of Main group servers are fully utilized
since all extra bandwidth not used by Main channels are
“absorbed” by the Absorber channels in the same server.
Second, the instance reorganization is minimized: changes
to instance placement happens only at the beginning of a
24-hour cycle; at each time slot only server start/stop opera-
tions are needed. Third, it provides sufficient safety margin
for imperfect workload prediction because the variability
inside Main groups could be covered; only a small set of
Absorber groupsmay need extra servers.

Based on this intuition of workload absorbing, we design
an Absorber Window approach which solves the two-
dimensional-splittable packing problem in dynamic server
provisioning, for both minimizing content reorganization
and tolerating imperfect workload prediction.

6 DYNAMIC SERVER PROVISIONING WITH ABSORB

WINDOW

6.1 Framework

Exploiting the nature of workload daily cycles, we design
the scheduling framework to be two-level: cycle (e.g., every
24 hours) level and time slot (e.g., every hour) level. After
each cycle level scheduling, servers are divided to the Active
set and the Inactive set. As in the context of Amazon EC2, an
instance in Active set is running whereas an instance in Inac-
tive set is stopped but can resume operation with little time.
Active servers’ total resource capability should satisfy the
peak workload demand within a cycle; all servers in the
Inactive set can be stopped throughout the cycle.

The formal description of the two-level scheduling is as
follows:

� In each cycle, we find a packing of service instances
(i.e., channels) into the minimum number of servers,
which is the Active set; the current instance place-
ment should be taken into consideration to minimize
the number of instance changes between two conse-
cutive cycles. The instance placements of all timeslots
in the new cycle are fixed in cycle level scheduling.

� In each time slot within a cycle, we determine how
many servers to assign to the Active set (i.e., Jn;t)
and how to dispatch the channel workloads to these
servers (i.e., Qm;n;t).

6.2 Absorb Window Algorithm

At the center of our design is the absorb window algorithm.
Recall that the moving window algorithm is based on a

Fig. 4. Intuition of workload absorbing.

TIAN ET AL.: MINIMIZING CONTENT REORGANIZATION AND TOLERATING IMPERFECT WORKLOAD PREDICTION FOR CLOUD-BASED... 931

heuristic which tries to pack C different classes in each bin,
but in the process MW tends to pack small and large classes
in different bins. In contrast, our heuristic is to pack C � 1
less demanded channels (in the Main set) and 1 busy chan-
nel (in the Absorber set) together; they together make a
group of C channels in a bin. The Absorber set has L chan-
nels with the largest workloads; the Main set has P slices of
C � 1 small channels; the deduction of L and P will be pre-
sented later, and their relationship satisfies jMj ¼ P � ðC�
1Þ þ L.

Following the heuristic, we pack the channels to a server
instance as follows. For each slice of C � 1 channels in the
Main set, we add 1 channel from the Absorber set to form a
Main group of size C. The number of servers provisioned for
this group is dynamically calculated only based on the
workloads of the C � 1 Main channels; the provisioning
principle is that the total resource provided should be no
less than total peak demands of C � 1Main channels. Chan-
nels in Absorber set are directly grouped to a Absorber group
of size C, and their server provisioning is calculated after
Main channels are dispatched due to their absorbing role.

We illustrate the algorithm following the motivation
example in Fig. 3. There are four channels in two Main sets:
< r; s > and < t; u >. The only channel in Absorber set is
< v >; then two Main groups are < r; s; v > and < t; u; v >.
We get exactly the same result as shown in Fig. 4. at timeslot
t1, the total workload of C � 1 small channels of Main group
< r; s; v > is

Ps
m¼r R½m� ¼ B; so we use server A to host this

group. Similarly, the total load of C � 1 Main channels of
Main group < t; u; v > is

Pu
m¼t R½m� � B but

Pu
m¼t R½m� �

2B; so we use server B and C to host this group, and all sur-
plus capacity is allocated to the large absorber group < v >.

6.3 Grouping Channels

In this subsection, we present the details of constructing
groups of channels, which is done at the first cycle of the
provisioning procedure.

The determination of P and L. Because servers allocated to
the Absorber set may not be fully utilized, we should mini-
mize the number of Absorber channels (i.e., L) in this set.
Keep a vector R ¼ ðR½1�; R½2�; . . . ; R½M�Þ that is maintained
in non-decreasing order of the peak workload values R½m�.
The determination of P and L is shown in Algorithm 1.

Algorithm 1. GetPandL()

1: P ¼ 0;
2: while

PM
m¼P�ðC�1Þþ1 R½m� � P � B do

3: P ¼ P þ 1;
4: end while
5: L ¼ M � P � ðC � 1Þ;

The intuition behind this algorithm is: each Main group
may have at most B free capacity at any given timeslot; this
determination method ensures that all surplus capacity of
Main groups can be absorbed so that potential under-utili-
zation are limited to Absorber groups.

Group construction. The construction of Main channels in
each Main Group is relatively straightforward. Following
Algorithm 1, we put every consecutive C � 1 channels into
the next group. The remaining problem is how to choose the

Absorber channel for each group. As shown in Fig. 5, we iter-
atively add the next biggest class in Absorber set to the next
smallest Main group. If the Absorber set is exhausted, the
algorithm restarts from the beginning of the set. The intuition
behind this policy is that: larger channels have more chances
to be chosen as absorber candidates, hence makes the
remainingworkloads of Absorber channels more balanced.

