
Macroflow: A Fine-grained Networking Abstraction for
Job Completion Time Oriented Scheduling in Datacenters

Chen Tian† Junhua Yan† Alex X. Liu†‡ Yizhou Tang† Yuankun Zhong† Zi Li†
†State Key Laboratory for Novel Software Technology, Nanjing University, China

‡Department of Computer Science and Engineering, Michigan State University, USA

Abstract—For a datacenter running a data-parallel analytic
framework, minimizing job completion time (JCT) is crucial
for application performance. The key observation is that JCT
could be improved, if network scheduling can exploit the
opportunity of decreasing the amount of occupied machine
slot-time spend on communication. We propose Macroflow, a
networking abstraction that captures the primitive resource
granularity of data-parallel frameworks. We study the inter-
macroflow scheduling problem for decreasing application JCT.
We propose the Smallest-Macroflow-First (SMF) and Smallest-
Average-Macroflow-First (SAMF) heuristics that greedily sched-
ule macroflows based on their network footprint. Trace-driven
simulations demonstrate that our algorithms can reduce the
average and tail JCT of network-intensive jobs by up to 20%
and 25%, respectively; at the same time, the throughput of
computation-intensive jobs is increased by up to 2.2×.

1. Introduction
For a datacenter running a data parallel analytic frame-

work such as Hadoop, minimizing job completion time
(JCT) is crucial for application performance. A job’s JCT
is dominated by both computation and network durations.
Depending on the footprint of communication, a job can be
either network-intensive or computation-intensive. In Face-
book, nearly 95% Hadoop jobs have no shuffle stages at
all, and over 96% of such jobs are used for small-scale
interactive and exploratory analyses: the average input data
of each job is only 21 KB.

Network researchers currently optimize several network-
level metrics to help applications. Many work focus on
minimizing flow completion time (FCT) [?], [?]. Recently,
the coflow abstraction bridges the gap between network and
application metrics based on application semantics: Mini-
mizing coflow completion time (CCT) might lead to reduced
JCT [?]. However, there could be a large performance
penalty when using state-of-the-art network metrics. Current
network metrics such as CCT are semantically different from
JCT, unless every job has and only has a single coflow phase
and no computation phase at all.

Consider the example in Figure ??: job A has two map-
pers Ma1/Ma2, and two reducers Ra1/Ra2 with negligible
computation requirements; totally there would be four flows
in its coflow; there is an additional job B, which only
has a single mapper task Mb with 1 slot-time computation
waiting to be scheduled (Figure ??). There exist ingress

Ra1 Ra2

Ma1 Ma2

Shuffle

Job A Job B

Mb

(a) Coflows in Job A

1
1

1
1

Fabric

S1

S2

(b) Topology

Ra1

3

P1

1 2

P2

Ra2

0

Mb

Time

S1

S2

(c) FS within a coflow

Ra1

3

P1

1 2

P2

Ra2

0

Mb

Time

S1

S2

(d) FIFO within a coflow

Figure 1. A Motivation Example.

ports P1/P2 in this datacenter fabric, and each port can
send/receive 1 unit of data in one time unit; egress port
P3 can receive 2 units of data per time unit (Figure ??);
Ma1/Ma2 are already finished, and each flow has one unit
of shuffle data to be collected; two machine slots S1/S2
behind port 3 hold Ra1/Ra2 running independently. Ap-
parently, the average CCT is fixed (2 time units for job A
to complete) regardless of flow scheduling. However, the
average JCT can be quite different regards different flow
scheduling policies. A widely-accepted mantra about coflow
is to finish all flows simultaneously within a coflow. Suppose
we use fair sharing among flows, then all four flows finished
in time 2. In this case, Mb can be allocated only when job
A is finished: the resulted average JCT is 2.5 time units
(Figure ??). As a comparison, if we let flows Ma1 → Ra1

and Ma2 → Ra1 have priority, then they can be finished
in 1 time unit without impacting the coflow finish time
(Figure ??). In this case, Ra1 has received all data and can
be completed in time 1; then Mb can be scheduled to occupy
the computing slot released by Ra1; as a result, the average
JCT is only 2 time units.

The key observation is that JCT could be improved,
if network scheduling can decrease the total occupied ma-
chine slot-time spend on network transfers by data receiver
processes. For an individual reducer in a shuffle phase, its
computation stage can start as soon as all input data are
ready, which is independent of all other reducers. As shown

2016 IEEE 24th International Conference on Network Protocols (ICNP) 
Poster Paper

1
978-1-5090-3281-5/16/$31.00 ©2016 IEEE



by the motivation example, prioritize some reducers’ flows
over others, and finish them earlier, can complete existing
tasks earlier; in turn, new tasks can be started earlier and
the total JCT can be reduced.