For Absorber group, we keep a window of size C over the
Absorber channels. All generated groups would have C dif-
ferent channels each, except perhaps the last one.

Add new channels. For a running system, new channels
could be continuously added into the system. To minimize
the disturbance, we prefer maintaining the existing group
constructions: new channels are directly added to the tail of
Absorber set.

However, operators may re-run the grouping algorithm
from ground up to obtain better results. For example, they
can apply Algorithm 1, after every new C � 1 channels have
been added, to get a new pair of P andL values. If P does not
change, no new Main group is needed; otherwise, we apply
group construction algorithm to construct newMain groups.

6.4 Cycle Level Scheduling

Cycle level scheduling determines the Active set of servers,
based on the current grouping and the predicted peak
workloads of all channels.

Step 1: Calculates the number of servers in active set
Suppose the Absorber channels for all Main groups are

determined as AbsorberChanIndex½p�; 1 � p � P , then the
number of servers in each Main group is calculated by
Algorithm 2.

Algorithm 2.NumOfServersForEachMainGroup()

1: for p ¼ 1 	 	 	P do
2: GroupHead ¼ ðp� 1Þ � ðC � 1Þ þ 1
3: GroupTail ¼ ðp� 1Þ � ðC � 1Þ þ C � 1
4: GroupPeakLoad ¼ PGroupTail

m¼GroupHead R½m�
5: NumberServer½p� ¼ ceilðGroupPeakLoad=BÞ
6: AbsorberChannel ¼ AbsorberChanIndex½p�
7: AbsorberCapacity ¼ NumberServer½p��

B�GroupPeakLoad
8: R½AbsorberChannel� ¼ R½AbsorberChannel��

AbsorberCapacity
9: end for

After the execution of Algorithm 2, the number of Active
servers for each Absorber group can be calculated directly
by their remain workloads.

Step 2: Choose appropriate servers for each group
Let g denotes the group index. For each group g, the

number of servers in the new cycle NumberServer½g�ðtÞ is

Fig. 5. Grouping rules.

932 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2016

compared with the current numbersNumberServer½g�ðt� 1Þ.
If

NumberServer½g�ðtÞ < NumberServer½g�ðt� 1Þ

then NumberServer½g�ðt� 1Þ �NumberServer½g�ðtÞ servers
are stopped and added to the Inactive set. Their instance
placements are kept unchanged because this lazy clean-up
policy might reduce instance changes in the future if the
same group’s workload increases again.

Instead, if NumberServer½g�ðtÞ is bigger, then Number
Server½g�ðtÞ �NumberServer½g�ðt� 1Þ servers should be
added to group g from the Inactive set. The algorithm first
selects servers that used to serve the same group (that’s
how lazy policy benefits); after that other servers in the Inac-
tive set are selected based on the Least-Frequently Used
principal due to temporal locality in channel accesses.

6.5 Time Slot Level Scheduling

Server provisioning. For each time slot, we still use Algorithm
2 to get the number of required active servers of each group.
The task of server provisioning in timeslot level is to stop or
start necessary number of servers.

Workload dispatching. For a channel in Main set, its work-
load is evenly divided among the instances hosting by serv-
ers of its Main group. For a channel in Absorber set, after all
instances in its corresponding Main groups have been allo-
cated, the remaining workload is also evenly divided
among the instances hosting the Absorber group.

6.6 Tolerate Imperfect Workload Prediction

As mentioned above, a safety margin (in percentage) can
be added to every workload prediction to tolerate possi-
ble imperfections. Apparently, if the prediction has a
variance of at most 30 percent, then provides a 30 per-
cent safety margin is enough for any imperfect predic-
tion. However, this policy is too conservative since it
might provide many unnecessary servers.

Thanks to the nature of workload absorber, our approach
can provide a much lower percentage of safety margin com-
pared with oblivious method. We demonstrate this advan-
tage in evaluations.

There could exist more fine-grained per-channel margin
provisioning. More specifically, the margin may be load-
dependent: the margin required at a low workload channel
may be higher (in percentage) than the margin required at a
high workload one [39]. We prefer to leave this to future
work. Also noted that we only aim at an acceptable level of
imperfect workload prediction; flash-crowd traffic (such as
those caused by sudden public events) is an exception to
any prediction-based scheduling scheme.

7 PERFORMANCE EVALUATION

7.1 Evaluation Experiments Setup

We choose the Large type Amazon EC2 server as our evalu-
ation example (Table 1). Each server’s disk can be divided
to six parts with 140 GB each: one for system and the other
five for videos. So every 140 GB video content is aggre-
gated as an individual channel. We set 200 Mbps aside for
system, and use 1 Gbps for VoD servicing. That is, follow-
ing our problem formulation, all servers have C ¼ 5 and
B ¼ 1 Gbps.

The evaluations are driven by a realistic trace data from a
leading VoD provider in China. All data are collected
directly from the CDN of the provider. Shown in Fig. 6a is
an one-week workload pattern of a typical channel in Janu-
ary 2008; a vertical line marks the starting of a new day in
the week; the y-axis represents the changing workload.
From a daily point of view, the workload distribution varies
on a daily basis due to changing client numbers. To make a
finer observation, we show detailed workloads of selected
24 hours in Fig. 6b: the x-axis from 12:00 noon to 12:00 the
second day. As we can observe, the workload maintains
high from noon to night, starts to decline after around 23:00,
reaches the minimum load around 7:00, then rises again.

We use system logs for seven days from Jan 8 (Tuesday)
to Jan 14 (Monday), 2008 in Shenyang data center. We
have collected the records of 41 channels. Among them,
40 channels exist from the very start (their peak band-
width is shown in Fig. 7); one new channel is added from
Jan 10. We set full 24 hours as the length of a cycle from
23:00 to 22:59 next day.

The evaluations are based on numerical investigation of
real trace data. All simulations are done in Matlab on a
machine with a 3.0 Ghz Intel Xeon CPU. We will first thor-
oughly evaluate the performance of our algorithm in

Fig. 7. Peak Workload of 40 channels.

Fig. 6. (a) One week of workload pattern (Monday to Sunday) of a typical
channel (b) Detailed 24 hours workload pattern.

TIAN ET AL.: MINIMIZING CONTENT REORGANIZATION AND TOLERATING IMPERFECT WORKLOAD PREDICTION FOR CLOUD-BASED... 933

homogenous systems. Our AW algorithm is compared with
two algorithms: the first is a strawman provisioning
approach, which always provides the servers to meet the
predicated peak load of each channel; we also compare
with MW algorithm (In Section 4) to demonstrate the supe-
rior performance of our proposed algorithm. Then the scal-
ability of the proposed algorithm is demonstrated. When
imperfect workload prediction is introduced, the tradeoff
between safety margin and service performance is investi-
gated. At last, we evaluate the generalized approach for het-
erogeneous systems.

7.2 Cycle Level Provisioning

We use the “Number of Active Servers” metric to denote
system provisioning, as the provided network resource
capacity is the total number of active server of that time slot
multiplies with the network bandwidth (1 Gbps).

In the first experiment, real trace is used as prediction
inputs to drive the numerical investigation. The group con-
struction (Section 6) procedure is applied to the data of Jan
8. Shown in Table 4 is the result of initial group construction
with P ¼ 9 and L ¼ 4. Four Absorber channels (i.e., 37 to 40)
are selected and there is exactly one of them in each Main
group. Then on Jan 10, the new channel 41 is added into
group 10 (Absorber group).

Shown in Table 5 is the result of the number of Duty set
servers for the first cycle. Totally 75 servers are allocated to
groups and are placed with corresponding service instances.
Note that although the aggregated workload of Absorber

group 10 almost doubles that of Main group 9, its number of
allocated servers is just a little more than group 9: the reason
is that a large portion of the workload can be dispatched to
corresponding Absorber instances in other Main groups. We
can compare the real workload with the provided workload
by the servers provisioned: the maximum service capacity
can provided is 75,000 Gbps, compared with 74,045 Gbps
real peak workload in this cycle. These numbers are quite
close to each other, which implies that our approach per-
forms extraordinarywell inminimizing the cost too.

7.3 Performance of Cost Saving

The time-slot level server provisioning from 23:00, Jan 8 to
13:00 next day is shown in Fig. 8. At each hour, Both AW
algorithm andMWalgorithm are applied to the access traces.

As shown in Fig. 8, without dynamic provisioning, the
number of active servers always maintains at the maximum
value. On the contrary, the provided servicing capacity of
both AW and MW algorithms are always close to the real
workloads and the number of active servers is minimized,
because both algorithms make good use of full capacity of
allocated servers.

To measure the effectiveness of cost saving, We use a
standard-server-hour (SSH) metric. As shown in Fig. 8,
without dynamic provisioning, the cost is 75 Servers � 15
Hours = 1,125 SSHs in the period shown in Fig. 8. With
AW/MW dynamic provisioning, only around 540 SSHs are
needed and over 50 percent cost is saved in both cases. As
both AW and MW are heuristic based appoaches, we con-
clude that both dynamic provisioning algorithms can
achieve close-to-optimal cost saving. This is because both
algorithms leverage the full capacity of allocated servers.

However, AW doesn’t incur any instance placement
change inside a cycle. As a comparison, the instance changes
of MW algorithm are shown in Fig. 9: there are significant
instance changes in every timeslot; this is also by no means
any incidence, but because MW algorithm doesn’t take into
account the minimum reconfiguration rule. Therefore, AW
has significant benefits over MW in practical deployment as
reorgnization of cotents are prohibitive in cost.

In Fig. 10, we depict the number of servers of each group
produced by AW algorithm in each time slot. As we have
expected, the number of servers allocated to each Main
group exactly corresponds to its workload fluctuation. The

TABLE 4
Group Construction

Group Channel Peak Workload(Mbps)

1(Main)

1 248
2 258
3 340
4 400
40 �

2(Main)

5 437
6 650
7 680
8 739
39 �

..

. ..
. ..

.

9(Main)

33 3,100
34 3,280
35 4,080
36 4,200
40 �

10(Absorber)

37 4,650
38 4,980
39 5,300
40 6,270

TABLE 5
Cycle Level Scheduled Group Servers

Group 1 2 3 4 5 6 7 8 9 10 Sum

Number 2 3 4 5 6 6 7 9 15 18 75

Fig. 8. Provisioning versus real workload.