In this paper, we propose Macroflow, a networking ab-
straction that can capture the primitive machine slot-time
granularity of data-parallel frameworks. Each macroflow is a
collection of flows between a single reducer and all mappers
in the shuffle. Given this definition, a coflow is a collection
of macroflows, each with a distinct reducer. For example,
we can use reducer Ra1/Ra2 to denote the two macroflows
in Job A’s coflow. The abstraction allows the network to
take scheduling decisions on the collection to achieve an
optimized goal.

2. Design
We study the inter-macroflow scheduling problem for

decreasing application JCT. We prove the minimizing JCT
problem to be strongly NP-hard and focus on developing
effective heuristics. We demonstrate that the problem of
minimizing the total machine time of reducers is equiv-
alent to minimizing average macroflow completion time
(MCT). We propose the Smallest-Macroflow-First (SMF)
heuristic that greedily schedules a macroflow based on
its network footprint. The SMF approach might interleave
macroflows from different network-intensive jobs, since the
correlations among macroflows in the same coflow are ig-
nored. Correspondingly, we propose the Smallest-Average-
Macroflow-First (SAMF) heuristic that greedily schedules
all macroflows of a coflow together, based on the average
footprint of all its contained macroflows.

We are currently in the process of developing a running
system. The API framework is implemented in the appli-
cation layer, by extending the existing coflow framework.

3. Evaluation
Methodology We evaluate our algorithms with a flow-level
simulator by performing a replay of the collected Facebook
logs. Since there are only flow information of network-
intensive jobs in the logs, we choose to emulate each job’s
computation phase. For all jobs, the average computation
duration is a parameter, and each computation job has a
single mapper. A major decision is to compare the job
throughput instead of job completion time: when and only
when there is a free machine slot and there are no waiting
reducers, such a computation-intensive job is inserted; the
metric for performance comparison is the average through-
put of computation jobs per second. Although an indirect
metric, average job throughput is more accurate in capturing
the saved machine slot-time than computation job JCT.

Figure ?? shows the experiment results. We make several
observations. First, SMF/SAMF outperform SCF in both
average/tail JCT. For average JCT, SMF/SAMF reduce JCT
by up to 20% (when average computation duration is 5
seconds in Figure ??). The largest improvement is for 99%
tail latency: compared with SCF, the tail latency can be
reduced by up to 25% (Figure ??). The reason is that the

(a) Average JCT (b) 99 Percentile JCT

(c) Average MCT (d) Computation-intensive jobs

Figure 2. The Experiment Results.

larger the computation duration, the larger the impact of
saved machine slot-time for algorithms.

Second, the average MCT is reduced by 35-37% for all
scenarios (Figure ??). As a result, SMF/SAMF can save
a lot of machine slots. As expected, SAMF is slightly
worse than SCF. A seemly counter-intuitive phenomenon
is that: average MCT is even higher than average CCT. The
reason is that a large number of small coflows dominate
the average calculation of CCT; while the overwhelming
number of macroflows in large coflows dominate the average
calculation of MCT.

Third, the throughput of computation-intensive jobs are
significantly higher with SMF/SAMF (Figure ??). When
computation duration is 5 seconds, SMF is 2.2× higher
than SCF. Since SAMF is inferior in minimize MCT, the
throughput of SAMF is lower, but still achieves 2× gain.
With the increase of computation duration, the throughput
gain of computation jobs decreases.

Acknowledgement
This work is partially supported by the National Science

Foundation under Grant Numbers CNS-1318563, CNS-1524698,
and CNS-1421407, and the National Natural Science Foundation
of China under Grant Nos. 61472184, 61321491 and 61602194,
and the Jiangsu High-level Innovation and Entrepreneurship
(Shuangchuang) Program.

References

[1] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker. pfabric: Minimal near-optimal datacenter transport. In
ACM SIGCOMM, volume 43, pages 435–446. ACM, 2013.

[2] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. Information-
agnostic flow scheduling for commodity data centers. In NSDI.
USENIX, 2015.

[3] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling
with varys. In ACM SIGCOMM, pages 443–454. ACM, 2014.

2016 IEEE 24th International Conference on Network Protocols (ICNP) 
Poster Paper

2