934 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2016

number of servers of the Absorber group 10 exhibits larger
fluctuation than its real workload due to the existence of
absorb effects; it is observed that there are only 1 server left
during the bottom hours. To sum up, we can conclude that
with perfect workload prediction (such as the real trace),
our server provisioning approach can minimize both cost
and instance reorganization.

7.4 Minimize Content Reorganization

We evaluate the number of content reorganizations on a
server at cycle level. The peak workloads of 7 days are
shown in Fig. 11a. The number of servers in both Active set
and Inactive set are shown in the figure too. Trace analysis
shows that 90 servers will meet the worst case peak
demand. As a start, we allocate 75 servers for Main set and
15 servers for the Absorber set in the first cycle.

It is obvious that the Active and Inactive sets will change
according to the daily peak workloads. Everyday, there
could be new servers needed in one group; there also could
be servers that are unnecessary and should be removed
from the Active set. At the start of each cycle, the following
lazy reconfiguration rules are executed:

� For groups that need fewer servers, the removed
servers are put into the Inactive set; the content
stored in their storage are preserved. If no other
groups choose them, these servers get into hiberna-
tion mode (stopped).

� For a group needing more servers, the scheduler first
looks into the Inactive set, check if there are already
some hibernating servers that belong to this group

before hibernation. If such servers are found, they are
wokenupwithout the need of content reconfiguration.

� If no such servers are found, the server with the old-
est hibernation time is chosen (earliest-first-replace-
ment) and a content reconfiguration is performed on
this server.

With this heuristic procedure, we fully utilize previous
servers’ contents, thus further eliminate unnecessary recon-
figuration at the cycle level.

The number of servers removed and/or added servers
and reconfigured instances at each cycle are shown in
Fig. 11b. As we have expected, the numbers of server
removed and/or added are directly related to the workload
variations. For example, at the beginning of Wednesday,
two servers are removed from a group; also, two servers are
added to another group. There is no hibernating servers
that contain the same content, hence all two servers need to
be reconfigured with channel contents. The same happens
on Thursday: one server hibernates; one server is added
and reconfigured. On Friday, the workload increases, thus
nine servers need to be added. At this moment, three hiber-
nating servers could be exploited. As a result, only six new
added servers need reconfiguration. It is clear that due to
the lazy reconfiguration policy, the number of reconfigura-
tion is greatly reduced. As the workload decreases, there is
no configuration changes on Sunday and Monday.

7.5 Tolerate Imperfect Workload Prediction

Imperfection of load prediction is inevitable in real scenarios.
One common technique is to provide safety margins for the

Fig. 9. Instance change of MW algorithm. Fig. 10. Number of active servers of each group.

Fig. 11. (a) Peak workload in each day (b) Server reconfigurations in cycle level (c) Execution time of algorithm.

TIAN ET AL.: MINIMIZING CONTENT REORGANIZATION AND TOLERATING IMPERFECT WORKLOAD PREDICTION FOR CLOUD-BASED... 935

predicted results. However, the level of safetymargin largely
affects the level of cost saving. Hence we need to control the
cost incurred by the safety margin. Next we demonstrate
that with our AM algorithm, the safety-margin can be signifi-
cantly reduced, without impairing the performance.

We first evaluate the performance of our algorithm with-
out safety margin provided. The access traces on the first
day from 23:00 to 13:00 the next day are used. Rejected
workloads of all channels are summed up to illustrate the
performance deterioration of the system. The results are
shown in Fig. 12a. It is clear that with the increase of the pre-
diction variance, the rejected workloads increases almost
linearly. This result illustrates the necessity of a safety mar-
gin for tolerating workload prediction errors.

Then we evaluate the performance of partial safety mar-
gin policy: we assume prediction variance range is known a
priori, and only partial safety margin is provided to the pre-
dicted values. The safety margin is increased from 10 to
100 percent of the prediction variance. The results are
shown in Fig. 12b with three different values of prediction
variance range. As we can see from the Figure, when the
safety margin approximates 60 percent of the maximal vari-
ance, the performance lost is nearly negligible. These results
show that with only partial safety margin, our approach is
tolerant to certain degree of prediction errors.

In Fig. 12c we compare the provided capacity with the
real workloads, where the prediction variance range is set
to 20 percent and safety margin is 60 percent of the predic-
tion variance. We calculate the standard-server-hour from
the results, and conclude that, with 60 percent safety mar-
gin, the cost saving is over 45 percent in this period.

7.6 Computational Scalability

Based on real traces, a channel workload generator is devel-
oped to simulate a large number of channel inputs (following
the distribution of channel peak workloads in Fig. 7). With
the generated channels, we evaluate the algorithm’s compu-
tational scalability. The computation time of our provision-
ing algorithms is shown in Fig. 11c. For 10,000 channels, the
execution times at both cycle level and time-slot level are less
than 1 second. We conclude that our algorithm is computa-
tionally scalable.

8 HETEROGENEOUS CLOUD

There exist heterogeneous instances in cloud computing plat-
forms such as Amazon EC2. The performance and cost of
server instances differ based on machine configuration (e.g.,

CPU cores and memory capacity). VoD providers may
choose different servers to further reduce operation costs.We
extend the problem formulation to accommodate heteroge-
neous server instances as follows. The optimization are sub-
jected to the constraints shown in Equation (3): set
ðaÞ specifies that a channel can be served in a server if and
only if the server is active in that time slot; set ðbÞ specifies
that a channel can be served in a server if and only if its
instance is stored on that server; set ðcÞ specifies that storage
requirements of all channels in server n should not exceed its
storage capacity; set ðdÞ specifies that the aggregation of
bandwidth allocated to the channels in each server should
not exceed the server’s bandwidth capacity; set ðeÞ specifies
that the total allocated bandwidth to a channel should meet
its demand; set ðfÞ gives the value range of decision variables.

ðaÞ Jn;t ¼ 0) Qm;n;t ¼ 0; 8m 2 M;8n 2 N; 8t 2 T

ðbÞ Im;n;t ¼ 0) Qm;n;t ¼ 0; 8m 2 M; 8n 2 N; 8t 2 T

ðcÞ
X

m2M
Im;n;t � Cn; 8n 2 N; 8t 2 T

ðdÞ
X

m2M
Qm;n;t � Bn; 8n 2 N; 8t 2 T

ðeÞ
X

n2N
Qm;n;t ¼ vm; 8m 2 M; 8t 2 T

ðfÞ Qm;n;t � 0; Im;n;t 2 f0; 1g; Jn;t 2 f0; 1g;
8m 2 M; 8n 2 N; 8t 2 T:

(3)

8.1 Support to Heterogeneous Servers

AW algorithm can be generalized to support heterogeneous
systems. A key observation is that generally the number of
server types is limited. We put all servers of the same type
into one server type group; there may exist different types
that have the same storage capacity; we further aggregate
those type groups together. Assume there are K type
groups, a server in group k has storage capacity Ck and this
type group can provide channel capacity up to Vk. For type
groups, a vector V ¼ ðV ½1�; V ½2�; . . . ; V ½K�Þ is maintained in
non-decreasing order of the values V ½k�. Again the channels
are grouped in non-decreasing order of the values R½m�.

The intuition is that we should match server type groups
that have higher available channel capacity with channel
groups that have higher workloads. Our heterogeneity-
friendly absorber window extension (AW’) iteratively
matches the server type groups to channel groups. At first,
the window goes from R½1� to R½C1 � 1�. If PC1�1

m¼1 R½m� � V1

then the algorithm packs the corresponding sets of
R0 ¼ ðR½1�; R½2�; . . . ; R½C1 � 1�Þ; a completely packed class

Fig. 12. (a) No safety margin (b) With partial safety margin (c) 20 percent Variance and 60 percent safety margin.

936 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2016

group is removed from vector R and its corresponding

capacity is subtracted from V1. If
PC1�1

m¼1 R½m� > V1, then the
algorithm moves to the next server type group with Ck and
Vk, until that for the first time the server group has Ck stor-
age capacity such that its network capacity are greater or
equal than Vk. Then the algorithm iterates from the begin-
ning until all the channels are assigned to servers.

All other auxiliary algorithms, such as the P and L calcu-
lation, can be easily generalized to support heterogeneous
systems. We omit their details here.

8.2 Evaluation

We suppose that the heterogeneous server farm consists of
four types of servers: (C ¼ 5 : B ¼ 1G, C ¼ 6 : B ¼ 1G,
C ¼ 8 : B ¼ 1:4G, C ¼ 8 : B ¼ 1:6G), each of which has 16
servers. The total service capacity is 80 Standard-Server-
Hour per time slot, slightly more than the total peak work-
load in Jan 8. We conduct the trace driven experiments simi-
lar to those for a homogeneous cloud system.

The result is shown in Fig. 13. It is clear that the extended
Absorber Window algorithm works well in heterogeneous
cloud systems, where over 50 percent of server rental costs
are saved.

9 RELATED WORK

Extensive efforts of dynamic server provisioning have been
made so as to achieve power efficiency in data centers [40],
[41]. In [42], Pinheiro et al. present a simple policy to turn
cluster servers on and off dynamically. Heath et al. [43] study
web service server ON-OFF strategies in the context of het-
erogeneous server types, although focusing only on short
transactions. Elnozahy et al. [44] employ various combina-
tions of dynamic voltage scaling and server ON-OFF strate-
gies to reduce the aggregate power consumption of a server
cluster during non-peak hours. Chase et al. [12] allocate com-
puting resources based on an economic approach, where
services “bid” for resources as a function of required perfor-
mance, and the system continuously monitors workload and
allocates resources based on its utilization. Chen et al. [13]
study dynamic server provisioning techniques in the context
of connection servers that host a large number of long-lived
TCP connections, which have little disk I/O loads. Most of
these works target on server ON-OFF strategies; they focus
on the system design of dynamic provisioning.

Gandhi et al. [45] propose an algorithm that can estimate
the right number of required servers without prediction of
future request rate. Lu et al. [46] develop online dynamic
provisioning solutions with and without future workload
information available. Lin et al. [47] presents a theoretical
analysis of the cost saving of online dynamic server provi-
sioning scheduling. Starts from the observation of the char-
acteristic of the workload prediction, Hong et al. [39]
propose to provide different safety margins for different
services to save costs. These researches also targets server
ON-OFF strategies; they focus on the impact of imperfect
workload prediction. Compared with all the above mentioned
papers, our work considers multidimensional resource constraints
in servers and the requirement of minimizing content
reorganization.

Also targeting power efficiency, Verma et al. [48], [49]
consider multiple resource constraints. The problem is for-
mulated as a multi-dimensional bin-packing problem and
the simple First-Fit algorithm is used to schedule services. A
recent work by Xiao et al. [50] considers packing virtual
machines (with multi-dimensional resource requirements)
into a minimum number of physical machines (with multi-
dimensional resource limitations). However, these works
can only handle services with relatively small resource
demands, where one server’s resource capacity is sufficient
in all dimensions. In other word, each resource constraint is
un-splittable. However, this assumption is hardly true for
large-scale web service systems as we described in Section 1.
In contrast, our work needs to handle practical services with split-
table workloads Section 2.4). Our dynamic server provisioning sol-
ves a two-dimensional-splittable packing problem, with respect to
the requirements of minimize content reorganization and tolerate
imperfect workload prediction (Section 3). There are also some
less related papers, such as the work of Tian et al. [51], which
improves load balancing via service consolidation.

10 CONCLUSION

Minimizing service cost is critical to a cloud-based VoD sys-
tem. At the same time, two major challenges need to be
addressed: minimizing content reorganization and tolerat-
ing imperfect workload prediction. Previous works only
focus on minimizing the cost. To the best of our knowledge,
we are the first to give practical solutions to the challenges.
Based on the novel “workload absorber” idea, we design
the Absorb Window approach to take advantage of residual
bandwidth for reducing resource waste. Extensive evalua-
tions with real trace data demonstrate that (1) the content
reorganization is minimized when achieving the same level
of server rental cost; (2) the safety margin in server provi-
sioning is reduced to further lower the costs and (3) the
approach can produce high-quality provisioning in seconds
even with thousands of servers and channels.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their valuable comments. This work was supported in part
by the China National Basic Research Program (973 Pro-
gram) under Grant 2011CB302601 and Grant 2012CB315801;
by the National Natural Science Foundation of China under
Grant 61202107, Grant 61271226, Grant 61371141, Grant

Fig. 13. Performance in heterogeneous systems.

TIAN ET AL.: MINIMIZING CONTENT REORGANIZATION AND TOLERATING IMPERFECT WORKLOAD PREDICTION FOR CLOUD-BASED... 937

61170290, and Grant 61222213; by the National High Tech-
nology Research and Development Program of China (863
Program) under Grant 2014AA01A702; by the National Sci-
ence Foundation of USA under Grant ACI-1440737; by the
EU FP7 CLIMBER project under Grant Agreement No.
PIRSES-GA-2012-318939; by the Jiangsu International Coop-
eration Program of Science and Technology under Grant
No. BZ2013018; by the Natural Science Foundation of Hubei
Province under Grant 2014CFB1007; and by the National
Key Technology Research and Development Program
of China under Grant 2012BAH46F03. Yi Wang is the
Corresponding author.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology,
2011-2016,”

[2] C. Tian, R. Alimi, Y. R. Yang, and D. Zhang, “Shadowstream:
Performance evaluation as a capability in production internet
live streaming networks,” in Proc. ACM SIGCOMM Conf.
Appl., Technol., Archit., Protocols Comput. Commun., 2012,
pp. 347–358.

[3] J. Yan, C. Tian, J. Sun, and H. Mao, “Improve distributed client
lifecycle control in shadowstream,” Int. J. Web Services Res., vol.
11, no. 4, pp. 62–78, 2014.

[4] H. Mao, C. Tian, J. Sun, J. Yan, W. Wu, and B. Huang,
“Shadowvod: Performance evaluation as a capability in produc-
tion p2p-cdn hybrid vod networks,” in Proc. Int. Symp. Ubiquitous
Syst. Data Eng., 2014, pp. 1–6.

[5] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian,
“Optimizing cost and performance for content multihoming,”
ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 371–
382, 2012.

[6] Web video firms accuse baidu of stealing content [Online]. Avail-
able: http://www.scmp.com/business/china-business/article/
1355409/web-video-f irms-accuse-baidu-stealing-content

[7] Tencent video spending hundreds of millions of rmb to build
network [Online]. Available: http://technode.com/2011/08/
29/tencent-video-spending-hundres-of-millio ns-of-rmb-to-
build-network/, 2011.

[8] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner,
and Z.-L. Zhang, “Unreeling netflix: Understanding and improv-
ing multi-cdn movie delivery,” in Proc. IEEE INFOCOM, 2012,
pp. 1620–1628.

[9] Limelight, akamai shares fall as netflix shifts traffic [Online].
Available: http://www.reuters.com/article/2012/06/05/us-
limelight-shares-netflix-i dUSBRE8540S220120605, 2012.

[10] Chaos kong is coming: A look at the global cloud and CDN
powering netflix [Online]. Available: http://www.datacenter-
knowledge.com/archives/2013/10/17/chaos-kong-is-co ming-a-
look-at-the-global-cloud-and-cdn-powering-netflix/, 2013.

[11] G. Szabo and B. A. Huberman, “Predicting the popularity of
online content,” Soc. Comput. Lab., HP Labs, Palo Alto, CA, USA,
2009.

[12] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyley, “Managing energy and server resources in hosting
centers,” in Proc. 18th ACM Symp. Oper. Syst. Principles, 2001,
pp. 103–116.

[13] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao,
“Energy-aware server provisioning and load dispatching for con-
nection-intensive internet services,” in Proc. 5th USENIX Symp.
Netw. Syst. Des. Implementation, 2008, pp. 337–350.

[14] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat,
“Model-based resource provisioning in a web service utility,” in
Proc. 4th USENIX Symp. Internet Technol. Syst., 2003, p. 5.

[15] V. Sharma, A. Thomas, T. Abdelzaher, and K. Skadron, “Power-
aware QoS management in web servers,” in Proc. 24th IEEE Real-
Time Syst. Symp., 2003, pp. 63–72.

[16] H. Shachnai and T. Tamir, “Polynomial time approximation
schemes for class-constrained packing problems,” J. Scheduling,
vol. 4, no. 6, pp. 313–338, 2001.

[17] E. C. Xavier and F. K. Miyazawa, “The class constrained bin pack-
ing problem with applications to video-on-demand,” Theor. Com-
put. Sci., vol. 393, no. 1, pp. 240–259, 2008.

[18] C. Huang, A. Wang, J. Li, and K. W. Ross, “Measuring and evalu-
ating large-scale CDNs,” in Proc. ACM 8th SIGCOMM Conf. Inter-
net Meas., 2008, vol. 8, pp. 15–28.

[19] J. Barr, A. Tetlaw, and L. Simoneau, Host Your Web Site in the
Cloud: Amazon Web Services Made Easy. Melbourne, Australia: Site-
Point, 2010.

[20] Amazon EC2 pricing [Online]. Available: http://aws.amazon.
com/ec2/pricing/, 2014.

[21] Amazon EC2 instances [Online]. Available: http://aws.amazon.
com/ec2/instance-types/, 2014.

[22] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan,
and M. Zhang, “Guaranteeing deadlines for inter-datacenter
transfers,” in Proc. ACM Eurosys, 2015, To Appear.

[23] Amazon s3 [Online]. Available: http://aws.amazon.com/s3/,
2014.

[24] Amazon elastic block store [Online]. Available: http://aws.ama-
zon.com/ebs/, 2014.

[25] Differences between s3 and ebs [Online]. Available: http://www.
cloudiquity.com/2009/03/differences-between-s3-and-ebs/, 2009.

[26] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: A high performance, server-centric network
architecture for modular data centers,” ACM SIGCOMM Comput.
Commun. Rev., vol. 39, no. 4, pp. 63–74, 2009.

[27] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D.
Maltz, “zupdate: Updating data center networks with zero loss,”
ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 411–
422, 2013.

[28] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,
“Traffic engineering with forward fault correction,” in Proc. ACM
Conf. SIGCOMM, 2014, pp. 527–538.

[29] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 539–550.

[30] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” in Proc. ACM Conf. SIGCOMM, 2014, pp. 27–38.

[31] Y. Zhao, K. Chen, W. Bai, M. Y. USC, C. Tian, Y. Geng, Y. Zhang,
D. Li, and S. Wang, “Rapier: Integrating routing and scheduling
for coflow-aware data center networks,” in Proc. IEEE INFOCOM,
2015, To Appear.

[32] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data cen-
ters,” in Proc. 12th USENIX Symp. Netw. Syst. Des. Implementation,
2015, To Appear.

[33] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: A data center network virtualization archi-
tecture with bandwidth guarantees,” in Proc. 6th Int. Conf, 2010,
p. 15.

[34] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 41, no. 4, 2011, pp. 242–253.

[35] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant is
change: Incorporating time-varying network reservations in data
centers,” ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 199–210, 2012.

[36] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. dis-
sertation, Massachusetts Inst. Technol., Cambridge, MA, USA,
1973.

[37] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “Dynamic
estimation of cpu demand of web traffic,” in Proc. 1st Int. Conf.
Perform. Eval. Methodol. Tools, 2006.

[38] H. Kimiyama and S. Itoh, “Method of predicting number of on-
demand video requests using time series data for video cache sys-
tem,” in Proc. 6th Int. Conf. Adv. Mobile Comput. Multimedia, 2008,
pp. 200–205.

[39] Y.-J. Hong, M. Thottethodi, and J. Xue. (2011). Dynamic server
provisioning to minimize cost in an IaaS cloud. Tech. Rep.
[Online]. Available: http://docs.lib.purdue.edu/cgi/viewcon-
tent.cgi?article=1413&context=ecetr

[40] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre, “A survey
on techniques for improving the energy efficiency of large-
scale distributed systems,” ACM Comput. Surv., vol. 46, no. 4,
p. 47, 2014.

[41] R. Alimi, L. Chen, D. Kutscher, H. H. Liu, A. Rahman, H. Song,
Y. R. Yang, D. Zhang, and N. Zong, “An open content delivery
infrastructure using data lockers,” in Proc. 2nd Ed. ICN Workshop
Inf.-Centric Netw., 2012, pp. 25–30.

938 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2016

[42] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, Dynamic
Cluster Reconfiguration for Power and Performance. Norwell, MA,
USA: Kluwer, 2002.

[43] T. Heath, W. M. Jr, B. Diniz, R. Bianchini, and E. V. Carrera,
“Energy conservation in heterogeneous server clusters,” in Proc.
ACM SIGPLAN Symp. Principles Pract. Parallel Programm., 2005,
pp. 186–195.

[44] M. Elnozahy, M. Kistler, and R. Rajamony, “Energy efficient
server clusters,” in Proc. 2nd Int. Conf. Power-Aware Comput. Syst.,
2003, pp. 179–197.

[45] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A.
Kozuch, “Autoscale: Dynamic, robust capacity management for
multi-tier data centers,” ACM Trans. Comput. Syst., vol. 30, no. 4,
p. 14, 2012.

[46] T. Lu, M. Chen, and L. L. Andrew, “Simple and effective dynamic
provisioning for power-proportional data centers,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 6, pp. 1161–1171, Jun. 2013.

[47] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1378–1391, Oct. 2013.

[48] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic place-
ment of HPC applications,” in Proc. 22nd Annu. Int. Conf. Super-
comput., 2008, pp. 175–184.

[49] A. Verma, G. Dasgupta, T. Nayak, P. De, and R. Kothari, “Server
workload analysis for power minimization using consolidation,”
in Proc. Usenix Annu. Tech. Conf., 2009, p. 28.

[50] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation
using virtual machines for cloud computing environment,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1107–1117, Jun. 2013.

[51] C. Tian, H. Jiang, A. Iyengar, X. Liu, Z. Wu, J. Chen, W. Liu, and
C. Wang, “Improving application placement for cluster-based
web applications,” IEEE Trans. Netw. Serv. Manag., vol. 8, no. 2,
pp. 104–115, Jun. 2011.

Chen Tian received the BS, MS, and the PhD
degrees from the Department of Electronics and
Information Engineering, Huazhong University of
Science and Technology, China, in 2000, 2003,
and 2008, respectively. He is an associate
professor of the State Key Laboratory for Novel
Software Technology, Nanjing University, China.
From 2012 to 2013, he was a postdoctoral
researcher with the Department of Computer
Science, Yale University. From 2013 to 2015,
he was an associate professor in the School of

Electronic Information and Communications, Huazhong University of
Science and Technology, China. His research interests include network
function virtualization, data center networks, distributed systems, Inter-
net streaming and big data processing for smart city.

Yi Wang received the BS, MS, and the PhD
degrees from the Department of Electronics and
Information Engineering, Huazhong University of
Science and Technology, China, in 2000, 2003,
and 2009, respectively. She is currently a lecturer
in the School of Electronics Information and Com-
munications, Huazhong University of Science
and Technology, China. Her research interest is
Cloud computing.

Yan Luo the BE and ME degrees from the
Huazhong University of Science and Technology,
and the PhD degree in computer science from
the University of California Riverside in 2005. He
is an associate professor of the Department of
Electrical and Computer Engineering, University
of Massachusetts Lowell. His research spans
broadly computer architecture and network sys-
tems. His current projects focus on heteroge-
neous architecture and systems, software
defined networks and deep learning. He has

served on the program committee of numerous international conferen-
ces and as a guest editor and referee of premier journals. He is a mem-
ber of the IEEE and ACM.

Hongbo Jiang received the BS and MS degrees
from the Huazhong University of Science and
Technology, China. He received the PhD degree
from Case Western Reserve University in 2008.
After that he joined the faculty of Huazhong Uni-
versity of Science and Technology where he is
now a full professor. His research concerns com-
puter networking, especially algorithms and
architectures for wireless networks and mobile
computing. He is a senior member of the IEEE.

Wenyu Liu received the BS degree in computer
science from Tsinghua University, Beijing, China,
in 1986, and the MS and PhD degrees, both in
electronics and information engineering, from
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 1991 and 2001,
respectively. He is currently a professor and
associate dean of the School of Electronic Infor-
mation and Communications, HUST. His current
research areas include sensor network, multime-
dia information processing, and computer vision.

He is a senior member of the IEEE.

Jie Wu received the BS, MS, and PhD degrees
from the School of Computer Science at Fudan
University, China, in 1996, 1999, and 2008,
respectively. He is a professor at the School of
Computer Science, FudanUniversity. His research
interests include computer networks, cloud com-
puting, and P2P streaming. He is a member of
ISO/IEC JTC1 SC38 on behalf of China.

Hao Yin is a professor in the Research Institute
of Information Technology (RIIT), Tsinghua Uni-
versity. He was elected as the New Century
Excellent Talent of the Chinese Ministry of Edu-
cation in 2009, and won the Chinese National
Science Foundation for Excellent Young Schol-
ars in 2012. His research interests span broad
aspects of Multimedia Communication and Com-
puter Networks. He is also the vice-director of
Industry Innovation Center for Future Network,
China, and the secretary-general of Industry

Innovation Alliance of Future Internet, China.

TIAN ET AL.: MINIMIZING CONTENT REORGANIZATION AND TOLERATING IMPERFECT WORKLOAD PREDICTION FOR CLOUD-BASED... 939

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

